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Abstract

As complexity and capabilities of Artificial Intelligence (AI) technolo-
gies increase, so does its potential for misuse. Deepfake videos are an
example. They are created with generative models which produce media
that replicates the voices and faces of real people. Deepfake videos may
be entertaining, but they may also put privacy and security at risk.
A criminal may forge a video of a politician or another notable per-
son in order to affect public opinions or deceive others. Approaches for
detecting and protecting against these types of forgery must evolve as
well as the methods of generation to ensure that proper information
is supplied and to mitigate the risks associated with the fast evolution
of deepfakes. This research exploits the effectiveness of deepfake detec-
tion algorithms with the application of a Particle Swarm Optimization
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(PSO) variant for hyperparameter selection. Since Convolutional Neu-
ral Networks (CNNs) excel in recognising objects and patterns in visual
data while Recurrent Neural Networks (RNNs) are proficient at handling
sequential data, in this research, we propose a hybrid EfficientNet-Gated
Recurrent Unit (GRU) network as well as EfficientNet-B0 based transfer
learning for video forgery classification. A new PSO algorithm is pro-
posed for hyperparameter search, which incorporates composite leaders
and reinforcement learning-based search strategy allocation to mitigate
premature convergence. To assess whether an image or a video is manip-
ulated, both models are trained on datasets containing deepfake and
genuine photographs and videos. The empirical results indicate that the
proposed PSO-based EfficientNet-GRU and EfficientNet-B0 networks
outperform the counterparts with manual and optimal learning config-
urations yielded by other search methods for several deepfake datasets.

Keywords: video deepfake detection; EfficientNet; EfficientNet-Gated
Recurrent Unit; hyperparameter selection; Particle Swarm Optimization

1 Introduction

Generative models are increasingly being used. They have demonstrated a
great deal of success in generating high-quality fake photographs, videos, and
audios, which may frequently be impossible to be distinguished from the gen-
uine ones. The Internet makes it possible for anybody to create this type of
media. The use of deep learning algorithms to the production of this form of
content is a significant contributor to the development of the notion known
as “deepfake”. A person with malicious intentions is able to create real-time
video deepfakes using the tools that are currently available. Such video manip-
ulations involve the replacement of a source individual with a target individual
using a series of techniques such as face swapping or lip synchronization to
generate an entirely new video.

As continuous advancement in deep generative models, it is getting increas-
ingly difficult to distinguish between authentic and fraudulent photographs
and videos. In a study, Nightingale et al. [1] have proven, in two different trials,
that people’s capacity to discern edited photographs of real-world settings is
severely restricted. Their results suggested concern about the degree to which
individuals may be misled in their day-to-day lives. According to the authors,
this was supported by the fact that manipulated images already command
a significant amount of attention in the media, e.g. social networking sites.
Additionally, the researchers were unable to find any convincing evidence to
support the idea that personal characteristics, such as skills in photography
or opinions regarding the degree to which image manipulation is pervasive in
society, are linked to a better ability to spot or locate manipulations. This was
one of our primary motivations when conducting this study.
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The primary means for video and image forgery generation are through
the training of generative models using variational autoencoders (VAE), Gen-
erative Adversarial Networks (GANs), or various blends of these two types of
models with other image processing techniques. The majority of the models will
base their networks on Convolutional Neural Networks (CNNs), or, beginning
in 2022, more modern models are also capable of using Vision Transformers
(ViT).

Some of the newest generation of models are able to produce images with
a very subtle level of artefacts. As a result, as pointed out by Sabir et al. [2],
the only way to determine whether or not a face is real or fake is by looking
for features such as an unnaturally asymmetric face, weird teeth, and other
more obvious inconsistencies not localised on the face but in the background.
We introduce different types of attacks as follows.

Face Swapping : The face of a source individual in a video is changed to
match the form and characteristics of that of a target individual [3]. After
having the face of the target individual initially extracted from an image, it is
then subsequently transferred to a newly generated image or video. In order
to produce the manipulated image, the process typically involves training two
encoders on both the source image and the target image and then switching
the decoders in order to rebuild the face from image A onto image B. Some
applications have gained popularity due to the ease with which they can be
deployed and the results they produce. These applications enable even people
with little knowledge to create fake images. Natsume et al. [4] proposed an
region-separative GAN (RSGAN) model for the generation of synthetic images
independently for faces and hair, which led to improved outcomes on face
swapping.

Facial Reenactment : The facial reenactment techniques change or recon-
struct particular aspects of a face, such as one’s head position, expression, eye
gaze, or lip movement. GAN is the most adopted facial reenactment image
generator. In 2016, Thies et al. [5] developed one of the first tools, namely
Face2Face, for facial reenactment. It was a real-time system that created a 3D
face model based on the input image and used its 3D geometry to render the
fake face. Face2Face was one of the first tools of its kind. Reenactment can
also be carried out using purely one video input with the use of a method pro-
posed by [6]. Specifically, the head movement, facial expression, eye gazing, and
blinking of the eyes were collected initially, and then transferred to a target
actor who was also using a 3D head model. The detection and classification of
face swapping and facial reenactment are the primary focuses of this research.

Due to the gravity of the problem and the possible danger that deepfakes
pose to social stability, there has been an increase in research aimed at find-
ing a solution to the challenge of identifying deepfakes. Constructing a CNN
specifically tailored to the problem at hand, in this instance, detecting deep-
fakes, is one approach that may be used. But even so, there are a variety of
channels that might be explored. For instance, some may choose from a variety
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of network designs, while others may customise a number of hyperparame-
ters in accordance with specific tasks. In addition, there are several studies
adopting algorithms to handle the processing of an image or a video. An algo-
rithm may, for instance, take into account individual video frames and attempt
to locate instances of spatial inconsistency. Alternatively, the algorithm may
compare successive video frames in an effort to identify instances of temporal
inconsistency.

In this research, we propose transfer learning of CNNs and hybrid CNN-
Recurrent Neural Network (RNN) models with Particle Swarm Optimization
(PSO)-based hyperparameter selection for deepfake detection. Our system
comprises three key steps. (1) Firstly a data preprocessing procedure is applied
to crop facial regions to eliminate background distraction. The cropped facial
regions are then used as inputs to deep networks for video classification. (2)
Specifically, an ImageNet pretrained EfficientNet is fine-tuned using the deep-
fake datasets with video frames as inputs, while EfficientNet serialized with a
Gated Recurrent Unit (GRU) network is used with videos as inputs directly for
synthetic video classification. During the training stage, a new PSO algorithm
is proposed to conduct optimal hyperparameter search for EfficientNet and
EfficientNet-GRU, which integrates composite leader signal generation and
reinforcement learning-based search operation deployment to increase search
flexibility. (3) Finally, the yielded optimized settings are used to establish the
final transfer learning and hybrid networks for fake/real video classification.
The research novelties are elaborated as follows.

• To reduce background distraction, a face cropping procedure using a multi-
task cascaded deep learning model is used for facial region extraction from
video frames.

• A hybrid EfficientNet-GRU network and transfer learning using EfficientNet
are proposed for identifying fake from real videos, owing to their great effi-
ciency in extracting spatial-temporal cues and capturing inter/intra-frame
inconsistencies. Automated hyperparameter search using the proposed PSO
algorithm is also conducted for both networks to further boost performance.
The new PSO algorithm combines adaptive nonlinear functions for com-
posite leader generation as well as the Q-learning algorithm for optimal
dispatch of different search operations, to overcome local optima traps. Eval-
uated using several well-known deepfake datasets, the proposed PSO-based
EfficientNet-B0 and EfficientNet-GRU networks achieve superior perfor-
mance over those of existing state-of-the-art methods for video authenticity
identification. The proposed optimizer also shows statistical superiority over
other search methods in solving a variety of unimodal and multimodal
benchmark functions.
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2 Related Work

In this section, we discuss state-of-the-art deep neural networks for deepfake
detection and swarm intelligence algorithms for optimal hyperparameter fine-
tuning.

2.1 Deepfake Detection

One of the first end-to-end trainable architectures for video classification using
CNN and RNN was proposed in 2015 by Liang and Hu [7]. Their work exploited
recurrent CNN (RCNN) for undertaking object recognition. In 2016, Donahue
et al. [8] studied Long-Term Recurrent Convolutional Network (LRCN), where
a CNN processed raw visual input and fed it to a stack of recurrent sequential
models for spatial-temporal feature extraction. Specifically, the LRCN model
adopted CNNs to learn visual features from video frames and passed a sequence
of image embeddings through Long Short-Term Memory (LSTM) networks for
video classification.

In 2018, after the first deepfakes appeared, the idea to use the hybrid archi-
tecture for deepfake detection was first researched and published combining
the advantageous characteristics of the RNN to enhance the performance of the
CNN. According to Sabir et al. [2], the body of literature that has been most
explored to gain insight about video classification for deep fake detection was
video action recognition [9] [10] [11] [12] because of the extensive development
in the field in recent years and similar spatial-temporal processing nature to
that of deepfake detection. One of the main methods of human action recog-
nition is a “two-stream” network methodology, which processes video frames
and optical flow in two different branches before fusing them for video classifi-
cation. [13] presented a deepfake detection with this two-stream technique. In
addition, an RCNN model was employed by [2] for deepfake detection. It pro-
cessed each frame using a CNN, and the extracted spatial features were further
processed using an RNN for video forgery identification. Other strategies uti-
lized biological signals and attention layers [14] [15] to enhance the efficiency
for manipulated video detection. In particular, these techniques paid special
attention to lip movements and eye gaze to check for inconsistencies.

Moreover, Sabir et al. [2] focused on using a CNN followed by a recur-
rent model with the input as the query video frame sequences. Their model
exploited frame-to-frame temporal differences. Their work claimed that since
image manipulations were conducted frame-by-frame and temporal discrep-
ancies were expected, low-level face manipulation techniques should show
temporal artefacts with inconsistent features across frames. Their work thus
aimed to identify such temporal inconsistencies. Specifically, they used a
DenseNet to extract features like discontinuous jawlines and blurred eyes, and
then retrieved the RNN’s final output rather than averaging recurrent features
across all time steps as in traditional video classification pipelines.
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2.2 Hyperparameter Search

Hyperparameter configurations of deep neural networks have significant effects
in reducing or preventing oscillations in gradient descents as well as correct-
ing gradient directions for weight adjustment towards global optima. The local
optima, plateau and saddle points in the loss space are the major challenges
that deep networks encounter. If hyperparameters of deep neural networks
are not appropriately optimized, the networks’ performance will be affected
significantly by the above factors. Although methods, such as grid and ran-
dom search, work well for hyperparameter search with discrete values in a
small search space, there are other more effective methods like employing
swarm-based metaheuristic methods to determine optimal hyperparameter
configurations specially in a continuous large search space like loss spaces in
deep networks. We explore such an option through an evolutionary algorithm
called PSO, which is simple to implement and has been proven by the litera-
ture to produce great robustness for learning configuration selection in neural
networks.

The evolutionary algorithms are optimization methods that take inspira-
tion from biological processes. The PSO algorithm was proposed by [16] in
1995, which takes inspiration from fish or bird swarm movement.

Because PSO does not rely on gradient descent, one can use an objective
function to optimize deep network parameters without relying on its deriva-
tives [9]. In this work, hyperparameters of deep learning models such as the
learning rate, dropout rate, image input size and number of frames extracted
from videos will be optimized. The objective function will be associated with
loss function of the deep learning model to advise search of optimal learning
settings.

The way PSO works is by initialising a group of particles in the search
space of the function randomly, and at each iteration it checks which particle
achieves the lowest value (i.e. the most optimal loss) on the objective function.
At each following step, each particle uses the information of the best solutions
found by the swarm and itself, along with random exploration factors, to guide
the particle’s movement [16].

Taking k as the iteration number, the velocity of a given particle i is given
by:

vi(k + 1) = wvi(k) + c1r1(x
pbest
i (k)− xi(k)) + c2r2(gbest(k)− xi(k)) (1)

where:

- vi(k) is the velocity of particle i at iteration k;
- w is an inertia weight;
- c1 and c2 are parameters called the “cognitive” and “social” coefficients,
respectively;

- r1 and r2 are randomly generated numbers between 0 and 1;
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- pbest is the “personal best” position of the particle (i.e. the best position it
has achieved so far);

- gbest is the “global best” position among all particles in the swarm (i.e. the
best position achieved by the swarm);

The position of the particle i at iteration k + 1 will be updated with the
velocity as follows:

xi(k + 1) = xi(k) + vi(k + 1) (2)

The inertia weight controls how much of the particle’s previous velocity is
kept in the update. A greater w setting indicates that the particle’s previous
velocity has strong effects to the new velocity generation. The cognitive and
social weights, define how much the particle is impacted by its own best past
experiences (pbest) and the best experiences of the other particles in the swarm
(gbest), respectively [17]. In general, the values of c1 and c2 should be greater
than 0, and less than or equivalent to 2.5. Setting these values too low may
lead the particles to fail to sufficiently explore the search space, whereas setting
them too high may cause the particles to become extremely sensitive to changes
in the swarm and exhibit suboptimal behaviour.

In short, PSO is a powerful optimization technique that has been used to
solve a wide range of optimization problems. The velocity update formula is
critical in establishing how the swarm particles move and update their positions
in search of a satisfactory optimal solution. Variant methods have also been
proposed to tackle local optima traps of the original PSO algorithm, which were
widely adopted in hyperparameter and architecture search in deep networks
[18] [19] [20].

There are inspiring related studies for hyperparameter and architecture
search using multi-task learning. For example, automatic generation of multi-
task learning models was conducted by Zhang et al. [21] for solving a variety of
semantic segmentation problems. The automation process utilized a randomly
assigned backbone network in conjunction with a set of tasks as inputs with the
attempt to generate a multi-task model with a reasonable trade-off between
performance and cost. A gradient-based search method was used for architec-
ture search. The optimization process determined the assignment of different
network nodes for each task and how these selected nodes were shared with
other tasks. A unique characteristic of their work was the adoption of param-
eter sharing at the operator (neuron) level via a joint optimization of shared
policies and network weights. Their yielded multi-task model showed great
capabilities in tackling diverse multi-class semantic segmentation problems.
In addition, automated production of search parameter and search mecha-
nisms for metaheuristic algorithms was exploited by Stützle and López-Ibáñez
[22]. Such techniques were capable of developing optimizers with effective new
search strategies. They also showed great efficiency in enhancing existing search
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methods’ performance via optimal parameter selection. Furthermore, an adap-
tive hybridized multi-task learning framework was developed by Lialestani et
al. [23] pertaining to temperature prediction at different depth levels. Their
work performed architecture generation of a multi-task multilayer percep-
tron neural network using a FA variant developed by Shahri et al. [24]. The
FA variant conducted multi-task network architecture generation, where the
absorption and randomization parameters were fine-tuned by the population
brightness variance.

Cheng et al. [25] developed a multi-task learning model with a hybrid
CNN-transformer encoder for simultaneous image segmentation and classi-
fication using multimodal MRI image inputs. A U-Net-like encoder-decoder
architecture was proposed with an additional transformer unit embedded in
the bottom of the CNN-based encoder. The hybrid CNN-transformer encoder
fused high-level spatial and global features extracted by a CNN-stream and a
transformer-based operation respectively. The joint learning of both segmen-
tation and classification tasks was conducted via a compound loss function
integrating segmentation and classification losses with uncertain weights. To
tackle data sparsity and unlabelled data, a semi-supervised joint learning
mechanism was deployed to enhance classification performance by integrating
with uncertainty-based label selection.

