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Abstract 
 

The three chapters of this thesis examine different aspects of the design of fiscal rules and their 

implications on the effects of policy interventions and how policy reacts to the economy.  

Chapter 1 focuses on the design of fiscal rules in DSGE models, which has been shown to matter 

crucially in identifying the effects of policy interventions and analyses two mechanically distinct 

components of fiscal policy rules: fiscal rule interactions and multimodality.  

In a first exercise, a set of alternative fiscal rules is considered for the benchmark Leeper, Plante 

and Traum (2010) model, with the main design feature being across budget block (expenditure 

vs taxation) interactions. The models are compared using the Bayesian data density. The results 

show that the Leeper, Plante and Traum (2010) model is competitive in the set but may be 

improved by including across-budget component interaction with taxes ordered first. 

Mechanically, the budget component interactions trickle down to how policy interventions are 

financed, showing increased coordination across blocks. In the benchmark, a government 

consumption shock raises the federal government's expenditures, and along the path, taxation 

increases to bring the debt level back to the steady state. In the recursive block models, budget 

impacts can be temporarily purely expansionary in that expenditure increases and taxation is 

reduced. Combining both aspects, it seems to reflect a temporary but coordinated approach to 

raise output across the expenditure and taxation categories.  

Secondly, I explore the role of multimodality in fiscal rules. Herbst and Schorfheide (2016) showed 

that fiscal parameters in the aforementioned model can become multimodal, leading to 

multimodal impulse responses. In essence, what that means is that fiscal policy may have varied 

impacts depending on the exact posterior parameter draw. For the Leeper, Plante and Traum 

(2010) model, I argue using graphs and demonstrate that the source of multimodality in the 

model is likely the structural design of the rules. Furthermore, building on the analysis in Herbst 

and Schorfheide (2016), I apply bi-modal regions to the highest posterior density regions as 

intervals tend to overestimate uncertainty of bi-modal distributions. The results show that the 

effects of consumption taxation shocks not only predict different scenarios depending on the mode 
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but also disjointed impact scenarios. In particular, for consumption taxation shocks, the average 

effect of a structural shock is not a particularly likely event by itself.  

In Chapter 2, I explore how fiscal policy decisions relate to the business cycle and, building on 

that, how the effects of policy interventions may vary depending on when policy is conducted in 

the business cycle. To assess this, I estimate a small to medium-sized DSGE model with expressive 

non-linear fiscal and monetary rules using a higher-order approximation.  

The estimation procedure employed in this chapter combines several existing approaches 

developed by Herbst and Schorfheide (2016), Jasra et al. (2010), Buchholz, Chopin and Jacob 

(2021) and Amisano and Tristani (2010) to trade off computation time and inference quality. The 

model is estimated using Sequential Monte Carlo techniques to estimate the posterior parameter 

distribution and particle filter techniques to estimate the likelihood. Together, the estimation 

procedure reduces the estimation from weeks to days by up to 94%, depending on the comparison 

basis.  

To assess the behaviour of the effects of fiscal policy interventions, I sample impulse responses 

conducted along the historical data. The results present time-varying policy rules in which the 

effects of fiscal shocks go through deep cycles depending on the initial conditions of the economy. 

Among the set of fiscal instruments, government consumption goes through the most persistent 

cycles in its effectiveness in stimulating output. In particular, the effects of government 

consumption stimulus are estimated to be more effective during the financial crisis and, later, the 

Covid crisis, while being less effective in periods of above steady state output like the early 2000s.  

Relating the effects of specific stimulating shocks to the initial conditions using regression 

techniques, I show that fiscal policy is more effective at stimulating output if the interest rate 

and debt are low. Furthermore, the effects of government consumption are estimated to be 

increasing in output while tax cuts are decreasing.  

As a last contribution of Chapter 2, I explore how the behaviour of the central bank and 

government varies depending on the business cycle by analysing sampled policy rule gradients 

constructed on historical data. For the central bank, the results show that in phases of high 

output growth, the central bank puts more emphasis on controlling inflation and less on output. 

As the economy shifts into crisis, the central bank reduces its focus on inflation and shifts towards 
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bringing output growth back to target. For the fiscal side, the behaviour is heavily governed by 

the current debt level, and, for example, during the high debt periods of the 1990s, labour 

taxation became increasingly responsive to debt to stabilize the budget. 

Chapter 3 applies the model developed in Chapter 2 to a forecasting exercise using the DSGE-

VAR framework. The analysis confirms previous results of the literature that the DSGE-VAR 

framework and, by extension, DSGE models are frequently useful in aiding forecasting 

performance for output compared to standard models. Furthermore, I show that DSGE-VAR 

models can help aid forecasting performance of governmental variables like government 

consumption and debt quite significantly. However, there seems to be no single best methodology 

across all data series and forecasting settings considered, similar to the results in Gürkaynak, 

Kısacıkoğlu and Rossi (2014). Rather, the best-performing methodology may depend on factors 

like sample selection, modelling framework and potentially others.  

In a novel exercise, I explore the utility of a variation of the Chapter 2 model with a Zero Lower 

Bound constraint for forecasting. Overall, the model performs well but is not necessarily 

competitive with the much simpler DSGE-VAR. However, the ZLB model does show some 

strength in forecasting fiscal variables.  
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Chapter 1  
 
Exploring Joint Fiscal Decision Making  
 

1.1  Introduction 
 

The empirical literature that focuses on fiscal multipliers is not unified in terms of its estimates. 

Although there is common ground with how policy can interact with the economy in general, 

studies have found, at times, varying estimates of the effectiveness of fiscal policy.1 To effectively 

aid policymakers, this variation in results needs to be narrowed down, and the field has been very 

successful in identifying central factors that explain this variation. Substantive research has 

focused on exploring how fiscal tools interact with the economy. The design questions of lump-

sum taxation vs. distortionary taxation, productive vs. un-productive government consumption, 

monetary and fiscal interactions, and sample selection choices have been shown to matter 

crucially in the evaluation of fiscal policy effectiveness. But it is not limited to these. The question 

of how fiscal policy responds to the economy, as governed by the fiscal response functions, has 

been shown to explain parts of the variation of fiscal estimates.  

This chapter aims to shed light on two particular components of the design of fiscal response 

functions. The first emphasis is on identifying which fiscal design features are important and 

what the consequences for the effects of fiscal policy interventions are. In this chapter, the focus 

is on budget component interactions, meaning within the taxation or spending category and 

across interactions. The second emphasis is on tracing out the source and consequences for policy 

analysis of a fiscal rule set with multimodal parameters in a DSGE model. Of particular interest 

are the consequences of uncertainty on the effects of policy interventions.  

I begin the analysis with the model developed by Leeper, Plante and Traum (2010) as a 

benchmark for the policy design comparisons. This model forms an excellent basis for establishing 

 
1 Multiplier estimates in VAR applications range from around unity (Blanchard and Perotti (2002), Favero and 
Giavazza (2012)) up to upwards of three (Mountford and Uhlig (2009)). In VAR applications, government 
consumption multipliers are more stable (Caldara and Kamps (2017)). However, under special conditions like the 
Zero Lower Bound, government consumption can become more significantly effective (Woodford (2011), Drautzburg 
and Uhlig (2015) and Boubaker, Khuong Nguyen and Paltalidis (2018)) 
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a comparative framework for several reasons. Firstly, the model features a fiscal rule set that 

allows the government to respond to output and debt fluctuations and also allows for interaction 

between tax rates. The tax rate interactions are assumed to be symmetric. In this case, symmetric 

implies that the effect of, for example, a capital taxation shock on labour taxation is identical to 

the effect a labour taxation shock would have on capital taxation. As such, it is a model with a 

particularly detailed description of the policy mechanism.2 Secondly, fixing the overall model 

design, estimation, and data then allows for a model comparison analysis to compare different 

fiscal policy designs using the marginal data densities.  

This chapter first draws a parallel between the structural equation modelling common to fiscal 

rules in DSGE models and the underlying reduced form process for the tax system in the Leeper, 

Plante and Traum (2010) model. Viewing the tax system in its reduced form, even in a restrictive 

case, allows the econometrician to think about how the restrictions placed on the structural 

process generate the dynamics of observables. Using this, I show that the fiscal interaction 

parameters in the Leeper, Plante and Traum (2010) model define long-run symmetric interactions 

between taxation rates. Furthermore, the multimodality observed in Herbst and Schorfheide 

(2016) in the Leeper, Plante and Traum (2010) model is graphically shown to be a design feature 

of the structural fiscal rules around the posterior estimates. Additional modes are proposed using 

the graphical technique and confirmed during an additional estimation. 

In addition to this, I delve into the role of parameter multimodality of the model first observed 

in Herbst and Schorfheide (2016) using Sequential Monte Carlo (SMC) techniques. Multimodality 

in the posterior distributions of the model parameters occurs if the density features multiple 

modes and thus is not globally identified.3 Furthermore, Herbst and Schorfheide (2016) show that 

multimodality in the parameter dimension may trickle down to impulse responses and policy 

 
2 The literature review below shows that the Leeper, Plante and Traum (2010) model features a particular rich rule 
set. 
3 From a frequentist perspective, this is similar to finding multiple, local modes with comparable likelihoods upon 
repeated runs of an optimizer. As the likelihoods are comparable, it is difficult to discard one mode over the other. 
In that case, the econometrician faces a not uniquely identified model with possible different properties at different 
modes. 
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analysis. In particular, they show that tax rate shocks can create multimodal impulse responses 

of output.  

To assess the multimodality in impulse responses, I implement approaches proposed in Chen and 

Shao (1999) and Chen et al.  (2000) for evaluating the highest posterior density intervals and bi-

modal regions to apply them to impulse responses. The key idea is to show how exactly the 

impulse responses are affected by multimodality and to narrow down what the actually likely 

policy scenarios are. If one applies the standard highest posterior density intervals, one can 

overstate the uncertainty of the object quite significantly if the modes are well separated. The 

bi-modal regions, by comparison, tend to give much tighter and sometimes well-separated 

estimates.  

The budget and stimulus dynamics of consumption taxation rate shock are affected by 

multimodality the most for the baseline Leeper, Plante and Traum (2010) model. Here, 

consumption taxation rate shocks show two types of behaviour, just as in the Herbst and 

Schorfheide (2016) application. The first type is behaviour typically associated with tax rates 

where output falls, taxation income rises, and debt falls. In addition to this, the same 

consumption taxation shocks seem to also imply an alternative dynamic based on this specific 

structural parameterization where output rises while the government deficit increases. Using the 

bimodal regions, I illustrate that the effects of consumption taxation, as implied by this model, 

predict not only different but disjointed impact scenarios. I show that on the financing side for 

the government, these two scenarios are well separated in the sense that the average effect of a 

policy intervention on government finance is not a particularly likely event in and of itself.  

Next to multimodality, a different aspect that is crucial is the design of fiscal response functions. 

In this chapter, I conduct a non-normative analysis of fiscal policy effects and their dependence 

on the fiscal rule set. Here, I consider combinations of forms encountered in the literature. For 

within budget blocks (expenditure vs. taxation), I consider two candidates: independent or 

symmetric interactions, as in Leeper, Plante and Traum (2010). For across interactions, the 

government can set spending and taxation either independently or in a block recursive structure 

with either category ordered first. The result is a set of 12 alternative specifications. 
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Using a posterior density comparison via the Bayes factor, three key models are selected per 

across-interaction category. Results show that the original specification by Leeper, Plante and 

Traum (2010) is very robust and in the top fitting group. The only alternative specification that 

is preferable in terms of the data density is identical in terms of intra-category interactions but 

has taxes ordered first in the across-interaction structure. The impulse response analysis shows 

similar abilities to stimulate the economy for all three best-fitting models with minor differences 

for transfers. The different interaction structures seem to matter significantly for government 

finance. The original model predicts balanced expansionary stimulus. A government spending 

(taxation) shock increases overall spending (taxation income) and is accompanied by an increase 

in taxation income (spending), which reduces the debt impact and balances the debt expansion. 

The recursive block models differ here. Temporarily, the budget impacts can be purely 

expansionary, where both taxation income is reduced, and spending is increased. This represents 

a coordinated effort to influence the economy across the budget components. Consequently, 

moving towards a richer VAR design may allow for fiscal policy mechanisms in DSGE models to 

become more expressive and allow the data to speak more clearly. 

On the technical side, for most estimations, the novel Sequential Monte Carlo (SMC) sampling 

process proposed by Herbst and Schorfheide (2016) is applied. The advantage of Sequential Monte 

Carlo estimations is that it uses the multinomial distribution to approximate the posterior. The 

approximations tend to be very capable of exploring complex posterior distribution even under 

non-normality and multimodality, and therefore, the SMC algorithm is uniquely suited to the 

problems encountered in this chapter. For detailed resources on Sequential Monte Carlo sampling, 

see Herbst and Schorfheide (2016), Herbst and Schorfheide (2014) and Cappé, Godsill and 

Moulines (2007). 

Structurally, the chapter first discusses the Leeper, Plante and Traum model in section 1.3 , 

followed by the explorative exercise on fiscal rules in section 1.4 and multimodality in the Leeper, 

Plante and Traum (2010) rules.  Section 1.5 provides a detailed description of the estimation 

proceedings. Section 1.6 explores the estimation results for the original model and the diffuse 

variation. Section 1.7 further discusses the role of multimodality in the model by showing the 

existence of further modes using slight tweaks. In addition to this, results for the estimation on 

a replicated data set are presented. Section 1.8 details the main results of the chapter on a diverse 
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set of interaction structures. Then, section 1.9 reapplies the preferred model and engages in 

robustness analysis on the extended data set. 

1.2  Literature review 
 

The way fiscal policy rules are most commonly constructed in DSGE models is by treating the 

government as a simplified decision-maker. This decision-maker sets the current level of a group 

of fiscal instruments, which may include taxation and expenditure variables or may include 

choosing a debt level according to prespecified structural rules and a budget constraint. Unlike 

households and firms, the federal government commonly does not optimize a target but follows 

a set rule. Hence, designing good fiscal rules is a key component to understanding fiscal policy 

and the effects that fiscal policy has on the economy. So, in a sense, fiscal policy in DSGE models 

is mostly descriptive and seeks to answer what the government does and what its effects are. 

In the federal government decision process, one may distinguish between two types of variables. 

The first type is one that “forcibly” adjusts to close the budget. For example, let’s assume a 

government has chosen a current taxation and expenditure level. Unless the current choices 

perfectly close the budget, a final variable may need to adjust to ensure the budget constraint 

holds. This variable is typically chosen to be either debt or lump sum taxes. The second type of 

variable is given a prescribed structural rule on how it’s meant to be set. Within this structural 

rule, the fiscal variables may respond to output fluctuations or to other variables in the 

government’s information set. Typically, the models assume a linear fiscal rule so that the 

marginal responses are constant across the business cycle.4  

With the option to specify structural rules comes a lot of design freedom for economists. The 

typical modelling starts at independent AR(1) processes for the individual instruments. For 

example, in the Leeper, Plante and Traum (2010) model, the consumption taxation rate is treated 

as an AR(1) process, where the current rate only depends on itself one quarter ago and an 

 
4 Chapter 2 explores a type of fiscal rule which responds differently depending on the business cycle. The resulting 
federal government goes through phases in the way that it responds to the economy. These phases are induced based 
on the business cycle conditions. 
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exogenous shock. No further factors go into determining the current rate. Fiscal rules can extend 

from thereon.  

Most extensions can generally be grouped into a set of restricted linear state space models of 

varying complexity and interactions. One way fiscal rules can be extended is to include 

interactions with the economy and other factors of interest. That typically covers the interactions 

of fiscal variables with same-period output and public debt levels but can also include other 

variables.5 Studies by Zubairy (2014) and Leeper, Plante and Traum (2010) have delved into the 

importance of how fiscal rules respond to federal debt or output. The former study conducts a 

counterfactual analysis for a DSGE model with fiscal rules where taxation rates and government 

consumption are allowed to respond to both output and debt steady state deviations. In the 

analysis, the speed of adjustment to either debt or output is varied using a scaling factor. They 

show that fiscal multipliers become less impactful for very high levels of debt responsiveness. In 

addition, if fiscal instruments react more aggressively to output steady state deviations, then the 

effects of government consumption shocks are more muted. The latter study explores the effects 

of fiscal shocks on output via a similar counterfactual experiment using a variable fiscal 

adjustment speed for federal debt. Leeper, Plante and Traum (2010) find that for higher 

adjustment speeds to debt, government consumption multipliers are smaller. The clear result is 

that the design of the exogenous structure matters.  

The other set of typical modifications focuses on the autoregressive matrices of the state space 

model. This is also what this chapter is concerned with. The simplest way one may restrict a 

model is to assume that the individual variables follow independent AR(1) processes. Fully 

independent tax and expenditures structures are very popular and are frequently implemented 

(e.g. see Mucka and Horvath (2022), Bondzie and Armah (2022), Fernández-Villaverde et al. 

(2015), Zubairy (2014), Drautzburg and Uhlig (2015) and more). Departing from the independent 

case allows economists to imbue DSGE governments with a richer and more complex ruleset with 

interactions both within fiscal taxation and spending budget components but also across. Leeper, 

Plante and Traum (2010), Traum and Yang (2015) and Yang (2005) all consider symmetric tax 

 
5 For an interesting case, Chan (2020) allows fiscal variables to adjust to emission levels.  
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rules but don't allow for direct interactions between spending and taxation. The role of symmetric 

rules is interesting as they can act in budget-balancing ways and imply a high degree of 

coordination on the policymaker's side. Across fiscal block interactions, as implemented in Davig 

and Leeper (2011) in a block-recursive format, imply a sequential decision process. First, the 

policymaker decides on a government spending (taxation) level. In the second and final step, the 

government adjusts its taxation (spending) variables and debt levels to close the budget.  

To get an understanding of the current design of fiscal policy rules in papers on fiscal policy, I 

surveyed 30 papers and categorized their fiscal rules for tax rates and government consumption. 

I chose to focus on the most recent papers published since 2015 in an academic journal, a central 

bank working paper series, or similar.6  

For each model, only time-varying tax components were assessed. Fixed components, such as a 

fixed income tax rate, were omitted as not relevant. The tax structure was then described based 

on three components (Lump sum taxation, single marginal tax rate and multiple marginal tax 

rates) and, possibly, their combinations. To assess the design of the fiscal policy rules in the 

specific papers, I avoid categorizing all rules and focus on the most elaborate rule. For the tax 

rates, the most elaborate rule is categorized by (a) if it features an autoregressive component7, 

(b) if it responds to output and debt and (c) if so, to which variables8. Similarly, for government 

consumption, the rule is characterized by if it features an autoregressive component and whether 

it responds to output and debt. The last feature of interest was whether, in the feedback rules, 

the model allowed for interactions between tax rates and government consumption.  

 
6 I used google scholar with the search term “DSGE “fiscal policy”" to search for papers. Further criterions were that 
the paper was written in English, was accessible, featured a DSGE model and fiscal rules were defined on at least 
one of the two categories: tax rules or government consumption. Additional fiscal components were not surveyed. 
The sample has an average publishing years of 2018 and 32 citations on average. 
7 Autoregressive features can enter in several ways. For example, the tax rate might linearly depend on its past 
values, but it also may depend non-linearly on past values in the structural equation. Equally, the tax rate may 
depend on a structural shock that is governed by an AR(p) process.  
8 Tax instruments may depend linearly or non-linearly on debt and output in the structural equations. 
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Table 1.1: Review of Survey Results on fiscal rule design 

 

Notes: The survey results table presents summaries of fiscal rules in the respective papers. Results are separated into 

tax and government consumption columns. In the second column, the type of tax instruments in the papers is classified 

as Lump sum, marginal and combinations thereof. The third column gives a simple “Yes” or “No” indicator if the rule 

includes an autoregressive component, and the fourth column shows whether the fiscal instrument responds to debt 

(B) and/or output (Y). Papers that only include fixed tax rules are indicated as missing. Government consumption 

rules are summarized in a similar way. The last column includes a “yes” or “no” indicator for whether there are 

interactions between the fiscal blocks.  

Table 1.1 presents the results of the survey. While the literature review presented here is by no 

means exhaustive, it helps to identify a number of common features. For the tax components, 

the most common type of fiscal rule for the most elaborate tax component features an 

autoregressive component with 74%, and about 59% of tax rules respond to at least output or 

debt (or both). These figures exclude models with fixed tax components. On the flip side, that 

implies that a substantial share of rules is very simple in design, with 26% of rules not featuring 

autoregressive components that induce persistence in taxation and about 41% of tax rules do not 

Type AR B and/or Y AR B and/or Y

Shen and Yang (2016) single marginal Yes B Yes Y No
Bhattarai and Trzeciakiewicz (2017) multiple marginal Yes B,Y Yes B,Y No
Mucka and Horvath (2022) multiple marginal Yes No Yes No No
Takyi and Leon-Gonzalez (2020) multiple marginal Yes B,Y Yes Y No
Samimi et al. (2017) multiple marginal Yes B,Y Yes B,Y No
Drautzburg (2020) multiple marginal Yes B,Y Yes B,Y No
Xiao, Fan and Guo (2018) multiple marginal Yes No Yes No No
Mumtaz and Theodoridis (2020) multiple marginal Yes B,Y Yes B,Y No
Chan (2020) Lump sum, single marginal Yes No Yes No No
Wang (2021) Lump sum, multiple marginal No B,Y Yes No No
Aursland et al. (2020) Lump sum, multiple marginal Yes No Yes No No
Cavalcanti and Vereda (2015) Lump sum, multiple marginal Yes No Yes No No
Drygalla, Holtemöller and Kiesel (2018) Lump sum, multiple marginal Yes B,Y Yes B,Y No
Babecký, Franta and Ryšánek (2018) Lump sum, multiple marginal Yes B,Y Yes B,Y Yes
Carvalho and Castro (2017) Lump sum, multiple marginal Yes No Yes B No
Bušs and Grüning (2023) Lump sum, multiple marginal Yes B,Y Yes B,Y No
Bondzie and Armah (2022) Lump sum, multiple marginal Yes No Yes No No
Gadatsch, Hauzenberger and Stähler (2016) Lump sum, multiple marginal Yes B,Y Yes B,Y No
Gomes et al. (2015) Lump sum No B Yes No No
Fève and Sahuc (2016) Lump sum No No Yes No No
Li and Spencer (2015) Lump sum No No Yes Y No
Zeman (2017) Lump sum No B,Y No No No
Faria-e-Castro (2021) Lump sum No B No No No
Engler and Tervala (2018) Lump sum No No Yes No No
Wang et al. (2020) Lump sum Yes No No No No
Kliem, Krowlusky and Sarferaz (2016) Lump sum Yes B Yes B No
Kollman et al. (2016) Lump sum Yes B,Y Yes Y No
Jesus, Besarria and Maisa (2020) -- -- -- Yes No No
Andreyev (2020) -- -- -- Yes Y No
Kang and Suh (2017) -- -- -- Yes No No

Paper Tax Government Cons. Interactions
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respond to debt or output to balance the budget. For the government consumption rules, 90% of 

rules include an autoregressive component, while 50% of papers allow government consumption 

to respond to output or debt (or both). Overall, the majority of papers surveyed allow fiscal 

instruments to respond to past values and the economy. 

The next focus is on whether taxes and spending respond to each other. If the government wishes 

to increase government consumption today, it seems reasonable that the government may consider 

adjusting tax instruments in tandem with changes in spending. Interestingly, only one paper out 

of thirty papers included interaction between the two fiscal blocks in the feedback rules. Babecký, 

Franta and Ryšánek (2018) includes interaction between all instruments based on the structural 

shock processes, and thus, their model allows for the direct response of one fiscal block to the 

other. In part, they base their interaction design on the work by Leeper, Plante and Traum 

(2010). Based on this, further analysis into richer fiscal rulesets, as it is conducted here, maybe 

a useful contribution to the literature.  

 

1.3  Leeper, Plante and Traum (2010) model 
 

The following section will introduce the reader to this paper's core model developed by Leeper, 

Plante and Traum (2010).  This model is a small to medium-sized neoclassical growth model 

with key fiscal features such as distortionary taxation, a rich set of fiscal feedback rules and fiscal 

financing design. In addition, other commonly used fiscal policy rules can be considered as a 

special case of the Leeper, Plante and Traum (2010) model with additional restrictions.  

 

1.3.1  The household problem 
 

The core of the household problem is a constrained dynamic programming problem, where the 

household optimises the sum of the discounted path of utility. To be precise, the agent maximises: 

max
𝑐𝑐𝑡𝑡,𝑙𝑙𝑡𝑡

       𝐸𝐸0 �𝛽𝛽𝑡𝑡
∞

𝑡𝑡=0
𝑢𝑢𝑡𝑡

𝑏𝑏 �( 𝑐𝑐𝑡𝑡 − ℎ𝐶𝐶𝑡𝑡−1)1−𝛾𝛾

1 − 𝛾𝛾
− 𝑢𝑢𝑡𝑡

𝑙𝑙 𝑙𝑙𝑡𝑡1+𝜅𝜅

1 + 𝜅𝜅
� , 

subject to the budget constraint and capital transition equation: 
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(1 + 𝜏𝜏𝑡𝑡
𝐶𝐶)𝑐𝑐𝑡𝑡 + 𝑖𝑖𝑡𝑡 + 𝑏𝑏𝑡𝑡 = (1 − 𝜏𝜏𝑡𝑡

𝐾𝐾)𝑅𝑅𝑡𝑡
𝐾𝐾𝑣𝑣𝑡𝑡𝑘𝑘𝑡𝑡−1 + (1 − 𝜏𝜏𝑡𝑡

𝐿𝐿)𝑙𝑙𝑡𝑡𝑤𝑤𝑡𝑡 + 𝑅𝑅𝑡𝑡−1𝑏𝑏𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 

𝑘𝑘𝑡𝑡 = �1 − 𝛿𝛿(𝑣𝑣𝑡𝑡)�𝑘𝑘𝑡𝑡−1 + �1 − 𝑠𝑠�𝑢𝑢𝑡𝑡
𝑖𝑖𝑖𝑖𝑡𝑡

𝑖𝑖𝑡𝑡−1
�� ∗ 𝑖𝑖𝑡𝑡, 

where capitalized variables refer to aggregate variables, and lowercase variables denote individual 

variables. The agent derives utility from consumption, 𝑐𝑐𝑡𝑡. 𝑐𝑐𝑡𝑡 is seen relative to the previous 

period's habit-adjusted aggregate consumption level, ℎ𝐶𝐶𝑡𝑡−1. Here, the habit parameter, ℎ, is 

assumed to be in the open interval from zero to one (ℎ ∈ (0,1)). The marginal benefit is governed 

by the risk aversion parameter 𝛾𝛾 > 0, which ensures that the marginal benefit of consumption 

for finite levels is always positive but decreasing in consumption. To finance spending, the agent 

can supply labour hours, 𝑙𝑙𝑡𝑡,  to the firm in return for labour income, 𝑙𝑙𝑡𝑡𝑤𝑤𝑡𝑡, based on the wage 

rate, 𝑤𝑤𝑡𝑡. Simultaneously, the household faces a utility cost of working, which is additively 

separable to consumption.  Together, the two parts of the utility are distorted by two sources. 

Firstly, a preference shock, 𝑢𝑢𝑡𝑡
𝑏𝑏, distorts both parts together. Secondly, the labour supply shock, 

𝑢𝑢𝑡𝑡
𝑙𝑙 , directly impacts the marginal disutility of labour. 

The household can hold two assets to smooth consumption and accumulate wealth. The first 

asset is a one-period government debt bond, 𝑏𝑏𝑡𝑡, that pays an interest 𝑅𝑅𝑡𝑡 in the next period. The 

second important asset is the capital stock, 𝑘𝑘𝑡𝑡. The capital stock today is determined in a 

standard fashion based on yesterday's stock minus its depreciation and plus the newly invested 

capital, 𝑖𝑖𝑡𝑡.   

However, the capital law of motion includes two special features. Firstly, capital depreciation is 

not constant, but instead, the depreciation rate, 𝛿𝛿, is governed by the following function:  

𝛿𝛿(𝑣𝑣𝑡𝑡) = 𝛿𝛿0 + 𝛿𝛿1(𝑣𝑣𝑡𝑡 − 1) + 𝛿𝛿2
2

(𝑣𝑣𝑡𝑡 − 1)2. 

The depreciation rate is a function of the capital utilisation level, 𝑣𝑣𝑡𝑡. A higher utilisation level 

augments firm production but increases the capital stock's depreciation. 𝛿𝛿0 corresponds to the 

steady state level of the depreciation rate. The second feature is found in the adjustment cost for 

varying the investment level, 𝑠𝑠 �𝑢𝑢𝑡𝑡
𝑖𝑖𝑖𝑖𝑡𝑡

𝑖𝑖𝑡𝑡−1
�. The adjustment cost depends on the ratio of current to 

previous investment and is perturbed by the adjustment cost shock, 𝑢𝑢𝑡𝑡
𝑖𝑖. At the steady state, the 

function 𝑠𝑠 satisfies the following properties: 𝑠𝑠(1) = 𝑠𝑠′(1) = 0 and 𝑠𝑠′′(1) > 0. These properties 
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define the value of the adjustment function and its gradient at the steady state of the system as 

𝑢𝑢𝑡𝑡
𝑖𝑖𝑖𝑖𝑡𝑡

𝑖𝑖𝑡𝑡−1
|𝑠𝑠𝑠𝑠 = 1.  For a linear DSGE estimation as in Leeper, Plante and Traum (2010), one only 

requires the level of 𝑠𝑠 �𝑢𝑢𝑡𝑡
𝑖𝑖𝑖𝑖𝑡𝑡

𝑖𝑖𝑡𝑡−1
� at the steady state to determine the remaining steady state values 

and the gradient of 𝑠𝑠 �𝑢𝑢𝑡𝑡
𝑖𝑖𝑖𝑖𝑡𝑡

𝑖𝑖𝑡𝑡−1
� at the steady state to solve the system. No further functional 

assumptions are needed. With this penalisation, the consumer prefers gradual adjustments of the 

investment level to avoid higher adjustment costs. This generates some stability in the investment 

series, as seen in the data. The laws of motion of shocks in the household problem are governed 

by AR(1) processes: 

𝑙𝑙𝑙𝑙(𝑢𝑢𝑡𝑡
𝑏𝑏) = 𝜌𝜌𝑏𝑏𝑙𝑙𝑙𝑙(𝑢𝑢𝑡𝑡−1

𝑏𝑏 ) + 𝜎𝜎𝑏𝑏𝜀𝜀𝑡𝑡
𝑏𝑏,       𝜀𝜀𝑡𝑡

𝑏𝑏~𝑁𝑁(0,1), 

𝑙𝑙𝑙𝑙(𝑢𝑢𝑡𝑡
𝑙𝑙) = 𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙(𝑢𝑢𝑡𝑡−1

𝑙𝑙 ) + 𝜎𝜎𝑙𝑙𝜀𝜀𝑡𝑡
𝑙𝑙 ,         𝜀𝜀𝑡𝑡

𝑙𝑙~𝑁𝑁(0,1), 

𝑙𝑙𝑙𝑙(𝑢𝑢𝑡𝑡
𝑖𝑖) = 𝜌𝜌𝑖𝑖𝑙𝑙𝑙𝑙(𝑢𝑢𝑡𝑡−1

𝑖𝑖 ) + 𝜎𝜎𝑖𝑖𝜀𝜀𝑡𝑡
𝑖𝑖,         𝜀𝜀𝑡𝑡

𝑖𝑖~𝑁𝑁(0,1). 

These are defined in terms of the natural logs of the shock. Specifying the laws of motion in 

terms of logs ensures that the shocks are constrained to be larger than 0. Therefore, the shocks 

are consistent with the phrasing of the optimisation problem above (i.e. 𝑢𝑢𝑡𝑡
𝑙𝑙 < 0 would imply that 

working more generates utility).  

The federal government interacts with the household in several ways via its budget constraint. 

Firstly, consumption, labour income and the return on capital investment are all taxed via 

distortionary taxation rates: 𝜏𝜏𝑡𝑡
𝐶𝐶 , 𝜏𝜏𝑡𝑡

𝐿𝐿 and 𝜏𝜏𝑡𝑡
𝐾𝐾 . Here, 𝜏𝜏𝑡𝑡

𝐶𝐶 is the consumption tax rate, 𝜏𝜏𝑡𝑡
𝐿𝐿 is the 

labour tax rate and 𝜏𝜏𝑡𝑡
𝐾𝐾 is the capital tax rate. Furthermore, the household may receive varying 

levels of transfer payments, 𝑧𝑧𝑡𝑡. 

 

1.3.2  The firm problem 
 

Firms face a well-studied production problem. The representative firm maximises within-period 

profits by choosing capital and labour levels. Together, capital and labour are used to produce 

output through a Cobb-Douglas production function. The production function is subject to the 

capital utilisation level, 𝑣𝑣𝑡𝑡, selected by the consumer and a technology shock process, 𝑢𝑢𝑡𝑡
𝑎𝑎. At the 

same time, the firm faces cost for its capital and labour utilisation. The labour cost is based on 
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the wage rate, 𝑤𝑤𝑡𝑡, and the capital cost depends on the rental rate, 𝑅𝑅𝑡𝑡
𝐾𝐾, and the utilization level, 

𝑣𝑣𝑡𝑡. The formulation of the problem is as follows: 

max
𝑘𝑘𝑡𝑡−1,𝑙𝑙𝑡𝑡

𝑢𝑢𝑡𝑡
𝑎𝑎(𝑣𝑣𝑡𝑡𝑘𝑘𝑡𝑡−1)𝛼𝛼(𝑙𝑙𝑡𝑡)1−𝛼𝛼 − 𝑤𝑤𝑡𝑡𝑙𝑙𝑡𝑡 − 𝑅𝑅𝑡𝑡

𝐾𝐾𝑣𝑣𝑡𝑡𝑘𝑘𝑡𝑡−1. 

The productivity shock, 𝑢𝑢𝑡𝑡
𝑎𝑎, is driven by a AR(1) process defined on the log values:  

𝑙𝑙𝑙𝑙(𝑢𝑢𝑡𝑡
𝑎𝑎) = 𝜌𝜌𝑎𝑎𝑙𝑙𝑙𝑙(𝑢𝑢𝑡𝑡−1

𝑎𝑎 ) + 𝜎𝜎𝑎𝑎𝜀𝜀𝑡𝑡
𝑎𝑎,         𝜀𝜀𝑡𝑡

𝑎𝑎~𝑁𝑁(0,1). 

 

1.3.3  The government problem 
 

The last remaining component of the DSGE model is the federal government. The federal 

government responds to aggregate variables that summarize the economy, and variables like 

consumption and labour hours are capitalized within the federal government problem. The federal 

government faces the following constraint to ensure solvency: 

𝐵𝐵𝑡𝑡 + 𝜏𝜏𝑡𝑡
𝐾𝐾𝑅𝑅𝑡𝑡

𝐾𝐾𝑣𝑣𝑡𝑡𝐾𝐾𝑡𝑡−1 + 𝜏𝜏𝑡𝑡
𝐿𝐿𝑤𝑤𝑡𝑡𝑙𝑙𝑡𝑡 + 𝜏𝜏𝑡𝑡

𝐶𝐶𝐶𝐶𝑡𝑡 = 𝐵𝐵𝑡𝑡−1𝑅𝑅𝑡𝑡−1 + 𝐺𝐺𝑡𝑡 + 𝑍𝑍𝑡𝑡. 

The federal government can sell one-period bonds, 𝐵𝐵𝑡𝑡, to finance its operations if necessary but 

pays an interest rate, 𝑅𝑅𝑡𝑡, on it. Further, the government receives taxation income based on the 

distortionary taxation instruments  𝜏𝜏𝑡𝑡
𝐾𝐾 , 𝜏𝜏𝑡𝑡

𝐿𝐿 and 𝜏𝜏𝑡𝑡
𝐶𝐶 and the corresponding tax bases. Furthermore, 

it has expenditures in the form of government consumption, 𝐺𝐺𝑡𝑡,  and transfers, 𝑍𝑍𝑡𝑡. 

This model features an overall neutral description of fiscal policy. As opposed to the household 

or firm problem, the government rules are not chosen based on an optimisation problem. Instead, 

the focus is on entertaining a rich but neutral linear ruleset. The ruleset is defined on the fiscal 

terms in terms of log steady state deviations indicated by the hatted variables. Looking at the 

government expenditure side, government consumption, 𝐺𝐺�̂�𝑡, and transfers, 𝑍𝑍�̂�𝑡, respond to current 

economic development in terms of 𝑌𝑌�̂�𝑡 and also the previous debt level, 𝐵𝐵�𝑡𝑡−1. The prior space for 

the fiscal rules implies that the government reduces spending in phases of above steady state 

output and debt. Thus, it is budget balancing. Both spending categories obtain some level of 

persistence via structural autoregressive shocks. 

𝐺𝐺�̂�𝑡 = −𝜑𝜑𝑔𝑔𝑌𝑌�̂�𝑡 − 𝛾𝛾𝑔𝑔𝐵𝐵�𝑡𝑡−1 + �̂�𝑢𝑡𝑡
𝑔𝑔, 
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𝑍𝑍�̂�𝑡 = −𝜑𝜑𝑧𝑧𝑌𝑌�̂�𝑡 − 𝛾𝛾𝑧𝑧𝐵𝐵�𝑡𝑡−1 + �̂�𝑢𝑡𝑡
𝑧𝑧, 

�̂�𝑢𝑡𝑡
𝑔𝑔 = 𝜌𝜌𝑔𝑔�̂�𝑢𝑡𝑡−1

𝑔𝑔 + 𝜎𝜎𝑔𝑔𝜀𝜀𝑡𝑡
𝑔𝑔,               𝜀𝜀𝑡𝑡

𝑔𝑔~𝑁𝑁(0,1), 

�̂�𝑢𝑡𝑡
𝑧𝑧 = 𝜌𝜌𝑧𝑧�̂�𝑢𝑡𝑡−1

𝑧𝑧 + 𝜎𝜎𝑧𝑧𝜀𝜀𝑡𝑡
𝑧𝑧,                𝜀𝜀𝑡𝑡

𝑧𝑧~𝑁𝑁(0,1). 

The taxation processes are constructed in a similar fashion. Capital and labour taxation can 

change in response to rising output and debt. Again, the design has a budget-balancing character. 

The only variable exempt from this is consumption taxation. The reason is that on the federal 

level, consumption taxes are used to target specific goods. An additional feature of the Leeper, 

Plante and Traum (2010) ruleset is the symmetric interaction between tax rates. This implies, 

for example, that a unit shock to the capital tax rate has the same effect on the labour tax rates 

as a labour tax shock has on the capital tax rate (captured by 𝜙𝜙𝑘𝑘𝑙𝑙).  The rules for tax rates and 

their corresponding structural shocks are as follows: 

𝜏𝜏�̂�𝑡
𝑘𝑘 = 𝜑𝜑𝑘𝑘𝑌𝑌�̂�𝑡 + 𝛾𝛾𝑘𝑘𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑘𝑘𝑙𝑙�̂�𝑢𝑡𝑡

𝜏𝜏𝑙𝑙 + 𝜙𝜙𝑘𝑘𝑐𝑐�̂�𝑢𝑡𝑡
𝜏𝜏𝑐𝑐 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑘𝑘, 

𝜏𝜏�̂�𝑡
𝑙𝑙 = 𝜑𝜑𝑙𝑙𝑌𝑌�̂�𝑡 + 𝛾𝛾𝑙𝑙𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑘𝑘𝑙𝑙�̂�𝑢𝑡𝑡

𝜏𝜏𝑘𝑘 + 𝜙𝜙𝑙𝑙𝑐𝑐�̂�𝑢𝑡𝑡
𝜏𝜏𝑐𝑐 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑙𝑙 , 

𝜏𝜏�̂�𝑡
𝑐𝑐 = 𝜙𝜙𝑘𝑘𝑐𝑐�̂�𝑢𝑡𝑡

𝜏𝜏𝑘𝑘 + 𝜙𝜙𝑙𝑙𝑐𝑐�̂�𝑢𝑡𝑡
𝜏𝜏𝑙𝑙 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑐𝑐 , 

�̂�𝑢𝑡𝑡
𝜏𝜏𝑘𝑘 = 𝜌𝜌𝜏𝜏𝑘𝑘�̂�𝑢𝑡𝑡−1

𝜏𝜏𝑘𝑘 + 𝜎𝜎𝜏𝜏𝑘𝑘𝜀𝜀𝑡𝑡
𝜏𝜏𝑘𝑘 ,        𝜀𝜀𝑡𝑡

𝜏𝜏𝑘𝑘~𝑁𝑁(0,1), 

�̂�𝑢𝑡𝑡
𝜏𝜏𝑙𝑙 = 𝜌𝜌𝜏𝜏𝑙𝑙 �̂�𝑢𝑡𝑡−1

𝜏𝜏𝑙𝑙 + 𝜎𝜎𝜏𝜏𝑙𝑙𝜀𝜀𝑡𝑡
𝜏𝜏𝑙𝑙 ,           𝜀𝜀𝑡𝑡

𝜏𝜏𝑙𝑙~𝑁𝑁(0,1), 

�̂�𝑢𝑡𝑡
𝜏𝜏𝑐𝑐 = 𝜌𝜌𝜏𝜏𝑐𝑐�̂�𝑢𝑡𝑡−1

𝜏𝜏𝑐𝑐 + 𝜎𝜎𝜏𝜏𝑐𝑐𝜀𝜀𝑡𝑡
𝜏𝜏𝑐𝑐,         𝜀𝜀𝑡𝑡

𝜏𝜏𝑐𝑐~𝑁𝑁(0,1). 

All parameters in the above equations, including autoregressive parameters, interaction terms 

and standard deviations, are fully estimated once the model is taken to the data.  

 

1.3.4  Market clearing and model solution 
 

In equilibrium, all goods produced need to be consumed in some fashion. In this model, the 

aggregate constraint is as follows: 

𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑡𝑡 + 𝐼𝐼𝑡𝑡 + 𝐺𝐺𝑡𝑡. 
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Together with the closing condition, the complete model is defined by the household's first-order 

conditions, capital accumulation law, first-order conditions of the firm problem, government 

budget constraint and the various autoregressive rules for fiscal variables and structural shocks. 

The model is solved using the procedure developed in Sims (2002). 

 

1.4  Exploring tax systems and structural rules 
 

1.4.1   The reduced form fiscal system and impulse responses 
 

To gain a deeper understanding of the assumptions placed on the tax rules by Leeper, Plante 

and Traum (2010), this section solves the structural fiscal rules to a standard VAR rule under 

the assumption that the economy is exogenous. Based on this form and the corresponding system 

matrices, one can see that the symmetry assumption placed on the tax rules holds for impulse 

responses on impact but also at longer horizons. Furthermore, one can explicitly see how the 

structural parameters relate to the VAR parameters. The following sections exploits this by 

showing that the multimodality found by Herbst und Schorfheide (2016) likely arises due to the 

non-linear relationship between structural parameters and VAR parameters. 

The tax system in Leeper, Plante and Traum (2010) has three major components. Firstly, the 

exogenous component, X, is modelled using linear responses of the capital and labour tax rates 

to current output, 𝜑𝜑𝑖𝑖𝑌𝑌�̂�𝑡, and previous debt, 𝛾𝛾𝑖𝑖𝐵𝐵�𝑡𝑡−1, in terms of steady state deviations. The 

second essential component is the laws of motion for the structural shocks  �̂�𝑢𝑡𝑡
𝜏𝜏𝑘𝑘 , �̂�𝑢𝑡𝑡

𝜏𝜏𝑙𝑙 and �̂�𝑢𝑡𝑡
𝜏𝜏𝑐𝑐 . 

These are all modelled as independent autoregressive processes of order one. The last component 

defines the interaction between tax rates and structural shocks. Here, Leeper, Plante and Traum 

(2010) opted for a symmetric scheme. The assumption is that, for example, a capital taxation 

shock has the same effect on the labour taxation rate, as a labour taxation shock of the same 

size would have on the capital taxation rate. The tax system is governed by the following set of 

equations: 

𝜏𝜏�̂�𝑡
𝑘𝑘 = 𝜑𝜑𝑘𝑘𝑌𝑌�̂�𝑡 + 𝛾𝛾𝑘𝑘𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑘𝑘𝑙𝑙�̂�𝑢𝑡𝑡

𝜏𝜏𝑙𝑙 + 𝜙𝜙𝑘𝑘𝑐𝑐�̂�𝑢𝑡𝑡
𝜏𝜏𝑐𝑐 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑘𝑘, 

𝜏𝜏�̂�𝑡
𝑙𝑙 = 𝜑𝜑𝑙𝑙𝑌𝑌�̂�𝑡 + 𝛾𝛾𝑙𝑙𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑘𝑘𝑙𝑙�̂�𝑢𝑡𝑡

𝜏𝜏𝑘𝑘 + 𝜙𝜙𝑙𝑙𝑐𝑐�̂�𝑢𝑡𝑡
𝜏𝜏𝑐𝑐 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑙𝑙 , 
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𝜏𝜏�̂�𝑡
𝑐𝑐 = 𝜙𝜙𝑘𝑘𝑐𝑐�̂�𝑢𝑡𝑡

𝜏𝜏𝑘𝑘 + 𝜙𝜙𝑙𝑙𝑐𝑐�̂�𝑢𝑡𝑡
𝜏𝜏𝑙𝑙 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑐𝑐 , 

�̂�𝑢𝑡𝑡
𝜏𝜏𝑘𝑘 = 𝜌𝜌𝜏𝜏𝑘𝑘�̂�𝑢𝑡𝑡−1

𝜏𝜏𝑘𝑘 + 𝜎𝜎𝜏𝜏𝑘𝑘𝜀𝜀𝑡𝑡
𝜏𝜏𝑘𝑘 ,        𝜀𝜀𝑡𝑡

𝜏𝜏𝑘𝑘~𝑁𝑁(0,1), 

�̂�𝑢𝑡𝑡
𝜏𝜏𝑙𝑙 = 𝜌𝜌𝜏𝜏𝑙𝑙 �̂�𝑢𝑡𝑡−1

𝜏𝜏𝑙𝑙 + 𝜎𝜎𝜏𝜏𝑙𝑙𝜀𝜀𝑡𝑡
𝜏𝜏𝑙𝑙 ,           𝜀𝜀𝑡𝑡

𝜏𝜏𝑙𝑙~𝑁𝑁(0,1), 

�̂�𝑢𝑡𝑡
𝜏𝜏𝑐𝑐 = 𝜌𝜌𝜏𝜏𝑐𝑐�̂�𝑢𝑡𝑡−1

𝜏𝜏𝑐𝑐 + 𝜎𝜎𝜏𝜏𝑐𝑐𝜀𝜀𝑡𝑡
𝜏𝜏𝑐𝑐,         𝜀𝜀𝑡𝑡

𝜏𝜏𝑐𝑐~𝑁𝑁(0,1). 

This system can be rewritten into the following structural linear state space system using matrix 

notation:  

𝜏𝜏t = Γ0zt + Γ1ut     and    ut = Λut−1 + 𝜀𝜀t,   𝜀𝜀t~𝑁𝑁(0,Θ), 

where 𝜏𝜏t = [𝜏𝜏�̂�𝑡
𝑘𝑘, 𝜏𝜏�̂�𝑡

l, 𝜏𝜏�̂�𝑡
c]', zt = [𝑌𝑌�̂�𝑡,𝐵𝐵�𝑡𝑡−1]′ and ut = [�̂�𝑢𝑡𝑡

k, �̂�𝑢𝑡𝑡
l , �̂�𝑢𝑡𝑡

c]′. Θ corresponds to the diagonal 

Covariance matrix of the structural shocks based on the three standard deviation parameters 

𝜎𝜎𝜏𝜏𝑘𝑘 , 𝜎𝜎𝜏𝜏𝑙𝑙 and 𝜎𝜎𝜏𝜏𝑐𝑐 .  Γ1 is a symmetric matrix with diagonal entries equal to 1 and is generated 

from  𝜃𝜃 = [𝜙𝜙𝑘𝑘𝑙𝑙, 𝜙𝜙kc, 𝜙𝜙lc]′. Γ0 governs the responses of the tax rates to output and government 

debt: 

Γ1 =
⎣
⎢⎡

1 𝜙𝜙𝑘𝑘𝑙𝑙 𝜙𝜙𝑘𝑘𝑐𝑐
𝜙𝜙𝑘𝑘𝑙𝑙 1 𝜙𝜙lc
𝜙𝜙𝑘𝑘𝑐𝑐 𝜙𝜙lc 1 ⎦

⎥⎤ , Γ0 = �
𝜑𝜑𝑘𝑘 𝛾𝛾𝑘𝑘
𝜑𝜑𝑙𝑙 𝛾𝛾𝑙𝑙
0 0

�.  

Γ1 is of full rank if det(Γ1) = 1 + 𝜙𝜙kc
2 + 𝜙𝜙lc

2 + 𝜙𝜙kl
2 + 2𝜙𝜙𝑘𝑘𝑐𝑐𝜙𝜙l𝑐𝑐𝜙𝜙kl ≠ 0. As the number of structural 

shocks in ut is equal to the number of tax variables, one can solve for the reduced form VARX. 

Assuming invertibility, we can derive the underlying reduced form vector process of 𝜏𝜏t as follows: 

𝜏𝜏t = Γ0zt + Γ1ΛΓ1
−1(𝜏𝜏t−1 − Γ0zt−1) + Γ1𝜀𝜀t,  𝜀𝜀t  ~ 𝑁𝑁(0,Θ), 

𝜏𝜏t = 𝐴𝐴xt + B𝜏𝜏t−1 + 𝑣𝑣t,   𝑣𝑣t = Γ1𝜀𝜀t~𝑁𝑁(0, Γ1ΘΓ1
′ ) = 𝑁𝑁(0,Ω). 

xt stacks the exogenous state variable together into one vector such that  xt = [zt, zt−1]′. 

Further, 𝐵𝐵 = Γ1ΛΓ1
−1 and 𝐴𝐴 = [Γ0,- Γ1ΛΓ1

−1Γ0] = [Γ0,- 𝐵𝐵Γ0]. Comparing the connection 

between the structural and reduced-form approaches, one can see how the former's parameters 

generate the latter in the reduced-form model. The AR(1) coefficient matrix, B, is generated via 

directly parameterising its eigenvalue decomposition, Γ1ΛΓ1
−1. The autoregressive parameters of 

the processes, 𝜌𝜌𝜏𝜏𝑘𝑘 , 𝜌𝜌𝜏𝜏𝑙𝑙 and 𝜌𝜌𝜏𝜏𝑐𝑐 , are the eigenvalues of B. As such, they generate the persistence 

of any shocks. The column vectors of Γ1, 𝑞𝑞1 = [1, 𝜙𝜙𝑘𝑘𝑙𝑙, 𝜙𝜙𝑘𝑘𝑐𝑐], 𝑞𝑞2 = [𝜙𝜙𝑘𝑘𝑙𝑙, 1, 𝜙𝜙𝑙𝑙𝑐𝑐] and  𝑞𝑞3 = [𝜙𝜙𝑘𝑘𝑐𝑐, 𝜙𝜙𝑙𝑙𝑐𝑐, 1] 

are eigenvectors of B. The eigenvectors are points in the state space for which 𝜏𝜏t is only stretched 
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by the eigenvalues, ignoring shocks and the exogenous component. Additionally, Γ1 also influences 

the covariance matrix of the reduced form shock process, Ω. Putting things together, the impulse 

response of the tax rates to shocks in this isolated system can be defined by: 

𝐼𝐼𝑅𝑅𝐼𝐼(𝜏𝜏t+s|𝑣𝑣t) = 𝐸𝐸(𝜏𝜏t+s|𝑣𝑣t) − 𝐸𝐸(𝜏𝜏t+s|𝑣𝑣t = 0) = 𝐵𝐵𝑠𝑠𝑣𝑣t = (Γ1ΛΓ1
−1)𝑠𝑠Γ1𝜀𝜀t = Γ1Λ𝑠𝑠𝜀𝜀t. 

Consequently, the long-run impulse response maintains the symmetric character of the structural 

form in this isolated system.  

 

1.4.2  Identification  
 

Herbst und Schorfheide (2016) showed that under less restrictive priors, the fiscal interaction 

parameters, 𝜃𝜃 = [𝜙𝜙𝑘𝑘𝑙𝑙, 𝜙𝜙kc, 𝜙𝜙lc]′, in the Leeper, Plante and Traum (2010) model become 

multimodal and are not uniquely identified. Identification problems can occur when the sampler 

cannot distinguish between parameterisations purely based on the likelihood.  There are several 

reasons why this might happen. Firstly, a DSGE model can include parameters that simply do 

not enter the likelihood in any meaningful way. In this case, all parameter choices generate the 

same likelihood. Secondly, non-identifiability can also occur when the likelihood is informative 

but does not uniquely identify a structural model based on its reduced form. The latter case 

seems to apply to the Herbst and Schorfheide (2016) estimation, as parameters do diverge quite 

significantly from the priors, and the multimodality is fairly localized. However, the question is, 

does the multimodality arise because the data identifies multiple laws of motion with similar 

likelihoods that are mechanically distinct or do the different modes generate observationally 

similar laws of motion? This section will attempt to illustrate that the multimodality in the 

Leeper, Plante and Traum (2010) model can arise due to the type of structural parameterisation 

of the fiscal rules. To do so, I am first going to graphically explore the type of identification issue 

found in Herbst and Schorfheide (2016) around their posterior estimates. As a second step, the 

analysis is extended to explore if the identification issue is unique to the cases found in Herbst 

and Schorfheide (2016).  



30 
 

To approach this, I separate the tax system from the rest of the DSGE model, as in the previous 

section and assume that debt and output are at their steady state. The system then reduces to 

the following VAR: 

𝜏𝜏t = B𝜏𝜏t−1 + 𝑣𝑣t. 

This system ignores the channel from and to zt and zt−1 but doing so facilitates the analysis. In 

general, for a multimodal posterior, a requirement is that one can characterise separated 𝜃𝜃’s for 

which Ω and 𝐵𝐵 are generated that are fundamentally similar. If the reduced form system is 

similar, then the estimated likelihood will be similar. Consequently, in these areas of the 

parameter space, the sampler cannot distinguish between different 𝜃𝜃’s and the estimation may 

become multimodal. 

In the Herbst and Schorfheide (2016) case, there are two important bits of information about the 

design of the system that will be utilized here. Firstly, the only matrices that are constructed 

based on 𝜃𝜃 = [𝜙𝜙𝑘𝑘𝑙𝑙, 𝜙𝜙kc, 𝜙𝜙lc] is Γ1 in 𝐵𝐵 = Γ(𝜃𝜃)1ΛΓ(𝜃𝜃)1
−1 and  Ω = Γ(𝜃𝜃)1ΘΓ(𝜃𝜃)1′. Secondly, the 

multimodality of 𝜙𝜙l𝑐𝑐 and 𝜙𝜙kc shown in Herbst and Schorfheide (2016) is restricted. Positive 

realisations of 𝜙𝜙kc are associated with negative values of 𝜙𝜙l𝑐𝑐 and vice versa.  𝜙𝜙kl is estimated to 

be unimodal and centred at around 1.57. To proceed, I choose the mode with the largest amount 

of posterior mass as a reference value:  

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = �𝜃𝜃1
𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜃𝜃2

𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜃𝜃3
𝑟𝑟𝑟𝑟𝑟𝑟� = [𝜙𝜙𝑘𝑘𝑙𝑙

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟, 𝜙𝜙𝑘𝑘𝑐𝑐
𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟, 𝜙𝜙𝑙𝑙𝑐𝑐

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟] = [1.57, −3,1]. 

As a comparison value, I construct the parameter vector 𝜃𝜃∗ as follows: 

𝜃𝜃∗ = [𝜃𝜃1
∗, 𝜃𝜃2

∗, 𝜃𝜃3
∗] = [1.57, 𝜃𝜃2

∗, 𝜃𝜃3
∗]. 

For the comparison vector, I fix 𝜙𝜙kl to the posterior mean estimate, as this parameter is estimated 

to be unimodal. The remaining two parameters are allowed to vary. To compare the reduced-

form systems based on 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  and 𝜃𝜃∗, one can construct two alternative differences Δ𝐵𝐵 and ΔΩ  as 

follows: 

Δ𝐵𝐵 = B(𝜃𝜃∗) − B(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟) = Γ(𝜃𝜃∗)1ΛΓ(𝜃𝜃∗)1
−1 − Γ(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟)1ΛΓ(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟)1

−1, 

ΔΩ = Ω (𝜃𝜃∗) − Ω (𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟) = Γ(𝜃𝜃∗)1ΘΓ(𝜃𝜃∗)1
′ − Γ(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟)1ΘΓ(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟)1

′ . 
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The matrices Δ𝐵𝐵 and ΔΩ  gives us a measure of the similarity of the reduced form matrices. If, 

in both cases, all entries are equal to zero, then the reduced form system generated from 𝜃𝜃 and 

𝜃𝜃∗ will be identical. In general, however, Δ𝐵𝐵 and ΔΩ  may not be exactly equal to zero, but 

perhaps close to zero. To get an overall measure of the similarity of the reduced form matrices, I 

rely on the Frobenius norm applied to Δ𝐵𝐵 and ΔΩ . The Frobenius norm is defined as: 

||𝐴𝐴||𝐹𝐹 = ���𝑎𝑎𝑖𝑖,𝑗𝑗
2

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
�, 

where 𝐴𝐴 is a 𝑙𝑙 by 𝑙𝑙 sized matrix. The choice of norm is not unique in this case, and different 

norms put a different emphasis on the comparison between the matrices. I experimented with 

alternatives like comparing the maximum eigenvalues. The results were similar.  

To get a sense of the space, I trace out the norm for Δ𝐵𝐵 and ΔΩ  by varying the free parameters 

in 𝜃𝜃∗ across a grid. The results for  Δ𝐵𝐵 and ΔΩ  are plotted in Fig. 1.1 and Fig. 1.2 below. On 

the z-axis is the norm of Δ𝐵𝐵 and ΔΩ  across the two graphs and on the x and y axis are the 

values for 𝜙𝜙l𝑐𝑐 and 𝜙𝜙kc. 

Fig. 1.1: 3d Graph of normed distance between AR matrices based on original mode  

 

Notes: 3d Graph plotting the normed difference, 𝑧𝑧(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜃𝜃∗), between the autoregressive matrices, 𝐵𝐵(𝜃𝜃∗) and 𝐵𝐵(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟), 
on the z-axis over a grid for 𝜙𝜙𝑙𝑙𝑐𝑐 and 𝜙𝜙𝑘𝑘𝑐𝑐. 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  is set to [1.57,−3,1] and in 𝜃𝜃∗ the first entry is fixed to 1.57. 
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Fig. 1.2: 3d Graph of normed distance between Covariance matrices based on original mode 

 

Notes: 3d Graph plotting the normed difference, z(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜃𝜃∗), between the covariance matrices, Ω(𝜃𝜃∗) and Ω(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟), over 

a grid for 𝜙𝜙l𝑐𝑐 and 𝜙𝜙kc. 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  is set to [1.57,−3,1] and in 𝜃𝜃∗ the first entry is fixed to 1.57. 

At and around the reference mode, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = [1.57, −3,1], the normed distances are naturally quite 

close to zero for both matrices that make up the reduced form system. However, there is an 

additional point in the parameter space that corresponds to the alternative mode found by Herbst 

and Schorfheide (2016), where the normed distance is small. That is around the point 𝜃𝜃∗ =

[1.57,3,−1]. What that means is that at the comparison parameter vector, 𝜃𝜃∗, the constructed 

reduced-form system is very similar to the one at the reference point. In addition, as the 

autoregressive matrices are observationally similar, the matrix 𝐴𝐴 that governs how the tax rates 

respond to output and debt ought to be very similar as well as 𝐴𝐴 is influenced by the interaction 

parameters only through the autoregressive matrix (𝐴𝐴 = [Γ0,- 𝐵𝐵Γ0]). Consequently, based on the 

design of symmetric interaction rules for the tax rates, it can be argued that this type of system 

can deliver observationally similar laws of motion for the tax rates around the posterior estimates 

found by Herbst and Schorfheide (2016). This is problematic in the sense that there are two 

similarly plausible but different structural shock series around the posterior that exist because of 

the design of the system. 

Because of the symmetric nature of the fiscal rules, there is arguably nothing particularly special 

about the multimodality found for 𝜙𝜙l𝑐𝑐 and 𝜙𝜙kc in comparison to the unimodality for 𝜙𝜙𝑘𝑘𝑙𝑙. It stands 

to reason that there may be additional unexplored modes around 𝜙𝜙𝑘𝑘𝑙𝑙 = −1.57. That is especially 
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the case as the posterior estimate for 𝜙𝜙𝑘𝑘𝑙𝑙 is of overall similar size to 𝜙𝜙l𝑐𝑐 and 𝜙𝜙kc. Therefore, I 

construct a new comparison vector: 

𝜃𝜃∗ = [𝜃𝜃1
∗, 𝜃𝜃2

∗, 𝜃𝜃3
∗] = [−1.57, 𝜃𝜃2

∗, 𝜃𝜃3
∗]. 

Based on the new 𝜃𝜃∗, I repeat the previous analysis comparing the 𝜃𝜃∗‘s to the same reference 

mode, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = [1.57, −3,1]. The results for the norm of Δ𝐵𝐵 and ΔΩ  are presented in Fig. 1.3 and 

Fig. 1.4. 

Fig. 1.3: 3d Graph of normed distance between AR matrices based on alternative mode  

 

Notes: 3d Graph plotting the normed difference, z(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜃𝜃∗),  between the autoregressive matrices, B(𝜃𝜃∗) and B(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟), 

over a grid for 𝜙𝜙l𝑐𝑐 and 𝜙𝜙kc. 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  is set to [1.57,−3,1] and in 𝜃𝜃∗ the first entry is fixed to -1.57. 

Fig. 1.4: 3d Graph of normed distance between Covariance matrices based on alternative mode 
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Notes: 3d Graph plotting the normed difference, z(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜃𝜃∗),  between the covariance matrices, Ω(𝜃𝜃∗) and Ω(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟), 

over a grid for 𝜙𝜙l𝑐𝑐 and 𝜙𝜙kc. 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  is set to [1.57,−3,1] and in 𝜃𝜃∗ the first entry is fixed to -1.57. 

  

Firstly, for Δ𝐵𝐵 there are four areas that generate matrices similar to the reference mode: 

(𝜙𝜙l𝑐𝑐 < 0 ⋀ 𝜙𝜙kc < 0), (𝜙𝜙l𝑐𝑐 < 0 ⋀ 𝜙𝜙kc > 0), (𝜙𝜙l𝑐𝑐 > 0 ⋀ 𝜙𝜙kc < 0) and (𝜙𝜙l𝑐𝑐 > 0 ⋀ 𝜙𝜙kc > 0). 

Secondly, for ΔΩ  only the areas of (𝜙𝜙l𝑐𝑐 < 0 ⋀𝜙𝜙kc < 0) and (𝜙𝜙l𝑐𝑐 > 0 ⋀𝜙𝜙kc > 0) show similar 

Covariance matrices. Based on this, there should be two additional modes in the posterior for 

which the reduced form system is observationally similar. That is at points where both Ω and B 

are observationally similar, which only holds for (𝜙𝜙l𝑐𝑐 < 0 ⋀ 𝜙𝜙kc < 0) and (𝜙𝜙l𝑐𝑐 > 0 ⋀ 𝜙𝜙kc > 0). 

To assess this, Section 1.7 re-estimates the Herbst and Schorfheide (2016) estimation using a 

significantly increased number of particles and mild prior adjustments. The goal is to ensure that 

the sampler has sufficient capacity to detect further modes. 

 

1.5  Estimation  
 

For the estimations in this chapter, I reconstruct and extend the data set as described in Leeper, 

Plante and Traum (2010). The extended data set includes the sample from Q1 1960 up to and 

including Q4 2018. To allow for direct comparisons to the Leeper, Plante and Traum (2010) and 

Herbst and Schorfheide (2016) estimations of the model, I restrict the data set to end in 2008Q1 

for the replication, multimodality, and main result section. The impact of the data set extension 

and inclusion of the financial crisis is explored in section 1.9 by examining the stability of the 

model parameters across time. The data is collected from the Bureau of Economic Analysis 

(BEA) and the FRED data with some updated data sources and minor changes. See the appendix 

for a full list of changes and data sources for a detailed description. 

Additionally, the appendix shows that all constructed series show a very high correlation with 

the original Leeper, Plante and Traum data set. Nevertheless, due to data corrections and the 

adjustments above, differences in the posterior estimates are to be expected. Section 1.6 shows 

that the posterior estimates based on this data set are close to the estimates in Herbst and 
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Schorfheide (2016), except for minor differences. For consistency, all further sections use the 

reconstructed data set.  

This chapter features two main estimation techniques: The Random Walk Metropolis-Hastings 

(RWMH) algorithm and the Sequential Monte Carlo (SMC) Sampler. I use the RWMH-V 

algorithm for the replication exercise as in Herbst and Schorfheide (2016) and Leeper, Plante and 

Traum (2010). In general, a RMWH algorithm constructs a chain of draws starting at some 

initialization and generates a sequence of draws that converges to the posterior distribution under 

ideal circumstances. The RWMH-V algorithm relies on an initial mode-finding step for the 

initialization. The posterior is then simulated using the found mode and the Hessian at the mode. 

RWMH-type algorithms work well if the posterior density is unimodal. If, however, the density 

is multimodal, RWMH algorithms typically struggle to explore anything but the initial mode. A 

solution to this problem is the Sequential Monte Carlo (SMC) sampler, as discussed in Herbst 

and Schorfheide (2016), for the use in DSGE models. The SMC sampler relies on multinomial 

approximations of a series of densities, typically from the prior to the posterior. If successful, the 

multinomial approximation can capture multimodality more robustly. Therefore, I apply the SMC 

sampler in the multimodality section and any further estimations.  

Estimation techniques aside, I utilize the highest posterior density intervals and regions as 

developed in Chen and Shao (1999) and Chen et al. (2000). If the density is multimodal, then a 

single highest posterior density interval can overstate the uncertainty of the object. This is 

because it may include all modes and, in addition, the space in between. Separating the interval 

into two, possibly disjointed regions, as proposed by Chen et al. (2000), resolves this as each 

region can be tailored to the specific mode. 

