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Optic flow motion patterns can be a rich source of information about our own 

movement and about the structure of the environment we are moving in.  We 

investigate the information available to the brain under real operating conditions by 

analysing video sequences generated by physically moving a camera through various 

typical human environments. We consider to what extent the motion signal maps 

generated by a biologically plausible, two-dimensional array of correlation-based 

motion detectors (2DMD) not only depend on egomotion, but also reflect the spatial 

setup of such environments. We analysed the local motion outputs by extracting the 

relative amounts of detected directions and comparing the spatial distribution of the 

motion signals to that of idealized optic flow. Using a simple template matching 

estimation technique, we are successfully able to extract the focus of expansion (FOE) 

and find relatively small errors that are distributed in characteristic patterns in 

different scenes. This shows that all types of scenes provide suitable motion 

information for extracting ego motion despite the substantial levels of noise affecting 

the motion signal distributions - attributed to the sparse nature of optic flow and the 

presence of camera jitter. However, there are large differences in the shape of the 

direction distributions between different types of scenes, in particular man-made 

office scenes are heavily dominated by directions in the cardinal axes, which is much 

less apparent in outdoors forest scenes. Further examination of motion magnitudes at 

different scales and the location of motion information in a scene revealed different 

patterns across different scene categories. This suggests that self-motion patterns are 

not only relevant for deducing heading direction and speed, but also provide a rich 

information source for scene structure and could be important for rapid formation of 

the gist of a scene under normal human locomotion.   
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1. Introduction 

 

Optic flow, the characteristic pattern of motion signals that occur on the human retina 

when moving through an environment (Gibson, 1950), is an important way of gauging 

our own movement and gaining feedback on our direction and speed of heading. In 

the laboratory, human sensitivity to optic flow is usually tested using moving 

randomly positioned dots to in order to restrict input to motion information alone, 

thereby disambiguating motion from other cues such as object position and depth 

(Regan & Beverley, 1983; for reviews see Lappe, 2000; Warren, 2008). This however 

leads to a rather limited understanding of the kind of optic flow information available 

to humans in the natural environment and the ability to extract it. To tackle this 

question many past studies have taken the approach of using static natural images to 

generate artificial motion patterns calculated using the geometry to create appropriate 

motion signals. These generated motion fields have then been used to test motion 

models (e.g. Barron et al. 1994; Fleet & Langley, 1995) and description of motion 

statistics in natural scenes (Calow & Lappe, 2004; 2007), also combining recorded 

forward motion trajectories with static scenes to generate motion field statistics and 

using these to develop sophisticated prior probability based optic flow detector 

models (Roth & Black, 2007).  A different approach has been to record the image 

sequence caused by movement through natural scenes and analyze the statistics of 

motion fields as calculated by low level motion detectors applied to the image 

sequences (Zanker & Zeil, 2005; Dakin et al. 2005).  Both approaches present their 

own advantages - we take the latter approach for the closest approximation to genuine 

motion input experienced by humans and will argue that the motion model used in 

this work is a suitable approximation of early human motion detectors. This 

investigation offers a comprehensive analysis of motion direction and speed 

distributions caused by motion through natural scenes and also considers the extent to 

which motion signal distributions depend on the type of environment an observer is 

moving through. This work focuses on the output from local motion detectors as in 

Durant et al. (2011), but past work also exists where natural dynamic scenes have 

been analyzed for local and global motion content (Bartels et al, 2008). 
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Roth & Black (2007) considered artificially generated flow motion statistics over a 

large image database, too which they applied camera motion taken from a database of 

video clips (which could be walking or driving through a scene, but also around an 

object). Generating the motion field allowed them to asses the properties of the 

generated flow in comparison with the ground truth, one advantage of their method.  

They found that the generated image velocities were distributed in a characteristic 

pattern, peaking at very low magnitudes and dropping off with higher magnitudes and 

also found a great deal of horizontal motion with a smaller peak for vertical motion, 

however they state that much of this can be attributed to the distribution of camera 

motion used, which contained a great deal of horizontal motion. 

 

Calow and Lappe (2007) took a similar approach based on earlier work by the same 

group (Calow et al. 2004). However, differing from our and Roth & Black’s (2007) 

approach of using rigid camera motion they also reproduced typical eye movement 

data during navigation through scenes. They used a spherical model of the eye to 

reproduce retinal velocities. They considered the statistics of motion directions and 

speed relative to their location within the visual scene. They compared local motion 

directions with that of radial flow and saw systematic divergence and found a 

difference in speeds and the variability of speeds between lower and upper visual 

fields and with distance from the center of the visual field. Their extremely 

comprehensive and detailed work makes for interesting comparison with the current 

results using simple local motion detectors and real optic flow scenes of forward 

motion. As in Roth and Black (2007) this work generates and analyzes single frames 

of optic flow. This current work complements these analyses by considering optic 

flow generated in an environment over a larger time scale of several seconds and 

many frames.  