2.3 Other Swarm Intelligence Algorithms

Besides PSO, in recent years, a number of new state-of-the-art swarm intel-
ligence algorithms have been proposed including Spotted Hyena Optimizer,
Symbiotic Organisms Search, Tree Seed Algorithm, Sparrow Search Algorithm
and Tunicate Swarm Algorithm, for tackling engineering, mathematics and
image processing optimization problems. Proposed by Cheng and Prayogo [26],
Symbiotic Organisms Search employs mutualism, commensalism, and para-
sitism processes to simulate mutual interaction of two organisms to lead the
search of global optimality. Firstly, during mutualism, the mean position vector
of the current search agent and another randomly selected organism is calcu-
lated, which is used in conjunction with the global best solution to update the
positions of both the current and randomly selected individuals. Their offspring
solutions are used to replace them if the new solutions are fitter. Secondly,
for the commensalism stage, the difference between the global best solution
and a randomly selected individual is used to guide the movement of the cur-
rent search agent. Subsequently, the parasitism operation randomly mutates
the dimensions of the current search agent, which is used to substitute a ran-
domly selected organism if this mutated solution is fitter. The effectiveness
of Symbiotic Organisms Search was evidenced by its capabilities in handling
diverse engineering and benchmark optimization problems, as indicated in a
related study [27]. Modified Symbiotic Organisms Search algorithms and its
hybridation with other search methods were also extensively studied in [27] to
guide future development. Motivated by the cluster hunting behaviours of the
spotted hyenas, the search process of Spotted Hyena Optimizer [28] comprises
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encircling/hunting and attack mechanisms. The encircling/hunting operation
performs local exploitation and intensifies the search around the global best
solution. Specifically, the leader spotted hyena with the best fitness score is
used to re-allocate the remaining spotted hyenas to its optimal neighbouring
regions. Those spotted hyenas with high correlations to the leader form a clus-
ter where their mean position is used to generate a new swarm leader. Adaptive
search coefficients are exploited to balance local and global search operations.
Diverse Spotted Hyena Optimizer variant methods including the integration
with other swarm intelligence algorithms such as PSO and Simulated Anneal-
ing (SA) as well as other local/global search strategies were extensively studied
in Ghafori and Gharehchopogh [29]. Their flexibilities were further demon-
strated in solving a variety of complex single and multi-objective optimization
problems [29].

A Sparrow Search Algorithm was developed by Xue and Shen [30] where
the population was composed of top ranking producer and lower ranking
scrounger subswarms. In addition, 10%-20% of the sparrows are capable of per-
ceiving danger. The top ranking producers perform global exploration when
a randomly generated alarm coefficient is lower than the pre-defined safety
threshold, otherwise the producer subswarm conducts local exploitation using
Gaussian distribution. The lower ranking scrounger subswarm is guided by
the producers to exploit optimal local regions of the respective producers. The
sparrows with the capabilities of sensing danger follow the swarm leader while
staying away from the global worst solution. The algorithm outperformed other
classical search methods for solving a number of numerical optimization prob-
lems. To overcome slow convergence of the model, a number of variant methods
of the Sparrow Search Algorithm were studied by Gharehchopogh et al. [31].
These include the incorporation of PSO, Firefly Algorithm (FA) [32], Differ-
ential Evolution (DE) and Since Cosine Algorithm (SCA) [33] with Sparrow
Search Algorithm respectively. Other enhancement mechanisms such as ran-
dom walk based on Levy flights and chaotic map-based swarm initialization are
also exploited to increase search robustness. Related studies of neural archi-
tecture and hyperparameter search using the Sparrow Search Algorithm were
also investigated in [31]. A Tree Seed Algorithm was exploited by Kiran [34].
A swarm of tree solutions is randomly initialized. For each tree, a number of
seed solutions are generated. Specifically, each new seed solution is generated
using two sub-dimension-based search operations. One is guided by the best
tree solution and a randomly selected tree position while the other is led by
the current tree position and a randomly selected tree location. For the gen-
eration of a specific dimension of a seed solution, the selection of these two
search strategies is controlled by a randomly generated threshold parameter.
The number of the new seed solutions that can be produced for each tree is
dynamic between 10% and 25% of the population size, in order to increase
search exploitation. If the best offspring seed solution is fitter than the tree
solution, it is used to substitute the tree solution. The algorithm obtained com-
petitive performance in comparison with other search methods such as PSO
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and FA for solving 24 numerical test functions. A comprehensive survey of
the Tree Seed Algorithm was conducted by [35] where a variety of variants of
Tree Seed Algorithm were analysed. The variant methods included the combi-
nation of Tree Seed Algorithm with other swarm intelligence algorithms such
as Artificial Bee Colony (ABC) [36] and SCA. Improvement strategies such
as Levy and Gaussian distributions were also utilized to enhance flexibility
of Tree Seed Algorithm. Moreover, the effectiveness of Tree Seed Algorithm
was also ascertained by handling a variety of real-world optimization problems
such as feature selection and image compression. A variant method of Tuni-
cate Swarm Algorithm was studied by Gharehchopogh [37], which included
Quantum Rotation Gate (QRG) and mutation operators based on Cauchy,
Gaussian and Levy distributions to increase search robustness of the original
method. In particular, besides using QRG, their work explored the effective-
ness of the combinations of any two out of the three mutation operators as
well as the integration of all three random walk strategies. The superiority of
the full model integrating all mutation operators along with QRG was ascer-
tained by solving a set of 52 unimodal, multimodal, composition and hybrid
test functions, as well as several other engineering optimization problems.

A new FA variant was developed by Shahri et al. [24] by incorporating a
brightness expectation value and a generalized weighted average of a random
brightness. It exploited an adaptive absorption coefficient and an adaptive ran-
domization search step to better balance the search between intensification
and diversification. The population fitness variance was used to adjust these
adaptive search parameters after a number of iterations, which was calculated
using the difference between the fitness of each firefly and the mean fitness of
the overall swarm, divided by a dynamic normalization factor. Owing to the
adaptive adjustment of the search parameters based on the fitness variations
during the search process, their method showed better capabilities in overcom-
ing local optima traps in comparison with FA for solving several benchmark
functions as well as multi-objective blasting engineering problems.

Motivated by foraging behaviours of social spiders, Social Spider Opti-
mizer (SSO) [38] first generates a vibration intensity of each spider whereby
a better fitness score aligns with a stronger vibration. The strongest vibra-
tion intensity generated by other spiders and sensed by the current spider is
extracted. A randomly generated binary mask is used to select either this new
best vibration intensity or another vibration intensity generated by a random
individual in each dimension for the construction of new personal leader sig-
nal. This new elite leader signal is used to guide a random walk operation
for position updating. Boundary checkings are also performed after position
updates. SSO shows competitive performance as compared with a number of
state-of-the-art search algorithms for tackling diverse numerical optimization
problems. Besides the above, there are also other swarm intelligence algorithms
developed for handling feature selection, hyperparameter search, deep neural
architecture generation with respect to image segmentation/classification [19]
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[39] [40] [41], human action recognition [42] and environmental sound classifi-
cation [18], as well as solving other engineering and mathematical optimization
problems [43] [44] [45] [46] [47] [48] [49].

3 The Proposed Methods for Deepfake
Detection

The proposed deepfake detection system consists of three key steps, i.e. (1)
data preprocessing for the extraction of cropped facial regions, (2) the pro-
posed PSO-based hyperparameter optimization during network training stage,
and (3) model establishment using the selected optimal settings and subse-
quent evaluation using unseen test samples. In particular, transfer learning
with EfficientNet as the backbone as well as a hybrid EfficientNet-GRU model
is studied in conjunction with PSO-based hyperparameter search for synthetic
video classification. We introduce each key stage below.

3.1 Data Preprocessing

The initial stage of the training pipeline involves extracting and pre-processing
the first 150 frames of each video. The Python OpenCV library was used to
extract the image frames, and then the faces on each frame were processed
through the Multi-task cascaded CNN (MTCNN) face detector [50] for crop-
ping. After that, the face crops were organised into folders and saved as image
files within the file system. In particular, the cropped facial regions from the
real videos are augmented during training by flipping them horizontally to
increase real sample sizes. Figure 1 shows the detailed preprocessing pipeline
for face cropping.

Fig. 1 The preprocessing pipeline for face cropping

Proposed by Zhang et al. [50], the MTCNN model is used for face detec-
tion. Specifically, the model is able to perform face classification, facial region
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bounding box generation and facial alignment. MTCNN firstly deploys a pro-
posal CNN to perform binary (face and non-face) classification, and generate a
number of candidate bounding box regression vectors. The nonmaximum sup-
pression (NMS) method is used to merge highly overlapped bounding boxes.
A second CNN model is subsequently utilized to further refine the bound-
ing box regression results by rejecting remaining candidate false positives. A
third comparatively deeper CNN is used in this stage to determine the final
bounding box output as well as generate a set of facial landmarks indicat-
ing positions of both eye centres, left and right mouth corners and the nose
tip. The MTCNN model outperformed other face detection benchmarks while
maintaining efficient computational cost.

In this research, we employ MTCNN to perform real-time facial bounding
box regression for all sampled frames extracted from the video, without using
associated facial landmark outputs. The detected facial regions determined by
the bounding box regression vectors are cropped out for subsequent classifi-
cation. Owing to the fact that a region of interest containing the entire face
is tracked through the overall video using bounding boxes, the false positives
of face classification and localization are greatly reduced. This in turn signifi-
cantly improves real and manipulated video classification performance. Figure
2 shows the results for face detection and cropping for a sample video.

Fig. 2 Example outputs for face detection and cropping for a sample video clip

We use two well-known video deepfake datasets, i.e. Celeb-DFv2 and
DFDC, for model evaluation. Precisely, the Celeb-DFv2 dataset [51] consists
of 590 genuine and 5,639 fake videos. The official split of the dataset shows
5,711 and 518 videos for training/validation and test, respectively. We adopt
this official split in our experiment.

The DFDC dataset [52] has a total of 23,654 real and 104,500 synthetic
videos. We extract a subset of 1,016 original and 8,425 tampered videos in our
experiments. A test set of 206 real and 1,636 fake videos is used for testing
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with the remaining videos for training and validation in our experiment. We
further split the training and validation sets using a ratio of 80-20.

Besides the evaluation of each of the above datasets, we also generate a
customised dataset by combining the above two datasets with a video face
recognition database, i.e. YouTube Faces Database [53], for model evaluation.
The YouTube Faces Database is designed for video face recognition, and con-
sists of 3,425 videos from 1,595 subjects, with an average of 181.3 frames per
video. It is used to increase the genuine video sample sizes to balance the
large numbers of fake instances provided by Celeb-DFv2 and DFDC. To be
specific, at the training stage, all real videos from the official training set in
Celeb-DFv2, a comparatively larger number of real videos from DFDC, as well
as 1,618 videos from the Youtube Faces Database with more than 50 frames,
were combined together to construct the customised genuine training video
set. In addition, a balanced number of fake videos are drawn from the official
training set of Celeb-DFv2 and our DFDC subset in order to obtain a ratio
of approximately 50%-50% between fake and real videos, in the constructed
training set. We further split the combined training set by a ratio of 80-20 for
training and validation respectively. The real and fake samples from the offi-
cial test set of Celeb-DFv2 and a comparatively larger DFDC unseen test set
are used for model evaluation in this experiment.

Table 1 shows the detailed training/validation and test sample sizes for
each dataset.

Table 1 Data split of each dataset

Training/Validation Test

Dataset Real Fake Total Real Fake Total

Celeb-DFv2 412 5,299 5,711 178 340 518
DFDC 810 6,789 7,599 206 1,636 1,842
Combined 3,683 3,739 7,422 605 2,770 3,375

The final step was to send the data to the Pytorch dataloader so that
the models could be trained and validated for each experimental setting. Dur-
ing the training process, the transformations serve to supplement the data by
changing each frame from real videos at each epoch with a random compo-
nent. This is accomplished through the use of augmentation. For the training
dataset, we initially used random rotation with 20 degrees and gaussian blur.
The images were initially resized and then normalised before being used in
either the training/validation sets or the test set. For the oversampling of
frames from real videos, the RandomHorizontalFlip() function is utilized.
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3.2 Model 1 - Transfer Learning Using CNN

We firstly employ transfer learning using a CNN model with the EfficientNet
architecture for deepfake detection. Figure 3 shows the overall dataflow using
transfer learning for synthetic video classification.

EfficientNet was designed with the goal of scaling CNNs more efficiently
than other deep networks proposed previously [54]. Since its inception, this
CNN architecture has shown to be among those that achieve the highest
performance when tested against various image classification benchmarks.

Fig. 3 Classification of real and deepfake videos using EfficientNet-B0

EfficientNet makes use of a compound scaling strategy, which involves scal-
ing the network’s width, resolution, and depth uniformly to whatever degree
is required to make optimal use of the computational resources available. A
grid search is usually used to find the scaling constants [54].

The network design of EfficientNet makes use of mobile inverted bottle-
neck convolution (MBConv), which is analogous to MobileNetV2 convolutional
block but slightly larger. In order to maximise precision and FLOPS, a neural
architecture search was employed in the construction of the baseline model.
After that, a family of EfficientNet models was obtained by scaling it up using
such a strategy. Within the context of this research, the version known as
EfficientNet-B0 was employed [54]. The overall architecture specifically used
in this study including the fully connected layers is shown in Table 2 below.
The pure EfficientNet was also used by the winning solution of the Deepfake
Detection Tournament hosted by the DFDC dataset authors in 2019 [52].

The MBConv blocks consist of residual blocks like ResNet that connect
the beginning of the block with the end using a skip connection. The differ-
ence from the original block from ResNet is that, regarding the number of
channels, it follows a narrow-wide-narrow approach instead of the traditional
wide-narrow-wide strategy [54].
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Table 2 The EfficientNet-B0 Model
Architecture [54]

Stage Operator Resolution Channels Layers

1 Conv3x3 224 × 224 32 1
2 MBConv1 k3x3 112 × 112 16 1
3 MBConv6 k3x3 112 × 112 24 2
4 MBConv6 k5x5 56 × 56 40 2
5 MBConv6 k3x3 28 × 28 80 3
6 MBConv6 k5x5 14 × 14 112 3
7 MBConv6 k5x5 14 × 14 192 4
8 MBConv6 k3x3 7 × 7 320 1
9 Conv1x1 & Pooling 7 × 7 1280 1
10 FC 1 256 1
11 FC with Dropout 1 128 1
12 FC 1 2 1

The EfficientNet-B0 model was initially trained using ImageNet. We further
fine-tune the model using the training/validation sets of the frames of each
deepfake dataset in our experiments. The fine-tuned model is used for the
identification of fake/real videos. In addition, a new PSO variant is used to
fine-tune network hyperparameter, i.e. learning rate, dropout rate, image size
and number of frames, with the attempt to further enhance performance.

Specifically, a random swarm is firstly initialized in a search space of [0,
1]. Each particle has four dimensions to represent the four optimized hyperpa-
rameters. The proposed PSO search operations are used to guide the particle
movement in the search space for hyperparameter search. We evaluate each
particle’s fitness by converting its position into valid network learning con-
figurations, which are used to set up transfer learning process. The network
performance on the validation set is used as the fitness measure of each par-
ticle. The most optimal solution identified by the proposed otpimizer is used
as the recommended best learning configurations of EfficientNet-B0. The opti-
mized EfficientNet-B0 model is then trained using the combined training set
with larger numbers of epochs and tested with the respective test sets for
deepfake detection.

3.3 Model 2 - Hybrid CNN-RNN

Besides using transfer learning for video forgery detection, motivated by [2]
[55] [56][57], a hybrid CNN-RNN architecture is proposed in this research for
distinguishing fake from real videos. Specifically, this hybrid model uses Effi-
cientNet serialized with a GRU layer for spatial-temporal feature extraction to
inform video classification. The proposed PSO algorithm is used for identifying
optimal hyperparameters. Figure 4 shows the system dataflow. The detailed
network architecture is shown in Table 3.
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Fig. 4 Classification of real and deepfake videos using EfficientNet-GRU

As shown in Table 3, a latent representation of 1,280 dimension output
extracted from the last convolutional layer of EfficientNet is taken as input
from each frame and these features of each frame are concatenated to be
passed on to the GRU layer. The GRU layer is used to take advantage of the
spatial temporal features from the sequence of frames verifying if it is either a
deepfake or a real video. The process is different from the pure CNN (i.e. the
aforementioned EfficientNet) that takes the average of all frames for deepfake
detection as in the transfer learning process. The GRU component has thus
1,280 latent dimensions and 1,280 hidden layers as the layer configurations in
this study.