For the estimations, I use the model files published by Leeper, Plante and Traum (2010). See the 

appendix for a more detailed description of the estimation techniques and the highest posterior 

density intervals. 
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1.6  Replication 
 

This section sets out to address two things. Firstly, I present the results of estimations of the 

original Leeper, Plante and Traum (2010) model using the original data set and the RWMH-V 

procedure. Secondly, replication results for the estimation based on the diffuse prior setting with 

the SMC sampler, as in Herbst and Schorfheide (2016), are discussed.  

 

 

1.6.1  Prior and estimation detail 
 

The prior distributions for the Leeper, Plante and Traum (2010) are very standard in design and 

representative of the empirical DSGE literature. Priors for core models are chosen based on 

economically plausible arguments. Parameters that mostly relate to how well the model is going 

to fit, like the autoregressive parameters and the standard deviations, are calibrated based on 

the data construction. Overall, Herbst and Schorfheide (2016) argue that the model prior errs on 

the side of being tight but economically sound. The prior distributions are presented in Table 

1.2.  

Focusing on the utility-defining parameters, the consumption substitution parameter, 𝛾𝛾, has a 

mean of 1.75. This implies a substitution effect higher than the logarithmic specification a priori. 

The prior habit persistence of current consumption to previous aggregate consumption has a 

mean of 0.5 with a large standard deviation. This ensures that the persistence is both unassuming 

and diffuse enough to converge to a large range of values. The autocorrelation parameters of the 

AR(1) process all have a prior mean of 0.5 and a standard deviation of 0.2, allowing for a large 

range of possible autocorrelation behaviours. However, it necessarily enforces stable eigenvalues. 

The shock parameters are distributed as an inverse-Gamma with a mean of one and a standard 

deviation of 4.  

The priors for the fiscal parameters, like the core model parameters, are chosen in such a way to 

embed the model with economic intuition. The image brought forward is a government that 
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strictly saves in high debt periods and provides stimulus in economic downturns. The fiscal 

parameters can be grouped into three sets. Firstly, the parameters that govern the interactions 

between the fiscal instruments and debt. These parameters all have a gamma prior with a mean 

of 0.4 and a standard deviation of 0.2. As the gamma distribution is only defined on positive 

values, this assumption, in combination with the design of the fiscal rules, ensures that the 

response of fiscal instruments to rising debt levels is contractionary and deficit reducing.  

Table 1.2: Leeper, Plante and Traum (2010) prior 

Notes: For the P.d.f., ℊ corresponds to a Gamma prior, ℬ  is a Beta prior, 𝑖𝑖ℊ is an inverse Gamma distribution, and 

𝒩𝒩 is a normal distribution.  

Secondly, the output response parameters are constructed in a similar way with a gamma 

distribution. The implication based on the fiscal response functions is that the fiscal body reduces 

expenditure and increases taxation in response to economic growth. Lastly, the interaction 

parameters are distributed as normal distributions. Here, stronger positive interactions are 

implied by the prior between capital and labour. Comparatively, weaker interactions between 

capital and labour/consumption are expected a priori.  

The diffuse estimation by Herbst and Schorfheide (2016) explores model dynamics under a 

comparatively smaller influence of economic guidance on prior design. Changes to priors are 

restricted to fiscal parameters. The first major change is that now fiscal policy is also allowed to 

respond positively or negatively to economic growth. Unlike Leeper, Plante and Traum (2010), 

Herbst and Schorfheide (2016) do not assume that the government necessarily provides stimulus 

in economic downturns but lets the data speak for itself on the matter. 

 

Param. P.d.f mean St.dev Param. P.d.f mean St.dev Param. P.d.f mean St.dev 
            
𝛾𝛾𝑔𝑔  ℊ 0.40 0.20 𝛾𝛾 ℊ 1.75 0.50 𝜌𝜌𝜏𝜏𝑙𝑙  ℬ 0.70 0.2 
𝛾𝛾𝑡𝑡𝑡𝑡  ℊ 0.40 0.20 𝜅𝜅 ℊ 2.00 0.20 𝜌𝜌𝜏𝜏𝑐𝑐  ℬ 0.70 0.2 
𝛾𝛾𝑡𝑡𝑙𝑙  ℊ 0.40 0.20 ℎ ℬ 0.50 0.20 𝜌𝜌𝑧𝑧  ℬ 0.70 0.2 
𝛾𝛾𝑧𝑧  ℊ 0.40 0.20 𝑠𝑠′′ ℊ 5.00 0.50 𝜎𝜎𝑎𝑎  𝚤𝚤ℊ 1.00 4.00 
𝜑𝜑𝑡𝑡𝑡𝑡  ℊ 1.00 0.30 𝛿𝛿2 ℊ 0.70 0.50 𝜎𝜎𝑏𝑏  𝚤𝚤ℊ 1.00 4.00 
𝜑𝜑𝑡𝑡𝑙𝑙  ℊ 0.50 0.25 𝜌𝜌𝑎𝑎  ℬ 0.70 0.2 𝜎𝜎𝑙𝑙  𝚤𝚤ℊ 1.00 4.00 
𝜑𝜑𝑔𝑔  ℊ 0.07 0.05 𝜌𝜌𝑏𝑏  ℬ 0.70 0.2 𝜎𝜎𝑖𝑖  𝚤𝚤ℊ 1.00 4.00 
𝜑𝜑𝑧𝑧  ℊ 0.20 0.10 𝜌𝜌𝑙𝑙  ℬ 0.70 0.2 𝜎𝜎𝑔𝑔  𝚤𝚤ℊ 1.00 4.00 
𝜙𝜙𝑡𝑡𝑙𝑙  𝒩𝒩 0.25 0.10 𝜌𝜌𝑖𝑖  ℬ 0.70 0.2 𝜎𝜎𝜏𝜏𝑡𝑡  𝚤𝚤ℊ 1.00 4.00 
𝜙𝜙𝑡𝑡𝑐𝑐  𝒩𝒩 0.05 0.10 𝜌𝜌𝑔𝑔  ℬ 0.70 0.2 𝜎𝜎𝜏𝜏𝑙𝑙  𝚤𝚤ℊ 1.00 4.00 
𝜙𝜙𝑙𝑙𝑐𝑐  𝒩𝒩 0.05 0.10 𝜌𝜌𝜏𝜏𝑡𝑡  ℬ 0.70 0.2 𝜎𝜎𝜏𝜏𝑐𝑐  𝚤𝚤ℊ 1.00 4.00 

        𝜎𝜎𝑧𝑧  𝚤𝚤ℊ 1.00 4.00     
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The assumption of countercyclical debt policy is maintained. Though, an unassuming uniform 

prior is selected to ensure that the posterior estimates are driven by the likelihood of the model. 

The last major change is that the standard deviation for all parameters is increased significantly. 

Table 1.3 presents the prior changes for the diffuse prior.  

Table 1.3: diffuse prior changes 

 

Notes: For the P.d.f., ℊ corresponds to a Gamma prior, ℬ  is a Beta prior, 𝑖𝑖ℊ is an inverse Gamma distribution, and 

𝒩𝒩 is a normal distribution. 

For the replication of the Leeper, Plante and Traum (2010) estimation, I utilize the RWMH-V 

algorithm. Herbst and Schorfheide (2016) version is estimated using sequential Monte Carlo 

techniques. For more detail, see the estimation detail section before.  

 

1.6.2  Posterior estimates 
 

The key result of the posterior estimates is that both estimations using the original and diffuse 

priors are consistent with the estimates found previously with the respective techniques. All 

posterior estimates are close, and deviations are generally minor. The estimates are mostly 

contained in the HPD intervals obtained in the original papers. The results for the fiscal 

parameters are presented in Table 1.4, and for the remaining parameters, the results are described 

in Table 1.5 below.  

The key difference between the two estimations is the choice of the diffuse prior design.  For the 

fiscal interaction parameters, the replication exercise confirms the finding by Herbst and 

 

Param. P.d.f mean St.dev 
    
𝛾𝛾𝑔𝑔  𝒰𝒰 2.5 1.44 
𝛾𝛾𝑡𝑡𝑡𝑡  𝒰𝒰 2.5 1.44 
𝛾𝛾𝑡𝑡𝑙𝑙  𝒰𝒰 2.5 1.44 
𝛾𝛾𝑧𝑧  𝒰𝒰 2.5 1.44 
𝜑𝜑𝑡𝑡𝑡𝑡  𝒩𝒩 1.00 1.00 
𝜑𝜑𝑡𝑡𝑙𝑙  𝒩𝒩 0.50 1.00 
𝜑𝜑𝑔𝑔  𝒩𝒩 0.07 1.00 
𝜑𝜑𝑧𝑧  𝒩𝒩 0.20 1.00 
𝜙𝜙𝑡𝑡𝑙𝑙  𝒩𝒩 0.25 1.00 
𝜙𝜙𝑡𝑡𝑐𝑐  𝒩𝒩 0.05 1.00 
𝜙𝜙𝑙𝑙𝑐𝑐  𝒩𝒩 0.05 1.00     
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Schorfheide (2016) that the diffuse prior results in quite different posterior estimates. The choice 

of the uniform prior for the debt parameters has resulted in small changes in the posterior 

estimates, with a minor exception of 𝛾𝛾𝑡𝑡𝑙𝑙. The mean estimates for 𝛾𝛾𝑡𝑡𝑙𝑙 are on the boundaries of the 

HPD intervals of the two estimations but still contained in.  

The choice of changing the distribution of the output response parameter to a normal distribution 

has resulted in the parameters for government consumption and transfers changing sign. The 

implication is that in partial equilibrium, government consumption and transfers’ response is now 

pro-cyclical. This means that if output increases, the fiscal institute raises expenditure across the 

board. 

Table 1.4: Comparison of fiscal parameter estimates of the replication exercise 

 

Notes: The table includes estimates and HPD intervals of key fiscal parameters for both the original prior and diffuse 

prior 

Increasing the prior standard deviation has resulted in some parameters diverging significantly 

further from the prior mean than before. For example, the posterior estimates for the interaction 

parameters have changed significantly and take larger values in absolute terms. As such, the 

interaction between capital and labour taxation is now estimated to be 1.5 under the diffuse 

priors in comparison to 0.19 under the original priors. The same behaviour applies to the other 

interaction parameters. 

An indirect effect of changing the priors for the fiscal parameters is that the standard deviations 

for fiscal shocks have decreased. The shock standard deviations for tax variables have decreased 

 

Param. Original prior (RWMH-V) Diffuse prior (SMC) 

 mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] 

   
𝛾𝛾𝑔𝑔  0.16 [0.07,0.27] 0.11 [0.00,0.25] 
𝛾𝛾𝑡𝑡𝑡𝑡  0.36 [0.19,0.57] 0.37 [0.09,0.67] 
𝛾𝛾𝑡𝑡𝑙𝑙  0.12 [0.04,0.21] 0.04 [0.00,0.12] 
𝛾𝛾𝑧𝑧  0.33 [0.18,0.48] 0.33 [0.12,0.54] 
𝜑𝜑𝑡𝑡𝑡𝑡  1.72 [1.21,2.24] 2.14 [1.28,2.89] 
𝜑𝜑𝑡𝑡𝑙𝑙  0.28 [0.11,0.52] 0.11 [-0.45,0.69] 
𝜑𝜑𝑔𝑔  0.06 [0.01,0.13] -0.47 [-1.04,0.10] 
𝜑𝜑𝑧𝑧  0.17 [0.06,0.32] -0.11 [-0.68,0.54] 
𝜙𝜙𝑡𝑡𝑙𝑙  0.19 [0.14,0.24] 1.50 [1.18,1.97] 
𝜙𝜙𝑡𝑡𝑐𝑐  0.03 [-0.03,0.09] -0.19 [-3.03,2.99] 
𝜙𝜙𝑙𝑙𝑐𝑐  -0.02 [-0.07,0.04] 0.18 [-1.34,1.50]    
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the most. Implicitly, this tells us that a part of the dynamic generated by the shock processes 

under the original priors has been internalized by the modelling framework under the diffuse 

priors. In turn, this ought to reduce the standard deviation.  

Table 1.5: Comparison of the remaining parameter estimates of the replication exercise 

Notes: The table provides estimates and HPD intervals for the non-fiscal parameters of the model for the original 

and diffuse prior.  

 

1.7  Multimodality and data reconstruction 
 

Section 1.4.2 presented an argument for why there may be additional multimodality in the 

parameter 𝜙𝜙kl in combination with the pre-existing multimodality in 𝜙𝜙kc and 𝜙𝜙lc. Picking up on 

this, this section aims to explore whether the graphical analysis can be confirmed. To do so, the 

diffuse estimation is rerun using small adjustments to the SMC algorithm and the priors to ensure 

sufficient coverage.   

 

1.7.1  Prior and estimation detail 
 

To further explore the set modes, I adjust the priors chosen by Herbst and Schorfheide (2016) 

and centre the normal priors of the fiscal interaction parameters at 0. For 𝜙𝜙kc and 𝜙𝜙lc this implies 

a minor mean shift from 0.05 to 0. For 𝜙𝜙kl the mean shift is larger and from 0.25 to 0. The mean 

shift is included to shift some of the initial particles closer to the hypothesised 𝜙𝜙kl < 0 modes 

and to ensure sufficient coverage for the initial approximation. Based on initial tests, the 

 

Param. Original prior (RWMH-V) Diffuse prior (SMC) Param. Original prior (RWMH-V) Diffuse prior (SMC) 

 mean [5% - 95% HPD int.] mean [5% - 95% HPD int.]  mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] 

      

𝜌𝜌𝜏𝜏𝑐𝑐  0.93 [0.89,0.97] 0.96 [0.93,1.00] 𝛾𝛾 2.54 [1.84,3.35] 2.39 [1.48,3.22] 
𝜌𝜌𝑧𝑧  0.95 [0.91,0.98] 0.95 [0.90,0.99] 𝜅𝜅 2.15 [1.48,2.95] 2.08 [1.20,3.02] 
𝜎𝜎𝑎𝑎  0.63 [0.57,0.68] 0.63 [0.56,0.70] ℎ 0.54 [0.43,0.65] 0.54 [0.40,0.67] 
𝜎𝜎𝑏𝑏  7.18 [6.44,7.98] 6.98 [6.06,7.87] 𝑠𝑠′′ 5.52 [5.10,5.96] 5.50 [4.97,5.95] 
𝜎𝜎𝑙𝑙  2.98 [2.33,3.78] 2.81 [1.96,3.69] 𝛿𝛿2 0.29 [0.18,0.46] 0.29 [0.14,0.51] 
𝜎𝜎𝑖𝑖  6.53 [5.70,7.49] 6.27 [5.21,7.28] 𝜌𝜌𝑎𝑎  0.97 [0.95,0.99] 0.97 [0.94,0.99] 
𝜎𝜎𝑔𝑔  3.06 [2.81,3.33] 2.91 [2.58,3.23] 𝜌𝜌𝑏𝑏  0.66 [0.62,0.70] 0.65 [0.59,0.70] 
𝜎𝜎𝜏𝜏𝑡𝑡  4.43 [4.07,4.83] 1.25 [1.00,1.53] 𝜌𝜌𝑙𝑙  0.98 [0.96,1.00] 0.98 [0.96,1.00] 
𝜎𝜎𝜏𝜏𝑙𝑙  2.98 [2.73,3.25] 2.00 [1.59,2.44] 𝜌𝜌𝑖𝑖  0.54 [0.45,0.64] 0.53 [0.41,0.65] 
𝜎𝜎𝜏𝜏𝑐𝑐  4.03 [3.70,4.38] 1.15 [0.93,1.41] 𝜌𝜌𝑔𝑔  0.96 [0.94,0.99] 0.96 [0.93,0.99] 
𝜎𝜎𝑧𝑧  3.37 [3.10,3.67] 3.33 [3.00,3.68] 𝜌𝜌𝜏𝜏𝑡𝑡  0.93 [0.88,0.97] 0.94 [0.88,0.99] 

   𝜌𝜌𝜏𝜏𝑙𝑙  0.98 [0.95,0.99] 0.93 [0.86,0.99]   
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adjustment helps to improve the exploration of the proposed modes. Arguably, this is a relatively 

minor change for two reasons. The shape and uncertainty of the prior are diffuse, as per Herbst 

and Schorfheide (2016). In this case, the influence on the posterior is comparatively small. That 

is because the likelihood significantly outweighs the prior in most DSGE models, and, as such, 

the impact of the change ought to be relatively small. Fiscal interaction parameters aside, all 

other priors are consistent with Herbst and Schorfheide (2016).  

The model is then estimated using the SMC sampler. Here and going forward, I increase the 

number of particles to 20000. Increasing the number of particles in difficult posteriors that suffer 

from multimodality or non-informative likelihoods is beneficial in that the approximation 

accuracy is increasing in the number of particles. While computationally intensive, it can improve 

posterior exploration. The model is estimated on both the original Leeper, Plante and Traum 

data set and the reconstructed set. The former is labelled as Estimation I and the latter as 

Estimation II.  

 

1.7.2  Posterior estimates 
 

The estimation results are presented in Table 1.6 and Table 1.7. The parameter estimates for 

most fiscal parameters across estimations I and II are formally very consistent with the estimates 

found by Herbst and Schorfheide (2016) using 𝑁𝑁 = 6000 and the results in section 1.6 above. All 

posterior point estimates for the fiscal parameters in estimations I and II are contained in the 

HPD intervals found by Herbst and Schorfheide (2016). The multimodal fiscal interaction 

parameters differ the most. 𝜙𝜙𝑘𝑘𝑐𝑐 and 𝜙𝜙𝑙𝑙𝑐𝑐 deviate from the Herbst and Schorfheide (2016) estimates 

but are still very comfortable in the HPD interval. Based on repeated runs, it seems to be the 

case that there is some variation across runs. The posterior estimates depend on how well each 

mode is discovered in each run. 
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Table 1.6: Posterior estimate comparison for fiscal parameters for estimation I and II 

 

Notes: Posterior estimate and HPD interval comparison for key fiscal policy parameters across estimations I and II. 

Estimation I is based on the original data set, and II on the replicated set. 

Looking at the remaining model parameters, some subtle differences in the posterior estimates 

can be observed between estimations I and II and the original estimates by Herbst and 

Schorfheide (2016). For Estimation I, all remaining parameters except for 𝑠𝑠′′ are at least 

contained in the HPD interval if not very similar in absolute terms to the original estimates. 𝑠𝑠′′ 

is estimated to be significantly lower at 5.54 in comparison to 6.9. For estimation II, more 

differences can be found. Identically to estimation I, 𝑠𝑠′′ is also estimated to be significantly lower 

at 5.63. Furthermore, the shock standard deviations 𝜎𝜎𝑏𝑏 and 𝜎𝜎𝑧𝑧 are both estimated to be higher 

in the replicated dataset. Lastly, 𝛿𝛿2, which governs the depreciation of capital, is estimated to be 

significantly higher. The remaining parameters are similar to Herbst and Schorfheide's estimates 

or contained in the HPD intervals.  

 

Param. Estimation I  
(original data set) 

Estimation II 
 (replicated data set) 

 mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] 

   
𝛾𝛾𝑔𝑔  0.10 [0.00,0.25] 0.11 [0.00,0.25] 
𝛾𝛾𝑡𝑡𝑡𝑡  0.38 [0.07,0.68] 0.28 [0.07,0.52] 
𝛾𝛾𝑡𝑡𝑙𝑙  0.04 [0.00,0.13] 0.03 [0.00,0.12] 
𝛾𝛾𝑧𝑧  0.33 [0.10,0.55] 0.16 [0.00,0.43] 
𝜑𝜑𝑡𝑡𝑡𝑡  2.15 [1.33,2.95] 1.94 [1.17,2.73] 
𝜑𝜑𝑡𝑡𝑙𝑙  0.13 [−0.47,0.73] 0.12 [−0.41,0.67] 
𝜑𝜑𝑔𝑔  −0.46 [−1.07,0.10] −0.53 [−1.10,0.06] 
𝜑𝜑𝑧𝑧  −0.12 [−0.74,0.53] 0.37 [−0.50,1.22] 
𝜙𝜙𝑡𝑡𝑙𝑙  1.44 [−1.54, 2.05] 1.32 [1.00,1.70] 
𝜙𝜙𝑡𝑡𝑐𝑐  −0.15 [−3.1,3.09] 0.73 [−3.61,4.02] 
𝜙𝜙𝑙𝑙𝑐𝑐  0.12 [−1.49,1.81] −0.07 [−1.03,1.17]    
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Table 1.7 Posterior estimate comparison for the remaining parameters for estimation I and II 

Notes: The table offers posterior mean and HPD intervals for the remaining parameters.  

Fig. 1.5 shows posterior density plots and scatter plots of the particle swarm for the fiscal 

interaction parameters for estimation I. Upon a visual inspection, firstly, the original modes in 

Herbst and Schorfheide (2016) can be found. Secondly, the existence of the second mode for 𝜙𝜙𝑘𝑘𝑙𝑙  

can be confirmed.  

Fig. 1.5 shows a richer picture of multimodal interactions. Originally, the estimation by Herbst 

and Schorfheide (2016) found modes that were restricted to the following symmetric 

combinations: (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) and (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) based on 𝜙𝜙𝑘𝑘𝑙𝑙 > 0. This type of mode 

combination tells a very specific economic story. Fiscal policy at the mode (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) 

implies that the consumption tax rate and the labour taxation rate shocks have direct positive 

impacts on each other. The opposite holds true for consumption taxation and capital taxation. 

If one analyses the immediate partial equilibrium impact of a positive consumption rate shock 

on the other taxation rates, one can see that two of the rates increase while one decreases. The 

key result is that by design, this multimodal relationship is at least partially budget-balancing in 

spirit. A similar discussion can be made for the mode at (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) with the signs 

reversed. The results of estimation I show that this behaviour can be extended to a full set of 

interactions where there is a set of four alternative combinations. To illustrate this, the posterior 

includes the original modes of (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) and (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) but also allows for 

behaviour governed by the remaining two modes: (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) and (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) 

for 𝜙𝜙𝑘𝑘𝑙𝑙 < 0. These coincide with the modes proposed in Section 1.4.2 above. What this estimation 

seemingly confirms is that the multimodality arises based on the design of the fiscal rules, which 

 

Param. Estimation I  
(original data set) 

Estimation II 
 (replicated data set) Param. Estimation I  

(original data set) 
Estimation II 

 (replicated data set) 

 mean [5% - 95% HPD int.] mean [5% - 95% HPD int.]  mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] 

      

𝜌𝜌𝜏𝜏𝑐𝑐  0.96 [0.92,0.99] 0.95 [0.91,0.99] 𝛾𝛾 2.38 [1.51,3.13] 2.11 [1.34,2.90] 
𝜌𝜌𝑧𝑧  0.95 [0.9,0.99] 0.95 [0.91,0.99] 𝜅𝜅 2.01 [1.21,2.77] 2.11 [1.22,2.89] 
𝜎𝜎𝑎𝑎  0.63 [0.57,0.70] 0.62 [0.56,0.70] ℎ 0.53 [0.39,0.67] 0.58 [0.43,0.71] 
𝜎𝜎𝑏𝑏  6.96 [5.99,7.82] 9.2 [8.07,10.35] 𝑠𝑠′′ 5.54 [4.95,5.98] 5.63 [5.03,6.03] 
𝜎𝜎𝑙𝑙  2.74 [1.99,3.44] 2.79 [1.93,3.58] 𝛿𝛿2 0.30 [0.15,0.57] 0.76 [0.30,1.50] 
𝜎𝜎𝑖𝑖  6.28 [5.26,7.38] 5.24 [4.42,6.27] 𝜌𝜌𝑎𝑎  0.97 [0.94,1.00] 0.97 [0.95,1.00] 
𝜎𝜎𝑔𝑔  2.91 [2.58,3.24] 2.84 [2.54,3.18] 𝜌𝜌𝑏𝑏  0.65 [0.60,0.71] 0.49 [0.42,0.56] 
𝜎𝜎𝜏𝜏𝑡𝑡  1.25 [0.94,1.56] 1.07 [0.85,1.34] 𝜌𝜌𝑙𝑙  0.98 [0.96,1.00] 0.97 [0.95,1.00] 
𝜎𝜎𝜏𝜏𝑙𝑙  1.99 [1.29,2.50] 2.26 [1.83,2.73] 𝜌𝜌𝑖𝑖  0.53 [0.42,0.66] 0.44 [0.31,0.59] 
𝜎𝜎𝜏𝜏𝑐𝑐  1.15 [0.92,1.41] 0.84 [0.66,1.04] 𝜌𝜌𝑔𝑔  0.96 [0.93,0.99] 0.96 [0.93,0.99] 
𝜎𝜎𝑧𝑧  3.34 [2.99,3.71] 4.72 [4.21,5.22] 𝜌𝜌𝜏𝜏𝑡𝑡  0.94 [0.87,0.99] 0.93 [0.86,0.99] 

   𝜌𝜌𝜏𝜏𝑙𝑙  0.93 [0.86,0.99] 0.95 [0.88,1.00]   
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for the considered range values creates observationally similar laws of motion. There is one caveat, 

which is that the probability mass for the modes with 𝜙𝜙𝑘𝑘𝑙𝑙 < 0 is substantially smaller than for 

the remaining modes, and the area is less easily explored without prior adjustments. Only around 

5.4% of posterior particles sit at the modes with 𝜙𝜙𝑘𝑘𝑙𝑙 < 0. Consequently, the additional modes are 

less relevant in the posterior than the original modes. If the fiscal rules with symmetric 

interactions are desirable and one wants to have a unimodal posterior, then prior adjustments 

are the way to obtain this, as the data itself is not sufficient. For example, setting the prior mean 

for 𝜙𝜙𝑙𝑙𝑐𝑐 to be larger (smaller) than zero will increase the probability that only the larger (smaller) 

than zero modes will be explored.  

Mechanically, the additional modes define additional dynamics for the DSGE. The mode (𝜙𝜙𝑙𝑙𝑐𝑐 >

0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) with 𝜙𝜙𝑘𝑘𝑙𝑙 < 0 implies a scenario where, in response to a consumption taxation shock, 

all other tax rates increase, showing a purely deficit-reducing effect (or expansionary if the shock 

sign is reversed). While for (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) and 𝜙𝜙𝑘𝑘𝑙𝑙 < 0 all interaction parameters are 

estimated to be negative, and thus, any shock to one rate will force the remaining rates to 

decrease. The result is that the tax rate interactions in this posterior allow for a more complex 

set of interactions depending on the particle and perhaps hint at a diverse role of fiscal policy.  

The key feature of the increase of particles and prior changes in this section is that it underlines 

the importance of Sequential Monte Carlo (SMC) techniques for DSGE models. DSGE models 

offer both the opportunity and difficulty of incredibly expansive modelling and design approaches. 

The Leeper, Plante and Traum (2015) model is a good example of this with its fiscal interaction 

parameters. Via multimodality, the fiscal response functions can represent a diverse set of theory-

driven behaviours. The difficulty comes into the equation that increasingly complex posterior 

distributions, in turn, require increasingly elaborate statistical approaches. SMC samplers can fill 

that role convincingly. 
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Fig. 1.5 Particle Swarm and density plots for fiscal interaction parameters as in the original model 

 

Notes: For each of the three fiscal interaction parameters, 𝜙𝜙𝑘𝑘𝑙𝑙, 𝜙𝜙𝑘𝑘𝑐𝑐 and 𝜙𝜙𝑙𝑙𝑐𝑐, the above Fig. includes one density plot 

on the diagonal to showcase the multimodality independently of the other parameters. Off-diagonal plots show a 

scatter plot of the particle swarm for the selected parameters.  

 

1.8  Expanding the fiscal ruleset 
 

The specific assumption made about interactions between fiscal policy tools can be crucial in 

identifying the dynamics of fiscal policy. Therefore, exploring the dynamics generated by different 

interaction structures can aid policymakers and economists in their decision processes. After the 

initial exploration into fiscal rules and the replication, this section sets out to identify the role of 

alternative fiscal rules with an emphasis on fiscal variable interactions. I construct a set of 

candidate models to be compared based on a Bayes Factor analysis. For the best fitting models, 

I explore the effect that the new fiscal rules have on policy interventions and further characterize 

the role of multimodality using the multimodality HPD regions.  
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1.8.1  Alternative fiscal rules 
 

Here, I focus on the fiscal rules most commonly found in the literature. To start off with, the 

exogenous components, 𝑌𝑌�̂�𝑡 and 𝐵𝐵�𝑡𝑡−1, to which policymakers respond, are a fixed component 

across all considered models. This is consistent with the best-fitting model in Leeper, Plante and 

Traum (2010) and the majority of the surveyed papers in the literature review. Government 

income variables (i.e. tax rates) and spending variables (transfers and consumption) are viewed 

as separate blocks. Further, within and across block interactions are considered here. Within the 

respective budget components, variable interactions are considered to be either independent or 

to have a symmetric effect on each other (within block).9 Therefore, four possible fiscal rule 

models can be constructed from the within assumptions:  

Table 1.8: Sample of fiscal rule interactions for within-category interactions 

 

Notes: Independent indicates that within a fiscal block (e.g. taxation), all variables are set independently from each 

other. Symmetric implies the interactions as per the original specification.  

The next step in developing a general fiscal interaction ruleset is to look at across interactions 

between spending and income variables. Here, I focus on block recursive interactions, where the 

two blocks are the spending and income variables. The idea is to think of the government 

conceptually choosing, for example, its spending levels first. Based on that, it decides how to 

 
9 In the baseline Leeper, Plante and Traum (2010) model, the government considers spending variables, 
transfer and consumption, to be independent from each other and the tax income rates. The tax rates 
are set jointly via symmetric rules.  

Income rules / 

spending rules 
Independent Symmetric 

independent 

 

�̂�𝜏𝑡𝑡𝑡𝑡 = 𝜑𝜑𝑡𝑡𝑌𝑌�𝑡𝑡 + 𝛾𝛾𝑡𝑡𝐵𝐵�𝑡𝑡−1 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑡𝑡  

�̂�𝜏𝑡𝑡𝑙𝑙 = 𝜑𝜑𝑙𝑙𝑌𝑌�𝑡𝑡 + 𝛾𝛾𝑙𝑙𝐵𝐵�𝑡𝑡−1 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑙𝑙  

�̂�𝜏𝑡𝑡𝑐𝑐 = 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑐𝑐  

𝐺𝐺�𝑡𝑡 = −𝜑𝜑𝑔𝑔𝑌𝑌�𝑡𝑡 − 𝛾𝛾𝑔𝑔𝐵𝐵�𝑡𝑡−1 + 𝑢𝑢�𝑡𝑡
𝑔𝑔  

�̂�𝑍𝑡𝑡 = −𝜑𝜑𝑧𝑧𝑌𝑌�𝑡𝑡 − 𝛾𝛾𝑧𝑧𝐵𝐵�𝑡𝑡−1 + 𝑢𝑢�𝑡𝑡𝑧𝑧  

 

 

�̂�𝜏𝑡𝑡𝑡𝑡 = 𝜑𝜑𝑡𝑡𝑌𝑌�𝑡𝑡 + 𝛾𝛾𝑡𝑡𝐵𝐵�𝑡𝑡−1 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑡𝑡  

�̂�𝜏𝑡𝑡𝑙𝑙 = 𝜑𝜑𝑙𝑙𝑌𝑌�𝑡𝑡 + 𝛾𝛾𝑙𝑙𝐵𝐵�𝑡𝑡−1 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑙𝑙  

�̂�𝜏𝑡𝑡𝑐𝑐 = 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑐𝑐  

𝐺𝐺�𝑡𝑡 = −𝜑𝜑𝑔𝑔𝑌𝑌�𝑡𝑡 − 𝛾𝛾𝑔𝑔𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑔𝑔𝑧𝑧𝑢𝑢�𝑡𝑡𝑧𝑧 + 𝑢𝑢�𝑡𝑡
𝑔𝑔  

�̂�𝑍𝑡𝑡 = −𝜑𝜑𝑧𝑧𝑌𝑌�𝑡𝑡 − 𝛾𝛾𝑧𝑧𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑔𝑔𝑧𝑧𝑢𝑢�𝑡𝑡
𝑔𝑔 + 𝑢𝑢�𝑡𝑡𝑧𝑧  

 

symmetric 

�̂�𝜏𝑡𝑡𝑡𝑡 = 𝜑𝜑𝑡𝑡𝑌𝑌�𝑡𝑡 + 𝛾𝛾𝑡𝑡𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑡𝑡𝑙𝑙 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑙𝑙 + 𝜙𝜙𝑡𝑡𝑐𝑐 𝑢𝑢�𝑡𝑡𝜏𝜏

𝑐𝑐 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑡𝑡  

�̂�𝜏𝑡𝑡𝑙𝑙 = 𝜑𝜑𝑙𝑙𝑌𝑌�𝑡𝑡 + 𝛾𝛾𝑙𝑙𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑙𝑙𝑡𝑡𝑢𝑢�𝑡𝑡𝜏𝜏
𝑡𝑡 + 𝜙𝜙𝑙𝑙𝑐𝑐𝑢𝑢�𝑡𝑡𝜏𝜏

𝑐𝑐 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑙𝑙  

�̂�𝜏𝑡𝑡𝑐𝑐 = 𝜙𝜙𝑡𝑡𝑐𝑐𝑢𝑢�𝑡𝑡𝜏𝜏
𝑡𝑡 + 𝜙𝜙𝑐𝑐𝑙𝑙𝑢𝑢�𝑡𝑡𝜏𝜏

𝑙𝑙 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑐𝑐  

𝐺𝐺�𝑡𝑡 = −𝜑𝜑𝑔𝑔𝑌𝑌�𝑡𝑡 − 𝛾𝛾𝑔𝑔𝐵𝐵�𝑡𝑡−1 + 𝑢𝑢�𝑡𝑡
𝑔𝑔  

�̂�𝑍𝑡𝑡 = −𝜑𝜑𝑧𝑧𝑌𝑌�𝑡𝑡 − 𝛾𝛾𝑧𝑧𝐵𝐵�𝑡𝑡−1 + 𝑢𝑢�𝑡𝑡𝑧𝑧  

 

�̂�𝜏𝑡𝑡𝑡𝑡 = 𝜑𝜑𝑡𝑡𝑌𝑌�𝑡𝑡 + 𝛾𝛾𝑡𝑡𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑡𝑡𝑙𝑙 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑙𝑙 + 𝜙𝜙𝑡𝑡𝑐𝑐 𝑢𝑢�𝑡𝑡𝜏𝜏

𝑐𝑐 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑡𝑡  

�̂�𝜏𝑡𝑡𝑙𝑙 = 𝜑𝜑𝑙𝑙𝑌𝑌�𝑡𝑡 + 𝛾𝛾𝑙𝑙𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑙𝑙𝑡𝑡𝑢𝑢�𝑡𝑡𝜏𝜏
𝑡𝑡 + 𝜙𝜙𝑙𝑙𝑐𝑐𝑢𝑢�𝑡𝑡𝜏𝜏

𝑐𝑐 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑙𝑙  

�̂�𝜏𝑡𝑡𝑐𝑐 = 𝜙𝜙𝑡𝑡𝑐𝑐𝑢𝑢�𝑡𝑡𝜏𝜏
𝑡𝑡 + 𝜙𝜙𝑐𝑐𝑙𝑙𝑢𝑢�𝑡𝑡𝜏𝜏

𝑙𝑙 + 𝑢𝑢�𝑡𝑡𝜏𝜏
𝑐𝑐  

𝐺𝐺�𝑡𝑡 = −𝜑𝜑𝑔𝑔𝑌𝑌�𝑡𝑡 − 𝛾𝛾𝑔𝑔𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑔𝑔𝑧𝑧𝑢𝑢�𝑡𝑡𝑧𝑧 + 𝑢𝑢�𝑡𝑡
𝑔𝑔  

�̂�𝑍𝑡𝑡 = −𝜑𝜑𝑧𝑧𝑌𝑌�𝑡𝑡 − 𝛾𝛾𝑧𝑧𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑔𝑔𝑧𝑧𝑢𝑢�𝑡𝑡
𝑔𝑔 + 𝑢𝑢�𝑡𝑡𝑧𝑧  
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adjust tax rates to close the budget. Within the block-recursive structure, each first-ordered 

variable then has its own independent effect on each second-ordered variable. Below, the 

independent/independent case with spending ordered first in the block-recursive structure serves 

as an example: 

𝐺𝐺�̂�𝑡 = −𝜑𝜑𝑔𝑔𝑌𝑌�̂�𝑡 − 𝛾𝛾𝑔𝑔𝐵𝐵�𝑡𝑡−1 + �̂�𝑢𝑡𝑡
𝑔𝑔 

𝑍𝑍�̂�𝑡 = −𝜑𝜑𝑧𝑧𝑌𝑌�̂�𝑡 − 𝛾𝛾𝑧𝑧𝐵𝐵�𝑡𝑡−1 + �̂�𝑢𝑡𝑡
𝑧𝑧 

𝜏𝜏�̂�𝑡
𝑘𝑘 = 𝜑𝜑𝑘𝑘𝑌𝑌�̂�𝑡 + 𝛾𝛾𝑘𝑘𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑘𝑘𝑔𝑔�̂�𝑢𝑡𝑡

𝑔𝑔 + 𝜙𝜙𝑘𝑘𝑧𝑧�̂�𝑢𝑡𝑡
𝑧𝑧 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑘𝑘 

𝜏𝜏�̂�𝑡
𝑙𝑙 = 𝜑𝜑𝑙𝑙𝑌𝑌�̂�𝑡 + 𝛾𝛾𝑙𝑙𝐵𝐵�𝑡𝑡−1 + 𝜙𝜙𝑙𝑙𝑔𝑔�̂�𝑢𝑡𝑡

𝑔𝑔 + 𝜙𝜙𝑙𝑙𝑧𝑧�̂�𝑢𝑡𝑡
𝑧𝑧 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑙𝑙 

𝜏𝜏�̂�𝑡
𝑐𝑐 = 𝜙𝜙𝑐𝑐𝑔𝑔�̂�𝑢𝑡𝑡

𝑔𝑔 + 𝜙𝜙𝑐𝑐𝑧𝑧�̂�𝑢𝑡𝑡
𝑧𝑧 + �̂�𝑢𝑡𝑡

𝜏𝜏𝑐𝑐 

This type of structure then generates an extra six parameters independently of the ordering. As 

it is unclear if spending should be ordered first in the structure or taxation, both are considered 

here. Putting things together, all possible combinations of the afore-described structures are 

considered. This gives rise to the following set of 12 models:  

Table 1.9: Complete description of alternative models 

 

 

It is important to note that these results should not be treated as normative statements since 

the ranking among the fiscal rules may depend on the other components of the model as well, 

which in turn might be misspecified as well. This is true for any model where we do not know 

the data generating process. However, given how commonly used a fiscal model like in Leeper, 

Plante and Traum (2010) is in the literature, it is beneficial to gain a deeper understanding of 

Block recursive Intra tax Intra spend. Number of 
parameters 

    
Ind. Ind. Ind. 31 
Ind. Ind. Sym. 32 
Ind. Sym. Ind. 34 
Ind. Sym. Sym. 35 

tax first Ind. Ind. 40 
tax first Ind. Sym. 41 
tax first Sym. Ind. 43 
tax first Sym. Sym. 44 

spend. first Ind. Ind. 40 
spend. first Ind. Sym. 41 
spend. first Sym. Ind. 43 
spend. first Sym. Sym. 44 
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which fiscal rules fit the data better or what effects the fiscal stimulus has on the economy within 

that framework. 

 

1.8.2  Prior and estimation detail 
 

The prior construction for the additional parameters is purposefully unassuming and diffuse. For 

all the additional parameters across the different fiscal rule specifications, the priors are assumed 

to be normally distributed with mean zero and variance one. Therefore, no assumptions are made 

about the possible direction of effects. Additionally, for a percentage response parameter, a 

standard deviation of one covers a large range of possible effects and, as such, can be definitely 

understood as diffuse.  

The models are estimated on the replicated data set on the original time frame from 1960Q1 to 

2008Q1. All other estimation details and tuning parameters are as before.  

 

1.8.3  Posterior estimates 
 

This section presents the posterior estimates for the key fiscal interaction structures in the general 

model space described in the previous section and conducts the Bayes Factor analysis. To focus 

the analysis on the most important structures, the models are selected based on a posterior odds 

comparison:  

Pr (𝑀𝑀2|𝐷𝐷)
Pr (𝑀𝑀1|𝐷𝐷)

= Pr(𝐷𝐷|𝑀𝑀2) × Pr (𝑀𝑀2)
Pr(𝐷𝐷|𝑀𝑀1) × Pr (𝑀𝑀1)

 

All models are assumed to be equally likely a priori. Then the posterior odds comparison reduces 

to the likelihood ratio or Bayes factor, 𝐾𝐾: 

𝐾𝐾 = Pr(𝐷𝐷|𝑀𝑀2)
Pr(𝐷𝐷|𝑀𝑀1)

 

The intuition behind the Bayes factor is based on a relative comparison of the observed data 

density given the model structures. If the ratio is larger than one, then the density generated by 
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𝑀𝑀2 is larger than the outcome generated by 𝑀𝑀1. In turn, this implies that 𝑀𝑀2 is the relatively 

more credible model. For the baseline model  𝑀𝑀1 there are two comparable options. The first 

option is to choose the most restrictive model with purely independent rules. This model is a 

natural baseline case and a solid approach to analysing whether easing the restrictions is 

advantageous. The second option, which is applied here, is to view the alternative specifications 

relative to the original specification with the symmetric tax rules. The clear advantage of the 

second option is that it already allows for interactions. Therefore, it increases the burden of 

evidence required for any given specification. Thus, it also shrinks the number of competitive 

models. Typically, as in Kass and Raftery (1995), the interpretation of the Bayes factors is 

phrased in terms of a hypothesis test. If 𝐾𝐾 is sufficiently large, then there is substantial evidence 

for model two.  Here, it is used to also identify comparable models. As such, ratios close to or 

larger than one are considered for the analysis later in this section.  

Table 1.10 presents the log data density, log (𝑝𝑝(𝑌𝑌 )), the difference in log data density to the 

Leeper, Plante and Traum (2010) model, Δ, and Bayes ratio, 𝐾𝐾, for all the models considered in 

the previous section with the original Leeper, Plante and Traum (2010) structure as the 𝑀𝑀1 

choice.  

Table 1.10: Posterior odds comparison  

 

Notes: Posterior odds comparison across model categories in Table 10 

The first clear result is that the original specification is very competitive in the pool of models 

considered here. It is easily among the top three models estimated. The top three models within 

the block structures are (ind., sym., ind.), (tax first, sym., ind.) and (spend. first, sym., ind.). It 

seems that the combination of symmetric intra-tax rules and independent spending rules is 

generally preferable. Symmetric intra-tax rules are preferable to their independent counterparts. 

Block recursive Intra tax Intra spend. log(𝑝𝑝(𝑌𝑌)) Δ 𝐾𝐾 
      

Ind. Ind. Ind. -4124.62 -38.96 0.00 
Ind. Ind. Sym. -4127.71 -42.04 0.00 
Ind. Sym. Ind. -4085.66 0.00 1.00 
Ind. Sym. Sym. -4086.66 -1.00 0.37 

tax first Ind. Ind. -4124.01 -38.35 0.00 
tax first Ind. Sym. -4126.26 -40.60 0.00 
tax first Sym. Ind. -4080.5 5.17 175.32 
tax first Sym. Sym. -4084.69 0.97 0.42 

spend. first Ind. Ind. -4119.36 -33.69 0.00 
spend. first Ind. Sym. -4135.64 -49.98 0.00 
spend. first Sym. Ind. -4085.86 -0.19 0.82 
spend. first Sym. Sym. -4099.62 -13.96 0.00 
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The symmetric spending rule structure appears to be disadvantageous and generally generates 

lower data densities than the independent set. The second result seems to be that the interaction 

between spending and taxation rulesets can matter strongly. The best-fitting block recursive 

model with taxes ordered first has very strong evidence in its favour in comparison to all other 

models. The best-fitting block recursive model with spending ordered first is comparable to the 

Leeper, Plante and Traum specification with a log data density difference of -0.19.  

Moving forward, Table 1.11 presents the posterior estimates for the fiscal parameters for the best 

fitting models in each of the block recursive categories (independent, tax first, spending first). 

Model 1 corresponds to the (ind. sym. ind.) as in Leeper, Plante and Traum (2010), Model 2 is 

the (tax first, sym., ind.) version and Model 3 corresponds to the following ruleset: (spend. first, 

sym., ind.). The estimates for the original model are as per Section 1.6 above.  

Table 1.11: Posterior estimate comparison for best fitting models by category 

 

 

 

Param. Model 1 (LPT) Model 2 Model 3 

 mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] 

    

𝛾𝛾𝑔𝑔  0.11 [0.00,0.25] 0.11 [0,0.24] 0.11 [0,0.23] 
𝛾𝛾𝑡𝑡𝑡𝑡  0.28 [0.07,0.52] 0.28 [0.08,0.52] 0.29 [0.08,0.51] 
𝛾𝛾𝑡𝑡𝑙𝑙  0.03 [0.00,0.12] 0.03 [0,0.11] 0.04 [0,0.13] 
𝛾𝛾𝑧𝑧  0.16 [0.00,0.43] 0.19 [0,0.44] 0.26 [0,0.52] 
𝜑𝜑𝑡𝑡𝑡𝑡  1.94 [1.17,2.73] 2.17 [1.39,2.91] 2.2 [1.43,2.99] 
𝜑𝜑𝑡𝑡𝑙𝑙  0.12 [−0.41,0.67] 0.15 [-0.37,0.71] 0.18 [-0.37,0.73] 
𝜑𝜑𝑔𝑔  −0.53 [−1.10,0.06] -0.46 [-1.05,0.12] -0.52 [-1.07,0.01] 
𝜑𝜑𝑧𝑧  0.37 [−0.50,1.22] 0.55 [-0.29,1.39] 0.44 [-0.36,1.21] 
𝜙𝜙𝑡𝑡𝑙𝑙  1.32 [1.00,1.70] 1.35 [1.02,1.76] 1.88 [0.98,3.38] 
𝜙𝜙𝑡𝑡𝑐𝑐  0.73 [−3.61,4.02] -0.35 [-3.84,4.07] 0.47 [-3.54,3.94] 
𝜙𝜙𝑙𝑙𝑐𝑐  −0.07 [−1.03,1.17] 0.25 [-0.99,1.24] -0.07 [-1.01,1.16] 
𝜙𝜙𝑔𝑔𝑡𝑡  --- -0.08 [-0.61,0.44] --- 
𝜙𝜙𝑧𝑧𝑡𝑡  --- -0.54 [-1.69,0.49] --- 
𝜙𝜙𝑔𝑔𝑙𝑙  --- -0.15 [-0.38,0.08] --- 
𝜙𝜙𝑧𝑧𝑙𝑙  --- -0.53 [-0.95,-0.1] --- 
𝜙𝜙𝑔𝑔𝑐𝑐  --- 0.14 [-1.03,1.18] --- 
𝜙𝜙𝑧𝑧𝑐𝑐  --- -0.28 [-1.31,0.74] --- 
𝜙𝜙𝑡𝑡𝑔𝑔  --- --- -0.36 [-0.58,-0.14] 
𝜙𝜙𝑡𝑡𝑧𝑧  --- --- -0.16 [-0.29,-0.04] 
𝜙𝜙𝑙𝑙𝑔𝑔  --- --- -0.11 [-0.26,0.04] 
𝜙𝜙𝑙𝑙𝑧𝑧  --- --- -0.15 [-0.24,-0.06] 
𝜙𝜙𝑐𝑐𝑔𝑔  --- --- 0.07 [-0.12,0.27] 
𝜙𝜙𝑐𝑐𝑧𝑧  --- --- -0.14 [-0.26,-0.01] 
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For the original fiscal parameters, the estimates are generally very similar and are easily contained 

in each other's HPD intervals.  The one notable exception to this is 𝜙𝜙𝑘𝑘𝑙𝑙 under Model 3. The 

estimate is quite a bit larger, suggesting much stronger interactions between capital and labour 

tax rates in this specification. Looking at the parameters in Model 2 that make up the block-

recursive structure, one can see that the interaction generally appears to be expansionary in the 

first instance. The point estimates show that in response to a negative structural shock to tax 

rates, government spending variables typically increase in the first round. One exception is the 

point estimate for 𝜙𝜙𝑔𝑔𝑐𝑐. The same mechanism seems to hold true for Model 2, where the spending 

variables are ordered first. The parameters that do not enter the fiscal policy rules (i.e. core 

economic parameters, and specific autoregressive parameters and shock standard deviations) are 

estimated consistently across the specifications explored here and deviate at most 0.3 standard 

deviations from the standard Leeper, Plante and Traum (2010) specification. For completeness I 

provide estimation results for the non-fiscal parameters in the appendix. The next section will 

then explore the full general equilibrium mechanism using impulse responses. 

Further, under Model 2, the multimodality of the fiscal interaction parameters, 𝜙𝜙𝑘𝑘𝑙𝑙, 𝜙𝜙𝑙𝑙𝑐𝑐 and 𝜙𝜙𝑘𝑘𝑐𝑐 

of the diffuse prior estimation as part of the multimodality section is maintained though varied. 

In fact, in this estimation, the sampler picked up on three modes per parameter, as can be seen 

in Fig. 1.6 below. Fig. 1.6 shows scatter plots of the particle swarm and density plots for the 

three interaction parameters. For 𝜙𝜙𝑙𝑙𝑐𝑐 and 𝜙𝜙𝑘𝑘𝑐𝑐 two of the modes discovered are consistent with 

the previous results. The four consistent modes are around ±1 for 𝜙𝜙𝑙𝑙𝑐𝑐 and at ±3 for 𝜙𝜙𝑘𝑘𝑐𝑐. 

Implicitly, these modes describe a fiscal policy that considers setting taxation rates in a joint 

framework. Changes in one marginal taxation rate can have strong and particularly variable 

consequences for other rates. In contrast to previous results, both parameters have a third mode, 

which is illustrated by a significant probability mass around zero. This part of the parameter 

space is more reflective of a fiscal institution that considers the respective taxation rates 

independently, which extends the narrative framework for possible types of tax rate interactions. 



52 
 

Fig. 1.6: Particle Swarm and density plots for fiscal interaction parameters for estimation II 

 

Notes: For each of the three fiscal interaction parameters, 𝜙𝜙𝑘𝑘𝑙𝑙, 𝜙𝜙𝑘𝑘𝑐𝑐 and 𝜙𝜙𝑙𝑙𝑐𝑐, in estimation II, the above Fig. includes 

one density plot on the diagonal to showcase the multimodality independently of the other parameters. Off-diagonal 

plots show a scatter plot of the particle swarm for the selected parameters. 

Visually, 𝜙𝜙𝑘𝑘𝑙𝑙 hardly maintains the multimodality of the previous section, as shown by the small 

number of particles at the negative mode. The problem here might be that the posterior estimates 

of the SMC sampler seem to vary mildly across runs for difficult posteriors, and a repeated 

estimation might offer runs where the negative mode is more fully explored, as in the previous 

section. In comparison to 𝜙𝜙𝑙𝑙𝑐𝑐 and 𝜙𝜙𝑘𝑘𝑐𝑐, 𝜙𝜙𝑘𝑘𝑙𝑙 does not have a third mode at zero but at around 

three. This third mode is expressed in particles in combination with 𝜙𝜙𝑙𝑙𝑐𝑐 and 𝜙𝜙𝑘𝑘𝑐𝑐 close to zero. 

The consequence is that, for these particles, the taxation rates can be separated into labour and 

capital on the one side and consumption taxation on the other side. Capital and labour taxation 

rates interact very strongly, as symbolized by the mode of 𝜙𝜙𝑘𝑘𝑙𝑙 at around three. Opposingly, the 

consumption taxation rate operates mostly independently from the other two rates.  
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1.8.4  Impulse responses 
 

In this section, I construct impulse responses for the three best-fitting models. I focus on the 

effect of fiscal variables on output as a measure of economic performance and the debt level to 

capture the budgetary impact of each fiscal shock. To condense this room for exploration, I focus 

on two things. Firstly, I explore the effects that shocks to individual fiscal variables have on 

output as the key economic measure. Secondly, as opposed to focusing on government variables, 

here I focus on viewing aggregate budgetary impacts. This reduces the complexity of the 

interaction to what crucially matters for the policymaker: How much tax income am I going to 

have, how much is the government going to spend, and what happens to the debt level?  

Starting with the government budget constraint, the components can be divided into the 

aforementioned groups. Firstly, expenditure is defined as  𝐺𝐺𝑡𝑡 + 𝑍𝑍𝑡𝑡, summing up government 

consumption and transfers. Secondly, I aggregate capital, labour and consumption tax income to 

represent the government's total income. The last component is then set to be the debt level 𝐵𝐵𝑡𝑡. 

Alternatively, one could choose the government deficit, which is defined as 𝐵𝐵𝑡𝑡 − 𝐵𝐵𝑡𝑡−1𝑅𝑅𝑡𝑡−1. The 

advantage of the deficit characterization is that it accounts for the interest effects in the 

refinancing of previous period debt, 𝐵𝐵𝑡𝑡−1𝑅𝑅𝑡𝑡−1. In practice, working with 𝐵𝐵𝑡𝑡 is preferable as it 

turns out to be more numerically stable. The three objects of interest are: 

𝑒𝑒𝑒𝑒𝑝𝑝𝑡𝑡 = 𝐺𝐺𝑡𝑡 + 𝑍𝑍𝑡𝑡, 

𝑇𝑇𝑡𝑡 = 𝑇𝑇𝑡𝑡
𝑘𝑘 + 𝑇𝑇𝑡𝑡

𝑙𝑙 + 𝑇𝑇𝑡𝑡
𝑐𝑐, 

𝑑𝑑𝑒𝑒𝑏𝑏𝑑𝑑𝑡𝑡 = 𝐵𝐵𝑡𝑡. 

In log-linear terms, the above budget components can be approximated as follows: 

𝑒𝑒𝑒𝑒𝑝𝑝𝑡𝑡 ≈ 𝐺𝐺�1 + 𝐺𝐺�̂�𝑡� + Z�1 + 𝑍𝑍�̂�𝑡�, 

𝑇𝑇𝑡𝑡 ≈ 𝑇𝑇 𝑘𝑘�1 + 𝑇𝑇�̂�𝑡
𝑘𝑘� + 𝑇𝑇 𝑙𝑙�1 + 𝑇𝑇�̂�𝑡

𝑙𝑙� + 𝑇𝑇 𝑐𝑐�1 + 𝑇𝑇�̂�𝑡
𝑐𝑐�, 

𝑑𝑑𝑒𝑒𝑏𝑏𝑑𝑑𝑡𝑡 ≈ 𝐵𝐵�1 + 𝐵𝐵�𝑡𝑡�. 

In the final step, the components are viewed in terms of deviations from their steady state: 

𝑒𝑒𝑒𝑒𝑝𝑝�𝑡𝑡 ≈ 𝐺𝐺
𝐺𝐺 + 𝑍𝑍

𝐺𝐺�̂�𝑡 + 𝑍𝑍
𝐺𝐺 + 𝑍𝑍

𝑍𝑍�̂�𝑡, 
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𝑇𝑇�̂�𝑡 ≈ 𝑇𝑇 𝑘𝑘

𝑇𝑇
𝑇𝑇�̂�𝑡

𝑘𝑘 + 𝑇𝑇 𝑙𝑙

𝑇𝑇
𝑇𝑇�̂�𝑡

𝑙𝑙 + 𝑇𝑇 𝑐𝑐

𝑇𝑇
𝑇𝑇�̂�𝑡

𝑐𝑐, 

𝑑𝑑𝑒𝑒𝑏𝑏𝑑𝑑�
𝑡𝑡 ≈ 𝐵𝐵�𝑡𝑡. 

Fig. 1.7 presents the impulse responses of output in response to fiscal shocks for the three selected 

models: the original model, taxation first and the spending first variations. The models are coded 

as (ind., sym., ind.), (taxation first, sym., ind. ) and (spending first, sym., ind. ), respectively. 

Fig. 1.8, Fig. 1.9, and Fig. 1.10 present the impulse responses of fiscal budget components to 

fiscal shocks for the original model, taxation first and the spending first variations, respectively.  

For all impulse responses, the shock is set to one standard deviation. The time frame is fifty 

quarters for the impulse responses. Building on previous multimodality results, the resulting 

consequences for impulse responses are at the centre of the analysis conducted here.   
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Fig. 1.7: Nominal impulse responses of output to fiscal shocks for selected models 

 

Notes: The figure above displays nominal impulse responses of output to fiscal shocks for the original specification 

(ind., sym., ind.), (taxation first, sym., ind. ) and (spending first, sym., ind. ), respectively. The dash-dotted line 

represents the conditional mean associated with (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0), and the dashed line is based on particles in 

(𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0). 
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To characterize the behaviour of the multimodality, I utilize two approaches. Following Herbst 

and Schorfheide (2016), the first approach consists of constructing impulse response at different 

parts of the posterior space of the interaction parameters and analysing the consequences. To do 

so, I consider the same probability regions as Herbst and Schorfheide (2016) (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) 

and (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0), and construct the posterior mean impulse response conditioned on the 

region. In Fig. 1.7, Fig. 1.8, Fig. 1.9, and Fig. 1.10, the dash-dotted line represents the conditional 

mean associated with (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0), and dashed line is based on particles in (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧

𝜙𝜙𝑘𝑘𝑐𝑐 > 0). The advantage of this approach, as this section illustrates, is that impulse responses 

can behave fundamentally differently based on the particle samples under multimodality.  

The second approach employed is the construction of the highest posterior density intervals or 

regions where appropriate. Based on the multimodality of the interaction parameters, it’s very 

intuitive that the impulse responses may also be multimodal, and as such, calculating HPD 

regions may allow the statistician to correctly assess uncertainty in these cases. In practice, the 

HPD regions and the condition mean impulse responses show consistent results and complement 

each other well. In the graphs below, the grey-shaded area corresponds to the 95% HPD interval 

or regions. 

Starting with the analysis, the multimodality of the fiscal interaction parameters can cause 

multimodal impulse responses in all models in which the conditional mean impulse responses 

divert significantly from the unconditional mean response. The divergence is not identical for all 

shocks but depends on the specific fiscal shock. The effect of multimodality is felt strongest in 

taxation shocks and, specifically, for consumption taxation shocks for all impulse responses. Fiscal 

expenditure variables, i.e. consumption and transfers, are affected significantly less and typically 

only divert in the medium to long run.  

This creates several unusual analytics about impulse responses. Here, I focus on consumption 

taxation shocks as they are affected the most by multimodal analytics. To start off, I look at how 

effective consumption taxation is at stimulating output in Fig. 1.7. A one per cent increase in 

consumption tax rates can mean very different things for the variables considered here.  For the 

(spending first, sym. and ind.) and the (ind., sym. and ind.) models, the overall mean and the 

conditional mean impulse responses on output on impact are relatively close to zero. The mean 
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impulse response continues to stay close to zero. Alternatively, the conditional mean impulse 

responses divert from zero in the medium run. The conditional mean impulse responses based on 

(𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) becomes positive after roughly five quarters, peaking at around a 0.02 steady 

deviation of output. The other mean, based on (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0), behaves roughly the opposite 

way, decreasing below zero. Comparing the conditional mean and overall mean impulse responses 

for this shock, the natural result is that while the unconditional mean implies an inability of 

consumption tax rates shocks to stimulate the economy, the conditional means tell a story of a 

persistent and reasonably effective policy tool. The downside seems to be the time until the 

impulse responses divert from zero. The behaviour of the impulses response for the preferred 

(taxation first, sym. and ind.) model appears fundamentally different. In comparison to the other 

two models, the unconditional means deliver non-zero immediate impacts of significant magnitude 

close to the maximum impacts. After a short dip, they recover to close their maximum impact 

and then decay slowly, showing significant impacts after 50 quarters. 

At first glance, the fact that a positive consumption taxation shock can increase output in a 

model is counterintuitive. However, for all of the models above, fiscal policy has to be understood 

as a joint mechanism. Taxation and government expenditures are set jointly. Unless you impose 

any restrictions on the policy blends, unusual outcomes can be generated. For example, a 

consumption tax increase may be associated with decreases in the remaining tax rates or other 

interactions with the expenditure side. In this case, it is not obvious what the effects of the policy 

blend will be. To ascertain what is happening mechanically, I now look at the budget side to 

group the effects of the policy blends. 
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Fig. 1.8: Nominal impulse responses of fiscal budget components to fiscal shocks for the original specification 

 

Notes: The figure above displays nominal impulse responses of fiscal budget components to fiscal shocks for the 

original specification (ind., sym., ind.). The dash-dotted line represents the conditional mean associated with (𝜙𝜙𝑙𝑙𝑐𝑐 >

0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0), and the dashed line is based on particles in (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0). 

For the impulse responses of taxation income, the analytics are fairly consistent across models in 

Fig. 1.8, Fig. 1.9, and Fig. 1.10. On impact, the shock can deliver a significantly positive impact 
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at a roughly 0.50% increase based on the conditional mean of (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0). The behaviour 

of raising taxation income is consistent with the other tax rates. At the other mode, the impact 

switches sign and now decreases the tax income to a slightly lesser degree in absolute terms. In 

terms of the relative weighting of these two scenarios, the posterior mean impact is mildly 

positive, suggesting that a tax income raising effect on average is more likely.  

For the taxation impulse responses, the HPD regions initially separate into two disjointed 

intervals, and each interval contains one of the conditional mean responses roughly centred in the 

middle. The separate intervals are relatively tight, and neither contains the unconditional mean 

nor zero. Therefore, while the unconditional mean measures the average outcome, it is not 

actually itself a particularly likely outcome. Secondly, the fact that the impulse response HPD 

regions initially do not include zero implies that the impact is significantly different from zero. 

The key point is that the model predicts either positive or negative impacts on tax income but 

not zero impacts.  

This multimodality trickles down to expenditure as well. On impact, the (spending first, sym. 

and ind.) and the (ind., sym. and ind.) models predict that the impulse response of expenditure 

is close to zero for both conditional and unconditional responses. Over time, the conditional 

responses diverge and peak at ten quarters at 0.2 and -0.1 in comparison to the mean response 

at 0.8. Between quarters 5 and 30, the HPD regions separate quite strongly, each containing one 

of the two conditional means. Temporarily, zero is not contained in either HPD region, but this 

does not last. For the preferred (taxation first, sym. and ind.) model, the situation is mildly 

different. On impact, the conditional mean based on (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) delivers a slightly less 

negative initial impact than its counterpart (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) or the unconditional mean. The 

impact based on (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) is slightly below the unconditional mean. In quarter four, 

the impulse responses cross over the mean and change their relative position to the mean. 

Noticeably, the HPD intervals do not separate quite as much as in the previous two cases. The 

consequence of this multimodal behaviour is that based on the particle, the economic development 

based on the fiscal shock can be fundamentally different both in the short and long run. Naturally, 

because taxation and expenditure behave in a multimodal way, debt development is also 

multimodal.  
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The same multimodality of impulse responses also applies to capital taxation rate shocks and 

labour taxation shocks, though less easily visible as the conditional means are much closer to the 

unconditional mean, and the posterior HPD regions do not separate as much in comparison to 

the consumption taxation shocks. Nevertheless, the conditional means diverge and seem to further 

diverge in the medium run. One particular such case is found in the impulse response of output 

to a capital taxation shock in the original specification in Fig. 1.7. On impact, the conditional 

and unconditional means are very tightly packed at -0.04. Over time, they separate. The mean 

response decays slowly from -0.04 to 0. One conditional mean impulse response mirrors this with 

a much slower decay. The other unconditional mean decays much quicker, crossing over zero at 

12 quarters and then continues to deliver positive impacts.  

Summing up, multimodality can create ambiguous model analytics that can tell completely 

different economic stories while still being consistent with the observed data.  

For the remainder of this section, I move from the discussion of the consequences of multimodality 

towards the differences between the models. The main point for the impulse responses on output 

is that the fiscal interaction structure matters. A one standard deviation shock to government 

spending delivers a significant 0.15% increase to 𝑌𝑌  on impact in all models considered and then 

quickly dissipates. After ten quarters, the mean impact crosses below zero and depresses output, 

returning to the steady state only very slowly. A one per cent increase in the capital (labour) 

taxation rate decreases output on impact by 0.04% (0.06%) relative to the steady state, peaking 

shortly after and then returning to the steady state for all models. Federal consumption taxation 

rates show a mean response close to zero and never deviate all too far from the steady state. For 

the conditional means, this changes as previously discussed. The last policy tool to consider is 

transfers. There seems to be some variation in the impact multipliers to unit transfer shocks. The 

peak impact for the original parameterisation and the taxation first model is at -0.15% relative 

to the steady state and at -0.10% for the spending first alternative. The initial impact is similar 

across all models. Initially, these overall very consistent output multipliers seem puzzling. A 

reasonable explanation might be that the interaction structure between fiscal instruments matters 

less for interactions with the economy but could matter for intragovernmental finance.  This 

indeed makes up the next result.  
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Fig. 1.9: Nominal impulse responses to fiscal shocks for taxation ordered first specification 

 

Notes: The figure above displays nominal impulse responses of fiscal budget components to fiscal shocks for taxation 

ordered first specification (taxation first, sym., ind. ). The line dashed-dotted line represents the conditional mean 

associated with (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0), and the dashed line is based on particles in (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0). 

Budget component financing can change significantly depending on the interaction structure. For 

the original model, expenditure shocks (spending or transfers) cause a strong and persistent mean 

increase in the tax income of the government. This suggests that the fiscal institute prefers a self-
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balancing expenditure stimulus in comparison to a purely expansionary stimulus. Similarly, in 

response to taxation shocks, which generally raise the tax income and government expenditure 

increases. In the two models with extended interaction structures, this changes. Starting with the 

block recursive ordering with spending first, then tax rules are directly informed by government 

expenditure shocks within the same period. The result is that in this model, mean taxation 

income decreases on impact and is below the steady state for roughly eight quarters before 

switching sign and becoming relatively more budget balancing. The difference between the two 

parameterisation structures is that under the spending first structure, fiscal stimulus is initially 

purely expansionary and only becomes balancing later on. A similar dynamic holds for the 

taxation first model. In the original model, unit shocks to taxation rates cause a very low impact 

on expenditure on delivery.  This then increases a strong positive impact on expenditure. In the 

taxation first model, government spending rules receive immediate information about taxation 

shocks. This causes the impulse response of government expenditure to show a negative effect on 

impact, which only becomes positive later. Therefore, initially, the stimulus becomes purely 

expansionary from a budget point of view. For consumption taxation shocks, these dynamics are 

significantly more muddled.  The unconditional mean and the conditional mean based on (𝜙𝜙𝑙𝑙𝑐𝑐 >

0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) are consistent with the behaviour described before. The remaining unconditional 

mean shows persistent deviations below the steady state for both taxation and expenditure. 

