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Abstract

In a general equilibrium model with time and uncertainty the pos-
sibility of bankruptcy cannot be excluded in general, when short sale
constraints are too loose. Tight short trading constraints, on the other
hand, are inefficient. Bankruptcies turn security payoffs endogenous and
destroy convexity of the induced preferences over portfolios. The latter
raises existence issues for competitive equilibrium, as illustrated in this
paper by an example.
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1 Introduction

In a combustion engine a revolution limiter constrains the rotation speed of the
drive shaft to avoid overheating of the engine. In the short run this may come
with a loss of efficiency, but it does ensure durability of the vehicle. This example
illustrates a trade-off between efficiency and resilience. In engineering this trade-
off is well understood, giving rise to built-in tolerances. This paper illustrates
that in economics there is a similar trade-off: Bounds on actions can lead to
inefficiencies but unbounded actions can cause negative externalities. More
precisely, we show that in a general equilibrium model with uncertainty binding
short-trading constraints yield inefficiencies, while lifting such constraints may
entail a failure of existence of competitive equilibrium.

A main substantive result of the dominant theory of general competitive
equilibrium concentrates on efficiency by asserting that market outcomes are
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always efficient—the first welfare theorem. While uncertainty had been incor-
porated in general equilibrium theory (Arrow and Debreu, 1954) early on (Ar-
row, 1953), a conflict between efficiency and resilience has not been explicitly
addressed. This also applies to the extensions of the basic static model to a
sequence of (complete or incomplete) markets (Radner, 1966, 1968, 1972).

The conflict between efficiency and resilience illustrated in this paper comes
in the form of a trade-off between inefficient short-selling constraints and the
possibility of bankruptcy and default. Yet, among the original assumptions that
define the model with uncertainty there is one that precludes bankruptcy: It
requires “ ... that the trader not plan to deliver at any date-event pair more
than he would have available from his resources after subtracting his consump-
tion.” (Radner, 1972, p. 292)—effectively an “obedience assumption.” Of course,
for the conceptual exercise of formalizing a sequence of competitive markets—
which was Radner’s goal—this assumption is perfectly acceptable, as it rules
out bankruptcy and the ensuing chain reaction when contractual obligations
are abrogated. Nevertheless, its descriptive content is questionable.

If you sell your homegrown potatoes at the farmer’s market on Saturday
morning, you will not be able to sell more than what you brought, because
each customer can easily verify how much you have left. But when you sell
the senior tranche of a pool of asset-backed securities to an anonymous market,
matters are different. You may not have an accurate assessment of default
risks for the underlying, and even if you do, it is difficult for the buyer to
verify your estimates. In particular, if you are protected by limited liability—
or a nonnegativity constraint on future consumption—there is an incentive to
overstate how much you will be able to deliver. In short, by promising more
today than what you will be able to deliver tomorrow you make yourself richer
today, while being protected by limited liability tomorrow.

As a matter of realism one may introduce an institution that assesses a bor-
rower’s creditworthiness. For instance, agents who default could be excluded
from contingent claims markets for the entire future (as in Kehoe and Levine,
1993; see also Alvarez and Jermann, 2000). Such personalized scrutiny is how-
ever at odds with the anonymity assumption of general equilibrium theory, which
is institution-free. Indeed, the latter suggests that any limit on borrowing can
depend only on the security but not on the identity of the issuer. Hence, one
is naturally led to impose short selling constraints as a substitute for the obe-
dience assumption. Yet, short trading constraints need not be consistent with
the borrower’s ability to deliver.

The fact that short selling constraints depend only on the security but not
on the borrower’s ability to repay has two consequences. First, if the constraints
are very tight, the economy works smoothly but the resulting allocation may
be inefficient in the sense that relaxing these constraints may result in a Pareto
improvement. On the other hand, if the constraints are too loose, some borrow-
ers may have an incentive to promise more than they can deliver, even if they
wanted to, and consequently may be bankrupt in some future states. Therefore,
the trade-off between efficiency and resilience re-emerges in general equilibrium.
Constraining agents so tightly so that nobody ever goes bankrupt is inefficient,
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whereas relaxing the constraints entails the risk of future bankruptcies.
This paper considers a general equilibrium model with unsecured contingent

claims but with short selling constraints, similar to Araujo and Páscoa (2002)
and Sabarwal (2003). While Sabarwal (2003) employs personalized short trading
constraints, in this paper short selling constraints depend only on the security
but not on the identity of the seller, as in Araujo and Páscoa (2002). In partic-
ular, we use the same equilibrium notion as these papers do. It is shown that
short trading constraints are in fact necessary for the agents’ portfolio choice
problems to result in bounded solutions. On the other hand, we also argue that
too tight short selling constraints are inefficient. However, loose short selling
constraints introduce the possibility of bankruptcies in future states. Nonethe-
less, bankruptcies can be accounted for in a general equilibrium setting and will
not affect the operation of future spot markets. Even a cascade of bankruptcies
caused by a single default can be integrated into the accounting identities of the
theory. The only consequence for future spot markets (which is well understood
in the literature; see Dubey, Geanakoplos, and Shubik, 1989, 2005; Zame, 1993)
is that security payoffs become endogenous, in a similar fashion as they are in
multi-period models with long-term securities (see Magill and Quinzii, 1996,
chp. 4, pp. 211).

The problems caused by future bankruptcies emerge at the security mar-
kets prior to the resolution of uncertainty. The fact that today there is room
for bankruptcies occurring tomorrow may destroy the convexity of the induced
preferences over portfolios. And the latter has dire consequences for the exis-
tence of equilibrium: Some excess demand functions may be discontinuous so
that no market-clearing price exists—a problem to which the literature has not
paid much attention.

This raises the question of how to interpret non-existence of competitive
equilibrium. One possibility is to say that some market may shut down and,
as a consequence, markets may become endogenously incomplete. Another is
that in such cases general equilibrium theory makes no predictions. We remain
agnostic on this issue but simply point out the problem.

1.1 Relations to the Literature

The failure of equilibrium to exist, as identified in the present paper, is radically
different from what has been studied in the literature on existence of general
equilibrium with incomplete markets (GEI). The discussion about existence of
equilibrium in GEI models has revolved around discontinuities of excess demand
caused by a sudden drop of rank in the security payoff matrix. The latter may be
due to a coincidental discontinuity of the budget correspondence, as in Hart’s
(1975) original example; or, as a more robust phenomenon, to the presence
of production (Momi, 2001) or derivatives (Polemarchakis and Ku, 1990). In
contrast, in this paper markets may well be complete, and yet existence may fail
even when the rank of the security payoff matrix does not change at all. In the
present paper it is not a change in the asset span that causes a discontinuous
excess demand function, but a change in the behavior of suppliers of securities:
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They may suddenly decide to go bankrupt.
Since Shubik’s (1973) seminal contribution bankruptcy and default in a gen-

eral equilibrium setting have been studied, by e.g., Shubik and Wilson, 1977;
Dubey, Geanakoplos, and Shubik, 1989, 2005; Zame, 1993; Kehoe and Levine,
1993; Araujo and Páscoa, 2002; Sabarwal, 2003; Eichberger, Rheinberger, and
Summer, 2014; Ben-Ami and Geanakoplos, 2021; Martins-da-Rocha and Rosa,
2022. This literature distinguishes between default and bankruptcy (see Araujo
and Páscoa, 2002). An agent defaults if she chooses not to honor her contracts,
even if she could. By contrast, an agent is bankrupt if she cannot honor her
commitments.