Table 3 Hybrid EfficientNet-GRU Model
architecture

Stage Operator Resolution Channels Layers

1 Conv3x3 224 × 224 32 1
2 MBConv1 k3x3 112 × 112 16 1
3 MBConv6 k3x3 112 × 112 24 2
4 MBConv6 k5x5 56 × 56 40 2
5 MBConv6 k3x3 28 × 28 80 3
6 MBConv6 k5x5 14 × 14 112 3
7 MBConv6 k5x5 14 × 14 192 4
8 MBConv6 k3x3 7 × 7 320 1
9 Conv1x1 & Pooling 7 × 7 1280 1
10 GRU 1 1280 2
11 FC with Dropout 1 256 1
12 FC 1 128 1
13 FC 1 2 1
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The optimizer used is ADAM that combines features of optimization algo-
rithms such as RMSProp and ADAGrad. It is used to adjust the learning rate
for each weight on the fly using exponential weighted moving average to get
the first and second moments of the gradient estimates [56]. The loss function
opted is cross-entropy loss. It gives two likelihoods for real and fake labels using
a softmax function [56]. In addition, to improve discriminative feature learning,
we fine-tune the weights of ImageNet pre-trained EfficientNet-B0 embedded
in the proposed EfficientNet-GRU model using the combined training set with
a small number of epochs (i.e. 5 epochs), before passing on features to the
GRU layer. Moreover, the proposed PSO model is used to fine-tune hyper-
parameters of this hybrid network during the training stage, similar to the
process discussed earlier for parameter search using transfer learning. Specif-
ically, we optimize the learning rate, dropout rate, image size and number of
video frames, owing to their significance to network performance.

3.4 The Proposed PSO Model for Hyperparameter
Optimization

A new PSO variant is proposed for hyperparameter search for both
EfficientNet-GRU and EfficientNet-B0 in this research. In order to tackle lim-
itations of the original PSO algorithm, it incorporates nonlinear functions for
composite leader generation and a reinforcement learning strategy for dynam-
ically adjusting the search process. As such, different search actions led by
different hybrid leaders and the global best solution are dynamically dispatched
based on the reward schemes of the reinforcement learning algorithm. Figure
5 shows the overall proposed algorithm. The detailed search strategies are
presented below.

Fig. 5 Data flow of the proposed PSO algorithm
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3.4.1 Composite Leader Generation

As indicated in existing studies, the original PSO model is likely to be trapped
in local optima because of the adoption of a single swarm leader to lead the
search process. Therefore, composite leaders are produced by incorporating
the global best solution and a distant second leader based on the adaptive
weighting factors generated using nonlinear formulae. Equation 3 shows the
operation for composite leader generation, where the remote second leader,
sbest, is obtained by selecting the most distant particle to the swarm leader
among the top 5 ranking solutions.

composite(k) = wa · gbest(k) + wb · sbest(k) (3)

where wa and wb are the adaptive weighting factors which are used to
weigh the effects of the swarm leader and the second leader for composite
signal generation. Two sets of nonlinear functions are introduced for weighting
coefficient generation.

Equations 4-6 define the first set of formulae for adaptive weighting
coefficient production.

r = ((
cos(0.5u)

2
)

1
2 + (

sin(0.5u)

2
)

1
2 )−2 (4)

x = rcos(u) (5)

y = rsin(u) (6)

where u= [0:0.001:π] with x and y denoting the coordinates of the produced
2D points. The above equations generate increasing and decreasing subgraphs,
as shown in blue and orange lines respectively in Figure 6. Each comprises 1,571
unique 2D points. We subsequently extract maximum iteration number of
values from 1,571 unique y-axis values in the increasing branch with an interval
of i

maximum iteration . These extracted increasing values are used as the weight-
ing factor wa for the swarm leader. Similarly, maximum iteration number of
values are also extracted from 1,571 unique y-axis values in the decreasing sub-
graph with an interval of i

maximum iteration . They are subsequently assigned
to the weighting coefficient wb for the second leader. Each pair of increasing
wa and decreasing wb parameters is utilized for producing a composite leader
in each iteration. The adoption of such increasing and decreasing coefficients
strengthens the effects of the swarm leader and reduces the influence of the
second leader as iteration increases. As such, the algorithm encourages global
exploration and intensifies local exploitation at the beginning and end of the
search process, respectively.
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Fig. 6 The resulting increasing and decreasing subgraphs as defined in Equations 4-6

Besides the above, another set of adaptive increasing and decreasing coef-
ficients is also generated using Equation 7 and Equations 5-6, for composite
leader generation to increase search flexibility. The resulting increasing and
decreasing sub-contours defined by Equation 7 are illustrated in Figure 7 with
each containing 1,571 unique 2D points. We also extract maximum iteration
number of values from 1,571 unique y-axis values in the increasing branch
with an interval of i

maximum iteration , and assign them as the increasing weight
coefficient wa for the swarm leader. The same process is also applied to the
decreasing sub-contour for the generation of the weight factor wb for the second
leader. These new sets of wa and wb are then utilized for producing composite
leaders.

The difference between these new sub-contours defined in Equation 7 and
the subgraphs defined by Equation 4 is that these new sub-contours gener-
ate larger weighting factors in comparison with those yielded by the previous
subgraphs, therefore diversifying the production of the combined leaders.

Fig. 7 The resulting increasing and decreasing subgraphs as defined in Equation 7 and
Equations 5-6
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r = ((
cos(0.5u)

2
)2 + (

sin(0.5u)

2
)2)−

1
2 (7)

Each composite leader is then used to replace the global best solution in
Equation 1 for velocity production with respect to hyperparameter search, as
shown in Equation 8. Such composite leaders are able to explore the search
space more thoroughly and show enhanced capabilities in tackling stagnation.

vi(k + 1) = wvi(k) + c1r1(x
pbest
i (k)− xi(k)) + c2r2(composite(k)− xi(k))

(8)

3.4.2 Reinforcement Learning based Optimal Search Action
Selection

Owing to the employment of the composite leader generation process, a total of
three search operations led by the swarm leader and the aforementioned yielded
two composite leaders are constructed. A reinforcement learning algorithm is
subsequently used to identify the optimal selection of different leader signals for
hyperparameter search. Specifically, in each iteration, each particle is guided
by either a composite leader or the global best solution recommended by the
Q-learning algorithm [58].

The Q-learning algorithm [58] employs a Bellman equation defined in
Equation 9 to identify a sequence of optimal search actions. In reinforcement
learning, an agent perceives the environment by learning from punishment and
reward signals through trial-and-error. The ultimate goal of the reinforcement
learning scheme is to yield a set of optimal search operations that maximize
the cumulative reward. Such an expected cumulative reward score for a state-
action combination denoted as the Q-value is updated using Equation 9, in
the Q-learning algorithm. These Q-values are stored in a Q-table pertaining
to each state-action pair.

Qnew(st, at) = (1− θ) ·Q(st, at) + θ · (rt + β ·max
a

Q(st+1, a)) (9)

where θ is the learning rate and β is the discount coefficient. At each
time t, the agent performs an action at in state st resulting in a new state
st+1. Besides the current Q-value Q(st, at), the new Q-value, Qnew(st, at), is
generated based on two additional components, i.e. an immediate reward rt
and a future reward maxa Q(st+1, a). After performing a selected search action
at, the network with the new configuration decoded from the new position is
used to test the sampled validation set of the combined dataset, whereby the
cross-entropy loss of the sampled validation set is used as the fitness score.
If this new fitness score is better than the previous fitness of the particle, an
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immediate reward ‘1’ is used for rt, otherwise ‘-1’ is dispatched. The future
reward maxa Q(st+1, a) is produced by identifying the action that leads to the
maximum reward in the new state st+1.

Each particle constructs a 3-by-3 Q-table with the rows and columns denot-
ing the states and actions, respectively. Such a Q-table is used to determine the
selection of optimal search actions led by either any of the composite leaders or
the global best solution. Therefore in each iteration, each particle is assigned
with different leader signals to increase search robustness. In comparison with
random selection of the search actions as in most existing PSO variants, the
Q-learning algorithm produces a sequence of optimal search actions based on
the reward principles imposed by the Bellman equation.

The proposed PSO model equipped with composite leader generation and
Q-learning based search operation dispatch shows enhanced search capabili-
ties in tackling stagnation in our empirical studies. The hyperparameter search
is conducted as follows. Because of the large training and validation sample
sizes of the combined dataset, subsets of the training and validation sets are
employed for optimal hyperparameter selection. Each element of the particle
represents a hyperparameter to be optimized. The optimal hyperparameters
recommended by each particle are used to set up a customized deep network.
It is subsequently trained and evaluated using the sampled training and val-
idation sets of the combined dataset, respectively. The cross-entropy loss of
the sampled validation set is used as the fitness score of each particle. The
final optimized network is constructed using the configurations extracted from
the global best solution. This final optimized network is trained with a much
larger number of training epochs (i.e. 30 epochs) using the overall training set
of the combined dataset and tested using Celeb-DFv2, DFDC and combined
datasets, respectively. We introduce evaluation details in the following section.

4 Evaluation and Results

We evaluate the transfer learning and hybrid networks with manual and
automatic hyperparameter optimization using Celeb-DFv2, DFDC and the
combined datasets, respectively. Firstly, for the manual and PSO-based param-
eter selection, we use the training and validation sets of the combined dataset,
since the combined dataset has a mixed data source which may lead to better
representative capabilities. The optimized learning configurations are subse-
quently used to set up each model. Each optimized network is then trained
using the combined training set and evaluated using test sets of the Celeb-
DFv2, DFDC and combined datasets, respectively. The experimental studies
are elaborated in detail below.

4.1 Manual Hyperparameter Selection

In the initial experiments, the models were trained with hyperparameter
searched manually. The process entails individually experimenting with a range
of hyperparameters selected. The following hyperparameters are optimized:
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• Learning rate
• Dropout rate
• Image Size - The size measured by height x width of the input image will
influence the result because of the number of pixels processed by the CNN.
The ranges evaluated are from 100 to 130 pixels because of the trade-off
between performance and cost.

• Number of Frames per Video - This metric influences the result because of
the size of the sequence of frames extracted. The maximum limit considered
is 50 frames because of comparatively smaller or similar maximum frame
settings adopted in existing studies [59] [60] [61].

The training and validation sets of the combined dataset are used for hyper-
parameter search. For each of the aforementioned hyperparameters, a set of
three values was chosen in order to manually fine-tune the model and identify
the configuration with the lowest loss. The process was repeated for each one
of the four hyperparameters. The values that composed the set were illustrated
in Table 4.

Table 4 Hyperparameters searched manually.

Hyperparameter Ranges

learning rate 1× 10−5, 1× 10−4, 1× 10−3

dropout rate 0.2, 0.3, 0.4
image size 100, 112, 130
frames 30, 40, 50

A total of 5 epochs were run to obtain the loss value for each hyperpa-
rameter set, as this was the number of epochs that demonstrated satisfactory
stability in the preliminary results. To choose the optimal ones in each of them,
the algorithm was run through their possible values, while the other hyper-
parameters remained constant. The parameter setting with the smallest loss
error was then selected. These manually selected optimized settings are used
to set up each network, which is further tested with test sets of Celeb-DFv2,
DFDC and the combined datasets, respectively.

4.1.1 Manual Parameter Search for EfficientNet-B0

As mentioned above, the training and validation sets of the combined dataset
are used for hyperparameter search. For the EfficientNet-B0 architecture using
transfer learning, the best hyperparameters obtained through this manual
process were shown in Table 5.

4.1.2 Manual Parameter Search for EfficientNet-GRU

Similarly, Table 6 comprised the hyperparameters that were determined to be
the most optimal ones for the EfficientNet-GRU architecture for the combined
dataset.
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Table 5 The best hyperparameters identified
using manual selection for transfer learning
using EfficientNet-B0.

Hyperparameter Values

learning rate 1× 10−4

dropout rate 0.3
image size 112× 112 px
frames 30

Both the EfficientNet and EfficientNet-GRU networks equipped with man-
ually selected best model configurations are subsequently evaluated using
test sets of Celeb-DFv2, DFDC and the combined datasets, respectively. The
detailed evaluation results for both networks with manually identified optimal
settings are provided in Section 4.2.

Table 6 The best hyperparameters identified
using manual selection for the
EfficientNet-GRU network.

Hyperparameter Values

learning rate 1× 10−4

dropout rate 0.3
image size 112× 112 px
frames 40

We have also carried out experiments to determine the best search range
of the number of frames for automated hyperparameter search. Existing stud-
ies such as Wang et al. [62] and Zhao et al. [15] employed 30 frames, while
Zheng et al. [59], Shiohara and Yamasaki [60] and Zhao et al. [61] adopted 32
frames for video inference, for evaluating several video deepfake datasets, such
as Celeb-DFv2, DFDC and FaceForensics++ (FF++). These studies resized
the cropped facial images to larger image resolutions such as 224x224, 256x256
and 380x380, in their experiments. We identify the optimal search range of
the frame settings using the combined training set for model training and the
official Celeb-DFv2 test set for model testing. We manually set up the frame
settings in the range of [10, 100], with the following fixed learning configura-
tions, i.e. learning rate=0.0001, dropout rate=0.3 and image size=112, for both
EfficientNet-B0 and EfficientNet-GRU. For both long and short videos, the
target number of frames is randomly sampled from each video. The detailed
evaluation results, i.e. accuracy rates and Area Under the Curve (AUC) scores,
are shown in Tables 7-8.

As indicated in Tables 7-8, experimental results for the EfficientNet-B0
model shows improvements when the frame setting increases from 10 to 30
using the Celeb-DFv2 test set. When further increasing of the number of
frames to 50 above, the training cost increases significantly, and the network
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Table 7 Experiments using EfficientNet-B0
with different numbers of frames for the
Celeb-DFv2 test set

No. of frames Accuracy AUC

10 0.7703 0.7086
20 0.7915 0.7421
30 0.8263 0.7780
40 0.8127 0.7610
50 0.7896 0.7393
60 0.7761 0.7264
70 0.7413 0.6825
80 0.7568 0.6929
100 0.7413 0.6745

Table 8 Experiments using
EfficientNet-GRU with different numbers of
frames for the Celeb-DFv2 test set

No. of frames Accuracy AUC

10 0.7741 0.7142
20 0.8089 0.7621
30 0.8224 0.7750
40 0.8417 0.7938
50 0.7992 0.7534
60 0.7896 0.7380
70 0.7703 0.7139
80 0.7780 0.7078
100 0.7625 0.6893

is increasingly becoming overfitting, owing to the capture of irrelevant noise
between frames, lowering its performance as indicated in both accuracy rates
and AUC scores. A similar case is also observed for the evaluation using
EfficientNet-GRU using the Celeb-DFv2 test set. The model shows enhanced
performance when using the frame settings ranging from 10 to 40. When fur-
ther increasing the frame settings to 50 above, both accuracy rates and AUC
scores are reduced, because of the extraction of noisy redundant details from
video frames. A similar observation is also obtained when using the DFDC and
combined test sets. Therefore in order to generate robust networks and balance
well between computational cost and performance, we employ the frame setting
range of [10-50] for automated hyperparameter search for both networks.

4.2 Automatic Hyperparameter Search Using the
Proposed PSO Model

Besides manual hyperparameter selection, automatic hyperparameter search
is also performed. We employ the proposed PSO model, as well as 8 classi-
cal search methods and 4 PSO variant algorithms, for hyperparameter search,
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including PSO, ABC [36], Salp Swarm Algorithm (SSA) [44], SSO [38], Bare-
bones PSO (BBPSO) [63], Flower Pollination Algorithm (FPA) [64], FA [32],
Dragonfly Algorithm (DA) [65], Genetic PSO (GPSO) [40], PSO with sine coef-
ficients (SPSO) [20], a BBPSO variant with attractiveness and evade actions
(BBPSOV) [49], and PSO with adaptive sine, circle and spiral coefficients
(ACPSO) [66]. We adopt variable settings of the above algorithms from their
original studies in our experiments.