Therefore, while the directions are reverted (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) shows a budget-balancing 

behaviour. 
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Fig. 1.10: Nominal impulse responses to fiscal shocks for spending ordered first specification 

 

Notes: The figure above displays nominal impulse responses of fiscal budget components to fiscal shocks for spending 

ordered first specification (spending first, sym., ind. ). The dash-dotted line represents the conditional mean 

associated with (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0), and the dashed line is based on particles in (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0). 
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1.8.5  Present Value Multipliers 
 

Present value multipliers are useful tools in summarizing the economic impacts of stimulus. The 

ratio that makes up the multiplier is a complex object based on the model dynamics and is 

particularly well suited to address the dynamic nature of fiscal policy and deficit financing. 

Following Mountford and Uhlig (2009), the present-value multipliers for output are defined as: 

𝑃𝑃𝑃𝑃 (𝑋𝑋)𝑘𝑘 =
∑ (∏ 𝑟𝑟𝑡𝑡+𝑗𝑗

−1𝑖𝑖
𝑗𝑗=0 ) △ 𝑌𝑌𝑡𝑡+𝑖𝑖

𝑘𝑘
𝑖𝑖=0

∑ (∏ 𝑟𝑟𝑡𝑡+𝑗𝑗
−1𝑖𝑖

𝑗𝑗=0 ) △ 𝑋𝑋𝑡𝑡+𝑖𝑖
𝑘𝑘
𝑖𝑖=0

. 

𝑋𝑋 describes the fiscal variable of interest. △ denotes level changes of the respective variables 

from their steady state. The discount factor (∏ 𝑟𝑟𝑡𝑡+𝑗𝑗
−1𝑖𝑖

𝑗𝑗=0 ) is generated based on the dynamically 

generated interest paths implied by the initial fiscal shock.  

Fig. 1.11 shows present value multipliers of output for all five fiscal shock types and their 

corresponding budget component across the three selected models: the original model, taxation 

first and the spending first variations. The time frame chosen for the analysis of the multipliers 

is 50 quarters. The behaviour of the multiplier can change dramatically over its lifetime, and 

therefore, a long but finite timeframe is considered. As in the previous section, particles at (𝜙𝜙𝑙𝑙𝑐𝑐 >

0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) and (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) are important, and I construct the posterior PV paths 

conditioned on the region. In Fig. 1.11 below, the dash-dotted line represents the conditional 

mean associated with (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0), and the dashed line is based on particles in (𝜙𝜙𝑙𝑙𝑐𝑐 <

0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0). Additionally, the grey-shaded area corresponds to the 95% HPD interval of the 

multiplier. 

Starting with government consumption multipliers, one can see that the multiplier estimates are 

fairly consistent with the literature both on impact and in general shape. On impact, all models 

deliver a multiplier of roughly 0.6, which is consistent with the result of Leeper, Plante and 

Traum (2010). Over time, the ratio decreases and eventually becomes negative. This behaviour 

is common to consumption multipliers and has been observed in Zubairy (2014) and Forni et al. 

(2009). The rate of the decay of the multiplier varies across models. The original model and the 

taxation first model behave roughly, decaying at similar rates and switching to negative at  35 
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quarters (8.75 years). The spending first model decays at a much slower rate and only crosses 

over at 50 quarters. This heavily hints at a different financing scheme in this model. 

For labour taxation multipliers, the results are again consistent with Leeper, Plante and Traum 

(2010) on impact sitting at -0.2. The original specification and the spending first share a common 

trait for labour taxation multipliers in that after a short period of negative growth over five to 

ten quarters, the multipliers stabilize close to 0.3 and 0.4, respectively. In contrast, the taxation 

first multiplier decays back to zero. Since the taxation first model is the preferred model based 

on the data density, this result paints a less optimal role of labour taxation multiplier than its 

counterparts. The transfer multipliers are consistent across models and show a very common 

pattern: on impact, the multiplier is close to zero, and over time, it grows negatively to -0.8 at 

50 quarters in.  
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Fig. 1.11: Real Present Value Multiplier of output to fiscal shocks for selected specifications 

Notes: Real Present Value Multiplier of output to fiscal shocks for the original specification (ind., sym., ind.), 

(taxation first, sym., ind. ) and (spending first, sym., ind. ), respectively. The dash-dotted line represents the 

conditional mean associated with (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0), and the dashed line is based on particles in (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 >

0). 
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For the consumption taxation multiplier, it makes sense to revisit the topic of multimodality. 

These multipliers are affected most strongly by multimodality as before. In fact, for the other 

fiscal variables, it plays a minor role, and deviations only occur in the long run, if at all. The 

behaviour of consumption multipliers is very similar to the standard impulse responses in the 

previous section. On impact, the original model and the spending first model show a conditional 

and unconditional mean multiplier close to zero. The unconditional mean stays close to zero. In 

contrast, the conditional multipliers based on (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 < 0) and (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) 

diverge and peak at large negative and positive values, respectively. In contrast to that, the 

taxation first model delivers a strong initial multiplier for  the conditional means of (𝜙𝜙𝑙𝑙𝑐𝑐 > 0 ∧

𝜙𝜙𝑘𝑘𝑐𝑐 < 0) and (𝜙𝜙𝑙𝑙𝑐𝑐 < 0 ∧ 𝜙𝜙𝑘𝑘𝑐𝑐 > 0) at -2 and 2, respectively. After a short dip, the multiplier then 

stabilizes around this value. Building on previous results, the multipliers reflect the multimodal 

behaviour of the impulse response and, therefore, illustrate the importance of this type of 

analysis. 

The odd one out in this analysis is the capital taxation multipliers. They appear relatively 

unstable and do not show the smoothness common to the other multipliers. While visually 

unappealing, the reason for this behaviour is simple. The discounted sum of steady state 

deviations of capital taxation changes the sign at different points over the horizon: 

�(�𝑟𝑟𝑡𝑡+𝑗𝑗
−1

𝑖𝑖

𝑗𝑗=0
) △ 𝑇𝑇 𝑘𝑘

𝑡𝑡+𝑖𝑖

𝑘𝑘

𝑖𝑖=0
. 

During the cross-over, the sum in the denominator becomes close to zero. This inflates the 

multiplier temporarily and explains the abrupt change of scale of the multiplier. This can happen 

at varying time frames, explaining the repeated undesirable behaviour.  

 

1.9  Sub-sample testing 
 

Fiscal policy can be understood as a slow but changing process of rules and regulations that 

develops over time. Fiscal policy is typically not time-invariant, and as such, sub-sample 

estimations can tell us a lot about its development and the variability in estimates seen in the 
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literature. To analyse this, I employ a rolling window subsample estimation procedure to explore 

the overall development of the parameters that govern the fiscal feedback rules over time for the 

preferred model (tax first, sym., ind.).  

The window size, 𝑚𝑚, is set to 20 years, and the roll-forward step is set to 10 years. Therefore, 

two bordering windows share half of each other’s observations to ensure some smoothness in the 

transitions. The initial observation for the first window is set to Q4 1968. The resulting 

subsamples are Q4 1968 – Q4 1988, Q4 1978 – Q4 1998, Q4 1988 – Q4 2008 and Q4 1998 – Q4 

2018.  

Table 1.12 Posterior estimate comparison across windows 

 

Table 1.12 shows posterior estimates for the fiscal feedback rule parameters across the different 

subsamples. Among the debt-responsive parameters, the more striking results arise. Starting with 

government consumption, the conclusion can be drawn that the fiscal tool has become 

significantly more responsive to debt levels. The debt responsiveness parameter 𝛾𝛾𝑔𝑔 has increased 

from 0.07 to 0.32 over time. The effect is that government consumption is reduced significantly 

stronger in response to rising debt levels in later samples. The same applies to the capital taxation 

rate for which 𝛾𝛾𝑡𝑡𝑘𝑘 increased from 0.15 to 0.74. Thus, in later years, the capital taxation rate 

seems to rise significantly stronger in response to changes in the debt level. The remaining debt 

parameters vary across the samples but do not offer any trending behaviours. 

 

Param. Subsample 1 
Q4 1968 – Q4 1988 

Subsample 2 
Q4 1978 –  Q4 1998 

Subsample 3 
Q4 1988 – Q4 2008 

Subsample 4 
Q4 1998 – Q4 2018 

 mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] mean [5% - 95% HPD int.] 

     

𝛾𝛾𝑔𝑔  0.07 [0.00,0.19] 0.11 [0.00,0.28] 0.29 [0.00,0.57] 0.32 [0.03,0.62] 
𝛾𝛾𝑡𝑡𝑡𝑡  0.15 [0.00,0.37] 0.43 [0.15,0.76] 0.71 [0.22,1.21] 0.74 [0.30,1.18] 
𝛾𝛾𝑡𝑡𝑙𝑙  0.09 [0.00,0.24] 0.06 [0.00,0.15] 0.25 [0.00,0.53] 0.08 [0.00,0.22] 
𝛾𝛾𝑧𝑧  0.28 [0.00,0.57] 0.07 [0.00,0.22] 0.05 [0.00,0.18] 0.19 [0.00,0.53] 
𝜑𝜑𝑡𝑡𝑡𝑡  1.89 [0.85,2.94] 2.15 [1.09,3.21] 2.60 [1.39,3.68] 2.7 [1.42,3.93] 
𝜑𝜑𝑡𝑡𝑙𝑙  -0.24 [-0.98,0.55] 0.00 [-0.49,0.53] -0.04 [-0.77,0.74] 0.2 [-0.62,1.02] 
𝜑𝜑𝑔𝑔  -0.17 [-1.00,0.64] 0.13 [-0.74,0.97] -0.35 [-1.22,0.59] -0.26 [-1.31,0.83] 
𝜑𝜑𝑧𝑧  0.94 [-0.16,2.10] 0.35 [-0.69,1.40] 1.45 [0.36,2.41] 0.94 [-0.41,2.24] 
𝜙𝜙𝑡𝑡𝑙𝑙  0.85 [-1.08,1.61] -0.15 [-0.53,0.20] 0.99 [-1.36,2.06] 1.65 [1.28,2.03] 
𝜙𝜙𝑡𝑡𝑐𝑐  0.15 [-4.39,4.23] 4.45 [3.58,5.33] 0.58 [-3.97,4.21] 1.34 [-3.43,3.74] 
𝜙𝜙𝑙𝑙𝑐𝑐  -0.30 [-2.47,2.23] 1.24 [0.71,1.81] 0.34 [-1.00,1.74] -0.19 [-0.90,0.97] 
𝜙𝜙𝑔𝑔𝑡𝑡  0.00 [-1.08,0.95] 0.10 [-0.46,0.70] -0.31 [-1.20,0.55] -0.70 [-1.52,0.07] 
𝜙𝜙𝑧𝑧𝑡𝑡  -0.48 [-1.91,1.64] -0.31 [-1.14,0.57] -0.58 [-1.68,0.72] -1.36 [-2.74,0.39] 
𝜙𝜙𝑔𝑔𝑙𝑙  0.01 [-0.49,0.71] 0.14 [-0.38,0.65] -0.33 [-0.76,0.08] -0.50 [-0.84,-0.16] 
𝜙𝜙𝑧𝑧𝑙𝑙  -0.67 [-1.40,-0.09] -0.86 [-1.54,-0.13] -0.69 [-1.28,0.05] -1.20 [-1.85,-0.57] 
𝜙𝜙𝑔𝑔𝑐𝑐  0.03 [-1.37,1.53] -1.27 [-2.08,-0.47] -0.15 [-0.99,0.68] -0.12 [-0.81,0.56] 
𝜙𝜙𝑧𝑧𝑐𝑐  0.16 [-1.94,1.99] 0.27 [-0.72,1.17] -0.32 [-1.86,1.07] -0.52 [-1.87,0.97]  
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For the output response parameters, only 𝜑𝜑𝑡𝑡𝑘𝑘 shows a sign of a clear trend. Over the subsamples 

𝜑𝜑𝑡𝑡𝑘𝑘 grows, implying that in later subsamples, the taxation rates' direct response to output growth 

is to increase stronger and stronger.  

For intra-tax interaction parameters, 𝜙𝜙𝑘𝑘𝑙𝑙, 𝜙𝜙𝑘𝑘𝑐𝑐 and 𝜙𝜙𝑙𝑙𝑐𝑐, there is not particularly strong trending 

behaviour to be observed. It is notable that all parameters experience strong variation in their 

posterior mean estimates across subsamples. 

Moving onto the block recursive parameters, 𝜙𝜙𝑔𝑔𝑘𝑘, 𝜙𝜙𝑧𝑧𝑘𝑘, 𝜙𝜙𝑔𝑔𝑙𝑙, 𝜙𝜙𝑧𝑧𝑙𝑙, 𝜙𝜙𝑔𝑔𝑐𝑐 and 𝜙𝜙𝑧𝑧𝑐𝑐,  they do not show a 

uniform trend behaviour. Though, what is apparent is that during the two most current 

subsamples, all parameters have negative posterior mean estimates, while before, the mean 

estimates were of mixed signs. If the posterior mean estimate is positive, then a unit structural 

tax shock has a direct positive impact on the respective expenditure variable. The consequence 

is that the tax shock is partly covered by the government expenditure variable moving to balance 

the budget. The consequence of negative estimates is that in response to structural tax shocks, 

the direct interaction causes a decrease in government consumption and transfers at the posterior 

mean. This type of policy is consistent with purely expansionary fiscal policy based on the 

interaction of fiscal instruments. The strong shift to negative posterior estimates across the board 

can tell us that fiscal policy seems to have embraced these purely expansionary interactions across 

the budget components. 

 

1.10  Conclusion 
 

This chapter has focused on exploring the utility of across-budget block interactions in the fiscal 

rule set using a data density comparison. The results show that across-block interactions with 

taxation ordered first can be useful in improving the model fit. Furthermore, across-block 

interactions in the fiscal rules cause policy interventions to show increased coordination. For 

example, labour and capital tax rate cuts in the best-fitting model are estimated to be associated 

with simultaneous but temporary increases in government expenditure. Both measures together 

imply that the government is conducting purely expansionary stimulus. Only after this initial 

period does the government start worrying about closing the budget. These results should be 
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interpreted with a grain of salt as this ranking of fiscal rules might change if we use a different 

DSGE model. Nevertheless, the analysis presented in this chapter provides insights for a widely 

used fiscal model. 

Herbst and Schorfheide (2016) first showed that some parameters in the Leeper, Plante and 

Traum (2010) model can be estimated as multimodal under diffuse priors and that impulse 

responses to consumption taxation shocks can consequently also become multimodal. Picking up 

on this, this chapter showed that the existence of multimodality is a by-product of the design of 

the original fiscal rules and not, by itself, a feature of the data. Furthermore, using the 

methodologies in Chen and Shao (1999) and Chen et al. (2000) for evaluating highest posterior 

density regions, this chapter shows that multimodality can lead to not only different but 

disjointed effects of policy interventions.  

One potential limitation of the fiscal rules proposed in this chapter is that fiscal policy is 

constrained to act the same regardless of the business cycle conditions. However, it seems 

reasonable, if not desirable, for fiscal policy to act depending on the circumstances of the economy 

or the government's financial situation. Chapter 2 approaches this by creating a DSGE model 

with a fiscal block that is allowed to vary its responses to the business cycle depending on selected 

economic factors. 
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Chapter 2  
 
Fiscal policy and the business cycle: An argument for 
non-linear policy rules 
 

 

2.1  Introduction 
 

The Great Recession and, especially, the Covid crisis have led to a revitalization of the interest 

in fiscal policy. Unlike its sibling, monetary policy, the fiscal policy tool repertoire offers various 

ways of interacting with households and the economy in a way that is only constrained by the 

government's budget constraint and the government’s will to legislate. As such, policymakers 

have started increasingly stepping in during economic crises by releasing unprecedented stimuli 

packages, namely the American Recovery and Reinvestment (ARRA) in late 2009 and, recently, 

the Coronavirus Aid, Relief, and Economic Security Act (CARES Act) in 2020 in the US. At the 

same time, fiscal policy interactions are not limited to economic crises but are also frequently 

deployed during economic upturns, as in the Tax Cuts and Jobs Act in 2017. This begs the 

questions, “How effective is fiscal policy in stimulating the economy?”, “Is stimulus more or less 

effective in deep recessions?” and “How do fiscal stimulus packages affect the economy in 

upturns?”. This chapter aims to study these questions by exploring the dependency of fiscal policy 

effectiveness across the business cycle in a New Keynesian framework. 

One of the main issues that arise when trying to estimate the effectiveness of fiscal policy is its 

endogeneity to the business cycle. The empirical Vector Autoregressive (VAR) literature has 

proposed various solutions from short-run restrictions and sign restrictions to the proxy structural 

VAR (SVAR) approach (see, for example, Blanchard and Perotti (2002), Mountford and Uhlig 

(2009), Mertens and Ravn (2014)). The findings in this literature differ greatly depending on the 

identification strategies, sample selection, and other factors.  

More importantly, the standard approach relies on linear models due to a variety of reasons. 

Standard linear models estimate the average effect of fiscal policy across the business cycle. 
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However, it seems reasonable that the effect of a given policy intervention can vary depending on 

the state of the economy and its participants. To illustrate this, one scenario where one would 

expect fiscal policy to be more effective than normal is the situation that caused the revival of 

interest in fiscal policy in the first place: the Zero Lower Bound (ZLB). While the ZLB is the 

most prominent case of state-dependent fiscal policy effects, others arguably exist. For example, 

other variables may include credit market imperfections such as liquidity-constrained households, 

a high public debt level, the degree of economic slack, the state of the labour market, and more.  

Studying any type of business cycle dependency requires economists to rethink the use of fully 

linear models. In essence, the conclusions that can be drawn from linear models are restricted to 

the average effect across the business cycle and do not necessarily give a full picture on the 

question: “Is stimulus more or less effective in deep recessions?”. Parker (2011, p. 708) puts this 

concisely:  

In the linearised model, the study of optimal fiscal policy is based on the answer to the 

question 'can the government raise model-based utility by conditioning government 

spending linearly on the state of the economy given that its effects are always the same?' 

and not 'can the government raise output or consumption more by increasing government 

spending in a recession than a boom and so should it?’  

To explore this question, one must move away from linear models, which are unable to capture 

these higher-order, state-dependent dynamics. In fact, both the VAR literature (see, for example, 

Auerbach and Gorodnichenko (2012), Baum and Koster (2011), Ramey and Zubairy (2018), 

among others) and the DSGE literature have started exploring how fiscal policy actions may vary 

across time and economic scenarios.  In the latter group, some of the notable studies that estimate 

state-dependent fiscal multipliers in different ways are Davig and Leeper (2010), Gomes et al. 

(2015), Sims and Wolff (2013), Sims and Wolff (2018a) and Sims and Wolff (2018b).  

To shed light on how the effects of fiscal policy depend on the business cycle I follow the non-

linear DSGE approach as in Sims and Wolff (2018a) and Amisano and Tristani (2010) and 

estimate the model on US data from 1984Q1 to 2021Q4. The core idea in Sims and Wolff (2018a) 

is that the structural equations of the DSGE entail useful information about how the effects of 

fiscal policy and fiscal policy itself relate to the measurements that characterize the business 
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cycle. These types of effects cannot be captured by a first-order linearization, and therefore, I 

rely on a higher-order approximation. For this chapter, I develop a New Keynesian model with a 

rich fiscal and monetary ruleset that is closely related to Christiano et al. (2005) and Sims and 

Wolff (2018a) and shares significant similarities with Smets and Wouters (2007).  

The fiscal ruleset includes several instruments such as consumption taxation, labour taxation, 

government consumption and transfers. The design of the fiscal instruments and their rules is 

based on Leeper, Plante and Traum (2010). Based on evidence for general non-linearity in the 

fiscal mechanism, as shown by Fernández-Villaverde et al. (2015), I include an alternative, non-

linear component in the fiscal rules in the form of a restricted second-order Taylor approximation. 

The final rules can transmit state dependency but also generate business cycle dependency by 

themselves. This allows the government to vary its responses to the business cycle based on the 

current economic circumstances. Choosing a particularly general ruleset allows the data to speak 

expressively about the dynamics. For example, the government consumption variable may act 

differently depending on the state of the government’s financial situation. If government debt is 

particularly high, it may be the case that government consumption expenditures have to be 

financed by relying more on tax hikes as opposed to raising debt. If the way the government acts 

changes based on the economic circumstances, then arguably, the effects of fiscal policy are likely 

to change, too. To illustrate this point, Leeper, Plante and Traum (2010) have shown that the 

adjustment speed to government debt is a fundamental determinant of the impact of fiscal policy. 

The model developed for this chapter can capture endogenous changes to the adjustment speed 

to debt and thus is able to predict a much wider range of possible effects for fiscal policy.  

Furthermore, I include similar non-linearities in the monetary policy rule to partially capture the 

ZLB mechanics. Standard interest rate rules designed to capture the Zero Lower Bound mechanics 

feature a kink design, in which the interest rate is driven by a standard Taylor rule if the rate is 

above the ZLB and fixed at some low constant at the ZLB. Instead, I use a ruleset in which the 

Central Bank may vary its responsiveness to inflation and output growth in accordance with a 

second-order Taylor approximation. With the financial crisis in mind, it seems reasonable that 

the crisis caused a shift in the emphasis of the central banks from controlling inflation towards 

controlling output.  
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I estimate the model and show how the following two things depend on the initial conditions of 

the economy: the behaviour implied by fiscal policy rules and the impact of fiscal policy 

interventions on output.  

Starting off with the effects of policy interventions, allowing impulse response functions to vary 

across business cycle conditions substantially increases the uncertainty about the effects of fiscal 

policy. This may explain why the empirical VAR literature generates such a broad range of 

results. I also find that all fiscal instruments are more expansionary in low-interest rate periods 

and, overall, less expansionary in periods of high debt, similar to Fotiou et al. (2020). The effects 

of government consumption are estimated to be countercyclical to output, while tax cuts are 

procyclical. 

Combining the results on business cycle dependency of the effect of policy interventions with 

estimated business cycle conditions across US history from 1984Q1 to 2021Q4 allows me to trace 

out a timeline of the effectiveness of fiscal shocks. I find that government consumption goes 

through deep cycles, and it was substantially more effective during the financial crisis and the 

Covid crisis. 

Moving on to how fiscal policy responds to the economy, I trace out how the responsiveness of 

fiscal variables output and debt changes across the sample. I show that most gradients respond 

to the debt level and adjust to ensure financial stability. For example, during the high debt 

period, which begins in the early 1990s, transfers and labour taxation start becoming more 

responsive to debt and act more strongly to reduce the deficit. 

In a similar fashion to fiscal policy, the monetary policy rule is also allowed to vary across the 

business cycle. I show that the central bank changes its behaviour based on current output growth 

and shifts its focus in economic downturns from controlling inflation to controlling output and 

vice versa.  

The final contribution of this chapter comes in the form of the empirical methods used. I estimate 

the higher-order DSGE model based on particle filter techniques to capture as much of the non-

linear dynamics as possible. Estimating non-linear DSGE models is a computationally intensive 

exercise that is the main barrier preventing economists from using these models more regularly. 

Therefore, this chapter makes a particular effort to construct a sound methodology that trades 
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off computation time and the quality of inference. Overall, the estimation time is reduced from 

weeks to days and depending on the comparison basis, computation time can be reduced by up 

to 94%. Moreover, I provide detailed guidelines for potential ways to cut down estimation time 

that I hope will be useful for others and will lead to wider use of the non-linear DSGE models. 

This chapter is structured as follows. Section 2.2 presents a literature review. Section 2.3 sets up 

the model and presents the dynamic equations. Section 2.4 presents the estimation procedures 

employed to estimate the model, a detailed discussion on the construction of the data series with 

a particular focus on fiscal instruments, and an overview of the computational methodology I 

used for the estimation and posterior estimates. Section 2.5 presents the results on state 

dependency. The appendix includes more detail on the second-order pruned system, estimation 

diagnostics, posterior density plots, re-estimation results for Amisano and Tristani (2010) and 

more detail on the code implementation.  

 

2.2  Literature review 
 

2.2.1  VAR and linear DSGE models 
 

Identifying and estimating the effects of fiscal policy intervention presents a series of complicated 

issues that have spawned a significant and diverse literature in macroeconomics. One of the main 

difficulties is the endogeneity problem of fiscal policy. Fiscal policy movements, as we can observe 

them, are typically not thought of as being purely exogenous.10 Instead, fiscal policy action may, 

in part, be motivated by the business cycle at the time of intervention. This poses a problem 

because it becomes difficult to disentangle the effect of a policy intervention on output from the 

effects of automatic responses of fiscal policy to the business cycle.  

The empirical VAR literature has produced a number of solution strategies to the identification 

problem, from imposing short-run restrictions, sign restrictions to the proxy SVAR approach. 

The canonical paper of Blanchard and Perotti (2002) imposes a mixture of short-run restrictions 

and outside calibration to identify exogenous movements. The key assumption is that fiscal policy 

 
10 Though it is argued that specific tax changes may be exogenous as for example in Romer and Romer (2010). 
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lags behind in its response to the business cycle. Their results show underwhelming effects of tax 

interventions, which are small on impact and fail to produce multipliers above one. Using a 

different approach, namely, sign restrictions, Mountford and Uhlig (2009) find that fiscal policy 

intervention can be highly effective with multipliers of up to three over a longer horizon. Similarly, 

Mertens and Ravn (2014) find higher fiscal multipliers in the short and medium run using a proxy 

SVAR approach that combines short-run restrictions with the narrative approach to identify 

effects.  

The VAR literature explores fiscal multipliers in linear models, which also encompass the linear 

DSGE model category. Linear models assume that the effect of policy interventions is independent 

of the state of the economy and is identical in all economic circumstances. In other words, it is 

based on a study of the average effect. To account for the fact that policy intervention can have 

varying effects depending on the state of the economy (e.g. as a result of more binding credit 

constraints) and can itself be a function of the state of the economy (e.g. fiscal policy rules that 

depend on output or debt in a non-linear fashion), the literature has moved towards more flexible 

models.  

On the VAR side, Auerbach and Gorodnichenko (2012) pioneered the use of regime-switching 

VAR models with smooth transitions. Regime-switching VAR models divide the business cycle 

into phases, and transitioning between phases may be induced by a set of economic circumstances. 

In each phase, the economy behaves according to a standard linear VAR model and is 

conditionally linear. The consequence is that fiscal policy effectiveness can vary from phase to 

phase. The results of Auerbach and Gorodnichenko (2012) established two key ideas. Firstly, they 

find that fiscal policy effectiveness does indeed vary across the phases. Secondly, they find strong 

evidence that fiscal policy behaves in the classical Keynesian sense. For expansionary phases, 

they find that the government spending multipliers are between 0 and 0.5 and in depressions or 

recessions, the multiplier is between 1 and 1.5.  

Auerbach and Gorodnichenko (2012) spawned an entire literature on state-dependent effects of 

fiscal policy in VAR models. Baum and Koster (2011), Ferraresi, Roventini and Fagiolo (2014) 

and Fazzari, Morley and Panovska (2015) all find results consistent with the classical Keynesian 

worldview in that fiscal policy seems to be more effective in phases of negative output gaps, tight 
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credit regimes and considerable economic slack, which are typically associated with economic 

downturns. However, there is also somewhat contradictive evidence provided by Ramey and 

Zubairy (2018) and Owyang, Ramey and Zubairy (2013). Both papers suggest that fiscal 

multipliers may not be as dependent on economic slack and do not generally deliver multipliers 

larger than unity.  Ramey and Zubairy (2018) argue that the difference arises from different 

assumptions in the construction of the impulse responses. In particular, for the construction of 

the impulse responses, Auerbach and Gorodnichenko (2012) assume that the economy will stay 

in the initial state for 20 quarters, while Ramey and Zubairy (2018) aim to take into account the 

average duration of each phase. The uncertainty in state-dependent effects goes even further, as 

Arin et al. (2015) suggest that tax multipliers may even be procyclical.  

More recently, in a Panel Vector Auto Regression model, Huidrom et al. (2020) find that there is 

a relationship between fiscal multipliers and fiscal positions. Their results show that fiscal 

multipliers are smaller when the fiscal positions are weak. Fotiou et al. (2020) find that the output 

effect of capital income tax cuts is dependent on government debt. Output multipliers become 

expansionary when debt is low and decrease in effectiveness when debt is high. Similarly, in a 

study focusing on debt stabilization, Fotiou (2022) finds that the initial conditions of government 

debt are determinants of the effects of fiscal policy interventions on output growth. They find 

that if government debt is low, then tax-based shocks are more productive on output growth in 

expansions than in recessions. Demirel (2021) shows that the effects of tax changes are more 

muted in periods of high unemployment.  

Similar to the VAR literature, the fiscal DSGE literature has also emphasized business cycle 

dependency of the effects of interventions. The main focus so far has been on introducing specific 

mechanisms that allow fiscal policy effects to vary. In a seminal paper, Woodford (2011) explores 

how the effectiveness of government purchases varies with the type of monetary accommodation 

by the central bank in analytically tractable New Keynesian models. The central finding of 

Woodford (2011) is that when the central bank follows its targeting rule for the interest rate, 

then fiscal policy is less effective and can only offer multipliers of up to one. However, if monetary 

policy is constrained, fiscal multipliers become significantly more effective. Similar ideas were 

developed in Christiano, Eichenbaum and Rebelo (2011). Drautzburg and Uhlig (2015) and 
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Boubaker, Khuong Nguyen and Paltalidis (2018) provide empirical evidence by estimating DSGE 

models with Zero Lower Bound constraints, and they find consistent results.  

A different mechanism that has been explored is the role of fiscal policy in heterogeneous agent 

models. While the representative household of an economy may not experience hard constraints 

in a crisis, sub-sets of the population may, for example, be credit-constrained. By definition, 

credit-constrained households are limited in their ability to borrow. What that means is that in 

a crisis, these households will not be able to borrow against future income to smooth consumption 

today in the same way as their Ricardian counterparts. Transfers, government consumption 

expenditures or tax cuts allow these households to avoid the hard credit constraints and to 

directly raise their consumption closer to the level of the Ricardian agents. Roeger and in’t Veld 

(2009) show that an increased share of non-Ricardian households can increase the effectiveness 

of fiscal policy measures drastically. Furthermore, the introduction of Ricardian and non-

Ricardian households introduces a natural source of variation for fiscal policy effectiveness across 

the business cycle, as explored in Krajewski and Szymansk (2019). They show that recessions 

can increase the share of non-Ricardian households, and as this share rises, fiscal policy becomes 

more effective. Other papers that focus on heterogenous agent models with credit constraint 

agents include Galí et al. (2007) and Kaplan and Violante (2014).  

 

2.2.2  Non-linear DSGE models 
 

Modern DSGE models are defined by a set of linear and non-linear equations. Typically, these 

models are not solvable in their general form, with the exception of simplistic models. In practice, 

one often resorts to varying levels of Taylor approximations or conditionally linear models.11 

Naturally, if one approximates a model, some of the original characteristics of the model may be 

lost. The key question here relates to how non-linear DSGE models are. As DSGE models feature 

 
11 Note that first-order Taylor approximations are the perfectly appropriate in many scenarios depending on the model, 
data and modelling framework. Further, they can have huge computational advantages when it comes to inference. On 
the question of how appropriate first-order Taylor approximations, the answer seems to be: it depends. In many smaller 
modelling frameworks there is evidence that linear models can have negligible approximations errors. However, there 
is also conflicting evidence that even in those cases. Fernández-Villaverde and Rubio-Ramirez (2005) and An and 
Schorfheide (2007) show that in small, typically, nearly linear models the effect of including higher-order terms can 
improve the fit of the models, change posterior distributions, and deliver different moment estimates.  
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linear or nearly linear equations, like the capital accumulation law, some subcomponents will 

necessarily behave approximately, if not exactly, linear. But frequently, economists introduce 

simple mechanics like multiplicative shocks and scale-dependent decision-making that can push 

a model to be more non-linear. To illustrate this, take a simple non-stochastic Euler Equation in 

a model with log utility: 

1
𝐶𝐶𝑡𝑡

= 𝛽𝛽𝑅𝑅𝑡𝑡
1

𝐶𝐶𝑡𝑡+1
. 

Euler equations define a trade-off between current, 𝐶𝐶𝑡𝑡, and future consumption, 𝐶𝐶𝑡𝑡+1, as governed 

by the real interest rate, 𝑅𝑅𝑡𝑡, and the discounting factor 𝛽𝛽. A standard question to ask would be, 

“What is the household’s response to a change in the interest rate?” Here, I focus on the partial 

equilibrium case to build intuition on the problem of curvature. The answer to this question is it 

depends. The gradient of current consumption to interest rates reveals two things: 

𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝑅𝑅𝑡𝑡

= (−1)𝛽𝛽𝐶𝐶𝑡𝑡
𝐶𝐶𝑡𝑡

𝐶𝐶𝑡𝑡+1
. 

Firstly, the partial equilibrium effect of an increase in interest rates implies a reduction in current 

consumption as all variables are positively valued. Secondly, the size of the reduction depends on 

the level of current and future consumption. For example, if future consumption is higher, then 

the gradient is smaller. If the Agent expects to be well-off in the future, there is less of an 

advantage to save, and thus, the Euler equation implies a smaller response to changes in the 

interest rate. Further, if the Agent is well-off today, it responds much stronger to changes in the 

interest rate and reduces consumption by more than if it was not well-off. Hence, even in this 

simple model, the consumption response to the changes in the interest rate is non-linear in the 

levels of both current and future consumption.  

Sometimes, state dependency may be solved by a change of variable. For example, if one looks 

at the log of consumption and interest rate as the measure of interest, then the equation can be 

simplified as follows: 

𝜕𝜕ln (𝐶𝐶𝑡𝑡)
𝜕𝜕ln (𝑅𝑅𝑡𝑡)

= (−1). 
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However, other popular changes of variables like relative steady state deviations may not get rid 

of the state dependency without approximations: 

 𝜕𝜕𝐶𝐶�̃�𝑡

𝜕𝜕𝑅𝑅�𝑡𝑡
= (−1)𝛽𝛽𝑅𝑅�1 + 𝐶𝐶�̃�𝑡�

�1 + 𝐶𝐶�̃�𝑡�

�1 + 𝐶𝐶�̃�𝑡+1�
, 

where non-index variables correspond to steady state values and 𝑒𝑒�̃�𝑡 corresponds to the percentage 

deviation from the steady state for the variable 𝑒𝑒𝑡𝑡. So, while in some incidences, state dependency 

can be solved, in general, it cannot be solved for all variable formulations and types of non-linear 

equations. For example, considering a more complex utility function with habit persistence would 

complicate things significantly. Consequently, by including higher-order approximation terms, we 

can learn about how the representative household may vary its response to economic variables 

depending on its circumstances.  

Sims and Wolff (2018a) explore how fiscal policy effects of tax cuts may vary with business cycle 

conditions in a more general sense, where the properties of a higher-order Taylor approximation 

of the fiscal model are explored using parameter draws coming from a linear estimation of the 

same model. Sims and Wolff (2018a) focus on the co-movement between tax multipliers and the 

level of output in the business cycle. For a small and analytical example, they illustrate that 

labour tax cuts are state-dependent and, in particular, covary with the level of output and the 

level of taxation. In particular, they show that tax rate multipliers are larger when the level of 

output is higher, in contrast to classical Keynesian model predictions. For government spending, 

Sims and Wolff (2013) and Sims and Wolff (2018b) observe some variation but to a lesser degree.  

In this chapter, I follow the approach by Sims and Wolff (2018a) by estimating a higher-order 

DSGE model with rich fiscal and monetary policy rules. Using the estimated model, I explore 

how the effects of fiscal policy interventions relate to the business cycle conditions and how the 

behaviour of the fiscal government, as implied by the fiscal rule functions, changes depending on 

the business cycle.  
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2.3  Model description  
 

The following section describes the New Keynesian model developed in this chapter. The model 

is closely related to Amisano and Tristani (2010) but also features significant similarities with 

Smets and Wouters (2007) and Leeper, Plante and Traum (2010). The section is divided into 

four parts. Sections 2.3.1 and 2.3.2 describe the federal government and how the federal 

government rules change over the business cycle. Sections 2.3.3 and 2.3.4 do the same for the 

monetary rule set included in this model. Sections 2.3.5 , 2.3.6 and 2.3.7 complete the model 

setup by describing the household and firm problem followed by closing conditions. Lastly, section 

2.3.8 describes the prior distribution of the model parameters. 

 

2.3.1  Fiscal Policy 
 

The key component of this model is its fiscal policy mechanism. Fiscal policy has become an 

increasingly important addition to the policy toolbox in crises. This is highlighted by large 

stimulus packages during the financial crisis of 2008 and during the Covid-19 crisis. As such, 

questions like “Is fiscal policy effective in economic crises?” or “How does the current state of the 

economy (in crisis or boom) affect the utility of fiscal policy?” are crucial and ought to be 

answered.  

It is worth to note that even if the fiscal rules are linear, fiscal variables might respond to other 

variables such as consumption, output or federal debt, which in turn exhibit non-linear dynamics 

in the economy.  However, I argue that allowing for non-linear fiscal policy rules significantly 

enriches the model for several reasons. First, it is reasonable to assume that governments follow 

different rulesets in financial crises than at and around the steady state. Second, it provides for 

more flexible response options for the fiscal variables than the standard model. To explore how 

the behaviour of fiscal policy changes, I later explore how the gradients of the fiscal policy rules 

change across the observed time period. The gradients in turn tell us something about the inner 

workings of the government and how it shifts the way it responds to the economy based on the 

state of the business cycle.  
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To illustrate the usefulness of rulesets that can vary across economic conditions, I will now delve 

into some scenarios where such rules may be advantageous. The standard way to model fiscal 

response functions is to constrain the debt and output response parameters in such a way that 

the government always responds to changes in debt and GDP to stabilize the budget. In practice, 

that implies government spending that is countercyclical to output and debt. In an economic 

downturn, the government is encouraged to start spending to bring the economy back on track 

and in upturns, it reduces spending to bring debt back to the steady state. For tax rates, the 

opposite applies. While mechanically a reasonable and desirable modelling property, there is 

evidence that government spending can, at times, be procyclical to output. Ideally, a ruleset 

would be able to represent both aspects of government spending. In addition, it can be argued 

that in severe economic crises, the government may choose to ignore or soften budgetary rules to 

stimulate the economy effectively. This can more easily explain how large financial packages like 

the American Recovery and Reinvestment Act or recent Covid measures are consistent with 

stable government dynamics.  

To sum up, in order to capture the full potential range of business cycle dependency that fiscal 

policy offers, the ruleset is required to be flexible enough to vary across the cycle. In order to 

comply with this, I focus on the canonical fiscal rules design as in Leeper, Plante and Traum 

(2010). Their approach is to think about fiscal policy purely as a reaction function to its past 

values and the economy. Let 𝑧𝑧𝑡𝑡 be a vector of fiscal variables and let 𝑒𝑒𝑡𝑡be a set of variables that 

fiscal policy responds to. This may include its past values, shocks, and other economic variables. 

The way fiscal policy responds is governed by a vector-valued function 𝑓𝑓 that ought to be 

recovered. Together, fiscal policy can be defined as: 

𝑧𝑧𝑡𝑡 = 𝑓𝑓(𝑒𝑒𝑡𝑡). 

In practice, the functional form of 𝑓𝑓 is unknown. Leeper, Plante and Traum (2010), for example, 

assume that 𝑓𝑓 is linear and fiscal instruments respond to past values of themselves, government 

debt and output. However, there are various ways to construct 𝑓𝑓 depending on the a priori beliefs 

of the economist. To capture the two components of state dependency, I rely on a second-order 

Taylor approximation of 𝑓𝑓 . This approximation is then restricted based on economic a-priori 

beliefs to build the final fiscal rules. Using Taylor approximations as fiscal rulesets has some 
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advantages in the DSGE application. Firstly, the higher-order terms can allow the gradients of 

the response function to change across the business cycle and, thus, capture some of the desired 

dynamics. Secondly, as the Taylor approximation is smooth and unbounded, it easily integrates 

into the DSGE solution strategies.12 A second-order Taylor approximation of 𝑓𝑓 around the steady 

state, 𝑒𝑒,̅ can be constructed as follows: 

𝑧𝑧𝑡𝑡 ≈  𝑓𝑓(𝑒𝑒)̅ + 𝐷𝐷𝑓𝑓(𝑒𝑒)̅(𝑒𝑒𝑡𝑡 − 𝑒𝑒)̅ + 1
2
𝐻𝐻𝑓𝑓(𝑒𝑒)̅ ∗ [(𝑒𝑒𝑡𝑡 − 𝑒𝑒)̅⨂(𝑒𝑒𝑡𝑡 − 𝑒𝑒)̅], 

where 𝐷𝐷𝑓𝑓(𝑒𝑒)̅ is a matrix of first-order derivatives and 𝐻𝐻𝑓𝑓(𝑒𝑒)̅ can be constructed based on the 

Hessian matrices of the individual equations. The remaining task is to restrict the different 

components of this approximation in a sensible way. Most common strategies rely on 𝐻𝐻𝑓𝑓(𝑒𝑒)̅ = 0 

in linear models and focus on 𝐷𝐷 𝑓𝑓(𝑒𝑒)̅ and 𝑓𝑓(𝑒𝑒)̅. The main feature utilized in this chapter is the 

option to parameterize 𝐻𝐻𝑓𝑓(𝑒𝑒)̅ directly as it could deliver useful insights.  

The model includes the following fiscal variables in the vector 𝑧𝑧𝑡𝑡 at time 𝑑𝑑: consumption tax rate, 

𝜏𝜏𝑡𝑡
𝑐𝑐, labour tax rate, 𝜏𝜏𝑡𝑡

𝐿𝐿, government consumption, 𝐺𝐺𝑡𝑡, and transfers, 𝑍𝑍𝑡𝑡. This model excludes 

capital and, hence, capital taxation for the reason that computation time grows in a super-linear 

fashion with the number of states. The main restriction is that they respond linearly to their 

past values and shocks but may depend linearly and non-linearly on the economic variables of 

output, 𝑌𝑌𝑡𝑡,  inflation, 𝜋𝜋𝑡𝑡, productivity, 𝐴𝐴𝑡𝑡, and debt, 𝐵𝐵𝑡𝑡. The Taylor approximation can then be 

restricted to: 

𝑧𝑧𝑡𝑡 =  𝐴𝐴 + 𝐵𝐵(𝑧𝑧𝑡𝑡−1 − 𝑧𝑧)̅ + 𝐶𝐶(𝑦𝑦𝑡𝑡 − 𝑦𝑦)̅ + 1
2
𝐷𝐷 ∗ [(𝑦𝑦𝑡𝑡 − 𝑦𝑦)̅⨂(𝑦𝑦𝑡𝑡 − 𝑦𝑦)̅] + 𝐸𝐸𝑣𝑣𝑡𝑡,   𝑣𝑣𝑡𝑡~𝑁𝑁(0, 𝐼𝐼),  

where in this application: 

𝑧𝑧𝑡𝑡 = [𝜏𝜏�̃�𝑡
𝑐𝑐, 𝜏𝜏�̃�𝑡

𝑙𝑙, 𝑍𝑍�̃�𝑡,𝐺𝐺�̃�𝑡]′ and 𝑦𝑦𝑡𝑡 = �𝑌𝑌�̃�𝑡, 𝜋𝜋�̃�𝑡, 𝐴𝐴�̃�𝑡, 𝐵𝐵�𝑡𝑡�
′
. 

All variables are expressed in terms of steady state deviations, as indicated by the tilde. The 

matrix 𝐴𝐴 of the approximation is set to 0, and 𝑧𝑧 ̅and 𝑦𝑦 ̅can be dropped because they are zero at 

the steady state. 𝑣𝑣𝑡𝑡 is the vector of fiscal shocks. For this application, I set 𝐵𝐵 and 𝐸𝐸 to diagonal 

 
12 To illustrate this, an alternative could be a piecewise linear approach. Arguably, one could divide the fiscal system 
into two subsystems: one that is active in crisis and a standard reference system. However, this brings other 
challenges with it, like estimating which system is active when. 
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matrices with parameters along the diagonal. 𝐶𝐶 and 𝐷𝐷 are fully parameterized to capture the 

potential non-linearity of fiscal policy for all instruments but 𝜏𝜏𝑡𝑡
𝑐𝑐. Based on Leeper, Plante and 

Traum (2010), the federal consumption tax rate in the US focuses mainly on taxes for specific 

goods like gasoline or cigarettes. Because of this, the process for 𝜏𝜏𝑡𝑡
𝑐𝑐 is restricted to be linear, 

exogenous and expressed in log steady state deviations: 

𝜏𝜏�̃�𝑡
𝑐𝑐 = 𝑝𝑝𝜏𝜏𝑐𝑐𝜏𝜏�̃�𝑡−1

𝑐𝑐 + 𝜎𝜎𝜏𝜏𝑐𝑐𝑣𝑣𝑡𝑡
𝜏𝜏𝑐𝑐,     𝑣𝑣𝑡𝑡

𝜏𝜏𝑐𝑐~𝑁𝑁(0,1). 

Here, 𝑝𝑝𝜏𝜏𝑐𝑐  is an autoregressive parameter with 𝑝𝑝𝜏𝜏𝑐𝑐 ∈ (0,1) and 𝜎𝜎𝜏𝜏𝑐𝑐 is the standard deviation of 

the structural consumption taxation shock 𝑣𝑣𝑡𝑡
𝜏𝜏𝑐𝑐 . For the remaining fiscal variables, the law of 

motion can be rewritten as follows for a fiscal instrument 𝑒𝑒�̃�𝑡: 

𝑒𝑒�̃�𝑡 = 𝑝𝑝𝑥𝑥𝑒𝑒�̃�𝑡−1 + (1 − 𝑝𝑝𝑥𝑥)�𝑘𝑘𝜇𝜇𝑥𝑥,𝑌𝑌 𝑌𝑌�̃�𝑡 + 𝜇𝜇𝑥𝑥,𝜋𝜋𝜋𝜋�̃�𝑡 + 𝑘𝑘𝜇𝜇𝑥𝑥,𝐵𝐵𝐵𝐵�𝑡𝑡 + 𝜇𝜇𝑥𝑥,𝐴𝐴𝐴𝐴�̃�𝑡 + 0.5 ∗ 𝜑𝜑𝑥𝑥,𝑌𝑌 ,𝑌𝑌 𝑌𝑌�̃�𝑡
2 + 𝜑𝜑𝑥𝑥,𝜋𝜋,𝑌𝑌 𝜋𝜋�̃�𝑡𝑌𝑌�̃�𝑡 +

𝜑𝜑𝑥𝑥,𝐴𝐴,𝑌𝑌 𝑌𝑌�̃�𝑡𝐴𝐴�̃�𝑡 + 𝜑𝜑𝑥𝑥,𝐵𝐵,𝑌𝑌 𝑌𝑌�̃�𝑡𝐵𝐵�𝑡𝑡 + 0.5 ∗ 𝜑𝜑𝑥𝑥,𝜋𝜋,𝜋𝜋𝜋𝜋2̃
𝑡𝑡 + 𝜑𝜑𝑥𝑥,𝜋𝜋,𝐴𝐴𝜋𝜋�̃�𝑡𝐴𝐴�̃�𝑡 + 𝜑𝜑𝑥𝑥,𝜋𝜋,𝐵𝐵𝜋𝜋�̃�𝑡𝐵𝐵�𝑡𝑡 + 0.5 ∗ 𝜑𝜑𝑥𝑥,𝐵𝐵,𝐵𝐵𝐵𝐵�𝑡𝑡

2 +

𝜑𝜑𝑥𝑥,𝐵𝐵,𝐴𝐴𝐵𝐵�𝑡𝑡𝐴𝐴�̃�𝑡 + 𝜑𝜑𝑥𝑥,𝐴𝐴,𝐴𝐴𝐴𝐴𝑡𝑡
2� + 𝜎𝜎𝑥𝑥𝑣𝑣𝑡𝑡

𝑥𝑥,   𝑣𝑣𝑡𝑡
𝑥𝑥~𝑁𝑁(0,1), 𝑘𝑘 = 1 𝑖𝑖𝑓𝑓 𝑒𝑒�̃�𝑡 = 𝜏𝜏�̃�𝑡

𝑙𝑙 𝑎𝑎𝑙𝑙𝑑𝑑 𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒 𝑘𝑘 = −1,    

where 𝑝𝑝𝑥𝑥 ∈ (0,1), 𝜇𝜇𝑥𝑥,𝑌𝑌 > 0 and 𝜇𝜇𝑥𝑥,𝐵𝐵 > 0. 𝜎𝜎𝑥𝑥 corresponds to the standard deviation of the 

structural fiscal shock 𝑣𝑣𝑡𝑡
𝑥𝑥. The remaining parameters are unbounded. Thus, the fiscal instruments 

are allowed to respond to the changes in economic circumstances based on a particularly rich 

ruleset. The linear response terms govern the behaviour of the fiscal rule at the steady state of 

the economy, while state dependency is introduced via the inclusion of higher-order terms. As 

the economy moves away from the steady state, the second-order terms become active and may 

change the standard behaviour of the rules implied at the steady state. 

To ensure the solvency of the federal government, it has to follow the budget constraint below. 

Based on the labour and consumption tax rates, it receives tax income on the corresponding tax 

bases of consumption expenditures, 𝐶𝐶𝑡𝑡, and total labour income, ∫ 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)𝑑𝑑𝑖𝑖1
0

. Here 𝑊𝑊𝑡𝑡(𝑖𝑖) 

corresponds to the wage received by the household from firm 𝑖𝑖  in a continuum of firms with a 

labour supply of 𝐿𝐿𝑡𝑡(𝑖𝑖). The government has expenditures in the form of transfers to households, 

𝑍𝑍𝑡𝑡, and government consumption expenditures, 𝐺𝐺𝑡𝑡. Lastly, the government gives out one-period 

bonds, 𝐵𝐵𝑡𝑡, to finance operations.  

𝜏𝜏𝑡𝑡
𝐶𝐶

1 + 𝜏𝜏𝑡𝑡
𝐶𝐶 𝐶𝐶𝑡𝑡 + 𝜏𝜏𝑡𝑡

𝐿𝐿

1 + 𝜏𝜏𝑡𝑡
𝐿𝐿

1
𝑃𝑃𝑡𝑡

� 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)𝑑𝑑𝑖𝑖
1

0
+ 𝐵𝐵𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝐺𝐺𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝐵𝐵𝑡𝑡−1

𝜋𝜋𝑡𝑡
. 



90 
 

 

2.3.2  State dependency of the fiscal rule set 
 

To explore how fiscal policy may respond to the economy, I will now show how government 

consumption, 𝐺𝐺�̃�𝑡, responds to changes in federal debt in this ruleset as a representative case for 

the remaining variables. Differentiating the fiscal response function with respect to output, we 

get: 

𝜕𝜕𝐺𝐺�̃�𝑡

𝜕𝜕𝐵𝐵�𝑡𝑡
= (1 − 𝑝𝑝𝐺𝐺)�−𝜇𝜇𝐺𝐺,𝐵𝐵 + 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵𝐵𝐵�𝑡𝑡 + 𝜑𝜑𝐺𝐺,𝐴𝐴,𝐵𝐵𝐴𝐴�̃�𝑡 + 𝜑𝜑𝐺𝐺,𝑌𝑌 ,𝐵𝐵𝑌𝑌�̃�𝑡 + 𝜑𝜑𝐺𝐺,𝜋𝜋,𝐵𝐵𝜋𝜋�̃�𝑡�. 

If the economy is at its steady state, then marginal changes in the federal debt level, 𝐵𝐵�𝑡𝑡, have a 

fixed effect on 𝐺𝐺�̃�𝑡 as all other state variables are equal to zero and drop out. At the steady state, 

the responsiveness is governed by (1 − 𝑝𝑝𝐺𝐺)�−𝜇𝜇𝐺𝐺,𝐵𝐵� with 𝜇𝜇𝐺𝐺,𝐵𝐵 > 0 and 𝑝𝑝𝐺𝐺 ∈ (0,1).   That means 

that as government debt goes up, government consumption goes down to stabilize the budget. 

So, for a given set of parameters, a linear ruleset and a second-order ruleset observed at the 

steady state are indistinguishable. However, as the economy moves away from the steady state, 

the gradient 𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 may change linearly in inflation, output, productivity and government debt. 

Assuming 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵 < 0 as an example, then the gradient 𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 is decreasing in the debt variable. As 

the federal debt level rises above the steady state, 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵𝐵𝐵�𝑡𝑡 becomes negative and reduces the 

overall gradient of government consumption to debt. This would, for example, be the case for a 

government that favours austerity policies. As the federal debt level increases, the government 

becomes more concerned with stabilizing the debt level and the responsiveness to debt increases 

in absolute terms. However, in low debt periods, 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵𝐵𝐵�𝑡𝑡 is positive and increases the gradient. 

In absolute terms, in low debt periods, government spending is then potentially less responsive 

to debt and may even become procyclical. The consequence is that the responsiveness of 

government consumption to federal debt is asymmetric. 
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2.3.3  Monetary policy  
 

Next to the federal government, this model also features a central bank. The central bank operates 

based on a Taylor-like rule. Like the federal government, the central bank rule also features 

second-order terms: 

𝑖𝑖𝑡𝑡 = (1 − 𝜌𝜌𝐼𝐼)�𝜋𝜋̅ − 𝑙𝑙𝑙𝑙(𝛽𝛽) + 𝜓𝜓𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) + 0.5𝜓𝜓𝑦𝑦,𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)2

+ 𝜓𝜓𝑦𝑦,𝜋𝜋(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) + 0.5𝜓𝜓𝜋𝜋,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)2� + 𝜌𝜌𝐼𝐼𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑡𝑡
𝑖𝑖,     𝑣𝑣𝑡𝑡

𝑖𝑖~𝑁𝑁(0, 𝜎𝜎𝑖𝑖
2). 

The log interest rate today, 𝑖𝑖𝑡𝑡, responds autoregressively to last quarter's log interest rate 𝑖𝑖𝑡𝑡−1 as 

governed by the AR(1) coefficient 𝜌𝜌𝐼𝐼 ∈ (0,1). Further, the rate responds to current output growth 

constructed as the difference between log output today and lagged log output, (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1), and 

the difference between log inflation, 𝜋𝜋𝑡𝑡, and the log inflation target, 𝜋𝜋𝑡𝑡
∗. To ensure stable inflation 

dynamics,  𝜓𝜓𝜋𝜋 is larger than one and 𝜓𝜓𝑦𝑦 is assumed to be larger than zero. 𝑣𝑣𝑡𝑡
𝑖𝑖 is the monetary 

policy shock. The higher-order parameters are unbounded. The log inflation target, 𝜋𝜋𝑡𝑡
∗, follows a 

simple AR(1) process: 

𝜋𝜋𝑡𝑡
∗ = (1 − 𝜌𝜌𝜋𝜋)𝜋𝜋̅ + 𝜌𝜌𝜋𝜋𝜋𝜋𝑡𝑡−1

∗ +𝑣𝑣𝑡𝑡
𝜋𝜋,     𝑣𝑣𝑡𝑡

𝜋𝜋~𝑁𝑁(0, 𝜎𝜎𝜋𝜋
2). 

Letting the inflation target vary across time gives the central bank some wiggle room with the 

way it responds to inflation. For example, if the economy faces inflationary pressure, then a 

Taylor rule dictates a rise in the interest rate. Here, the central bank may choose to relax the 

inflation target. As the inflation target increases, the overall response to inflation decreases, and 

the Taylor rule supports a slower return to the steady state. Vice versa, the central bank may 

choose to tighten its inflation target, forcing a quicker return to the steady state.  

 

2.3.4  State dependency of the Monetary rule set 
 

Similarly to the fiscal rule, the above Taylor rule behaves as a linear rule at the steady state: 

𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)

�
𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑚𝑚𝑦𝑦 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑟𝑟

= (1 − 𝜌𝜌𝐼𝐼)𝜓𝜓𝑦𝑦, 

𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)
�
𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑚𝑚𝑦𝑦 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑟𝑟

= (1 − 𝜌𝜌𝐼𝐼)𝜓𝜓𝜋𝜋. 
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However, as the economy moves away from the steady state, the second-order terms begin to 
bite: 

𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)

= (1 − 𝜌𝜌𝐼𝐼) �𝜓𝜓𝑦𝑦 + 𝜓𝜓𝑦𝑦,𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝑦𝑦,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)�, 

𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)
= (1 − 𝜌𝜌𝐼𝐼) �𝜓𝜓𝜋𝜋 + 𝜓𝜓𝑦𝑦,𝜋𝜋(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝜋𝜋,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)�. 

Both gradients respond to both output growth and inflation above target. The parameter 𝜓𝜓𝑦𝑦,𝜋𝜋 is 

shared by both gradients and, for example, governs the relationship of the gradient of the log 

interest rate to output growth with inflation above target. For example, assuming 𝜓𝜓𝑦𝑦,𝜋𝜋 > 0 

implies that the focus on inflation, as implied by the gradient 𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝜋𝜋𝑡𝑡−𝜋𝜋𝑡𝑡

∗), increases if the output 

growth rate is above zero. That implies that the central bank reacts stronger to the inflation rate 

being above target if the economy is in a boom phase. At the same time, the responsiveness to 

output growth may increase or decrease depending on whether inflation is above or below target, 

respectively. The two parameters 𝜓𝜓𝑦𝑦,𝑦𝑦 and 𝜓𝜓𝜋𝜋,𝜋𝜋 are not shared and, hence, describe one-sided 

effects. To illustrate, if 𝜓𝜓𝑦𝑦,𝑦𝑦 > 0, then the responsiveness of the interest rate to output growth is 

increasing in output growth or vice versa. 

 

2.3.5  Household problem 
 

This model features a very standard new Keynesian household problem, which builds on the 

Amisano and Tristani (2010) model. Here, the representative household optimizes the sum of 

discounted utility subject to a budget constraint as governed by the discount factor 𝛽𝛽 ∈ (0,1). 

The target function includes both consumption utility and labour disutility in an additively 

separable form. The agent derives utility from consumption, 𝐶𝐶𝑡𝑡, which is weighted against habit-

adjusted lagged consumption, ℎ𝐶𝐶𝑡𝑡−1. The habit persistence is governed by the parameter ℎ ∈

(0,1), which is included to generate positive autocorrelation in consumption observed in the data. 

The deviation of consumption to last periods habit stock is weighted to the power of 1 − 𝛾𝛾, where 

𝛾𝛾 > 1 is a risk aversion parameter. Consequently, the utility function features diminishing 

marginal utility of consumption. The household also derives disutility from supplying labour to 

a continuum of firms. The household supplies labour, 𝐿𝐿𝑡𝑡(𝑖𝑖), in period 𝑑𝑑 to firm 𝑖𝑖. The labour 
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supply is differentiated to allow for Calvo pricing in the firm problem. In return for the labour 

supplied, the household receives a wage rate form firm 𝑖𝑖 in the form of 𝑊𝑊𝑡𝑡(𝑖𝑖). As labour is 

supplied, the household receives disutility governed by parameters 𝜒𝜒 and 𝜙𝜙. The agent integrates 

over the individual disutilities received from supplying work to all firms. The maximization 

problem is as follows: 

max
𝐶𝐶𝑡𝑡,𝐿𝐿𝑡𝑡(𝑖𝑖),𝐵𝐵𝑡𝑡

𝐸𝐸0 �𝛽𝛽𝑡𝑡
∞

𝑡𝑡=0
𝑈𝑈�𝐶𝐶𝑡𝑡,𝐶𝐶𝑡𝑡−1, 𝐿𝐿𝑡𝑡(𝑖𝑖)� , 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 

𝑈𝑈�𝐶𝐶𝑡𝑡,𝐶𝐶𝑡𝑡−1, 𝐿𝐿𝑡𝑡(𝑖𝑖)� = (𝐶𝐶𝑡𝑡 − ℎ𝐶𝐶𝑡𝑡−1)1−𝛾𝛾

1 − 𝛾𝛾
− � 𝜒𝜒𝐿𝐿𝑡𝑡(𝑖𝑖)𝜙𝜙

1

0
𝑑𝑑𝑖𝑖 

𝑠𝑠. 𝑑𝑑. �1 + 𝜏𝜏𝑡𝑡
𝐶𝐶

1 + 𝜏𝜏𝑡𝑡
𝐶𝐶�𝑃𝑃𝑡𝑡𝐶𝐶𝑡𝑡 + 𝑃𝑃𝑡𝑡𝐵𝐵𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑍𝑍𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝑃𝑃𝑡𝑡−1𝐵𝐵𝑡𝑡−1 

+�1 − 𝜏𝜏𝑡𝑡
𝐿𝐿

1 + 𝜏𝜏𝑡𝑡
𝐿𝐿�� 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)𝑑𝑑𝑖𝑖

1

0
+ � 𝛯𝛯𝑡𝑡(𝑖𝑖)𝑑𝑑𝑖𝑖

1

0
. 

In the maximization problem, the household faces a budget constraint. The household receives 

funds in the form of labour income from the differentiated firms, 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖), which are taxed by 

the federal government based on the labour taxation rate, 𝜏𝜏𝑡𝑡
𝐿𝐿. Further, the household receives 

government transfers, 𝑍𝑍𝑡𝑡, and residual firm profits, 𝛯𝛯𝑡𝑡(𝑖𝑖). At the same time, the agent has 

expenditures in the shape of nominal consumption expenditures, 𝑃𝑃𝑡𝑡𝐶𝐶𝑡𝑡, where 𝑃𝑃𝑡𝑡 is the current 

price level. The consumption expenditures are taxed based on the consumption tax rate, 𝜏𝜏𝑡𝑡
𝐶𝐶 . 

Furthermore, the household has the ability to smooth consumption by purchasing government 

bonds, 𝑃𝑃𝑡𝑡𝐵𝐵𝑡𝑡, today. At the same time, it pays interest on last periods bond holding, 𝐼𝐼𝑡𝑡−1𝑃𝑃𝑡𝑡−1𝐵𝐵𝑡𝑡−1, 

where 𝐼𝐼𝑡𝑡−1 is last period’s interest rate. The optimization problem leads to the following first-

order conditions: 

1
1 + 𝜏𝜏𝑡𝑡

𝑙𝑙
𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)

𝑃𝑃𝑡𝑡
= 𝜒𝜒𝜙𝜙𝐿𝐿𝑡𝑡(𝑖𝑖)𝜙𝜙

𝛬𝛬𝑡𝑡
, 

𝛬𝛬𝑡𝑡 �1 + 𝜏𝜏𝑡𝑡
𝑐𝑐

1 + 𝜏𝜏𝑡𝑡
𝑐𝑐� = (𝐶𝐶𝑡𝑡 − ℎ𝐶𝐶𝑡𝑡−1)−𝛾𝛾 − 𝛽𝛽ℎ𝐸𝐸𝑡𝑡[(𝐶𝐶𝑡𝑡+1 − ℎ𝐶𝐶𝑡𝑡)−𝛾𝛾], 

1
𝐼𝐼𝑡𝑡

= 𝛽𝛽𝐸𝐸𝑡𝑡 �
𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡+1

𝛬𝛬𝑡𝑡+1
𝛬𝛬𝑡𝑡

�. 

The first equation defines the trade-off between labour income and labour disutility, which is 

distorted by the labour taxation rate. The second equation is a standard consumption Euler 
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equation. As such, it governs the trade-off between current and future consumption. However, 

here the key statistic is habit-adjusted consumption. The equation is distorted by the 

consumption tax rate. 𝛬𝛬𝑡𝑡 corresponds to the nominally valued Lagrange multiplier of the 

constrained optimization problem. The last equation is the saving equation derived based on the 

preference for government bonds.  

 

2.3.6  Firm problem 
 

The following section lays out the firm sector of the model, which is comparable to Smets and 

Wouters (2007), Amisano and Tristani (2010) and Christiano et al. (2011). The firm sector 

includes two main components: a competitive final good firm and a continuum of intermediate 

good firms. The competitive final good firm bundles the differentiated output, 𝑌𝑌𝑡𝑡(𝑖𝑖), of all 

individual firms 𝑖𝑖 ∈ (0,1) into a single product of the economy, 𝑌𝑌𝑡𝑡. The intermediate outputs, 

𝑌𝑌𝑡𝑡(𝑖𝑖), are purchased from the continuum of intermediate firms. To do so, the final good firm uses 

a CES aggregator of the following design: 

𝑌𝑌𝑡𝑡 = �� 𝑌𝑌𝑡𝑡(𝑖𝑖)
𝜃𝜃−1

𝜃𝜃 𝑑𝑑𝑖𝑖
1

0
�

𝜃𝜃
𝜃𝜃−1

. 

𝜃𝜃 is the goods elasticity of substitution with 𝜃𝜃 > 1. Each differentiated output, 𝑌𝑌𝑡𝑡(𝑖𝑖), has a 

corresponding purchase price, 𝑃𝑃𝑡𝑡(𝑖𝑖), which the final firm takes as given. Based on this, the final 

good producers solve the following profit maximization problem: 

max
𝑌𝑌𝑡𝑡,𝑌𝑌𝑡𝑡(𝑖𝑖)

𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡 − �𝑃𝑃𝑡𝑡(𝑖𝑖)𝑌𝑌𝑡𝑡(𝑖𝑖)𝑑𝑑𝑖𝑖
1

0

    𝑠𝑠. 𝑑𝑑.  𝑌𝑌𝑡𝑡 = �� 𝑌𝑌𝑡𝑡(𝑖𝑖)
𝜃𝜃−1

𝜃𝜃 𝑑𝑑𝑖𝑖
1

0
�

𝜃𝜃
𝜃𝜃−1

. 

Solving the first-order conditions delivers the following demand schedule for each individual good 

𝑖𝑖: 

𝑌𝑌𝑡𝑡(𝑖𝑖) = �𝑃𝑃𝑡𝑡(𝑖𝑖)
𝑃𝑃𝑡𝑡

�
−𝜃𝜃

𝑌𝑌𝑡𝑡   𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑖𝑖. 