 

 

Dakin et al. (2005) measured the distributions of different directions in movement 

through natural scenes recorded by walking and from a car and analysed using a 

simple motion energy local motion detector and found more motion energy in the 

cardinal motion directions rather than in the oblique directions, matching human 

performance patterns that show better motion discrimination around the cardinal 

directions - the so-called oblique effect.  Their examples were all drawn from a 



5 
 

similar terrain of partly man-made park land. Advancing a camera on a gantry in a 

natural environment to record image sequences, Zanker & Zeil (2005) used a local 

motion correlation model that is functionally equivalent to some energy models and 

found that motion signals were often sparse and extremely noisy, rather different from 

the signals typically used as optic flow stimuli in psychophysical experiments. 

 

Detecting self-motion is crucial in navigation for maintaining the speed as well as the 

direction of one’s own movement in space, and a number of studies tried to identify 

the importance of the focus of expansion (FOE) in optic flow patterns for estimating 

the direction of heading (Lappe et al. 1999; Warren, et al., 1988).  Detecting the FOE, 

and thus self-motion direction, is usually considered a problem of extracting global 

motion, but it is useful to consider first what is represented in local motion 

information, as basis of inferring global motion. The type, reliability, density, and 

distribution of this local information ultimately limits the global information that can 

be extracted. In this work we ask - how much information is present in local motion in 

natural scenes that can be used to extract optic flow? What can the statistics of local 

motion tell us about the structure of a scene? We investigate how optic flow generated 

local motion signals differ between environments. To assess local motion contents of 

a scene, we use the 2DMD motion correlation model as one of the simplest and 

biologically plausible models for local motion detection that has been used in a wide 

range of context to constrain expectations about the information available to 

biological systems (Zeil & Zanker, 1997, Zanker & Braddick, 1999, Zanker, 2001). 

This model performs a spatio-temporal correlation which provides a measure of the 

magnitude of the correlation - i.e. how well the image drives a particular motion 

detector unit at a given location - and we can use the relative magnitudes between 

horizontally and vertically arranged detectors to estimate the local direction of 

motion.  The magnitude of the correlation can also give us an estimate of speed for 

some scenes, as natural images with their 1/f spatial structure (van der Schaaf & van 

Hateren, 1996) tend to be rather broadband, a case in which spatial-temporal 

correlation is closely related to speed (Meso & Zanker, 2009).   The aim is for the 

results of the analysis to be independent on the model we have selected because most 

low-level motion models produce similar local outputs with broadband luminance-

defined stimuli (Dakin et al. 2005, Durant & Johnston, 2009), but this will be further 

examined in the discussion.  
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Natural scenes are of particular interest, because the dynamic image sequences 

contain information not just about the direction of self motion, but also about the 

scene structure – about some aspects of shape, distance, size and the type of objects 

themselves (Wexler et al. 2001). In the local motion output these two things are not 

separate – the local shape of the object influences the shape of the flow, which a 

higher order motion mechanism or averaging process would need to correct for in 

order to extract global motion.  Here we investigate how much this task will differ 

from scene to scene, by seeing how local motion varies and the systematic deviation 

that is caused by structure from an idealized expanding optic flow pattern.   

 

The different scenes we compare are arranged loosely into three main categories of 

“office”, “campus” and “forest” in ascending similarity to a “natural” environment 

that is not affected in its visual structure by human intervention.  Analysis of natural 

scenes often involves making conclusions from statistics derived from large image 

databases (for a review see Simoncelli & Olshausen 2001).  Our sample size is small 

but we wanted to ask how different scenes vary in their motion content, rather then 

combining them under the umbrella of natural scenes. To some extent these scenes 

represent on one hand everyday environments as experienced by modern humans, and 

on another hand the kind of natural environments that may have placed the constraints 

on our evolving visual system.  This choice may give us a simple tool for having a 

glimpse at any differences between these two transformational pressures on the visual 

system exerted over different time scales. 

 

 

 

 

2. Methods 

 

Recording equipment and procedure 

 

A Panasonic 3CCD miniDV tape camera was used to record AVI movies, with no 

image compression or motion stabilisation. The field of view was approximately 40° 

horizontally. The camera was attached to a trolley on wheels and sat 67cm above the 
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ground.  The trolley was manually pushed along smooth wooden tracks with edges on 

to minimize side-to-side movement.  The length of the track the trolley was pushed 

along was 200cm, which took approximately 10s, resulting in a speed of 0.2 ms-1.  