The following experimental settings are adopted. For each search method, a
total of 10 search agents is created and the maximum number of 20 generations
is used for hyperparameter search. All the search methods perform the same
number (i.e. 200) of function evaluations. A set of 5 runs was conducted for
each search method. For both EfficientNet-B0 and EfficientNet-GRU, Table 9
shows the search ranges of different hyperparameters. These search ranges are
obtained via trial-and-error as discussed in Section 4.1. A set of five evaluation
metrics, i.e. the mean precision, recall, accuracy, AUC scores and the Wilcoxon
rank sum (RS) test, is used for performance comparison. The details of the
experimental studies are presented as follows.

Table 9 Ranges of hyperparameters
optimized by each search method

Hyperparameter Ranges

learning rate 1× 10−5 − 1× 10−3

dropout rate 0.1− 0.9
image size 100− 128
frames 10− 50

Again the training and validation sets of the combined dataset are used for
the proposed PSO-based hyperparameter search, owing to their representative
capabilities. Because of the large sample sizes of this combined video deepfake
dataset, in order to reduce the high computational cost of hyperparameter
search, the training and validation sets of the combined dataset were sampled
for 5% and 25%, respectively. The validation cross-entropy loss function was
used as the objective function for evaluating each particle. The experiments
ranged from 10 to 20 hours for each of the two models using the sampled
training and validation sets for each hyperparameter search.

4.2.1 Automated Hyperparameter Search for EfficientNet-B0

We conduct automated hyperparameter search for EfficientNet-B0 using dif-
ferent search methods based on the combined training set. The variable
configurations of different search methods are taken from existing studies.
Additionally for each search method, we adopt a swarm size of 10 and a maxi-
mum number of generations of 20. A set of 5 runs was used for hyperparameter
search using transfer learning based on EfficientNet-B0. The established final
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networks with identified optimal settings by each search method are trained
with 30 epochs using the combined training set and tested using the three test
sets, respectively.

Table 10 Performance comparison for
optimized EfficientNet-B0 models using the
Celeb-DFv2 test set

Model Acc. Prec. Recall AUC RS

Prop. PSO 0.9247 0.9101 0.9824 0.8985 n/a
PSO 0.8996 0.8830 0.9765 0.8646 9.74E-03
ABC 0.9015 0.8874 0.9735 0.8688 9.74E-03
BBPSO 0.8629 0.8549 0.9529 0.8220 9.74E-03
FPA 0.8900 0.8753 0.9706 0.8533 9.74E-03
SSA 0.8687 0.8579 0.9588 0.8277 9.74E-03
SSO 0.8919 0.8797 0.9677 0.8574 9.74E-03
FA 0.8668 0.8575 0.9559 0.8263 9.74E-03
DA 0.8687 0.8523 0.9677 0.8237 9.74E-03
SPSO 0.8880 0.8770 0.9647 0.8531 9.74E-03
GPSO 0.9131 0.8976 0.9794 0.8830 9.74E-03
BBPSOV 0.8726 0.8605 0.9618 0.8320 9.74E-03
ACPSO 0.8803 0.8639 0.9706 0.8392 9.74E-03
Manual 0.8263 0.8255 0.9324 0.7780 9.74E-03

Table 11 Performance comparison for
optimized EfficientNet-B0 models using the
DFDC test set

Model Acc. Prec. Recall AUC RS

Prop. PSO 0.9414 0.9848 0.9487 0.9161 n/a
PSO 0.8865 0.9741 0.8961 0.8534 2.16E-03
ABC 0.8941 0.9768 0.9022 0.8661 2.16E-03
BBPSO 0.8686 0.9610 0.8881 0.8009 2.16E-03
FPA 0.8833 0.9721 0.8943 0.8452 2.16E-03
SSA 0.8778 0.9682 0.8918 0.8294 2.16E-03
SSO 0.8844 0.9734 0.8943 0.8500 2.16E-03
FA 0.8757 0.9668 0.8906 0.8239 2.16E-03
DA 0.8724 0.9642 0.8894 0.8136 2.16E-03
SPSO 0.8822 0.9714 0.8936 0.8425 2.16E-03
GPSO 0.9050 0.9784 0.9132 0.8765 2.16E-03
BBPSOV 0.8800 0.9689 0.8936 0.8327 2.16E-03
ACPSO 0.8817 0.9702 0.8943 0.8379 2.16E-03
Manual 0.8475 0.9484 0.8759 0.7486 2.16E-03

The detailed evaluation results, i.e. the mean precision, recall, accuracy and
AUC scores, as well as the Wilcoxon rank sum test results, for the Celeb-DFv2,
DFDC and combined datasets are shown in Tables 10-12. The AUC score is
used as the summary measure of the overall model performance. Specifically, a
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Table 12 Performance comparison for
optimized EfficientNet-B0 models using the
combined test set

Model Acc. Prec. Recall AUC RS

Prop. PSO 0.9576 0.9852 0.9628 0.9484 n/a
PSO 0.9262 0.9758 0.9332 0.9137 2.16E-03
ABC 0.9292 0.9774 0.9354 0.9181 2.16E-03
BBPSO 0.9218 0.9569 0.9473 0.8761 2.16E-03
FPA 0.9224 0.9736 0.9307 0.9075 2.16E-03
SSA 0.9156 0.9708 0.9249 0.8988 2.16E-03
SSO 0.9233 0.9743 0.9311 0.9093 2.16E-03
FA 0.9289 0.9634 0.9495 0.8921 2.16E-03
DA 0.9239 0.9591 0.9477 0.8813 2.16E-03
SPSO 0.9197 0.9731 0.9278 0.9052 2.16E-03
GPSO 0.9319 0.9793 0.9368 0.9230 2.16E-03
BBPSOV 0.9164 0.9716 0.9253 0.9007 2.16E-03
ACPSO 0.9176 0.9723 0.9260 0.9027 2.16E-03
Manual 0.9049 0.9464 0.9372 0.8471 2.16E-03

higher AUC score correlates with a better classifier. The network with a higher
AUC score typically has better capabilities in distinguishing between fake and
real instances. In addition, the Wilcoxon rank sum test is also performed based
on the AUC scores over 5 runs to indicate the statistical significance of the
proposed model over baseline search methods. As depicted in Tables 10-12,
the proposed PSO-based EfficientNet-B0 models achieve better results than
those with optimal learning parameters obtained using other classical and
advanced search methods for all three datasets, in terms of mean precision,
recall, accuracy and AUC scores as well as statistical test results. In addition,
models with settings yielded by GPSO and ABC show better results than those
of the networks optimized by all other baseline methods across the datasets.
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Fig. 8 ROC curves for Celeb-DFv2 using EfficientNet-B0 models with manual and optimal
hyperparameters identified by all search methods

Fig. 9 ROC curves for DFDC using EfficientNet-B0 models with manual and optimal
hyperparameters identified by all search methods
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Fig. 10 ROC curves for the combined dataset using EfficientNet-B0 models with manual
and optimal hyperparameters identified by all search methods

Figures 8-10 illustrate the Receiver Operating Characteristic (ROC) curves
of the devised models by all search methods for the three datasets, respectively.
The discriminative capabilities of the proposed PSO-optimized EfficientNet-B0
models are also indicated by the AUC score comparison, as depicted in Figures
8-10. Our optimized EfficientNet-B0 models obtain the best AUC scores in all
test cases. The superiority of the proposed PSO-based EfficientNet-B0 models
is further ascertained by the Wilcoxon rank sum test results based on the
AUC scores (see the last columns in Tables 10-12), which are all lower than
0.05 for all three test sets. This indicates that our optimized EfficientNet-B0
models outperform those devised by other search methods with a statistical
significance.

The mean optimized hyperparameters over 5 runs for EfficientNet-B0 using
the sampled combined dataset are provided in Table 13. These yielded hyper-
parameters by different search methods are analysed to justify performance
variations of the optimized networks. In addition, we also visualize the effects
of different optimized dropout rates in Figure 11, which shows accuracy rates
of the three test sets (in the y-axis) along with the dropout hyperparameters
(in the x-axis) identified by each search method using the sampled combined
training set. We use a specific shape and colour symbol to represent each search
method.

As indicated in Table 13, the proposed PSO, GPSO and ABC-based
EfficientNet-B0 models outperform those with learning configurations obtained
by other search methods for the three test sets. As shown in Table 13 and
Figure 11, these models are equipped with moderate mean learning rates and
moderate or slightly higher mean dropout rates. Such settings are able to
deploy steady magnitude updates to the learning mechanism and produce
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Table 13 The mean results of the optimal
hyperparameters identified using each search
method for EfficientNet-B0

Model Learning rate Dropout Size No. of frames

Prop. PSO 0.0001810 0.5633 119 36
PSO 0.0003550 0.79 125 40
ABC 0.0001203 0.6512 121 35
BBPSO 0.0002273 0.1026 119 28
FPA 0.0002795 0.3566 117 35
SSA 0.0004570 0.2692 116 29
SSO 0.0003918 0.5266 118 38
FA 0.0004500 0.2454 114 32
DA 0.0005000 0.3635 115 32
SPSO 0.0002420 0.3326 116 33
GPSO 0.0001538 0.4671 126 37
BBPSOV 0.0002951 0.2985 115 34
ACPSO 0.0003626 0.3563 117 32
Manual 0.0001 0.3 112 30

efficient sparse network representations with effective discriminative feature
learning capabilities to minimize redundancy. Significantly large or small set-
tings of dropout rates are identified by PSO and BBPSO respectively as
indicated in Figure 11. These may lead to the switching off of too many or
too few neurons which may in turn result in the extraction of inadequate or
noisy spatial features. Moreover, as illustrated in Table 13, large mean learn-
ing rates are produced by PSO, SSA, SSO, FA, DA and ACPSO, which may
generate large learning magnitudes to cause fluctuations in loss space. A small
learning rate is used in combination with a small dropout rate for the man-
ual setting, resulting in inadequate gradient descent updates with redundant
network topologies, limiting its performance.

As discussed in Section 4.1.2, moderate settings of image solutions and
number of frames may lead to effective representations of video inputs while
having an optimal computational cost. In contrast, significant large number of
frames and image solutions may result in high computational cost as well as
network overfitting by capturing noisy irrelevant details. In our experiments,
30-40 frames are recommended in most cases which are able to capture suffi-
cient RGB and motion details as ascertained by the empirical results. Image
resolutions of 115-126 are also mostly selected to balance between performance
and computational cost.
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Fig. 11 Accuracy rates of the three test sets (in the y-axis) for optimized EfficientNet-B0
along with the dropout hyperparameters (in the x-axis) identified by each search method
based on the sampled combined dataset (The results of the three test sets, i.e. the Celeb-
DFv2, DFDC and combined test sets, for each search method are represented by a unique
shape and colour symbol.)

4.2.2 Automated Hyperparameter Search for
EfficientNet-GRU

We also employ the same experimental settings for hyperparameter search
using the EfficientNet-GRU model. A set of 5 runs is performed for hyperpa-
rameter search for each search algorithm. The optimized settings obtained by
each search method are used to establish the final models, which are trained
using the training set of the combined dataset with a larger number of epochs.
These optimized networks are then evaluated using test sets of Celeb-DFv2,
DFDC and the combined datasets, respectively. Moreover, the Wilcoxon rank
sum test is also performed based on the AUC scores over 5 runs to indicate
the statistical significance of our optimized model over those with optimal set-
tings yielded by other search methods. The detailed evaluation and statistical
test results for our optimized EfficientNet-GRU models against other devised
networks are provided in Tables 14-16.

As shown in Tables 14-16, the proposed PSO-based EfficientNet-GRU mod-
els obtain better performances than those of the counterparts generated by all
the baseline search methods in terms of the all evaluation metrics (i.e. preci-
sion, recall, accuracy, AUC and Wilcoxon rank sum test results) for all three
test sets. In addition, models with hyperparameters produced by ACPSO,
GPSO, and SSO obtain better mean accuracy rates and AUC scores than the
results of those with learning configurations selected by other baselines in most
test cases. The ROC curves of the optimized EfficientNet-GRU models derived
by different search methods for the three test sets are illustrated in Figures
12-14, where our optimized models show better AUC scores than those of the
networks yielded by other search methods for all test scenarios. The signifi-
cance of our optimized EfficientNet-GRU models is further ascertained by the
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Table 14 Performance comparison for
optimized EfficientNet-GRU models using the
Celeb-DFv2 test set

Model Acc. Prec. Recall AUC RS

Prop. PSO 0.9382 0.9208 0.9918 0.9141 n/a
PSO 0.9054 0.8839 0.9853 0.8691 7.94E-03
ABC 0.8784 0.8635 0.9676 0.8378 7.94E-03
BBPSO 0.8822 0.8681 0.9677 0.8434 7.94E-03
FPA 0.8938 0.8740 0.9794 0.8549 7.94E-03
SSA 0.8861 0.8707 0.9706 0.8477 7.94E-03
SSO 0.9131 0.9019 0.9735 0.8856 7.94E-03
FA 0.8977 0.8806 0.9765 0.8618 7.94E-03
DA 0.8996 0.8750 0.9882 0.8593 7.94E-03
SPSO 0.9116 0.8927 0.9853 0.8775 7.94E-03
GPSO 0.9189 0.9049 0.9794 0.8914 7.94E-03
BBPSOV 0.9093 0.9081 0.9588 0.8867 7.94E-03
ACPSO 0.9209 0.9052 0.9824 0.8929 7.94E-03
Manual 0.8417 0.8342 0.9471 0.7938 7.94E-03

Table 15 Performance comparison for
optimized EfficientNet-GRU models using the
DFDC test set

Model Acc. Prec. Recall AUC RS

Prop. PSO 0.9517 0.9886 0.9566 0.9346 n/a
PSO 0.8849 0.9804 0.8881 0.8737 7.94E-03
ABC 0.8806 0.9784 0.8851 0.8649 7.94E-03
BBPSO 0.8833 0.9804 0.8863 0.8728 7.94E-03
FPA 0.8936 0.9800 0.8985 0.8765 7.94E-03
SSA 0.8931 0.9806 0.8973 0.8783 7.94E-03
SSO 0.9034 0.9841 0.9059 0.8947 7.94E-03
FA 0.8860 0.9741 0.8955 0.8531 7.94E-03
DA 0.8952 0.9676 0.9126 0.8349 7.94E-03
SPSO 0.9023 0.9834 0.9053 0.8919 7.94E-03
GPSO 0.9083 0.9854 0.9102 0.9017 7.94E-03
BBPSOV 0.8947 0.9788 0.9010 0.8728 7.94E-03
ACPSO 0.9370 0.9792 0.9493 0.8945 7.94E-03
Manual 0.8675 0.9703 0.8778 0.8321 7.94E-03

Wilcoxon rank sum statistical test results. As illustrated in the last columns
in Tables 14-16, all the statistical test results are lower than 0.05 for the three
test sets, which indicate the statistical superiority of our optimized networks
against those yielded by other search methods.
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Table 16 Performance comparison for
optimized EfficientNet-GRU models using the
combined test set

Model Acc. Prec. Recall AUC RS

Prop. PSO 0.9695 0.989 0.9737 0.9620 n/a
PSO 0.9307 0.9818 0.9329 0.9268 7.94E-03
ABC 0.9239 0.9846 0.9217 0.9278 7.94E-03
BBPSO 0.9253 0.9839 0.9242 0.9274 7.94E-03
FPA 0.9304 0.9818 0.9325 0.9266 7.94E-03
SSA 0.9265 0.9835 0.9260 0.9275 7.94E-03
SSO 0.9381 0.9860 0.9383 0.9377 7.94E-03
FA 0.9253 0.9730 0.9350 0.9080 7.94E-03
DA 0.9342 0.9684 0.9509 0.9044 7.94E-03
SPSO 0.9348 0.9826 0.9372 0.9306 7.94E-03
GPSO 0.9363 0.9845 0.9372 0.9347 7.94E-03
BBPSOV 0.9310 0.9753 0.9397 0.9153 7.94E-03
ACPSO 0.9352 0.9793 0.9408 0.9249 7.94E-03
Manual 0.9126 0.9714 0.9206 0.8983 7.94E-03