Hence, no-default corresponds to a weak obedience assumption, that the
agent always delivers what she promised if she can. This assumption is main-
tained throughout in this paper. No-bankruptcy, on the other hand, corresponds
to a strong obedience assumption, that the agent never promises more than she
can deliver. This stronger version is dropped in the present paper. The distinc-
tion between bankruptcy and default also concerns which securities are affected.
Default can happen promise by promise, while filing for insolvency affects all
promises by a given agent. (In practise, of course, the distinction between de-
fault and bankruptcy is less clear, because if an agent does not deliver, her
creditors may initiate bankruptcy procedures.)

In this terminology the main argument of the present paper is that while
default can be, and has been, integrated into a general equilibrium model, by
stipulating appropriate penalties for a refusal to deliver, bankruptcy raises prob-
lems for existence of equilibrium. This is neither because a cascading effect
of bankruptcies renders the accounting identities inconsistent, nor because of
different rates of return on issued and purchased securities. Instead, the pos-
sibility to go bankrupt in some future states introduces a non-convexity in the
investors’ preferences over portfolios. And it is precisely this non-convexity that
may result in a discontinuous aggregate demand and a subsequent failure of ex-
istence of equilibrium. Since the existence of market-clearing prices justifies
the assumption of price-taking behavior, the conclusion emerges that general
equilibrium theory with uncertainty runs into conceptual difficulties when the
strong obedience assumption is removed.

Among the papers on default in GEI only few deal with bankruptcy in
the sense explained above. Eichberger, Rheinberger, and Summer (2014) allow
negative consumption, which acts as a default penalty when evaluated by an
increasing utility function. Martins-da-Rocha and Rosa (2022) show that when
default penalties are pecuniary, rather than in “utils,” equilibrium, if it exists,
always entails bankruptcies.

The closest precursors to our argument are Araujo and Páscoa (2002) and
Sabarwal (2003), the first dealing with nominal assets and the second with real
assets. Both also identify an existence problem, which they refer to as a “non-
convexity of the budget set.” What they have in mind is that the graph of the
correspondence that maps portfolios into future budget-feasible consumption
does not form a convex subset of the ambient product space, as it kinks at the
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point where liabilities exhaust the future endowment.1 Such a kink in this graph
corresponds to a non-convexity of the induced preferences over portfolios.

Araujo and Páscoa (2002) prove an existence theorem that does not rely on
continuity of excess demand but uses a continuum of agents (see Remark 1 in
Section 5 below). Sabarwal (2003) also uses a continuum of agents but in addi-
tion posits personalized credit constraints as part of the solution concept. That
is, agents “... lose their anonymity to a credit-setting financial intermediary
like a bank, a brokerage house or some other lending institution.” (Sabarwal,
2003, p. 14) While the personalized credit constraints are determined as part
of the equilibrium, they may still leave room for bankruptcies, giving rise to
what Sabarwal calls “Bankruptcy equilibrium.” He finds that in the case of
incomplete markets such a Bankruptcy equilibrium may Pareto-dominate the
standard GEI equilibrium.

In dynamic stochastic general equilibrium (DSGE) models of the macroe-
conomy bankruptcy is typically excluded by imposing an Inada condition—that
marginal utility diverges as consumption goes to zero—under which agents al-
ways choose not to go bankrupt. In the few models that allow default it is
introduced mechanically, by assuming that a certain fraction of entrepreneurs
defaults (Bernanke, Gertler, and Gilchrist, 1999; Carlstrom and Fuerst, 1997;
Suarez and Sussman, 2007; Christiano, Motto, and Rostagno, 2010). Similarly,
in the model by Cúrdia and Woodford (2010) impatient households default on
their loans exogenously; in the one by Meh and Moran (2010) a predetermined
fraction of entrepreneurs and bankers exit the economy each period and are re-
placed by new ones without any assets. By contrast, the present paper abstracts
from default, but allows agents to make promises that may lead to bankruptcy.

The next section reviews the model and explains the necessity of short
sale constraints in detail. Section 3 considers tight constraints that preclude
bankruptcy and argues why this is inefficient. Section 4 shows that with loose
short selling constraints, which allow for bankruptcies, the accounting at fu-
ture spot markets still works. Section 5 identifies the problems emerging at the
security markets in the initial period, and finally Section 6 concludes.

2 The Economy

The argument will be cast in terms of the simplest possible finance economy with
two dates, t = 0, 1, finitely many states s = 1, . . . , S (with S ≥ 1) in the second
period, no production, and one consumption good per state. Nothing in the
argument would change, except for notation, if there were multiple consumption
goods per state. State s = 0 refers to the initial period t = 0, and consumption
in each state serves as the numeraire.

The (common) consumption set of all agents i = 1, ..., I (with I ≥ 1) is
the nonnegative orthant RS+1

+ . Their endowments are given by the (column)

vectors ωi = (ωi0, ωi1, ..., ωiS)
′ ∈ RS+1

+ \ {0}, one for each i = 1, ..., I, such that

1 We are grateful to Mário Páscoa for clarifying this point in private communication.
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∑I
i=1 ωis > 0 and ωis ≥ κs ≥ 0 for all s = 1, ..., S and all i = 1, ..., I. (All vectors

are typeset in boldface.) The vector κ ∈ RS
+ denotes, possibly state-dependent,

subsistence consumption, applicable when agents go bankrupt. Agent i’s pref-
erences over consumption bundles c ∈ RS+1

+ are represented by utility functions

ui : RS+1
+ → R, which are assumed to be continuously differentiable, strictly

increasing in all arguments, and quasi-concave. There are J ≥ 0 securities
j = 1, . . . , J available for trade in the first period s = 0. In the standard model,
securities would be specified by the S×J matrix Z ∈ RS×J of security payoffs.2

Agent i would then solve the problem

max
c∈RS+1

+ ,x∈RJ

ui (c) s.t. c0 + p · x ≤ ωi0 and cs ≤ ωis + zs · x ∀s = 1, ..., S (1)

where zs ∈ RJ denotes the s-th row of the matrix Z and p ∈ RJ
+ the secu-

rity price (row) vector. With multiple commodities per state the optimization
problems on the spot markets in the second period t = 1 would have to be con-
sidered separately. With one good per state, i’s consumption in state s = 1, ..., S
is simply csi = ms + max {0, ωis + zs · x−ms} ≡ ms + (ωis + zs · x−ms)

+
.