Movies were recorded at 25 frames s-1, resulting in about 250 frames per recording. 

The track could be moved to whichever location was needed.  Movies were recorded 

indoors in office buildings (‘office’), outdoors near to buildings around the campus 

(‘campus’) and outdoors in the middle of wooded area on campus (‘forest’). Four 

different examples of each type of location were recorded and each scene was 

recorded at least 3 times (sometimes more), with the tracks in the same position. 

 

Pre-processing 

 

3 movie clips were chosen from each scene, judged by eye to have the least jerky, 

most straight-ahead motion. The AVI movies were split into individual black and 

white GIF images of 576×720 pixels, each frame having a maximum intensity value 

of 255 and a minimum value of zero. The first 50 frames were discarded from the start 

of the motion and then 150 frames used for analysis. 

 

2DMD model settings 

 

Image sequences were analyzed with a two-dimensional, correlation-type motion 

detector model (2DMD). This model has been used previously to analyze species-

specific movement signals in crabs (Zeil & Zanker 1997), and to simulate a variety of 

psychophysical phenomena (Zanker 1997; Zanker & Braddick 1999; Zanker 2004) as 

well as investigate self-motion generated patterns in natural scenes (Zanker & Zeil, 

2005). The basic building blocks of the 2DMD model are elementary motion detectors 

(EMDs) of the correlation type, which have been shown to describe the computational 

structure of biological motion detectors at least in insects (for review, see Reichardt 

1987; Borst & Egelhaaf 1989). Under certain conditions correlation-type motion 

detectors become formally equivalent (see Hildreth & Koch 1987) to a variety of 

luminance-based motion detectors (Adelson & Bergen 1985; Van Santen & Sperling 

1985; Watson & Ahumada 1985). We thus expect that the particular choice of model 

will not affect our main conclusions. Despite their differences in specific tuning 
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properties, these and other motion detector models (e.g., Torre & Poggio 1978; 

Srinivasan 1990; Johnston et al. 1999) are likely to generate similar distributions of 

motion signals, because they are based on local operations on spatial and temporal 

changes in luminance, although an important feature of the 2DMD is that its output is 

contrast dependent and hence it represents the very early stages of visual processing 

(Zanker et al. 1999). 

 

In the simplest implementation, each EMD receives input from two points of a 

spatially filtered luminance pattern. The signals interact in a nonlinear way after some 

temporal filtering to provide a directionally selective signal. Difference of Gaussians 

(DOGs) are used as bandpass filters in the input lines, with excitatory center and 

inhibitory surround balanced as to exclude DC components from the input (cf. 

Srinivasan & Dvorak, 1980). The sampling distance between the two inputs is used as 

a fundamental spatial model parameter. The signal from one input line is multiplied 

with the temporally filtered signal from the other line, and two anti-symmetric units of 

this kind are subtracted from each other with equal weights, leading to a fully 

opponent EMD, which is highly directionally selective (Borst & Egelhaaf, 1989). The 

time constant of the first-order low pass filter was used as a fundamental temporal 

model parameter. 

 

Unless stated otherwise the following default 2DMD model settings were used as 

follows -  input filter gain: 4, EMD sampling width: 4 pixels (corresponds to 

approximately 0.25º a visual angle), Difference Of Gaussian (DoG) center width: 0.5 

pixels (approximately 3’ of visual angle), EMD time constant: 6.0 frames (approx 

250ms). These parameters were chosen after some piloting to find the largest output, 

the relatively long time constant is matched to the slow speed of movement forward. 

The model outputs motion correlations computed in the horizontal direction and in the 

vertical direction at each pixel for each frame.  The first 6 frames of output are 

ignored in the analysis as the motion detector response peaks later in time after the 

initial input. The spatial filtering involved in calculating the motion process, leaves a 

boundary area at edges of each frame where motion calculations are invalid.  The 

width of this area varies with the spatial scale of the filter and for a sampling width of 

4 pixels is 36 pixels. 