The demand for each good produced by firm 𝑖𝑖 is proportional to the overall market output, 𝑌𝑌𝑡𝑡, 

but individually depends on a relative price rating comparing the individual product price, 𝑃𝑃𝑡𝑡(𝑖𝑖), 
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the market price level, 𝑃𝑃𝑡𝑡, which is reweighted to the power of minus the good elasticity of 

substitution. As the individual price increases relative to the average market price, the demand 

for good 𝑖𝑖 decreases. 

The intermediate continuum of firms faces two types of problems: a basic production problem 

and a sequential pricing problem. For the production problem, the individual firms have the 

following production technology: 

𝑌𝑌𝑡𝑡(𝑖𝑖) = 𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡(𝑖𝑖)𝛼𝛼, 

𝑙𝑙𝑓𝑓𝑙𝑙(𝐴𝐴𝑡𝑡) = 𝜌𝜌𝐴𝐴 𝑙𝑙𝑓𝑓𝑙𝑙(𝐴𝐴𝑡𝑡−1) + 𝑣𝑣𝑡𝑡
𝐴𝐴,     𝑣𝑣𝑡𝑡

𝐴𝐴~𝑁𝑁(0, 𝜎𝜎𝐴𝐴
2 ). 

Each firm 𝑖𝑖 transforms its labour supply, 𝐿𝐿𝑡𝑡(𝑖𝑖), into to the intermediate output, 𝑌𝑌𝑡𝑡(𝑖𝑖). The 

production function features diminishing returns to labour with 𝛼𝛼 < 1. 𝐴𝐴𝑡𝑡 is a common 

production technology that is governed by an AR(1) process in log terms with 𝜌𝜌𝐴𝐴 ∈ (0,1). 𝑣𝑣𝑡𝑡
𝐴𝐴 

corresponds to the common structural technology shock. Based on this production technology, 

the individual intermediate firms choose their utilization of the labour supply by minimizing 

labour costs subject to meeting the market demand for the individual goods, 𝑌𝑌𝑡𝑡
𝐷𝐷(𝑖𝑖): 

min
𝐿𝐿𝑡𝑡(𝑖𝑖)

𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)  𝑠𝑠. 𝑑𝑑.  𝑌𝑌𝑡𝑡(𝑖𝑖) = 𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡(𝑖𝑖)𝛼𝛼 ≥ 𝑌𝑌𝑡𝑡
𝐷𝐷(𝑖𝑖), 

with the corresponding Lagrangian set up: 

max
𝐿𝐿𝑡𝑡(𝑖𝑖)

ℒ = −𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖) + 𝜆𝜆𝑡𝑡(𝑖𝑖)(𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡(𝑖𝑖)𝛼𝛼 − 𝑌𝑌𝑡𝑡
𝐷𝐷(𝑖𝑖)), 

where 𝜆𝜆𝑡𝑡(𝑖𝑖) is the Lagrangian multiplier. Solving the above optimization problem delivers the 

following identity: 

𝜆𝜆𝑡𝑡(𝑖𝑖) = 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)
𝛼𝛼𝐴𝐴𝑡𝑡𝐿𝐿𝑡𝑡(𝑖𝑖)𝛼𝛼 . 

In this, the Lagrangian multiplier, 𝜆𝜆𝑡𝑡(𝑖𝑖), also represents the marginal cost of increasing 

production by one unit, 𝑀𝑀𝐶𝐶𝑡𝑡(𝑖𝑖), functioning as a shadow price. After pinning down the labour 

demand of firm 𝑖𝑖, the individual firms are faced with a pricing problem. The pricing problem 

features the canonical Calvo pricing mechanism in order to introduce price stickiness. The idea 

is that not all firms are fully able to adjust prices in a given period. Instead, firms may be in a 

situation where they cannot adjust prices based on a probability, 𝜁𝜁 ∈ (0,1). As that is the case, 
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optimal pricing requires firms to look forward and figure out what the consequence of choosing a 

price today is for today and the future. As such, firms choose a price by optimizing profits across 

the expected lifetime of that price. Like in Amisano and Tristani (2010), firms are not 

permanently stuck with a given price but receive a sub-optimal price update. The chosen price 

in period 𝑑𝑑, 𝑃𝑃𝑡𝑡(𝑖𝑖), is updated using steady state inflation, 𝜋𝜋̅, and aggregate inflation, 𝑃𝑃𝑡𝑡+𝑠𝑠−1
𝑃𝑃𝑡𝑡−1

, to 

obtain a period 𝑑𝑑 + 𝑠𝑠 price. Arguably, this ensures that individual prices are updated in a 

reasonable way, even if firms are not able to update prices for significant periods of time. The 

design of the indexed prices is as follows: 

𝑃𝑃𝑡𝑡+𝑠𝑠(𝑖𝑖) = 𝑃𝑃𝑡𝑡(𝑖𝑖)(𝜋𝜋̅)1−𝑙𝑙 �
𝑃𝑃𝑡𝑡+𝑠𝑠−1
𝑃𝑃𝑡𝑡−1

�
𝑙𝑙
, 

where 𝑙𝑙 ∈ (0,1) is an indexation parameter. The firms reoptimize the following Lagrangian to 

solve for an optimal reset price: 

𝑚𝑚𝑎𝑎𝑒𝑒
𝑃𝑃𝑡𝑡(𝑖𝑖)

ℒ = 𝐸𝐸𝑡𝑡 �𝜁𝜁𝑠𝑠𝛽𝛽𝑠𝑠
∞

𝑠𝑠=0

𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡+𝑠𝑠

𝛬𝛬𝑡𝑡+𝑠𝑠
𝛬𝛬𝑡𝑡

(𝑃𝑃𝑡𝑡+𝑠𝑠(𝑖𝑖)𝑌𝑌𝑡𝑡+𝑠𝑠(𝑖𝑖) − 𝑇𝑇𝐶𝐶𝑡𝑡+𝑠𝑠(𝑖𝑖)). 

In 𝑠𝑠 periods from the starting point of the optimization problem, firms have a probability of 𝜁𝜁𝑠𝑠 

to be still stuck with the update reset price. In every period, firms receive a profit stream, 

𝑃𝑃𝑡𝑡+𝑠𝑠(𝑖𝑖)𝑌𝑌𝑡𝑡+𝑠𝑠(𝑖𝑖) − 𝑇𝑇𝐶𝐶𝑡𝑡+𝑠𝑠(𝑖𝑖), where the marginal cost function is generated based on the labour 

supply choice problem above. Firms discount these future profit streams using the common 

stochastic discount factor 𝑄𝑄𝑡𝑡,𝑡𝑡+𝑠𝑠 = 𝛽𝛽𝑠𝑠 𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡+𝑠𝑠

𝛬𝛬𝑡𝑡+𝑠𝑠
𝛬𝛬𝑡𝑡

. It is assumed that all firms are identical except 

for their choice of price. As that is the case, all firms set the same optimal price. Solving the 

Lagrangian first-order system and substituting in the household labour supply condition delivers 

the following set of equations as in Amisano and Tristani (2010): 

Υ2,𝑡𝑡 = 𝛼𝛼(𝜃𝜃 − 1)
𝜙𝜙𝜒𝜒𝜃𝜃

⎝
⎜⎜
⎜⎜
⎛1 − 𝜁𝜁 �𝛱𝛱����1−𝑙𝑙 𝛱𝛱𝑡𝑡−1

𝑙𝑙

𝛱𝛱𝑡𝑡
�

1−𝜃𝜃

1 − 𝜁𝜁
⎠
⎟⎟
⎟⎟
⎞

1+ 𝜃𝜃
1−𝜃𝜃

𝜙𝜙
𝑎𝑎

Υ1,𝑡𝑡, 

Υ2,𝑡𝑡 = (1 + 𝜏𝜏𝑡𝑡
𝑙𝑙)

𝐴𝐴𝑡𝑡
−𝜙𝜙

𝑎𝑎

𝛬𝛬𝑡𝑡
𝑌𝑌𝑡𝑡

𝜙𝜙
𝑎𝑎 + 𝐸𝐸𝑡𝑡𝜁𝜁𝛽𝛽

1
𝛱𝛱𝑡𝑡+1

𝛬𝛬𝑡𝑡+1
𝛬𝛬𝑡𝑡

Υ2,𝑡𝑡+1𝛱𝛱����−(1−𝑙𝑙)𝜃𝜃𝜙𝜙
𝑎𝑎𝛱𝛱𝑡𝑡

−𝜃𝜃𝜙𝜙
𝑎𝑎𝑙𝑙𝛱𝛱𝑡𝑡+1

1+𝜃𝜃𝜙𝜙
𝑎𝑎, 

Υ1,𝑡𝑡 = 𝑌𝑌𝑡𝑡 + 𝐸𝐸𝑡𝑡𝜁𝜁𝛽𝛽
1

𝜋𝜋𝑡𝑡+1

𝛬𝛬𝑡𝑡+1
𝛬𝛬𝑡𝑡

Υ1,𝑡𝑡+1𝛱𝛱����(1−𝑙𝑙)(1−𝜃𝜃)𝛱𝛱𝑡𝑡
𝑙𝑙(1−𝜃𝜃)𝛱𝛱𝑡𝑡+1

𝜃𝜃 . 
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Together these equations govern the dynamics of the Philips curve. Current inflation, 𝛱𝛱𝑡𝑡 = P𝑡𝑡
P𝑡𝑡−1

, 

is implicitly defined as a function of past and future inflation, the markup, and the marginal cost 

function. The variables Υ1,𝑡𝑡 and Υ2,𝑡𝑡 are convenient summary variables in the representation of 

the Philips curve but do not carry their own easily interpretable meaning. It is important to note 

that the equation system above is a generalization of the standard linear New Keynesian Philips 

curve. If one was to construct a first-order approximation, the canonical curve could be recovered. 

However, the system above features a more elaborate dynamic for inflation. As is the case for the 

fiscal equations, the scale of the inflation response implied by this Philips curve system depends 

on the exact business cycle conditions and may vary across the cycle.  

 

2.3.7  Model solution and set up 
 

The equations above govern the main dynamics of the DSGE together with a simple market 

clearing condition: 

𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑡𝑡 + 𝐺𝐺𝑡𝑡. 

However, the market closing condition is used to substitute out consumption to avoid keeping 

track of additional variables. The model features seven purely exogenous processes for seven data 

series: 𝐴𝐴�̃�𝑡, 𝜏𝜏�̃�𝑡
𝑐𝑐, 𝜋𝜋�̃�𝑡

∗, 𝑣𝑣𝑡𝑡
𝑖𝑖, 𝑣𝑣𝑡𝑡

𝑡𝑡𝑙𝑙, 𝑣𝑣𝑡𝑡
𝑍𝑍 and 𝑣𝑣𝑡𝑡

𝐺𝐺 where variables with a tilde are measured in log steady state 

deviations. The shock processes for the interest rate and fiscal variables do not depend on other 

variables. To complete the model, identity equations are added for variables that can be both 

pre-determined and endogenous depending on the lag (for example, government debt in the last 

quarter is pre-determined today, while government debt today is endogenous today). The 

resulting state vector, 𝑒𝑒𝑡𝑡, and the endogenous vector, 𝑦𝑦𝑡𝑡, then govern the system: 

𝑒𝑒𝑡𝑡 = �𝜋𝜋�̃�𝑡−1, 𝑌𝑌�̃�𝑡−1, 𝚤𝚤�̃�𝑡−1,𝐵𝐵�𝑡𝑡−1, 𝜏𝜏�̃�𝑡
𝑙𝑙, 𝑍𝑍�̃�𝑡, 𝐺𝐺�̃�𝑡, 𝐴𝐴�̃�𝑡, 𝜏𝜏�̃�𝑡

𝑐𝑐, 𝜋𝜋�̃�𝑡
∗, 𝑣𝑣𝑡𝑡

𝑖𝑖, 𝑣𝑣𝑡𝑡
𝑡𝑡𝑙𝑙, 𝑣𝑣𝑡𝑡

𝑍𝑍, 𝑣𝑣𝑡𝑡
𝐺𝐺�

′
, 

𝑦𝑦𝑡𝑡 = � Υ�1,𝑡𝑡, Υ�2,𝑡𝑡, 𝜋𝜋�̃�𝑡, 𝚤𝚤�̃�𝑡, 𝑌𝑌�̃�𝑡,𝛬𝛬�̃�𝑡,𝐵𝐵�𝑡𝑡, 𝜏𝜏�̃�𝑡
𝑙𝑙, 𝑍𝑍�̃�𝑡, 𝐺𝐺�̃�𝑡�

′
. 
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2.3.8  Prior  
 

The following section describes the prior distribution setup for the above-described model. As 

the model is closely related to the Amisano and Tristani (2010) model, a lot of parameters, in 

particular the core economic parameters, receive similar or related priors. However, some prior 

were adjusted for empirical performance to adjust to US data and to create similarities with 

other implementations. For a full summary of the priors, see Table 2.1 and Table 2.2.  

The discount factor, 𝛽𝛽, receives a 𝐵𝐵𝑒𝑒𝑑𝑑𝑎𝑎 prior with a mean of 0.995. This corresponds to an annual 

real rate of two per cent. In comparison to other papers,  𝛽𝛽 is slightly higher, reflecting a 

significant share of post-2000s observations. For the following parameters, including the coefficient 

of relative risk aversion, habit persistence, disutility of labour and goods elasticity of substitution, 

the priors are as in Amisano and Tristani (2010). The price indexation and Calvo pricing 

parameters have received adjusted 𝐵𝐵𝑒𝑒𝑑𝑑𝑎𝑎 priors with a mean of 0.5 and a standard deviation of 

0.1 to be more in line with Sims and Wolff (2018a) and Smets and Wouters (2007). Further, the 

linear output growth coefficient in the interest rule receives a 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 prior with a mean of 0.125 

and standard deviation of 0.035. In comparison to Amisano and Tristani (2010), the mean is 

slightly higher and closer to Sims and Wolff (2018a) and Smets and Wouters (2007).  

Table 2.1: Prior distributions for core model parameters 

 

para prior mean sd. para prior mean sd. 
                

 𝛽𝛽 𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎  0.99500 0.00100 𝑝𝑝𝜋𝜋  𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.90000 0.09000 
 𝛾𝛾 − 1   𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 1.00000 0.70000 𝜎𝜎𝜏𝜏𝑙𝑙  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.04000 0.01000 

 ℎ  𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.70000 0.13800 𝜎𝜎𝜏𝜏𝑐𝑐  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.04000 0.01000 
 𝜙𝜙 − 1  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 3.00000 1.00000 𝜎𝜎𝑍𝑍  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.04000 0.01000 
 𝜃𝜃 − 1  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 7.00000 2.64500 𝜎𝜎𝐺𝐺  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.04000 0.01000 
𝜁𝜁   𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.50000 0.10000 𝜎𝜎𝑎𝑎  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.04000 0.01000 
𝑙𝑙   𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.50000 0.10000 𝜎𝜎𝑖𝑖  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.00400 0.00100 

 𝜓𝜓𝜋𝜋 − 1   𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 1.00000 0.18200 𝜎𝜎𝜋𝜋  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.00125 0.00056 
 𝜓𝜓𝑦𝑦   𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.12500 0.03500 𝜏𝜏𝑙𝑙  𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.23000 0.00100 
𝑝𝑝𝜏𝜏𝑙𝑙    𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.90000 0.09000 𝜏𝜏𝑐𝑐  𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.01500 0.00100 
𝑝𝑝𝜏𝜏𝑐𝑐   𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.90000 0.09000 𝑠𝑠𝑔𝑔  𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.06000 0.00100 
𝑝𝑝𝑍𝑍   𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.90000 0.09000 𝑠𝑠𝑏𝑏  𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.50000 0.01000 
𝑝𝑝𝐺𝐺   𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.90000 0.09000 𝜋𝜋 𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.00560 0.00020 
𝑝𝑝𝑎𝑎   𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎 0.90000 0.09000         
𝑝𝑝𝑖𝑖    𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.80000 0.10000         
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Notes: The table presents the prior distributions for the core model parameters, autoregressive, shock and steady 

state parameters.  

Moving on from the core economic parameters, almost all autoregressive coefficients receive a 

standard 𝐵𝐵𝑒𝑒𝑑𝑑𝑎𝑎 prior with a mean of 0.9 and standard deviation of 0.09. The choice of 𝐵𝐵𝑒𝑒𝑑𝑑𝑎𝑎 prior 

ensures that the autoregressive coefficients remain lower than one, and consequently, this ensures 

sufficiently stable eigenvalues. The only exception is the interest rate rule parameter, 𝑝𝑝𝑖𝑖, which 

receives a normal prior with a mean of 0.8. The shock standard deviation parameters almost all 

receive a 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 prior with a mean of 0.04. Two exceptions are the standard deviation for the 

interest rate and the inflation target shock, which are adjusted downwards for empirical 

performance. 

The model features several parameters that define steady state relationships. These priors are 

constructed using frequentist, long-run sample estimates. For example, priors for 𝜏𝜏𝑙𝑙 and 𝜏𝜏𝑐𝑐 are 

calibrated using the average tax rates over the sample. Further, the debt and government 

consumption to output ratios receive the same treatment. Lastly, the steady inflation rate receives 

a 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 prior with a mean of 0.0056. 

The linear fiscal parameters govern the mechanics of the federal government at the steady state. 

At the steady state, it is assumed that fiscal rules focus on debt sustainability. That is, if the 

debt rises, then expenditures are reduced, and taxes are raised. At the same time, if output rises, 

taxes are increased, and expenditures are reduced. Therefore, the respective parameters receive 

𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 priors which, in combination with the signs in the fiscal rules, create the above-described 

behaviour. For the inflation and productivity response parameters, the choice of prior fell on an 

unassuming 𝑁𝑁𝑓𝑓𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙 prior with a mean of zero and a standard deviation of 0.1. Once the economy 

starts moving away from the steady state, the non-linear terms become active and start 

influencing the fiscal policy rules. All non-linear fiscal policy parameters receive a 𝑁𝑁𝑓𝑓𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙 priors 

with a mean of zero and a standard deviation of 0.2. The prior reflects agnostic believes about 

the interaction terms but is comparatively diffuse and can allow the data to speak for itself. The 

last group of parameters are the non-linear interest rate rule parameters, which receive a similar 

𝑁𝑁𝑓𝑓𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙 prior with a mean of zero and a standard deviation of one.  

Two parameters are fixed as in Amisano and Tristani (2010): 
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𝛼𝛼 = 0.76 𝑎𝑎𝑙𝑙𝑑𝑑 𝜒𝜒 = 0.273. 

To ensure convergence of the particle filter, the measurement equation includes measurement 

errors. Measurement errors need to be included in particle filter applications as they are used to 

smooth the likelihood and can help prevent particle impoverishment. In this application, I 

dogmatically set the measurement error to 20% of the standard deviation of the data series, as 

in Herbst and Schorfheide (2016).13 The 20% threshold is somewhat ad-hoc and based on an 

empirical necessity for the estimation to run smoothly. Directly estimating the measurement 

errors using a full covariance matrix would be a more sophisticated approach. However, the model 

estimated in this chapter already features a large number of parameters and requires a significant 

amount of computational resources. 

 
13 Both linear and non-linear filters typically compare actual observations to predicted observations in 
some fashion. In the linear Kalman filter, the main requirement for this comparison to work is that the 
1-step-ahead error is non-degenerate which is typically the case if there are more structural shocks than 
data series. However, roughly speaking, as particle filters compare observations and predicted 
observations conditioned on the particles themselves, any state uncertainty that may be present in the 
Kalman filter disappears in the particle filter. Without further adjustments, the comparison between 
observations and predicted observations becomes degenerate: There may only be one particle that can 
predict the observations exactly, but it is unlikely for this particle to ever be sampled. Therefore, it is 
common practice to include measurement error as a band-aid in models estimated using particle filters. 
The measurement error ensures that there is residual uncertainty between observations and predictions 
and that the “relative fit” density is well defined.  
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Table 2.2: Response function priors 

 

Notes: This presents the prior distribution set up for the linear and non-linear fiscal rule parameters. In addition, it 

also includes the non-linear interest rate parameters. 

 

 

 

 

2.4  Estimation procedure 
 

2.4.1  Likelihood construction 
 

As the model is to be taken to the data, the likelihood of the model needs to be constructed for 

the data set. This requires constructing the different posterior model state distributions across 

time, and based on these distributions, the likelihood can be evaluated. In linear Gaussian state 

space models, the construction is comparatively straightforward as one can construct the sequence 

of distributions analytically using the Kalman filter recursions. The existence of analytical 

expressions for the individual distributions provides several advantages: fast likelihood 

evaluations, relatively robust simulations and the Kalman filter recursions are straightforward to 

para prior mean sd. 
        
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝑌𝑌 𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.15000 0.10000 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐵𝐵 𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.15000 0.10000 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝜋𝜋  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐴𝐴 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝑍𝑍,𝑌𝑌  𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.15000 0.10000 
𝜇𝜇𝑍𝑍,𝐵𝐵 𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.15000 0.10000 
𝜇𝜇𝑍𝑍,𝜋𝜋  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝑍𝑍,𝐴𝐴 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝐺𝐺 ,𝑌𝑌 𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.15000 0.10000 
𝜇𝜇𝐺𝐺 ,𝐵𝐵 𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎 0.15000 0.10000 
𝜇𝜇𝐺𝐺 ,𝜋𝜋  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.00000 0.10000 
𝜇𝜇𝐺𝐺 ,𝐴𝐴 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.00000 0.10000 
𝜑𝜑𝑖𝑖 ,𝑗𝑗 ,𝑡𝑡  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.00000 0.20000 
𝜓𝜓𝑖𝑖,𝑗𝑗  𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙 0.00000 1.00000 
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implement. In the application of this chapter, the model to be estimated is non-linear as it 

features the second-order terms of the Taylor approximation of the DSGE. Therefore, likelihood 

evaluations using the Kalman filter are not appropriate as they would not inform the sampler 

about the contributions of the higher-order terms on the fit of the model. An alternative is 

provided by using simulation-based filters, also called particle filters.  

Particle filters approximate the posterior state densities using a set of sampled measurement 

points called particles. Roughly speaking, in any time period, one starts with an initial 

distribution of particles. Within the time period, the set of particles is propagated forwards using 

some transition density. The propagated particles and the implied observational vector are 

compared to actual data. This is followed by a resampling step, in which ill-fitting particles are 

discarded, and better-fitting particles are used to repopulate the set of particles. 

A variety of particle filters have been proposed with varying success depending on the exercise 

at hand. The crucial choice in particle filtering is the mechanism by which the particles are 

propagated forward. If the proposal mechanism is well-tailored, then particles are sampled, which 

explain the data well. In that case, fewer particles have to be discarded. If, however, the proposal 

mechanism struggles to produce well-fitting particles, this can lead to ill-fitting approximations 

of the likelihood via particle impoverishment. In the canonical particle filter, the bootstrap 

particle filter, the position of new particles is proposed via forwards iterating the model equations. 

As observed by Herbst and Schorfheide (2016), this can be quite inefficient depending on the 

application and can require increasingly large sample sizes to ensure accurate likelihood 

evaluations.  

One way to combat this comes by adapting the proposal distribution to current observations. If 

one can find a well-adapted density, then particles can be sampled that explain the data well, 

and consequently, a smaller share of particles has to be discarded. In this application, I rely on 

the particle filter proposed by Amisano and Tristani (2010): the conditional particle filter. The 

filter linearizes the measurement equations of the DSGE. Based on the linearized measurement 

equation, one can sample particles using a conditional Gaussian density, just like in the Kalman 

filter. Based on testing for this chapter, the particles are sampled from well-adapted densities 

that only struggle with highly unlikely events like the Covid crisis. As a downside, the conditional 
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particle filter abstracts away the non-linearity generated in the measurement equation. If the 

measurement equation happens to be very non-linear, then the approximation may be quite 

inaccurate. In terms of general performance, an analysis by Yang and Wang (2015) shows that 

the conditional particle filter outperforms the canonical filter by a wide margin and consequently 

requires significantly fewer particles (40 or more times fewer particles).  

In the following, I first describe the Gomme and Klein (2011) DSGE solution system around 

which the conditional particle filter is built around. Based on this, I explore the main components 

of the Amisano and Tristani (2010) filter. The second-order approximation in the Gomme and 

Klein (2011) sense contains two transition systems: one system for the predetermined state 

variables and one system for the non-predetermined, endogenous variables. For the state variable 

vector, 𝑒𝑒𝑡𝑡+1, the system is governed by the following law of motion: 

𝑒𝑒𝑡𝑡+1 = 0.5 ∗ ℎ𝜎𝜎𝜎𝜎 + 𝐻𝐻𝑥𝑥𝑒𝑒𝑡𝑡 + 0.5 ∗ 𝐻𝐻𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡⨂𝑒𝑒𝑡𝑡) + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡+1, 𝑣𝑣𝑡𝑡+1~𝑁𝑁(0, 𝐼𝐼), 

where 𝑒𝑒𝑡𝑡+1 is a vector of size (𝑙𝑙𝑥𝑥 × 1). ℎ𝜎𝜎𝜎𝜎, 𝐻𝐻𝑥𝑥 and 𝐻𝐻𝑥𝑥𝑥𝑥 are matrices of sizes (𝑙𝑙𝑥𝑥 × 1), (𝑙𝑙𝑥𝑥 × 𝑙𝑙𝑥𝑥) 

and (𝑙𝑙𝑥𝑥 × 𝑙𝑙𝑥𝑥
2), respectively. 𝑣𝑣𝑡𝑡+1 is a vector of size (𝑙𝑙𝑣𝑣 × 1) and corresponds to the structural, 

identified shock vector. 𝜎𝜎  is a (𝑙𝑙𝑥𝑥 × 𝑙𝑙𝑣𝑣) matrix that governs the within-period impact of the 

structural shocks on the state vector. 𝜎𝜎 is the perturbation scalar and is typically set to one. The 

main dynamics of the DSGE are generated and propagated by the above system. The behaviour 

of the non-predetermined and endogenous variables stacked into a �𝑙𝑙𝑦𝑦 × 1� vector, 𝑦𝑦𝑡𝑡+1, is 

governed by the following system: 

𝑦𝑦𝑡𝑡+1 = 0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎 + 𝐺𝐺𝑥𝑥𝑒𝑒𝑡𝑡+1 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡+1⨂𝑒𝑒𝑡𝑡+1), 

where 𝑙𝑙𝜎𝜎𝜎𝜎, 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑥𝑥𝑥𝑥 are matrices of sizes �𝑙𝑙𝑦𝑦 × 1�, �𝑙𝑙𝑦𝑦 × 𝑙𝑙𝑦𝑦� and �𝑙𝑙𝑦𝑦 × 𝑙𝑙𝑦𝑦
2�. Notably, the 

system for 𝑦𝑦𝑡𝑡+1 does not include autoregressive components and purely depends on the 

distribution of 𝑒𝑒𝑡𝑡+1. Furthermore, one may connect the variables contained in 𝑦𝑦𝑡𝑡+1 to observables 

using a measurement equation of the following design: 

𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 = 𝐴𝐴 + 𝐵𝐵𝑦𝑦𝑡𝑡+1 + 𝑒𝑒𝑡𝑡+1,          𝑒𝑒𝑡𝑡+1~𝑁𝑁(0, Σ). 

𝐴𝐴 and 𝐵𝐵 are (𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠 × 1) and (𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠 × 𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠) sized matrices, where 𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠 is the number of observables 

and the row dimension of the vector 𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 .  Further, the model includes a measurement error, 

𝑒𝑒𝑡𝑡+1, assumed to be of size (𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠 × 1). The measurement error is normally distributed with 
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covariance matrix, Σ. A convenient thing to do is to only keep track of the vector 𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 , and not 

of  𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠  and 𝑦𝑦𝑡𝑡+1. The advantage of doing so comes in the form of a system reduction because 

typically 𝑙𝑙𝑦𝑦 > 𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠. This can cut down the simulation time. To do so, one can substitute out 

𝑦𝑦𝑡𝑡+1 in the following way: 

𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 = 𝐴𝐴 + 𝐵𝐵�0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎 + 𝐺𝐺𝑥𝑥𝑒𝑒𝑡𝑡+1 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡+1⨂𝑒𝑒𝑡𝑡+1)� + 𝑒𝑒𝑡𝑡+1,        

𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 = 0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎

𝑚𝑚𝑏𝑏𝑠𝑠 + 𝐺𝐺𝑥𝑥
𝑚𝑚𝑏𝑏𝑠𝑠𝑒𝑒𝑡𝑡+1 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥

𝑚𝑚𝑏𝑏𝑠𝑠(𝑒𝑒𝑡𝑡+1⨂𝑒𝑒𝑡𝑡+1)) + 𝑒𝑒𝑡𝑡+1,       

where the new matrices 𝑙𝑙𝜎𝜎𝜎𝜎
𝑚𝑚𝑏𝑏𝑠𝑠, 𝐺𝐺𝑥𝑥

𝑚𝑚𝑏𝑏𝑠𝑠 and 𝐺𝐺𝑥𝑥𝑥𝑥
𝑚𝑚𝑏𝑏𝑠𝑠 are of sizes (𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠 × 1), (𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠 × 𝑙𝑙𝑥𝑥) and (𝑙𝑙𝑚𝑚𝑏𝑏𝑠𝑠 × 𝑙𝑙𝑥𝑥

2). 

The equation of the state vector, in addition to this new observational equation above, governs 

the system dynamics. This concludes the system description, and now I will provide a quick and 

condensed overview of the conditional particle filter as in Amisano and Tristani (2010). 

Suppose one has a particle system of 𝑁𝑁  draws from the time 𝑑𝑑 distribution of the model states 

𝑒𝑒𝑡𝑡 for a given structural parameter vector of the DSGE, 𝜃𝜃. Each particle is indexed using 𝑖𝑖 as 

𝑒𝑒𝑖𝑖,𝑡𝑡. Then, the conditional particle filter relies on the following recursion to construct the 

likelihood: 

1. Propagation step  

1.1. 𝑒𝑒𝑖𝑖,𝑡𝑡+1~𝑝𝑝(𝑒𝑒𝑡𝑡+1|𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 , 𝑒𝑒𝑖𝑖,𝑡𝑡, 𝜃𝜃) 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑖𝑖 = 1,2, . . , 𝑁𝑁  

2. Weight update step 

2.1. 𝑤𝑤𝑖𝑖�𝑒𝑒𝑖𝑖,𝑡𝑡+1� = 𝑝𝑝(𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 |𝑒𝑒𝑖𝑖,𝑡𝑡, 𝜃𝜃) 

3. Resampling step 

3.1. Resample the draws 𝑒𝑒𝑖𝑖,𝑡𝑡+1 based on the importance weights 𝑊𝑊𝑖𝑖 = 𝑤𝑤𝑖𝑖�𝑥𝑥𝑖𝑖,𝑡𝑡+1�
∑ 𝑤𝑤𝑖𝑖�𝑥𝑥𝑖𝑖,𝑡𝑡+1�𝑁𝑁

𝑖𝑖=1
 

In the first step, the particles, 𝑒𝑒𝑖𝑖,𝑡𝑡, are propagated forwards using a density 𝑝𝑝 that is adapted to 

the current observational vector, 𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 . In the second step, weights are constructed using a 

measurement equation and based on those weights, the particles are resampled in the last step.  

At its core, for the propagation step, the Amisano and Tristani (2010) filter relies on a 

linearization of the measurement equation around the expected value of 𝑒𝑒𝑡𝑡+1. Based on a linear 

measurement equation, one can construct a Gaussian density for 𝑒𝑒𝑡𝑡+1 conditioned on the current 

observational vector. The first step lies in the construction of the expected value of 𝑒𝑒𝑡𝑡+1: 
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𝑒𝑒�̅�𝑡+1|𝑡𝑡 ≈ �𝐸𝐸�𝑒𝑒𝑖𝑖,𝑡𝑡+1|𝑒𝑒𝑖𝑖,𝑡𝑡�
𝑁𝑁

𝑖𝑖=1
= �𝑒𝑒𝑖𝑖,𝑡𝑡+1|𝑡𝑡

𝑁𝑁

𝑖𝑖=1
= �0.5 ∗ ℎ𝜎𝜎𝜎𝜎 + 𝐻𝐻𝜎𝜎𝑒𝑒𝑖𝑖,𝑡𝑡 + 0.5 ∗ 𝐻𝐻𝜎𝜎𝜎𝜎�𝑒𝑒𝑖𝑖,𝑡𝑡⨂𝑒𝑒𝑖𝑖,𝑡𝑡�

𝑁𝑁

𝑖𝑖=1
. 

The expectation 𝑒𝑒�̅�𝑡+1|𝑡𝑡 can be approximated via forwards iterating the individual particles 𝑒𝑒𝑖𝑖,𝑡𝑡 

for all 𝑁𝑁  draws and setting the structural shocks to zero. The result is individual one-step-ahead 

predictions for the individual particles,𝐸𝐸�𝑒𝑒𝑖𝑖,𝑡𝑡+1|𝑒𝑒𝑖𝑖,𝑡𝑡�. 𝑒𝑒�̅�𝑡+1|𝑡𝑡 is obtained via averaging across the 

particle swarm. The second step is to generate a linearization of the measurement equation 

around 𝑒𝑒�̅�𝑡+1|𝑡𝑡 using the vector 𝑒𝑒𝑡𝑡+1|𝑡𝑡. The linearization is of the format: 

𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 ≈ 𝑦𝑦𝑡𝑡+1|𝑡𝑡

𝑚𝑚𝑏𝑏𝑠𝑠 + 𝑤𝑤𝑡𝑡+1|𝑡𝑡, 

where the actual observable vector, 𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 , is approximately equal to some mean component, 𝑦𝑦𝑡𝑡+1|𝑡𝑡

𝑚𝑚𝑏𝑏𝑠𝑠 , 

and a new adapted measurement error, 𝑤𝑤𝑡𝑡+1|𝑡𝑡. The component 𝑦𝑦𝑡𝑡+1|𝑡𝑡
𝑚𝑚𝑏𝑏𝑠𝑠  is constructed as follows: 

𝑦𝑦𝑡𝑡+1|𝑡𝑡
𝑚𝑚𝑏𝑏𝑠𝑠 = 0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎

𝑚𝑚𝑏𝑏𝑠𝑠 + (𝐺𝐺𝑥𝑥
𝑚𝑚𝑏𝑏𝑠𝑠 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥

𝑚𝑚𝑏𝑏𝑠𝑠𝐷𝐷�����𝑘𝑘) 𝑒𝑒𝑡𝑡+1|𝑡𝑡 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥
𝑚𝑚𝑏𝑏𝑠𝑠(�𝑒𝑒𝑡𝑡+1|𝑡𝑡⨂𝑒𝑒𝑡𝑡+1|𝑡𝑡� − 𝐷𝐷�����𝑘𝑘𝑒𝑒�̅�𝑡+1|𝑡𝑡),

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝐷𝐷�����𝑘𝑘 = �𝜕𝜕(𝑥𝑥𝑡𝑡+1⨂𝑥𝑥𝑡𝑡+1)
𝜕𝜕𝑥𝑥𝑡𝑡+1

�
𝑥𝑥𝑡𝑡+1=𝑥𝑥����𝑡𝑡+1|𝑡𝑡

. 

Furthermore, 𝑤𝑤𝑡𝑡+1|𝑡𝑡 is constructed as:  

𝑤𝑤𝑡𝑡+1|𝑡𝑡 = 𝜎𝜎𝐺𝐺�̅�𝑥𝜎𝜎𝑣𝑣𝑡𝑡+1 + 𝑤𝑤𝑡𝑡+1,

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑤𝑤𝑡𝑡+1|𝑡𝑡~𝑁𝑁�0, 𝜎𝜎2𝐺𝐺�̅�𝑥𝜎𝜎𝜎𝜎′𝐺𝐺�̅�𝑥′ +  Σ� 𝑎𝑎𝑙𝑙𝑑𝑑 𝐺𝐺�̅�𝑥 = 𝐺𝐺𝑥𝑥 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥
𝑛𝑛 𝐷𝐷�����𝑘𝑘. 

The approximated measurement equation has two important features: linearity and normality. 

Based on these two properties, one can construct a density for  𝑒𝑒𝑡𝑡+1 conditioned on 𝑒𝑒𝑡𝑡 and 𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 : 

𝑝𝑝(𝑒𝑒𝑡𝑡+1|𝑒𝑒𝑡𝑡, 𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 , 𝜃𝜃) ≈ 𝑁𝑁(𝐸𝐸(𝑒𝑒𝑡𝑡+1|𝑒𝑒𝑡𝑡, 𝑦𝑦𝑡𝑡+1

𝑚𝑚𝑏𝑏𝑠𝑠 , 𝜃𝜃), 𝑃𝑃 (𝑒𝑒𝑡𝑡+1|𝑒𝑒𝑡𝑡, 𝑦𝑦𝑡𝑡+1
𝑚𝑚𝑏𝑏𝑠𝑠 , 𝜃𝜃)) 

This density can be used to effectively sample particles for 𝑒𝑒𝑡𝑡+1 for the propagation step of the 

filter. In an approximate step, the weights, 𝑤𝑤𝑖𝑖�𝑒𝑒𝑖𝑖,𝑡𝑡+1�, are constructed using the linearized 

measurement equation. This concludes the summary of the main components of the filter. 

However, there are some nuances for which I refer the reader to Amisano and Tristani (2010) for 

a more detailed and complete discussion. For the simulation, I utilize an initialization strategy 

based on Guerrieri and Iacoviello (2015). They use the first 20 observations as burn-in using a 

simpler filter to ensure that their non-linear filter starts from a well-adapted initial distribution. 

I follow this approach and use the Kalman filter for the first 20 observations. The number of 

particles for the conditional particle filter is set to 10,000. 
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2.4.2  Posterior simulation 
 

Particle filters belong to a more general category of Sequential Monte Carlo (SMC) sampler. To 

be precise, particle filters are SMC samplers that are designed for state filtering and estimation. 

However, SMC samplers may also be applied to the estimation of Bayesian posterior distributions 

in the Del Moral, Doucet and Jasra (2006) sense. The following section first details why SMC 

samplers were chosen for this estimation and then describes the specific sampler used in this 

chapter.  

SMC samplers have several advantages over other Bayesian simulation strategies typically used 

in the DSGE literature, specifically Markov Chain Monte Carlo techniques. Firstly, unlike Markov 

Chain samplers like the Random Walk Metropolis Hasting algorithm, basic SMC samplers can 

make effective use of multi-core CPUs. In the basic Random Walk Metropolis Hasting algorithm, 

every single likelihood has to be evaluated in sequence, while for SMC samplers, all likelihoods 

in the current particle system can be evaluated at the same time. For a fixed number of likelihood 

evaluations, this can provide immense computational gains inversely proportional to the number 

of cores in a CPU. Secondly, SMC samplers can be designed in a very adaptive manner and can, 

therefore, face a difficult trade-off between estimation accuracy and estimation time in an effective 

way. For a brilliant implementation of adaptive SMC samplers, see Buchholz, Chopin and Jacob 

(2021), which has significantly informed the SMC design in this chapter.  

Moving on to the design of the SMC algorithm, SMC procedures divide the posterior estimation 

problem into a sequence of individually simpler estimation problems. To do so, one constructs a 

series that starts at an initial target density 𝜋𝜋1(𝜃𝜃) for the structural parameter vector 𝜃𝜃. The 

main quality of  𝜋𝜋1(𝜃𝜃) is that it can be well approximated using importance sampling based on 

some initial proposal distribution, 𝜂𝜂1(𝜃𝜃),  used to populate the particle system. Once 𝜋𝜋1(𝜃𝜃) has 

been approximated, the current sample can be used to approximate the next density in the series, 

𝜋𝜋2(𝜃𝜃). Ideally, if 𝜋𝜋1(𝜃𝜃) and 𝜋𝜋2(𝜃𝜃) can be chosen in such a way that they represent fairly similar 

densities, then the second approximation may also succeed. After the approximation, one can 

apply Markov Chain Monte Carlo steps to the individual particles to adapt them to 𝜋𝜋2(𝜃𝜃) and 
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to reintroduce variation lost in the sampling step. Iterating the two steps of importance sampling 

and adaptation allows for the construction of a series of distributions, {𝜋𝜋𝑖𝑖(𝜃𝜃)}𝑖𝑖=1
𝑝𝑝 , from 𝜋𝜋1(𝜃𝜃) to 

𝜋𝜋𝑝𝑝(𝜃𝜃) where 𝜋𝜋𝑝𝑝(𝜃𝜃) is the distribution of interest. In DSGE modelling, 𝜋𝜋𝑝𝑝(𝜃𝜃) that would be the 

posterior parameter distribution. SMC sampling has been utilized widely for parameter 

estimation in various models but has also been previously used in the DSGE literature in Herbst 

and Schorfheide (2016) and Creal (2007). 

To construct an SMC algorithm, the crucial choice is the sequence of distributions. Based on the 

proposal in Del Moral, Doucet and Jasra (2006), I choose the following type of path: 

𝜋𝜋𝑛𝑛(𝜃𝜃) ∝ 𝜋𝜋(𝜃𝜃)𝜙𝜙𝑛𝑛𝜇𝜇1(𝜃𝜃)1−𝜙𝜙𝑛𝑛 , 

with 0 ≤ 𝜙𝜙1 < ⋯ < 𝜙𝜙𝑝𝑝 = 1. In the initial period one, the 𝑁𝑁  particles {𝜃𝜃1
𝑗𝑗} are initialized based 

on some analytically tractable density 𝜇𝜇1(𝜃𝜃) so that 𝜂𝜂1(𝜃𝜃) = 𝜇𝜇1(𝜃𝜃). Further, for 𝜙𝜙1 = 0 the initial 

target density is just 𝜇𝜇1(𝜃𝜃). As 𝜙𝜙 increases, the sampler moves from the convenient 𝜇𝜇1(𝜃𝜃) to the 

posterior, 𝜋𝜋(𝜃𝜃), as the weight of the initial proposal distribution decreases. This type of approach 

includes the Herbst and Schorfheide (2016) approach, which set 𝜇𝜇1(𝜃𝜃) to the prior distribution 

of 𝜃𝜃, 𝑝𝑝(𝜃𝜃). In that case: 

𝜋𝜋𝑛𝑛(𝜃𝜃) ∝ �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)�𝜙𝜙𝑛𝑛𝑝𝑝(𝜃𝜃)1−𝜙𝜙𝑛𝑛 = 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝜙𝜙𝑛𝑛𝑝𝑝(𝜃𝜃), 

where information about the likelihood, 𝑝𝑝(𝑦𝑦|𝜃𝜃), is added slowly to the prior. In this application, 

I follow the approach in Creal (2007) to use an initial distribution that approximates the target 

density, 𝜋𝜋(𝜃𝜃): 

𝜋𝜋𝑛𝑛(𝜃𝜃) ∝ �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)�𝜙𝜙𝑛𝑛𝜇𝜇1(𝜃𝜃)1−𝜙𝜙𝑛𝑛 . 

This type of strategy is frequently applied to Random Walk Metropolis-Hastings samplers, which 

use an approximated posterior as the proposal distribution. Furthermore, it has some convincing 

advantages. While priors for structural economic parameters are informative about coverage of 

the parameters, in a lot of applications, one may find that prior and posterior beliefs for 

parameters differ substantially. In that case, the sampler spends significant time transversing vast 

low-density areas until it reaches an area of high likelihood. This is inconvenient both from a 

computational perspective and from an inference perspective. If one has an approximation of the 

posterior available, one can ensure that most of the likelihood evaluations take place in high-
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density areas. Ideally, if the approximation was perfect, 𝜇𝜇1(𝜃𝜃) = 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃), then one could 

directly sample from the posterior. In reality, the sampler will correct a mismatch between the 

approximated posterior and the actual posterior. In this application, 𝜇𝜇1(𝜃𝜃) is constructed by 

conducting 20 mode searches on an approximated posterior based on an estimation using the 

unscented Kalman filter. Likelihood evaluations using the unscented Kalman filter cost a fraction 

of the time and, therefore, are a convenient choice for the construction of 𝜇𝜇1(𝜃𝜃). 𝜇𝜇1(𝜃𝜃) is then 

constructed as a Gaussian centred at the mode with a diagonal approximation of the inverse 

Hessian scaled by factor two. The rescaling is done to ensure sufficient coverage.  

The incremental weights of the SMC sampler can be defined as follows:  

�̃�𝑤𝑛𝑛
𝑗𝑗 �𝜃𝜃𝑛𝑛

𝑗𝑗 , 𝜃𝜃𝑛𝑛−1
𝑗𝑗 � = (𝑝𝑝�𝑦𝑦|𝜃𝜃𝑛𝑛−1

𝑗𝑗 �𝑝𝑝�𝜃𝜃𝑛𝑛−1
𝑗𝑗 �)𝜙𝜙𝑛𝑛−𝜙𝜙𝑛𝑛−1𝜇𝜇1(𝜃𝜃𝑛𝑛−1

𝑗𝑗 )𝜙𝜙𝑛𝑛−1−𝜙𝜙𝑛𝑛 ∝
𝜋𝜋𝑛𝑛�𝜃𝜃𝑛𝑛−1

𝑗𝑗 �
𝜋𝜋𝑛𝑛−1�𝜃𝜃𝑛𝑛−1

𝑗𝑗 �
, 

where 𝜃𝜃𝑛𝑛−1
𝑗𝑗  is the draw 𝑗𝑗 of 𝜃𝜃 in iteration 𝑙𝑙 − 1 and �̃�𝑤𝑛𝑛

𝑗𝑗  is the incremental weight in period 𝑙𝑙. 

The incremental weights can be defined as above due to the choice of target densities and as I 

utilize invariant MCMC steps for the mutation step. Furthermore, based on the incremental 

weights, the normalized importance weights can be constructed as follows: 

𝑊𝑊𝑛𝑛
𝑗𝑗 =

𝑊𝑊𝑛𝑛−1
𝑗𝑗 �̃�𝑤𝑛𝑛

𝑗𝑗

∑ 𝑊𝑊𝑛𝑛−1
𝑗𝑗 �̃�𝑤𝑛𝑛

𝑗𝑗𝑁𝑁
𝑗𝑗=1

 ,   

where 𝑊𝑊𝑛𝑛
𝑗𝑗 is the normalized importance weights for particle 𝑗𝑗 in iteration 𝑙𝑙. To finalise the 

sequence of distribution, one has to choose the sequence of temperatures governed by 𝜙𝜙𝑛𝑛. A good 

tempering schedule ensures that all bridge distributions are always close enough to provide 

effective approximations. However, equally important is that the bridge distributions are not too 

close to each other. If they are too similar, the algorithm will spend significant time 

approximating perhaps virtually indistinguishable densities. Designing a good schedule is not a 

trivial problem and could require expensive test runs to get the tempering schedule right. For 

this application, I developed code for an adaptive tempering procedure created by Jasra et al. 

(2010). Jasra et al. (2010) rely on the effective sample size (𝐸𝐸𝐸𝐸𝐸𝐸) to adaptively construct the 

tempering schedule for the coming temperature. The 𝐸𝐸𝐸𝐸𝐸𝐸 criterion is a measure of the current 

diversity and approximation accuracy of the particle system. Over time, as the SMC algorithm 

generates samples from one bridge density to the next, the effective sample size typically decreases 
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as some particles may have degenerating weights. For example, some draws of the prior may be 

located in areas of the parameter space that hold little weight in the intermediate density 𝜋𝜋𝑛𝑛(𝜃𝜃). 

As a result, without resampling, one expects the 𝐸𝐸𝐸𝐸𝐸𝐸 to decrease over the iterations. Jasra et al. 

(2010) propose to control the decay of the 𝐸𝐸𝐸𝐸𝐸𝐸 based on some user-chosen rate. To implement 

this, the 𝐸𝐸𝐸𝐸𝐸𝐸 is calculated as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝜙𝜙𝑛𝑛) = 𝑁𝑁
1
𝑁𝑁 ∑ �𝑊𝑊𝑛𝑛

𝑗𝑗(𝜙𝜙𝑛𝑛)�
2
 𝑁𝑁

𝑗𝑗=1

. 

Crucially, the 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝜙𝜙𝑛𝑛) in iteration 𝑙𝑙 varies only by 𝜙𝜙𝑛𝑛 as previous weights and log-likelihood 

values are fixed in the calculation. Based on this, a decay criterion can be chosen and minimized: 

𝑎𝑎𝑏𝑏𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛(𝜙𝜙𝑛𝑛) − 𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛−1) = 0. 

Conceptually, the above criterion satisfies that the current effective sample size in iteration 𝑙𝑙 

does not decay too much or too little from 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛−1 as governed by 𝛼𝛼. Appropriate choices of 𝛼𝛼 

can ensure a gradual, consistent and plannable decay of the 𝐸𝐸𝐸𝐸𝐸𝐸. To ensure that the 𝐸𝐸𝐸𝐸𝐸𝐸 does 

not decay to zero and accurate approximations are maintained, the particle system is resampled 

using systematic resampling whenever the 𝐸𝐸𝐸𝐸𝐸𝐸 is less than half of the total sample size, 𝑁𝑁 . As 

a result, the 𝐸𝐸𝐸𝐸𝐸𝐸 goes through a repeated pattern of decay governed by 𝛼𝛼, which is followed by 

upward jumps close to the total sample size. The path of 𝜙𝜙𝑛𝑛 going from zero to one arguably 

depends on the complexity of the density. Within a given decay phase, the path is typically linear. 

To conclude, the crucial advantage of Jasra et al. (2010) is that the tempering schedule is neither 

too fast nor too slow and avoids manual calibration based on expensive test runs. Algorithm 1 

summarizes the adaptive tempering procedure in a quasi-code format. 
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Algorithm 1: Quasi Code for the Jasra et al. (2010) adaptive tempering strategy applied to SMC sampling. 

The last component of the SMC sampler is the mutation step. While the prior draws might offer 

sufficient coverage over the posterior, it is beneficial to adapt the particle system to the current 

density, 𝜋𝜋𝑛𝑛(𝜃𝜃), to reintroduce variation that is lost during the resampling steps. Following Herbst 

and Schorfheide (2016), I implement a blocked Metropolis-Hastings sampler using a mixture 

proposal density. The Metropolis-Hastings algorithm is a particularly important choice because 

the sampler leaves the particles invariant. However, Metropolis-Hastings samplers do not scale 

well with increasing parameter numbers. As the number of parameters increases, the rate of 

exploration through the posterior decreases (e.g., see Neal (2012)). If one relies on blocking and 

mutates a sub-vector of 𝜃𝜃, this implies considerably higher acceptance rates. The blocked mixture 

proposals, 𝑣𝑣𝑛𝑛,𝑏𝑏
𝑗𝑗 , for block, 𝑏𝑏, of particle 𝑗𝑗 in iteration 𝑙𝑙 of the SMC sampler then comes from the 

following density: 

𝑣𝑣𝑛𝑛,𝑏𝑏
𝑗𝑗 |(𝜃𝜃𝑛𝑛,𝑏𝑏

𝑗𝑗 , 𝜃𝜃�̅�𝑛,𝑏𝑏,𝛴𝛴𝑛𝑛,𝑏𝑏)~𝑤𝑤𝑁𝑁(𝜃𝜃𝑛𝑛,𝑏𝑏
𝑗𝑗 , 𝑐𝑐2𝛴𝛴𝑛𝑛,𝑏𝑏) + 1 − 𝑤𝑤

2
𝑁𝑁(𝜃𝜃𝑛𝑛,𝑏𝑏

𝑗𝑗 , 𝑐𝑐2𝑑𝑑𝑖𝑖𝑎𝑎𝑙𝑙(𝛴𝛴𝑛𝑛,𝑏𝑏)) 

+ 1 − 𝑤𝑤
2

𝑁𝑁�𝜃𝜃�̅�𝑛,𝑏𝑏, 𝑐𝑐2𝛴𝛴𝑛𝑛,𝑏𝑏�, 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟏𝟏: 𝑡𝑡𝐵𝐵𝐺𝐺𝑝𝑝𝐵𝐵𝑁𝑁𝑎𝑎𝑡𝑡𝑢𝑢𝑁𝑁𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎 𝑔𝑔() 

1. 𝐼𝐼𝑎𝑎𝑝𝑝𝑢𝑢𝑡𝑡: 
 𝜙𝜙𝑎𝑎−1 =  𝑡𝑡𝐵𝐵𝐺𝐺𝑝𝑝𝐵𝐵𝑁𝑁𝑎𝑎𝑡𝑡𝑢𝑢𝑁𝑁𝐵𝐵 𝑎𝑎𝑡𝑡 𝑎𝑎 − 1 
 𝑊𝑊𝑎𝑎−1

𝑖𝑖 = 𝑎𝑎𝑁𝑁𝑁𝑁𝐺𝐺𝑎𝑎𝑙𝑙𝑖𝑖𝑧𝑧𝐵𝐵𝑎𝑎 𝑤𝑤𝐵𝐵𝑖𝑖𝑔𝑔ℎ𝑡𝑡𝑠𝑠 𝑎𝑎𝑡𝑡 𝑎𝑎 − 1 
 𝑝𝑝�𝑌𝑌�𝜃𝜃𝑎𝑎−1

𝑖𝑖 � = 𝑙𝑙𝑁𝑁𝑔𝑔𝑙𝑙𝑖𝑖𝑡𝑡𝐵𝐵𝑙𝑙𝑖𝑖ℎ𝑁𝑁𝑁𝑁𝑎𝑎 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝐵𝐵𝑠𝑠 
 𝑝𝑝�𝜃𝜃𝑎𝑎−1

𝑗𝑗 � = 𝑝𝑝𝑁𝑁𝑖𝑖𝑁𝑁𝑁𝑁 𝑙𝑙𝑖𝑖𝑡𝑡𝐵𝐵𝑙𝑙𝑖𝑖ℎ𝑁𝑁𝑁𝑁𝑎𝑎 
 𝜇𝜇1�𝜃𝜃𝑎𝑎−1

𝑗𝑗 � = 𝑝𝑝𝑁𝑁𝑁𝑁𝑝𝑝𝑁𝑁𝑠𝑠𝑎𝑎𝑙𝑙 𝑎𝑎𝐵𝐵𝑎𝑎𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝐵𝐵𝑠𝑠 
 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎−1 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝑐𝑐𝑡𝑡𝑖𝑖𝑣𝑣𝐵𝐵 𝑠𝑠𝑎𝑎𝐺𝐺𝑝𝑝𝑙𝑙𝐵𝐵 𝑠𝑠𝑖𝑖𝑧𝑧𝐵𝐵 𝑎𝑎𝑡𝑡 𝑎𝑎 − 1  
 𝛼𝛼 = 𝑝𝑝𝑎𝑎𝑁𝑁𝑎𝑎𝐺𝐺𝐵𝐵𝑡𝑡𝐵𝐵𝑁𝑁 𝑐𝑐𝑁𝑁𝑎𝑎𝑡𝑡𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑖𝑖𝑎𝑎𝑔𝑔 𝑝𝑝𝑎𝑎𝑁𝑁𝑡𝑡𝑖𝑖𝑐𝑐𝑙𝑙𝐵𝐵 𝑎𝑎𝐵𝐵𝑔𝑔𝐵𝐵𝑎𝑎𝐵𝐵𝑁𝑁𝑎𝑎𝑐𝑐𝑦𝑦 

2. 𝐼𝐼𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑙𝑙𝑖𝑖𝑧𝑧𝑎𝑎𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎: 

 𝑎𝑎𝐵𝐵𝐸𝐸𝑖𝑖𝑎𝑎𝐵𝐵 𝑤𝑤𝑎𝑎𝑖𝑖 =  (𝑝𝑝�𝑦𝑦|𝜃𝜃𝑎𝑎−1
𝑗𝑗 �𝑝𝑝�𝜃𝜃𝑎𝑎−1

𝑗𝑗 �)𝜙𝜙𝑎𝑎−𝜙𝜙𝑎𝑎−1𝜇𝜇1(𝜃𝜃𝑎𝑎−1
𝑗𝑗 )𝜙𝜙𝑎𝑎−1−𝜙𝜙𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊𝑎𝑎

𝑖𝑖 = 𝑊𝑊𝑎𝑎−1
𝑖𝑖 𝑤𝑤𝑎𝑎

𝑖𝑖

∑ 𝑊𝑊𝑎𝑎−1
𝑖𝑖 𝑤𝑤𝑎𝑎

𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

 𝑎𝑎𝐵𝐵𝐸𝐸𝑖𝑖𝑎𝑎𝐵𝐵 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎(𝜙𝜙𝑎𝑎) = 𝑁𝑁
1
𝑁𝑁 ∑ �𝑊𝑊𝑎𝑎

𝑖𝑖 �
2

 𝑁𝑁
𝑖𝑖=1

  

3. 𝑞𝑞𝑢𝑢𝑎𝑎𝑠𝑠𝑖𝑖 𝑐𝑐𝑁𝑁𝑎𝑎𝐵𝐵: 
 𝑖𝑖𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎(1) ≥ 𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎−1 

 𝜙𝜙𝑎𝑎 = 1 
 𝐵𝐵𝑙𝑙𝑠𝑠𝐵𝐵 

 𝑠𝑠𝑁𝑁𝑙𝑙𝑣𝑣𝐵𝐵 𝑎𝑎𝑏𝑏𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎(𝜙𝜙𝑎𝑎) − 𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎−1) = 0  

𝐵𝐵𝑎𝑎𝑎𝑎 
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where 𝛴𝛴𝑛𝑛,𝑏𝑏 is the particle approximation of the covariance matrix of 𝜃𝜃𝑛𝑛,𝑏𝑏, 𝜃𝜃�̅�𝑛,𝑏𝑏 is the mean of the 

sub-vector, and 𝑐𝑐 is the scaling factor of the proposal. The scaling factor is chosen based on a 

targeting function of the Herbst and Schorfheide (2016) design. This density has three mixture 

components. Firstly, it offers a standard random walk proposal 𝑁𝑁(𝜃𝜃𝑛𝑛,𝑏𝑏
𝑗𝑗 , 𝑐𝑐2𝛴𝛴𝑛𝑛,𝑏𝑏) using the full 

covariance matrix with probability 𝑤𝑤. Secondly, it has a further random walk proposal 

𝑁𝑁(𝜃𝜃𝑛𝑛,𝑏𝑏
𝑗𝑗 , 𝑐𝑐2𝑑𝑑𝑖𝑖𝑎𝑎𝑙𝑙(𝛴𝛴𝑛𝑛,𝑏𝑏)) with probability 1−𝑤𝑤

2 , where correlations between parameters are ignored. 

Lastly, it features an independent proposal 𝑁𝑁(𝜃𝜃�̅�𝑛,𝑏𝑏, 𝑐𝑐2𝛴𝛴𝑛𝑛,𝑏𝑏) with 𝑝𝑝 = 1−𝑤𝑤
2  where samples are 

generated at the mean. In practice, for DSGE models, it is typically the case that parameters in 

𝜃𝜃 are constrained. In this case, a normal approximation as above working with 𝜃𝜃 may generate 

proposals out of bounds that will be rejected immediately. Here, I implement a strategy based 

on Amisano and Tristani (2010) based on working on a transformed parameter vector in an 

unconstrained space. For gamma-distributed parameters, the 𝑙𝑙𝑓𝑓𝑙𝑙 transformation is applied. For 

Beta distributed parameters, an inverse sigmoid transformation is selected, and normal 

parameters are not transformed. To ensure that the sampler still works, the acceptance step of 

the Metropolis-Hastings algorithm is adjusted using the determinant of the Jacobian of the 

transformation. 

The above described algorithm requires a number of tuning parameters in order to run. The 

number of particles, 𝑁𝑁 , is set to 3000 and the particle degeneration parameter, 𝛼𝛼, is set to 0.9. 

For the mixture distribution the number of blocks is set to 5, the mixture weight, 𝑤𝑤, is equal to 

0.9 and the initial scale parameter, 𝑐𝑐, is set to 0.5.  

For the code implementation, I rely heavily on the initial implementation of their SMC published 

by Herbst and Schorfheide (2016). However, I adjust the code to include the individual changes 

listed above. Algorithm 2 provides a summary of the SMC strategy employed in this chapter. 
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Algorithm 2: Summary of the SMC algorithm 

 

2.4.3  Data  
 

The following section gives a detailed description of the construction of the observable variables. 

For the likelihood construction, the model uses seven observable variables over a sample from 

1984Q1 to 2021Q4. The sample purposefully excludes the early 1980s to avoid including periods 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐: 𝐸𝐸𝑆𝑆𝑆𝑆 𝑠𝑠𝑎𝑎𝐺𝐺𝑝𝑝𝑙𝑙𝐵𝐵𝑁𝑁 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑏𝑏𝑙𝑙𝑁𝑁𝑐𝑐𝑡𝑡𝐵𝐵𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑡𝑡𝐵𝐵𝑝𝑝𝑠𝑠 

1. 𝐼𝐼𝑎𝑎𝑝𝑝𝑢𝑢𝑡𝑡𝑠𝑠: 
 𝑁𝑁 = 𝑎𝑎𝑢𝑢𝐺𝐺𝑏𝑏𝐵𝐵𝑁𝑁 𝑁𝑁𝐸𝐸 𝑝𝑝𝑎𝑎𝑁𝑁𝑡𝑡𝑖𝑖𝑐𝑐𝑙𝑙𝐵𝐵𝑠𝑠 
 𝑔𝑔  = 𝐸𝐸𝑢𝑢𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎 𝑡𝑡𝑁𝑁 𝑐𝑐ℎ𝑁𝑁𝑁𝑁𝑠𝑠𝐵𝐵 𝑎𝑎𝐵𝐵𝑛𝑛𝑡𝑡 𝑡𝑡𝐵𝐵𝐺𝐺𝑝𝑝𝐵𝐵𝑁𝑁𝑎𝑎𝑡𝑡𝑢𝑢𝑁𝑁𝐵𝐵  
 𝐾𝐾  = 𝑆𝑆𝑎𝑎𝑁𝑁𝑡𝑡𝑁𝑁𝑣𝑣 𝐾𝐾𝐵𝐵𝑁𝑁𝑎𝑎𝐵𝐵𝑙𝑙 𝐸𝐸𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑡𝑡𝐵𝐵𝑝𝑝𝑠𝑠 
 𝑁𝑁𝑏𝑏 = 𝑎𝑎𝑢𝑢𝐺𝐺𝑏𝑏𝐵𝐵𝑁𝑁 𝑁𝑁𝐸𝐸 𝑏𝑏𝑙𝑙𝑁𝑁𝑐𝑐𝑡𝑡𝑠𝑠 
 𝐸𝐸  = 𝐸𝐸𝑢𝑢𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎 𝑡𝑡𝑁𝑁 𝑐𝑐ℎ𝑁𝑁𝑁𝑁𝑠𝑠𝐵𝐵 𝑎𝑎𝐵𝐵𝑛𝑛𝑡𝑡 𝑠𝑠𝑡𝑡𝐵𝐵𝑝𝑝 𝑠𝑠𝑖𝑖𝑧𝑧𝐵𝐵  

2. 𝐼𝐼𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑙𝑙𝑖𝑖𝑧𝑧𝑎𝑎𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎: 
 𝑠𝑠𝐵𝐵𝑡𝑡 𝑎𝑎 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙1 = 0 
 𝑠𝑠𝑎𝑎𝐺𝐺𝑝𝑝𝑙𝑙𝐵𝐵 𝜃𝜃1

𝑖𝑖~𝜋𝜋1(𝜃𝜃) = 𝜇𝜇1(𝜃𝜃) 
 𝑠𝑠𝐵𝐵𝑡𝑡 𝑊𝑊1

𝑖𝑖 = 1 ∀ 𝑖𝑖 ∈ {1, … ,𝑁𝑁} 
3. 𝐼𝐼𝑡𝑡𝐵𝐵𝑁𝑁𝑎𝑎𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎: 

 𝑤𝑤ℎ𝑖𝑖𝑙𝑙𝐵𝐵 𝜙𝜙𝑎𝑎 < 1 
 𝑠𝑠𝐵𝐵𝑡𝑡 𝑎𝑎 = 𝑎𝑎 + 1 and choose  𝜙𝜙𝑎𝑎 = 𝑔𝑔() 
  
 𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝑐𝑐𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎 𝑠𝑠𝑡𝑡𝐵𝐵𝑝𝑝: 

 𝑊𝑊𝑎𝑎
𝑖𝑖 = 𝑊𝑊𝑎𝑎−1

𝑖𝑖 𝑤𝑤𝑎𝑎
𝑖𝑖

∑ 𝑊𝑊𝑎𝑎−1
𝑖𝑖 𝑤𝑤𝑎𝑎

𝑖𝑖𝑁𝑁
𝑖𝑖=1

   𝑎𝑎𝑎𝑎𝑎𝑎  𝑤𝑤𝑎𝑎𝑖𝑖 =

 (𝑝𝑝�𝑦𝑦|𝜃𝜃𝑎𝑎−1
𝑗𝑗 �𝑝𝑝�𝜃𝜃𝑎𝑎−1

𝑗𝑗 �)𝜙𝜙𝑎𝑎−𝜙𝜙𝑎𝑎−1𝜇𝜇1(𝜃𝜃𝑎𝑎−1
𝑗𝑗 )𝜙𝜙𝑎𝑎−1−𝜙𝜙𝑎𝑎   ∀ 𝑖𝑖 

  
 𝑠𝑠𝐵𝐵𝑙𝑙𝐵𝐵𝑐𝑐𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎 𝑠𝑠𝑡𝑡𝐵𝐵𝑝𝑝: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎 = 𝑁𝑁
1
𝑁𝑁 ∑ �𝑊𝑊�𝑎𝑎𝑖𝑖 �

2
 𝑁𝑁

𝑖𝑖=1
 

 𝑖𝑖𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎 ≥ 0.5 × 𝑁𝑁 
 𝑊𝑊𝑎𝑎

𝑖𝑖 = 𝑊𝑊𝑎𝑎
𝑖𝑖   𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝑎𝑎𝑖𝑖 = 𝜃𝜃𝑎𝑎−1

𝑖𝑖  ∀ 𝑖𝑖 ∈ {1, … ,𝑁𝑁}   
 𝐵𝐵𝑙𝑙𝑠𝑠𝐵𝐵 

 𝑢𝑢𝑠𝑠𝐵𝐵 𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡𝐵𝐵𝐺𝐺𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐 𝑁𝑁𝐵𝐵𝑠𝑠𝑎𝑎𝐺𝐺𝑝𝑝𝑙𝑙𝑖𝑖𝑎𝑎𝑔𝑔 𝑤𝑤𝑖𝑖𝑡𝑡ℎ {𝜃𝜃𝑎𝑎−1
𝑖𝑖 ,𝑊𝑊𝑎𝑎

𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 𝑔𝑔𝐵𝐵𝑎𝑎𝐵𝐵𝑁𝑁𝑎𝑎𝑡𝑡𝐵𝐵 𝑠𝑠𝑎𝑎𝐺𝐺𝑝𝑝𝑙𝑙𝐵𝐵  �𝜃𝜃𝑎𝑎𝑖𝑖 �𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑊𝑊𝑎𝑎

𝑖𝑖 = 1 
 𝐵𝐵𝑎𝑎𝑎𝑎 
  

 𝐺𝐺𝑢𝑢𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑁𝑁𝑎𝑎 𝑠𝑠𝑡𝑡𝐵𝐵𝑝𝑝: 
 𝑐𝑐ℎ𝑁𝑁𝑁𝑁𝑠𝑠𝐵𝐵 𝑐𝑐𝑎𝑎 = 𝐸𝐸(𝑐𝑐𝑎𝑎−1,𝑎𝑎𝑐𝑐𝑐𝑐𝐵𝐵𝑝𝑝𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵 𝑁𝑁𝑎𝑎𝑡𝑡𝐵𝐵)  
 𝐺𝐺𝑁𝑁𝑣𝑣𝐵𝐵 𝑝𝑝𝑎𝑎𝑁𝑁𝑡𝑡𝑖𝑖𝑐𝑐𝑙𝑙𝐵𝐵 𝜃𝜃𝑎𝑎𝑖𝑖 ~𝐾𝐾() 𝑢𝑢𝑠𝑠𝑖𝑖𝑎𝑎𝑔𝑔 𝑏𝑏𝑙𝑙𝑁𝑁𝑐𝑐𝑡𝑡𝐵𝐵𝑎𝑎 𝑆𝑆𝑀𝑀 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑁𝑁𝑏𝑏  

 𝐵𝐵𝑎𝑎𝑎𝑎 
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of output volatility, similar to Sims and Wolff (2018a). The end date was the latest date for which 

the data set could be fully constructed. The data includes measurements for the following 

variables: federal consumption tax rate, 𝜏𝜏𝑡𝑡
𝐶𝐶 , federal labour taxation rate,  𝜏𝜏𝑡𝑡

𝑙𝑙, federal government 

consumption, 𝐺𝐺𝑡𝑡, federal government debt, 𝐵𝐵𝑡𝑡, GDP, 𝑌𝑌𝑡𝑡, Inflation, 𝜋𝜋𝑡𝑡 and interest rates, 𝑖𝑖𝑡𝑡. Out 

of convenience, I drop the index 𝑑𝑑 below, but variables still refer to their measurements in period 

𝑑𝑑. 