Therefore, writing ωi1 = (ωi1, ..., ωiS) ∈ RS
+ for the (column) vector of future

endowments and y+ ∈ RS
+ for a vector defined by y+s = max {0, ys} for all

s = 1, ..., S, agent i’s problem could be reduced to the portfolio choice problem

max
x∈RJ

ui

(
ωi0 − p · x, (ωi1 + Z · x− κ)

+
+ κ

)
(2)

This problem contains neither short selling constraints nor the no-bankruptcy,
or “strong obedience,” condition that ωi1 + Z · x ≥ 0.3

Proposition 1 If at least one security j = 1, ..., J has a positive price pj > 0,
then for any agent i = 1, ..., I, for whom ui (c) is bounded from below for all
c ∈ RS+1

+ and ui (c0,κ) is unbounded from above for all c0 ∈ R+, there exists
no solution to problem (2).

Proof. If ui (c) is bounded from below for all c ∈ RS+1
+ , then ui (c0,m) is

finite for all c0 ∈ R+. Suppose problem (2) has a solution that yields utility u∗i .
Since ui is strictly increasing in all arguments and ui (c0,κ) is unbounded from
above, there is some c∗0 ∈ R+ such that ui (c∗0,κ) > u∗i . Setting xk = 0 for all
k 6= j and xj = ωi0/pj − c∗0/pj yields ui (ωi0 − pjxj ,κ) = ui (c∗0,κ) > u∗i , which
contradicts the assumption that (2) has a solution.

Models, in which bankruptcy is possible but does not occur in equilibrium,
may suggest that short selling constraints can be dispensed with. The proposi-
tion says that this is not the case as long as the agents’ portfolio choice problems
are meant to have finite solutions. A consequence of this observation is that

2 As usual, markets are said to be complete if the rank of Z is S. Otherwise, they are
incomplete.

3 Vector inequalities are defined as follows. For x, x̂ ∈ Rm say that x ≤ x̂ if xj ≤ x̂j for all
j = 1, . . . ,m; further, x < x̂ if x ≤ x̂ and x 6= x̂; finally, x� x̂ if xj < x̂j for all j = 1, . . . ,m.
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some constraint on short sales is indeed necessary for the model to be well de-
fined. There are several possibilities. For instance, collateral requirements could
be imposed, as e.g. by Geanakoplos (2003) or Geanakoplos and Zame (2014),
as these will induce constraints on short selling. In this paper we explore the
simpler alternative of imposing quantity constraints on short sales, as e.g. in
Dubey, Geanakoplos, and Shubik (1989, 2005) or Araujo and Páscoa (2002). In
line with the anonymity assumption of general equilibrium theory, these short
sales constraints will depend only on the security, but not on the identity of the
trader.

The latter, however, raises an additional difficulty. The maximum quantity
of security j, which an agent i can short, times the payoff of that security
in state s ≥ 1 may or may not be below the endowment of agent i in state
s. If it is, the agent is solvent and will pay obediently. If not, the agent is
bankrupt and the model needs to specify what will happen in this case. This
is because whenever an agent cannot pay what she is supposed to, the payoff
of the security, to which she owes, is affected. As a consequence, what other
agents earn on their holdings will also be affected and more agents may go
bankrupt. In short, with bankruptcies security payoffs become endogenous and
their ultimate payoffs, while foreseen, may differ from their face values, that is,
from what they promised to pay.

This calls for a slightly more general specification of securities than usual.
More precisely, in the presence of short sales constraints the following formal-
ization of securities is needed (see also Dubey, Geanakoplos, and Shubik, 1989,
2005). Each security j = 1, . . . , J is given by a pair (vj , zj), where vj ∈ RS

+ is an
exogenous (column) vector of face values vsj ≥ 0 comprising principal plus in-
terest that an issuer promises to repay in the second period in state s = 1, . . . , S,
and zj ∈ RS

+ denotes the endogenous vector of realized and correctly foreseen
(ex-post) payoffs zsj that security j actually pays per unit in state s = 1, . . . , S.4

Note that, while vj is part of the exogenous data of the economy, the realized
payoffs zj are determined in equilibrium. The S × J matrices V = [vsj ] and
Z = [zsj ] summarize the payoff information for securities. This specification
nests the traditional one, which amounts to V = Z. All securities are in zero
net supply.

In multi-period general equilibrium models with long-term securities the
security payoff matrix is naturally endogenous, as it depends on the security
price vectors p ∈ RJ

+ through capital gains or losses on long-term securities (see
Magill and Quinzii, 1996, chp. 4, pp. 211). In two-period models endogenous
security payoffs have always been linked with the possibility of default. This is
the route followed here, since the inevitable possibility of bankruptcy compels
endogenous security payoffs.

For any vector x ∈ RJ denote by x+ ∈ RJ
+ its positive part, the vector

given by x+j = max {0, xj}, and by x− ∈ RJ
− its negative part, the vector given

4 Dubey, Geanakoplos, and Shubik (2005) refer to vj ∈ RS
+ as the “promise” of security j.

In their model the distinction between vj and zj is specified as zsj being a “delivery” fraction
Ksj ∈ [0, 1] of vsj in state s = 1, ..., S.
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by x−j = min {0, xj} for all j = 1, ..., J . Further, for c = (c0, c1) ∈ RS+1
+

let c1 = (c1, ..., cS) ∈ RS
+ denote the part referring to the future. With this

notation each agent i = 1, ..., I now chooses a consumption vector c ∈ RS+1
+

and a portfolio x ∈ RJ so as to solve the problem

max
c∈RS+1

+ ,x∈RJ

ui (c) s.t. c0 + p · x ≤ ωi0, (3)

c1 ≤ κ+
(
ωi1 + Z · x+ + V · x− − κ

)+
, and 0 ≤ ξ + x

taking the security price vector p ∈ RJ
+, the matrix V of face values, and the

security payoff matrix Z as given. In problem (3) the (column) vector ξ ∈ RJ
+

specifies the short sale constraints, independently of the agent’s identity.
Taking into account that x+ + x− = x for any vector x ∈ RJ , the second

term on the right-hand side of the budget constraints for future states s = 1, ..., S
can be rewritten as(

ωi1 + Z · x+ + V · x−
)+

=
(
ωi1 + V · x− (V − Z) · x+

)+
This expression makes it explicit that the value of a portfolio x consists of its
face value V · x minus capital losses due to bankruptcies, (V − Z) · x+. The
realized security payoffs Z due to bankruptcies will be specified below.