Fig. 12 ROC curves for Celeb-DFv2 using EfficientNet-GRU models with manual and
optimal hyperparameters identified by all the search methods
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Fig. 13 ROC curves for DFDC using EfficientNet-GRU models with manual and optimal
hyperparameters identified by all the search methods

Fig. 14 ROC curves for the combined dataset using EfficientNet-GRU models with manual
and optimal hyperparameters identified by all the search methods

The mean hyperparameters obtained by each search method over 5 runs
using the sampled training and validation sets of the combined dataset are
shown in Table 17. Some further analysis of these optimized hyperparameters
is provided below to explain model performance variations.
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Table 17 The mean results of the optimal
hyperparameters identified using each search
method for EfficientNet-GRU

Model Learning rate Dropout Size No. of Frames

Prop. PSO 0.0002333 0.5237 118 37
PSO 0.0001080 0.3832 117 37
ABC 0.0003520 0.6224 105 27
BBPSO 0.0003312 0.6897 113 30
FPA 0.0001108 0.3237 116 36
SSA 0.0003292 0.3816 106 29
SSO 0.0001848 0.4641 121 39
FA 0.0004300 0.3341 116 35
DA 0.0005000 0.3272 115 32
SPSO 0.0002499 0.3687 119 38
GPSO 0.0002258 0.4335 125 34
BBPSOV 0.0003010 0.6057 117 39
ACPSO 0.0001766 0.4478 123 35
Manual 0.0001 0.3 112 40

As indicated in Table 17 and Tables 14-16 pertaining to selected hyper-
parameter settings and detailed evaluation results respectively, the proposed
PSO algorithm, ACPSO, GPSO and SSO have obtained comparatively mod-
erate mean learning rate and dropout rate configurations over a set of 5 runs,
in comparison with those obtained by other search methods. Such moder-
ate mean learning rates show great efficiency in extracting knowledge in a
new domain by deploying reasonable magnitudes of learning updates. The
identified mean dropout rate settings reduce redundancy by switching off rea-
sonable numbers of neurons, while generating effective discriminative video
representations. Among the baseline methods, ABC, BBPSO, SSA, FA, DA,
and BBPSOV-based networks are equipped with large learning rates, resulting
in the employment of large magnitudes for the learning updates to cause insta-
bility. ABC, BBPSO, and BBPSOV also produce large mean dropout rates
which lead to the elimination of large numbers of neurons, thus resulting in
discarding important spatial-temporal cues. Moreover, smaller mean learning
rates are identified by PSO and FPA, as well as adopted in the manual set-
ting, which may yield insufficient momentum for network upgrading towards
global optima, lowering network performance.

In particular, Figure 15 shows the accuracy rates of the EfficientNet-GRU
models for three test sets (in the y-axis) with manual and optimal dropout
rates identified by each search method (in the x-axis). As mentioned above,
high accuracy rates are correlated with the moderate settings of dropout rates,
which are preferred by the proposed PSO algorithm, ACPSO, GPSO and SSO.
Significantly larger dropout rate configurations, such as those obtained by
ABC, BBPSO, and BBPSOV, reduce the model performance by constraining
network representations considerately, while excessively small settings of the
dropout rates, recommended by FPA, FA, and DA, may lead to redundant
network structures with limited flexibilities in tackling overfitting.
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Fig. 15 Accuracy rates of the three test sets (in the y-axis) for optimized EfficientNet-GRU
along with the dropout hyperparameters (in the x-axis) identified by each search method
based on the sampled combined dataset (The results of the three test sets, i.e. the Celeb-
DFv2, DFDC and combined test sets, for each search method are represented by a unique
shape and colour symbol.)

Similar to the findings of the previous experiments using EfficientNet-B0,
most search methods select 30-39 frames leading to the capture of sufficient
spatial-temporal patterns using EfficientNet-GRU, while avoiding overfit-
ting. Image resolutions of 113-125 are mostly identified to achieve reliable
classification performance while maintaining efficient computational cost.

In short, when the hyperparameters obtained using the proposed PSO
method are used in network evaluation, both optimized EfficientNet-B0 and
EfficientNet-GRU models show improvement over those with manual and opti-
mal settings yielded by other search methods. This is owing to the efficient
search capabilities of the proposed PSO algorithm by integrating composite
leaders and reinforcement learning-based search strategy selection in identi-
fying optimal hyperparameters in a multi-dimensional complex search space
with challenging high intra-class and low inter-class variations.

We analyze the search behaviours of each algorithm below. ABC explores
the search space by following randomly selected leader individuals, therefore
shows a slow convergence rate to reach global optimality. SSA simulates the
salp chain behaviours by adopting the mean position of a neighbouring follower
salp and the current individual for movement update. Owing to the adoption
of neighbouring solution for search exploration, SSA is more likely to converge
prematurely and requires a significant number of iterations to obtain compet-
itive performance. Also a random threshold is used in SSA to determine the
respective random walk action for updating the leading salp, instead of using
a more informative selection scheme, therefore limiting its performance.

SSO generates a dynamic leader signal for the position update of each
search agent by using the strongest and randomly selected vibration intensi-
ties, but the model only employs a single random walk mechanism for position
update. FA employs neighbouring fitter solutions for search exploration while
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DA adopts separation, alignment, cohesion, attraction and evading actions for
movement update. But both algorithms use single search strategies for search
space exploration. Similarly, PSO, BBPSO, SPSO with sine coefficients and
GPSO with genetic operators also mainly employ monotonous search opera-
tions guided by the swarm leader for position update. When the single search
actions in the aforementioned models become stagnant, there are no substi-
tute search operations available to reactivate sudden movements of the search
agents to mitigate premature stagnation.

To overcome the above limitations, BBPSOV and ACPSO adopt two or
multiple search mechanisms to better manage local optima traps. For example,
attractiveness and evading action are exploited in BBPSOV, while ACPSO
employs three subswarms guided by the PSO operations with adaptive sine,
circle and spiral coefficients respectively. FPA uses search actions led by
either the randomly selected individuals or the swarm leader with Levy search
coefficients. The multiple search actions in the above algorithms are mostly
randomly selected or performed in sequential orders without the guidance of
more informative selection principles.

In comparison with the above search algorithms, a reinforcement learn-
ing algorithm is employed in the proposed PSO variant to generate a more
informed strategy to identify the optimal selection of different search actions
for each particle. Such Q-learning based search deployment governed by Bell-
man equation empowers the search process with bespoke particle behaviours
to explore the search space effectively while accelerating convergence. On top
of it, search operations guided by multiple composite leaders yielded by dis-
tinctive nonlinear functions are also used to divert the search process if the
action led by the swarm leader becomes stagnant. The above analysis has been
further evidenced by the evaluation and statistical test results in our empirical
studies.

4.3 Comparison with Other Hybrid Networks and 3D
CNNs

We conduct performance comparison between our optimized EfficientNet-B0
and EfficientNet-GRU models and other networks including ResNet50-GRU,
ResNet101-GRU, GoogLeNet-GRU, as well as 3D CNNs such as Inflated-
3D (I3D), a Mixed Convolution Network (MC3), 3D ResNeXt101, and 3D
ResNeXt50, using the Celeb-DFv2, DFDC, and combined datasets, respec-
tively. These baseline state-of-the-art networks are selected because of their
significant discriminative capabilities in video classification [67] [60] [9] [42].
Similar to our work, for the hybrid networks, i.e. ResNet50-GRU, ResNet101-
GRU, and GoogLeNet-GRU, the respective CNN (ResNet50, ResNet101 and
GoogLeNet) models are pretrained using ImageNet and their successive GRU
models are trained from scratch using our combined deepfake training set.

In addition, for 3D CNNs, 3D convolutions instead of 2D convolutions are
used for feature learning, except for MC3 where mixed convolutions are used.
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Precisely, MC3 employs 3D convolutions in first two groups and 2D convo-
lutions from group 3 onwards [68]. 3D ResNeXt101 and 3D ResNeXt50 are
variants of 3D ResNet, which introduce a cardinality parameter to control the
number of parallel paths within each residual block [69]. All the above 3D
CNNs are pre-trained using a large human action dataset, i.e. Kinetics, con-
sisting of 306,245 videos from 400 classes, then fine-tuned using the combined
deepfake training set for real/manipulated video classification.

All the selected hybrid and 3D CNN baseline networks are equipped with
the following learning settings, i.e. learning rate=0.0001, dropout rate=0.3,
image size=112, and number of frames=40. Tables 18-20 show the detailed
evaluation results, while Figures 16-18 illustrate respective ROC curves, for
the Celeb-DFv2, DFDC, and combined test sets, respectively.

As indicated in Tables 18-20 and Figures 16-18, the proposed PSO-
optimized EfficientNet-B0 and EfficientNet-GRU models show competitive
performances as compared with those of the aforementioned three hybrid and
four 3D CNN models, across datasets. The proposed optimizer employs mul-
tiple composite elite signals and Q-learning based search operation allocation
with bespoke search behaviours of each particle, to boost model capabilities
in tackling stagnation. Our optimized networks are thus equipped with better
learning settings and show enhanced capabilities in spatial-temporal feature
learning for video forgery classification. In addition, ResNet101-GRU shows
better results than those of ResNet50-GRU and GoogLeNet-GRU, because of
its more effective feature learning capabilities using deeper residual blocks.
Among the 3D CNNs, I3D illustrates more discriminative capabilities by inflat-
ing all the filters and pooling kernels in a 2D architecture through the insertion
of an additional temporal dimension, thus achieves the most reliable perfor-
mance. It outperforms MC3, 3D ResNeXt101, and 3D ResNeXt50 for most
test scenarios.

Table 18 Performance comparison with
hybrid networks and 3D CNNs for the
Celeb-DFv2 test set

Model Acc. Prec. Recall AUC

Prop. PSO-based Effnet-GRU 0.9382 0.9208 0.9912 0.9141
Prop. PSO-based Effnet 0.9247 0.9101 0.9824 0.8985
ResNet50-GRU 0.7876 0.7556 1.0000 0.6910
ResNet101-GRU 0.8494 0.8359 0.9588 0.7996
GoogLeNet-GRU 0.8012 0.7699 0.9941 0.7134
I3D 0.8494 0.8639 0.9147 0.8197
MC3 0.8514 0.8433 0.9500 0.8065
3D ResNeXt101 0.8378 0.8249 0.9559 0.7841
3D ResNeXt50 0.7703 0.7826 0.9000 0.7112
Manual Effnet-GRU 0.8417 0.8342 0.9471 0.7938
Manual Effnet 0.8263 0.8255 0.9324 0.7780
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Table 19 Performance comparison with
hybrid networks and 3D CNNs for the DFDC
test set

Model Acc. Prec. Recall AUC

Prop. PSO-based Effnet-GRU 0.9517 0.9886 0.9566 0.9346
Prop. PSO-based Effnet 0.9414 0.9848 0.9487 0.9161
ResNet50-GRU 0.9289 0.9547 0.9658 0.8008
ResNet101-GRU 0.8127 0.9806 0.8050 0.8394
GoogLeNet-GRU 0.9164 0.9603 0.9450 0.8172
I3D 0.8969 0.9726 0.9095 0.8528
MC3 0.8865 0.9672 0.9028 0.8300
3D ResNeXt101 0.8882 0.9643 0.9077 0.8204
3D ResNeXt50 0.8806 0.9603 0.9028 0.8033
Manual Effnet-GRU 0.8675 0.9703 0.8778 0.8321
Manual Effnet 0.8475 0.9484 0.8759 0.7486

Table 20 Performance comparison with
hybrid networks and 3D CNNs for the
combined test set

Model Acc. Prec. Recall AUC

Prop. PSO-based Effnet-GRU 0.9695 0.9890 0.9737 0.9620
Prop. PSO-based Effnet 0.9576 0.9852 0.9628 0.9484
ResNet50-GRU 0.9209 0.9606 0.9422 0.8827
ResNet101-GRU 0.8865 0.9846 0.8755 0.9063
GoogLeNet-GRU 0.9339 0.9626 0.9567 0.8932
I3D 0.9369 0.9765 0.9459 0.9209
MC3 0.9393 0.9655 0.9603 0.9016
3D ResNeXt101 0.9470 0.9592 0.9769 0.8934
3D ResNeXt50 0.9120 0.9541 0.9379 0.8656
Manual Effnet-GRU 0.9126 0.9714 0.9206 0.8983
Manual Effnet 0.9049 0.9464 0.9372 0.8471

Fig. 16 ROC curve comparison between our optimized models and hybrid networks and
3D CNNs for the Celeb-DFv2 test set
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Fig. 17 ROC curve comparison between our optimized models and hybrid networks and
3D CNNs for the DFDC test set

Fig. 18 ROC curve comparison between our optimized models and hybrid networks and
3D CNNs for the combined test set

The confusion matrices of the proposed PSO-optimized EfficientNet-B0
and EfficientNet-GRU models with respect to the Celeb-DFv2, DFDC and
combined test sets are provided in Figures 19 and 20, respectively. The built-in
scikit-learn packages in the Python library are used to generate these confusion
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matrix results, along with those for other evaluation metrics (i.e. accuracy,
precision, recall and AUC scores) in this research.

Fig. 19 Confusion matrices of the proposed PSO-optimized EfficientNet-B0 for the Celeb-
DFv2 (left), DFDC (middle) and combined (right) test sets, respectively

Fig. 20 Confusion matrices of the proposed PSO-optimized EfficientNet-GRU for the
Celeb-DFv2 (left), DFDC (middle) and combined (right) test sets, respectively

Since all the search methods employ the same number of function eval-
uations for hyperparameter search, with deep learning-based fitness function
evaluation as the most costly process, these methods have a similar overall cost
for optimal parameter selection at the training stage. We provide the average
cost of each algorithm with one function evaluation over 5 runs for compu-
tational efficiency comparison. Such a mean cost for each trial is calculated
by averaging the cost for hyperparameter search by the number of function
evaluations performed. This includes the cost of dedicated search operations
embedded in each algorithm along with one fitness evaluation of the recom-
mended hyperparameters using either EfficientNet-B0 or EfficientNet-GRU.
The cost variations are mainly caused by different search principles operated
in the search methods. Table 21 depicts the detailed cost comparison.

We conduct the computational cost comparison using a NVIDIA RTX 3090
consumer GPU. As indicated in Table 21, the proposed model shows mod-
erate mean computational costs per function evaluation over 5 runs for both
networks. ABC, SSA, FA, FPA, and BBPSO have lower mean computational
costs owing to their comparatively simpler search strategies by following ran-
domly selected (ABC), neighbouring (SSA and FA) and global best (BBPSO
and FPA) solutions, respectively. DA employs a search action combining sepa-
ration, alignment, cohesion, attraction and evading mechanisms, also showing
relatively light computational costs. SSO performs vibration intensity-based
actions with dynamic leader generation, resulting in slightly higher but reason-
able costs. In contrast, BBPSOV and ACPSO have the highest computational
costs due to diverse embedded search actions, e.g. evading/attraction-inspired
mechanisms in BBPSOV, and three subswarms with adaptive sine, circle and
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Table 21 The mean computational costs (in
seconds) of each search method with one
function evaluation for hyperparameter search

Model EfficientNet-B0 EfficientNet-GRU

Prop. PSO 268.1408 275.4205
PSO 184.0033 205.9014
ABC 80.0875 83.0909
BBPSO 132.3337 160.4870
FPA 147.4523 180.2467
SSA 77.3659 136.9845
SSO 184.8069 188.9568
FA 142.7953 153.1096
DA 149.0886 173.9974
SPSO 238.7975 265.3025
GPSO 243.6370 257.8900
BBPSOV 269.7608 279.9356
ACPSO 360.4934 378.6980

spiral search coefficients in ACPSO. The proposed model, GPSO, and SPSO
show moderate costs because of the deployment of reinforcement learning-
based action selection and hybrid leader generation in our model, crossover
and mutation operations in GPSO, and adaptive sine-based search coefficients
in SPSO, respectively. The optimal configurations identified by each method
in the training process are used to construct the final network at the test stage
for performance comparison.