Starting with the fiscal variables, this chapter heavily orientates itself on the design of taxation 

rates developed in Jones (2002) and later used in Leeper, Plante and Traum (2010). To construct 

𝜏𝜏𝑐𝑐 and 𝜏𝜏𝑙𝑙, a few intermediate steps are needed, and all data is taken from the Bureau of Economic 

Analysis (BEA) and the Federal Reserve Economic Data database (FRED). To construct the 

consumption tax rate, overall and local consumption tax revenues and, in addition, the level of 

consumption are needed. Firstly, consumption tax revenues, 𝑇𝑇 𝑐𝑐, are the taxes on production and 

imports. 𝑇𝑇 𝑐𝑐 Includes both excise taxes and customs duties. Consumption, 𝐶𝐶, is defined as the 

sum of personal consumption expenditures on nondurable goods and services. 

Based on 𝑇𝑇 𝑐𝑐, 𝑇𝑇𝑠𝑠
𝑐𝑐 and 𝐶𝐶, the marginal consumption tax rate can be constructed as follows: 

𝜏𝜏𝑐𝑐 = 𝑇𝑇 𝑐𝑐

𝐶𝐶 − 𝑇𝑇 𝑐𝑐  − 𝑇𝑇𝑠𝑠
𝑐𝑐. 

To construct the average labour income tax rate, one first needs to construct the average 

personal income tax rate following the methodology presented in Jones (2002).  

𝜏𝜏𝑝𝑝 =
𝐼𝐼𝑇𝑇

𝑊𝑊 + 𝑃𝑃𝑅𝑅𝐼𝐼
2 + 𝐶𝐶𝐼𝐼

. 

Capital income, 𝐶𝐶𝐼𝐼 , is defined as the sum of rental income, corporate profits and interest. The 

variable 𝑊𝑊  represents wage and salary accruals, and 𝑃𝑃𝑅𝑅𝐼𝐼 corresponds to the proprietor's income.  

Based on 𝜏𝜏𝑝𝑝, one can construct the average labour income tax rate as:  

𝜏𝜏 𝑙𝑙 =
𝜏𝜏𝑝𝑝(𝑊𝑊 + 𝑃𝑃𝑅𝑅𝐼𝐼/2) + 𝐶𝐶𝐸𝐸𝐼𝐼

𝐸𝐸𝐶𝐶 + 𝑃𝑃𝑅𝑅𝐼𝐼/2
, 

where CSI are contributions to government social insurance, and 𝐸𝐸𝐶𝐶 are compensations to 

employees. Within the model, the tax rates enter under the following transformation: 𝜏𝜏𝑡𝑡
1+𝜏𝜏𝑡𝑡

. In 

practical terms, this ensures that the rate is contained in the closed interval from zero to one. To 
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match the data to the model variables, the opposite transformation is applied to the tax rate 

observations.  

𝜏𝜏𝑡𝑡
𝑚𝑚𝑏𝑏𝑠𝑠 = 𝜏𝜏𝑡𝑡

1 − 𝜏𝜏𝑡𝑡
. 

This means that the corresponding model variables can be directly matched as opposed to 

matching a non-linear transformation of the model variables, 𝜏𝜏𝑡𝑡
1+𝜏𝜏𝑡𝑡

, to the data. In practical terms, 

the difference between 𝜏𝜏𝑡𝑡 and 𝜏𝜏𝑡𝑡
1−𝜏𝜏𝑡𝑡

 tends to be fairly small away from the boundary. 

Government consumption, 𝐺𝐺, is set as the sum of federal government consumption and 

government net purchases of non-produced assets minus government consumption of fixed capital. 

Government Debt, 𝐵𝐵, is collected as market value US federal debt from the Dallas federal reserved 

database.  

Departing from the government side, the data construction requires three more series. Firstly, 

GDP is collected as seasonally adjusted gross domestic product from the FRED database. 

Secondly, inflation is constructed using the implicit price deflator of GDP, and thirdly, interest 

rates are defined as 3-Month market rates of treasury bills. Both series were collected from the 

FRED database as well. To construct model variables, government consumption, 𝐺𝐺𝑡𝑡, gross 

domestic product, 𝑌𝑌𝑡𝑡, and government debt, 𝐵𝐵𝑡𝑡, are first deflated using the GDP deflator to 

obtain real-valued variables. 

In a further step, some variables need to be detrended. Macroeconomic variables often include 

trends, and it is important to account for this in either the data construction or the modelling. 

In practice, the choice of procedure determines some of the features of the data and, as such, 

needs to be carefully evaluated. Pfeifer (2018) explores the current and popular approaches to 

account for trend mechanics in DSGE models. One approach comes in the form of including a 

growth rate transformation of trending variables. For a lot of data sets like GDP data, growth 

rates are typically approximately stable across time. This approach is, for example, followed in 

the canonical paper by Smets and Wouters (2007). An alternative approach is to linearly detrend 

the log of the nominal variables. The resulting data can be interpreted as steady state deviations 

from a trend and is used in Leeper, Plante and Traum (2010). The detrending options are not 
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limited to these two but also include the Hodrick-Prescot filter, directly modelling the trend and 

others.  

In relation to this, Pfeifer (2018) argues two things. Firstly, detrending data is meant to filter 

out business cycle mechanics that are not reflected in the model and preserve features that are. 

Therefore, the various detrending options remove related features in the data that are arguably 

generated by the business cycle. However, the removed features may vary in design across the 

detrending strategies. Secondly, Pfeifer (2018) argues that the difference in detrending strategies 

mostly reflects a priori preferences of the economist designing the model. In particular, it relates 

to which features of the data are assumed to be related to the business cycle and which are not. 

In this application, I utilized linear detrending of the log variables. This approach presents several 

advantages. Firstly, the model of fiscal policy is closely based on Leeper, Plante and Traum 

(2010). For comparison purposes, it seems advantageous to include the data in a similar fashion. 

Secondly, linear detrending typically leads to deeper business cycles in comparison to growth 

rates. This is consistent with the prior belief that fiscal policy goes through long and persistent 

policy cycles, and similarly, output business cycles are assumed to be fairly deep. The last 

advantage is computational. Linear detrending produces variables that have the interpretation of 

percentage steady state deviations. These variables are directly measured by DSGE models. In 

comparison, growth rates are typically not directly measured and can be constructed by 

subtracting steady deviations from two periods. For the simulation, the latter approach requires 

keeping track of redundant variables and can increase simulation time.  

Based on this, all data series but inflation and interest data are detrended using a linear trend 

on the log values. The resulting interpretation of the model variables is as log deviations from 

their steady state. For inflation and the interest rate, it is assumed that the data comes from a 

stationary, non-trending distribution. Further, inflation and interest rates are transformed using 

a log transformation. 
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2.4.4  Code implementation 
 

Estimating higher-order DSGE models can be very time-consuming, computationally complex 

and can require a lot of code development as in-built libraries may not always be suitable for all 

individual projects. Classical inference strategies with sequential sampling steps, like the random 

walk Metropolis-Hastings algorithm, can require estimation time in the magnitude of weeks to 

months depending on the individual researchers computational set up and number of sampling 

steps. Together, this makes these types of projects, which are already difficult to implement, 

prohibitive from a time cost perspective unless the researcher has access to state-of-the-art 

computing systems. To make the estimation of chapter 2 feasible, I attempt to improve on the 

standard estimation techniques by combining different empirical and technical approaches. 

A feature of modern computational developments is that CPUs or GPUs are not getting much 

faster on a per core basis, but parallel computations are where most improvements are being 

made. In order to exploit this, I focus on the use of Sequential Monte Carlo as proposed by 

Herbst and Schorfheide (2016) for the use in economics. I propose a specific Sequential Monte 

Carlo sampler heavily inspired by Buchholz, Chopin and Jacob (2021) and Jasra et al. (2010). 

The sampler attempts to make use of the computationally efficient parallelism of Sequential 

Monte Carlo sampler, while avoiding spending effort into exploring irrelevant areas of the 

posterior or already well explored tempered distributions. 

Parallelism aside, another crucial factor is the time per likelihood evaluations. Unlike Kalman 

filter based likelihood evaluations, particle filters rely on large array operations and are quite 

time consuming. To improve the computation time, I pass the main time consuming, large array 

operations to a GPU similar to neural network application for gradient backpropagation. Lastly, 

I attempt to make use of good coding practices by focusing on utilizing the LAPACK libraries 

whenever possible or utilizing MATLABs symbolic toolbox for the model creation. 

Together, the estimation time is cut down to around 5 days, which implies a reduction of up to 

94% depending on the chosen comparison basis. The main influences in this process are provided 

by Gomme and Klein (2011), Schmitt-Grohe and Uribe (2004), Herbst and Schorfheide (2016), 

Buchholz, Chopin and Jacob (2021), Jasra et al. (2010) and neural network applications. 
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I begin the code development with a replication exercise on the Amisano and Tristani (2010) 

model on its original data set. During the replication process, I was greatly aided by Amisano 

and Tristani (2010) sharing their code with me, which allowed me to double-check my work and 

improve on it. The main estimation in this paper features more model states than the original 

model, which increases the estimation time quite drastically. To combat this, a substantial part 

of the work went into finding strategies to reduce the estimation time, and this chapter utilizes 

three main improvements: adaptive Sequential Monte Carlo estimation, parallelization and GPU 

use for large array operations. The three approaches aim to reduce computation time by reducing 

the required number of likelihood evaluations to a minimum, evaluating likelihoods in parallel 

and optimizing speed per likelihood evaluation.  

The first two improvements go hand in hand. Traditionally, the Metropolis-Hastings algorithm is 

employed to estimate DSGE models. The algorithm is very useful, and the implementation is 

straightforward. However, the estimation time tends to be large as it can require a large number 

of likelihood evaluations to explore the posterior, and the algorithm works in a sequential fashion. 

That means it scales roughly linearly to the number likelihood evaluation and estimation time is 

approximately equal to 𝑙𝑙𝑟𝑟𝑣𝑣𝑎𝑎𝑙𝑙 ∗ 𝑑𝑑𝑙𝑙𝑖𝑖𝑘𝑘𝑟𝑟𝑙𝑙𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑣𝑣𝑎𝑎𝑙𝑙..  

SMC algorithms, as proposed by Herbst and Schorfheide (2016) for the use in economics, can be 

used to bring down the estimation time. Firstly, the adaptive SMC algorithm constructed in this 

chapter implicitly chooses the number of likelihood evaluations required for the estimation based 

on the adaptive tempering schedule proposed in Jasra et al. (2010). Based on my testing, the 

overall number of likelihood evaluations tends to be lower than in typical Metropolis-Hastings 

applications in the literature, and it avoids expensive test runs. Secondly, unlike the Metropolis-

Hastings algorithm, the SMC algorithm can be run in parallel, which brings the estimation time 

down to 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙×𝑡𝑡𝑙𝑙𝑖𝑖𝑘𝑘𝑒𝑒𝑙𝑙𝑖𝑖ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙
𝑛𝑛𝑐𝑐𝑜𝑜𝑐𝑐𝑒𝑒𝑠𝑠

.14 

The last main point of improvement focuses on reducing the time per likelihood evaluation. 

Unlike linear estimations using the Kalman filter, non-linear estimations using particle filter 

methods require large array operations due to the second-order terms. Large array operations are 

 
14 That figure is approximate and ignores communication overheads, and other factors. However, in most 
applications the gain is still substantial. 
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most conveniently and efficiently done on GPUs, and this strategy is also frequently employed in 

other fields like neural network estimations. Based on the GPU setup, I reduce the likelihood 

evaluation time by 58%.  

While the previous points delivered the most significant increases in performance, the following 

aspects help to improve code performance further: focus on writing code optimized for the inbuilt 

LAPACK libraries, symbolic differentiation of model files, faster model solution strategies and 

others. Overall, the techniques described above and, in the appendix, reduce the estimation from 

weeks to days. Additionally, the estimation time can be reduced by up to 94% depending on the 

selected comparison basis. 

For a more detailed description of the individual improvement strategies, see the appendix. I also 

provide re-estimation results for the Amisano and Tristani (2010) model. That includes 

estimations of the Amisano and Tristani (2010) model in its linear and non-linear form using the 

Metropolis-Hastings approach employed by Amisano and Tristani (2010) and an SMC estimation 

of the non-linear model version.  

 

2.4.5  Posterior estimates 
 

The following section presents posterior estimates for the model parameters. The results are 

summarised in Table 2.3, Table 2.4 and Table 2.5.  

To start off, the habit formation parameter is estimated to be around 0.45, which is a bit lower 

than typical estimates of around 0.7. However, it is fairly close to the Leeper, Plante and Traum 

(2010) estimate of 0.5. Price indexation, 𝑙𝑙, is estimated to be quite a bit higher than in the 

Amisano and Tristani (2010) model at around 0.58 and much closer to estimates in Sims and 

Wolff (2018a). The Calvo pricing parameter is similar to Sims and Wolff (2018a) and Smets and 

Wouters (2007). The Taylor rule features a strong response to inflation deviations from the target 

as governed by 𝜓𝜓𝜋𝜋 with a posterior mean of 1.9. Output growth responses are smaller by 

comparison. The autoregressive parameters all show estimates with fairly high persistence over 

0.9. The autoregressive parameter for productivity is fairly close to a unit root process. Highly 

persistent shocks are not unusual, though this one is particularly persistent. The origin for the 
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high estimate seems to be in the original Amisano and Tristani (2010) paper, who estimate 𝑝𝑝𝑎𝑎 

identically in their non-linear estimation.  

Table 2.3: Posterior estimates for core model parameters 

 

The linear fiscal parameters show quite standard posterior estimates for the debt and output 

responses. The labour tax debt coefficient, 𝜇𝜇𝜏𝜏𝑙𝑙,𝐵𝐵,  is estimated to be somewhat higher than in 

Leeper, Plante and Traum (2010) at 0.21, while in turn, the transfer debt coefficient, 𝜇𝜇𝑍𝑍,𝐵𝐵, is 

estimated to be lower at 0.09. The parameters that govern productivity and inflation responses 

overall do not deviate far from zero relative to the prior standard deviation. But specific responses 

like transfers to productivity, 𝜇𝜇𝑍𝑍,𝐴𝐴, estimated at 0.04 and government consumption to inflation, 

𝜇𝜇𝐺𝐺,𝜋𝜋, estimated at 0.02, may prove to improve dynamics.  

para mean sd. para mean sd. 
            
𝛽𝛽 0.99611 0.00091 𝑝𝑝𝜋𝜋  0.96910 0.02319 

𝛾𝛾 − 1 2.88668 1.24617 𝜎𝜎𝜏𝜏𝑙𝑙  0.01904 0.00241 
ℎ 0.45076 0.15845 𝜎𝜎𝜏𝜏𝑐𝑐  0.03001 0.00383 

𝜙𝜙 − 1 0.94969 0.36675 𝜎𝜎𝑇𝑇 0.05297 0.01142 
𝜃𝜃 − 1 7.46023 3.58253 𝜎𝜎𝐺𝐺  0.02339 0.00220 
𝜁𝜁 0.72244 0.08651 𝜎𝜎𝑎𝑎  0.02533 0.00492 
𝑙𝑙 0.57743 0.11304 𝜎𝜎𝑖𝑖  0.00143 0.00034 

𝜓𝜓𝜋𝜋 − 1 0.90019 0.22510 𝜎𝜎𝜋𝜋  0.00156 0.00028 
𝜓𝜓𝑦𝑦  0.12943 0.04407 𝜏𝜏𝑙𝑙  0.23014 0.00113 
𝑝𝑝𝜏𝜏𝑙𝑙  0.95814 0.02456 𝜏𝜏𝑐𝑐  0.01556 0.00139 
𝑝𝑝𝜏𝜏𝑐𝑐  0.97063 0.02592 𝑠𝑠𝑔𝑔  0.05984 0.00117 
𝑝𝑝𝑍𝑍  0.93096 0.03765 𝑠𝑠𝑏𝑏  0.49469 0.01114 
𝑝𝑝𝐺𝐺  0.95531 0.02423 𝜋𝜋 0.00564 0.00027 
𝑝𝑝𝑎𝑎  0.99948 0.00123       
𝑝𝑝𝑖𝑖  0.91657 0.02164       
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Table 2.4: Posterior estimates for linear fiscal parameters 

 

Moving on to the non-linear fiscal parameters, about a third of the parameters deviate from the 

prior mean by at least around half a standard deviation. However, that also includes some 

parameters that deviate quite substantially. For labour taxation, the interaction terms between 

output and inflation, 𝜑𝜑𝜏𝜏𝑙𝑙,𝑌𝑌 ,𝜋𝜋, and debt with itself, 𝜑𝜑𝜏𝜏𝑙𝑙,𝐵𝐵,𝐵𝐵, are particularly pronounced in their 

deviation from the prior with a posterior mean of 0.19 and 0.48, respectively. For transfers, the 

interactions between output and productivity seem to be of particular importance, with a 

posterior mean of -0.32. For government consumption, there are a few parameters of moderate 

importance: 𝜑𝜑𝐺𝐺,𝑌𝑌 ,𝑌𝑌 , 𝜑𝜑𝐺𝐺,𝑌𝑌 ,𝐵𝐵, 𝜑𝜑𝐺𝐺,𝑌𝑌 ,𝜋𝜋 and  𝜑𝜑𝐺𝐺,𝐵𝐵,𝐴𝐴. All of these deviate from zero by about half a 

prior standard deviation. Based on this, it seems to be the case that the data provides evidence 

in favour of non-linear fiscal rules, and, specifically, it shows that standard linear rules can be 

improved upon by capturing business cycle dependency. To explore the overall influence of the 

non-linear fiscal parameters on the gradients of the fiscal response functions, section 2.5.5 traces 

out the gradients across time to interpret the parameters in a joint fashion.  

para mean sd. 
      

𝜇𝜇𝜏𝜏𝑙𝑙 ,𝑌𝑌 0.18121 0.12679 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐵𝐵 0.21419 0.07318 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐴𝐴 0.00492 0.11651 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝜋𝜋  0.00706 0.16307 
𝜇𝜇𝑍𝑍,𝑌𝑌  0.20610 0.14094 
𝜇𝜇𝑍𝑍,𝐵𝐵 0.08613 0.09510 
𝜇𝜇𝑍𝑍,𝐴𝐴 0.04356 0.10380 
𝜇𝜇𝑍𝑍,𝜋𝜋  -0.01633 0.14512 
𝜇𝜇𝐺𝐺 ,𝑌𝑌 0.05127 0.08664 
𝜇𝜇𝐺𝐺 ,𝐵𝐵 0.34541 0.12567 
𝜇𝜇𝐺𝐺 ,𝐴𝐴 -0.01468 0.09610 
𝜇𝜇𝐺𝐺 ,𝜋𝜋  0.02190 0.10908 

      
 



121 
 

Table 2.5: Posterior estimates for non-linear interaction parameters 

 

The last category of non-linear parameters is the non-linear parameters in the interest rate rule.  

𝜓𝜓𝜋𝜋,𝜋𝜋, 𝜓𝜓𝜋𝜋,𝑌𝑌  and 𝜓𝜓𝑌𝑌 ,𝑌𝑌  all deviate more than half a prior standard deviation from zero. 𝜓𝜓𝜋𝜋,𝜋𝜋 is 

estimated to be negative at -0.61796. That means that the responsiveness to inflation deviations 

from the target, (𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗), is decreasing in (𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). In practice, that paints a picture of a 

government that always increases the interest rate in response to inflationary pressure. But, as 

the pressure keeps building up, interest responses become smaller and smaller, indicating limits 

to interest rate policy. The same holds for the responsiveness of interest rates to output growth 

governed by 𝜓𝜓𝑌𝑌 ,𝑌𝑌 . 𝜓𝜓𝑌𝑌 ,𝑌𝑌  is estimated to be negative at -0.63064. As output growth increases, the 

gradient of the interest rate with respect to output growth decreases. Curiously, the interaction 

term 𝜓𝜓𝜋𝜋,𝑌𝑌  is estimated at 1.20370, meaning that the interaction effects are positive.  

The appendix presents estimation diagnostics.  

 

 

para mean sd. para mean sd. 
            

𝜑𝜑𝜏𝜏𝑙𝑙 ,𝑌𝑌,𝑌𝑌  -0.00672 0.22839 𝜑𝜑𝑍𝑍,𝐴𝐴,𝐴𝐴  0.13796 0.22957 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝑌𝑌,𝐵𝐵  0.06161 0.23894 𝜑𝜑𝑍𝑍,𝐴𝐴,𝜋𝜋  -0.08409 0.26127 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝑌𝑌,𝐴𝐴  -0.02342 0.30735 𝜑𝜑𝑍𝑍,𝜋𝜋 ,𝜋𝜋  -0.05243 0.29616 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝑌𝑌,𝜋𝜋  0.19194 0.30617 𝜑𝜑𝐺𝐺,𝑌𝑌,𝑌𝑌  0.11031 0.25147 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐵𝐵,𝐵𝐵  0.47587 0.10874 𝜑𝜑𝐺𝐺,𝑌𝑌,𝐵𝐵  0.14026 0.32830 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐵𝐵,𝐴𝐴  -0.07431 0.30192 𝜑𝜑𝐺𝐺,𝑌𝑌,𝐴𝐴  -0.04014 0.23953 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐵𝐵,𝜋𝜋  0.01719 0.16656 𝜑𝜑𝐺𝐺,𝑌𝑌,𝜋𝜋  0.10777 0.30804 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐴𝐴,𝐴𝐴 -0.01476 0.20969 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐵𝐵  0.04411 0.25756 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝐴𝐴,𝜋𝜋  0.03715 0.22585 𝜑𝜑𝐺𝐺,𝐵𝐵,𝐴𝐴  -0.13786 0.23030 
𝜑𝜑𝜏𝜏𝑙𝑙 ,𝜋𝜋 ,𝜋𝜋  -0.05738 0.20750 𝜑𝜑𝐺𝐺,𝐵𝐵,𝜋𝜋  -0.01568 0.21275 
𝜑𝜑𝑍𝑍,𝑌𝑌,𝑌𝑌  -0.07245 0.27824 𝜑𝜑𝐺𝐺 ,𝐴𝐴,𝐴𝐴 0.07878 0.29301 
𝜑𝜑𝑍𝑍,𝑌𝑌,𝐵𝐵  -0.08677 0.20179 𝜑𝜑𝐺𝐺,𝐴𝐴,𝜋𝜋  -0.01862 0.25692 
𝜑𝜑𝑍𝑍,𝑌𝑌,𝐴𝐴  -0.32708 0.29289 𝜑𝜑𝐺𝐺 ,𝜋𝜋 ,𝜋𝜋  -0.00060 0.21107 
𝜑𝜑𝑍𝑍,𝑌𝑌,𝜋𝜋  0.08429 0.31447 𝜓𝜓𝜋𝜋 ,𝜋𝜋  -0.61796 1.11443 
𝜑𝜑𝑍𝑍,𝐵𝐵,𝐵𝐵  -0.09492 0.12617 𝜓𝜓𝜋𝜋 ,𝑌𝑌  1.20370 1.29728 
𝜑𝜑𝑍𝑍,𝐵𝐵,𝐴𝐴  -0.03489 0.28670 𝜓𝜓𝑌𝑌,𝑌𝑌  -0.63064 1.71219 
𝜑𝜑𝑍𝑍,𝐵𝐵,𝜋𝜋  0.04353 0.27273       
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2.5  Fiscal policy effectiveness 
 

2.5.1  Mechanics of state dependency 
 

In the following, I explore the dynamics of impulse responses in second-order pruned systems and 

show how they relate to the business cycle. To start off, I establish a comparison basis using the 

first-order DSGE approximation. The canonical linear system is defined as follows: 

𝑒𝑒𝑡𝑡
𝐿𝐿 = 𝐻𝐻𝑥𝑥𝑒𝑒𝑡𝑡−1

𝐿𝐿 + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡, 𝑣𝑣𝑡𝑡~𝑁𝑁(0, 𝐼𝐼),   

where 𝑒𝑒𝑡𝑡
𝐿𝐿 is a (𝑙𝑙𝑥𝑥 × 1) vector of model states and 𝐻𝐻𝑥𝑥 is a (𝑙𝑙𝑥𝑥 × 𝑙𝑙𝑥𝑥) matrices that governs the 

system dynamics. 𝑣𝑣𝑡𝑡 is the structural shock vector of size (𝑙𝑙𝑣𝑣 × 1), which is normally distributed 

with mean zero and an identity covariance matrix. The impact of 𝑣𝑣𝑡𝑡 on 𝑒𝑒𝑡𝑡
𝐿𝐿 is governed by 𝜎𝜎 and 

𝜎𝜎  where 𝜎𝜎 is a perturbation scalar typically set to one and 𝜎𝜎  is a (𝑙𝑙𝑥𝑥 × 𝑙𝑙𝑣𝑣) matrix. If a shock 𝑣𝑣𝑡𝑡 

occurs today, then it has an immediate impact on 𝑒𝑒𝑡𝑡
𝐿𝐿 today, but the impact also transitions 

through the system as governed by 𝐻𝐻𝑥𝑥 and can influence future linear states. To be precise, the 

expectation of 𝑒𝑒𝑡𝑡+ℎ
𝐿𝐿  can be constructed as: 

𝐸𝐸(𝑒𝑒𝑡𝑡+ℎ
𝐿𝐿 |𝑒𝑒𝑡𝑡−1

𝐿𝐿 , 𝑣𝑣𝑡𝑡) = 𝐻𝐻𝑥𝑥
ℎ+1𝑒𝑒𝑡𝑡−1

𝐿𝐿 + 𝐻𝐻𝑥𝑥
ℎ𝜎𝜎𝑣𝑣𝑡𝑡.   

The expectation of 𝑒𝑒𝑡𝑡+ℎ
𝐿𝐿  depends linearly on both the initial conditions of the economy, 𝑒𝑒𝑡𝑡−1

𝐿𝐿 , and 

the shock, 𝑣𝑣𝑡𝑡, to which the economy is subjected. To construct the impulse response in the linear 

system, one compares a world in which the shock happened to one where It did not: 

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ = 𝐸𝐸(𝑒𝑒𝑡𝑡+ℎ
𝐿𝐿 |𝑒𝑒𝑡𝑡−1

𝐿𝐿 , 𝑣𝑣𝑡𝑡) − 𝐸𝐸(𝑒𝑒𝑡𝑡+ℎ
𝐿𝐿 |𝑒𝑒𝑡𝑡−1

𝐿𝐿 , 𝑣𝑣𝑡𝑡 = 0) = 𝐻𝐻𝑥𝑥
ℎ𝜎𝜎𝑣𝑣𝑡𝑡 

The above equation can be interpreted as the difference between the expected state of the 

economy at time h when the shock happened and the economy where it did not. For linear 

models, the initial conditions of the economy cancel out, and the only important factors are 𝑣𝑣𝑡𝑡 

and the horizon ℎ. Consequently, the difference between the two paths is independent of when 

the shock occurs. For this reason, it is common practice in economics to view impulse responses 

as conducted at the steady state of the economy. At the steady state, 𝐻𝐻𝑥𝑥
ℎ+1𝑒𝑒𝑡𝑡−1

𝐿𝐿  is always equal 

to zero, and one only has to construct 𝐻𝐻𝑥𝑥
ℎ𝜎𝜎𝑣𝑣𝑡𝑡. Furthermore, this approach can improve the 

interpretation as the impulse response can be viewed as the steady state deviation of the model 
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states caused by the shock. However, it also retains the difference between the expected paths 

for some initial state 𝑒𝑒𝑡𝑡−1
𝐿𝐿 . 

For non-linear models, the situation becomes more complicated, and I rely on the pruned second-

order approximation as in Andreasen, Fernández-Villaverde and Rubio-Ramírez (2017) or 

Amisano and Tristani (2010). Using the pruned system has several advantages. Firstly, higher-

order approximations are almost always pruned as the pruning can ease simulation problems and 

preserves a lot of the original dynamics. Secondly, it simplifies the impulse responses analysis and 

pinning down the relationship to the business cycle becomes easier. The main change in the 

pruned second-order system is that the impact of the second-order terms on the quadratic states, 

𝑒𝑒𝑡𝑡
𝑄𝑄, is governed by an auxiliary linear system: 

𝑒𝑒𝑡𝑡
𝐿𝐿 = 𝐻𝐻𝑥𝑥𝑒𝑒𝑡𝑡−1

𝐿𝐿 + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡, 𝑣𝑣𝑡𝑡~𝑁𝑁(0, 𝐼𝐼), 

𝑒𝑒𝑡𝑡
𝑄𝑄 = 0.5 ∗ ℎ𝜎𝜎𝜎𝜎 + 𝐻𝐻𝑥𝑥𝑒𝑒𝑡𝑡−1

𝑄𝑄 + 0.5 ∗ 𝐻𝐻𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡−1
𝐿𝐿 ⨂𝑒𝑒𝑡𝑡−1

𝐿𝐿 ) + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡, 𝑣𝑣𝑡𝑡~𝑁𝑁(0, 𝐼𝐼).   

where ℎ𝜎𝜎𝜎𝜎 is a vector of dimension (𝑙𝑙𝑥𝑥 × 1) and 𝐻𝐻𝑥𝑥𝑥𝑥 is a (𝑙𝑙𝑥𝑥 × 𝑙𝑙𝑥𝑥
2) matrix. The pruned second-

order system can be rewritten into a linear system using an augmented state vector, 𝑧𝑧𝑡𝑡 =

[𝑒𝑒𝑡𝑡
𝐿𝐿′, 𝑒𝑒𝑡𝑡

𝑄𝑄′, (𝑒𝑒𝑡𝑡
𝐿𝐿⨂𝑒𝑒𝑡𝑡

𝐿𝐿)′]’  and shock vector, 𝜁𝜁𝑡𝑡: 

𝑧𝑧𝑡𝑡 = 𝑐𝑐2 + 𝐴𝐴2𝑧𝑧𝑡𝑡−1 + 𝐵𝐵2𝜁𝜁𝑡𝑡. 

Here, 𝑐𝑐2 is a ((2𝑙𝑙𝑥𝑥 + 𝑙𝑙𝑥𝑥
2) × 1) constant vector, 𝐴𝐴2 is a matrix of size ((2𝑙𝑙𝑥𝑥 + 𝑙𝑙𝑥𝑥

2) × (2𝑙𝑙𝑥𝑥 + 𝑙𝑙𝑥𝑥
2)) 

and 𝐵𝐵2 is of size ((2𝑙𝑙𝑥𝑥 + 𝑙𝑙𝑥𝑥
2) × (𝑙𝑙𝑣𝑣 + 𝑙𝑙𝑣𝑣

2 + 2 ∗ 𝑙𝑙𝑥𝑥𝑙𝑙𝑣𝑣)). For the exact design of the matrices, see 

Andreasen, Fernández-Villaverde and Rubio-Ramírez (2017) or appendix. The shock vector 𝜁𝜁𝑡𝑡 is 

designed as follows: 

𝜁𝜁𝑡𝑡 = 

⎣
⎢
⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑒𝑒𝑡𝑡−1
𝐿𝐿 )

(𝑒𝑒𝑡𝑡−1
𝐿𝐿 ⨂𝑣𝑣𝑡𝑡) ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑒𝑒𝑡𝑡−1
𝐿𝐿 )

𝑃𝑃(𝑣𝑣𝑡𝑡⨂𝑒𝑒𝑡𝑡−1
𝐿𝐿 )𝑄𝑄 ⎦

⎥
⎥
⎤
, 

where P and Q are permutation matrices. As the new augmented second-order system is linear, 

the impulse response can be constructed identically as:  

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ = 𝐸𝐸𝑡𝑡(𝑧𝑧𝑡𝑡+ℎ|𝑧𝑧𝑡𝑡−1, 𝜁𝜁𝑡𝑡) − 𝐸𝐸𝑡𝑡(𝑧𝑧𝑡𝑡+ℎ|𝑧𝑧𝑡𝑡−1, 𝜁𝜁𝑡𝑡 = 0) = 𝐴𝐴2
ℎ𝐵𝐵2𝜁𝜁𝑡𝑡.   
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The main difference here is that unlike in the first-order system, the shock vector, 𝜁𝜁𝑡𝑡, depends on 

the initial linear conditions. The key feature of the second-order system is that it matters for the 

effects of policy interventions when the shock is conducted. This is, for example, what Sims and 

Wolff (2018a) exploit in their paper. For a given 𝑣𝑣𝑡𝑡 and forecasting horizon, the impulse response 

of state 𝑖𝑖 is linear in the linear initial conditions, 𝑒𝑒𝑡𝑡−1
𝐿𝐿 .  

Consider a state 𝑖𝑖, then the impulse response as a function of the linear states is defined as: 

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑒𝑒𝑡𝑡−1

𝐿𝐿 ) = 𝛾𝛾𝐴𝐴2
ℎ𝐵𝐵2𝜁𝜁𝑡𝑡, 

where 𝛾𝛾 is a (1 × (2𝑙𝑙𝑥𝑥 + 𝑙𝑙𝑥𝑥
2)) row vector with all elements equal to zero but entry 𝑖𝑖. 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ

𝑖𝑖 (𝑒𝑒𝑡𝑡−1
𝐿𝐿 ) 

is affine in 𝑒𝑒𝑡𝑡−1
𝐿𝐿  if and only if it is both convex and concave. Take two initial condition vectors 𝑒𝑒, 

𝑦𝑦 ∈ ℝ𝑛𝑛𝑥𝑥 and 𝜆𝜆 ∈ [0,1], then 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑒𝑒) is affine if and only if the following holds: 

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝜆𝜆𝑒𝑒 + (1 − 𝜆𝜆)𝑦𝑦) = 𝜆𝜆𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ

𝑖𝑖 (𝑒𝑒) + (1 − 𝜆𝜆)𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑦𝑦). 

The above may be rewritten as: 

𝛾𝛾𝐴𝐴2
ℎ𝐵𝐵2�𝜁𝜁𝑡𝑡(𝜆𝜆𝑒𝑒 + (1 − 𝜆𝜆)𝑦𝑦) − 𝜆𝜆𝜁𝜁𝑡𝑡(𝑒𝑒) − (1 − 𝜆𝜆)𝜁𝜁𝑡𝑡(𝑦𝑦)� = 0. 

Disregarding the trivial case of 𝛾𝛾𝐴𝐴2
ℎ𝐵𝐵2 = 0 and making use of the additive properties of the 

Kronecker product, 𝜁𝜁𝑡𝑡(𝜆𝜆𝑒𝑒 + (1 − 𝜆𝜆)𝑦𝑦) may be rewritten as: 

𝜁𝜁𝑡𝑡(𝜆𝜆𝑒𝑒 + (1 − 𝜆𝜆)𝑦𝑦) =

⎣
⎢⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂(𝜆𝜆𝑒𝑒 + (1 − 𝜆𝜆)𝑦𝑦))
𝑃𝑃 (𝑣𝑣𝑡𝑡⨂(𝜆𝜆𝑒𝑒 + (1 − 𝜆𝜆)𝑦𝑦))𝑄𝑄⎦

⎥⎥
⎤

=

⎣
⎢⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂(𝜆𝜆𝑒𝑒)) + (𝑣𝑣𝑡𝑡⨂((1 − 𝜆𝜆)𝑦𝑦))
𝑃𝑃 ((𝑣𝑣𝑡𝑡⨂(𝜆𝜆𝑒𝑒)) + (𝑣𝑣𝑡𝑡⨂((1 − 𝜆𝜆)𝑦𝑦)))𝑄𝑄⎦

⎥⎥
⎤

= 𝜆𝜆

⎣
⎢⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑒𝑒)
𝑃𝑃(𝑣𝑣𝑡𝑡⨂𝑒𝑒)𝑄𝑄 ⎦

⎥⎥
⎤

+ (1 − 𝜆𝜆)

⎣
⎢⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑦𝑦)
𝑃𝑃(𝑣𝑣𝑡𝑡⨂𝑦𝑦)𝑄𝑄 ⎦

⎥⎥
⎤

= 𝜆𝜆𝜁𝜁𝑡𝑡(𝑒𝑒) + (1 − 𝜆𝜆)𝜁𝜁𝑡𝑡(𝑦𝑦). 

Thus, this leads us to conclude that 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  is affine in the initial, linear conditions. This has an 

important consequence for the design of impulse responses. To illustrate this point, suppose that 

we are interested in the effects of government consumption shocks on output and assume it is 

known that the effects are negatively related to the interest rate (i.e., government shocks are 

more effective in low interest rate periods). If the 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  is of the above design, then 

mechanically, it is feasible for the 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  of output to government consumption shocks to reverse 
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sign for sufficiently high interest rates. When and at what point this happens depends on the 

slope of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  with respect to the interest rate. However, while theoretically, this can happen, 

it does not mean it is likely from an empirical view. In a reasonable setting, interest rates may 

never get sufficiently large to reverse the sign in the impulse responses. 

Later in the chapter, I use the fact the IRFs are affine transformations of the initial conditions 

to run linear regressions. In particular, I regress 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑒𝑒𝑡𝑡−1

𝐿𝐿 ) on 𝑒𝑒𝑡𝑡−1
𝐿𝐿  using sampled states to 

pin down the exact relationship. Using this technique, one can ask precise questions like “How is 

the impact of structural shocks on the economy governed by the initial conditions of that 

economy?” and “When do specific structural shocks become more or less effective at stimulating 

the economy?”. A question that remains is what happens if the shock is changed. Unfortunately, 

the interaction terms in (𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) create fundamental problems and 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖  is not affine in 𝑣𝑣𝑡𝑡 and 

𝑒𝑒𝑡𝑡−1
𝐿𝐿 . Consequently, for a new shock vector, the regression strategy has to be repeated. Andreasen, 

Fernández-Villaverde and Rubio-Ramírez (2017) also explore the mechanics of impulse responses 

but for the base system and not the augmented system. Their results confirm that shocks are not 

scalable because of the second-order shock terms. Further, they also show that the impulse 

responses depend on the linear states. I extend the analysis by explicitly proving that the way 

the impulse responses depend on the initial conditions is in a linear fashion.  

 

2.5.2  Impulse response functions at and around the steady state 
 

The section analyses the business cycle dependency of impulse responses to fiscal policy shocks. 

First, I look at the impulse responses of output in the linear states of the DSGE model, and I 

focus on labour taxation, consumption taxation, government consumption and transfer shocks. 

As a second step, I explore the impulse responses of output as a non-linear state but when fiscal 

policy is conducted at the steady state. In the third and last step, I conduct impulse response 

analysis of output as a non-linear variable over the business cycle by sampling states from the 

unconditional distribution. The goal of this section is to build intuition on which factors are of 

importance in conducting impulse responses in non-linear models and ascertain the relevance of 

the initial conditions for fiscal policy. 



126 
 

For impulse responses of the linear states, it does not matter when fiscal policy is constructed, 

as the difference in expected paths is a constant. The only crucial component is the type of shock, 

𝑣𝑣𝑡𝑡. In this application, fiscal policy is conducted as one standard deviation shock to the fiscal 

instruments. For tax variables, I only consider tax cuts as the main point of interest.15 For each 

impulse response, I simulate 500 paths to construct mean and highest posterior density intervals. 

The dynamics of the linear impulse responses are governed by the following equation:  

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ = 𝐻𝐻𝑥𝑥
ℎ𝜎𝜎𝑣𝑣𝑡𝑡, 

which only depends on 𝑣𝑣𝑡𝑡. Fig. 2.1 presents the impulse responses for the linear states. The linear 

impulse responses can be interpreted in two ways. Firstly, they may be interpreted as percentage 

deviations from the steady state, and secondly, they can be understood as the percentage 

deviation from the path where the shock did not occur.   

Fig. 2.1: linear impulse responses of output to fiscal shocks 

 

Notes: Impulses responses of linear output to one standard deviation fiscal shocks. The solid line is the mean impulse 

response; the grey shaded is the 95% highest posterior density interval.  

 
15 The reason is that the non-linear impulse responses are not linear in the shock vector, and tax increases cannot 
simply be rescaled to tax cuts by multiplying by minus one. 
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Overall, the linear impulse responses are entirely standard and compare well to, for example, the 

Leeper, Plante and Traum (2010) results. Government consumption increases have their largest 

impact on output immediately and fade afterwards. On Impact, a government consumption shock 

raises output by roughly 0.14% relative to the path. In the medium to long run, the effects of a 

government consumption shock turn negative based on the financing rules. Transfer shocks do 

not have a stimulative impact on output and decrease output in the long run. Both labour and 

consumption taxation cuts stimulate output on impact by 0.02% and 0.005% relative to the path, 

respectively. In typical fashion, the impact of tax cuts peaks at about two to three years, decaying 

afterwards. Based on the financing rules in this chapter, after about four to five years, the impact 

of tax cuts becomes negative and afterwards returns to the steady state. One key unifying factor 

between all of these is that the model predicts relatively tight highest posterior density intervals 

for the impulse responses. For example, the highest posterior density interval for government 

consumption shocks ranges from roughly 0.1% to 0.15%. In a sense, the model is highly confident 

in the range of effects that fiscal stimulus can have. 

For impulse responses of the non-linear states to fiscal policy conducted at the steady state, the 

mechanics change as follows. For the quadratic states, it is useful to invoke the pruned second-

order system representation of the impulse responses:  

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+ℎ
𝑖𝑖 (𝑒𝑒𝑡𝑡−1

𝐿𝐿 ) = 𝛾𝛾𝐴𝐴2
ℎ𝐵𝐵2𝜁𝜁𝑡𝑡, 

𝜁𝜁𝑡𝑡 =  

⎣
⎢
⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡⨂𝑒𝑒𝑡𝑡−1
𝐿𝐿 )

(𝑒𝑒𝑡𝑡−1
𝐿𝐿 ⨂𝑣𝑣𝑡𝑡) ⎦

⎥
⎥
⎤
. 

Fiscal policy conducted at the steady state implies that 𝑒𝑒𝑡𝑡−1
𝐿𝐿  is equal to 0(𝑛𝑛𝑥𝑥×1). The augmented 

shock vector reduces to the following: 

𝜁𝜁𝑡𝑡|𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑚𝑚𝑦𝑦 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑟𝑟 =  

⎣
⎢⎢
⎢
⎡

𝑣𝑣𝑡𝑡

(𝑣𝑣𝑡𝑡⨂𝑣𝑣𝑡𝑡) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

�𝑣𝑣𝑡𝑡⨂0(𝑛𝑛𝑥𝑥×1)�
�0(𝑛𝑛𝑥𝑥×1)⨂𝑣𝑣𝑡𝑡� ⎦

⎥⎥
⎥
⎤
. 

These impulse responses still do not feature any state dependency on the business cycle but 

feature the full non-linear dynamics of the DSGE model. As can be seen in Fig. 2.2, the key 
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result is that the impulses are, to all intents and purposes, indistinguishable from the linear 

impulse responses. Mechanically, this is exactly what is expected. The linear DSGE is an 

approximation of the non-linear set of equations that govern the full DSGE, and the equations 

are approximated around the steady state. At or around the steady state, linear and non-linear 

models will typically predict very similar dynamics. Only when the economy moves away from 

the steady state can the higher-order terms begin to bite. Andreasen, Fernández-Villaverde and 

Rubio-Ramírez (2017) show this analytically by proving that the first-order system is second-

order accurate at the steady state.  

Fig. 2.2: non-linear output impulse response to fiscal shocks at steady state 

 

Notes: Impulses responses of non-linear output to one standard deviation fiscal shocks evaluated at the steady state. 

The solid line is the mean impulse response; the grey shaded is the 95% highest posterior density interval.  

The last scenario for this section is based on the impulse responses of the non-linear states in 

response to fiscal shocks in various economic circumstances. Here, the economic circumstances 

are sampled from the unconditional state distribution and should generate reasonably realistic 

conditions as the model is fully estimated. The impulse responses are presented in Fig. 2.3. The 

mean response to fiscal shocks remains the same as before. However, the observable range of 

effects increases substantially. For example, for government consumption shocks, the mean 
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response in linear states was about 0.15% and ranged from 0.1% to 0.20% relative to the path. 

Here, the highest posterior density interval ranges from below zero to about 0.4%. The upper 

highest posterior density bound is almost twice as large. Unlike the highly confident linear impulse 

responses, the non-linear impulse responses over the business cycle exude uncertainty. This result 

supports several factors often found to be important in impulse response analysis. Firstly, sample 

selection is key to the scale of effects of fiscal policy, and secondly, the timing of fiscal policy can 

matter significantly (i.e., fiscal policy in recessions versus at the steady state). As such, the non-

linear impulse responses found here incorporate a much wider range of results found in the 

literature and relate them to the initial conditions of the economy.  

At first glance, the negative effects of government consumption shocks are surprising and highly 

unusual in DSGE models. The impulse responses are affine functions and linear in the initial 

conditions for a given shock, as shown in the previous section. Mechanically, it is, therefore, 

feasible for impulse responses to reverse signs given the right economic conditions. What is 

happening here is that the government rules for fiscal and monetary policy are exceptionally rich, 

and thus, fiscal and monetary policy do not occur in isolation. If one views the governmental 

mechanism in unity, then it is reasonable that for a specific policy mix under certain business 

cycle conditions, impulse responses may deliver unusual results.   
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Fig. 2.3: non-linear output impulse response to fiscal shocks around the cycle 

 

Notes: Impulses responses of non-linear output to one standard deviation fiscal shocks evaluated at randomly 

sampled states. The solid line is the mean impulse response; the grey shaded is the 95% highest posterior density 

interval.  

 

To sum up, the estimated model shows standard and relatively precise impulse responses to fiscal 

shocks in the linear framework. Changing to the non-linear framework but conducting fiscal 

policy at the steady state does not offer additional behaviour or conclusions. However, viewing 

impulse responses over the business cycle in the non-linear form offers additional insights. The 

key result is that impulse responses are much more diffuse in their effects and incorporate a much 

broader range of results, unlike the linear counterparts. Based on this, going forward, I will 

explore if it is possible to reduce some of this uncertainty by narrowing down the relationship 

between impulse responses and initial conditions.  
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2.5.3  Relationship between policy effectiveness and the initial conditions 
 

The previous section argued that accounting for the initial conditions can substantially increase 

the uncertainty in the effects of fiscal policy. In this section, I further explore the relationship via 

two avenues. The first avenue is based on a visualization strategy using 3D plots. However, while 

this approach provides useful intuition, it is limited in its applicability as there are other variables 

that are not controlled for. The second avenue aims to formalize the results by employing a linear 

regression strategy to pin down the exact relationship between the impulse responses at a given 

horizon to the initial conditions.  

To visualize the dynamics, I sample state vectors from the unconditional state distribution 

evaluated at sampled posterior parameter vectors. For each state vector, a fiscal intervention is 

conducted, and the impact of the policy intervention is recorded for the first quarter when the 

fiscal shocks start affecting the economy. In this case, as the type of shock matters and the 

impulses are not symmetric, I focus on policy interventions aimed at boosting output: tax cuts 

and spending increases. The size of the shock corresponds to a one standard deviation shock. The 

impulse responses at the given horizon are then plotted based on the initial conditions for output 

and debt, which are often used as the most relevant variables in the fiscal ruleset. To aid 

visualization, impulse responses are averaged and smoothed across a grid to create a surface, and 

further, highly unlikely events are omitted (𝑝𝑝𝑟𝑟𝑓𝑓𝑏𝑏 < 0.0003)̇. To complement the surface, the graph 

includes colour scaling, which includes the percentage frequency of the tile in the overall 

remaining sample.  
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Fig. 2.4: 3d slices of impulse responses of output to fiscal shocks 

  

Notes. 3D slices of impulse responses of output to fiscal stimulus shocks. For expenditure variables, a one standard 

deviation increase is considered, while for tax variables, a one standard deviation decrease is considered. The impulse 

responses are plotted over output (Y) and debt (B) as initial conditions. 

Fig. 2.4 allows for several conclusions to be drawn. Firstly, just like in the previous section, the 

3D graphs indicate a significantly larger variation of the effects of policy shocks in comparison to 

policy conducted at the steady state. For example, the slice of government consumption impulse 

responses, 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌 , varies from around zero to 0.4 depending on the initial conditions. As such, 

it matches the range of the 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  observed in the previous section. Secondly, the impulse 

responses show a clear association with the initial condition for output and debt. For all fiscal 

interventions, it seems to be the case that scenarios of high output and low government debt are 

generally associated with more effective stimulus. However, this does not mean higher output 

and lower debt cause policy to be more effective, as other correlated and relevant variables ought 

to be considered.  
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To formalize the relationship, going forward, I utilize a linear regression approach. This is a useful 

approach as it allows for a quantification of the relationship because, based on section 2.5.1 , the 

impulse responses are linear functions in the initial conditions for a given shock. Therefore, a 

linear regression utilizes the correct functional form. Furthermore, unlike the graphical approach, 

this methodology allows me to control for all the relevant variables at the same time.  

For the regression, samples are created in an analogous fashion as for the graphs. Then, the 

𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  of output are regressed on variables in 𝑒𝑒𝑡𝑡−1

𝐿𝐿  for a given shock. I exclude the structural 

shocks for the fiscal rules as they do not offer an easily interpretable meaning. However, this will 

not affect the coefficient estimates for the remaining states.16 The results are presented in Table 

2.6 and Table 2.7. Further tables for 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+4
𝑌𝑌  on initial conditions are provided in the appendix. 

Table 2.6: Regression of IRFs on impact of output to gov. consumption and transfer shocks on initial conditions 

 

 
16 While the structural, fiscal shocks in 𝑒𝑒𝑡𝑡−1

𝐿𝐿  may be relevant, they are also exogenous by design. Excluding 
exogenous variables should not affect other coefficients in this case. The structural shocks may be useful as controls. 
Though, as sample size and, thus, precision is not a limiting factor in this analysis I opt to omit as the share in 
variation explained by the structural shocks is fairly low.  

variable 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1
𝑌𝑌 |𝑣𝑣𝐺𝐺  𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1

𝑌𝑌 |𝑣𝑣𝑍𝑍  
estim. std. t-val. estim. std. t-val. 

              
𝜋𝜋�𝑡𝑡−1 -0.0024 0.0002 -10.20 -0.0076 0.0006 -12.87 

𝑌𝑌�𝑡𝑡−1 -0.0009 6.89E-06 -132.93 0.0011 1.72E-05 66.18 
𝑖𝑖�̃�𝑡−1 -0.0025 0.0002 -12.73 -0.0066 0.0005 -13.71 

𝐵𝐵�𝑡𝑡−1 -6.57E-05 6.21E-07 -105.88 -0.0001 1.57E-06 -93.44 
�̃�𝜏𝑡𝑡−1
𝑙𝑙  0.0002 4.43E-06 36.64 0.0003 1.11E-05 24.25 

𝑍𝑍�𝑡𝑡−1 -6.81E-05 3.54E-06 -19.21 -0.0002 8.89E-06 -25.82 
𝐺𝐺�𝑡𝑡−1 0.0013 2.91E-06 451.00 5.14E-05 7.27E-06 7.08 
𝑎𝑎�𝑡𝑡−1 -0.0001 2.14E-06 -59.49 -0.0004 5.38E-06 -75.55 
�̃�𝜏𝑡𝑡−1
𝑐𝑐  2.73E-05 4.00E-06 6.83 4.38E-05 9.89E-06 4.42 
𝜋𝜋𝑡𝑡−1
∗  0.0005 0.0005 1.08 0.0037 0.0012 3.17 

Const. 0.1278 0.0001 1187.34 -0.0023 0.0003 -8.44 
              
              
𝐼𝐼2 0.9305   0.6973   
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑎𝑎  0.0264     0.0660     
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝑎𝑎𝑎𝑎  0.1000     0.1200     
obs. 60000     60000     
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Notes: Regressions of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  on initial conditions for a positive, one standard deviation shock to government 

consumption and transfers, respectively. Initial conditions are phrased as percentage steady state deviations as per 

the model set-up. 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛 is the in-sample root mean square error of the full linear model and  𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑟𝑟𝑎𝑎𝑛𝑛 is the 

RMSE for a mean model. 

 

 

Table 2.7: Regression of IRFs on impact of output to consumption and labour tax shocks on initial conditions 

 

Notes: Regressions of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  on initial conditions for a positive, one standard deviation shock to consumption and 

labour taxation, respectively. Initial conditions are phrased as percentage steady state deviations as per the model 

set-up. 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛 is the in-sample root mean square error of the full linear model and  𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑟𝑟𝑎𝑎𝑛𝑛 is the RMSE for 

a mean model. 

The first question is, “How relevant are the initial conditions in determining the effects of fiscal 

policy?”. To assess this, I utilize a root mean square error comparison for in-sample predictions 

for the full linear model, 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛, and a version that only includes a constant term, 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑟𝑟𝑎𝑎𝑛𝑛, 

which is equivalent to the steady state. Across both horizons and all fiscal shocks considered, the 

error of the full linear model is substantially lower than its constant counterpart. At the minimum, 

variable 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1
𝑌𝑌 |𝑣𝑣𝜏𝜏𝑐𝑐  𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+1

𝑌𝑌 |𝑣𝑣𝜏𝜏𝑙𝑙  
estim. std. t-val. estim. std. t-val. 

              
𝜋𝜋�𝑡𝑡−1 -0.0012 7.47E-05 -16.69 -0.0036 0.0002 -15.87 

𝑌𝑌�𝑡𝑡−1 0.0001 2.15E-06 47.31 0.0003 6.52E-06 44.88 
𝑖𝑖�̃�𝑡−1 -0.0008 6.17E-05 -13.32 -0.0026 0.0002 -13.85 
𝐵𝐵�𝑡𝑡−1 -2.35E-05 1.99E-07 -118.19 -7.78E-05 5.96E-07 -130.64 
�̃�𝜏𝑡𝑡−1
𝑙𝑙  4.44E-05 1.41E-06 31.38 0.0003 4.26E-06 67.69 

𝑍𝑍�𝑡𝑡−1 -2.34E-05 1.12E-06 -20.94 -6.50E-05 3.40E-06 -19.10 
𝐺𝐺�𝑡𝑡−1 3.65E-06 9.29E-07 3.93 2.29E-05 2.78E-06 8.25 
𝑎𝑎�𝑡𝑡−1 -3.15E-05 6.62E-07 -47.51 -8.54E-05 2.05E-06 -41.69 
�̃�𝜏𝑡𝑡−1
𝑐𝑐  5.53E-05 1.29E-06 42.73 1.48E-05 3.94E-06 3.77 
𝜋𝜋𝑡𝑡−1
∗  0.0013 0.0001 8.91 0.0038 0.0004 8.56 

Const. 0.0045 3.42E-05 132.20 0.0198 0.0001 190.99 
              
              
𝐼𝐼2 0.7271   0.6838   
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑎𝑎  0.0084     0.0254     
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝑎𝑎𝑎𝑎  0.0160     0.0452     
obs. 60000     60000     
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the 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸 is reduced by 32% for impulse responses to labour taxation shocks at four quarters. 

At the maximum, the 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸 is reduced by 74% for government consumption shocks on impact. 

Based on this, in a non-linear model, the initial conditions can be highly useful in pinning down 

the effects of fiscal policy.  

The second, more general question is, “How do the effects of fiscal policy vary with the initial 

conditions?”. Across the board, the coefficients of the impulse responses on the initial inflation 

and interest rate are negative for fiscal stimuli. That means that if either variable, inflation or 

interest, is below the steady state, then policy interventions are more stimulative. In a sense, this 

mirrors results of the Zero Lower Bound theory as in Woodford (2011) and Christiano, 

Eichenbaum and Rebelo (2011) on the interest rate side. They show that in periods of zero 

interest rates, the effects of fiscal stimulus are heightened and can be substantially larger.  

Government consumption impulse responses on output are decreasing in output, while tax cuts 

and transfers are increasing. These results are in agreement with the analysis in Sims and Wolff 

(2013) and Sims and Wolff (2018a) on fiscal multipliers. In addition, it seems to be the case that 

all impulse responses to fiscal instruments are decreasing in debt. That implies that fiscal stimulus 

becomes more productive during periods when the government has low levels of debt and in the 

position to absorb the budgetary effects of stimulus. 

In terms of scale, impulse responses on impact to government consumption shocks depend on the 

initial condition less than the other fiscal instruments. To illustrate this, an initial interest rate 

that is 1% below the steady state increases the effects of government consumption on output at 

impact by around 2% (0.0025
0.1278 ∗ 100 = 1.96). For consumption and labour taxation cuts, the 

predicted increase lies at around 18% and 13%, respectively. Similarly, if output is 1% below the 

steady state, then government consumption shocks are about 0.7% more effective, while tax cuts 

are about 2.25% or 1.5% less effective for consumption and labour taxation shocks. Furthermore, 

if inflation is 1% below the steady state, then government consumption shocks are roughly 1.9% 

more effective on impact. Tax cuts become 27.6% (consumption) and 17.9% (labour) more 

effective. Overall, for government consumption expenditures, the initial conditions are less 

relevant than for tax variables. However, it is important to note that business cycle conditions 

are never observed in isolation, and thus, government consumption impulse responses may vary 
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across the cycle in a relevant way. For example, during the last 15 years, it is not atypical to 

observe periods of low interest rates combined with low inflation and low output. Based on this, 

the realized variation may be substantially larger.17 

To sum up, this section argues that the initial conditions are particularly useful in pinning down 

the variation of impulse responses to fiscal interventions and can explain a range of estimates 

found in the previous literature. Regressing output IRFs to fiscal shocks on initial conditions, I 

find that fiscal policy is more effective at stimulating output in low interest rate, inflation and 

debt environments. I also find the government consumption multiplier is larger in recessions, 

while tax cut multipliers are larger in booms.  

 

2.5.4  Historic path of policy effectiveness 
 

This section shows how the regression results presented above can be applied to the actual 

business cycle conditions estimated over the sample data from Q1 1984 to Q4 2021.  

To do so, I construct the posterior mean estimates of the state vectors across the sample based 

on the conditional particle filter using parameter draws from the posterior. That includes 

estimates for all state variables of the DSGE, including inflation, output, interest rate and more. 

These state vectors are multiplied with the coefficients found in the regression exercise and finally 

averaged. The result is approximated paths for the effectiveness of the impulse responses for a 

given horizon and shock. Fig. 2.5 and Fig. 2.6 present the results.  

Government consumption shows the clearest dynamic across the sample. In the mid to late 1980s, 

impulse responses of output to a one standard deviation government consumption shocks are 

most pronounced, climbing to above 0.15% at its peak on impact. After the start of the 1990s, 

 
17 A last note is on the relative importance of the initial conditions. In absolute terms, the coefficients of inflation and 

the interest rate are larger than for others variables like output and debt for all regressions. However, this does not 

mean that inflation and interest rates are more relevant in a typical business cycle situation. For example, the debt 

variable goes through very deep and protracted business cycles that may counteract smaller coefficients. To assess the 

realized impact of the initial conditions, one needs to consider both the scale of the coefficients and the spread of the 

variables.  
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government consumption stimulus becomes less and less effective, reaching its lowest values in 

and around 2000 at around 0.09%. After this period, the policy effectiveness almost doubles with 

the beginning of the financial crisis, reaching 0.16% in 2010. A similar increase, albeit lower in 

magnitude, is observed in 2020 during the pandemic.  

 

 

Notes: Constructed paths for 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  in response to fiscal shocks for government consumption (upper left), transfers 

(upper right), consumption taxation (lower left) and labour taxation (lower right) 

 

The tax variables go through less pronounced cycles overall. In both cases, the early 1980s are 

associated with slightly more effective impulse responses on impact, which are followed by a 

period of low effectiveness during the early 2000s. After the financial crisis, both tax variables 

show periods of increased effectiveness. Though, the timing is slightly different, and the 

persistence of this effect differs. For consumption taxation, effectiveness increases after 2000 and 

reaches a maximum in and around 2012 and decays afterwards temporarily. Instead, labour 

Fig. 2.5: Paths of impact effect of fiscal policy around the cycle 
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taxation effectiveness begins to increase before the start of the 2010s and remains higher more 

persistently. Both taxation variables spike in effectiveness during the Covid crisis. For the four-

quarter impulse response, little changes for consumption taxation. For labour taxation, a trend 

to more effective policy arises over the whole sample. 

Typically, transfers affect the economy by raising consumption and, thus, output. As argued in 

Leeper, Plante and Traum (2010), transfers, by themselves, are non-distortionary, and the effects 

of a transfer shock are mostly governed by how the fiscal shock is financed. For example, if it is 

tax financed, then a transfer shock may be followed by a reduction in government consumption 

and an increase in taxes. In this case, the effects of a transfer shock become less clear because it 

depends on the exact policy mix. Fig. 2.5 predicts that during the financial crisis and during the 

Covid crisis, transfers end up raising output at the mean. This stays the same even at longer 

horizons. However, before the year 2005, the effects of a transfer shock are estimated to be 

negative. Looking at section 2.5.5 , this coincides with both labour taxation and transfers 

becoming much more responsive to debt to curb the deficit. In essence, this is a policy mix more 

focused on financing shocks via taxes and less on raising debt. 
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Fig. 2.6: Paths of effect of fiscal policy at four quarters around the cycle 

 

Notes: Constructed paths for 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+4
𝑌𝑌  in response to fiscal shocks for government consumption (upper left), transfers 

(upper right), consumption taxation (lower left) and labour taxation (lower right) 

 

2.5.5  Policy gradients 
 

The policy rules for the federal government and the central bank in this chapter include one novel 

feature: policy gradients may vary with business cycle conditions. This is the case as the rules 

are constructed as restricted, second-order Taylor approximation. Consequently, the gradients of 

the policy rules act as linear functions of the relevant business cycle conditions. In this section, I 

trace out the gradients of the fiscal rules with respect to output and debt across the sample. For 

the interest rate rule, I focus on constructing the time-varying estimates of the gradient of the 

interest rate to output growth and the percentage deviation of inflation to the inflation target.  

In this application, I utilize the gradient of the Taylor rule described in the model section above. 

I pre-multiply the gradients of the policy rule with (1 − 𝜌𝜌𝐼𝐼)−1. The reason for this choice is that 
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at the steady state, the two objects then have the familiar interpretation as being the two 

parameters 𝜓𝜓𝑦𝑦 and 𝜓𝜓𝜋𝜋 common to a lot of Taylor rules. Moving away from the steady state the 

second-order coefficients 𝜓𝜓𝑦𝑦,𝑦𝑦, 𝜓𝜓𝑦𝑦,𝜋𝜋 and 𝜓𝜓𝜋𝜋,𝜋𝜋 start to bite: 

𝜓𝜓𝑦𝑦,𝑡𝑡 = (1 − 𝜌𝜌𝐼𝐼)−1 𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)

= �𝜓𝜓𝑦𝑦 + 𝜓𝜓𝑦𝑦,𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝑦𝑦,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)�, 

𝜓𝜓𝜋𝜋,𝑡𝑡 = (1 − 𝜌𝜌𝐼𝐼)−1 𝜕𝜕𝑖𝑖𝑡𝑡
𝜕𝜕(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)
= �𝜓𝜓𝜋𝜋 + 𝜓𝜓𝑦𝑦,𝜋𝜋(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝜋𝜋,𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗)�, 

where 𝜓𝜓𝑦𝑦,𝑡𝑡 and 𝜓𝜓𝜋𝜋,𝑡𝑡 are the pre-multiplied time-varying gradients. In a sense, the two objects, 

𝜓𝜓𝑦𝑦,𝑡𝑡 and 𝜓𝜓𝜋𝜋,𝑡𝑡,  can be interpreted as the expanded definition for 𝜓𝜓𝑦𝑦 and 𝜓𝜓𝜋𝜋 which allows them 

to change over the cycle. As (1 − 𝜌𝜌𝐼𝐼)−1 is constant across time and positively valued, any 

conclusion drawn from the adjusted gradients about correlation also applies to the actual 

gradients.  