At this point we only complete the description of the equilibrium concept.

A feasible allocation is a matrix C = (ci)i=1,...,I ∈ R(S+1)×I
+ of consumption

vectors such that
∑I

i=1 ci ≤
∑I

i=1 ωi. A competitive equilibrium is a triplet
(p, Z, C) consisting of a security price vector p ∈ RJ

+, a security payoff matrix

Z ∈ RS×J
+ with Z ≤ V , and a feasible allocation C ∈ R(S+1)×I

+ satisfying that for

every agent i = 1, ..., I there is a portfolio xi ∈ RJ such that (ci,xi) ∈ RS+1
+ ×RJ

solves problem (3) and
∑I

i=1 xi = 0, given the vector ξ ∈ RJ
+ of short sale

constraints.
There are now two cases to be considered. The first is the case where no

bankruptcies can occur, because the short trading constraints are so tight that
no agent can ever promise to deliver more than her endowment. The second
case, described later, concerns the case when short sale constraints are loose
enough that agents may promise more than they can deliver and bankruptcies
can occur in some future states.

3 Tight Short Sale Constraints

To study the first case, assume that the short sale constraints ξ ∈ RJ
+ satisfy

J∑
j=1

ξjvsj ≤ min
i=1,...,I

ωis for all s = 1, ..., S (4)

In this case every agent can pay the face value of any security that she issues
from her future endowment, even if she shorts all securities. Therefore, no agent
ever goes bankrupt.
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To show existence of an equilibrium is then a standard exercise. The con-
straint sets are compact and convex, and the utility functions are continuous
and quasi-concave. By the maximum theorem the security excess demand cor-
respondences are hence upper hemi-continuous, nonempty- and convex-valued.
Consequently, by Kakutani’s fixed point theorem a competitive equilibrium al-
ways exists.

It is well known that in a two-period finance economy, with a single con-
sumption good per state, any competitive equilibrium is constrained Pareto
optimal, in the sense that there is no redistribution of portfolios in the initial
period that leaves all agents at least as well off and makes some better off—
fixing the short sale constraints ξ ∈ RJ

+. Relaxing the short trading constraints
may make agents better off, though. This can be seen by adopting the following
terminology.

Definition 1 (a) A solvency equilibrium is a competitive equilibrium (p, Z, C)
that involves no bankruptcies (hence Z = V ) such that for some security j =
1, ..., J and some small ε > 0 the constraint ξj can be relaxed to ξ′j = ξj + ε
without inducing any bankruptcies, i.e., such that at the new equilibrium still
ωi1 + V · x′i ≥ 0 holds for all i = 1, ..., I.
(b) A solvency equilibrium is weakly constrained efficient relative to ξ ∈
RJ

+ if there is no j = 1, ..., J such that slightly relaxing the constraint ξj makes
at least one agent strictly better off and nobody worse off.

Unlike the stronger criterion of constrained Pareto optimality, where the
planner may redistribute portfolios, the test for weak constrained efficiency rel-
ative to ξ allows the planer only to relax short sales constraints. Portfolio
adjustments are left to the market.

Proposition 2 If at a solvency equilibrium there is at least one agent who
would be willing to supply more of security j = 1, ..., J than ξj, then the solvency
equilibrium is not weakly constrained efficient relative to ξ.

Proof. At a solvency equilibrium Z = V holds, because there are no bankrupt-
cies. Therefore, agent i’s problem is

max
x∈RJ

ui (ωi0 − p · x,ωi1 + V · x) s.t. x+ ξ ≥ 0

Denote by ∇ui (ci) the (normalized row) vector of marginal rates of substitution
(or “stochastic discount factors”) in equilibrium,

∇ui (ci) =

(
∂ui (ci) /∂cis
∂ui (ci) /∂ci0

)
s=1,...,S

where ci = (ωi0 − p · x,ωi1 + V · x) ∈ RS+1
+ for all i = 1, ..., I. If the sol-

vency equilibrium (p, V, C) is weakly constrained efficient relative to ξ, then the
familiar first-order condition

∇ui (ci) · V = p (5)
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must hold in equilibrium, that is, all agents’ marginal rates of substitution are
equalized.

Yet, suppose that at least one agent i is willing to supply more than ξj of
some security j at the equilibrium. Let

Li (x,λ) = ui (ωi0 − p · x,ωi1 + V · x) + λ · (x+ ξ)

be the Lagrangian for agent i’s problem, where λ ∈ RJ
+ is the (row) vector of

Lagrange multipliers. Then for security j the first-order condition

∂Li (x,λ)

∂xj
= −∂ui (ci)

∂c0
pj +

S∑
s=1

∂ui (ci)

∂cis
vsj + λj = 0

holds with λj > 0, since by the envelope theorem λj is the shadow price of the
j-th constraint. Therefore,

∇ui (ci) · V < p

violates the necessary condition (5) for weak constrained efficiency relative to
ξ.

This observation says that weak constrained efficiency relative to ξ can only
hold if the constraints do not bind for any agent and any security (or bind
coincidentally at an unconstrained optimum). Otherwise, it is socially desirable
to relax binding constraints. Hence, too tight short sale constraints tend to be
inefficient. While the proposition refers to a local change of the constraints, the
following example looks at a global change and illustrates how dramatic this
inefficiency may become. This example will also prove useful later on.

Example 1 There are two states in the second period, S = 2, and κ = 0. The
economy is populated by n ≥ 1 agents of the first type with utility functions

u (c) = c0 +
1

2
ln (1 + c1) +

1

2
ln (c2)

and with endowments ω = (ω0, ω1, ω2) = (1, 1, 0) and by m > n agents of the
second type with utility functions

û (c) = c0 +
1

2
ln (c1) +

1

2
ln (1 + c2)

and with endowments ω̂ = (ω̂0, ω̂1, ω̂2) = (1, 0, 1). Securities are given by the
two Arrow-Debreu securities, J = 2, that is,

V = Z =

(
1 0
0 1

)
and both securities are in zero net supply. Each type of agent has no endowment
in the future state in which she desires it most. Hence, “hatted” agents wish
to sell the second Arrow-Debreu security and “unhatted” agents want to sell the
first. Therefore, any trade is beneficial. However, under condition (4) no trade
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is possible, i.e., the only equilibrium is autarky. This is because the minimum
endowment in each future state across agents is zero, that is, ξ1 = ξ2 = 0 is the
only solution to (4), so no sales are possible.