We also compare our optimized networks with other existing studies for
Celeb-DFv2 and DFDC datasets. The selected existing studies were evaluated
using the official Celeb-DFv2 test set and the DFDC subset, respectively, as
performed in our experiments. But since these related studies were trained
using a variety of deepfake training databases for evaluating both datasets,
they are used for loose performance comparison. Tables 22 and 23 illustrate
the performance comparison with state-of-the-art existing studies using the
Celeb-DFv2 and DFDC datasets, respectively.

We used the official split to evaluate the Celeb-DFv2 dataset. Specifically,
for the official Celeb-DFv2 test set, the selected existing studies shown in
Table 22 obtained accuracy rates ranging from 0.8074 to 0.8989 and AUC
scores ranging from 0.696 to 0.9003. Our transfer learning using EfficientNet-
B0 with the proposed PSO-based hyperparameter fine-tuning obtained a
competitive benchmark with an accuracy rate of 0.9247 and an AUC score of
0.8985, while EfficientNet-GRU with the proposed PSO-based hyperparame-
ter selection achieved a better accuracy rate of 0.9382 and a better AUC result
of 0.9141. Both of our models outperform most of these related studies by a
sufficient margin.

Table 23 shows the comparison between our optimized networks and exist-
ing studies for the DFDC test set. Again our optimized EfficientNet-GRU and
EfficientNet-B0 models with the proposed PSO-based hyperparameter fine-
tuning obtain more reliable performance in comparison with those of existing
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Table 22 Performance comparison for the
Celeb-DFv2 test set

Model Methodology Accuracy AUC

Hu [13] Two Stream 0.8074 -
Demir and Ciftci [14] Biological Signals (sequence-based) 0.8576 -
Demir and Ciftci [14] Biological Signals (video-based) 0.8835 -
Kandasamy et al. [70] VGG19 0.8843 -
Kandasamy et al. [70] ResNet 0.8932 -
Rossler et al. [3] XceptionNet-Max 0.8989 -
Haliassos et al. [71] LipForensics - 0.824
Liu et al. [72] SPSL(Xception as the backbone) - 0.7688
Wang et al. [62] MC-LCR - 0.7161
Zheng et al. [59] Temporal Coherence - 0.869
Wang et al. [73] CNN-aug - 0.756
Nguyen et al. [74] Multi-task - 0.757
Chai et al. [75] PatchForensics - 0.696
Masi et al. [76] Two-branch LSTM - 0.7665
Tolosana et al. [77] Facial element extraction - 0.836
Zhao et al. [61] PCL + I2G (ResNet-34 as the backbone) - 0.9003
This research Prop. PSO-based EfficientNet-GRU 0.9382 0.9141
This research Prop. PSO-based EfficientNet 0.9247 0.8985

studies. Specifically, the EfficientNet-B0 model with the proposed PSO-based
hyperparameter selection achieves a competitive mean accuracy rate of 0.9414
and AUC score of 0.9161, and our optimized EfficientNet-GRU obtains a better
mean accuracy rate of 0.9517 and a better AUC score of 0.9346.

In short, owing to the efficient search capabilities of the proposed PSO
model guided by composite leaders and optimized search strategies governed
by the fitness evaluations, our optimized networks outperform existing studies
for both Celeb-DFv2 and DFDC datasets and show great efficiency in tackling
challenging manipulated video classification tasks. They can be deployed as
effective substitute methods for deepfake content identification. In addition,
our work also highlights the importance of hyperparameter selection in deep
learning networks and the potential use of evolutionary algorithms in such
tasks for video deepfake classification.

5 Visualization Using Gradient-weighted Class
Activation Mapping

Various evolutionary and sensitivity-based methods are proposed for feature
selection [83] [19] [84] [85]. Owing to the large feature dimensions extracted
from multiple video frames, in this research, we visualize the contribu-
tions of different convolutional and spatial features using class-discriminative
heatmaps, to indicate the effectiveness of our optimized networks for dis-
criminative feature extraction. Specifically, we generate heatmaps using
gradient-weighted class activation mapping (Grad-CAM) [86] for both pro-
posed EfficientNet serialized with GRU, as well as the proposed PSO-optimized
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Table 23 Performance comparison for the
DFDC test set

Model Methodology Accuracy AUC

Li [78] XceptionNet + MIL 0.8378 -
Li [78] XceptionNet + S-MIL-T 0.8511 -
Zhang et al. [79] TD-3DCNN 0.8264 -
Wang et al. [62] MC-LCR 0.702 0.7134
Güera and Delp [80] RNN 0.6242 0.669
Hu et al. [81] FInfer 0.6945 0.7039
Li et al. [82] Face X-ray - 0.655
Zheng et al. [59] Temporal Coherence - 0.74
Wang et al. [73] CNN-aug - 0.721
Shiohara and Yamasaki [60] Self-blended data synthesis - 0.7242
Song et al. [67] CD-Net (Xception as the backbone) - 0.783
Zhao et al. [61] PCL + I2G (ResNet-34 as the backbone) - 0.6752
This research Prop. PSO-based EfficientNet-GRU 0.9517 0.9346
This research Prop. PSO-based EfficientNet 0.9414 0.9161

EfficientNet to indicate their effectiveness in feature learning. In particular,
as indicated earlier, in the proposed EfficientNet-GRU model, all the convo-
lutional layers of the ImageNet pre-trained EfficientNet are slightly fine-tuned
using the combined training set with a small number of epochs (e.g. 5 epochs)
with the attempt to improve their discriminative feature learning capabilities
in the target domain.

First of all, since this research focuses on detection and classification of
face swapping and facial re-enactment, MTCNN-based facial cropping is per-
formed to extract the facial regions and eliminate background noise. Besides
that, for both EfficientNet-B0 and EfficienNet-GRU models, as discussed in
Sections 4.2.1 and 4.2.2, the proposed PSO and other search methods are
used to optimize the number of video frames and image resolution sizes, along
with learning and dropout rates, to maintain optimal cost while eliminating
irrelevant noisy features to avoid overfitting.

To indicate the effectiveness of the proposed PSO-based EfficientNet model
and the EfficientNet embedded in EfficientNet-GRU for feature learning, Grad-
CAM [86] heatmaps with different color schemes are used to visualize the
importance of the extracted features from the cropped facial regions. Grad-
CAM first calculates the gradient of the prediction score for a target class
with respect to the extracted feature maps in the last convolutional layer.
Then the global average pooling is applied to gradients calculated above to
generate weightings of respective feature maps for a target class. The yielded
importance weightings subsequently multiply with respective feature maps.
A summation operation followed by a ReLU activation function is performed
on these weighted results to produce the Grad-CAM heatmaps. These local-
ization maps indicate feature significance to class prediction using different
colour schemes with deep red indicating the most significant/relevant char-
acteristics and deep blue as the least influential factors for categorization.
Therefore, such class-discriminative heatmaps are used in this research to
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visualize which image regions have the most influence to synthetic/original
video classification. In comparison with class activation mapping (CAM), the
Grad-CAM method can be applied to any CNN architectures even without
re-training [86]. In addition, as mentioned above, in this research, to improve
discriminative feature learning, we fine-tune all the convolutional layers of the
ImageNet pre-trained EfficientNet-B0 embedded in the proposed EfficientNet-
GRU model using the combined training set with a small number of epochs
(i.e. 5 epochs), before feature extraction. Therefore, we generate Grad-CAM
heatmaps for this EfficientNet-B0 model with light-weight fine-tuning embed-
ded in the EfficientNet-GRU, to indicate its effectiveness in feature learning.
Besides that, we also generate Grad-CAM heatmaps for the proposed PSO-
optimized EfficientNet-B0 to demonstrate its capabilities in discriminative
feature representation.

Figure 21 shows example original video frames (the first row), respec-
tive manipulated video frames (the second row), and Grad-CAM heatmaps
extracted from lightly-tuned EfficientNet-B0 embedded in the EfficientNet-
GRU (the third row), as well as the heatmaps generated by the proposed
PSO-optimized EfficientNet-B0 (the fourth row), with respect to the manip-
ulated image frames in the second row. Since these example video frames are
taken from Celeb-DFv2, the face swap attack is performed in these deepfake
examples. The inspection of the synthetic image frames in the second row in
Figure 21 against the real image frames in the first row reveals the presence
of vagueness and blurry in the eye, nose, mouth or overall facial regions, as
well as shape alterations of eye, nose, and mouth elements. As indicated in
existing studies, inconsistent shadowing/lighting/colour tone over faces, unnat-
ural/inconsistent teeth/mouth/eye movements, misaligned teeth, distortions
in eyebrows, facial hair and facial borders, double chins, non-circled pupils, and
other spatial inconsistency, are key factors for identifying manipulated images
against real ones.

As visualized by Grad-CAM heatmaps shown in the third and fourth
rows in Figure 21, the most significant factors extracted by both the lightly-
tuned EfficientNet (embedded in EfficientNet-GRU) and the proposed PSO-
optimized EfficientNet model are mostly derived from these facial abnormality
regions such as eye and mouth/teeth regions. These dominating features are
represented by deep red heatmaps, emphasizing their importance to manip-
ulated class prediction. As an example, the heatmaps extracted using the
lightly-tuned EfficientNet model (embedded in EfficientNet-GRU) in the third
row show high correlations to those manipulated facial regions such as blurred
eye regions, and inconsistent shadowing/lighting/colour tone over faces. Built
upon this, as shown in the last row in Figure 21, the proposed PSO-optimized
EfficientNet-B0 method with substantial re-training is able to even better
capture such abnormalities and strengthen the extraction of such important
characteristics. For instance, in most cases, significant factors with respect to
shadowy eye regions, unnatural pupils and iris borders, are extracted by our
optimized network. In addition, distortions in facial borders, misaligned teeth,
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and double chins, which also have vital influence to authenticity classification,
are identified as well.

As indicated in the results in Figure 21, both the EfficientNet with light-
weight fine-tuning and the proposed PSO-optimized EfficientNet-B0 model
show great efficiency in capturing important discriminative features playing
significant roles in synthetic video identification. In addition, the proposed
PSO-optimized EfficientNet-B0 network adopts such extracted heatmaps for
frame-level fake/real image classification. A mean average ensemble scheme
is used to combine the frame-level prediction based on a sequence of frames
to determine final video classification outcome. Moreover, in the proposed
EfficientNet-GRU model, the most important spatial features in the heatmaps
extracted using EfficientNet-B0 with light-weight fine-tuning are further
strengthened by combining a sequence of such class-discriminative Grad-CAM
maps from multiple frames. Such a sequence of discriminative heatmaps is
then passed on to the GRU model for temporal feature learning to inform final
video authenticity identification.

Besides the above, as indicated in Sections 4.2.1 and 4.2.2, the proposed
PSO model is also used to optimize the number of frames and image resolu-
tion settings for both EfficientNet-GRU and EfficientNet-B0 networks, in order
to extract salient features without capturing too much noisy irrelevant/con-
tradictory details to avoid overfitting. As an example, for EfficientNet-B0, a
selection of 30-40 frames and image resolutions of 115-126 is recommended by
the proposed PSO and other search methods owing to a good balance between
performance and computational cost. Similarly for EfficientNet-GRU, the pro-
posed PSO model and other search methods recommend the optimal number
of 30-39 frames with image resolutions of 113-125 for model training and test
to better tackle overfitting.

These optimized frame and image resolution settings, along with the effec-
tiveness of the extracted spatial-temporal features by the EfficientNet-B0 with
light-weight fine-tuning and proposed PSO-optimized EfficientNet-B0 mod-
els as evidenced in Grad-CAM maps, lead to the capture of discriminative
RGB and motion cues to achieve reliable video classification. Our optimized
EfficientNet-B0 networks also outperform those generated by other search
methods as indicated by the empirical and statistical test results in Tables 10-
12. The efficiency of our optimized EfficientNet-GRU models is also ascertained
by the experimental and statistical test results as shown in Tables 14-16.
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Fig. 21 Example Grad-CAM heatmaps generated for manipulated samples (row 1: the
original video frames, row 2: the respective manipulated frames, row 3: Grad-CAM heatmaps
generated by the EfficientNet model with light-weight fine-tuning for the manipulated frames
(in row 2), and row 4: Grad-CAM heatmaps generated using the proposed PSO-optimized
EfficientNet model for the manipulated frames (in row 2)

6 Uncertainty Analysis

To indicate model effectiveness, we also conduct uncertainty analysis. We
employ the Monte Carlo dropout (MCD) method for uncertainty quantifica-
tion in this research. Specifically, we employ the MCD method to measure
epistemic uncertainty, which is usually caused by the lack of training data. In
other words, with more training data, such model uncertainty can be reduced.
Before introducing MCD, we briefly discuss the traditional dropout method,
which is only applied in the training stage by switching off some randomly
selected neurons. And there is no dropout operation applied during test with all
neurons enabled. The dropout operation provides flexibility in model training,
thus helps tackle overfitting. In contrast, in the MCD method, the dropout is
enabled during testing. This results in different dropout masks to be deployed
during the forward passes for result calculation. These generated new archi-
tectures can be regarded as Monte Carlo samples. As such, by using dropout
during testing, each test sample will be evaluated using different model archi-
tectures and the result distributions of these test samples are used in this
research for computing different uncertainty metrics.

Since we focus on a classification problem for video authenticity identifi-
cation, as suggested by existing studies [87][88][89], we employ the predictive
entropy and mutual information for uncertainty analysis. Equations 10-11
define the formulae of the predictive entropy [87].
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Entropy = −
C∑

c=1

(uc)log(uc) (10)

uc =
1

T

T∑
i=1

P i
c (11)

where C denotes the number of predicted classes with uc representing the
class-wise mean prediction probability. In addition, T denotes the number of
MCD forward passes employed in our experiments.

The mutual information is formulated in Equation 12.

MI = −
C∑

c=1

(uc)log(uc) +
1

T
ΣC

c=1Σ
T
t=1P ((y ∈ c)(x,wt))log(P ((y ∈ c)(x,wt)))

(12)

where MI indicates mutual information, while P ((y ∈ c)(x,wt)) represents
the softmax score for the input sample x belonging to class c with model
parameters wt.

We employ all test video samples, i.e. 3,375 videos, from the combined test
set for uncertainty analysis. Each sample is tested T = 20 times using the
MCD method. Table 24 shows the mean predictive entropy (MPE) and mutual
information scores over all test videos with respect to the EfficientNet and
EfficientNet-GRU models with optimized settings obtained using the proposed
PSO model, respectively. Specifically, MPE fake, MPE real, and MPE all in
Table 24 denote the mean predictive entropy scores for the fake, real and both
classes, with Mutual Info indicating the mean mutual information score for
both classes, over all test samples.

As indicated in Table 24, both optimized networks obtain low entropy and
mutual information scores, which indicate that the models have high certainty
about predictions. In addition, both mean predictive entropy and mutual infor-
mation scores of the proposed PSO-based EfficientNet-GRU method are lower
than those of the proposed PSO-based EfficientNet model. This shows that
the optimized EfficientNet-GRU model has better discriminative capabilities
for distinguishing synthetic and real videos with lower uncertainty.

For each optimized network, the mean predictive entropy scores for both
manipulated and real classes are also provided in Table 24. The mean predictive
entropy scores for the manipulated class are lower than those of the genuine
video class for both networks. Figures 22 and 23 also show the detailed uncer-
tainty estimation distributions in terms of the predictive entropy for both fake
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and real classes for the PSO-devised EfficientNet-GRU and EfficientNet mod-
els, respectively. As indicated in Table 24 and Figures 22-23, the manipulated
videos are classified with higher certainty than those of the original videos by
both optimized networks. The combined dataset construction may help explain
the above observations. Since in the employed deepfake datasets (i.e. Celeb-
DFv2 and DFDC), there are usually much larger numbers of synthetic videos
than those of the genuine ones, real video samples from the YouTube Faces
Database are also borrowed to increase the real class sample sizes and bal-
ance class distributions when constructing the combined dataset. Therefore,
the trained networks have been encountered with a variety of manipulated
instances and show comparatively lower uncertainty in recognizing fake videos
in comparison with the original ones.