In order to implement this, I rely on the same sampling strategy as in the previous section. Based 

on posterior parameter draws, the mean state vectors are estimated across the sample. The state 

estimates are then multiplied with the corresponding elements of the posterior parameter vector 

to construct the gradient or objects of interest. Finally, the resulting estimates are averaged. The 

estimates for 𝜓𝜓𝑦𝑦,𝑡𝑡 and 𝜓𝜓𝜋𝜋,𝑡𝑡  are presented in Fig. 2.7.  

Fig. 2.7: central bank policy rule gradients 

   

Notes: Constructed paths for 𝜓𝜓𝑦𝑦,𝑡𝑡 and 𝜓𝜓𝜋𝜋,𝑡𝑡 in the central bank’s Taylor rule across the sample. 𝑙𝑙𝑡𝑡
𝑌𝑌  is the output 

growth rate otherwise also constructed as (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1). 

Firstly, both 𝜓𝜓𝜋𝜋,𝑡𝑡 and 𝜓𝜓𝑦𝑦,𝑡𝑡 show significant spikes around the time the US economy hits crisis. 

For example, at the beginning of the financial crisis, 𝜓𝜓𝜋𝜋,𝑡𝑡 falls from up to 1.91 to around 1.88. At 
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the same time, 𝜓𝜓𝑦𝑦,𝑡𝑡 increases substantially from around 0.127 to above 0.14. While these are 

individually not substantial shifts, they do, however, suggest a shift in preferences by the central 

banks. Overall, the central bank became less concerned with ensuring inflation stays on target 

while becoming much more troubled about output growth. This is consistent with the observed 

policy measures during the crisis. The central bank released an unprecedented policy mix 

combining a low-interest rate strategy with quantitative easing. This policy mix was highly 

focused on controlling output, while inflation was of secondary concern. A similar pattern, and 

larger in magnitude, was observed during the Covid crisis. In general, this behaviour of increased 

responsiveness to output and decreased responsiveness to inflation is shared by all crises in the 

sample. To illustrate, one can detect local spikes during the early 1990s and early 2000s 

corresponding to the comparatively minor crises during those time periods.  

However, the persistence, scale and recovery of the gradient changes seem to differ from crisis to 

crisis. Mechanically, the reason for this is that the gradients are highly correlated with output 

growth. 𝜓𝜓𝜋𝜋,𝑡𝑡 is positively correlated to output growth and 𝜓𝜓𝑦𝑦,𝑡𝑡 negatively. Consequently, in boom 

phases, the central bank cares about controlling inflation and focuses less so on growth. As the 

economy moves away from a boom phase to a crisis, the central bank “switches” focus away from 

inflation to controlling output. Depending on the design of the economic crisis and how that 

translates to growth rates, responses in the gradients will be stark versus muted or persistent 

versus temporary.  

In Fig. 2.7 the changes seemingly induced by crises seem to fade out comparatively quickly and 

introduce no long-term adjustments. The reason for this is that output growth, unlike output or 

output in terms of steady state deviations, features comparatively little persistence. So, while 

crises are easily recognizable in the data by large downward spikes, the spikes are usually 

temporary, followed by mildly negative or close to zero growth rates. Consequently, this explains 

why in this estimation, the changes in the gradient induced by economic crises are relatively 

short-lived.  

A second result that can be inferred from Fig. 2.7 is that both 𝜓𝜓𝜋𝜋,𝑡𝑡 and 𝜓𝜓𝑦𝑦,𝑡𝑡 go through a mild 

mean adjustment similar to the US inflation rate. Overall, coming from the 80s and 90s, the 

2000s and the financial crisis ushered in a period of persistently low inflation. This is reflected in 
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the policy gradients via 𝜓𝜓𝜋𝜋,𝑡𝑡 adjusting its mean downwards and 𝜓𝜓𝑦𝑦,𝑡𝑡 adjusting upwards. Arguably, 

that seems to indicate that an overall shift in the policy rule took place during the shift in the 

interest rate mean.  

Moving on to fiscal policy gradients, the gradients for the non-linear rules for government 

consumption, labour taxation and transfers are presented in Fig. 2.8. At the steady state, 𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 is 

negative by design which implies that government consumption falls when debt increases. Here, 

𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 increases during periods of economic distress and, thus, government consumption becomes 

less responsive to debt. Large reductions in responsiveness can be seen in 2007 with the beginning 

of the financial crisis and, afterwards, with Covid as well. More muted reductions can be seen 

during the early 2000s crisis and the early 1990s recession as well.  What this suggests is that in 

economic crises, the government’s decision-making process for government consumption becomes 

substantially less concerned with controlling debt and, as such, paves the way for debt-financed 

expenditures. 
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Fig. 2.8: Government policy gradients around the cycle 

       

Notes: Constructed paths for the rescaled gradients of the federal government rules across the sample.  

 

For the remaining gradients, the key factor is that they are heavily correlated with the 

government debt, positively or negatively. For example, while  𝜕𝜕𝐺𝐺�̃�𝑡
𝜕𝜕𝑌𝑌�̃�𝑡

 is negative across the sample, 

implying that government consumption increases in recessions as expected, the estimate gets 

close to zero in the 1990s when the debt level was very high. In practical terms, this implies that 

in economic downturns with high debt, the government consumption level will respond less to 

output than it would otherwise.  
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The labour taxation rate gradient to debt is also positively correlated with debt and changes 

quite substantially over time. Debt increasing in the 1990s coincides with the gradient of labour 

taxation to debt increasing in magnitude peaking in the late 1990s. In essence, as the debt level 

rises, labour taxation becomes more responsive to eventually force the budget back to the steady 

state. During the financial crisis, the labour taxation rate is in a period of relatively low 

responsiveness, making large stimulus packages possible. 𝜕𝜕𝜏𝜏�̃�𝑡
𝑙𝑙

𝜕𝜕𝑌𝑌�̃�𝑡
 is also positively correlated to debt. 

This suggests that the policy rule of the government in the 1990s implies much more stark 

increases in the labour taxation rate in response to above steady state output to balance the 

budget. In the early 2000s, the gradient begins to fall rapidly, and around the beginning of the 

financial crisis, the gradient is much smaller.  𝜕𝜕𝑍𝑍�̃�𝑡
𝜕𝜕𝐵𝐵�𝑡𝑡

 is negatively correlated to debt. Thus, transfers 

become more responsive to debt in the late 1990s to curb the deficit while being less responsive 

during the financial and Covid crisis. The same applies to  𝜕𝜕𝑍𝑍�̃�𝑡
𝜕𝜕𝑌𝑌�̃�𝑡

.  

 

2.6  Conclusion 
 

In this chapter, I propose a model that allows for the government and central bank to smoothly 

adjust their decision-making processes to the current state of the economy in a DSGE model. 

The model is estimated in its non-linear form using a fully Bayesian approach. Estimating DSGE 

models in their non-linear forms is a time-consuming effort even if vast computational resources 

are available. The research in this chapter combines pre-existing empirical advances to 

significantly cut down on the estimation time. The empirical framework itself is constructed based 

on key advances by Herbst and Schorfheide (2016), Jasra et al. (2010) and heavily borrows from 

the work of Buchholz, Chopis and Jacob (2021) on SMC samplers. Further, particular care was 

put into designing a code implementation that can keep up with the performance needs of the 

estimation by focusing on parallelization and vectorization wherever possible. Together, the 

estimation procedure reduces the estimation time from weeks to days by up to 94%, depending 

on the comparison basis. As a consequence, this chapter provides useful information on how to 

estimate non-linear models in a reasonable timeframe even on smaller machines.  



145 
 

Using the fully estimated model, it can be shown that the effects of fiscal policy vary significantly 

with the initial conditions of the economy and uncertainty is increased across the board if one 

does not condition on the steady state. To aid policymakers, I explore how the effects of fiscal 

policy relate to the initial conditions. To pin down this relationship, I prove that the impulse 

responses to a given shock are affine functions of the initial linear conditions. Based on this, a 

simple regression strategy can be used to quantitively express the relationship. The results show 

that all fiscal instruments are more stimulative in low interest rate periods and less effective in 

phases of above steady state debt. Overall, output impulse responses to tax cut shocks are 

estimated to be procyclical to output, consistent with Sims and Wolff (2018a), and government 

consumption is countercyclical.  

I then combine the regression estimates with actual state estimates from historical US data from 

1984 to 2021 to construct a time series for the time-varying effects of fiscal policy. Among all 

included fiscal instruments, government consumption goes through the most persistent cycles in 

its effectiveness. The results show that government consumption is estimated to have been most 

effective during the Covid and financial crises. Other instruments show less clear patterns but 

still show at least temporarily increased effectiveness during the zero lower bound period and 

Covid crisis.  

The last contribution of this chapter comes from exploring what the non-linear government and 

central bank rules imply for their behaviour across the business cycle. I find that the interest rate 

rule is heavily determined by output growth. In periods of high output growth, the central bank 

is more concerned with controlling inflation and less concerned with adjusting to output growth. 

As the economy shifts into crisis, the central bank reduces its focus on inflation and shifts towards 

bringing output back onto target. For the fiscal rules, the key behaviour seems to be that 

gradients respond to the debt level. During the high debt period of the 1990s, labour taxation 

and transfers became increasingly responsive to debt and, therefore, adjust to ensure the financial 

stability of the federal government.  

For future research, Gaussian process optimization seems promising. Gaussian process 

optimization is a Bayesian optimization technique typically applied to large-scale Machine 

Learning Systems and in non-linear model estimation. By design, Gaussian process optimization 
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tends to be very performative in comparison to standard methods and variations of Bayesian 

optimization techniques for systems with latent states exist and are under development.  
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Schmitt-Grohé, S. and Uribe Martıń (2004) “Solving dynamic general equilibrium models using 
a second-order approximation to the policy function,” Journal of Economic Dynamics and 
Control, 28(4), pp. 755–775. Available at: https://doi.org/10.1016/s0165-1889(03)00043-5.  

Sims, E. and Wolff, J. (2013) “The output and welfare effects of government spending shocks 
over the business cycle.” Available at: https://doi.org/10.3386/w19749.  

Sims, E. and Wolff, J. (2018b) “The output and welfare effects of government spending shocks 
over the business cycle,” International Economic Review, 59(3), pp. 1403–1435. Available at: 
https://doi.org/10.1111/iere.12308.  

Sims, E. and Wolff, J. (2018a) “The state-dependent effects of tax shocks,” European Economic 
Review, 107, pp. 57–85. Available at: https://doi.org/10.1016/j.euroecorev.2018.05.002.  



151 
 

Smets, F. and Wouters, R. (2007) “Shocks and frictions in US business cycles: A Bayesian 
DSGE approach,” American Economic Review, 97(3), pp. 586–606. Available at: 
https://doi.org/10.1257/aer.97.3.586.  

Woodford, M. (2011) “Simple Analytics of the Government Expenditure Multiplier,” American 
Economic Journal: Macroeconomics, 3(1), pp. 1–35. Available at: 
https://doi.org/10.1257/mac.3.1.1.  

Yang, Y. and Wang, L. (2015) An improved auxiliary particle filter for nonlinear dynamic 
equilibrium models, dynare.org. Available at: https://www.dynare.org/wp-
repo/dynarewp047.pdf (Accessed: January 23, 2023).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 
 

Chapter 3  
 
Forecasting with DSGE-VAR models using a model with 
rich fiscal rules 
 

 

3.1  Introduction 
 

In macroeconomics, there is a perceived split between models that are effective at forecasting and 

prediction purposes and models that deliver a structural interpretation of the economy, which 

allows for policy analysis. In particular, Pagan (2003) argues that there is a trade-off between 

the degree of theoretical coherence and the degree of empirical coherence, pitting purely 

theoretical models (e.g., hand calibrated frictionless DSGE models) against empirical reduced 

form models (e.g. VARs) and everything in between. With the turn of the century and the dawn 

of unprecedented computational opportunities available to researchers, the macroeconomic 

literature has quickly moved to bridge the gap by adapting the computationally and structurally 

complex DSGE models with features found in empirical models long known to aid forecasting 

performance. This chapter adds to this debate by evaluating the forecasting precision of the 

DSGE model presented in Chapter 2 and including a comparative analysis of more standard VAR 

and Bayesian VAR models for output and selected fiscal variables.  

In this chapter, I attempt to provide additional evidence on the utility of DSGE models for 

forecasting using the DSGE-VAR framework. DSGE-VAR models, as developed by Del Negro 

and Schorfheide (2004), aim to resolve the split between VAR and DSGE models. This modelling 

framework is applied to the Chapter 2 model, which features a conventional model core heavily 

related to Amisano and Tristani (2010) and Smets and Wouters (2007). The key component of 

this model is a particularly detailed fiscal block that allows the government to react to the 

economy in a diverse way. In particular, it features two types of distortionary taxation – tax rates 

on labour income and consumption expenditures. Furthermore, it includes government 

consumption and transfers. Overall, the model is estimated in a data-rich environment. The 
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forecasting accuracy for output, government consumption and federal debt obtained by this model 

is compared to standard VARs and Bayesian VARs with one and four lags. For the Bayesian 

VARs, the choice of prior fell on the popular Minnesota prior as developed by Litterman (1986) 

and Doan et al. (1984), which forms the ex-ante belief that macroeconomic series typically are 

well approximated by random-walk-like processes.  

Previous results of the literature highlighted the importance of sample selection to forecasting 

accuracy of individual models. Therefore, this chapter estimates both rolling and expanding 

window versions over an expansive sample from 1954Q1 to 2021Q4 across a 1-step ahead and 4-

step forecasting horizon. Further, forecasting performance is considered across the entire sample, 

and, in addition, two subsections from 1954Q1 to 1999Q4 and 2000Q1 to 2021Q4 are considered. 

This particular sample split reflects a significant shift in the dynamics after the beginning of the 

2000s, owning to low-interest rates and high output volatility induced by the financial crisis and 

Covid crisis. The pre-2000s samples instead include a substantial share of the great moderation.  

For the Chapter 2 model, the results show that the forecast accuracy for both output and fiscal 

variables improves almost uniformly when using a Bayesian prior to centre the reduced form 

parameter estimates. In general, neither the Minnesota prior nor the DSGE prior dominate the 

other across the board, in line with Gürkaynak, Kısacıkoğlu and Rossi (2014). The DSGE-VAR 

approach can provide substantial gains, especially at longer horizons, beating the Minnesota prior 

frequently for both output and fiscal variables. However, this may depend on the exact tuning of 

the DSGE-VAR approach, and mixed results do occur.  

As has been shown in the literature, the smaller VARs with one lag outperform the larger VARs 

by substantial margins for output forecasting. One important advantage of the DSGE-VAR 

framework is that these larger VARs can become competitive if a DSGE prior is imposed tightly 

and can outperform significantly smaller VARs, which feature a fraction of the parameters. 

Consequently, for applied users, if there is value in studying larger models, then they can be 

made competitive by imposing tighter DSGE priors. This rule-of-thumb of smaller models being 

better continues to hold for government consumption but not necessarily for government debt. 

For forecasting government debt using a rolling window, the best fitting model is provided by 
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DSGE-VARs with fours lags, which improve upon its smaller counterparts by non-negligible 

margins.  

A second contribution comes from a Zero Lower Bound (ZLB) estimation of the New Keynesian 

model. One of the critical advantages of DSGE models is that the economist can directly model 

complex dynamics and evaluate their performance. One such development is the inclusion of zero-

lower bound constraints in DSGE models after the financial crisis. This chapter applies a standard 

zero lower bound constraint to its central Bank’s Taylor rule. In this application, I use the solution 

strategy developed by Guerrieri and Iacoviello (2015) to solve the model and the filter proposed 

by Giovannini, Pfeiffer and Ratto (2021) is used to construct the likelihood. The ZLB model is 

estimated in an identical fashion using rolling and expanding window techniques. For output 

forecasting, the ZLB model performs reasonably well, outperforming the baseline VAR in many 

cases. However, in comparison to the DSGE-VAR approach, the performance seems to fall short. 

The ZLB is designed to incorporate an important dynamic of the financial crisis, but its 

forecasting performance is typically second to the DSGE-VAR framework. In comparison to 

output forecasting, the ZLB model proves quite useful for government consumption and debt 

forecasting, delivering the best-performing model more consistently.  

Forecasting performance aside, the DSGE-VAR approach, as developed in Del Negro and 

Schorfheide (2004), offers additional insight about the structural nature of the data and allows 

for impulse response analysis, whereas the basic Bayesian VAR does not. The Bayesian prior used 

in the Minnesota approach is purely used to shrink the parameters to areas that are more likely 

ex-ante based on fundamental observations about macroeconomic data. It does not relate the 

reduced form shocks to the structural shocks of the model. In all typical circumstances, additional 

assumptions would be needed to recover the full structural model or to conduct impulse response 

analysis as described in Hamilton (1994).  For the DSGE-VAR prior, that is not the case. Unlike 

the baseline VAR, the structural shocks of the DSGE model are identified and the model does 

not require additional assumptions to conduct impulse response analysis. As a by-product of the 

DSGE-VAR estimation, one receives an approximated posterior parameter distribution of the 

DSGE and, thus, has access to a fully identified structural model. For the Chapter 2 model, I 

trace out output impulse responses to government consumption shocks using the underlying 
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DSGE model for each sub-sample estimation conducted in the forecasting exercise.18 The results 

show that impulse responses to government consumption shocks estimated on financial crisis data 

sets are more effective similar to the results in Chapter 2. Furthermore, government consumption 

is estimated to be more effective at increasing output during the mid-1980s and less effective in 

the late 1990s and early 2000s.   

The structure of the chapter is as follows. Section 3.2 provides a general overview of the 

forecasting literature using DSGE models and the DSGE-VAR framework. Section 3.3 provides 

an overview of the Chapter 2 model, and Section 3.4 gives a detailed introduction to the empirical 

frameworks employed in this chapter, including the DSGE-VAR framework, Minnesota prior and 

the ZLB DSGE estimation strategy. Section 3.5 details the simulation strategy using the 

Metropolis Hasting algorithm, and Section 3.6 describes the data. The last sections present the 

results and the conclusion. The appendix features additional tables and some computational 

details. 

 

3.2  Literature review 
 

3.2.1  DSGE models 
 

There is a large body of macroeconomic literature that focuses on exploring the forecasting 

abilities of DSGE models focusing on various aspects and comparing DSGEs to standard 

forecasting tools. Starting off with the general forecasting performance, in pioneering papers, 

Smets and Wouters (2003) and Smets and Wouters (2007) show that DSGE models can 

outperform the simpler VAR models in terms of forecasting performance. They achieve this by 

extending the Christiano, Eichenbaum and Evans (2005) model by including a number of 

economic frictions and exogenous driving processes aimed at improving the DSGE’s fit to the 

 
18 Chapter 2 focuses on exploring a DSGE model where the effects of policy interventions are allowed to vary with 
the initial conditions of the business cycle. Here, I trace out the estimated effects of the linearized version of the 
same model. Therefore, the effects do not depend on the initial conditions but do depend on the sample selection of 
the windowed data set (i.e. the business cycle conditions over the sample). 
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data. Additionally, they also show that their model is competitive to Bayesian VARs using a 

Minnesota prior as in Litterman (1986) and Doan et al. (1984). 

One key research question is how well these significant improvements generalize to other DSGE 

models. The initial forecasting success of Smets and Wouters (2003) and Smets and Wouters 

(2007) has spawned a considerable literature attempting to assess the forecasting performance of 

DSGEs. Results by Del Negro and Schorfheide (2013) show that an augmented Smets and 

Wouters (2007) model can perform markedly well compared to other professional forecasts like 

Blue Chip forecasts. Similarly, Berg (2016) finds that DSGE models can forecast comparatively 

well but may be poorly calibrated in some cases. However, other studies have shown that DSGE 

models may perform better or worse than the alternative models depending on the horizon or 

data series involved (see, e.g., Adolfson, Lindé and Villani (2007) and Christoffel, Coenen and 

Warne (2012)). 

A more sobering view is provided by Edge and Gürkaynak (2011). They compare VAR, Bayesian 

VAR, Greenbook, Blue Chip forecasts and the Smets and Wouters (2007) model. They suggest 

limited advantages to using more complex models, such as DSGE and Bayesian VAR models, as 

they are often outperformed by simple models like constant or random walk models. Especially 

in terms of scale, the RMSE may be too large for the forecasts to be truly useful in policymaking. 

In a similar exercise, Gürkaynak, Kısacıkoğlu and Rossi (2014) find that among a large set of 

univariate and multivariate models, there does not exist a single best-performing forecasting 

method. In particular, smaller models may be more accurate at shorter horizons, and DSGE 

models favour longer horizons. Additionally, large-scale models are not preferable and often 

outperformed by small, low-dimensional AR and VAR models depending on the data set or 

variable. Equally, Chauve and Potter (2013) find simple linear or non-linear models can perform 

just as well as complex multivariate models, including DSGEs.  

Wickens (2014) provides a survey of forecasting results using DSGE models by several institutions 

like the Reserve Bank of New Zealand, the IMF, Riksbank, the US federal reserve and other 

smaller forecasters. They show that DSGE models frequently forecast well, especially for longer 

horizons, but not better or worse than simpler time series models. They suggest that similarities 

in results are achieved by similar backwards-looking structures in both types of models. However, 
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the forwards looking components of DSGE models, which depend on unknown exogenous 

processes, tend to be difficult to forecast. 

The inclusion of several factors have been shown to improve DSGE model's performance, ranging 

from financial frictions (Cai et al. (2019), Gelfer (2019), Del Negro, Hasegawa and Schorfheide 

(2016)), a housing market (Kolasa and Rubaszek (2015)), an open economy (Gelfer (2021)), or 

stochastic volatility for the exogenous shock processes (Diebold et al. (2017)). In this chapter, I 

explore the inclusion of a rich fiscal structure into a DSGE model and analyse its importance for 

forecasting output and fiscal data. 

 

3.2.2  DSGE-VAR models 
 

An alternative approach to using the pure DSGE model for forecasting was developed by Del 

Negro and Schorfheide (2004) in the DSGE-VAR framework. Del Negro and Schorfheide (2004) 

achieve an efficient combination of the forecasting performance of VAR models while also 

retaining the causal analysis advantages DSGE models bring to the table. The DSGE-VAR 

methodology assumes that a VAR model is the data-generating process. However, Del Negro and 

Schorfheide (2004) utilize artificial data generated by the DSGE model to shift the parameters 

of the reduced form VAR into areas of the parameter space that are plausible ex-ante based on 

the DSGE model. The resulting advantage is that it allows for the estimation of the VAR reduced 

form parameters using economic beliefs specified for the DSGE. At the same time, it completely 

removes distributional restrictions and may reduce potential identification issues common to 

DSGE models. By doing so, the framework may ease up on some of the less empirically plausible 

modelling restrictions while maintaining the general covariate structure. Del Negro and 

Schorfheide (2004) show that DSGE-VAR models can provide robust forecasts comparable or 

better to VARs and BVARs. 

The forecasting ability of DSGE models is also being explored through the DSGE-VAR 

framework. Ghent (2009) compares several standard real business cycle models through the use 

of the DSGE-VAR framework. They show that while the models include different structural 

characteristics, they perform relatively similarly. Equally, DSGE-VARs compare favourably to 
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VARs. Pop (2017) shows for Romanian data that their DSGE-VAR model is competitive with 

VAR models, beating VAR forecasts for inflation, real rate, and nominal interest rate forecasts 

but not real GDP. Furthermore, Gupta and Steinbach (2013) show that a small open economy 

DSGE-VAR model designed for South Africa performs well or better than comparable methods 

for forecasting output, inflation and a nominal short-term interest rate. In a DSGE-VAR model 

with a rich fiscal policy ruleset, Babecký et al. (2018) show that the DSGE-VAR model is 

preferable over VAR variants using a data density comparison. In terms of its usage of rich fiscal 

policy rules, this chapter is closely related to Babecký et al. (2018). 

 

3.3  Chapter 2 DSGE model 
 

For the estimation in this chapter, I use the model developed in chapter 2 and estimate a 

linearized version to simplify the estimation procedures. For the sake of brevity, here I focus on 

the fiscal and monetary policy rules as they are affected by the switch to linearization. For the 

remaining components of the model, I refer to Chapter 2.  

The fiscal government features a budget constraint to ensure solvency. The government receives 

tax income based on labour, 𝜏𝜏𝑡𝑡
𝐿𝐿, and consumption taxation, 𝜏𝜏𝑡𝑡

𝐶𝐶 , on their respective tax bases. 

On the expenditure side, it sets transfers, 𝑍𝑍𝑡𝑡, and government consumption, 𝐺𝐺𝑡𝑡. Lastly, it has to 

refinance the one-period bond it gives out every period, which requires taking up new debt, 𝐵𝐵𝑡𝑡, 

and repaying last periods bonds with interest, 𝐼𝐼𝑡𝑡−1𝐵𝐵𝑡𝑡−1
𝜋𝜋𝑡𝑡

. The following equation describes the 

government constraint: 

𝜏𝜏𝑡𝑡
𝐶𝐶

1 + 𝜏𝜏𝑡𝑡
𝐶𝐶 𝐶𝐶𝑡𝑡 + 𝜏𝜏𝑡𝑡

𝐿𝐿

1 + 𝜏𝜏𝑡𝑡
𝐿𝐿

1
𝑃𝑃𝑡𝑡

� 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖)𝑑𝑑𝑖𝑖
1

0
+ 𝐵𝐵𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝐺𝐺𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝐵𝐵𝑡𝑡−1

𝜋𝜋𝑡𝑡
, 

where 𝑊𝑊𝑡𝑡(𝑖𝑖)𝐿𝐿𝑡𝑡(𝑖𝑖) is the labour income from good 𝑖𝑖, 𝑃𝑃𝑡𝑡 is the current price level and 𝐶𝐶𝑡𝑡 is 
current consumption.  

For the fiscal instruments 𝜏𝜏𝑡𝑡
𝐿𝐿, 𝑍𝑍𝑡𝑡 and 𝐺𝐺𝑡𝑡 the linear version of the fiscal rules is as follows:  

𝑧𝑧�̃�𝑡 = 𝑝𝑝𝑧𝑧𝑧𝑧�̃�𝑡−1 + (1 − 𝑝𝑝𝑧𝑧)�𝑘𝑘𝜇𝜇𝑧𝑧,𝑌𝑌 𝑌𝑌�̃�𝑡 + 𝜇𝜇𝑧𝑧,𝜋𝜋𝜋𝜋�̃�𝑡 + 𝑘𝑘𝜇𝜇𝑧𝑧,𝐵𝐵𝐵𝐵�𝑡𝑡 + 𝜇𝜇𝑧𝑧,𝐴𝐴𝐴𝐴�̃�𝑡� + 𝜎𝜎𝑧𝑧𝑣𝑣𝑡𝑡
𝑧𝑧,   𝑣𝑣𝑡𝑡

𝑧𝑧~𝑁𝑁(0,1), 

𝑘𝑘 = 1 𝑖𝑖𝑓𝑓 𝑧𝑧�̃�𝑡 = 𝜏𝜏�̃�𝑡
𝑙𝑙 𝑎𝑎𝑙𝑙𝑑𝑑 𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒 𝑘𝑘 = −1, 
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where 𝑧𝑧�̃�𝑡 is representative of the fiscal instrument in log steady state deviation form as indicated 

by the tilde. The parameters 𝜇𝜇𝑧𝑧,𝑌𝑌  and 𝜇𝜇𝑧𝑧,𝐵𝐵 are assumed to be larger than zero for all 𝑧𝑧.  The 

inclusion of 𝑘𝑘 is done to ensure that the variables act to stabilize the budget based on the prior 

specification. That means that expenditure variables always decrease in response to increases in 

output or debt, while labour taxation does the opposite. Unlike standard rules, the fiscal 

instruments here are also allowed to respond to inflation and productivity to allow for richer 

behaviour. The fiscal instruments are perturbed by a random normal shock 𝑣𝑣𝑡𝑡
𝑧𝑧 with standard 

deviation 𝜎𝜎𝑧𝑧. Consumption taxation receives a comparatively simple rule with an AR(1) process 

based on arguments in Leeper, Plante and Traum (2010) on the makeup of this tax rate in log 

steady state deviation form:  

𝜏𝜏�̃�𝑡
𝑐𝑐 = 𝑝𝑝𝜏𝜏𝑐𝑐𝜏𝜏�̃�𝑡−1

𝑐𝑐 + 𝜎𝜎𝜏𝜏𝑐𝑐𝑣𝑣𝑡𝑡
𝜏𝜏𝑐𝑐,     𝑣𝑣𝑡𝑡

𝜏𝜏𝑐𝑐~𝑁𝑁(0,1).  

The Central Bank faces a standard Taylor rule where interest rates respond more than one-to-

one to changes in inflation from its target. In addition, the CB also sets rates in response to 

output growth: 

𝑖𝑖𝑡𝑡 = (1 − 𝜌𝜌𝐼𝐼) �𝜋𝜋̅ − 𝑙𝑙𝑙𝑙(𝛽𝛽) + 𝜓𝜓𝑦𝑦(𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) + 𝜓𝜓𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)� + 𝜌𝜌𝐼𝐼𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑡𝑡

𝑖𝑖,     𝑣𝑣𝑡𝑡
𝑖𝑖~𝑁𝑁(0, 𝜎𝜎𝑖𝑖

2). 

Here, everything is phrased in log-terms. The log of the current interest rate, 𝑖𝑖𝑡𝑡, responds to the 

log of the lagged interest rate, output growth as constructed by the difference between todays 

and lagged log-output, (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1), and the difference between the log of the inflation rate and 

the time-varying inflation target, (𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗). To ensure stable inflation dynamics,  𝜓𝜓𝜋𝜋 is larger 

than one and 𝜓𝜓𝑦𝑦 is assumed to be larger than zero. 𝑣𝑣𝑡𝑡
𝑖𝑖 is the monetary policy shock.  

For the ZLB variant, the model distinguishes between the shadow rate, 𝑖𝑖𝑡𝑡𝑆𝑆ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑤𝑤, and the notional 

rate, 𝑖𝑖𝑡𝑡𝑁𝑁 . The shadow rate is still always governed by the interest rate rule above. Therefore, it 

corresponds to the rule the Central Bank would set if it was not constrained by the ZLB. The 

notional rate, 𝑖𝑖𝑡𝑡𝑁𝑁 , is the one that is observed in practice and holds the following law of motion: 

𝑖𝑖𝑡𝑡𝑁𝑁 = 𝑚𝑚𝑎𝑎𝑒𝑒{𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛, 𝑖𝑖𝑡𝑡𝑆𝑆ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑤𝑤}, 

where 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 is a small positive rate. Post-2008, the interest rate never dipped below zero. If one 

was to set 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 = 0, then the ZLB would never be reached in practice. In this implementation, I 
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follow Boehl and Strobel (2022) by setting 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 such that the ZLB holds from 2009Q1 to 2015Q4. 

That means 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 = 1.00053, corresponding to a 0.053% per cent rate.  

Furthermore, the CB has a non-constant inflation target governed by the following AR(1) process 

in log-terms: 

𝜋𝜋𝑡𝑡
∗ = (1 − 𝜌𝜌𝜋𝜋)𝜋𝜋̅ + 𝜌𝜌𝜋𝜋𝜋𝜋𝑡𝑡−1

∗ +𝑣𝑣𝑡𝑡
𝜋𝜋,     𝑣𝑣𝑡𝑡

𝜋𝜋~𝑁𝑁(0, 𝜎𝜎𝜋𝜋
2). 

What that means is that in particular scenarios, the CB may decide that the long-run target for 

inflation is not suitable and can deviate from this. Further, this means the CB changes its interest 

rate-setting behaviour based on the policy rule above. For example, if the inflation rate is 

significantly above target, this implies a rather strong interest response. However, if the target 

rises to accommodate, the Central Bank may opt for a much weaker response. 

 

3.4  Empirical models  
 

3.4.1  DSGE VAR 
 

At its core, Del Negro and Schorfheide (2004) makes use of the idea that the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) model may 

be used as an approximation to the moving average representation of the DSGE model. Unlike 

the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) model, DSGE models impose relatively tight economic beliefs on the parameter 

distributions of the empirical model. Based on this, the first-order approximation of the DSGE 

model can help in defining plausible ranges for the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) parameters, or in other words, it can 

be used as a prior. The key advantage of the methodology is that it allows the econometrician to 

learn both about the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) parameters but also about the structural parameters that define 

the DSGE model. 

To explore the estimation design of the DSGE-VAR framework, I begin by describing the 

canonical VAR framework. The set up for the standard 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) framework, which forms the 

basis for the approach in Del Negro and Schorfheide (2004), is as follows: 

𝑦𝑦𝑡𝑡 = 𝛷𝛷0 + 𝛷𝛷1𝑦𝑦𝑡𝑡−1 + ⋯+ 𝛷𝛷𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝑢𝑢𝑡𝑡,   𝑢𝑢𝑡𝑡~𝑁𝑁(0, 𝛴𝛴), 
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where 𝑦𝑦𝑡𝑡 is a (𝑙𝑙 × 1) vector of observables that depend linearly on its past’s values. The matrices 

𝛷𝛷𝑖𝑖 are of dimension (𝑙𝑙 × 𝑙𝑙) and contain the model parameters. 𝑢𝑢𝑡𝑡 corresponds to the (𝑙𝑙 × 1), 

mean zero and normally distributed, reduced form error process with full covariance matrix Σ 

(𝑙𝑙 × 𝑙𝑙). This system can be rewritten in a more convenient way by utilizing an OLS-like 

representation. The system is characterised by two matrices 𝑌𝑌  and 𝑋𝑋 that carry the current 

observations and the first 𝑝𝑝 lagged observation vectors, respectively. Let 𝑌𝑌  be a (𝑇𝑇 × 𝑙𝑙) matrix 

where each row 𝑑𝑑 corresponds to 𝑦𝑦𝑡𝑡′. Further, 𝑋𝑋 is a (𝑇𝑇 × 𝑘𝑘) matrix where row 𝑑𝑑 of matrix 𝑋𝑋 is 

equal to the row vector 𝑒𝑒𝑡𝑡
′ = [1, 𝑦𝑦𝑡𝑡−1

′ ,… , 𝑦𝑦𝑡𝑡−𝑝𝑝
′ ]. In this, 𝑘𝑘 is equal to the row dimension of 𝑦𝑦𝑡𝑡, 𝑙𝑙, 

times the number of lags, 𝑝𝑝, plus one for a constant term (𝑘𝑘 = 1 + 𝑙𝑙𝑝𝑝). Using this alternative 

representation, the system can then be written as: 

𝑌𝑌 = 𝑋𝑋𝛷𝛷 + 𝑈𝑈, 

where Φ = [Φ0,Φ1, … , Φ𝑝𝑝]′ and 𝑈𝑈  includes stacked rows of 𝑢𝑢𝑡𝑡
′. Using the matrix definition, one 

can construct the likelihood function: 

𝑝𝑝(𝑌𝑌 |Φ, Σ) ∝ |Σ|−
𝑇𝑇
2 exp (−1

2
𝑑𝑑𝑟𝑟�Σ−1(𝑌𝑌 ′𝑌𝑌 − Φ′X′Y − Y′XΦ + Φ′X′XΦ)�, 

where 𝑑𝑑𝑟𝑟 is the trace of a matrix, and 𝑈𝑈  follows a joint normal distribution with covariance matrix 

𝛴𝛴. Del Negro and Schorfheide (2004) proposes the following hierarchical structure for the joint 

prior of the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) parameters and the structural DSGE parameters: 

𝑝𝑝(Φ, Σ, θ) = 𝑝𝑝(Φ, Σ|θ)𝑝𝑝(θ), 

where 𝜃𝜃 is the vector of structural parameters that define the DSGE model together with its prior 

𝑝𝑝(θ). The density 𝑝𝑝(Φ, Σ|θ) describes a relationship between the reduced form 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) 

parameters and the structural DSGE parameters. The key idea is that based on the structural 

parameter, θ, the DSGE model defines moments that can be used to construct a prior for the 

VAR parameters. Here, let Γ𝑦𝑦𝑦𝑦
∗ (θ), Γ𝑥𝑥𝑦𝑦

∗ (θ) and Γ𝑥𝑥𝑥𝑥
∗ (θ) denote the population moments of the 

DSGE model with parameter vector θ.  The joined density is as follows:  

𝑝𝑝(Φ, Σ|θ) = 𝑐𝑐−1(θ)|Σ|−
𝜆𝜆𝑇𝑇+𝑛𝑛+1

2 exp  (−1
2

𝑑𝑑𝑟𝑟 �𝜆𝜆𝑇𝑇Σ−1 �(θ) − Φ′Γ𝑥𝑥𝑦𝑦
∗ (θ) − Γ𝑦𝑦𝑥𝑥

∗ (θ)Φ + Φ′Γ𝑥𝑥𝑥𝑥
∗ (θ)Φ��, 

where 𝑑𝑑𝑟𝑟 is the trace of a matrix. Conceptually, this likelihood can be compared to a likelihood 

of the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) parameters Φ and Σ on an artificial data set simulated from the DSGE model. 
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Instead of using artificial data, which introduces unnecessary simulation noise, Del Negro and 

Schorfheide (2004) rely on the population moments. To complete the prior, Del Negro and 

Schorfheide (2004) introduce two things. Firstly, the parameter combination of 𝜆𝜆𝑇𝑇  in which 𝜆𝜆 

governs the tightness of the DSGE prior by adjusting the number of artificial observations. For 

smaller values of 𝜆𝜆 and thus small artificial sample sizes, the posterior estimates are closer to the 

standard OLS estimates. Increasing 𝜆𝜆, implies that the DSGE model gains influence over the 

𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) parameters as the size of the artificial sample increases. In the limit, as 𝜆𝜆 →  ∞ the 

DSGE-VAR approach reduces to estimating the DSGE model using a quasi-likelihood approach. 

Secondly, the shape of the prior distribution for Φ and Σ conditional on θ is normal and inverse 

Wishart, respectively: 

𝛴𝛴|𝜃𝜃~𝐼𝐼𝑊𝑊(𝜆𝜆𝑇𝑇𝛴𝛴∗(𝜃𝜃), 𝜆𝜆𝑇𝑇 − 𝑘𝑘, 𝑙𝑙), 

𝛷𝛷|𝜃𝜃~𝑁𝑁(𝛷𝛷∗(𝜃𝜃),𝛴𝛴 ⊗ �𝜆𝜆𝑇𝑇𝛤𝛤𝑥𝑥𝑥𝑥
∗ (𝜃𝜃)�−1, 

where Σ∗(θ) and Φ∗(θ) are defined as: 

𝛷𝛷∗(𝜃𝜃) = 𝛤𝛤𝑥𝑥𝑥𝑥
∗ (𝜃𝜃)−1𝛤𝛤𝑥𝑥𝑦𝑦

∗ (𝜃𝜃), 

𝛴𝛴∗(𝜃𝜃) = 𝛤𝛤𝑦𝑦𝑦𝑦
∗ (𝜃𝜃) − 𝛤𝛤𝑦𝑦𝑥𝑥

∗ (𝜃𝜃)𝛤𝛤𝑥𝑥𝑥𝑥
∗ (𝜃𝜃)−1𝛤𝛤𝑥𝑥𝑦𝑦

∗ (𝜃𝜃). 

The prior is proper under two conditions. Firstly, 𝜆𝜆𝑇𝑇  needs to be at least as large 𝑘𝑘 + 𝑙𝑙 such 

that the inverse Wishart prior is defined. Secondly, the population moment matrix, Γ𝑥𝑥𝑥𝑥
∗ (θ), needs 

to be invertible. If that is the case, then the two equations constitute a fully defined prior.  

Based on the prior, the posterior distribution for the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) parameters and the structural 

DSGE parameters is defined as follows: 

𝑝𝑝(𝛷𝛷, 𝛴𝛴, 𝜃𝜃|𝑌𝑌 ) = 𝑝𝑝(𝛷𝛷,𝛴𝛴|𝜃𝜃, 𝑌𝑌 )𝑝𝑝(𝜃𝜃|𝑌𝑌 ). 

To simulate the posterior, both 𝑝𝑝(Φ, Σ|θ,Y) and 𝑝𝑝(θ|Y) need to be characterized. Conditional on 

θ, sampling and evaluating the density 𝑝𝑝(Φ, Σ|θ,Y) turns out to be straightforward as analytical 

results exist. Because of the choice of prior distribution for Φ and Σ, it can be shown that the 

posterior is also of the Inverse Wishart and Normal form: 

𝛴𝛴|𝑌𝑌 , 𝜃𝜃~𝐼𝐼𝑊𝑊 �(𝜆𝜆 + 1)𝑇𝑇 �̃�𝛴(𝜃𝜃), (1 + 𝜆𝜆)𝑇𝑇 − 𝑘𝑘, 𝑙𝑙�, 

𝛷𝛷|𝑌𝑌 , 𝜃𝜃, 𝛴𝛴~𝑁𝑁(𝛷𝛷(̃𝜃𝜃),𝛴𝛴 ⊗ (𝜆𝜆𝑇𝑇𝛤𝛤𝑥𝑥𝑥𝑥
∗ (𝜃𝜃) + 𝑋𝑋′𝑋𝑋)−1, 
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where Σ�(θ) and Φ�(θ) are the MLE estimates of Φ and Σ on the augmented data set, which 

includes both artificial and actual observations.  

To estimate the model, one has to simulate from the posterior of the structural parameters of 

the DSGE, θ. For 𝑝𝑝(θ|Y) the shape of the posterior is not known as is typical for DSGE models. 

Therefore, one has to rely on Markov-Chain-Monte-Caro (MCMC) techniques or similar 

simulation techniques. The MCMC algorithm is then applied to the distribution: 

𝑝𝑝(𝜃𝜃|𝑌𝑌 ) ∝ 𝑝𝑝(𝑌𝑌 |𝜃𝜃)𝑝𝑝(𝜃𝜃), 

where 𝑝𝑝(𝑌𝑌 |θ) can be constructed as follows: 

𝑝𝑝(𝑌𝑌 |𝜃𝜃) = 𝑝𝑝(𝑌𝑌 | 𝛷𝛷,𝛴𝛴)𝑝𝑝(𝛷𝛷, 𝛴𝛴| 𝜃𝜃)/𝑝𝑝(𝛷𝛷, 𝛴𝛴| 𝑌𝑌 ), 

𝑝𝑝(𝑌𝑌 |𝜃𝜃) ∝
|𝜆𝜆𝑇𝑇𝛤𝛤𝑥𝑥𝑥𝑥

∗ (𝜃𝜃) + 𝑋𝑋′𝑋𝑋|−
𝑛𝑛
2 �(𝜆𝜆 + 1)𝑇𝑇 �̃�𝛴(𝜃𝜃) �−

(𝜆𝜆+1)𝑇𝑇−𝑘𝑘
2

|𝜆𝜆𝑇𝑇𝛤𝛤𝑥𝑥𝑥𝑥
∗ (𝜃𝜃)|−

𝑛𝑛
2|𝜆𝜆𝑇𝑇𝛴𝛴∗(𝜃𝜃)|−

𝜆𝜆𝑇𝑇−𝑘𝑘
2

. 

In this case, I rely on the Metropolis-Hastings Algorithm utilized in Amisano and Tristani (2010). 

See section 3.5 for more detail. Using the generated draws from the distribution of 𝑝𝑝(θ|Y), one 

can then use the conditional posteriors for 𝛴𝛴 and 𝛷𝛷 to generate draws for the posterior 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) 

parameters.  For 𝜆𝜆 I choose to set the hyperparameter equal to one and two. These reflect a 

similar range as tested in Del Negro and Schorfheide (2004) and perform well based on initial 

testing. Choosing larger values (>10) degrades forecasting performance in my testing. A more 

sophisticated approach to choosing the value of the hyperparameter is presented in Babecký et 

al. (2018). The main idea is to conduct a grid search to find the maximum of the log marginal 

likelihood and the associated 𝜆𝜆. Their results show optimal 𝜆𝜆’s ranging from 1 to 3. Because the 

range of values includes the hand calibrated values chosen here and manual testing showed that 

the forecasting results are not majorly sensitive to fine-tuning the 𝜆𝜆’s in this range, I opted for 

manual calibration. 
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3.4.2  Minnesota prior 
 

The following section gives a brief introduction to the Minnesota Prior for vector auto regressions 

developed in Litterman (1986) and Doan et al. (1984). For the implementation, I follow the more 

recent overview in Del Negro and Schorfheide (2010). 

The motivation of the Minnesota prior can be based on the exposition in Todd (1984). When it 

comes to forecasting, personal expectations and prior beliefs can play a huge role in questions 

like model design, data selection and more. The standard VAR model in the frequentist format 

can be shown to reflect a diffuse set of prior beliefs on its parameters.19 In practice, one may find 

that a diffuse or unassuming stance can often be at odds with the prior beliefs of forecasters and 

can be counterproductive for forecasting performance. The Minnesota prior aims to bridge that 

gap by incorporating reasonable prior information on macroeconomic data series. At its core, the 

Minnesota prior starts from the fundamental observation that typical macroeconomic data series 

show high persistence in their behaviour. In particular, simple random walk models or naïve 

forecasts almost always do well in forecasting comparisons despite or because of their simplicity. 

In the random walk model, the forecast of a specific observable, 𝑦𝑦𝑖𝑖,𝑡𝑡+1, indexed by 𝑖𝑖, is just 

today's value: 

𝑦𝑦𝑖𝑖,𝑡𝑡+1 = 𝑦𝑦𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡+1   𝑤𝑤𝑖𝑖𝑑𝑑ℎ 𝐸𝐸𝑡𝑡�𝑦𝑦𝑖𝑖,𝑡𝑡+1� = 𝑦𝑦𝑖𝑖,𝑡𝑡. 

Based on the observation that random walk models provide a good guess across a wide range of 

macroeconomic series, the Minnesota Prior incorporates this idea by shrinking the parameters of 

the VAR towards an independent random walk behaviour.  

Within the Del Negro and Schorfheide (2010) framework, one adds dummy observations to induce 

the prior similarly to the DSGE priors. It can be shown that the inclusion of dummy observations 

leads to a conjugate prior of the normal, inverse Wieshart form. The dummy observations are 

added to the 𝑌𝑌  and 𝑋𝑋 matrices below: 

𝑌𝑌 = 𝑋𝑋𝛷𝛷 + 𝑈𝑈, 

 
19 The Ordinary least squares es�ma�on of the VAR can be thought of as Bayesian VARs with a diffuse normal prior. From 
that perspec�ve, the frequen�st VAR is nested into the Bayesian VAR framework as a limit case. 
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where 𝑌𝑌  and 𝑈𝑈  are (𝑇𝑇 × 𝑙𝑙) matrices, and 𝑋𝑋 is a (𝑇𝑇 × 𝑘𝑘) matrix. 𝛷𝛷 contains the VAR coefficient 

matrices as Φ = [Φ0,Φ1,… , Φ𝑝𝑝]′ and is of dimension (𝑘𝑘 × 𝑙𝑙). For more details on the exact set 

up of the linear regression system, see the previous section. To create the random walk behaviour, 

the parameters on the diagonal of Φ1 receive a normal prior centred at 1, while off-diagonal 

elements are assumed to have a prior mean of zero. For the autoregressive matrices of higher 

order, the prior mean is set to zero. The standard deviations for those parameters decrease with 

the order of lags. This is included to avoid overfitting common to higher-order VARs.  

The prior covariance matrix of the reduced form shocks is centred at a prior estimate of the 

covariance matrix. In addition, Del Negro and Schorfheide (2010) elaborate on two additional 

dummy observations for the intercept and to introduce correlation between model parameters. 

Firstly, the sums-of-coefficients dummy observations introduce the following mechanics: if 𝑦𝑦𝑖𝑖,𝑡𝑡 is 

at its long-run mean or close to it, then the long-run mean is a good forecast for 𝑦𝑦𝑖𝑖,𝑡𝑡+1. Secondly, 

the co-persistence dummy observations are introduced to reflect the prior that when 𝑦𝑦𝑡𝑡 is at its 

long-run mean, then the long-run mean can serve as a good forecast for 𝑦𝑦𝑡𝑡+1.  

To implement the Minnesota prior, Del Negro and Schorfheide (2010) rely on a set of 

hyperparameters: 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4, 𝜆𝜆5, 𝑦𝑦 ̅and 𝑠𝑠.̅ For this estimation, I set the hyperparameters as 

in Del Negro and Schorfheide (2010):  

𝜆𝜆1 = 0.1, 𝜆𝜆2 = 4, 𝜆𝜆3 = 1, 𝜆𝜆4 = 1 𝑎𝑎𝑙𝑙𝑑𝑑 𝜆𝜆5 = 1. 

𝑦𝑦 ̅and 𝑠𝑠 ̅are calibrated to long-run estimates over the estimation sample.  

 

3.4.3  ZLB DSGE 
 

For the ZLB DSGE model, the estimation is conducted using the full likelihood as opposed to 

the quasi-likelihood approach utilized in the DSGE-VAR procedure. The fundamental reason for 

this is based on the way information about the DSGE is utilized in the DSGE-VAR approach. 

The DSGE-VAR approach summarizes the empirical properties of the DSGE by constructing 

first and second-order moments. For the VAR, this approach will capture all relevant moment 

information in a compact format. However, for the ZLB model, it is not immediately clear that 

the mean and covariance matrix will summarize the dynamics well. This is the case for two 
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reasons. Firstly, it is not clear that the kink dynamics could be captured in the covariance matrix. 

Secondly, ZLB events are fundamentally rare. If one was to construct an unconditional covariance 

matrix, it would include little information about the different mechanics observed at the zero 

lower bound. An alternative strategy to utilise the DSGE-VAR approach could have been to 

replace the exact moments with sampled moments. This approach still suffers from the fact that 

ZLB events are rare and would introduce additional simulation noise. Therefore, I utilize exact 

likelihood methods in this chapter. To construct the likelihood, I use the filter developed in 

Giovannini, Pfeiffer and Ratto (2021). To solve the model, I utilize a variant of the algorithm for 

solving models with occasionally binding constraints (occbin) developed by Guerrieri and 

Iacoviello (2015). For more detail on the solution strategy, see the appendix. The posterior is 

then estimated based on the aforementioned filter and solution strategy using the Random Walk 

Metropolis-Hastings algorithm. 

 

3.5  Bayesian Posterior simulation 
 

To simulate the posterior of the structural parameters of the DSGE model in θ, I rely on a 

standard Random Walk Metropolis-Hastings Algorithm (RWMH), which works on a set of 

transformed parameters as in Amisano and Tristani (2010). The RWMH algorithm is a sequential 

sampler relying on the principles of Markov Chains. The sampler is initialized here based on a 

draw from an approximated posterior. Based on the initialization, the RWMH algorithm 

constructs a series of draws based on a proposal distribution. Each draw is either accepted or 

rejected based on an acceptance step. The chain then continues at the new parameter vector. 

Depending on the complexity of the posterior, the algorithm then converges to the posterior 

eventually. 

The setup of the algorithm is as follows: 

1. Generate proposal 𝜃𝜃∗ based on 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑡𝑡−1), where 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑡𝑡−1) is a multivariate normal 

distribution with a diagonal covariance matrix 

2. Construct acceptance ratio: 𝑎𝑎 = min� 𝑘𝑘(𝜃𝜃∗|𝑌𝑌 )
𝑘𝑘(𝜃𝜃𝑡𝑡−1|𝑌𝑌 ) , 1�    

a. The function 𝑘𝑘 corresponds to the kernel of the posterior: 
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b. 𝑝𝑝(𝜃𝜃|𝑌𝑌 ) ∝ 𝑘𝑘(𝜃𝜃|𝑌𝑌 ) = 𝑝𝑝(𝑌𝑌 |𝜃𝜃)𝑝𝑝(𝜃𝜃) 

3. Accept draw 𝜃𝜃∗ with 𝑝𝑝 = 𝑎𝑎 and set 𝜃𝜃𝑡𝑡 = 𝜃𝜃∗ or else reject and set 𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑡𝑡−1 

In the case of DSGE models, a lot of elements in 𝜃𝜃 may be constrained to certain intervals. For 

example, habit persistence is typically constrained to the interval from zero to one. In this case, 

the proposal distribution 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑡𝑡−1), can and will generate draws outside of the bounds of the 

prior. These draws will always be rejected. One way of avoiding this problem is working on a 

transformed set of parameters, 𝜙𝜙, as in Amisano and Tristani (2010). 𝜙𝜙 is constructed using 𝜃𝜃 

but is not bounded. For gamma and inverse gamma distributions, the transformation is a 𝑙𝑙𝑓𝑓𝑙𝑙 

transformation. Beta-distributed parameters are transformed using an inverse-sigmoid 

transformation. Normally distributed parameters are not transformed. To ensure the validity of 

the simulation, the kernel needs to be adjusted using the determinant of the Jacobian of the 

transformation: 

𝑝𝑝(𝜙𝜙|𝑌𝑌 ) ∝ 𝑝𝑝(𝑌𝑌 |𝜙𝜙)𝑝𝑝(𝜙𝜙) = 𝑝𝑝�𝑌𝑌 �𝜃𝜃(𝜙𝜙)�𝑝𝑝�𝜃𝜃(𝜙𝜙)� �𝜕𝜕𝜃𝜃
𝜕𝜕𝜙𝜙

�. 

The DSGE-VAR models and the ZLB-variant are re-estimated on every sub-sample using 10.000 

MH draws. Overall, that constitutes to around 225 estimations per model, depending on the 

number of lags used. 

 

3.6  Data 
 

The Chapter 2 model is estimated using a comparatively rich data set which includes seven data 

series and spans from Q1 1954 to Q4 2021. The model features a similar fiscal apparatus to the 

Leeper, Plante and Traum (2010) model and, thus, shares similar variables. It includes output, 

debt, government consumption, a consumption tax rate, a labour tax rate, an inflation rate and 

an interest rate. The inflation rate corresponds to the implicit price GDP deflator, and the interest 

rate is the 3-Month Treasury Bill Rate. Nominal variables are deflated using an index constructed 

based on the GDP deflator using Q1 1990 as the base date. All variables but the inflation and 

interest rates are detrended using the same linear procedures as in Leeper, Plante and Traum 

(2010).  This is done to induce stationarity in the variables. The resulting interpretation of these 
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variables is as real, log steady state deviations. Log Interest rates and Log inflation rates are 

assumed to be directly measured by the DSGE. For more detail, see Chapter 2. Table 3.1 presents 

some detail on the used data series, their source and interpretation.  

 

Table 3.1: Data overview 

 

Notes: The table provides detail on the data set about the type, valuation, source, and interpretation of the variables. 

The federal reserve data base of the St. Louis FED bank is abbreviated as FRED, and the Bureau of Economic Analysis 

is abbreviated as BEA.  

For the estimations in this chapter for both data sets, the variables are detrended for each 

individual sub-sample. For the expanding window estimations, the initial sample is set to start 

in Q1 1954 and includes 40 observations. The same applies to the rolling window estimation. All 

models are fully re-estimated on every subsample.  

On a more general note, data construction is a crucial process in constructing DSGE models. 

The assumptions that are imposed on the data in the construction process can determine results 

when it comes to forecasting, structural analysis and other important topics. See Chapter 2 for 

a more detailed discussion on the choice of detrending options.  

 

Variable Type Value Source Interpretation 
          
𝜏𝜏𝑙𝑙  labour tax rate rate constructed as in Jones 

(2002); sourced from 
FRED and BEA 

percentage deviation 
from steady state 

𝜏𝜏𝑐𝑐  consumption tax rate rate constructed as in Jones 
(2002); sourced from 
FRED and BEA 

percentage deviation 
from steady state 

𝐺𝐺 government consumption real FRED 
percentage deviation 
from steady state 

𝐵𝐵 government debt real FRED 
percentage deviation 
from steady state 

𝑌𝑌 GDP real FRED 
percentage deviation 
from steady state 

𝜋𝜋 inflation rate FRED log value 
𝑖𝑖 interest rate nominal FRED log value 
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3.7  Forecasting performance  
 

This section describes the forecasting results for the chapter 2 model using the DSGE-VAR and 

the ZLB model approaches. The analysis is broken down in the following way: It focuses on 

looking at the root mean squared forecast errors (RMSE) to evaluate forecasting performance. 

Here, the RMSE analysis focuses on forecasting percentage output, federal debt and government 

consumption deviations from a trend. RMSEs are evaluated in two ways. The first option is using 

a rolling window technique with a window size of 40 observations. The initial sample starts in 

Q1 1954. The second option that is employed is an expanding window. For out-of-sample 

performance, this chapter looks at two specific prediction periods. If the model parameters are 

estimated using a sample that includes observations of up to observation 𝑑𝑑, then 𝑑𝑑 + 1 and 𝑑𝑑 + 4 

are considered for realistic forecasting horizons. 𝑑𝑑 + 1 corresponds to a one-quarter ahead 

prediction, and, in turn, 𝑑𝑑 + 4 corresponds to a full year. While one could consider alternatives 

and especially longer forecasting horizons, it is expected that accuracy will decrease across the 

board for all methods. The DSGE-VAR and ZLB approaches are then compared to the full set 

of chosen comparison models that includes the standard VAR and an alternative Bayesian VAR 

using the Minnesota prior. Especially the comparison to the Minnesota prior is relevant because 

it includes parameter shrinkage in a similar fashion. All models are evaluated using two variations: 

one with one lag order and one with four lags.  

 

3.7.1  Forecasting output 
 

Comparing frequentist VARs and Bayesian VARs 

Table 3.2. shows that Bayesian VARs outperform the corresponding frequentist VAR of the same 

order at times quite substantially. For example, the Bayesian VAR(1) with a Minnesota prior 

outperforms the VAR(1) by 1.4% in a 1-step-ahead comparison and by 2.2% in a 4-step-ahead 

comparison for the rolling window. Similarly, the Bayesian VAR(1)s with a DSGE prior with 𝜆𝜆 =

1 (𝜆𝜆 = 2)  improve on the VAR(1) by 7.9% (7.0%) and 2.3% (5.4%) for one and four step 

predictions. The results for the expanding window estimation are similar, with some differences. 

For the VAR(1) with the Minnesota prior, the gains at 1-step-ahead and 4-step-ahead are slightly 
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more muted at 0.6% and 0.06%. Equally, in the expanding window for predictions at four quarters 

head, the gains become more substantial for the DSGE-priors reducing the RMSE by 20.3% and 

22.4% for 𝜆𝜆 = 1 and 𝜆𝜆 = 2, respectively. 

Looking at VAR(4)s, the exact same thing holds, but the effect is magnified. For example, for 

the rolling window estimation, the inclusion of Bayesian priors can reduce the RMSE by anywhere 

from 32% to 87% depending on the forecasting horizon and prior. For the expanding window, 

this effect is smaller, reducing the RMSE by anywhere from 10% to 29%.  

Table 3.2: Forecasting breakdown for output 

 

Notes: Breakdown of the forecasting performance of output for the DSGE model for the expanding and rolling window 

estimations. The first column includes model descriptions for the set of models considered. The second column defines 

the forecast horizon. This a followed by two columns each for the expanding and rolling window presenting estimates 

for the Root mean square error (RMSE) and percentage deviations to the VAR(1).  

Here, the VAR(4)s profit substantially more from the Bayesian priors than the VAR(1). As 

mentioned before, the forecasting performance of the VAR(4) is substantially worse than the 

corresponding VAR(1). For example, for the rolling window, the RMSE of the frequentist VAR(1) 

model step 

expanding window rolling window 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) 𝑡𝑡 + 1 0.012 0.00 0.013 0.00  

BVAR(1) Min 𝑡𝑡 + 1 0.012 -0.64 0.012 -1.43  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.011 -5.35 0.012 -7.85  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.011 -4.95 0.012 -7.01  

VAR(1) 𝑡𝑡 + 4 0.030 0.00 0.027 0.00  

BVAR(1) Min 𝑡𝑡 + 4 0.030 -0.06 0.027 -2.19  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.024 -20.33 0.027 -2.29  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.023 -22.42 0.026 -5.39  

VAR(4) 𝑡𝑡 + 1 0.014 19.68 0.028 125.63  

BVAR(4) Min 𝑡𝑡 + 1 0.013 7.90 0.016 24.02  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.012 5.75 0.019 52.66  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.012 4.70 0.013 4.20  

VAR(4) 𝑡𝑡 + 4 0.038 27.55 0.225 729.01  

BVAR(4) Min 𝑡𝑡 + 4 0.033 9.53 0.029 4.83  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.028 -6.02 0.088 223.10  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.027 -10.06 0.032 16.27  

ZLB 𝑡𝑡 + 1 0.012 3.70 0.012 -0.48  

ZLB 𝑡𝑡 + 4 0.025 -15.84 0.026 -2.85  
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is 0.013 and 0.027 for one and four-step ahead predictions. By comparison, the VAR(4) delivers 

an RMSE of 0.028 and 0.225 across the same horizons. By this simple comparison, the simpler 

VAR(1) is strictly preferable. Introducing a Bayesian prior in the form of the DSGE prior can 

improve forecasting performance substantially. For example, in the rolling window estimation, 

including a DSGE prior with 𝜆𝜆 = 2 in the VAR(4) can reduce the RMSE to 0.013 and 0.032 for 

the one and four-step horizons. While this does not improve upon the standard VAR(1), it does 

produce a comparable model in terms of forecasting performance. What Bayesian priors do is set 

up prior believes for the parameters included in the model based on ex-ante plausible ranges for 

the parameters. Depending on the weight of the prior, the parameter estimates are shifted towards 

these prior believes. Here, it turns out that the prior believes of the DSGE model, and the 

Minnesota prior are useful in reducing the RMSE and provide credible advantages in high-

dimensional models like the VAR(4). The conclusion here is that larger models can be estimated 

and become useful forecasting tools by introducing Bayesian priors.  

Minnesota Prior vs DSGE prior 

So far, results have shown that Bayesian priors are useful across the board, but the key question 

is if either variant is preferable. In general, it seems to be the case that DSGE-VAR priors perform 

really well at longer horizons, that is at 𝑑𝑑 + 4. Only for the rolling window estimation of the 

VAR(4) does the Minnesota prior beat all DSGE priors. This seems to suggest that the prior 

belief of the DSGE aide in forecasting performance more than the Minnesota prior in this 

application. In particular, reduced form DSGEs postulate dynamics of a stable, mean reverting 

system under the idea that in the medium or long run, the economy will return to the steady 

state. The Minnesota prior pushes the VAR estimates towards a random-walk-like dynamic. 

Consequently, it seems that for longer horizons, priors with a mean reverting property add a 

more useful dynamic to VAR models. Looking at 𝑑𝑑 + 1 predictions, the results are similar. Overall, 

the DSGE prior proves to be a useful alternative to the Minnesota prior.  

As an intermediate conclusion, the DSGE prior offer credible advantages for improving 

forecasting results. Several components of the DSGE methodology aid this in particular. Firstly, 

the DSGE model can help estimate larger VAR models, which are notoriously plagued by 

parameter uncertainty. Secondly, even in small VARs, the DSGE prior offers generally useful 
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improvements in forecasting accuracy at all considered horizons. Thirdly, particularly at longer 

horizons, the DSGE priors show their full advantage by making use of the mean reverting 

property of the underlying DSGE. All in all, the DSGE prior offers a useful addition to the 

forecasting toolbox, and this makes the complicated construction of DSGE models worth the 

effort.  

Forecasting using the ZLB framework  

The last main component of this section focuses on the results of the Zero Lower Bound variation 

of the chapter 2 model. In comparison to the VAR(1) without a prior, the ZLB model forecasts 

output well but not uniformly better in both the rolling window estimation and the expanding 

window estimation. For the 4-step ahead predictions, the ZLB model outperforms the VAR(1) 

by 2.9% and 15.8% in the rolling and expanding window estimations, respectively. For the 1-step 

ahead predictions, the results are mixed. Most importantly, the ZLB approach is frequently 

outperformed by the simple DSGE-VAR approach.  

There may be several explanations for this behaviour. Firstly, the model considered is a small to 

medium-scale new-Keynesian model. It lacks some of the characteristics that drove the dip in the 

real interest rate. Including a risk premium and capital market may model the data more 

accurately and improve the forecasting performance. Secondly, it seems that the combination of 

the filtering technique with the occbin solution strategy is subject to very nuanced details, e.g., 

the exact design of the occbin stepping algorithm. Holden (2021) shows that solution strategies 

to models with occasionally binding constraints may have one, infinite or zero solutions for a 

given state and shock vector. Consequently, there may be multiple expectational paths that 

agents may consider. For the estimation, this may provide a problem in that for a given shock 

vector and initial condition no unique solution may exist. Further, this may apply to multiple 

combinations of shock vectors and initial conditions. In practice, in this application, it seems that 

the filter developed in Giovannini, Pfeiffer and Ratto (2021) seems to frequently, but not always, 

cycle across different Zero Lower Bound durations. Arguably, a different implementation may 

lead to differing estimation results. Specifically, in this application, comparing the ZLB model to 

the simpler VARs with DSGE priors shows that the simplicity of the DSGE-VAR approach seems 

to outperform the added complexity of the ZLB model.  
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3.7.2  Forecasting Debt and Government Consumption 
 

For government consumption and debt forecasts, most of the forecasting results for output also 

hold true. However, some differences to output forecasting can be found. The results can be found 

in Table 3.3 and Table 3.4.  

Table 3.3: Forecasting breakdown for debt 

 

Notes: Breakdown of the forecasting performance of debt for the DSGE model for the expanding and rolling window 

estimations. The first column includes model descriptions for the set of models considered. The second column defines 

the forecast horizon. This a followed by two columns each for the expanding and rolling window presenting estimates 

for the Root mean square error (RMSE) and percentage deviations to the VAR(1).  