If the short selling constraints were relaxed to ξ1 = ξ2 = 1, there would still
be no bankruptcies. Instead, the excess demand functions would be

x1 (p) = max

{
−1,

1

2p1
− 2

}
and x2 (p) =

1

2p2

x̂1 (p) =
1

2p1
and x̂2 (p) = max

{
−1,

1

2p2
− 2

}
giving rise to a unique equilibrium with security prices

p1 =
m

2n
>

1

2
and p2 =

n+m

4m
<

1

2

Since markets are complete, the resulting consumption allocation,

c =

(
n+m

2n
, 0,

2m

m+ n

)
and ĉ =

(
n+m

2m
,
n

m
,
m− n
m+ n

)
would in fact be Pareto optimal. That is, with the relaxed constraints all agents
are better off than in autarky.

It follows that, while condition (4) rules out bankruptcies, it also generates
inefficiencies. If markets are meant to be efficient, it is therefore necessary to
relax condition (4) and allow for bankruptcy. That this is possible, even in the
presence of cascades, is shown in the next section.

4 Loose Short Sale Constraints

When agents can promise more than what they are able to deliver, their earn-
ings may be garnished and redistributed to creditors, when the need arises.
This is what a bankruptcy code achieves. Since such a code depends on the
legal framework, it is desirable to formulate it in most general terms. For that
reason we impose only four abstract conditions, which most bankruptcy codes
in practise will satisfy.

4.1 Bankruptcy Code

Consider some state s = 1, ..., S in the second period. An agent has bought
a portfolio x ∈ RJ in the previous period, at s = 0 (dropping the subscript
for the agent’s identity). This portfolio now induces a vector of liabilities `s =
−diag (vs) ·x− towards the J securities, where diag (v) denotes writing a vector
v ∈ RJ as a diagonal matrix and vs denotes the s-th rows of the matrix V of
face values.

As for notation, let 1J ∈ RJ
++ denote the (summation row) vector 1J =

(1, . . . , 1) and denote transposition by a prime. In what follows the (column)
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vector ` ∈ RJ
+ is to be thought of as the liabilities that an agent has towards the

J securities in a particular state s ≥ 1 and y ≥ 0 denotes the agent’s disposable
income in that state, net of subsistence consumption m = ms ≥ 0. The vector
f specifies what the agent ultimately delivers to the securities at t = 1.5

Definition 2 A bankruptcy code is a continuous function f : RJ+1
+ → RJ

+

such that, for all ` ∈ RJ
+ and all y, ŷ ∈ R+,

(BC1) f (`, y) ≤ `;
(BC2) if y < ŷ, then f (`, y) ≤ f (`, ŷ);
(BC3) if f (`, y) < `, then 1J · ` > y;
(BC4) if 1J · ` > y, then 1J · f (`, y) = y.

The function f (`, y) = min {1, y/ (1J · `)} ` is an example of a bankruptcy
code that captures a pro-rata rule (cf. Eisenberg and Noe, 2001; and also Part
1 of Araujo and Páscoa, 2002; and Ben-Ami and Geanakoplos, 2021). This
example is popular in the literature and obviously not excluded by (BC1-4),
but in practice many other codes can be found,6 some of which are documented
in the Talmud (see Aumann and Maschler, 1985). The following auxiliary result
makes explicit the most important properties of a bankruptcy code.

Lemma 1 If f is a bankruptcy code, then, for all (`, y) ∈ RJ+1
+ ,

(a) f (`, 0) = 0 ∈ RJ
+ and `j = 0⇒ fj (`, y) = 0 for all j = 1, ..., J ;

(b) if 1J · ` ≤ y, then f (`, y) = `;
(c) y − 1J · f (`, y) = max {0, y − 1J · `}.

Proof. (a) The first part follows, because either ` = 0 and then (BC1) and non-
negativity imply f (0, 0) = 0, or ` > 0 and then (BC4) and nonnegativity imply
f (`, 0) = 0. The second part follows directly from (BC1) and nonnegativity.

(b) Under (BC1) this statement is equivalent to (BC3).
(c) If y > 1J · f (`, y), then y ≥ 1m · ` by (BC4), in which case (BC3) and

(BC1) imply that f (`, y) = `, hence, y−1m ·f (`, y) = y−1m ·` > 0. Otherwise,
y ≤ 1J ·f (`, y) ≤ 1J ·` by (BC1) implies y−1J ·f (`, y) = max {0, y − 1J · `} = 0
by (BC4), which completes the proof.

In particular, property (b) states that a solvent agent will honor her com-
mitments. This is the weaker obedience assumption that is maintained in the
present paper in order to focus on bankruptcy. By property (c), on the other
hand, the income of an insolvent agent is a constant (subsistence consumption
m).

A bankruptcy code applies to an individual case. The failure to deliver on a
promise however also affects others, who may themselves go bankrupt, possibly
causing a chain reaction. The next subsection focuses on the systemic effects of
bankruptcy.

5 If there were multiple goods in which securities pay off, the vector ` would have to be
replaced by a matrix and the scalar y by a vector. All results below would still go through.

6 For example, Part 2 of Araujo and Páscoa (2002) considers non-linear rules that favor
small claims.
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4.2 Accounting for Bankruptcy

Recall that at any state s = 1, . . . , S in the second period each agent i arrives
with an endowment ωis ≥ 0, a (column) vector `is ∈ RJ

+ of liabilities towards
the J securities, and a (column) vector of claims x+

i ∈ RJ
+ towards securities.

(Note that liabilities are nonnegative and depend on the state.) Liabilities are
derived from the agents’ portfolios xi ∈ RJ and the face values of securities
according to

`is = −diag (vs) · x−i (6)

for all i = 1, ..., I, where again vs denotes the s-th row of V . So, apart from face
values, the common parameter of liabilities for all agents is the J × I matrix
X = (x1, ...,xI) ∈ RJ×I of portfolios purchased at s = 0.

Fix a state s = 1, . . . , S in the second period, a security price vector p ∈ RJ
+,

and a (state dependent) bankruptcy code fs : RJ+1
+ → RJ

+. Despite the potential
dependence of the bankruptcy code on the state the subscript for the state s will
be dropped in the remainder of this subsection to avoid cluttering the notation.
Define for each i = 1, ..., I the function fi : RJ×I × RJ → RJ

+ by

fi (X, z) = fs
(
`i, ωi + z · x+

i

)
Then, fixing X, for each security j, which has been traded at s = 0 in the sense
that

∑I
i=1 x

+
ij > 0, define the function Φj : RJ → R (which depends on the

state s, because f , `i, and ωi do) by

Φj (z) =
1∑I

i=1 x
+
ij

(
I∑

i=1

fij (X, z)

)
(7)

For an untraded security j with
∑I

i=1 x
+
ij = 0 let Φj (z) = vj be the constant

function. The proportionality of reimbursement to the size of the claim in (7)
is a direct consequence of the notion of a security. It is unknown who lent to
whom; only the individual portfolios count.