 



9 
 

3. Results 

 

Direction distributions 

 

We begin by looking at the statistical distributions of directional responses in the 

different scenes. The direction of the motion responses is calculated at each pixel by 

finding tan-1(hor/ver), where hor and ver are the horizontal and vertical motion 

outputs and can reach a maximum value of 1. The motion magnitude at each pixel is 

calculated as the magnitude of the vector formed of hor and ver, which 

equals 22 verhor + . Although we have only twelve scenes, for each scene we have 

many frames to inform our statistics. We begin by averaging over the output from all 

of the frames for each scene.  We do not suggest that the brain averages over 144 

frames as we do, as this would mean a temporal averaging in the range of 6s or so, 

which is not physiologically plausible.  Rather, we are averaging to overcome any 

jerkiness in recording, arising from camera jitter, and to enhance signal-to-noise ratio.  

This will also emphasize the motion that is consistent over frames – i.e. the motion 

caused by forward motion, rather than any other motion due maybe to any intermittent 

motion of parts of the scene (such as branch movement). We average by averaging all 

the horizontal outputs and vertical outputs separately, keeping all the original 

measurements as far into the process as possible, and then extracting the directions 

from the two overall averages.  This results in opposite horizontal and vertical 

directions cancelling each other out, which would be the side-to-side or up and-down 

motion of camera shakiness.  It also avoids on each frame very small motion 

magnitudes resulting in spurious motion directions and allows small consistent motion 

direction to add up. 

 

First we consider the visualized 2D directional output (Figure 1).  We can consider the 

direction only output (parts (ii)), which shows the direction (as indicated by the color 

wheel) for every pixel where motion was measured above some minimal cut-off point 

(below threshold is shown as white), or we can consider the direction and magnitude 

output, where the directions are scaled by the motion magnitude (parts (iii)); here 

color indicates direction and saturation indicates motion magnitude.  Just by 

qualitatively considering these example outputs we can see differences between the 
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scenes - the less artificial scenes appear to contain more continuous motion, and there 

are greater left/right signals in the artificial scenes that contain more edges and 

sparser, but less noisy motion information.  The streaks are caused by averaging over 

time and show that over this length of time, the change in the motion pattern captures 

some of the optic flow structure.  All images in these examples appear to exhibit a 

motion pattern consistent with optic flow, namely that of expansion. There does not 

appear to be a great deal of variation in the maximum magnitude, more the different 

locations of motion in the scenes.   
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Figure 1. Illustration of averaged direction outputs. (a (i), b(i)) A single frame is 

shown from each of the 6 example clips. (a (ii), b(ii)) Direction only outputs as 

calculated from the separately averaged hor and ver outputs over all the 144 frames 

(thresholded to zero for motion magnitudes less than 0.1% of the maximum output, 

zero values are white, the color wheel shows direction). (a (iii), b(iii)) direction and 

magnitude outputs of the same averages as in (ii), with color saturation representing 

the magnitude, again white represents zero values. The images have been normalized 

to their own maximum, for which the value is given in the bottom left hand corner. 

 

It should be noted that these flow fields merely show how much information is 

available in principle to in these scenes to extract optic flow, but due to the long 

averaging times are most likely to be an overestimation of what is available to the 

visual system. In Figure 2 we demonstrate just how sparse and noisy the information 

is if we average over 10 frames and why we chose to use the long averaging times to 

demonstrate what information may be available if jerkiness of motion is removed and 

signals are aggregated. Note the maximum values are lower when averaging over 

more frames and this is because the opposite side-to-side motion cancels out, for 

instance in the forest scene on the right in Figure 2, there is leftward bias over these 

10 frames. We will analyse the aspects of the available motion information 

quantitatively by averaging over all 144 frames from now on.  

 

 
Figure 2. Averaged direction outputs for 10 frames for the clips in Figure 1(a), with 

color saturation representing the magnitude, again white represents zero values 

(thresholded to zero for motion magnitudes less than 0.1% of the maximum output), 

the color wheel shows direction. The images have been normalized to their own 

maximum, for which the value is given in the bottom left hand corner. 
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We now quantify the motion intensity present for each direction of motion for the 

different types of scenes.  We do this by first finding the average horizontal and 

vertical motion magnitudes over all of the frames as above. This allows all motion 

values to contribute, without the problem of ascribing meaningless directions to very 

small motion magnitudes. We then label each pixel by its direction using the averaged 

hor and ver outputs as before, to the nearest degree.  We then sum all the hor and ver 

outputs of pixels (still keeping them separate, to maintain reliance on the original data 

and avoid rounding errors for as long as possible) that have direction of 0º (rightward) 

and so on for each angle to 259º, to provide a summed hor  and ver magnitude at each 

direction. We then find the magnitude of the vector formed from the summed hor and 

ver values. This is done for all pixels within a circle of radius 252 pixels from the 

center (within the cut-off area boundary around the image edges left by the motion 

filtering process). This results in a representation that shows the amount of motion 

signals in each direction in the averaged sequence. 