 

 

model step 

expanding window rolling window 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) 𝑡𝑡 + 1 0.021 0.00 0.034 0.00  

BVAR(1) Min 𝑡𝑡 + 1 0.021 0.11 0.034 -0.64  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.021 1.31 0.033 -4.33  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.021 1.35 0.033 -4.11  

VAR(1) 𝑡𝑡 + 4 0.071 0.00 0.073 0.00  

BVAR(1) Min 𝑡𝑡 + 4 0.070 -0.15 0.072 -0.85  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.068 -3.08 0.064 -11.94  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.068 -3.57 0.064 -12.59  

VAR(4) 𝑡𝑡 + 1 0.042 100.01 0.039 13.68  

BVAR(4) Min 𝑡𝑡 + 1 0.022 5.81 0.033 -2.02  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.024 15.31 0.032 -5.36  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.020 -4.28 0.032 -6.73  

VAR(4) 𝑡𝑡 + 4 0.326 362.50 0.081 11.04  

BVAR(4) Min 𝑡𝑡 + 4 0.078 10.12 0.069 -4.85  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.083 18.23 0.063 -14.00  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.071 0.96 0.061 -15.71  

ZLB 𝑡𝑡 + 1 0.020 -5.32 0.032 -6.74  

ZLB 𝑡𝑡 + 4 0.059 -16.21 0.062 -15.40  
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Table 3.4: Forecasting breakdown for government consumption 

 

Notes: Breakdown of the forecasting performance of government consumption for the DSGE model for the expanding 

and rolling window estimations. The first column includes model descriptions for the set of models considered. The 

second column defines the forecast horizon. This a followed by two columns each for the expanding and rolling window 

presenting estimates for the Root mean square error (RMSE) and percentage deviations to the VAR(1).  

For the two fiscal variables, the ZLB model seems to work better than for output. Looking at 

debt forecasts at the plus one horizon, the ZLB model improves upon the VAR(1) by 5.3% and 

6.7% in the expanding and rolling window estimations. Further, in the four-quarter-ahead 

comparison, it comes out on top by reducing the RMSE by up to 16.2% (15.4%) over the VAR(1) 

for expanding (rolling) window. In the grand scheme of things, the ZLB variant and the DSGE-

VAR approach still produce forecasts that are close together. For example, for the 1-step-ahead 

forecasts in the rolling window format, the DSGE-VAR(1) has an RMSE of 0.033 for 𝜆𝜆 = 1, while 

the ZLB comes in at 0.032, improving the forecast by 2.5%. Still, the ZLB model provides the 

best forecasts for government debt in all cases but the 4-step-ahead forecasts in the rolling 

window. 

model step 

expanding window rolling window 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) 𝑡𝑡 + 1 0.012 0.00 0.043 0.00  

BVAR(1) Min 𝑡𝑡 + 1 0.012 -0.64 0.042 -0.35  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.011 -5.35 0.037 -13.18  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.011 -4.95 0.037 -12.60  

VAR(1) 𝑡𝑡 + 4 0.030 0.00 0.099 0.00  

BVAR(1) Min 𝑡𝑡 + 4 0.030 -0.06 0.097 -2.12  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.024 -20.33 0.090 -8.48  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.023 -22.42 0.089 -9.50  

VAR(4) 𝑡𝑡 + 1 0.014 19.68 0.078 82.39  

BVAR(4) Min 𝑡𝑡 + 1 0.013 7.90 0.043 0.29  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.012 5.75 0.045 4.98  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.012 4.70 0.040 -6.28  

VAR(4) 𝑡𝑡 + 4 0.038 27.55 0.147 48.85  

BVAR(4) Min 𝑡𝑡 + 4 0.033 9.53 0.103 4.48  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.028 -6.02 0.099 0.45  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.027 -10.06 0.092 -6.87  

ZLB 𝑡𝑡 + 1 0.012 3.70 0.035 -18.04  

ZLB 𝑡𝑡 + 4 0.025 -15.84 0.080 -18.87  

            
 



175 
 

In general, it seems that for debt forecasts, more complex models can do better than smaller 

models, but this is not guaranteed. For example, for the rolling window forecast, the best fitting 

model at the 1-step-ahead forecast with one lag is the DSGE-VAR(1) with  𝜆𝜆 = 1 with an RMSE 

of 0.033. This is outperformed by the two VAR(4)s with the DSGE priors with both 𝜆𝜆 = 1 and 

𝜆𝜆 = 2 and the ZLB model. Similarly, for 4-step-ahead forecasts, the best-performing model is the 

VAR(4). 

Moving on from debt forecasting to government consumption, the ZLB model does not provide 

a uniform improvement over the VAR(1) for government consumption, but it does so in three 

out of four cases. In comparison to output forecasts, it also improves upon the VAR(1) more 

significantly. For example, at the 1-step-ahead horizon for the rolling window, it provides the best 

overall forecast improving on the VAR(1) by 18.04%. Further, for both windows at the 4-step 

horizon, the decreases in the RMSE are similarly substantial. However, for the expanding window, 

the overall best-fitting model class is still provided by the DSGE-VAR framework. While it seems 

that for debt, more complex models are advantageous for government consumption, this only 

holds for the ZLB framework and not for the larger VARS.  

 

3.8  Forecasting performance on sub-samples 
 

This section continues the type of analysis of the previous section but focuses on specific 

subsamples: The first sub-sample includes forecasting periods up to 1999 Q4 and therefore 

includes a large share of the Great Moderation. The second sub-sample includes the dot- com 

crisis, financial crisis and Covid crisis from 2000 Q1 to the end of the sample in 2021Q4. The 

forecasting tables for the rolling and expanding window estimations for output, debt and 

government consumption can be found in the appendix.  

Previous results for the entire sample can be expanded unto the subsamples. In particular, the 

trend of smaller models being better forecasters continues to hold for output and government 

consumption. Additionally, Bayesian priors are generally useful in improving forecasting accuracy 

at short and long horizons. Though, there are cases depending on the specific sub-sample or 

window size, that standard VARs can outperform Bayesian VARs. Overall, the DSGE prior 
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retains its edge over Minnesota prior in this estimation. But also, in this scenario, there are 

instances where the Minnesota prior achieves better forecasting accuracy. Further, Bayesian priors 

are still particularly useful in improving estimates of larger VARs and do so by quite substantial 

margins.  

Generally, it seems that the initial periods of 1954 Q1 to 1999 Q4 generally produce better 

forecasts in terms of the RMSE for both expanding and rolling window estimations. This holds 

true for almost all model variants of the VAR. This is intuitive in the sense that the latter sample 

features ex-ante unlikely events being the financial crisis and the Covid crisis. Both crises 

introduce substantial forecasting uncertainty into the dynamic.  

For output forecasting, one significant change is that for the post-2000s data set in the rolling 

window estimation, the DSGE-VAR approach with 𝜆𝜆 = 1 and lag order equal to one does not 

outperform the VAR(1) without a prior at four step ahead forecasts. However, increasing 𝜆𝜆 = 2 

still generates prediction gains over the VAR(1) by 2.3%. In fact, this effect holds for all VAR 

estimations for both types of windows. Arguably, it seems to be the case that with short data 

sets that feature high uncertainty like the post-2000s period, tighter DSGE priors are more useful.  

The ZLB model, which is designed to incorporate the post-2000 interest mechanics, does not 

improve output forecasting results consistently over the simpler VAR(1). For example, for the 

expanding window the ZLB model does improve over the VAR(1) at the 4-step horizon by 30% 

but fails to improve at all other horizons.  For fiscal variables in the post-2000s, the ZLB approach 

can improve forecasting accuracy over the VAR(1), especially at longer horizons. For example, in 

comparison to the VAR(1), debt forecasts are improved by 1.46% and 1.5% at the 1-step-ahead 

and 4-step-ahead horizons in the rolling window estimations, while government consumption 

forecasts improve by 25.62% and 18.94% for the same horizons. But it does so inconsistently 

depending on the window type and data series, and the DSGE-VAR approach delivers easier and 

seemingly more robust results barring debt forecasts.  
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3.9  Stationarity Analysis 
 

For modelling time series in general, one key component that the statistician has to analyse is if 

the data is stationary or non-stationary. A stationary series is governed by a dynamic system 

which does not depend on when it is observed. To illustrate, stationarity in its weakest form 

requires the unconditional mean and covariance matrix to be constant across time.  A non-

stationary series may violate either moment condition and, typically, could feature a trend, 

seasonality, or may be difference stationary.  

In this chapter, all data sets feature non-stationary variables like output and government debt 

which trend upwards across time and arguably stationary variables like interest rates and 

inflation. However, for the actual estimation, all series that are non-stationary are detrended 

using a linear time trend. Consequently, the resulting sub-datasets feature series that show fairly 

constant empirical means across time. Ideally, when a 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) is fit to any of the sub-datasets, 

the resulting system ought to be stable. In practice, this chapter finds that this need not be the 

case for several reasons. Firstly, any of the estimation methods in this chapter do not put any 

hard constraints on the dynamics. Secondly, while any sub-sample may feature a stable mean 

across the entire sub-sample, locally, the data may be better explained by a non-stationary model. 

Thirdly, in macroeconomics, data sets are generally quite short as consistent modern data 

collection excludes pre-WW2 data typically, and the data collection is fairly low-frequency, 

focusing on quarterly and annual data. Rarely is it the case that rich monthly data over a long 

horizon is available. However, 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) models require a large number of coefficients to be 

estimated. To illustrate, 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) model features an observational vector, 𝑦𝑦𝑡𝑡, of dimension (𝑙𝑙 × 1) 

and 𝑝𝑝 lags.  The model includes 𝑙𝑙 intercepts and (𝑝𝑝 ∗ 𝑙𝑙 ∗ 𝑙𝑙) autoregressive coefficients. The 

combination of generally small data sets and densely parameterized models can imply noisy 

estimates, which, together with the previous arguments, may explain non-stationary estimates.  

In 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) models, non-stationarity can cause substantial issues when one looks at forecasting 

performance. To see that, in the following, I describe an alternative, canonical representation of 

the standard 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) in the form of the corresponding state space set up and construct 

predictions. In the state space setup, it is straightforward to address the topic of stationarity. 

The standard 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) framework is as follows: 
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𝑦𝑦𝑡𝑡 = 𝛷𝛷0 + 𝛷𝛷1𝑦𝑦𝑡𝑡−1 + ⋯+ 𝛷𝛷𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝑢𝑢𝑡𝑡,   𝑢𝑢𝑡𝑡~𝑁𝑁(0, 𝛴𝛴), 

where 𝑦𝑦𝑡𝑡 is a (𝑙𝑙 × 1) vector of observables that depend linearly on its pasts values. The matrices 

𝛷𝛷𝑖𝑖 for 𝑖𝑖 > 0 are of dimension (𝑙𝑙 × 𝑙𝑙) and contain the model parameters. 𝛷𝛷0 is a (𝑙𝑙 × 1) vector 

of constants. 𝑢𝑢𝑡𝑡 corresponds to the (𝑙𝑙 × 1), mean zero, reduced form error process with full 

covariance matrix Σ (𝑙𝑙 × 𝑙𝑙). Instead of keeping track of several variables vectors, 𝑦𝑦𝑡𝑡, …, 𝑦𝑦𝑡𝑡−𝑝𝑝, 

one can rewrite the above system using an expanded vector 𝜉𝜉𝑡𝑡 = �𝑦𝑦𝑡𝑡
′ − 𝑦𝑦′̅,… , 𝑦𝑦𝑡𝑡−𝑝𝑝+1

′ − 𝑦𝑦′̅�′: 

𝜉𝜉𝑡𝑡 = 𝐼𝐼𝜉𝜉𝑡𝑡−1 + 𝑣𝑣𝑡𝑡,     𝑣𝑣𝑡𝑡 = [𝑢𝑢𝑡𝑡, 0′, … , 0′] 𝑎𝑎𝑙𝑙𝑑𝑑 𝑢𝑢𝑡𝑡~𝑁𝑁(0,𝛴𝛴), 

𝑦𝑦𝑡𝑡 = 𝑦𝑦̅ + 𝐵𝐵𝜉𝜉𝑡𝑡, 

where 𝑦𝑦 ̅constitutes the unconditional mean of 𝑦𝑦𝑡𝑡 if all eigenvalues of the matrix 𝐼𝐼  are inside the 

unit circle. 𝐵𝐵 is a (𝑙𝑙 × ((𝑝𝑝 − 1) ∗ 𝑙𝑙) matrix constructed as 𝐵𝐵 = [𝐼𝐼𝑛𝑛, 0, . . ,0]. The first 𝑙𝑙 rows in 

𝐼𝐼  contain the autoregressive matrices 𝛷𝛷1 to  𝛷𝛷𝑝𝑝 side by side. After the first  𝑙𝑙 rows, 𝐼𝐼  includes 

a set of identity matrices to keep track of past values of  𝑦𝑦𝑡𝑡 − 𝑦𝑦.̅ Conditional on 𝜉𝜉𝑡𝑡−1, the 

expectation of 𝜉𝜉𝑡𝑡−1+ℎ and thus, the model forecast may be constructed as follows: 

𝐸𝐸(𝜉𝜉𝑡𝑡−1+ℎ|𝜉𝜉𝑡𝑡−1) = 𝐼𝐼ℎ𝜉𝜉𝑡𝑡−1   𝑓𝑓𝑓𝑓𝑟𝑟 ℎ ≥ 1. 

As a preliminary conclusion, the forecasts of the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) are driven by the matrix 𝐼𝐼  to the power 

of ℎ. If the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) is stable, then all eigenvalues of 𝐼𝐼  are inside the unit circle and Fℎ will 

approach a zero matrix for larger forecasting horizons. As a by-product, it will generate stable 

predictions, which is consistent with the way the data sets are constructed in this chapter. 

However, if the largest eigenvalue is even slightly larger than or equal to one in absolute value, 

then the entire system becomes non-stationary and explosive. For larger forecasting horizons (i.e., 

ℎ = 4), we may get diverging forecasts that are increasingly unrealistic. In practice, there is some 

nuance to this. If the largest eigenvalue of 𝐼𝐼  is approximately one or only mildly larger than one, 

then the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) can generate reasonable forecasts for appropriate choices of ℎ. 

Fig. 3.1 shows the largest absolute eigenvalue across time of the 𝑃𝑃𝐴𝐴𝑅𝑅(1) and 𝑃𝑃𝐴𝐴𝑅𝑅(4) estimations 

using a rolling window. The 𝑃𝑃𝐴𝐴𝑅𝑅(4) estimation combines the previously mentioned estimation 

problems of a large, densely parametrized model, which features seven constants and 196 

autoregressive parameters with the comparatively small samples size of the rolling window 

technique. Therefore, it’s a prime candidate for potential instability. Across time the largest 
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eigenvalue is consistently larger than one and frequently quite substantially so. For example, the 

inclusion of the Covid crisis causes the maximum absolute eigenvalue to spike substantially above 

2. Consequently, as Fℎ is explosive, the forecasting accuracy degrades in comparison to the much 

smaller 𝑃𝑃𝐴𝐴𝑅𝑅(1), which features eigenvalues much closer to one. Unstable or temporarily unstable 

models are usually a cause for concern of, for example, improper variable scaling. I test for this 

by estimating on a rescaled data set by using several rescaling techniques (standard deviation, 

mean absolute deviation). The results appear invariant to scaling.  

Fig. 3.1: Paths of maximum absolute eigenvalues for VARs 

 

Notes: Maximum absolute eigenvalues figures for 𝑃𝑃𝐴𝐴𝑅𝑅(1) (left) and 𝑃𝑃𝐴𝐴𝑅𝑅(4) (right). The date indicates the end date 

of the sample. The eigenvalues are constructed based on the matrix 𝐼𝐼  

Ideally, one would shrink the eigenvalues of the 𝑃𝑃𝐴𝐴𝑅𝑅(4) towards one or below, which would be 

consistent with the data set construction. This is something that Bayesian priors excel at. In 

particular, the DSGE-VAR approach proposed by Del Negro and Schorfheide (2004) shrinks the 

parameters of the 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) to the maximum likelihood estimates of the DSGE using a quasi-

likelihood based on a 𝑃𝑃𝐴𝐴𝑅𝑅 of the same order.  The parameter 𝜆𝜆  governs how dogmatically the 

DSGE dynamics are imposed on the 𝑃𝑃𝐴𝐴𝑅𝑅. The larger the value for 𝜆𝜆 is, the more strongly the 

DSGE dynamics are imposed. Crucially, DSGEs feature dynamics which are universally useful in 

this application. Standard reduced-form DSGE models are stable by design as all eigenvalues are 

assumed to be inside of the unit circle based on the solution technique. Therefore, any 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) 

is shrunken towards a model that is purely stable. The result is that the largest absolute 

eigenvalue decreases the stronger the DSGE is imposed. Fig. 3.2 below shows the maximum 

eigenvalues across time for the 𝐷𝐷𝐸𝐸𝐺𝐺𝐸𝐸 − 𝑃𝑃𝐴𝐴𝑅𝑅(4) for 𝜆𝜆 equal to one and two. The first result is 

that for both 𝐷𝐷𝐸𝐸𝐺𝐺𝐸𝐸 − 𝑃𝑃𝐴𝐴𝑅𝑅(4)s the maximum eigenvalues are substantially smaller and closer 
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to one than for the 𝑃𝑃𝐴𝐴𝑅𝑅(4). Further, the maximum eigenvalues resemble the 𝑃𝑃𝐴𝐴𝑅𝑅(1) much more 

closely. Lastly, as 𝜆𝜆 is increased from one to two and the DSGE prior is imposed more, the 

distribution of the maximum absolute eigenvalue becomes much tighter and more stable. Similar 

stability results can be obtained for the Minnesota prior as well. However, the parameters are 

shrunken towards the random walk hypothesis as opposed to the stable system set-up of DSGEs. 

This may or may not be a desirable property depending on the data set.  Summing up, parameter 

shrinkage towards non-explosive models can be an important component of constructing 

forecasts. The 𝐷𝐷𝐸𝐸𝐺𝐺𝐸𝐸 − 𝑃𝑃𝐴𝐴𝑅𝑅(𝑝𝑝) methodology succeeds in creating more stable models based on 

fundamental economic observations, even in high dimensional models.  

Fig. 3.2: Paths of maximum absolute eigenvalues for DSGE-VARs 

 

Notes: Maximum absolute eigenvalues figures for 𝐷𝐷𝐸𝐸𝐺𝐺𝐸𝐸 − 𝑃𝑃𝐴𝐴𝑅𝑅(4) with lambda equal to 1 (left) and 𝐷𝐷𝐸𝐸𝐺𝐺𝐸𝐸 −

𝑃𝑃𝐴𝐴𝑅𝑅(4) with lambda equal to 2 (right). Date indicates the end date of the sample. The eigenvalues are constructed 

based on the matrix 𝐼𝐼  

 

3.10  Impulse response analysis  
 

As the structural shocks of DSGE models are fully identified by assumption, the DSGE-VAR 

approach allows the researcher to conduct impulse response analysis on the underlying model 

without any further steps. During the estimation procedure of the DSGE-VAR, one obtains 

posterior estimates of the VAR parameters but equally of the structural DSGE parameters. These 

posterior estimates can then be used to construct impulse responses.  
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As a by-product of the window estimations in the previous sections, posterior estimates of the 

structural parameters were constructed across a lot of subsamples. In this section, I utilize these 

posterior estimates and their distribution across time to explore if and how impulse responses 

change across time. The main emphasis of the analysis is on the impact of government 

consumption. The results below are obtained using data from Q1 1954 to Q4 2021. 

Starting out, the linearized, structural DSGE model is typically governed by the following type 

of equation set based on the Klein (2000) set-up for the state system: 

𝐴𝐴(𝜃𝜃) �
𝑒𝑒𝑡𝑡+1

𝐸𝐸𝑡𝑡𝑦𝑦𝑡𝑡+1
� = 𝐵𝐵(𝜃𝜃) �

𝑒𝑒𝑡𝑡
𝑦𝑦𝑡𝑡

� + �
𝑣𝑣𝑡𝑡
0 �,     𝑣𝑣𝑡𝑡~𝑁𝑁�0,𝛴𝛴(𝜃𝜃)�, 

where 𝑒𝑒𝑡𝑡 is a (𝑘𝑘 × 1) vector of model states observed at time t. Here, 𝑒𝑒𝑡𝑡 and 𝑦𝑦𝑡𝑡 do not necessarily 

corresponds to the VAR variables and are defined as new vectors. Typically, the vector 𝑒𝑒𝑡𝑡 has a 

row dimension that is larger than the number of observables that the model features. For example, 

the Chapter 2 model features 14 states but just seven observables. The vector 𝑦𝑦𝑡𝑡 is a (𝑚𝑚 × 1) 

vector of endogenous, non-predetermined variables. The vector 𝑣𝑣𝑡𝑡 is (𝑙𝑙 × 1) structural shock 

vector with covariance matrix 𝛴𝛴(𝜃𝜃). This structural shock vector, unlike the reduced form VAR 

shock vector, is assumed to be fully identified. The last components are the matrices 𝐴𝐴(𝜃𝜃) and 

𝐵𝐵(𝜃𝜃) of size ((𝑘𝑘 + 𝑚𝑚) × (𝑘𝑘 + 𝑚𝑚)). The matrices are constructed by differentiating the full non-

linear model at the steady state with respect to variables dated 𝑑𝑑 and 𝑑𝑑 + 1. Notably, the matrices 

𝐴𝐴(𝜃𝜃) and 𝐵𝐵(𝜃𝜃) are constructed using the structural parameter vector 𝜃𝜃. Applying the Klein (2000) 

solution strategy allows for the construction of the reduced form system for the model variables. 

The methodology works via decomposing the full system into stable or backward-looking 

components like capital accumulation and unstable or forward-looking components like inflation. 

Roughly speaking, the unstable components receive their forward iterated solution, which is 

constrained to a stable solution. Based on this, the stable components receive their backwards 

solution. The solution is characterized by the following set of equations: 

𝑒𝑒𝑡𝑡 = 𝑃𝑃(𝜃𝜃)𝑒𝑒𝑡𝑡−1 + 𝑣𝑣𝑡𝑡,     𝑣𝑣𝑡𝑡~𝑁𝑁�0, 𝛴𝛴(𝜃𝜃)�, 

𝑦𝑦𝑡𝑡 = 𝐼𝐼(𝜃𝜃)𝑒𝑒𝑡𝑡. 

For the construction of impulse responses, 𝑒𝑒𝑡𝑡 is the main object of interest as it carries the 

dynamics across time. This vector depends linearly on itself in the previous period but also on a 
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structural and identified shock vector 𝑣𝑣𝑡𝑡 with covariance matrix 𝛴𝛴(𝜃𝜃). The relationship between 

the current and past state vectors is governed by 𝑃𝑃(𝜃𝜃). Unlike the VAR framework, the mapping 

between the structural parameter vector and the reduced form system is non-linear for DSGE 

models.  

If a specific shock, 𝑣𝑣𝑡𝑡, occurs today, then the impact on future model states, 𝑒𝑒𝑡𝑡+ℎ, is governed by 

the transition matrix 𝑃𝑃(𝜃𝜃). In particular, the expectation of  𝑒𝑒𝑡𝑡+ℎ conditional on the shock, 𝑣𝑣𝑡𝑡, 

initial condition, 𝑒𝑒𝑡𝑡−1, and parameter vector, 𝜃𝜃, at some horizon ℎ is as follows: 

𝐸𝐸𝑡𝑡(𝑒𝑒𝑡𝑡+ℎ|𝑒𝑒𝑡𝑡−1, 𝑣𝑣𝑡𝑡, 𝜃𝜃) = 𝑃𝑃(𝜃𝜃)ℎ+1𝑒𝑒𝑡𝑡−1 + 𝑃𝑃(𝜃𝜃)ℎ𝑣𝑣𝑡𝑡.   

To construct the impulse response, one compares the setting in which the shock occurred as 

above to a counterfactual where it did not. In the latter case, 𝑣𝑣𝑡𝑡 is equal to zero in all entries. 

Formalizing it delivers the following equation: 

𝐼𝐼𝑅𝑅𝐼𝐼(ℎ) = 𝐸𝐸𝑡𝑡(𝑒𝑒𝑡𝑡+ℎ|𝑒𝑒𝑡𝑡−1, 𝑣𝑣𝑡𝑡, 𝜃𝜃) − 𝐸𝐸𝑡𝑡(𝑒𝑒𝑡𝑡+ℎ|𝑒𝑒𝑡𝑡−1, 𝑣𝑣𝑡𝑡 = 0, 𝜃𝜃) = 𝑃𝑃(𝜃𝜃)ℎ𝑣𝑣𝑡𝑡. 

One crucial property of this system is that in linear modelling, the impulse responses are 

completely independent of the initial conditions, as can be seen by 𝑒𝑒𝑡𝑡−1 dropping out. A by-

product of this is that one can view the impulse responses relative to the steady state. At the 

steady state, the system, by definition, does not transition and 𝑃𝑃(𝜃𝜃)𝑒𝑒𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑚𝑚𝑦𝑦 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑟𝑟 is always zero. 

Consequently, one may interpret 𝐼𝐼𝑅𝑅𝐼𝐼(ℎ) as the steady state deviation caused by perturbing the 

model by 𝑣𝑣𝑡𝑡.  

To construct posterior mean estimates of the impulse responses for DSGE models, the following 

procedure is followed. Firstly, draws are sampled from the posterior distribution of 𝜃𝜃 and the 

reduced form matrices 𝛴𝛴(𝜃𝜃) and 𝑃𝑃(𝜃𝜃)  are constructed. Secondly, impulse responses are drawn, 

and thirdly, the impulse responses are averaged to approximate the mean posterior impulse 

responses. In this application, impulse responses are conducted based on 250 draws from the 

posterior of 𝜃𝜃. The size of the government consumption shock is chosen to be equal to one 

standard deviation of the structural government consumption shock. As a result, the impulses 

below may be interpreted as the percentage steady state deviation of the variable of interest in 

response to a one standard deviation shock to government consumption. In this section, I prefer 

to use the underlying DSGE model estimated using the DSGE-VAR quasi-likelihood technique. 
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One advantage is that the underlying DSGE is directly comparable to the estimation in chapter 

2 and can be seen as a linearized, quasi-likelihood version of it.  Alternatively, one can also use 

the estimated DSGE matrices to identify the VAR, but this requires additional assumptions.  

To explore how the effectiveness of government consumption stimulus changes across time for 

prediction purposes, I trace out mean posterior impulse responses of output across all individual 

sub-samples for the 𝐷𝐷𝐸𝐸𝐺𝐺𝐸𝐸 − 𝑃𝑃𝐴𝐴𝑅𝑅(1) estimation with 𝜆𝜆 equal to 2 in the rolling window setting. 

The rolling window estimations are chosen because they will deliver a measure of the time 

variance of the posterior estimates as opposed to the expanding window. Fig. 3.3, Fig. 3.4, and 

Fig. 3.5 present slices of the mean impulse responses on impact, at four quarters, and at eight 

quarters. The x-Axis represents the corresponding end date for the estimation sample. Therefore, 

the first plotted observation has its start date in 1954 and ends in 1964. On impact, the results 

show that a one standard deviation increase in government consumption increases output by 

about 0.052 per cent on average relative to the steady state. This estimate is of a similar scale 

to Leeper, Plante and Traum (2010) and chapter 2, though lower. Furthermore, after four 

quarters, the impact has declined to 0.0112, and after an additional four quarters, the mean 

impact sits at 0.0048.20 

On impact, the mean of the impulse responses shows a significant time-varying component. To 

illustrate, the window estimation predicts that samples that have end dates in the mid-seventies 

to mid-eighties and include the previous ten years average significantly higher at 0.07. This is 

followed by a period of comparatively lower impulse responses until samples with end dates in 

the early 2000s. One particularly important period of modern economic history is the financial 

crisis of 2008. During the financial crisis, fiscal policy experienced somewhat of a renaissance. 

Monetary policy experienced constraints in the form of the Zero Lower Bound. Fiscal policy, 

however, is not limited by anything but the government's will to legislate and the government’s 

 
20 The lower estimates very likely arise as a by-product of the change in model and estimation technique. In chapter 
2, the second order approximation of the model is taken to the data, while here the linear DSGE is used to inform 
about a-priori likely VAR parameters. Additionally, unlike the full DSGE approach, the DSGE-VAR approach is a 
quasi-likelihood approach to estimating the DSGE model. How accurate the quasi-likelihood approximation is, is 
increasing in the number of lags and lambda.  Here, the choices of the number of lags and 𝜆𝜆 reflect a very loosely 
imposed DSGE. The appendix presents estimation results for the model parameters averaged across the estimations 
and shows that some core economic parameters and policy parameters are estimated quite differently, and parameter 
uncertainty is substantially higher. Arguably, this justifies the difference in results.  
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debt obligations. As a by-product of the crisis, policymakers “rediscovered” fiscal policy tools and 

created enormous fiscal stimulus packages in most Western economies. One particular question 

of interest is how the effectiveness of government consumption expenditures changes in periods 

of low, if not nearly zero, interest rates. In this estimation, sub-samples that include a significant 

share of the financial crisis have end dates after 2015. These sub-samples show impulse responses 

of output to government consumption on impact that are far above average at around 0.065. This 

indicates that government consumption expenditures were indeed more productive in the financial 

crisis samples.21 

For the impacts at four and eight quarters, the time-varying component is significantly lower and 

muted. This is to be expected as the impact of the spending shock gradually tapers out. 

Interestingly, the financial crisis data sets feature several mean responses that are fairly high but 

also feature a lot of uncertainty. Furthermore, at the longer horizons of four and eight quarters, 

the samples include the late 60s and early 70s, deliver the highest impact on average. 

Fig. 3.3: IRF of Y to G shock on impact 

 

 
21 Similar to the results here, chapter 2 predicts that government consumption shocks are more productive on impact 
during the financial crisis. Furthermore, the results show that government consumption stimulus is in a period of 
high productivity from the mid-1980s to the mid-1990s. By comparison, this period of high effectiveness is estimated 
to be slightly earlier here with sample end-dates up to around 1985. However, both estimations predict low 
effectiveness during the late 1990s and 2000s. On a last note, chapter 2 predicts overall larger output responses than 
are estimated here.  
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Notes: Impulse responses of output (Y) to government consumption (G) shock on impact across time. The date 

series on the x-Axis indicates end dates of the rolling window samples of size 40. 

Fig. 3.4: IRF of Y to G shock at four quarters 

 

Notes: Impulse responses of output (Y) to government consumption (G) shock at four quarters across time. The date 

series on the x-Axis indicates end dates of the rolling window samples of size 40. 

 

Fig. 3.5: IRF of Y to G shock at 8 quarters 
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Notes: Impulse responses of output (Y) to government consumption (G) shock at eight quarters impact across time. 

The date series on the x-Axis indicates end dates of the rolling window samples of size 40. 

 

3.11  Conclusion 
 

In this chapter, I analyse the forecasting performance of DSGE models via the chapter 2 model 

for output, government consumption and debt forecasting through the Bayesian DSGE-VAR 

framework. The DSGE-VAR approach developed by Del Negro and Schorfheide (2004) aims to 

combine the forecasting performance of VARs with the structural and economic foundation of 

the DSGE model. The results in this chapter confirm previous results that the DSGE-VAR 

framework offers useful parameter shrinkage like other Bayesian priors and, at the same time, 

seems to aid forecasting performance for output forecasting. In addition to previous research, the 

DSGE-VAR approach can also effectively improve the forecasting performance of VARs for fiscal 

variables like government consumption and debt providing additional evidence for the 

methodology developed by Del Negro and Schorfheide (2004).  

Based on this, it seems that the structural design of fiscal policy and its interactions with the 

economy, as postulated in the chapter 2 model and, by extension, other DSGE models can be 

useful for forecasting fiscal data over a purely uninformative prior as in standard VARs. For all 

data series, the economic intuition weaved into the fabric of DSGE models seems to be 

particularly useful at improving forecasting accuracy over longer horizons. Furthermore, VAR 

models of higher order can benefit greatly from DSGE priors, making them competitive with 

much smaller models. As shown in this chapter, higher-order frequentist VARs can struggle quite 

significantly with the small datasets common to macroeconomics. To circumvent this, the DSGE-

VAR framework provides a complete and useful prior defined on VARS of arbitrary orders and 

the resulting parameter shrinkage proves effective in improving forecasting performance. However, 

there are exceptions to these results, and it seems there is some nuance to the benefit of DSGE 

models that may depend on sample selection, modelling framework and potentially other factors. 

In that, the results are similar to Gürkaynak, Kısacıkoğlu and Rossi (2014) in that there does 
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not seem to be a single best methodology, but rather, some methodologies seem to work better 

in some scenarios and worse in others.  

An additional contribution comes in the form of including a zero-lower bound model in the 

forecasting comparison. In comparison to the DSGE-VAR approach, the zero-lower bound 

approach faces a delicate trade-off between computational complexity and modelling advantages. 

In this analysis, the zero-lower bound model fares well for output forecasting but not better than 

comparatively simpler approaches. Specifically, in the financial crisis period, the performance of 

the ZLB modelling approach is not encouraging. For government consumption and debt 

forecasting, the ZLB approach seems to be more useful for rolling window estimations and less 

so for expanding windows. On a last note, on the ZLB approach, the estimation results are based 

on this application of the methodology, and it seems that some components are quite sensitive 

to the exact programming implementation. Therefore, the results here ought to be taken with a 

healthy dose of scepticism. 

The last contribution comes as a by-product of the rolling-window estimations used to compare 

forecasting performance. The DSGE-VAR approach conveniently also generates posterior 

parameter estimates for the DSGE, which is identified by assumption. This allows for the impulse 

responses to be traced out at no significant computational burdens. This chapter explores how 

impulse responses vary across time for government consumption for prediction purposes. Based 

on the estimation here, estimates seem to be time-varying and, thus, depend on the estimation 

sample. Specifically, for samples that include the financial crisis data, this chapter shows that 

impulse response estimates are substantially higher than the time average.  

 

 

 

 

 

 

 

 



188 
 

3.12  References 

Adolfson, M., Lindé, J. and Villani, M. (2007) “Forecasting performance of an open economy 
DSGE model,” Econometric Reviews, 26(2-4), pp. 289–328. Available at: 
https://doi.org/10.1080/07474930701220543.  

Amisano, G. and Tristani, O. (2010) “Euro area inflation persistence in an estimated nonlinear 
DSGE model,” Journal of Economic Dynamics and Control, 34(10), pp. 1837–1858. Available 
at: https://doi.org/10.1016/j.jedc.2010.05.001.  

Babecký, J., Franta, M. and Ryšánek, J. (2018) “Fiscal policy within the DSGE-VAR 
framework,” Economic Modelling, 75, pp. 23–37. Available at: 
https://doi.org/10.1016/j.econmod.2018.06.005.  

Boehl, G. and Strobel, F. (2022) “Estimation of DSGE models with the effective lower bound,” 
SSRN Electronic Journal [Preprint]. Available at: https://doi.org/10.2139/ssrn.4138532.  

Cai, M. et al. (2019) “DSGE forecasts of the lost recovery,” International Journal of 
Forecasting, 35(4), pp. 1770–1789. Available at: 
https://doi.org/10.1016/j.ijforecast.2018.12.001.  

Chauvet, M. and Potter, S. (2013) “Forecasting output,” Handbook of Economic Forecasting, 
pp. 141–194. Available at: https://doi.org/10.1016/b978-0-444-53683-9.00003-7.  

Christiano, L.J., Eichenbaum, M. and Evans, C.L. (2005) “Nominal rigidities and the dynamic 
effects of a shock to monetary policy,” Journal of Political Economy, 113(1), pp. 1–45. 
Available at: https://doi.org/10.1086/426038.  

Christoffel, K., Coenen, G. and Warne, A. (2012) “Forecasting with DSGE models,” The 
Oxford Handbook of Economic Forecasting, pp. 89–128. Available at: 
https://doi.org/10.1093/oxfordhb/9780195398649.013.0005.  

Del Negro, M. and Schorfheide, F. (2004) “Priors from general equilibrium models for vars,” 
International Economic Review, 45(2), pp. 643–673. Available at: 
https://doi.org/10.1111/j.1468-2354.2004.00139.x.  

Del Negro, M. and Schorfheide, F. (2010) Bayesian Macroeconometrics, Northwestern 
University. Available at: 
https://faculty.wcas.northwestern.edu/lchrist/course/Korea_2016/del_negro_schorfheide.pdf 
(Accessed: April 7, 2023).  

Del Negro, M., Hasegawa, R.B. and Schorfheide, F. (2016) “Dynamic prediction pools: An 
investigation of financial frictions and forecasting performance,” Journal of Econometrics, 
192(2), pp. 391–405. Available at: https://doi.org/10.1016/j.jeconom.2016.02.006.  



189 
 

Diebold, F.X., Schorfheide, F. and Shin, M. (2017) “Real-time forecast evaluation of DSGE 
models with Stochastic volatility,” Journal of Econometrics, 201(2), pp. 322–332. Available at: 
https://doi.org/10.1016/j.jeconom.2017.08.011.  

Doan, T., Litterman, R. and Sims, C. (1984) “Forecasting and conditional projection using 
realistic prior distributions,” Econometric Reviews, 3(1), pp. 1–100. Available at: 
https://doi.org/10.1080/07474938408800053.  

Edge, R.M. and Gürkaynak, R.S. (2011) How useful are estimated DSGE model forecasts, 
Board of Governors of the Federal Reserve System. Available at: 
https://www.federalreserve.gov/econres/feds/how-useful-are-estimated-dsge-model-
forecasts.htm (Accessed: April 7, 2023).  

Gelfer, S. (2019) “Data-rich DSGE model forecasts of the Great Recession and its recovery,” 
Review of Economic Dynamics, 32, pp. 18–41. Available at: 
https://doi.org/10.1016/j.red.2018.12.005.  

Gelfer, S. (2021) “Evaluating the forecasting power of an open-economy DSGE model when 
estimated in a data-rich environment,” Journal of Economic Dynamics and Control, 129, p. 
104177. Available at: https://doi.org/10.1016/j.jedc.2021.104177.  

Ghent, A.C. (2009) “Comparing DSGE-Var forecasting models: How big are the differences?” 
Journal of Economic Dynamics and Control, 33(4), pp. 864–882. Available at: 
https://doi.org/10.1016/j.jedc.2008.10.004.  

Giovannini, M., Pfeiffer, P. and Ratto, M. (2021) Efficient and robust inference of models with 
occasionally binding constraints, joint-research-centre. Available at: https://joint-research-
centre.ec.europa.eu/document/download/08470a20-6992-4848-b40f-57970e6dcb8e_en (Accessed: 
April 7, 2023).  

Guerrieri, L. and Iacoviello, M. (2015) “Occbin: A toolkit for solving dynamic models with 
occasionally binding constraints easily,” Journal of Monetary Economics, 70, pp. 22–38. 
Available at: https://doi.org/10.1016/j.jmoneco.2014.08.005.  

Gupta, R. and Steinbach, R. (2013) “A DSGE-VAR model for forecasting key South African 
macroeconomic variables,” Economic Modelling, 33, pp. 19–33. Available at: 
https://doi.org/10.1016/j.econmod.2013.03.012.  

Gürkaynak, R.S., Kısacıkoğlu, B. and Rossi, B. (2014) “DO DSGE models forecast more 
accurately out-of-sample than VAR models?,” Var Models in Macroeconomics - New 
Developments and Applications: Essays in Honor of Christopher A. Sims, pp. 27–79. Available 
at: https://doi.org/10.1108/s0731-905320130000031002.  

Klein, P. (2000) “Using the generalized Schur form to solve a multivariate linear rational 
expectations model,” Journal of Economic Dynamics and Control, 24(10), pp. 1405–1423. 
Available at: https://doi.org/10.1016/s0165-1889(99)00045-7.  



190 
 

Kolasa, M. and Rubaszek, M. (2015) “Forecasting using DSGE models with financial frictions,” 
International Journal of Forecasting, 31(1), pp. 1–19. Available at: 
https://doi.org/10.1016/j.ijforecast.2014.05.001.  

Leeper, E.M., Plante, M. and Traum, N. (2010) “Dynamics of fiscal financing in the United 
States,” Journal of Econometrics, 156(2), pp. 304–321. Available at: 
https://doi.org/10.1016/j.jeconom.2009.11.001.  

Litterman, R. (1986) “Forecasting with bayesian vector autoregressions — five years of 
experience,” International Journal of Forecasting, 2(4), pp. 497–498. Available at: 
https://doi.org/10.1016/0169-2070(86)90100-7.  

Nalban, V. (2018) “Forecasting with DSGE models: What frictions are important?” Economic 
Modelling, 68, pp. 190–204. Available at: https://doi.org/10.1016/j.econmod.2017.07.015.  

Negro, M.D. and Schorfheide, F. (2013) “DSGE model-based forecasting” Handbook of 
Economic Forecasting, pp. 57–140. Available at: https://doi.org/10.1016/b978-0-444-53683-
9.00002-5.  

Pagan, A. (2003) Report on the modelling and forecasting at the Bank of England, 
www.bankofengland.co.uk. Available at: https://www.bankofengland.co.uk/-
/media/boe/files/quarterly-bulletin/2003/report-on-modelling-and-forecasting-at-the-boe.pdf 
(Accessed: April 25, 2023).  

Pfeiffer, J. (2018) A Guide to Specifying Observation Equations for the Estimation of DSGE 
Models. randomwalk.top. Available at: https://randomwalk.top/wp-
content/uploads/2020/04/Pfeifer_2013_Observation_Equations.pdf (Accessed: April 7, 2023).  

Pop, R.-E. (2017) “A small-scale DSGE-Var model for the Romanian economy,” Economic 
Modelling, 67, pp. 1–9. Available at: https://doi.org/10.1016/j.econmod.2016.07.011.  

Smets, F. and Wouters, R. (2003) “An estimated dynamic stochastic general equilibrium model 
of the Euro Area,” Journal of the European Economic Association, 1(5), pp. 1123–1175. 
Available at: https://doi.org/10.1162/154247603770383415.  

Smets, F. and Wouters, R. (2007) “Shocks and frictions in US business cycles: A Bayesian 
DSGE approach,” American Economic Review, 97(3), pp. 586–606. Available at: 
https://doi.org/10.1257/aer.97.3.586.  

Todd, R.M. (1984) “Improving economic forecasting with Bayesian vector autoregression,” 
Quarterly Review, 8(4). Available at: https://doi.org/10.21034/qr.843.  

Wickens, M. (2014) “How useful are DSGE macroeconomic models for forecasting?,” Open 
Economies Review, 25(1), pp. 171–193. Available at: https://doi.org/10.1007/s11079-013-9304-
6.  



191 
 

Appendix A  
 
Appendix to Chapter 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



192 
 

A.1 Data collection 
 

The data set was constructed as close to Leeper, Plante and Traum (2010)’s original dataset as 

possible to allow for comparability. Data was collected from Q1 1947 to Q1 2019 (not including). 

For model estimation purposes only data from 1960 onwards is used to mirror Leeper, Plante 

and Traum (2010). This is relevant, because some of the series used by Leeper, Plante and Traum 

(2010) are not available on a quarterly basis before 1960. Additionally, this chapter does not rely 

on the constructed debt series as it turned out to be difficult to replicate (see debt series 

construction below).  

For some data series, some concessions were made due to unavailability or other data issues and 

some table references have changed. This appendix gives detail when or what changes were made. 

Most of the data was collected from the Bureau of Economic Analysis tables (BEA) and Federal 

Reserve data banks (FRED). See the following breakdown for more detail. 

Household data 

Consumption, 𝐶𝐶, is defined as the sum of personal consumption expenditure on nondurable goods 

(BEA table 1.1.5, Row 5) and services (BEA table 1.1.5, Row 6).  

Investment, 𝐼𝐼 , is specified as the sum of personal consumption expenditures on durables goods 

(BEA table 1.1.5, Row 4) and gross private domestic investment (BEA table 1.1.5, Row 7). 

The labour observables variables, hours worked, is constructed the following way: 

𝐿𝐿 = 𝐻𝐻 ∗ 𝐸𝐸
100

, 

where 𝐻𝐻 is defined as average weekly hours in the nonfarm business sector with index in Q1 1992 

(Q1 1992=100) taken from the FRED data base (FRED table PRS85006023_NBD19920101). 

Additionally, 𝐸𝐸 is civilian employment of 16 years or older in thousands of persons ( FRED table 

CE160V) converted into an index with Q3 1992=100 as per Leeper.  

Government 
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The consumption tax revenues, 𝑇𝑇 𝑐𝑐, are the taxes on production and imports series (BEA table 

3.2, Row 4) which includes both excise taxes and custom duties as per Leeper.  Additionally, the 

state and local sales tax, 𝑇𝑇𝑠𝑠
𝑐𝑐, is taken BEA tables 3.3 (Row 7). 

Combining the previously described consumption related series, the consumption tax rate is 

defined in the following way: 

𝜏𝜏𝑐𝑐 = 𝑇𝑇 𝑐𝑐

𝐶𝐶 − 𝑇𝑇 𝑐𝑐  − 𝑇𝑇𝑠𝑠
𝑐𝑐. 

Both government capital tax income, 𝑇𝑇 𝑘𝑘, and labour tax income, 𝑇𝑇 𝑙𝑙,   are generated by first 

creating tax rate series (𝜏𝜏𝑘𝑘and 𝜏𝜏𝑙𝑙, respectively) and then multiplying it with the respective tax 

bases. For the computation of both series, first, the average personal income tax rate as per Jones 

(2002) is calculated: 

𝜏𝜏𝑝𝑝 = 𝐼𝐼𝑇𝑇
𝑊𝑊 + 𝑃𝑃𝑅𝑅𝐼𝐼

2 + 𝐶𝐶𝐼𝐼
. 

Capital income, 𝐶𝐶𝐼𝐼 , is defined as the rental income (BEA table 1.12, Row 12), corporate profits 

(BEA table 1.12, Row 13) and interest income (BEA table 1.12, Row 18). Wage and salary 

accruals, 𝑊𝑊 , is taken from BEA table 1.12 (Row 3) and proprietors income, 𝑃𝑃𝑅𝑅𝐼𝐼 , is from BEA 

table 1.12 as well (row 12).   

Then, the average capital income tax rate is defined as: 

𝜏𝜏𝑘𝑘 = 𝜏𝜏𝑝𝑝𝐶𝐶𝐼𝐼 + 𝐶𝐶𝑇𝑇
𝐶𝐶𝐼𝐼 + 𝑃𝑃𝑇𝑇

. 

In this, 𝐶𝐶𝑇𝑇  are taxes on corporate income (BEA table 3.2, Row 8) and 𝑃𝑃𝑇𝑇  are property taxes 

(BEA table 3.3, Row 9).  

The average labour income tax rates is the following: 

𝜏𝜏𝑙𝑙 = 𝜏𝜏𝑝𝑝(𝑊𝑊 + 𝑃𝑃𝑅𝑅𝐼𝐼/2) + 𝐶𝐶𝐸𝐸𝐼𝐼
𝐸𝐸𝐶𝐶 + 𝑃𝑃𝑅𝑅𝐼𝐼/2

. 

𝐶𝐶𝐸𝐸𝐼𝐼 are the contributions to government social insurance (BEA table 3.2, Row 11) and 𝐸𝐸𝐶𝐶 are 

compensations to employees (BEA tables 1.12, Row 2).  
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Then in the final step, 𝑇𝑇 𝑘𝑘 is defined as the multiplication of 𝜏𝜏𝑘𝑘 with 𝐶𝐶𝐼𝐼 and  𝑇𝑇 𝑙𝑙 as the 

multiplication 𝜏𝜏𝑙𝑙 with 𝑊𝑊  as a measure of the respective tax bases. 

Government expenditure, 𝐺𝐺, is  defined as the sum of federal government gross investment (BEA 

table 3.2, Row 45), federal government consumption (BEA table 3.2, Row 25) and government 

net purchases of non-produced assets (BEA table 3.2, Row 47) minus government consumption 

of fixed capital (BEA table 3.2, Row 48).  

Federal Government Transfers, 𝑍𝑍,  as the sum of federal subsidies (BEA table 3.2, Row 36), net 

current transfers (BEA table 3.2, row 28 minus row 19), net capital transfers (BEA table 3.2, 

row 46 minus row 42) minus the tax residual. The tax residual is defined as the sum of current 

tax receipts (BEA table 3.2, row 2), contributions for government social insurance (BEA table 

3.2, row 10),  income receipts on assets (BEA table 3.2, row 13) and the current surplus of 

government enterprises (BEA table 3.2, row 33) minus the sum of the previously described tax 

incomes ( 𝑇𝑇 = 𝑇𝑇 𝑐𝑐+𝑇𝑇 𝑘𝑘+𝑇𝑇 𝑙𝑙). 

The government debt series, 𝐵𝐵, could not be replicated, as the constructed series did not perform 

well. Instead, this chapter uses the Dallas fed. Market Value of U.S. federal debt series, which is 

transformed to quarterly data via simple averaging.  

 

Construction of model observables 

The previous section explored the data collection for the model observables (consumption (𝐶𝐶), 

investment (𝐼𝐼), hours worked (𝐿𝐿), government spending (𝐺𝐺), labour tax revenues (𝑇𝑇 𝑙𝑙), capital 

tax revenues (𝑇𝑇 𝑘𝑘), consumption tax revenues (𝑇𝑇 𝑐𝑐), government debt (𝐵𝐵) and transfers (𝑍𝑍). In 

the next step, the nominal data is first converted to real data via deflating with the GDP deflator 

of personal consumption expenditures obtained from the BEA tables 1.1.4 (Row 2).  Then the 

following transformation is made using a population index constructed from civilian 

noninstitutional population, years 16 and older, (FRED table: CNP16OV) with Q3 1992 as the 

base year (Q3 1992=1): 

𝑋𝑋 = 𝑙𝑙𝑙𝑙� 𝑒𝑒
𝑃𝑃𝑓𝑓𝑝𝑝𝑖𝑖𝑙𝑙𝑑𝑑𝑒𝑒𝑒𝑒

� ∗ 100, 
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where 𝑒𝑒 indicates the original deflated series. Then, in a final step, the 𝑋𝑋 series are detrended 

and demeaned using a linear trend specification to obtain the model observables. This detrending 

is done very every subsample estimation as well to ensure mean zero processes. 

Generally, the constructed variables perform very well as they are close to the Leeper, Plante and 

Traum (2010) data set with correlations coefficients in the high nineties:  

Table A.1: Correlation comparison with Leeper, Plante and Traum (2010) data 

 

Notes: The correlation measure is the standard correlation coefficient.  

 

A.2 RWMH estimation 
 

For the replication of the estimation results presented in Leeper, Plante and Traum (2010), I 

utilize their estimation procedures which are equivalent to the Random Walk Metropolis Hasting 

(RWMH) algorithm presented by Herbst and Schorfheide (2016). Metropolis-Hastings samplers 

construct a Markov Chain, which asymptotically converges to the posterior distribution. 

Metropolis-Hastings samplers rely on proposal kernels to transition between states. Ideally, the 

choice of proposal kernel is tailored to the actual posterior to ensure efficient candidates are 

sampled. In the RWMH algorithm used in Leeper, Plante and Traum (2010), the proposal 

distribution is a normal distribution centred at the previous draw. The covariance matrix of the 

kernel is set to the inverse of the hessian obtained at the mode of the posterior distribution. The 

mode is estimated using a quasi-Newton method with a BFGS update of the hessian as part of 

csminwel developed by Christoper Sims. The simulation is then initialized using a draw from the 

prior, and the Metropolis-Hastings sampler generates 5,000,000 draws to ensure convergence. In 

Variables replication data correlation 

  
𝐼𝐼 0.985 
𝑆𝑆 0.988 
𝐿𝐿 0.999 
𝑇𝑇𝑐𝑐  0.998 
𝑇𝑇𝑙𝑙  0.982 
𝑍𝑍 0.978 
𝑇𝑇𝑡𝑡  0.976 
𝐺𝐺 0.980 
𝐵𝐵 0.947 
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addition, the first 250,000 draws are discarded as burn-in to avoid including draws that are 

potentially very far away from high-density regions of the posterior. Every 200th draw is thinned 

to create samples that are as uncorrelated as possible.   

 

A.3 SMC estimation 
 

This chapter relies on the Sequential Monte Carlo sampler's code based on Herbst and 

Schorfheide (2016) for the estimation. At their core, Sequential Monte Carlo samplers derive a 

sequence of Importance approximations that start at the prior distribution and end at the 

posterior. Given a good proposal distribution, the advantage of importance sampling is that it 

can generate precise approximations of the target density. This holds even if the density has non-

gaussian properties like multimodality and unusually heavy weight on the tails. Typically, 

choosing good proposal distributions is essential to the success of importance sampling. The 

proposal distribution problem is solved in SMC samplers elegantly by generating a series of 

tempered importance approximations. In this, starting at the prior, the previous approximation 

is used as a proposal for the current tempered density. If the tempered densities are never too 

far away from each other, the particles can sufficiently adjust.  The approximation will then be 

accurate. In the following, the mechanism is shortly presented in a low-detail form (for more 

detail, see Herbst and Schorfheide (2016) or (2014)): 

 

Draw N initial particles from the prior 𝜃𝜃i~p(𝜃𝜃) with equal importance weights  

1. For i = 1, . . . , N𝜙𝜙 // sequentially for all iterations 

1.1. Correction: Adjust particle weights to the current temperature and normalise the 

weights 

1.2. Selection:  Resample the particles if the importance distribution is very uneven.  

1.3. Mutation: Let all particles adapt to the current temperature via Metropolis-type steps 

2. Generate final importance sampling approximation 
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For each tempered distribution in the series from 1 to N𝜙𝜙, the sampler first adjusts the particles 

to the current distribution by adjusting the weights and afterwards normalizes the weights to 

obtain the current approximation. In case the distribution is very uneven, the particles are then 

resampled. Ideally, less important particles are sampled out while particles with higher density 

are used to repopulate the sample. Typically, this resampling step reduces the diversity of the 

particle system. To combat this, the mutation step aims at reintroducing this diversity. The 

individual particles are adapted to the current density via Metropolis-Hastings steps to increase 

diversity. However, it’s important to note that this step is not necessary to ensure that the 

particles are drawn from the current tempered distribution and only seeks to reintroduce 

variation.  

Because DSGE models typically are quite large dimensionally and tend to create difficult 

posteriors, the selection and mutation steps must be carefully chosen and well-tuned to keep the 

particles alive and healthy during the estimation process. For the selection step, the residuals are 

resampled using systematic resampling. For this, the script published by Herbst and Schorfheide 

(2016) is used. The Mutation step is equally important and ensures that the importance 

approximation is proper. It does so by 'jittering' the particles at each temperature. Ideally, this 

allows the particles to adapt properly to the current temperature and the tempered posterior 

density.  What happens if the mutation step malfunctions is that relatively little new information 

is introduced, and the particles can become stuck. In combination with the resampling step, this 

means that over time the particle distribution collapses, causing sample impoverishment. 

Following Herbst and Schorfheide (2016), this chapter implements random blocking in the 

mutation step with a proposal generated from a mixture density. The two additions improve the 

mutation step in two directions. Firstly, random blocking reduces the number of parameters that 

are mutated at the same time by breaking down the parameter vector into smaller blocks. 

Consequently, the mutation probability increases, and this essentially allows the particles to move 

quicker through the parameter space. Secondly, the mixture proposal works as follows for a 

specific block: 

𝜈𝜈𝑛𝑛,𝑏𝑏|�𝜃𝜃𝑛𝑛,𝑏𝑏
𝑖𝑖 , 𝜃𝜃𝑛𝑛,−𝑏𝑏

𝑖𝑖 , 𝜃𝜃𝑛𝑛,𝑏𝑏
∗ , Σ𝑛𝑛,𝑏𝑏

∗ �~𝑤𝑤𝑁𝑁�𝜃𝜃𝑛𝑛,𝑏𝑏
𝑖𝑖 , 𝑐𝑐2Σ𝑛𝑛,𝑏𝑏

∗ � + 1 − 𝑤𝑤
2

𝑁𝑁 �𝜃𝜃𝑛𝑛,𝑏𝑏
𝑖𝑖 , 𝑐𝑐2𝑑𝑑𝑖𝑖𝑎𝑎𝑙𝑙�Σ𝑛𝑛,𝑏𝑏

∗ ��

+ 1 − 𝑤𝑤
2

𝑁𝑁�𝜃𝜃𝑛𝑛,𝑏𝑏
∗ , 𝑐𝑐2Σ𝑛𝑛,𝑏𝑏

∗ �. 
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In addition to the standard proposal with weight 𝑤𝑤, it also has an independent proposal from 

the mean and a proposal with a diagonal covariance matrix. The former allows particles to move 

independently from the current position of the particle, and the latter eases on the co-movement 

of parameters locally. Together, the mixture proposal and blocking improve the movement of 

particles.  

The SMC sampler requires an econometrician to determine a set of tuning parameters for the 

estimation to work optimally. The tuning parameters (the number of blocks, 𝑁𝑁𝑏𝑏, the tempering 

parameter, 𝜆𝜆, the number of temperatures, 𝑁𝑁𝜙𝜙, and the mixture weight, 𝑤𝑤) are set identically to 

Herbst and Schorfheide (2016). In the replication section, 𝑁𝑁  is set to 6000, consistent with the 

original estimation. In the following sections, the number of particles is increased to 20000. The 

advantage is that the accuracy of the approximation of the posterior is increasing in the number 

of particles, and it allows the sampler to better maintain a multimodal posterior. The tuning 

parameter settings are summarized in Table A.2 below. 

 

Table A.2: Tuning Parameters for the SMC sampling 

 

Notes: 𝑁𝑁  corresponds to the number of particles. 𝑁𝑁𝑏𝑏 is the number of blocks. 𝜆𝜆 defines the curvature of the 

tempering schedule and over the number of iterations, 𝑁𝑁𝜙𝜙.  𝑤𝑤 is the weight of the mixture distribution. 

 

A.4 HPD intervals 
 

As shown in Herbst and Schorfheide (2016), non-gaussian and multimodal posterior distributions 

are expected in this chapter's estimations. Here, I address the topic of posterior uncertainty by 

using higher posterior density intervals and regions, as in Chen and Shao (1999) and Chen et al. 

(2000). 

 

parameter value 
  

N 6000/20000 
𝑁𝑁𝑏𝑏  3 
𝜆𝜆 4 
𝑁𝑁𝜙𝜙  500 
𝑤𝑤 0.9 
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The interesting problem with multimodal parameter distributions is that the highest posterior 

density (HPD) intervals tend to overestimate the uncertainty in the object. To illustrate this, an 

HPD interval for a multimodal distribution with a low-density area between the modes will 

typically include the low-density area as, by definition, an interval may not include disjointed 

regions. As such, the distribution of interest will appear more diffuse than it actually is. This 

non-normality or multimodality can materialise itself not only in posterior parameter 

distributions but equally in other posterior objects like impulse responses where uncertainty is 

critical for policymakers. The way to solve this problem is to search for the highest posterior 

regions as opposed to intervals for multimodal distributions. If the highest posterior region can 

be disjointed, then the regions can adjust to omit the low-density area between modes. 

Consequently, depending on the distribution, HPD regions may show a different picture of the 

uncertainty than HPD intervals. 

To address this, I implement the approaches proposed in Chen and Shao (1999) and Chen et al.  

(2000) to evaluate both empirical unimodal intervals and bimodal density regions. The 

mechanism works by generating a sample from the density and sorting the sample from the 

smallest to the largest value. For the unimodal interval, a simple minimisation problem is solved 

that minimises the distance between the 𝑗𝑗𝑡𝑡ℎ and (𝑗𝑗 + (1 − 𝑎𝑎)𝑙𝑙)𝑡𝑡ℎ parameter or object interest 

values to obtain the 100 ∗ (1 − a)%  HPD interval, where 𝑙𝑙 is the sample size. Under unimodality 

of the density and uniqueness of the solution to the minimisation, this interval is shown to 

converge to the true interval in the limit. Formally, the minimisation problem is as follows for 

posterior parameter distributions. In the first step, a sample of size 𝑙𝑙 is obtained from the 

posterior distribution of interest. In the second step, to pre-process, all elements of the sample 

are sorted in ascending order: 

𝜃𝜃1 ≤ 𝜃𝜃2 ≤ . . .≤ 𝜃𝜃𝑛𝑛. 

Based on the sorted sample, the following minimization problem is solved:    

𝑅𝑅𝑗𝑗∗(𝑙𝑙) = 𝜃𝜃𝑗𝑗∗+(1−𝑎𝑎)𝑛𝑛 − 𝜃𝜃𝑗𝑗∗ = min
1≤𝑗𝑗≤𝑎𝑎𝑛𝑛

𝜃𝜃𝑗𝑗+(1−𝑎𝑎)𝑛𝑛 − 𝜃𝜃𝑗𝑗. 

The problem minimizes the distance between the start and endpoint of the ordered sample subject 

to any sample, including 100 ∗ (1 − a)%  of the sample observations. To ensure that the starting 

point can always generate a sample that can have 100 ∗ (1 − a)%   of the sampled observations, 
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the starting index is restricted to be weakly larger than one but weakly smaller than a𝑙𝑙. The 

HPD regions are derived from a very similar optimisation problem. This problem is restricted to 

two regions such that they correspond to a bimodal distribution. The problem is as follows: 

𝑅𝑅𝑗𝑗∗,𝑖𝑖∗,𝑚𝑚∗(𝑙𝑙) = min
𝑖𝑖,𝑗𝑗,𝑚𝑚

(𝜃𝜃𝑖𝑖+𝑚𝑚 − 𝜃𝜃𝑖𝑖) + (𝜃𝜃𝑗𝑗+𝑎𝑎𝑛𝑛−𝑚𝑚 − 𝜃𝜃𝑗𝑗)   𝑠𝑠. 𝑑𝑑.    0 ≤ 𝑚𝑚 ≤ (1 − 𝑎𝑎)𝑙𝑙 , 0 ≤ 𝑖𝑖

≤ 𝑙𝑙 − 𝑙𝑙(1 − 𝑎𝑎),   𝑖𝑖 + 𝑚𝑚 ≤ 𝑗𝑗 ≤ 𝑙𝑙 − [(1 − 𝑎𝑎)𝑙𝑙 − 𝑚𝑚]. 

This problem minimizes the sum of the sizes of the two intervals. Just like the unimodal problem, 
the bimodal problem is restricted in several ways. Firstly, the starting point of the first interval 
is set identically to the unimodal setting. The length of the first interval can include at most 
100 ∗ (1 − a)% of the observations. The starting point of the second interval must be after or at 
the end of the first interval but needs to be set to ensure that both intervals together can include 
100 ∗ (1 − a)% of the observations. 

Both approaches are implemented in MATLAB using the mixed integer programming toolbox. 

The posterior intervals or regions of impulse responses estimated in this chapter are based on 

samples of size 1000, which is the same sample size Dynare uses by default.  Parameter HPD 

intervals are evaluated using the full posterior. 

 

A.5 Posterior estimates of non-fiscal parameters 
 

The table below presents estimation results for non-fiscal rule parameters for the three variations 

of the Leeper, Plante and Traum (2010) model used in the main results section. That includes 

the standard (ind., sym., ind.) specification and the alternatives with (spending first, sym., ind.) 

and (taxation first, sym., ind.). Overall, the estimates appear stable across the specification and 

any deviations are easily contained in the posterior intervals of the original Leeper, Plante and 

Traum (2010) specification. 
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Table A.3: Parameter estimates of non-fiscal parameters  

 

Notes: For a detailed description of the parameters and their purpose, see the model description in the main body of 

the chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

Param. (spending first, sym., ind. ) (taxation first, sym., ind. )  (ind., sym., ind.) 
 mean (standard dev.) mean (standard dev.) mean (standard dev.) 

    

𝛾𝛾 2.07 (0.40) 2.01 (0.35) 2.06 (0.40) 
𝜅𝜅 2.07 (0.45) 1.95 (0.40) 2.04 (0.44) 
ℎ 0.58 (0.07) 0.58 (0.07) 0.58 (0.07) 
𝑠𝑠′′ 5.58 (0.26) 5.59 (0.26) 5.53 (0.26) 
𝛿𝛿2 0.70 (0.29) 0.73 (0.30) 0.78 (0.36) 
𝜌𝜌𝑎𝑎  0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 
𝜌𝜌𝑏𝑏  0.49 (0.03) 0.49 (0.03) 0.49 (0.04) 
𝜌𝜌𝑙𝑙  0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 
𝜌𝜌𝑖𝑖  0.45 (0.07) 0.45 (0.07) 0.45 (0.07) 
𝜎𝜎𝑎𝑎  0.63 (0.03) 0.63 (0.03) 0.63 (0.03) 
𝜎𝜎𝑏𝑏  9.15 (0.56) 9.22 (0.58) 9.17 (0.59) 
𝜎𝜎𝑙𝑙  2.75 (0.44) 2.63 (0.39) 2.72 (0.43) 
𝜎𝜎𝑖𝑖  5.27 (0.45) 5.26 (0.45) 5.28 (0.48) 
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Appendix B  
 
Appendix to Chapter 2 
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B.1 Second-order pruned system 
 

For the estimations in this chapter, I rely on the canonical pruned second-order system as in 

Andreasen, Andreasen, Fernández-Villaverde and Rubio-Ramírez (2017). The key idea of pruning 

comes from the shock transition in non-linear models. In linear models, no shock can push the 

linear model of a stable path. In non-linear modelling, this is not necessarily the case, even if the 

linear model is stable. The instability is introduced via the inclusion of the higher terms of the 

approximation. In order to ensure that the data generating process is stable, the system is pruned. 

The pruned second-order system can be summarized as follows: 

𝑒𝑒𝑡𝑡+1
𝐿𝐿 = 𝐻𝐻𝑥𝑥𝑒𝑒𝑡𝑡

𝐿𝐿 + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡+1, 𝑣𝑣𝑡𝑡+1~𝑁𝑁(0, 𝐼𝐼),   

𝑒𝑒𝑡𝑡+1
𝑄𝑄 = 0.5 ∗ ℎ𝜎𝜎𝜎𝜎𝜎𝜎2 + 𝐻𝐻𝑥𝑥𝑒𝑒𝑡𝑡

𝑄𝑄 + 0.5 ∗ 𝐻𝐻𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡
𝐿𝐿⨂𝑒𝑒𝑡𝑡

𝐿𝐿) + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡+1, 𝑣𝑣𝑡𝑡+1~𝑁𝑁(0, 𝐼𝐼), 

𝑦𝑦𝑡𝑡+1 = 0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎 + 𝐺𝐺𝑥𝑥𝑒𝑒𝑡𝑡+1
𝑄𝑄 + 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡+1

𝐿𝐿 ⨂𝑒𝑒𝑡𝑡+1
𝐿𝐿 ). 