Overall, the mean predictive entropy and mutual information scores indi-
cate the effectiveness of both of the proposed PSO-optimized networks for
classifying manipulated and real videos with reasonably high certainty.

Table 24 The mean predictive entropy and
mutual information scores for the proposed
PSO-optimized networks

Model MPE fake MPE real MPE all Mutual Info

Prop. PSO-based Effnet-GRU 0.06335 0.10060 0.16400 0.05633
Prop. PSO-based Effnet 0.07149 0.11009 0.18159 0.06355

Fig. 22 Uncertainty estimation distributions in terms of the predictive entropy for both
manipulated and real classes for the proposed PSO-optimized EfficientNet-GRU model using
the combined test set
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Fig. 23 Uncertainty estimation distributions in terms of the predictive entropy for both
manipulated and real classes for the proposed PSO-optimized EfficientNet-B0 model using
the combined test set

7 Evaluation Using Benchmark Functions

To further indicate the effectiveness of the proposed PSO algorithm, we employ
unimodal and multimodal benchmark functions with varied search spaces
and artificial landscapes for evaluation. Multimodal functions such as Rast-
rigin, Griewank, Ackley, and Powell, as well as unimodal functions including
Rotated Hyper-Ellipsoid (Rothyp), Dixon-Price (Dixon), Sphere, Rosenbrock,
Zakharov, Sum of Different Powers (Sumpow), and Sum Squares (Sumsqu),
are evaluated in our experiments. The experiments are conducted using a
maximum number of function evaluations of 25,000 (population=50 and iter-
ations=500), and a dimension of 30. This maximum number of function
evaluations (i.e. 25,000) is conducted by all search methods to ensure a fair
comparison. The mean results along with maximum, minimum and standard
deviation performances over a set of 30 runs for solving these benchmark func-
tions are presented in Table 25. The Wilcoxon rank sum test results shown in
Table 26 are used to indicate the significance of our results against those of
the baseline methods.

As shown in Table 25, our model outperforms all the baseline methods for
9 out of 11 benchmark functions, while SSA and ABC obtain the best results
for Griewank and Rosenbrock, respectively, with the proposed model achieving
the second best results for these two test functions. The statistical superiority
of the proposed model is also further evidenced in the rank sum test results
shown in Table 26. Specifically, our model obtains statistically better results
than those of the baseline methods for most test functions, except that SSA
and ABC obtain statistically better results for Griewank and Rosenbrock than
those of the proposed model, respectively.
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Table 25 Evaluation results for the benchmark functions with dimension=30

Prop. PSO PSO ABC SSA SSO FA DA BBPSO FPA BBPSOV SPSO GPSO ACPSO
Ackley mean 7.43E-15 1.09E+01 5.91E-02 2.74E+00 2.13E+01 3.02E-02 1.93E+01 1.17E+01 1.22E+01 1.95E+01 1.30E+01 1.84E+01 1.12E+01

min 4.00E-15 9.22E+00 5.91E-02 2.74E+00 2.13E+01 3.02E-02 1.93E+01 6.62E-01 1.09E+01 1.95E+01 1.30E+01 1.84E+01 4.21E+00
max 7.55E-15 1.10E+01 5.91E-02 2.74E+00 2.13E+01 3.02E-02 1.93E+01 1.77E+01 1.42E+01 1.95E+01 1.30E+01 1.84E+01 1.79E+01
std 6.49E-16 3.22E-01 0.00E+00 4.52E-16 3.61E-15 0.00E+00 0.00E+00 3.62E+00 7.78E-01 3.61E-15 7.23E-15 1.45E-14 5.21E+00

Dixon mean 1.29E-01 1.26E+05 6.67E-01 7.29E-01 6.78E+06 1.41E+00 1.18E+03 4.30E+04 4.92E+03 2.09E+06 1.89E+04 3.58E+05 1.54E+05
min 1.29E-01 1.09E+05 6.67E-01 7.29E-01 6.78E+06 1.41E+00 1.18E+03 6.67E-01 1.27E+03 2.09E+06 1.89E+04 3.58E+05 1.21E+00
max 1.29E-01 1.27E+05 6.67E-01 7.29E-01 6.78E+06 1.41E+00 1.18E+03 3.52E+05 8.57E+03 2.09E+06 1.89E+04 3.58E+05 6.86E+05
std 5.65E-17 3.24E+03 2.00E-11 5.65E-16 1.89E-09 2.26E-16 0.00E+00 1.05E+05 1.83E+03 9.47E-10 1.11E-11 5.92E-11 2.28E+05

Griewank mean 2.28E-03 3.47E+00 2.94E-03 6.25E-05 1.30E+03 5.08E-03 9.40E+00 1.81E+01 2.91E+01 5.02E+02 6.12E+01 2.80E+02 4.66E+01
min 2.28E-03 3.20E+00 2.94E-03 6.25E-05 1.30E+03 5.08E-03 9.40E+00 2.22E-03 1.84E+01 5.02E+02 6.12E+01 2.80E+02 2.53E-02
max 2.28E-03 3.48E+00 2.94E-03 6.25E-05 1.30E+03 5.08E-03 9.40E+00 9.05E+01 3.70E+01 5.02E+02 6.12E+01 2.80E+02 3.18E+02
std 1.76E-18 5.09E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.42E-15 3.67E+01 5.29E+00 2.31E-13 4.34E-14 0.00E+00 1.04E+02

Rastrigin mean 8.21E-04 1.19E+02 6.07E+00 5.77E+01 6.91E+02 3.69E+01 9.24E+01 1.31E+02 2.00E+02 4.07E+02 2.21E+02 3.54E+02 2.86E+02
min 8.21E-04 7.14E+01 6.07E+00 5.77E+01 6.91E+02 3.69E+01 9.24E+01 3.19E+01 1.66E+02 4.07E+02 2.21E+02 3.54E+02 1.31E+02
max 8.21E-04 1.21E+02 6.07E+00 5.77E+01 6.91E+02 3.69E+01 9.24E+01 2.21E+02 2.27E+02 4.07E+02 2.21E+02 3.54E+02 3.58E+02
std 3.31E-19 9.01E+00 9.03E-16 3.61E-14 3.47E-13 2.17E-14 4.34E-14 5.15E+01 1.11E+01 5.78E-14 1.45E-13 1.73E-13 5.69E+01

Rothyp mean 1.05E-273 1.18E+04 1.29E-04 1.09E+01 9.80E+05 1.64E+00 1.62E+04 2.42E+04 1.40E+04 3.88E+05 2.86E+04 1.98E+05 1.75E+04
min 1.01E-273 6.31E+02 1.29E-04 1.09E+01 9.80E+05 1.64E+00 1.62E+04 2.34E-04 8.45E+03 3.88E+05 2.86E+04 1.98E+05 3.02E-05
max 2.16E-273 1.22E+04 1.29E-04 1.09E+01 9.80E+05 1.64E+00 1.62E+04 1.14E+05 1.76E+04 3.88E+05 2.86E+04 1.98E+05 1.96E+05
std 0.00E+00 2.11E+03 5.51E-20 3.61E-15 1.18E-10 0.00E+00 9.25E-12 3.36E+04 2.13E+03 1.18E-10 1.85E-11 8.88E-11 5.34E+04

Rosenbrock mean 2.36E+01 1.13E+04 7.35E-01 2.23E+02 6.21E+06 2.87E+01 5.37E+03 5.93E+04 6.13E+03 1.65E+06 2.86E+04 3.12E+05 2.48E+04
min 2.33E+01 2.32E+03 7.35E-01 2.23E+02 6.21E+06 2.87E+01 5.37E+03 9.59E+00 2.20E+03 1.65E+06 2.86E+04 3.12E+05 6.00E+00
max 2.36E+01 1.16E+04 7.35E-01 2.23E+02 6.21E+06 2.87E+01 5.37E+03 2.23E+05 1.04E+04 1.65E+06 2.86E+04 3.12E+05 2.66E+05
std 5.07E-02 1.69E+03 0.00E+00 5.78E-14 9.47E-10 1.08E-14 0.00E+00 6.23E+04 2.07E+03 0.00E+00 1.48E-11 0.00E+00 6.94E+04

Sphere mean 1.10E-275 1.28E+00 3.97E-07 9.52E-11 3.78E+02 2.02E-03 3.38E+00 8.74E+00 8.55E+00 1.83E+02 1.89E+01 1.22E+02 1.32E+01
min 4.63E-277 7.95E-01 3.97E-07 9.52E-11 3.78E+02 2.02E-03 3.38E+00 7.45E-08 6.04E+00 1.83E+02 1.89E+01 1.22E+02 2.83E-07
max 3.16E-274 1.30E+00 3.97E-07 9.52E-11 3.78E+02 2.02E-03 3.38E+00 5.24E+01 1.14E+01 1.83E+02 1.89E+01 1.22E+02 1.00E+02
std 0.00E+00 9.21E-02 1.62E-22 0.00E+00 5.78E-14 0.00E+00 1.36E-15 1.59E+01 1.23E+00 5.78E-14 0.00E+00 0.00E+00 2.96E+01

Sumpow mean 0.00E+00 2.84E-07 6.04E-14 4.61E-07 5.32E+00 2.24E-07 6.52E-05 1.85E-19 8.88E-05 4.43E-01 3.61E-04 2.08E-02 3.02E-02
min 0.00E+00 1.70E-07 6.04E-14 4.61E-07 5.32E+00 2.24E-07 6.52E-05 4.77E-30 7.65E-06 4.43E-01 3.61E-04 2.08E-02 6.53E-22
max 0.00E+00 2.88E-07 6.04E-14 4.61E-07 5.32E+00 2.24E-07 6.52E-05 3.96E-18 2.70E-04 4.43E-01 3.61E-04 2.08E-02 9.86E-02
std 0.00E+00 2.15E-08 0.00E+00 1.62E-22 0.00E+00 0.00E+00 1.38E-20 7.28E-19 6.93E-05 0.00E+00 1.65E-19 1.06E-17 3.27E-02

Zakharov mean 1.72E-03 1.90E+02 4.52E+00 1.52E+02 1.40E+03 2.86E+01 2.66E+02 1.83E+02 2.65E+02 7.08E+02 3.12E+02 4.87E+02 4.05E+02
min 1.72E-03 1.51E+02 4.52E+00 1.52E+02 1.40E+03 2.86E+01 2.66E+02 9.29E+01 2.36E+02 7.08E+02 3.12E+02 4.87E+02 3.01E+02
max 1.72E-03 1.91E+02 4.52E+00 1.52E+02 1.40E+03 2.86E+01 2.66E+02 2.67E+02 3.01E+02 7.08E+02 3.12E+02 4.87E+02 4.95E+02
std 1.10E-18 7.40E+00 0.00E+00 2.89E-14 6.94E-13 0.00E+00 1.16E-13 4.85E+01 1.59E+01 3.47E-13 0.00E+00 5.78E-14 4.76E+01

Sumsqu mean 1.15E-278 1.83E+01 7.64E-06 3.44E-03 6.06E+03 3.86E-01 1.08E+01 1.69E+02 1.08E+02 2.23E+03 2.29E+02 1.15E+03 2.28E+02
min 3.42E-279 2.70E+00 7.64E-06 3.44E-03 6.06E+03 3.86E-01 1.08E+01 1.10E-06 7.43E+01 2.23E+03 2.29E+02 1.15E+03 6.51E-06
max 2.46E-277 1.88E+01 7.64E-06 3.44E-03 6.06E+03 3.86E-01 1.08E+01 8.91E+02 1.67E+02 2.23E+03 2.29E+02 1.15E+03 1.39E+03
std 0.00E+00 2.95E+00 6.89E-21 1.32E-18 2.78E-12 1.13E-16 1.81E-15 1.82E+02 1.93E+01 9.25E-13 0.00E+00 4.63E-13 4.70E+02

Powell mean 2.00E-07 1.37E+02 5.26E-02 3.84E+00 1.12E+05 1.53E+00 8.65E+01 1.08E+03 8.39E+01 9.96E+03 3.02E+02 5.50E+03 5.61E+02
min 7.61E-11 1.34E+02 5.26E-02 3.84E+00 1.12E+05 1.53E+00 8.65E+01 8.45E-02 3.35E+01 9.96E+03 3.02E+02 5.50E+03 6.86E-04
max 2.07E-07 2.13E+02 5.26E-02 3.84E+00 1.12E+05 1.53E+00 8.65E+01 6.39E+03 1.22E+02 9.96E+03 3.02E+02 5.50E+03 4.75E+03
std 3.78E-08 1.45E+01 3.53E-17 0.00E+00 5.92E-11 0.00E+00 0.00E+00 1.53E+03 2.05E+01 0.00E+00 1.16E-13 4.63E-12 1.18E+03

Table 26 The Wilcoxon rank sum test results over 30 runs for dimension=30

PSO ABC SSA SSO FA DA BBPSO FPA BBPSOV SPSO GPSO ACPSO

Ackley 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 1.72E-12 1.72E-12 2.71E-14 2.71E-14 2.71E-14 1.72E-12
Dixon 2.71E-14 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.21E-12

Griewank 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 3.36E-11 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.21E-12
Rastrigin 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.21E-12
Rothyp 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 1.72E-12 1.72E-12 2.71E-14 2.71E-14 2.71E-14 1.72E-12

Rosenbrock 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 4.56E-11 1.72E-12 2.71E-14 2.71E-14 2.71E-14 2.59E-06
Sphere 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 1.72E-12 1.72E-12 2.71E-14 2.71E-14 2.71E-14 1.72E-12
Sumpow 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.21E-12
Zakharov 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.21E-12
Sumsqu 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 1.72E-12 1.72E-12 2.71E-14 2.71E-14 2.71E-14 1.72E-12
Powell 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 1.72E-12 1.72E-12 2.71E-14 2.71E-14 2.71E-14 1.72E-12

Besides the Wilcoxon rank sum test, the non-parametric Friedman test is
also conducted. It tests the null hypothesis that the results of all the treat-
ment methods have identical distributions or otherwise based on a Chi-square
approximation. Table 27 shows the mean rankings of all the search methods
over 30 runs based on the mean results of all test functions shown in Table 25
using the Friedman test. The mean ranking result of each algorithm is obtained
by averaging the rankings of the mean results of all benchmark functions. As
indicated in Table 27, the proposed model has the highest mean ranking in
comparison with those of all the baseline methods. ABC and FA also show
competitive rankings against other baseline methods. The p-value obtained
using the Friedman test illustrated in Table 28 is lower than 0.001. It further
ascertains that our results are better than those of all other search methods
with a statistical significance.

The empirical results indicate that the proposed model has a fast conver-
gence rate in most test cases. Moreover, it shows better capabilities in tackling
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Table 27 The mean ranking results of all search methods based on the Friedman test for
benchmark functions with dimension=30

Algorithms Mean Ranking
Prop. PSO 1.18

PSO 6
ABC 2.27
SSA 3.55
SSO 13
FA 3.36
DA 6.45

BBPSO 7.36
FPA 6.91

BBPSOV 12
SPSO 9.09
GPSO 10.82
ACPSO 9

Table 28 The statistical results of the Friedman test for benchmark functions with
dimension=30

Chi-Square p-Value Hypothesis
120.94 < 0.001 Rejected

local optima traps by locating the minimum global optima in most test cases.
Example mean convergence curves over 30 runs generated using the logarithm
scale with a base of 10 during the course of 500 iterations with respect to the
Powell, Ackley and Sphere functions are provided in Figures 24-26, respec-
tively. The visualization results indicate that the proposed model navigates
various search spaces with a fast convergence speed. Owing to the adoption of
diverse composite leaders and optimal search action selection reinforced by Q-
learning, as demonstrated in the visualized convergence curves, the proposed
optimizer also shows better capabilities in tackling local optima traps as com-
pared with those of other baseline methods. A similar trend is also obtained
for other benchmark functions.
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Fig. 24 Mean convergence rate comparison in the log scale over 30 runs for the Powell
function with dimension=30

Fig. 25 Mean convergence rate comparison in the log scale over 30 runs for the Ackley
function with dimension=30



Springer Nature 2021 LATEX template

54

Fig. 26 Mean convergence rate comparison in the log scale over 30 runs for the Sphere
function with dimension=30

To further test model effectiveness, we have also evaluated the proposed
model using the benchmark functions with a dimension of 50. The experiments
are performed using the following settings, i.e. population=50, iteration=1,000
and trial=30. A maximum number of 50,000 function evaluations is used by
all search methods. The detailed evaluation and Wilcoxon rank sum statistical
test results are provided in Tables 29-30.