Finally, define the product function Φ = ×J
j=1Φj : RJ → RJ . Then, the

vector z ∈ RJ of security payoffs in state s ≥ 1 is a fixed point of the function
Φ, that is, z = Φ (z). This is because, for each traded security j, what is paid
to asset holders must equal the payments by issuers, i.e.

zj

I∑
i=1

x+ij =

I∑
i=1

fij (X, z) (8)

As pointed out before, at this point the anonymity assumption of general equi-
librium theory bites. While a bankruptcy code may treat distinct creditors
differently, a security pays the same amount per unit outstanding, which is
what (7) and (8) state.

The agents’ incomes net of subsistence κ = κs in state s ≥ 1 are their asset
payoffs minus repayments for issued securities, i.e., incomes are determined by
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the functions

yi (z) = ωi − κ+ z · x+
i − 1J · fi (X,z) (9)

= ωi − κ+ z · x+
i − 1J · fs

(
`i, ωi + z · x+

i

)
for all i = 1, ..., I. In particular, if agent i ∈ I is insolvent, that is, if 1J · `i >
ωi + z · x+

i , then yi (z) = 0 by (BC4), hence i’s consumption is κ = κs.

Lemma 2 Suppose that Φ (z) = z ∈ RJ for some state s = 1, ..., S. Then,
(a) the aggregate income of the economy in state s equals aggregate endowments,
i.e.

I∑
i=1

(yi (z) + κ) =

I∑
i=1

ωi (10)

(b) if there are no bankruptcies in state s ≥ 1, then traded securities pay their

face values, i.e. zj = vj for all securities j with
∑I

i=1 x
+
ij > 0.7

Proof. (a) A direct consequence of the determination of incomes (9) together
with (8) is that

I∑
i=1

(yi (z) + κ) =

I∑
i=1

ωi +

m∑
j=1

zj

I∑
i+1

x+ij −
I∑

i=1

1J · fi (X, z)

=

I∑
i=1

ωi −
I∑

i=1

1J · fi (X, z) +

m∑
j=1

(
I∑

i=1

fij (X, z)

)

=

I∑
i=1

ωi

which verifies the first statement.
(b) If there are no bankruptcies in state s ≥ 1, then it follows from Lemma

1(b) that fi (X, zs) = `i. Consequently, for all traded securities j = 1, ..., J ,

zj = Φj (z) =
1∑I

i=1 x
+
ij

(
I∑

i=1

`ij

)

Since `i = −diag (v) · x+
i , this amounts to

zj

I∑
i=1

x+ij = −vj
I∑

i=1

x−ij

Market clearing at s = 0 implies that
∑I

i=1

(
x+ij + x−ij

)
= 0 for all traded secu-

rities j. Therefore,

zj =
−vj

∑I
i=1 x

−
ij∑I

i=1 x
+
ij

=
−vj

∑I
i=1 x

−
ij

−
∑I

i=1 x
−
ij

= vj

7 Untraded securities “pay” their face values by definition.

14



for all traded securities j, as claimed.

The second part of this result reconstructs the traditional case of Z = V
within the present framework. That is, without bankruptcies in state s ≥ 1 the
vector or realized payoffs z = zs ∈ RJ for traded securities equals precisely the
vector of face values v = vs ∈ RJ

+ in state s. The next result shows that the
accounting works consistently.

Proposition 3 For every s = 1, . . . , S the equation system z = Φ (z) has a
solution and, in particular, a greatest solution. Furthermore, for all agents
their net incomes yi (z) from (9) are unique, that is, the same at all solutions
to z = Φ (z).

Proof. Fix s = 1, ..., S and denote by (Z,≤) the J-dimensional rectangle

Z = ×J
j=1 [0, vsj ] ⊆ RJ

+

partially ordered by ≤. If C is a chain of vectors in (Z,≤), then the vector
ȳ ∈ Z defined by ȳj = supy∈C yj for all j = 1, . . . , J forms a supremum for the
chain. Since 0 ≤ Φ (0) by (BC1) and (BC4) and Φ is monotone by (BC2), the
Knaster-Tarski fixed point theorem (Aliprantis and Border, 2006, p. 16) implies
that the set of fixed points is nonempty and has a maximal element.

Denote by z∗ ∈ Z the greatest fixed point and by z ∈ Z some other fixed
point of Φ (still suppressing the subscript for the state), hence z ≤ z∗. Then,
for every agent i = 1, ..., I, by Lemma 1(c)

yi (z∗) = max
{

0, ωi + z∗ · x+
i − 1J · `i

}
≥ yi (z) = max

{
0, ωi + z · x+

i − 1J · `i
}

If this inequality were strict, i.e., yi (z∗) > yi (z), for some i = 1, ..., I, then

summation over all agents would yield
∑I

i=1 yi (z∗) >
∑I

i=1 yi (z) in contra-

diction with
∑I

i=1 yi (z∗) =
∑I

i=1 ωi =
∑I

i=1 yi (z) by (10) from Lemma 2(a).
Therefore, yi (z∗) = yi (z) for all agents i, as desired.

Even though the solution to z = Φ (z) may not be unique, there are no
economic consequences of multiplicity, because the net incomes of all agents are
the same at all solutions. In particular, the multiplicity of solutions to z = Φ (z)
only affects the gross incomes of insolvent agents, but the net incomes of agents
are unaffected.

The following example, adapted from Eisenberg and Noe (2001), illustrates
that multiplicity can arise in states where no agent has any endowment.

Example 2 Still dropping the subscript for the state, let I = J = 2, x1 =
(1,−1)

′
, x2 = (−1, 1)

′
, κ = 0, and v1 = v2 = v > 0, hence `1 = (0, v)

′

and `2 = (v, 0)
′
. Then, by Lemma 1(c) and the definition of Φ the fixed point

problem defining the vector z ∈ R2
+ boils down to

z1 = min {v, ω2 + z2} and z2 = min {v, ω1 + z1}
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If ω = 0, then every vector z = (θ, θ) with θ ∈ [0, v] solves z = Φ (z) with both
agents bankrupt (if θ < v). For, min {v, z3−j} = zj yields zj = θ for j = 1, 2.

The multiplicity arises because ω = 0. If ω > 0, the picture changes.
Suppose that at a solution ω1 + z1 < v, i.e. agent 1 is bankrupt, hence z2 =
ω1 + z1. Then, by ω1 + ω2 > 0,

z1 = min {v, ω2 + z2} = min {v, ω1 + ω2 + z1} = v

must hold, implying that agent 2 is solvent, i.e. ω2 + z2 ≥ v. Therefore,
z2 = min {v, ω1 + v} = v, since ω1 ≥ 0, implies that agent 1 is also solvent
in contradiction to the hypothesis. Exploiting the symmetry of the example, an
analogous argument shows that agent 2 must also be solvent at any solution.
Thus, at any solution both agents must be solvent, implying that zj = v for
j = 1, 2 is the only solution.