Working with the pruned system may seem like an approximation of sorts. In practice, it is very 

convenient to prune unstable paths. In fact, most particle filter applications rely on it, and so 

does the conditional particle filter. In its basic form, the second-order DSGE system is non-linear 

in its states. However, the state vector can be augmented to linearize the system without 

additional assumptions. Using the state vector 𝑧𝑧𝑡𝑡 = [𝑒𝑒𝑡𝑡
𝐿𝐿′, 𝑒𝑒𝑡𝑡

𝑄𝑄′, (𝑒𝑒𝑡𝑡
𝐿𝐿⨂𝑒𝑒𝑡𝑡

𝐿𝐿)′] the system can be 

rewritten as such: 

𝑧𝑧𝑡𝑡+1 = 𝑐𝑐2 + 𝐴𝐴2𝑧𝑧𝑡𝑡 + 𝐵𝐵2𝜁𝜁𝑡𝑡+1, 

where the system can be stated in matrix form as: 

⎣
⎢
⎡

𝑒𝑒𝑡𝑡+1
𝐿𝐿

𝑒𝑒𝑡𝑡+1
𝑄𝑄

(𝑒𝑒𝑡𝑡+1
𝐿𝐿 ⨂𝑒𝑒𝑡𝑡+1

𝐿𝐿 )⎦
⎥
⎤

=
⎣
⎢⎡

0
0.5 ∗ ℎ𝜎𝜎𝜎𝜎

𝜎𝜎2(𝜎𝜎⨂𝜎𝜎)𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�⎦
⎥⎤ +

⎣
⎢⎡
𝐻𝐻𝑥𝑥 0 0
0 𝐻𝐻𝑥𝑥 𝐻𝐻𝑥𝑥𝑥𝑥
0 0 (𝐻𝐻𝑥𝑥⨂𝐻𝐻𝑥𝑥)⎦

⎥⎤

⎣
⎢
⎡

𝑒𝑒𝑡𝑡
𝐿𝐿

𝑒𝑒𝑡𝑡
𝑄𝑄

(𝑒𝑒𝑡𝑡
𝐿𝐿⨂𝑒𝑒𝑡𝑡

𝐿𝐿)⎦
⎥
⎤

+ �
𝜎𝜎𝜎𝜎 0 0 0
𝜎𝜎𝜎𝜎 0 0 0
0 𝜎𝜎2(𝜎𝜎⨂𝜎𝜎) 𝜎𝜎2(𝜎𝜎⨂𝐻𝐻𝑥𝑥) 𝜎𝜎2(𝐻𝐻𝑥𝑥⨂𝜎𝜎)

� 

⎣
⎢
⎢
⎡

𝑣𝑣𝑡𝑡+1

(𝑣𝑣𝑡𝑡+1⨂𝑣𝑣𝑡𝑡+1) − 𝑣𝑣𝑒𝑒𝑐𝑐�𝐼𝐼𝑛𝑛𝑒𝑒
�

(𝑣𝑣𝑡𝑡+1⨂𝑒𝑒𝑡𝑡
𝐿𝐿)

(𝑒𝑒𝑡𝑡
𝐿𝐿⨂𝑣𝑣𝑡𝑡+1) ⎦

⎥
⎥
⎤
,     
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In this augmented form, 𝑧𝑧𝑡𝑡+1 depends linearly on 𝑧𝑧𝑡𝑡 and 𝜁𝜁𝑡𝑡+1. 𝜁𝜁𝑡𝑡+1 constitutes an uncorrelated, 

mean zero process with a finite covariance matrix under standard assumption. The covariance 

matrix of 𝜁𝜁𝑡𝑡+1 can be constructed exactly based on the unconditional covariance matrix of the 

linear states. The measurement equation can be rewritten as follows: 

𝑦𝑦𝑡𝑡+1 = 𝑑𝑑2 + 𝐶𝐶2𝑧𝑧𝑡𝑡+1, 

𝑦𝑦𝑡𝑡+1 = [0.5 ∗ 𝑙𝑙𝜎𝜎𝜎𝜎] + [0 𝐺𝐺𝑥𝑥 0.5 ∗ 𝐺𝐺𝑥𝑥𝑥𝑥]
⎣
⎢
⎡

𝑒𝑒𝑡𝑡+1
𝐿𝐿

𝑒𝑒𝑡𝑡+1
𝑄𝑄

(𝑒𝑒𝑡𝑡+1
𝐿𝐿 ⨂𝑒𝑒𝑡𝑡+1

𝐿𝐿 )⎦
⎥
⎤
. 

Measurement errors for 𝑦𝑦𝑡𝑡+1 can be added on demand as in any DSGE. Finally, while the new 

state-space system for 𝑧𝑧𝑡𝑡+1is of the canonical linear form, it is technically not gaussian. This is 

because 𝜁𝜁𝑡𝑡+1 depends on higher-order products of 𝑣𝑣𝑡𝑡+1. 

 

B.2 Code implementation detail 
 

Solving and estimating higher-order DSGE models is a prohibitively time-consuming process that 

can require substantial code development and expensive hardware to become feasible. In the 

section below, I provide a detailed breakdown of the methods employed in this chapter, and 

hopefully, the review is useful to others implementing similar projects. As mentioned before, this 

work is heavily influenced by Gomme and Klein (2011), Schmitt-Grohe and Uribe (2004), Herbst 

and Schorfheide (2016), Buchholz, Chopis and Jacob (2021) and neural network applications. 

To start off, for this project, MATLAB was the choice of programming language as it offers 

several advantages other languages do not currently offer for economics to the same extent. 

MATLAB is heavily used in macroeconomics for DSGE models, and a lot of important programs 

are freely available (e.g. solab.m/solab2.m for model solving developed as a companion to Gomme 

and Klein (2011)). While MATLAB is generally thought of as a low-performative language, it 

has made significant strides during the last 15 years. With the introduction of the Linear Algebra 

Package (LAPACK) library and Basic Linear Algebra Subprograms (BLAS) to MATLAB in the 

earlier 2000s, MATLAB itself has become performative and provides a great compromise between 

performance and speed of implementation. While implementation directly in C or Fortran ought 
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to be faster, the implementation also becomes more time-consuming. However, to fully make use 

of the advancement, a requirement is that code is developed centred around the idea of utilizing 

the optimized libraries whenever suitable (vectorizing, utilizing compiled functions wherever 

possible, etc.).  

For the code implementation, one component of particular importance is being able to adapt 

model files quickly and conveniently. Writing DSGE model files and the following debugging is a 

tricky and time-consuming process that requires frequent rewrites of sections and model matrices. 

At the moment, Dynare offers the best practice in the way it approaches model files. Dynare 

provides an incredibly convenient framework for writing models. The user can write the model 

equations directly using a convenient time-shift notation into a text file. Dynare then parses this 

file and creates estimation-relevant objects on the fly. The user does not have to manually supply 

any further objects like Jacobians, Hessians or linearized versions of the model. Adapting or 

changing a model is comparatively straightforward as only the model file has to be adjusted and 

requires no further input from the user. While I initially explored using Dynare, my experience 

was that it is based on a comparatively close-knitted ecosystem, and that makes it more difficult 

to, for example, replace estimation procedures or time series filters with non-Dynare options. 

Therefore, I re-engineered a basic version based on the Dynare philosophy for model files. I rely 

on the symbolic toolbox MATLAB provides, similar to Schmitt-Grohe and Uribe (2004). 

Symbolic variables are a data type, and the key idea is that it tells MATLAB that any calculations 

using these variables must be performed analytically. However, these symbolic variables can be 

evaluated as numerical variables. This provides significant freedom and convenience in their 

application. Further, MATLAB supports a wide range of functions for symbolic variables making 

them an ideal choice for quick and convenient development of model files. For the code 

implementation, the main model file that includes the DSGE equations is written entirely using 

symbolic variables, and the equations are based on the original non-linear system of equations.  

Based on the symbolic variable implementation, several advantages come into play. Changing 

variables becomes much easier in this format. Instead of rewriting the system manually, the user 

only has to define a relation between the old and new variables. This relation can then be used 

to substitute the old variables out. As in Schmitt-Grohe and Uribe (2004), using the inbuilt 

symbolic functions allows the evaluation of estimation relevant objects for a specific DSGE model. 
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Crucially, the Jacobian and Hessian of the model must be evaluated for every single likelihood 

evaluation. While the analytic form of both matrices does not change, numerical evaluations vary. 

I evaluate the Jacobian and Hessian analytically once, in the beginning, using the 𝑗𝑗𝑎𝑎𝑐𝑐𝑓𝑓𝑏𝑏𝑖𝑖𝑎𝑎𝑙𝑙(𝑓𝑓, 𝑣𝑣) 

and ℎ𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙(𝑓𝑓, 𝑣𝑣) functions based on the symbolic structural parameter vector. Next, the two 

objects are printed to a dynamically generated MATLAB function. During the simulation, the 

generated MATLAB function can then be used to evaluate the Jacobian and Hessian numerically 

using a numeric parameter vector. It requires no further use of the symbolic variables. This means 

that the evaluation only relies on a vector-valued matrix construction which is significantly more 

performative and convenient than other methods like numerical differentiation. Coming back to 

adaptability, model changes in the model files trickle down to this part. After making adjustments 

to the model files, a new file for evaluating the Jacobian/Hessian of the model can be generated 

without further adjustments to the code. Consequently, this type of implementation improves on 

the adaptability to model changes and adjustments in specification significantly while also being 

quite performative.  

Convenience and adaptability aside, the crucial component of this application is performance. 

Non-linear estimations are much more time-consuming than linear estimations because they 

require additional complex calculations: model solving and likelihood construction. 

Model solving has two main components that require significant time. The first component is 

generating the inputs for the model solver (i.e., the Jacobian and Hessian of the model evaluated 

at the steady state). As previously mentioned, I rely on printed analytical files for these objects, 

which can be easily and quickly evaluated. This essentially removes the inputs as a significant 

computation time cost factor.  The second component is the solution strategy itself. For this, I 

rely on the alternative DSGE solution method offered by Gomme and Klein (2011) based on a 

generalized Sylvester equation approach and their code. Their implementation relies on calling 

LAPACK functions to solve the generalized Sylvester equation and offers substantial 

computational gains over all other tested implementations. Furthermore, it can be easily 

implemented.  

The other performance-critical aspect is filtering/likelihood evaluations. Filtering for non-linear 

models can be done using particle filters which use thousands of particles to approximate the 
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likelihood. Particle filters require numerous forward iterations of the individual particles per 

likelihood evaluation of the solved model. Because the number of particles is in the thousands 

typically and estimations require thousands if not millions of likelihood evaluations, the time per 

forward iteration is important. The forward iteration of the predetermined variables for a specific 

particle, 𝑒𝑒𝑡𝑡, is defined in the equation below: 

𝑒𝑒𝑡𝑡+1 = 0.5 ∗ ℎ𝜎𝜎𝜎𝜎 + 𝐻𝐻𝑥𝑥𝑒𝑒𝑡𝑡 + 0.5 ∗ 𝐻𝐻𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡⨂𝑒𝑒𝑡𝑡) + 𝜎𝜎𝜎𝜎𝑣𝑣𝑡𝑡+1, 𝑣𝑣𝑡𝑡+1~𝑁𝑁(0, 𝐼𝐼).   

Specifically, the operation 𝐻𝐻𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡⨂𝑒𝑒𝑡𝑡) for a given (𝑒𝑒𝑡𝑡⨂𝑒𝑒𝑡𝑡) is costly and has a time complexity 

of 𝑂𝑂(𝑙𝑙𝑥𝑥
3) using Big-O notation where 𝑙𝑙𝑥𝑥 is the number of predetermined states. For a given 

structural parameter vector, 𝐻𝐻𝑥𝑥𝑥𝑥 is a fixed matrix. Because that is the case, the second-order 

component, 𝐻𝐻𝑥𝑥𝑥𝑥(𝑒𝑒𝑡𝑡⨂𝑒𝑒𝑡𝑡), does need to be done particle by particle in a sequential format, but 

can be vectorized to one operation.22 As it can be summarized to one operation, one can make 

good use of the inbuilt LAPACK libraries or run the process on a GPU in parallel. However, this 

process comes with a caveat typically not encountered during normal applications. Forwards 

iterating the entire particle system in one go requires significant amounts of memory, especially 

if it is done in parallel for several structural parameter vectors at once.  

Based on MATLAB (R2021b), in parallel applications, MATLAB works out of the CPU cache. 

The CPU cache is a type of memory that is much faster and located close to the CPU. Any 

calculation that can be done on the cache is significantly faster than calculations based on data 

in the RAM or hard drive. The problem is that cache memory is much more expensive and 

therefore limited to a few MB. There are different types of caches with different speeds and sizes 

on the standard computers to optimize performance. The L1 type is usually the fastest but 

smallest. Other caches may address this trade-off between size and speed differently. In the case 

of MATLAB, in parallel applications, once a dataset is larger than a given CPU cache, 

performance will degrade because of memory access. Therefore, while intuitively, the speed of the 

CPU itself seems to be of utmost importance, in this application, memory access is the second 

important variable.  

 
22 All current particles can be stacked as column vectors into a matrix, 𝑋𝑋𝑡𝑡

𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡𝑟𝑟𝑚𝑚 of size 𝑙𝑙𝑥𝑥 by the number of particles. 
In this case, the Kronecker product can be conveniently defined using the 𝑟𝑟𝑒𝑒𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑒𝑒 and 𝑟𝑟𝑒𝑒𝑝𝑝𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚 function as 
𝑟𝑟𝑒𝑒𝑝𝑝𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚�𝑋𝑋𝑡𝑡

𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡𝑟𝑟𝑚𝑚, 𝑙𝑙𝑥𝑥, 1�.∗ 𝑟𝑟𝑒𝑒𝑝𝑝𝑚𝑚𝑎𝑎𝑑𝑑(𝑋𝑋𝑡𝑡
𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡𝑟𝑟𝑚𝑚𝑙𝑙𝑥𝑥, 1), where “.∗” indicates element by element multiplication. The last 

step is to pre-multiply by 𝐻𝐻𝑥𝑥𝑥𝑥. 
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While the way MATLAB handles arrays that are larger than the CPU cache is mostly black box, 

for this application, it turns out that breaking down the calculation into sub-sets and ensuring 

that all required arrays for each parallel sub-calculation fit into the cache is advantageous. 

Fortunately, the forward iteration of the particle system can be broken down easily by separating 

the particle system into new arrays. To decide on this breakdown in a semi-optimal way, I 

approximate the total storage needed by the particle system and the arrays required in operation. 

The memory requirement is then divided by the cache size, which delivers the number of sub-

sets of particles. Finally, this number is rounded up for a safety margin to avoid approximation 

errors. The result is a semi-efficient number of sub-sets for the total calculation.  

To access any performance advantages, I test computation times for likelihood evaluations. The 

test computer has an Intel® Core™ i9-10980XE CPU. This CPU has three caches, where the L1 

has 1.1MB of storage, the L2 has 18.0MB, and the L3 has 24.8 MB. I set the number of particles 

to 10.000, as in the estimation. The result is a significant speed-up for any cache, but in this case, 

the L1 cache seems to provide an optimal trade-off between size and speed. The gains are even 

starker for less performative CPUs, like in a work laptop. 

To showcase the performance gains, Table B.1  below shows likelihood evaluations times for naïve 

and optimized memory management for single and multithreaded computations for the most 

performative cache (L1) based on a sample of 100 evaluations: 

Notes: Time is measured in seconds 

On a single Core, the time reduction from optimizing memory management is equal to roughly -

48%. This also holds true for multithreaded calculations using parpool. Multithreaded 

calculations allow for an orthogonal performance gain to memory management, bringing the total 

gain up to 62% or 0.57s per likelihood evaluation. For Metropolis-Hastings samplers, this decrease 

Processor Memory management Time/likelihood eval. 
   

Single Naïve 1.54 
Single optimized 0.82 
Multi Naïve 1.07 
Multi optimized 0.57 
GPU optimized 0.65 

   
 

Table B.1: Overview of performance gains across different specifications 
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scales linearly to estimation time as estimation time is roughly 𝑙𝑙𝑀𝑀𝑀𝑀𝑟𝑟𝑣𝑣𝑎𝑎𝑙𝑙 ∗ 𝑑𝑑𝑙𝑙𝑖𝑖𝑘𝑘𝑟𝑟𝑙𝑙𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑣𝑣𝑎𝑎𝑙𝑙.. For the 

sequential Monte Carlo estimation, I developed an alternative version in which the forward 

iteration is computed on the GPU which are already heavily employed in other fields that require 

large array operations (e.g. neural networks). Sequential Monte Carlo techniques (SMC) heavily 

rely on CPU parallelization. This can be a significant computational advantage over MCMC 

techniques. If the time per likelihood evaluation and the number of likelihood evaluations is fixed, 

then the SMC can be up to 𝑙𝑙𝐶𝐶𝑚𝑚𝑟𝑟𝑟𝑟𝑠𝑠 times faster.23 However, due to its parallel nature, CPU 

resources are typically not available for multithreading of the likelihood evaluation. The result is 

that the time/likelihood may be significantly slower if one purely relies on CPU calculations. The 

advantage of using a GPU for sequential Monte Carlo estimation is that it brings in new resources 

that can be split. Equally, GPUs have much larger memories, and typically, no cache-like 

constraints are experienced for the size of arrays in this problem. On a test basis for non-

sequential likelihood evaluations, the time per likelihood evaluation for a GPU (0.65s) is 

comparable to that of the multithreaded memory-optimized implementation (0.57). As a last 

note, as the design of MATLAB memory access is mostly black box, this implementation need 

not always provide advantages, especially in different versions of MATLAB.  

For this chapter, I am really grateful to Amisano and Tristani (2010) for providing me with 
their code base, which allowed me to double-check my work and improve upon it. 

 

 

 

 

 

 
23 The actual speed up depends on the exact algorithm settings (comparing reasonable algorithm settings vs forcing 
equal numbers of likelihood evaluations) but is substantial in any case. For an estimation using the Metropolis 
Hastings algorithm using a quite standard 5,000,000 likelihood evaluations as in Leeper, Plante and Traum (2010) 
estimation time may be as long as 89 (47, 32) days based on the single, naïve ((single, optimized), (Multi, 
optimized)) implementation. The run time for the SMC algorithm employed ended up being 5 days implying a 
reduction of 94% (89%, 85%). Comparing based on an equal number of likelihood evaluations, it would imply savings 
of 85% (72%, 60%).  
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B.3 Posterior density plots 
 

 

B.3.1 Core model parameters 
 

Fig. B.1: Posterior density graphs for core model parameters 
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Notes: Posterior and prior density plots for core model parameters. Dashed line corresponds to prior density and 
solid line to posterior density.  

 

B.3.2 Linear rule parameters 
 

Fig. B.2: Posterior density graphs for linear rule parameters 
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Notes: Posterior and prior density plots for linear fiscal rule parameters. Dashed line corresponds to prior density 
and solid line to posterior density.  
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B.3.3 Non-linear rule parameters 
 

Fig. B.3: Posterior density graphs for non-linear rule parameters 
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Notes: Posterior and prior density plots for non-linear rule parameters. Dashed line corresponds to prior density and 
solid line to posterior density.  

 

 

B.4 Amisano and Tristani (2010) re-estimation 
 

This appendix presents re-estimation results for the Amisano and Tristani (2010) model, which 

builds the core of the model developed for this chapter and Amisano and Tristani (2010) also 

designed the conditional particle filter employed here. This section features three estimations. 

Firstly and secondly, I estimate the Amisano and Tristani (2010) model estimations for the linear 

and non-linear versions using their base estimation procedure described in their paper based on 

code developed for this chapter. That includes using the Metropolis-Hastings algorithm on a set 

of transformed parameters and generating 55,000 draws using a Gaussian transition kernel. The 

chain is initialized based on a gaussian approximation of the posterior using a preliminary linear 

run. Further, the first 5000 draws are discarded. The transition kernel is based on the 

approximated covariance matrix from an initial linear run. Lastly, as a proof of concept, I estimate 

the non-linear Amisano and Tristani (2010) model using the SMC algorithm described above 
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using the prior distribution of 𝜃𝜃, 𝑝𝑝(𝜃𝜃), as the initial distribution, 𝜇𝜇1(𝜃𝜃). The number of parameter 

particles is set to 3000, the number of blocks is three and mixture weights and particle degeneracy 

are as in main estimation. In both applications, the particle filter is initialized based on the 

unconditional linear distribution to match Amisano and Tristani (2010) who use the linear 

Covariance matrix. However, I do not use the non-linear unconditional mean and instead use the 

linear unconditional mean. For this exercise, I rely on the original data set which was available 

to me as Amisano and Tristani (2010) very kindly shared their code with me.  

Table B.2 below represents the estimation results for the posterior simulation for the linear and 

quadratic approximations on the original dataset. For the linear estimation, all parameters are 

contained in the highest posterior density intervals produced by Amisano and Tristani (2010). 

Additionally, all estimates are within 0.4 standard deviations of the original. That is the case 

even for very tightly measured parameters like 𝛽𝛽. The highest difference between estimates can 

be found in the parameters 𝛽𝛽 and 𝜓𝜓𝜋𝜋. For 𝜓𝜓𝜋𝜋 the posterior mean is 2.013. In comparison, Amisano 

and Tristani (2010) estimate the parameter to be slightly lower at 1.947. This difference 

constitutes to roughly 0.38 standard deviations. Looking at transition plots for the parameter 

movement during the simulation, parameter transitions appear stable. Furthermore, the estimates 

appear stable across multiple runs with negligible differences. 
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Table B.2: Replication Results MH 

 

Notes: Posterior estimates for the linear and non-linear model using the MH algorithm 

For the non-linear estimation, the results are very similar. All estimates are contained in the 

original highest posterior density intervals and within one standard deviation from their posterior 

estimates rounding up. The larger deviations can be found for the parameters 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝜋𝜋. 𝑝𝑝𝑖𝑖 is 

estimated to be slightly higher at 0.89 in comparison to 0.85. This difference constitutes to 

approximately 0.8 standard deviations. Similarly, the posterior mean for 𝜎𝜎𝜋𝜋 is 0.0014 in 

comparison to the estimate of 0.00174 found by Amisano and Tristani (2010). Overall, the 

estimates presented here are much closer to Amisano and Tristani (2007) where estimates match 

within 0.4 standard deviations.  

Table B.3 below presents estimation results of the SMC procedure without adaptive tempering 

on the original Amisano and Tristani (2010) model. The SMC estimation conducted here 

produces posterior estimates entirely consistent with the original estimates based on the MCMC 

para linear quadratic 
mean Sd. mean Sd. 

         
𝛽𝛽 0.994388 0.00104 0.99311 0.00112 

𝛾𝛾 − 1 2.35549 0.88414 2.58380 0.82127 
ℎ 0.461389 0.06397 0.46263 0.06481 

𝜙𝜙 − 1 4.004861 1.22902 3.44992 0.87042 
𝜃𝜃 − 1 5.484073 2.09163 4.17055 1.42953 
𝜁𝜁 0.402195 0.07384 0.49058 0.07023 
𝑙𝑙 0.083153 0.04296 0.06354 0.03618 

𝜓𝜓𝜋𝜋 − 1 1.01288 0.16845 0.91251 0.15902 
𝜓𝜓𝑦𝑦  0.043456 0.03108 0.06423 0.04667 
𝑝𝑝𝑖𝑖  0.894975 0.01371 0.89056 0.01343 
𝑝𝑝𝜏𝜏  0.506594 0.15723 0.54403 0.14531 
𝑝𝑝𝑎𝑎  0.997937 0.00167 0.99853 0.00126 
𝑝𝑝𝜋𝜋  0.988598 0.00711 0.97366 0.01117 
𝜎𝜎𝜏𝜏  0.045471 0.01507 0.04113 0.01340 
𝜎𝜎𝑎𝑎  0.013328 0.00162 0.01487 0.00199 
𝜎𝜎𝜋𝜋  0.001398 0.00019 0.00133 0.00019 
𝜎𝜎𝑖𝑖  0.001941 0.00013 0.00194 0.00013 
𝜏𝜏 0.455751 0.28511 0.36558 0.22613 

𝜋𝜋 − 1 0.005609 0.00311 0.00906 0.00318 
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technique. All estimates are within one standard deviation of the estimates found by Amisano 

and Tristani (2010). 

Table B.3: Replication Results SMC 

 

Notes: Posterior estimates for the non-linear model using the SMC algorithm 

 

 

B.5 Estimation diagnostics 
 

Fig. B.4 below displays estimation diagnostics for the main estimation in this chapter. The key 

mechanic in the diagnostics below comes from the effective sample size dynamic in SMC 

algorithms. In a SMC algorithm, one generates repeated importance sampling distributions for a 

sequence of increasingly different distributions. Samples generated for an initial distribution may 

not match later distributions particularly well and therefore, the number of effective samples will 

naturally decrease. To control this and to ensure the effective sample size stays high enough, two 

para 
SMC 

mean Sd. 
   
𝛽𝛽 0.99352 0.00119 

𝛾𝛾 − 1 2.29758 1.00288 
ℎ 0.46244 0.07441 

𝜙𝜙 − 1 3.46547 1.21152 
𝜃𝜃 − 1 4.40969 1.61064 
𝜁𝜁 0.44653 0.08395 
𝑙𝑙 0.08090 0.04519 

𝜓𝜓𝜋𝜋 − 1 0.91519 0.19334 
𝜓𝜓𝑦𝑦  0.09522 0.06507 
𝑝𝑝𝑖𝑖  0.88754 0.01787 
𝑝𝑝𝜏𝜏  0.49547 0.18285 
𝑝𝑝𝑎𝑎  0.99823 0.00154 
𝑝𝑝𝜋𝜋  0.97886 0.01137 
𝜎𝜎𝜏𝜏  0.04094 0.01797 
𝜎𝜎𝑎𝑎  0.01421 0.00208 
𝜎𝜎𝜋𝜋  0.00126 0.00021 
𝜎𝜎𝑖𝑖  0.00197 0.00016 
𝜏𝜏 0.38494 0.36830 

𝜋𝜋 − 1 0.00970 0.00402 
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strategies are employed in this paper. Firstly, Jasra et al (2010) propose a mechanism by which 

the rate of decay can be controlled. Secondly, once the sample size falls below a threshold, the 

draws are resampled to create more evenly weighted draws. For more detail on this see the 

estimation procedure section. The result is the pattern of the effective sample size in fig. 4 below. 

Fig. 4 shows repeated phases of very consistent decay of the ESS followed by an abrupt upwards 

jump as a result of the resampling step once the ESS falls below the threshold. The consistency 

of the behaviour shows how effective the procedure developed by Jasra et al (2010) is at 

controlling the path of the ESS. As a by-product of the resampling step, one typically receives a 

much more well behaved distribution of particles in a potentially higher average density area. 

Therefore, the acceptance rate jump upwards after every resampling step. To ensure that the 

acceptance rate is close to the target value of 0.24, the Herbst and Schorfheide (2016) target 

function will then gradually raise the scaling factor for the Metropolis Hastings step. 

In the tempering schedule, 𝜙𝜙𝑛𝑛 moves from zero to one. If 𝜙𝜙𝑛𝑛 is equal to zero, then the particle 

system represents the initial distribution. As 𝜙𝜙𝑛𝑛 moves to one, the SMC samples approximates 

distributions increasingly more similar to the posterior which culminates at 𝜙𝜙𝑛𝑛 = 1 with the 

posterior. The tempering schedules here is concave. This is the case for arguably two reasons. 

Firstly, the SMC sampler does not start out in an area of low density as the initial distribution 

is an approximated posterior. Therefore, the sampler can add information quickly without 

generating bridge distributions which are too dissimilar. Secondly, as the temperature increases, 

the noise of the target density due to the particle filter approximation increases.24 With increasing 

noise in the target function, the current posterior become more difficult to transverse and the 

speed of the tempering schedule decreases as it has to ensure the planned decay of the ESS.  

 

 

 
24 Assume 𝑝𝑝(𝑦𝑦|𝜃𝜃) is distributed as a normal with mean, 𝜇𝜇 𝑝𝑝(𝑦𝑦|𝜃𝜃), and variance, 𝜎𝜎 𝑝𝑝(𝑦𝑦|𝜃𝜃)

2 . Then the variance of the 

tempered distribu�on is defined as: 𝑉𝑉𝑎𝑎𝑁𝑁�𝜋𝜋𝑛𝑛(𝜃𝜃)� ∝ 𝑉𝑉𝑎𝑎𝑁𝑁 ��𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)�𝜙𝜙𝑛𝑛𝜇𝜇1(𝜃𝜃)1−𝜙𝜙𝑛𝑛� =

�𝜇𝜇1(𝜃𝜃)1−𝜙𝜙𝑛𝑛�𝑝𝑝(𝜃𝜃)�𝜙𝜙𝑛𝑛�
2
𝑉𝑉𝐴𝐴𝐼𝐼 ��𝑝𝑝(𝑦𝑦|𝜃𝜃)�𝜙𝜙𝑛𝑛�. For small 𝜙𝜙𝑛𝑛,𝑉𝑉𝐴𝐴𝐼𝐼 ��𝑝𝑝(𝑦𝑦|𝜃𝜃)�𝜙𝜙𝑛𝑛� is essen�ally zero. As 𝜙𝜙𝑛𝑛 

increases, 𝑉𝑉𝐴𝐴𝐼𝐼 ��𝑝𝑝(𝑦𝑦|𝜃𝜃)�𝜙𝜙𝑛𝑛� increases reaching the full variance at 𝜙𝜙𝑛𝑛 = 1 



223 
 

 

Fig. B.4: Simulation Diagnostics 

 

Notes: Simulation Diagnostics for the mean estimation. It includes acceptance rates, scaling factor, effective samples 

size and temperature path across the iteration.  
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B.6 Regression Tables for IRFs 
 

Table B.4: Regression of IRFs on impact of output to government consumption and transfer shocks on initial conditions 

 

Notes: Regressions of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  on initial conditions for a positive, one standard deviation shock to government 

consumption and transfers, respectively. Initial conditions are phrased as percentage steady state deviations as per the 

model set-up. 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛 is the in-sample root mean square error of the full linear model and  𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑟𝑟𝑎𝑎𝑛𝑛 is the RMSE 

for a mean model. 

 

 

 

 

 

 

 

 

variable 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+4
𝑌𝑌 |𝑣𝑣𝐺𝐺  𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+4

𝑌𝑌 |𝑣𝑣𝑍𝑍  
estim. std. t-val. estim. std. t-val. 

              
𝜋𝜋�𝑡𝑡−1 -0.0050 0.0003 -16.92 -0.0093 0.0007 -12.61 

𝑌𝑌�𝑡𝑡−1 -0.0003 8.52E-06 -30.24 0.0019 2.16E-05 89.09 
𝑖𝑖�̃�𝑡−1 -0.0061 0.0002 -25.29 -0.0128 0.0006 -21.10 

𝐵𝐵�𝑡𝑡−1 -7.27E-05 7.81E-07 -93.17 -0.0002 1.95E-06 -79.19 
�̃�𝜏𝑡𝑡−1
𝑙𝑙  0.0003 5.57E-06 46.07 0.0004 1.39E-05 31.88 

𝑍𝑍�𝑡𝑡−1 -7.88E-05 4.47E-06 -17.62 -0.0002 1.11E-05 -20.20 
𝐺𝐺�𝑡𝑡−1 0.0010 3.66E-06 260.76 9.58E-05 9.15E-06 10.46 
𝑎𝑎�𝑡𝑡−1 -0.0003 2.65E-06 -94.69 -0.0007 6.74E-06 -110.01 
�̃�𝜏𝑡𝑡−1
𝑐𝑐  3.47E-05 4.92E-06 7.06 8.06E-05 1.28E-05 6.27 
𝜋𝜋𝑡𝑡−1
∗  0.0043 0.0006 7.47 0.0042 0.0014 2.91 

Const. 0.0957 0.0001 708.11 -0.0085 0.0003 -25.16 
              
              
𝐼𝐼2 0.8789   0.6489   
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑎𝑎  0.0331     0.0830     
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝑎𝑎𝑎𝑎  0.0951     0.1400     
obs. 60000     60000     
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Table B.5: Regression of IRFs on impact of output to consumption and labour tax shocks on initial conditions 

 

Notes: Regressions of 𝐼𝐼𝑅𝑅𝐼𝐼𝑡𝑡+1
𝑌𝑌  on initial conditions for a positive, one standard deviation shock to consumption and 

labour taxation, respectively. Initial conditions are phrased as percentage steady state deviations as per the model 

set-up. 𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑛𝑛 is the in-sample root mean square error of the full linear model and  𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝑟𝑟𝑎𝑎𝑛𝑛 is the RMSE for 

a mean model. 

 

 

 

 

 

 

 

variable 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+4
𝑌𝑌 |𝑣𝑣𝜏𝜏𝑐𝑐  𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡+4

𝑌𝑌 |𝑣𝑣𝜏𝜏𝑙𝑙  
estim. std. t-val. estim. std. t-val. 

              
𝜋𝜋�𝑡𝑡−1 -0.0020 9.30E-05 -21.194 -0.0054 0.0003 -18.12 

𝑌𝑌�𝑡𝑡−1 0.0002 2.69E-06 81.743 0.0006 8.67E-06 66.11 
𝑖𝑖�̃�𝑡−1 -0.0015 7.61E-05 -19.770 -0.0052 0.0002 -21.00 

𝐵𝐵�𝑡𝑡−1 -2.56E-05 2.46E-07 -103.990 -8.33E-05 7.91E-07 -105.30 
�̃�𝜏𝑡𝑡−1
𝑙𝑙  5.76E-05 1.75E-06 32.842 0.0005 5.70E-06 82.46 

𝑍𝑍�𝑡𝑡−1 -1.02E-05 1.40E-06 -7.279 -4.36E-05 4.54E-06 -9.60 
𝐺𝐺�𝑡𝑡−1 -5.51E-06 1.15E-06 -4.796 6.92E-06 3.70E-06 1.87 
𝑎𝑎�𝑡𝑡−1 -8.29E-05 8.47E-07 -97.844 -0.0002 2.69E-06 -75.74 
�̃�𝜏𝑡𝑡−1
𝑐𝑐  9.04E-05 1.58E-06 57.057 2.76E-05 5.21E-06 5.30 
𝜋𝜋𝑡𝑡−1
∗  0.0024 0.0002 13.098 0.0071 0.0006 12.09 

Const. 0.0065 4.26E-05 151.902 0.0353 0.0001 256.67 
              
              
𝐼𝐼2 0.6929   0.5345   
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙𝑖𝑖𝑎𝑎  0.0104     0.0337     
𝐼𝐼𝑆𝑆𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝑎𝑎𝑎𝑎  0.0188     0.0494     
obs. 60000     60000     
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Appendix C  
 
Appendix to Chapter 3 
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C.1 Additional forecasting performance result tables 
 

Table C.1: Forecasting breakdown for output by samples for the rolling window 

 

Notes: Breakdown of the forecasting performance of output for the DSGE model for the rolling window estimation 

broken down into two subsamples: 1962 to 1999 and 2000 to 2021. The first column includes model descriptions for 

the set of models considered. The second column defines the forecast horizon. This a followed by two columns each for 

the two subsamples presenting estimates for the Root mean square error (RMSE) and percentage deviations to the 

VAR(1). 

 

 

 

model step 

Sample: 1962-1999 Sample: 2000-end 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) t + 1 0.010 0.000 0.016 0.000  

BVAR(1) Min t + 1 0.010 -2.832 0.016 -0.564  

BVAR(1) 𝜆𝜆 = 1 t + 1 0.009 -7.851 0.015 -7.842  

BVAR(1) 𝜆𝜆 = 2 t + 1 0.009 -4.961 0.015 -8.330  

VAR(1) t + 4 0.028 0.000 0.026 0.000  

BVAR(1) Min t + 4 0.027 -2.655 0.026 -1.388  

BVAR(1) 𝜆𝜆 = 1 t + 4 0.026 -5.367 0.027 2.829  

BVAR(1) 𝜆𝜆 = 2 t + 4 0.026 -7.186 0.026 -2.348  

VAR(4) t + 1 0.020 100.866 0.038 138.745  

BVAR(4) Min t + 1 0.011 6.718 0.021 33.101  

BVAR(4) 𝜆𝜆 = 1 t + 1 0.011 10.412 0.028 73.104  

BVAR(4) 𝜆𝜆 = 2 t + 1 0.010 -1.053 0.017 6.891  

VAR(4) t + 4 0.060 118.419 0.352 1232.541  

BVAR(4) Min t + 4 0.028 2.938 0.029 8.040  

BVAR(4) 𝜆𝜆 = 1 t + 4 0.037 34.759 0.133 401.158  

BVAR(4) 𝜆𝜆 = 2 t + 4 0.032 17.011 0.030 15.063  

ZLB t + 1 0.009 -8.938 0.017 4.334  

ZLB t + 4 0.026 -7.100 0.028 4.113  
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Table C.2: Forecasting breakdown for output by samples for the expanding window 

 

Notes: Breakdown of the forecasting performance of output for the DSGE model for the expanding window estimation 

broken down into two subsamples: 1962 to 1999 and 2000 to 2021. The first column includes model descriptions for 

the set of models considered. The second column defines the forecast horizon. This a followed by two columns each for 

the two subsamples presenting estimates for the Root mean square error (RMSE) and percentage deviations to the 

VAR(1). 

 

 

model step 

Sample: 1962-1999 Sample: 2000-end 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) t + 1 0.009 0.000 0.015 0.000  

BVAR(1) Min t + 1 0.009 -1.758 0.015 0.031  

BVAR(1) 𝜆𝜆 = 1 t + 1 0.009 -5.192 0.014 -5.447  

BVAR(1) 𝜆𝜆 = 2 t + 1 0.009 -3.326 0.014 -5.945  

VAR(1) t + 4 0.024 0.000 0.038 0.000  

BVAR(1) Min t + 4 0.024 -0.121 0.038 -0.021  

BVAR(1) 𝜆𝜆 = 1 t + 4 0.020 -14.917 0.029 -23.954  

BVAR(1) 𝜆𝜆 = 2 t + 4 0.021 -10.869 0.026 -30.727  

VAR(4) t + 1 0.011 24.531 0.018 16.175  

BVAR(4) Min t + 1 0.010 6.085 0.017 8.507  

BVAR(4) 𝜆𝜆 = 1 t + 1 0.009 0.041 0.017 8.573  

BVAR(4) 𝜆𝜆 = 2 t + 1 0.009 -0.987 0.016 7.513  

VAR(4) t + 4 0.038 57.754 0.039 3.911  

BVAR(4) Min t + 4 0.028 17.655 0.039 3.719  

BVAR(4) 𝜆𝜆 = 1 t + 4 0.025 4.264 0.033 -13.413  

BVAR(4) 𝜆𝜆 = 2 t + 4 0.025 3.953 0.030 -20.374  

ZLB t + 1 0.009 -5.175 0.017 8.739  

ZLB t + 4 0.025 2.848 0.026 -30.216  
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Table C.3: Forecasting breakdown for debt by samples for the rolling window 

 

Notes: Breakdown of the forecasting performance of debt for the DSGE model for the rolling window estimation broken 

down into two subsamples: 1962 to 1999 and 2000 to 2021. The first column includes model descriptions for the set of 

models considered. The second column defines the forecast horizon. This a followed by two columns each for the two 

subsamples presenting estimates for the Root mean square error (RMSE) and percentage deviations to the VAR(1). 

 

model step 

Sample: 1962-1999 Sample: 2000-end 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) 𝑡𝑡 + 1 0.036 0.00 0.031 0.00  

BVAR(1) Min 𝑡𝑡 + 1 0.035 -0.90 0.031 -0.09  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.034 -5.80 0.031 -1.22  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.033 -5.99 0.031 -0.17  

VAR(1) 𝑡𝑡 + 4 0.078 0.00 0.063 0.00  

BVAR(1) Min 𝑡𝑡 + 4 0.078 -1.21 0.063 0.05  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.065 -17.60 0.063 0.75  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.064 -17.95 0.062 -0.51  

VAR(4) 𝑡𝑡 + 1 0.042 18.26 0.033 3.57  

BVAR(4) Min 𝑡𝑡 + 1 0.035 -1.98 0.031 -1.92  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.033 -6.91 0.031 -2.01  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.033 -7.98 0.030 -3.96  

VAR(4) 𝑡𝑡 + 4 0.092 17.50 0.059 -6.03  

BVAR(4) Min 𝑡𝑡 + 4 0.074 -6.00 0.062 -1.79  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.067 -14.91 0.056 -11.50  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.064 -18.19 0.057 -9.68  

ZLB 𝑡𝑡 + 1 0.032 -9.28 0.031 -1.46  

ZLB 𝑡𝑡 + 4 0.061 -21.64 0.062 -1.60  
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Table C.4: Forecasting breakdown for gov. consumption by samples for the rolling window 

 

Notes: Breakdown of the forecasting performance of government consumption for the DSGE model for the rolling 

window estimation broken down into two subsamples: 1962 to 1999 and 2000 to 2021. The first column includes model 

descriptions for the set of models considered. The second column defines the forecast horizon. This a followed by two 

columns each for the two subsamples presenting estimates for the Root mean square error (RMSE) and percentage 

deviations to the VAR(1). 

model step 

Sample: 1962-1999 Sample: 2000-end 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) 𝑡𝑡 + 1 0.040 0.00 0.047 0.00  

BVAR(1) Min 𝑡𝑡 + 1 0.040 0.32 0.046 -1.17  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.037 -6.49 0.037 -22.00  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.038 -4.87 0.036 -22.94  

VAR(1) 𝑡𝑡 + 4 0.094 0.00 0.105 0.00  

BVAR(1) Min 𝑡𝑡 + 4 0.090 -4.41 0.106 0.72  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.085 -9.99 0.098 -6.58  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.085 -9.55 0.095 -9.45  

VAR(4) 𝑡𝑡 + 1 0.076 92.05 0.080 69.92  

BVAR(4) Min 𝑡𝑡 + 1 0.042 4.75 0.044 -5.44  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.042 5.46 0.049 4.22  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.038 -3.57 0.042 -9.77  

VAR(4) 𝑡𝑡 + 4 0.141 49.24 0.156 48.17  

BVAR(4) Min 𝑡𝑡 + 4 0.091 -3.67 0.120 13.70  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.087 -7.56 0.115 9.52  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.083 -11.75 0.104 -1.23  

ZLB 𝑡𝑡 + 1 0.035 -12.24 0.035 -25.62  

ZLB 𝑡𝑡 + 4 0.077 -18.81 0.085 -18.94  
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Table C.5: Forecasting breakdown for debt by samples for the expanding window 

 

Notes: Breakdown of the forecasting performance of debt for the DSGE model for the expanding window estimation 

broken down into two subsamples: 1962 to 1999 and 2000 to 2021. The first column includes model descriptions for 

the set of models considered. The second column defines the forecast horizon. This a followed by two columns each for 

the two subsamples presenting estimates for the Root mean square error (RMSE) and percentage deviations to the 

VAR(1). 

model step 

Sample: 1962-1999 Sample: 2000-end 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) 𝑡𝑡 + 1 0.021 0.00 0.021 0.00  

BVAR(1) Min 𝑡𝑡 + 1 0.021 -0.33 0.021 0.84  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.022 4.83 0.020 -4.93  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.022 3.90 0.020 -3.12  

VAR(1) 𝑡𝑡 + 4 0.069 0.00 0.074 0.00  

BVAR(1) Min 𝑡𝑡 + 4 0.068 -0.94 0.074 0.94  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.064 -6.72 0.075 1.73  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.060 -12.04 0.079 7.03  

VAR(4) 𝑡𝑡 + 1 0.036 70.70 0.050 140.83  

BVAR(4) Min 𝑡𝑡 + 1 0.021 2.16 0.023 11.58  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.024 14.68 0.024 16.34  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.020 -4.56 0.020 -3.80  

VAR(4) 𝑡𝑡 + 4 0.120 74.58 0.500 579.41  

BVAR(4) Min 𝑡𝑡 + 4 0.067 -2.13 0.092 24.71  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.074 7.55 0.097 31.20  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.062 -10.11 0.084 14.16  

ZLB 𝑡𝑡 + 1 0.019 -8.69 0.021 0.09  

ZLB 𝑡𝑡 + 4 0.054 -21.29 0.066 -9.66  
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Table C.6: Forecasting breakdown for gov. consumption by samples for the expanding window 

 

Notes: Breakdown of the forecasting performance of government consumption for the DSGE model for the expanding 

window estimation broken down into two subsamples: 1962 to 1999 and 2000 to 2021. The first column includes model 

descriptions for the set of models considered. The second column defines the forecast horizon. This a followed by two 

columns each for the two subsamples presenting estimates for the Root mean square error (RMSE) and percentage 

deviations to the VAR(1). 

 

C.2 Occbin solution strategy for Klein (2000) system set up  
 

To implement the Zero Lower Bound (ZLB) estimation for this chapter, I rely on a variation of 

the Occbin approach developed in Guerrieri and Iacoviello (2015) adapted to the Klein (2000) 

setup. The DSGE literature has independently developed several solvers for DSGE models like 

the Klein (2000), Sims (2002), or the solver developed for Dynare, among others. Each 

representation has its own individual advantages for certain models, data structures, 

computational speed or accuracy. However, most of them come with their own system setup and 

model step 

Sample: 1962-1999 Sample: 2000-end 
 

RMSE pct. dev. to VAR(1) RMSE pct. dev. to VAR(1)  

      
 

VAR(1) 𝑡𝑡 + 1 0.009 0.00 0.015 0.00  

BVAR(1) Min 𝑡𝑡 + 1 0.009 -1.76 0.015 0.03  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.009 -5.19 0.014 -5.45  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.009 -3.33 0.014 -5.95  

VAR(1) 𝑡𝑡 + 4 0.024 0.00 0.038 0.00  

BVAR(1) Min 𝑡𝑡 + 4 0.024 -0.12 0.038 -0.02  

BVAR(1) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.020 -14.92 0.029 -23.95  

BVAR(1) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.021 -10.87 0.026 -30.73  

VAR(4) 𝑡𝑡 + 1 0.011 24.53 0.018 16.18  

BVAR(4) Min 𝑡𝑡 + 1 0.010 6.09 0.017 8.51  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 1 0.009 0.04 0.017 8.57  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 1 0.009 -0.99 0.016 7.51  

VAR(4) 𝑡𝑡 + 4 0.038 57.75 0.039 3.91  

BVAR(4) Min 𝑡𝑡 + 4 0.028 17.66 0.039 3.72  

BVAR(4) 𝜆𝜆 = 1 𝑡𝑡 + 4 0.025 4.26 0.033 -13.41  

BVAR(4) 𝜆𝜆 = 2 𝑡𝑡 + 4 0.025 3.95 0.030 -20.37  

ZLB 𝑡𝑡 + 1 0.009 -5.18 0.017 8.74  

ZLB 𝑡𝑡 + 4 0.025 2.85 0.026 -30.22  
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nuanced differences in the way the solution strategies play out. A lot of the system setup is closely 

related, and systems can be reorganized (for a brilliant survey on DSGE solver, see Anderson 

(2007), which also offers detail on the system relations of various approaches). The problem is 

that it typically leaves you to expand the system size quite drastically, which in turn increases 

the runtime of simulations.  

Further, a lot of methods that build on the basic representations and solvers are adapted around 

the original notation preferred by the respective economists based on the problem at hand, as is 

the case for Occbin. In particular, it is the case that the original notation offers a favourable 

solution representation. For this chapter, the Klein (2000) approach is favourited for several 

reasons. Firstly, the Klein (2002) is a robust and fast DSGE solver. Secondly, the model files were 

written for chapter 2 for the Klein (2000) set up and re-writing DSGE files is an incredibly error-

prone procedure. Lastly, while Dynare delivers a fantastic ecosystem for writing, developing and 

estimating DSGE models, its codebase is much more difficult to adapt to other problems where 

you don’t fully make use of the Dynare codebase. Therefore, in this section, I describe how to 

adjust the Klein (2000) setup to solve for the ZLB recursive model structure as in Guerrieri and 

Iacoviello (2015). Crucially, Klein (2000) distinguishes between predetermined and non-

predetermined variables, while Guerrieri and Iacoviello (2015) does not. 

Guerrieri and Iacoviello (2015) begin by noting that the model with occasionally binding 

constraints can be in one of two phases. Either the occasionally binding constraints are slack, or 

they are binding today. If the constraint is slack, then the economy is defined to be in the 

reference regime and governed by a set of equations: 𝑙𝑙(𝑋𝑋𝑡𝑡+1,𝑋𝑋𝑡𝑡, 𝑋𝑋𝑡𝑡−1) ≤ 0. Otherwise, the 

constraint is binding in the alternative regime, and the economy faces an alternative system:  

ℎ(𝑋𝑋𝑡𝑡+1,𝑋𝑋𝑡𝑡, 𝑋𝑋𝑡𝑡−1) > 0. In the linear form, the reference regime and alternative regimes, 

respectively, can be summarized as follows: 

𝐴𝐴𝐸𝐸𝑡𝑡𝑋𝑋𝑡𝑡+1 + 𝐵𝐵𝑋𝑋𝑡𝑡 + 𝐶𝐶𝑋𝑋𝑡𝑡−1 + 𝐷𝐷𝑧𝑧𝑡𝑡+1 + 𝐸𝐸𝑧𝑧𝑡𝑡 = 0, 

𝐴𝐴�̃�𝐸𝑡𝑡𝑋𝑋𝑡𝑡+1 + 𝐵𝐵�𝑋𝑋𝑡𝑡 + 𝐶𝐶�̃�𝑋𝑡𝑡−1 + 𝐷𝐷�𝑧𝑧𝑡𝑡+1 + 𝐸𝐸̃𝑧𝑧𝑡𝑡 + 𝐼𝐼 ̃ = 0, 

where 𝑋𝑋𝑡𝑡 is of dimension (𝑙𝑙𝑥𝑥 × 1) and 𝑧𝑧𝑡𝑡is (𝑙𝑙𝑧𝑧 × 1). The matrices 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are sized  

(𝑙𝑙𝑥𝑥 × 𝑙𝑙𝑥𝑥) whereas 𝐷𝐷 and 𝐸𝐸 are of dimension (𝑙𝑙𝑧𝑧 × 𝑙𝑙𝑧𝑧). Further, 𝐼𝐼̃ is a (𝑙𝑙𝑥𝑥 × 1) column vector.  
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𝑧𝑧𝑡𝑡+1 and 𝑧𝑧𝑡𝑡 may be reduced to 𝒛𝒛𝒕𝒕 = [𝑧𝑧𝑡𝑡′, 𝑧𝑧𝑡𝑡+1′]’ using Ψ = [𝐸𝐸, 𝐷𝐷] to match Guerrieri and Iacoviello 

(2015) based on Anderson (2007): 

𝐴𝐴𝐸𝐸𝑡𝑡𝑋𝑋𝑡𝑡+1 + 𝐵𝐵𝑋𝑋𝑡𝑡 + 𝐶𝐶𝑋𝑋𝑡𝑡−1 + Ψ𝒛𝒛𝑡𝑡 = 0, 

𝐴𝐴�̃�𝐸𝑡𝑡𝑋𝑋𝑡𝑡+1 + 𝐵𝐵�𝑋𝑋𝑡𝑡 + 𝐶𝐶�̃�𝑋𝑡𝑡−1 + 𝐷𝐷�𝑧𝑧𝑡𝑡+1 + Ψ�𝒛𝒛𝑡𝑡 + 𝐼𝐼 ̃ = 0. 

 Further, 𝑧𝑧𝑡𝑡+1 typically follows the following type of process: 

𝑧𝑧𝑡𝑡+1 = 𝜙𝜙𝑧𝑧𝑡𝑡 + 𝜀𝜀𝑡𝑡+1. 

To move from the Guerrieri and Iacoviello (2015) setup to the Klein (2000) notation, the system 

has to be rewritten such that the model includes one lead endogenous vector but no lags. To do 

so, I introduce auxiliary vectors 𝑘𝑘𝑡𝑡 and 𝑢𝑢𝑡𝑡. 𝑘𝑘𝑡𝑡 is a vector of state variables which includes pre-

determined variables that may be endogenous at other lags and purely exogenous variables.  At 

time 𝑑𝑑, 𝑋𝑋𝑡𝑡−1 has already been determined and therefore satisfies the predetermination criterion. 

Therefore, 𝑘𝑘𝑡𝑡 may be constructed as 𝑘𝑘𝑡𝑡 = [𝑋𝑋𝑡𝑡−1
′ , 𝑧𝑧𝑡𝑡

′]′. 𝑘𝑘𝑡𝑡 is a vector of size (𝑙𝑙𝑘𝑘 × 1) where 𝑙𝑙𝑘𝑘 =

𝑙𝑙𝑥𝑥 + 𝑙𝑙𝑧𝑧. 𝑢𝑢𝑡𝑡 is a vector of non-state variables or variables that are endogenous today. 𝑢𝑢𝑡𝑡 is set to 

𝑋𝑋𝑡𝑡. Consequently, the system can be rewritten under the reference and alternative regime, 

respectively: 

⎣
⎢
⎡

𝐵𝐵1 𝐷𝐷 𝐴𝐴
0 𝐼𝐼𝑛𝑛𝑧𝑧

0
𝐼𝐼𝑛𝑛𝑥𝑥

0 0⎦
⎥
⎤

⎣
⎢⎡

𝑋𝑋𝑡𝑡
𝑧𝑧𝑡𝑡+1

𝐸𝐸𝑡𝑡𝑋𝑋𝑡𝑡+1⎦
⎥⎤ +

⎣
⎢⎡
𝐶𝐶 𝐸𝐸 𝐵𝐵2
0 −𝜙𝜙 0
0 0 −𝐼𝐼𝑛𝑛𝑥𝑥⎦

⎥⎤
⎣
⎢⎡

𝑋𝑋𝑡𝑡−1
𝑧𝑧𝑡𝑡
𝑋𝑋𝑡𝑡 ⎦

⎥⎤ + �
0

𝜀𝜀𝑡𝑡+1
0

� = 0, 

⎣
⎢
⎡

𝐵𝐵�1 𝐷𝐷� 𝐴𝐴̃
0 𝐼𝐼𝑛𝑛𝑧𝑧

0
𝐼𝐼𝑛𝑛𝑥𝑥

0 0⎦
⎥
⎤

⎣
⎢⎡

𝑋𝑋𝑡𝑡
𝑧𝑧𝑡𝑡+1

𝐸𝐸𝑡𝑡𝑋𝑋𝑡𝑡+1⎦
⎥⎤ +

⎣
⎢
⎡

𝐶𝐶 ̃ 𝐸𝐸̃ 𝐵𝐵�2
0 −𝜙𝜙 0
0 0 −𝐼𝐼𝑛𝑛𝑥𝑥⎦

⎥
⎤

⎣
⎢⎡
𝑋𝑋𝑡𝑡−1
𝑧𝑧𝑡𝑡�
𝑋𝑋𝑡𝑡 ⎦

⎥⎤ + �
0

𝜀𝜀�̃�𝑡+1
0

� + �
𝐼𝐼̃
0
0
� = 0, 

In practice, one may wish to reduce the size of 𝑘𝑘𝑡𝑡 by omitting elements of 𝑋𝑋𝑡𝑡−1 that do not 

actually enter the system of equations. In this case, that is not possible, as one of the requirements 

for the Occbin solution to bind is that there exists a linear mapping from the current 

predetermined vector to the previous control vector and vice versa. The easiest way to ensure 

that that is the case is by following the above structure and including redundant predetermined 

variables. This can be done by simply adding identity equations.  

 If the economy is in the reference regime, the Klein (2002) algorithm allows us to construct a 

solution of the following type for the predetermined and exogenous variables: 



235 
 

� 𝑋𝑋𝑡𝑡
𝑧𝑧𝑡𝑡+1

� = 𝐻𝐻 �𝑋𝑋𝑡𝑡−1
𝑧𝑧𝑡𝑡

� + � 0
𝜀𝜀𝑡𝑡+1

� , 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝐻𝐻 = �𝐻𝐻11 𝐻𝐻12
0 𝜙𝜙 �. 

Alternatively, if the constraint binds, then one can recursively solve for the system today based 

on a proposed duration of the ZLB, after which the economy remains in the unconstrained case. 

To illustrate, assume that in 𝑑𝑑 = 3, the system is unconstrained, but in 𝑑𝑑 = 2 and 𝑑𝑑 = 1 the 

economy is constrained. In 𝑑𝑑 = 3, we know that the system transitions by the unconstrained law 

of motioned defined above and can be expressed with indices as follows: 

�𝑋𝑋3
𝑧𝑧4

� = �𝐻𝐻11 𝐻𝐻12
0 𝜙𝜙 � �𝑋𝑋2

𝑧𝑧3
� + � 0

𝜀𝜀4
�. 

In 𝑑𝑑 = 2, the constrained system governs the economy: 

⎣
⎢
⎡

𝐵𝐵� 𝐷𝐷� 𝐴𝐴̃
0 𝐼𝐼𝑛𝑛𝑧𝑧

0
𝐼𝐼𝑛𝑛𝑥𝑥

0 0⎦
⎥
⎤

⎣
⎢⎡

𝑋𝑋2
𝑧𝑧3

𝐸𝐸2𝑋𝑋3⎦
⎥⎤ +

⎣
⎢
⎡

𝐶𝐶 ̃ 𝐸𝐸̃ 0
0 −𝜙𝜙 0
0 0 −𝐼𝐼𝑛𝑛𝑥𝑥⎦

⎥
⎤�

𝑋𝑋1
𝑧𝑧2
𝑋𝑋2

� + �
𝐼𝐼̃
0
0
�. 

To solve this system, 𝐸𝐸2𝑋𝑋3 needs to be evaluated. The agent knows that in 𝑑𝑑 = 3, the economy 

is in the reference regime, and because we have defined the law of motion in that case above, we 

can evaluate 𝐸𝐸2𝑋𝑋3 as: 

𝐸𝐸2𝑋𝑋3 = 𝐸𝐸2(𝐻𝐻11𝑋𝑋2 + 𝐻𝐻12𝑧𝑧3) = (𝐻𝐻11𝑋𝑋2 + 𝐻𝐻12𝜙𝜙𝑧𝑧2). 

Then, we first take the conditional expectation, 𝐸𝐸2, of the entire system, and we can substitute 
𝐸𝐸2𝑋𝑋3 out and solve for 𝑋𝑋2 as a function of 𝑋𝑋1 and 𝑧𝑧2: 

 

𝐵𝐵�𝑋𝑋2 + 𝐷𝐷�𝜙𝜙𝑧𝑧2 + 𝐴𝐴(̃𝐻𝐻11𝑋𝑋2 + 𝐻𝐻12𝜙𝜙𝑧𝑧2) + 𝐶𝐶�̃�𝑋1 + 𝐸𝐸̃𝑧𝑧2 + 𝐼𝐼 ̃ = 0, 

𝑋𝑋2 = −�𝐵𝐵� + 𝐴𝐴�̃�𝐻11�
−1

𝐶𝐶�̃�𝑋1 − �𝐵𝐵� + 𝐴𝐴�̃�𝐻11�
−1

�𝐷𝐷�𝜙𝜙 + 𝐴𝐴�̃�𝐻12𝜙𝜙 + 𝐸𝐸̃�𝑧𝑧2 − �𝐵𝐵� + 𝐴𝐴�̃�𝐻11�
−1

𝐼𝐼 ̃. 

 

At this point, the equation above defines a comparable recursive solution to Guerrieri and 

Iacoviello (2015). The only difference is the explicit inclusion of 𝑧𝑧2. Vectorizing allows us to define 

the following system based on the Klein (2000) setup: 

�𝑋𝑋2
𝑧𝑧3

� = �−�𝐵𝐵� + 𝐴𝐴�̃�𝐻11�
−1

𝐶𝐶 ̃ −�𝐵𝐵� + 𝐴𝐴�̃�𝐻11�
−1

(𝐷𝐷�𝜙𝜙 + 𝐴𝐴�̃�𝐻12𝜙𝜙 + 𝐸𝐸̃)
0 𝜙𝜙

� �𝑋𝑋1
𝑧𝑧2

�

+ �−�𝐵𝐵� + 𝐴𝐴�̃�𝐻11�
−1

𝐼𝐼 ̃

0
� + � 0

𝜀𝜀3
�, 
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�𝑋𝑋2
𝑧𝑧3

� = �
𝐻𝐻11,𝑡𝑡=2 𝐻𝐻12,𝑡𝑡=2

0 𝜙𝜙
� �𝑋𝑋1

𝑧𝑧2
� + �𝑅𝑅1,𝑡𝑡=2

0
� + � 0

𝜀𝜀3
�. 

Similarly, in 𝑑𝑑 = 1 we can substitute again using 𝐻𝐻11,𝑡𝑡=2, 𝐻𝐻12,𝑡𝑡=2 and 𝑅𝑅1,𝑡𝑡=2 to recover:  

�𝑋𝑋1
𝑧𝑧2

� = �−�𝐵𝐵� + 𝐴𝐴�̃�𝐻11,𝑡𝑡=2�
−1

𝐶𝐶 ̃ −�𝐵𝐵� + 𝐴𝐴�̃�𝐻11,𝑡𝑡=2�
−1

(𝐷𝐷�𝜙𝜙 + 𝐴𝐴�̃�𝐻12,𝑡𝑡=2𝜙𝜙 + 𝐸𝐸̃)
0 𝜙𝜙

� �𝑋𝑋0
𝑧𝑧1

�

+ �−�𝐵𝐵� + 𝐴𝐴�̃�𝐻11,𝑡𝑡=2�
−1

(𝐴𝐴�̃�𝑅1,𝑡𝑡=2 + 𝐼𝐼 ̃)
0

� + � 0
𝜀𝜀2

� 

 

C.3 Average posterior estimates of the DSGE-VAR model 

 

In this section, I present estimates of the structural DSGE parameters constructed as a by-

product of the  𝐷𝐷𝐸𝐸𝐺𝐺𝐸𝐸 − 𝑃𝑃𝐴𝐴𝑅𝑅(1) rolling window estimations with 𝜆𝜆 equal to two. To construct 

a more direct comparison between the estimations in chapter two and three that is less sample 

dependent, I construct mean estimates and the associated standard deviations across all rolling 

window estimations. The results are presented in the tables below.  

Table C.7: Averaged rolling window core economic parameter estimates 

 

para mean sd. para mean sd. 

            
𝛽𝛽 0.99565 0.00320 𝑝𝑝𝜋𝜋  0.90433 0.06077 

𝛾𝛾 − 1 5.08352 2.86637 𝜎𝜎𝜏𝜏𝑙𝑙  0.00902 0.00494 
ℎ 0.46517 0.21144 𝜎𝜎𝜏𝜏𝑐𝑐  0.01341 0.00608 

𝜙𝜙 − 1 0.99182 0.59086 𝜎𝜎𝑇𝑇 0.03331 0.01204 
𝜃𝜃 − 1 2.02857 2.01873 𝜎𝜎𝐺𝐺  0.00936 0.00281 
𝜁𝜁 0.69881 0.11944 𝜎𝜎𝑎𝑎  0.01693 0.00714 
𝑙𝑙 0.25996 0.14280 𝜎𝜎𝑖𝑖  0.00076 0.00038 

𝜓𝜓𝜋𝜋 − 1 0.92541 0.20987 𝜎𝜎𝜋𝜋  0.00053 0.00034 
𝜓𝜓𝑦𝑦  0.18667 0.08098 𝜏𝜏𝑙𝑙  0.22996 0.00108 
𝑝𝑝𝜏𝜏𝑙𝑙  0.59955 0.21354 𝜏𝜏𝑐𝑐  0.01576 0.00160 
𝑝𝑝𝜏𝜏𝑐𝑐  0.72088 0.14795 𝑠𝑠𝑔𝑔  0.05974 0.00108 
𝑝𝑝𝑍𝑍  0.81896 0.22103 𝑠𝑠𝑏𝑏  0.51739 0.02349 
𝑝𝑝𝐺𝐺  0.62932 0.21554 𝜋𝜋 0.00560 0.00027 
𝑝𝑝𝑎𝑎  0.99675 0.04054       
𝑝𝑝𝑖𝑖  0.81442 0.08694       
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Table C.8: Averaged rolling window fiscal parameter estimates 

 

Firstly, parameter uncertainty is almost uniformly higher in chapter three than it is in chapter 

two. This is a fairly natural by-product of the smaller estimation samples, less posterior draws 

and the change in estimation technique. Secondly, while a large share of parameters is estimated 

very similar to chapter 2, some core economic and fiscal policy parameters are estimated quite 

differently. For example, the parameter of relative risk aversion, 𝛾𝛾 − 1, is estimated with a mean 

of 2.89 in chapter 2, while the DSGE-VAR estimate sits closer to 5. Furthermore, the goods 

elasticity of substitution, 𝜃𝜃 − 1, is estimated to be substantially lower at around 2. Similarly, the 

DSGE-VAR estimates for the inflation indexation are lower at 0.26. Overall, the autoregressive 

parameters tend to be quite a bit lower. Changes persist also for the fiscal policy parameters 

where 𝜇𝜇𝜏𝜏𝑙𝑙,𝑌𝑌, 𝜇𝜇𝜏𝜏𝑙𝑙,𝐵𝐵 and 𝜇𝜇𝑍𝑍,𝐵𝐵 are all estimated with higher means in chapter three. Arguably, the 

difference in estimates mostly arise due to moving from a full likelihood to a quasi-likelihood 

approach, differences in sample selection and switching away from the non-linear DSGE. The 

differences in parameter estimates may also explain the differences in impulse response results 

between chapters two and three.  

 

para mean sd. 

      
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝑌𝑌 0.25487 0.23454 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐵𝐵 0.37331 0.45616 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝐴𝐴 0.02876 0.15617 
𝜇𝜇𝜏𝜏𝑙𝑙 ,𝜋𝜋  0.01102 0.11085 
𝜇𝜇𝑍𝑍,𝑌𝑌  0.15466 0.10821 
𝜇𝜇𝑍𝑍,𝐵𝐵 0.42681 0.58104 
𝜇𝜇𝑍𝑍,𝐴𝐴 0.02476 0.11608 
𝜇𝜇𝑍𝑍,𝜋𝜋  -0.00583 0.10794 
𝜇𝜇𝐺𝐺 ,𝑌𝑌 0.19487 0.16964 
𝜇𝜇𝐺𝐺 ,𝐵𝐵 0.16836 0.23302 
𝜇𝜇𝐺𝐺 ,𝐴𝐴 -0.04079 0.14352 
𝜇𝜇𝐺𝐺 ,𝜋𝜋  -0.00208 0.10471 
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