Table 29 Evaluation results for the benchmark functions with dimension=50

Prop. PSO PSO ABC SSA SSO FA DA BBPSO FPA BBPSOV SPSO GPSO ACPSO
Ackley mean 7.55E-15 1.39E+01 4.07E-02 2.32E+00 2.11E+01 3.04E-02 1.96E+01 1.56E+01 1.31E+01 2.04E+01 1.40E+01 1.86E+01 1.39E+01

min 7.55E-15 1.25E+01 4.07E-02 2.32E+00 2.11E+01 3.04E-02 1.96E+01 1.28E+01 1.17E+01 2.04E+01 1.40E+01 1.86E+01 1.23E+01
max 7.55E-15 1.39E+01 4.07E-02 2.32E+00 2.11E+01 3.04E-02 1.96E+01 1.77E+01 1.42E+01 2.04E+01 1.40E+01 1.86E+01 1.48E+01
std 0.00E+00 2.62E-01 0.00E+00 4.52E-16 7.23E-15 0.00E+00 1.45E-14 1.32E+00 7.26E-01 7.23E-15 0.00E+00 1.08E-14 4.87E-01

Dixon mean 6.67E-01 7.19E+05 1.33E+00 7.36E-01 1.67E+07 2.96E+00 4.19E+04 1.54E+05 2.35E+03 5.79E+06 1.58E+05 3.10E+06 1.26E+05
min 6.67E-01 6.21E+05 1.33E+00 7.36E-01 1.67E+07 2.96E+00 4.19E+04 8.77E+00 1.21E+03 5.79E+06 1.58E+05 3.10E+06 8.84E+04
max 6.67E-01 7.23E+05 1.33E+00 7.36E-01 1.67E+07 2.96E+00 4.19E+04 6.27E+05 4.24E+03 5.79E+06 1.58E+05 3.10E+06 2.00E+05
std 9.62E-12 1.86E+04 4.52E-16 1.13E-16 3.79E-09 1.36E-15 7.40E-12 2.00E+05 7.14E+02 1.89E-09 5.92E-11 4.74E-10 2.62E+04

Griewank mean 1.93E-03 1.17E+02 1.72E-05 2.24E-05 1.95E+03 5.69E-03 1.73E+01 8.16E+01 1.77E+01 1.14E+03 1.68E+02 6.71E+02 1.48E+02
min 1.93E-03 1.07E+02 1.72E-05 2.24E-05 1.95E+03 5.69E-03 1.73E+01 5.88E-03 1.33E+01 1.14E+03 1.68E+02 6.71E+02 1.18E+02
max 1.93E-03 1.18E+02 1.72E-05 2.24E-05 1.95E+03 5.69E-03 1.73E+01 3.61E+02 2.42E+01 1.14E+03 1.68E+02 6.71E+02 1.89E+02
std 0.00E+00 1.91E+00 0.00E+00 0.00E+00 9.25E-13 0.00E+00 1.08E-14 9.57E+01 2.27E+00 9.25E-13 5.78E-14 1.16E-13 1.56E+01

Rastrigin mean 1.87E-03 2.49E+02 8.42E+00 4.88E+01 1.07E+03 2.89E+01 1.92E+02 2.65E+02 2.95E+02 7.95E+02 4.41E+02 6.07E+02 4.47E+02
min 1.87E-03 2.49E+02 8.42E+00 4.88E+01 1.07E+03 2.89E+01 1.92E+02 1.24E+02 2.50E+02 7.95E+02 4.41E+02 6.07E+02 3.93E+02
max 1.87E-03 2.52E+02 8.42E+00 4.88E+01 1.07E+03 2.89E+01 1.92E+02 3.52E+02 3.34E+02 7.95E+02 4.41E+02 6.07E+02 5.07E+02
std 0.00E+00 6.16E-01 3.61E-15 7.23E-15 4.63E-13 3.61E-15 2.89E-14 5.21E+01 1.82E+01 1.16E-13 2.89E-13 4.63E-13 2.73E+01

Rothyp mean 0.00E+00 3.45E+05 7.21E-06 8.40E+01 2.36E+06 1.81E+01 2.56E+04 8.89E+04 1.66E+04 1.36E+06 1.41E+05 6.61E+05 6.60E+05
min 0.00E+00 3.44E+05 7.21E-06 8.40E+01 2.36E+06 1.81E+01 2.56E+04 1.65E-01 1.33E+04 1.36E+06 1.41E+05 6.61E+05 3.84E+05
max 0.00E+00 3.76E+05 7.21E-06 8.40E+01 2.36E+06 1.81E+01 2.56E+04 2.75E+05 2.35E+04 1.36E+06 1.41E+05 6.61E+05 7.95E+05
std 0.00E+00 5.90E+03 3.45E-21 1.45E-14 9.47E-10 0.00E+00 1.11E-11 7.96E+04 2.54E+03 4.74E-10 8.88E-11 1.18E-10 9.64E+04

Rosenbrock mean 4.48E+01 3.42E+05 2.33E-01 1.34E+02 9.16E+06 4.71E+01 9.06E+04 2.79E+05 2.46E+04 2.96E+06 1.02E+05 1.37E+06 8.63E+04
min 4.48E+01 3.39E+05 2.33E-01 1.34E+02 9.16E+06 4.71E+01 9.06E+04 5.72E+02 1.56E+04 2.96E+06 1.02E+05 1.37E+06 4.92E+04
max 4.48E+01 4.29E+05 2.33E-01 1.34E+02 9.16E+06 4.71E+01 9.06E+04 1.11E+06 3.71E+04 2.96E+06 1.02E+05 1.37E+06 1.51E+05
std 4.24E-03 1.65E+04 8.47E-17 8.67E-14 3.79E-09 2.89E-14 5.92E-11 1.98E+05 5.72E+03 9.47E-10 0.00E+00 0.00E+00 2.30E+04

Sphere mean 0.00E+00 1.74E+01 1.30E-07 1.52E-10 5.68E+02 7.32E-04 4.22E+00 1.58E+01 5.50E+00 3.43E+02 4.85E+01 1.24E+02 4.19E+01
min 0.00E+00 1.64E+01 1.30E-07 1.52E-10 5.68E+02 7.32E-04 4.22E+00 4.16E-06 4.46E+00 3.43E+02 4.85E+01 1.24E+02 3.21E+01
max 0.00E+00 4.81E+01 1.30E-07 1.52E-10 5.68E+02 7.32E-04 4.22E+00 7.86E+01 6.67E+00 3.43E+02 4.85E+01 1.24E+02 5.34E+01
std 0.00E+00 5.80E+00 1.08E-22 2.63E-26 1.16E-13 2.21E-19 1.81E-15 2.34E+01 6.36E-01 5.78E-14 7.23E-15 2.89E-14 5.56E+00

Sumpow mean 0.00E+00 7.49E-08 4.29E-16 3.16E-08 6.54E+00 1.18E-07 1.16E-04 4.76E-18 8.20E-07 5.75E-01 3.08E-04 2.42E-01 3.12E-04
min 0.00E+00 1.77E-08 4.29E-16 3.16E-08 6.54E+00 1.18E-07 1.16E-04 1.23E-26 7.11E-08 5.75E-01 3.08E-04 2.42E-01 3.97E-05
max 0.00E+00 1.73E-06 4.29E-16 3.16E-08 6.54E+00 1.18E-07 1.16E-04 6.33E-17 4.01E-06 5.75E-01 3.08E-04 2.42E-01 1.16E-03
std 0.00E+00 3.13E-07 1.50E-31 1.35E-23 0.00E+00 4.04E-23 6.89E-20 1.57E-17 7.92E-07 1.13E-16 0.00E+00 8.47E-17 2.58E-04

Zakharov mean 3.62E-03 5.47E+02 9.33E+00 3.28E+02 2.23E+03 5.19E+01 3.83E+02 3.79E+02 4.46E+02 1.36E+03 5.76E+02 8.92E+02 5.92E+02
min 3.62E-03 3.59E+02 9.33E+00 3.28E+02 2.23E+03 5.19E+01 3.83E+02 2.27E+02 3.79E+02 1.36E+03 5.76E+02 8.92E+02 5.11E+02
max 3.62E-03 5.53E+02 9.33E+00 3.28E+02 2.23E+03 5.19E+01 3.83E+02 5.23E+02 5.11E+02 1.36E+03 5.76E+02 8.92E+02 6.88E+02
std 0.00E+00 3.55E+01 0.00E+00 1.73E-13 0.00E+00 0.00E+00 1.73E-13 8.30E+01 2.60E+01 0.00E+00 3.47E-13 1.16E-13 4.32E+01

Sumsqu mean 0.00E+00 7.72E+02 3.93E-07 1.81E+00 1.56E+04 1.96E+00 5.82E+00 7.59E+02 1.15E+02 8.27E+03 9.65E+02 3.52E+03 9.49E+02
min 0.00E+00 3.08E+02 3.93E-07 1.81E+00 1.56E+04 1.96E+00 5.82E+00 9.96E-02 7.68E+01 8.27E+03 9.65E+02 3.52E+03 7.54E+02
max 0.00E+00 7.88E+02 3.93E-07 1.81E+00 1.56E+04 1.96E+00 5.82E+00 2.12E+03 1.68E+02 8.27E+03 9.65E+02 3.52E+03 1.14E+03
std 0.00E+00 8.78E+01 1.08E-22 9.03E-16 1.11E-11 1.13E-15 1.81E-15 5.57E+02 2.36E+01 1.85E-12 6.94E-13 2.31E-12 9.74E+01

Powell mean 6.82E-08 4.52E+02 8.26E-02 5.10E+00 1.62E+05 3.92E+00 3.18E+02 2.78E+03 8.84E+01 2.45E+04 1.25E+03 1.34E+04 1.31E+03
min 9.76E-09 3.15E+02 8.26E-02 5.10E+00 1.62E+05 3.92E+00 3.18E+02 7.03E-01 5.37E+01 2.45E+04 1.25E+03 1.34E+04 8.98E+02
max 7.02E-08 4.57E+02 8.26E-02 5.10E+00 1.62E+05 3.92E+00 3.18E+02 9.90E+03 1.40E+02 2.45E+04 1.25E+03 1.34E+04 1.84E+03
std 1.10E-08 2.59E+01 1.41E-17 1.81E-15 0.00E+00 1.81E-15 5.78E-14 2.15E+03 2.12E+01 0.00E+00 9.25E-13 3.70E-12 2.22E+02
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Table 30 The Wilcoxon rank sum test results over 30 runs with dimension=50

PSO ABC SSA SSO FA DA BBPSO FPA BBPSOV SPSO GPSO ACPSO

Ackley 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.69E-14
Dixon 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 1.72E-12 1.72E-12 2.71E-14 2.71E-14 2.71E-14 2.71E-14

Griewank 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.69E-14
Rastrigin 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.69E-14
Rothyp 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.69E-14

Rosenbrock 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 1.72E-12 1.72E-12 2.71E-14 2.71E-14 2.71E-14 3.02E-11
Sphere 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.69E-14
Sumpow 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.69E-14
Zakharov 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.69E-14
Sumsqu 2.71E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.21E-12 1.21E-12 1.69E-14 1.69E-14 1.69E-14 1.69E-14
Powell 4.29E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 2.71E-14 1.72E-12 1.72E-12 2.71E-14 2.71E-14 2.71E-14 2.71E-14

As shown in Tables 29-30, the proposed model achieves statistically better
results than those of all the baseline methods for most numerical optimiza-
tion problems. In particular, it achieves the most optimal global minima of
‘0’ for Rotated Hyper-Ellipsoid, Sphere, Sum of Different Powers, and Sum
Square functions. The exceptions are for Rosenbrock where ABC obtains the
best global minima and outperforms the proposed model with statistical sig-
nificance. In addition, for Griewank, ABC and SSA obtain statistical better
performances than those of the proposed model. For these two test functions,
i.e. Rosenbrock and Griewank, the proposed model achieves the second and
third best results, respectively. These numerical function results also indicate
the proposed model with composite leaders and Q-learning based search action
optimization possesses better capabilities in tackling local optima traps and
achieves the best global minima in most test cases.

The significance of the proposed model is also further ascertained by the
Friedman test. As indicated in Tables 31-32, the proposed model dominates the
highest mean ranking for solving benchmark functions with dimension=50 as
compared with those of other search methods. The p-value from the Friedman
test is also lower than 0.05, which indicates that the proposed model is better
than all the baseline methods with a statistical significance.

Table 31 The mean ranking results of all search methods based on the Friedman test for
benchmark functions with dimension=50

Algorithms Mean Ranking
Prop. PSO 1.27

PSO 7.77
ABC 2.18
SSA 3.36
SSO 13
FA 3.55
DA 6.36

BBPSO 7.09
FPA 5.91

BBPSOV 12
SPSO 8.91
GPSO 10.91
ACPSO 8.68
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Table 32 The statistical results of the Friedman test for benchmark functions with
dimension=50

Chi-Square p-Value Hypothesis
120.52 < 0.001 Rejected

Fig. 27 Mean convergence rate comparison in the log scale over 30 runs for the Powell
function with dimension=50

Fig. 28 Mean convergence rate comparison in the log scale over 30 runs for the Rotated
Hyper-Ellipsoid function with dimension=50

Figures 27 and 28 depict the mean convergence curves of all search methods
over 30 runs during the course of 1,000 iterations with respect to the Powell and
Rotated Hyper-Ellipsoid functions. As mentioned earlier, these mean conver-
gence graphs are generated using the logarithm scale with a base of 10 for these
example test functions. As indicated in Figures 27-28, the proposed model
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illustrates sufficient capabilities in navigating through complex search spaces
and shows great competence in tackling local optima traps. For the Rotated
Hyper-Ellipsoid function, the proposed model achieves the global minimum of
‘0’ since iteration 657 based on the results over 30 runs. Owing to the fact that
log10 0 = −∞, the convergence curve of our optimizer is shown until iteration
656. These convergence graphs again illustrate the model’s fastest convergence
rates and its competitive capabilities in achieving the most optimal global
minima, in comparison with those of all the baseline search methods. A sim-
ilar trend is also observed for the proposed optimizer for other benchmark
functions.

8 Conclusion

In this research, we have proposed transfer learning and hybrid deep networks
with PSO-based optimal hyperparameter selection for undertaking deepfake
classification. A new PSO model is proposed for optimal hyperparameter
search by integrating composite leader generation and reinforcement learning
based search operation adjustment. The preprocessing of face cropping is also
conducted to extract the facial regions and eliminate background noise. Evalu-
ated using several challenging deepfake datasets, the proposed PSO-optimized
EfficientNet-B0 and EfficientNet-GRU models show enhanced performance.
In particular, EfficientNet-GRU with optimal settings yielded by our pro-
posed optimizer achieves the best benchmarks and outperforms existing studies
significantly in different experimental settings. The proposed optimizer also
achieves statistically better performance against those of other search methods
in solving diverse unimodal and multimodal mathematical landscapes.

The next steps for this research could include further exploration of dif-
ferent loss functions and the integration with other optimization algorithms
to further enhance performance. Additionally, incorporating more diverse and
larger datasets for model training could also help improve deepfake detection
accuracy. Another potential direction would be to investigate the use of other
state-of-the-art models, such as transformer-based models and contrastive
learning, for deepfake detection. Such explorations could provide valuable
insights into the effectiveness of different approaches for handling the deepfake
detection problem. Finally, reinforcement learning algorithms with continuous
action space will also be studied to further enhance the proposed optimizer
pertaining to search coefficient generation to further increase search diversity.
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