Proposition 3 establishes that bankruptcies do not pose any problems at
the spot markets in the future, i.e., at s = 1, ..., S. Even when a cascade of
bankruptcies occurs, the (net) incomes of all agents are uniquely determined.
The only aspect that changes, as compared to the standard model, is that
security payoffs are endogenous. Yet, this assumes that security prices are
determined at the security markets in the first period, at s = 0. We turn
to this issue in the next section.

5 Security Markets

The security markets in the first period determine with which portfolios agents
enter the second period. Hence, they determine assets and liabilities at all
future states. While future spot markets can be cleared even in the presence
of bankruptcies by Proposition 3, loose short trading constraints (that violate
(4)) cause problems in the initial trading period. The reason is that with loose
short sale constraints the induced preferences over portfolios may not be convex
anymore.8 A failure of convexity of preferences may lead to discontinuous excess
demand functions, so that market clearing prices at the security markets may
not exist. The following extended example illuminates this claim.

5.1 The Example

The economy is as in Example 1, with S = J = 2 and κ = 0. There are n ≥ 1
agents of the first type with induced preferences over portfolios represented by

v (x) = ω0 − p · x+
1

2
ln
(

1 +
(
ω1 + z1 · x+ + v1 · x−

)+)
+

1

2
ln
((
ω2 + z2 · x+ + v2 · x−

)+)
8 Dubey, Geanakoplos, and Shubik (2005) claim in the proof of their Theorem 1 (p. 31)

that their payoff functions are concave, but they do not give an argument for why this is the
case.
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Figure 1: V (x, p, .75) for p = .125 (black), .21875 (red), .375 (blue), and .60
(green).

and with endowments ω = (1, 1, 0); and there are m > n agents of the second
type with induced preferences over portfolios represented by

v̂ (x) = ω̂0 − p · x+
1

2
ln
((
ω̂1 + z1 · x+ + v1 · x−

)+)
+

1

2
ln
(

1 +
(
ω̂2 + z2 · x+ + v2 · x−

)+)
and with endowments ω̂ = (1, 0, 1). The “unhatted” resp. the “hatted” agents
maximize v (x) resp. v̂ (x) subject to ξ + x ≥ 0 where ξ ∈ R2

+ is arbitrary,
in particular need not satisfy (4). The two securities are the Arrow-Debreu
securities given by

V =

(
1 0
0 1

)
and Z =

(
z1 0
0 z2

)
where z1 and z2 are endogenous variables that depend on p and ξ, to be deter-
mined below.

Maximizing v (x) resp. v̂ (x) with respect to x2 resp. x1 at p� 0 is straight-
forward, because both have interior maxima with respect to these variables,
where the short selling constraints are slack. This gives the demand functions

x2 (p) =
1

2p2
> 0 and x̂1 (p) =

1

2p1
> 0

Finding maxima for v (x) resp. v̂ (x) with respect to x1 resp. x2 is more difficult.
It amounts to maximizing the function V : R× R++ × (0, 1]→ R defined by

V (x, p, z) =
1

2
ln
(

1 +
(
1 + zx+ + x−

)+)− px
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subject to the constraint ξ + x ≥ 0, with ξ ≥ 0. Figure 1 depicts V (·) as a
function of x for z = 3/4 and four different values of p > 0. At x ∈ {−1, 0} the
function V (·) is continuous, but not differentiable, as it kinks at these points.
Directional derivatives exist, though, and are given by

lim
x↗−1

∂V

∂x
= −p, lim

x↘−1

∂V

∂x
=

1

2
− p, lim

x↗0

∂V

∂x
=

1

4
− p, and lim

x↘0

∂V

∂x
=
z

4
− p

To derive the excess demand correspondence, define the function ϕ : R++ ×
(0, 1]→ R by

ϕ (p, z) =
2

z
− 1

2p
(1 + ln (2p)− ln (z))

Working out all the possible cases finally yields the correspondence of maximiz-
ers of V (·) under the constraint x+ ξ ≥ 0,

X (p) =



1/ (2p)− 2/z > 0 if p < z/4 and ξ < ϕ (p, z)
{−ξ, 1/ (2p)− 2/z} if p < z/4 and 1 < ξ = ϕ (p, z)

0 if z/4 ≤ p ≤ 1/4 and ξ < ϕ (p, 4p)
{−ξ, 0} if z/4 ≤ p ≤ 1/4 and ξ = ϕ (p, 4p)

1/ (2p)− 2 < 0 if 1
4 < p < 1

2 and 2− 1
2p ≤ ξ < ϕ (p, 1)

{−ξ, 1/ (2p)− 2} if 1/4 < p < 1/2 and ξ = ϕ (p, 1)
−ξ otherwise

(where ϕ (p, 4p) = 0.34657/p), which potentially has three points of disconti-
nuity. Luckily, because “hatted” agents always demand the first security and
“unhatted” agents always demand the second security, only a part of this cor-
respondence is relevant for the determination of an equilibrium. In particular,
the first and the third line are irrelevant.

Since “unhatted” agents must issue the first security in equilibrium, their
aggregate supply (strictly speaking, excess demand) must be either −nξ1 or
n/ (2p1)−2n, where the latter can only hold if 1/4 < p1 < 1/2 and 2−1/ (2p1) ≤
ξ1 ≤ ϕ (p1, 1). If the aggregate supply of the first security were given by
n/ (2p1) − 2n, then the equilibrium price would be p1 = (n+m) / (4n) > 1/2,
which would contradict that 1/4 < p1 < 1/2. Therefore, the aggregate sup-
ply of the first security must be −nξ1, hence the equilibrium price must be
p1 = m/ (2ξ1n). As long as ξ1 ≤ 1 this does not involve any bankruptcies and
implies that p1 = m/ (2ξ1n) ≥ m/(2n) > 1/2 and z1 = 1. When ξ1 > 1, all
“unhatted” agents are bankrupt in state s = 1 and z1 = 2np1/m = 1/ξ1 < 1.

Similarly, since “hatted” agents must issue the second security, their aggre-
gate supply (excess demand) must be either −mξ2 or m/ (2p2) − 2m, where
the latter takes 1/4 < p2 < 1/2 and 2 − 1/ (2p2) ≤ ξ2 ≤ ϕ (p2, 1). If the ag-
gregate supply of the second security is m/ (2p2) − 2m, then the equilibrium
price is p2 = (n+m) / (4m) ∈ (1/4, 1/2). If the aggregate supply of the second
security is −mξ2, then the equilibrium price is p1 = n/ (2ξ2m). Unlike in the
previous case, here neither possibility can be excluded. Yet, bankruptcies of
“hatted” agents occur only when p2 = m/ (2ξ2n) and ξ2 > 1, in which case
z2 = 2mp2/n = 1/ξ2 < 1 (otherwise z2 = 1).

18



0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

p

X

Figure 1: The aggregate excess demand function is discontinuous at p2 = 0.4.
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Figure 2: Aggregate excess demand is discontinuous at p2 = 0.4.

These arguments apply under the assumption that an equilibrium exists.
This is not guaranteed, though. To illustrate this claim, we provide the following
numerical example.

Example 3 Let n = 10 and m = 13, and set ξ1 = 1.1 and ξ2 = 1.0289. Then
p1 = m/ (2ξ1n) = 0.59091 > 1/2 is the only possible equilibrium price for the
first security, implying that in equilibrium z1 = 2np1/m = 0.90909, because all
“unhatted” agents are bankrupt in state s = 1.

For the second security matters are a bit more subtle. There are five pos-
sibilities for “hatted” agents to issue the second security. First, if p2 < z2/4
and ξ2 = ϕ (p2, z2), then x̂2 (p) = −ξ2 can hold. But, if p2 < z2/4, then
ϕ (·) is strictly decreasing in p2, hence ϕ (p2, z2) > ϕ (z2/4, z2) = ln (4) /z2 ≥
ln (4) = 1.3863 > ξ2, a contradiction. Second, if z2/4 ≤ p2 ≤ 1/4 and
ξ2 = ϕ (p2, 4p2) = ln (2) /2p2 = 0.34657/p2, then x̂2 (p) = −ξ2 can hold. But,
if p2 ≤ 1/4, then ϕ (p2, 4p2) ≥ 1.3863 > ξ2, a contradiction. This leaves the
following three cases in which “hatted” agents may issue the second security:

x̂2 (p) =


1/ (2p2)− 2 if 1

4 < p2 <
1
2 and 2− 1

2p2
≤ ξ2 < ϕ (p2, 1)

{−ξ2, 1/ (2p2)− 2} if 1
4 < p2 <

1
2 and ξ2 = ϕ (p2, 1)

−ξ2 otherwise

In particular, at equilibrium p2 > 1/4. Notice that ξ2 = 1.0289 = ϕ (p2, 1) =
2 − (1 + ln (2p2)) / (2p2) if and only if p2 = 2/5 = 0.4. Since for p2 < 1/2
the function ϕ (p2, 1) is strictly decreasing in p2, the inequality ξ2 < ϕ (p2, 1)
holds if and only if p2 < 0.4. (That 2 − 1/ (2p2) ≤ ξ2 = 1.0289 holds if and
only if p2 ≤ 0.51488.) Therefore, the “supply correspondence” is discontinuous
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at p2 = 0.4. The aggregate excess demand correspondence over the domain
p2 > 1/4,

n · x2 (p) +m · x̂2 (p) =
10

2p2
+ 13 · x̂2 (p)

=

 23/ (2p2)− 26 if 1/4 < p2 < 0.4
{−0.8757, 2. 75} if p2 = 0.4

10/ (2p2)− 13. 376 if 0.4 < p2

is strictly decreasing in p2 wherever it is continuous, but has no intersection
with zero (see Figure 2). In brief, no equilibrium exists at the market for the
second security.

Remark 1 In the model with a continuum of agents by Araujo and Páscoa
(2002) the problem could be repaired (along the lines of their Lemma 2) as
follows. Think of the two sets of agents as two continua, with masses n and
m, respectively, compute a mixed-strategy Nash equilibrium of a game between
the agents and an auctioneer (who maximizes the value of excess demand), and
then purify the mixed-strategy equilibrium for the “hatted” agents. That is,
an “umpire” instructs exactly the right fraction (namely 0.75847) of “hatted”
agents to choose x̂2 = −1.0289 and the remaining “hatted” agents to choose
x̂2 = −0.75 at the security price p2 = 0.4. This construction moves the value
of excess demand at the price p2 = 0.4 exactly to zero (without removing the
discontinuity, though). How this coordination is achieved by an anonymous
market remains open, though.

Hence, a continuum of agents can be a way around the non-existence problem
by introducing additional coordination among agents beyond the price system.
Another possible reaction is to observe that endogenous security payoffs tend to
make market (in)completeness endogenous, just like in multi-period GEI models.
In this view the example would exhibit incomplete markets with a single security.

The reason for why in this example no equilibrium exists is the non-convexity
of preferences over portfolios caused by loose short trading constraints. At
the point, where the constraint ξ2 just exceeds the future endowment ω̂2 = 1
of issuers, the utility function kinks, because the nonnegativity constraint on
future consumption kicks in. Even though the issuers anticipate that they will
be bankrupt in state s = 2, they make themselves richer at s = 0 by promising
more than they can deliver, while being protected by limited liability in the
future.

Indeed, bankruptcy and non-convex preferences over portfolios are two sides
of the same coin. If short sale constraints were so tight that no issuer can ever
promise more than she can deliver, bankruptcy cannot occur and preferences
over portfolios would be convex. In this case only strategic default can occur,
that is, an issuer choosing not to deliver even if she could. Hence, whenever
preferences over portfolios are convex, bankruptcy has been ruled out by as-
sumption.
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Yet, Example 3 only numerically illustrates that equilibrium may not exist.
For other parameter values equilibrium may in fact exist and then the question
arises whether or not an equilibrium involving bankruptcy can be more efficient
than tight short selling constraints, which rule out bankruptcy. To that end
returning to Example 1 is instructive. In this example tight short trading con-
straints imply no trade at all. It follows that relaxing the constraints, even if
this involves bankruptcies, can only be welfare improving.9 Under the hypoth-
esis that an equilibrium exists, therefore, an equilibrium with bankruptcy can
be more efficient than tight short selling constraints that make bankruptcies
impossible.

6 Conclusions

General equilibrium theory with time and uncertainty rests on a strong obedi-
ence assumption, that no agent will ever promise more than she can deliver. If
this assumption is lifted—while maintaining the weaker assumption that agents
will deliver if they can—the induced preferences over portfolios need not be
convex anymore and bankruptcy can occur in some future states. Clearing
bankruptcies when they occur does not pose a problem for the theory. But the
non-convexity of preferences does. It may lead to discontinuous excess demand
correspondences and, as a consequence, with finitely many agents competitive
equilibrium may not exist.

Short sale constraints may avoid this problem, if they are tight enough. But
there is a trade-off, since too tight constraints are inefficient. Relaxing short
trading constraints promotes efficiency but runs the risk that some markets
may be inactive. While this is an observation about the theory, it concurs
with the practical experience from the 2007-8 global financial crisis. When
credit constraints become too loose, in the sense of allowing bankruptcies and
foreclosures, some markets for “promises” may disappear.
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