 

First we compare recordings of the same scene over three repetitions to assure 

ourselves that variation within a scene is small enough to make comparison between 

the different scenes meaningful. Although there is some variation in magnitude, the 

overall pattern of direction distributions remains the same within a scene (see Figure 

3a, b). When we average all the examples within categories (see Figure 3b), we see 

distinct patterns emerging although there is huge variability between the different 

examples.  The different peaks and skews in different images are caused by the 

different arrangements of orientations in the scenes and where the areas of high 

contrast are to be found. Some bias may also occur if the focus of expansion was not 

central to the scene (if the camera was not pointing straight ahead). We average the 

normalized histograms (divided by the number of pixels, which is the same for all 

scenes) in an effort to get the average direction pattern regardless of which scene 

generated larger motion correlation magnitudes. The forest scenes have directions 

distributed fairly evenly amongst all the directions, whilst in the office scenes 

virtually all the motion energy lies along the cardinal directions, with a large bias 

towards the horizontal directions. The campus scenes lie somewhere between the two, 

as they are more peaked than the forest scenes, but more broadly distributed than the 

office scenes.  They appear to show less motion upward, which may be due to more 

sky being visible in these scenes. Reassuringly all scenes look different to the output 
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produced by noise (images of half back and white pixels, randomly generated one 

each frame, also for 144 frames), suggesting some kind of regularity in all movements 

through real-world scenes, despite the apparently noisy output. 
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Figure 3. The distributions of motion signal directions calculated from the averages 

of the hor and the ver outputs over 144 frames. The direction of motion is plotted as 

the polar angle and the radius is the average magnitude of motion correlation at that 

angle of direction. (a) Magnitudes derived from the example clips from Figure 1a, 

with the results from the different instances of filming shown in the three different 

shades of gray. (b) Magnitudes derived from the example clips from Figure 1b. (c) 

The average of the normalized histograms from all four clips from each of the 

category of scenes. (d) The normalized distribution for a sequence formed of 144 

randomly distributed (independent for each frame) pixel black and white noise dots, 

which generate random motion directions.  

 

Furthermore we average the raw histograms (Figure 4), rather than the normalized 

histograms (as in Figure 3), over each of  the cardinal axes, in quadrants, averaging 

angles 45º to 135º, 136º to 225º, 225º to 315º and 316º to 44º, on a scale of -45 º to 

+45 º relative to the cardinal axes (90 º, 180 º, 270 º, 360 º), to highlight the 

distributions relative to the cardinal directions. We can see even more clearly that 

indoor built environments (office) show a huge bias to the cardinal directions not seen 

in natural outdoor settings (forest). In the campus based clips, which are somewhere 

between the two, although the histograms are of a more similar shape to the forest 

scenes, there is a slight bias at the cardinal (although less sharp than in the indoor 

scenes and not exactly centered on the cardinals). In these scenes it is possible that the 

trolley was not exactly horizontal and yet, there would be strong vertical and 

horizontal cues in the scene, which could cause the small peak at off-cardinal 

direction). There is a slight increase in the amount of energy found at the oblique 

directions also - this seems to be caused more high contrast edges in these scenes that 

are at 45º, such as roofs and props against walls. It is interesting to note, that although 

both the office and campus scenes contain the edges of paths, floors etc., which 

appear as oblique angles in a 2D representation, these do not contribute to oblique 

direction signals as they are parallel to the direction of motion and thus no motion is 

detected due to the aperture problem that which states that an edge moving within a 

small aperture in the same direction as its own orientation will not produce a motion 

signal.   In general over all angles away from the cardinals (i.e. towards the diagonals) 

the forest scenes have the highest response. 
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Figure 4. Histograms of intensity of motion at each direction averaged over 

direction quadrants, centered on the cardinals. Taking the histogram of 45º to 

135º , with midpoint 90º and defining it as -45º to 45º, with midpoint 0º, the 

cardinal direction. Similarly taking 136º to 225º with midpoint 180º and 

redefining it as -45º to 45º, with midpoint 0º, and so on for 225º to 315º and 

316º to 44º.  Now each of these histograms defined on a scale of -45º to 45º can 

be averaged together.  This way we see the distribution relative to the cardinal 

angle - any cardinal angle - on average. 

 

Optic flow 

 

The relevant optic flow pattern in our scenes is caused by forward motion i.e. a 

radially expanding pattern. Therefore, although optic flow in general can refer to any 

pattern caused by our own movement, we use the term optic flow from now on to 

specifically refer to radially expanding flow. To assess the quality of the forward 

motion information contained in each of the different scenes, we compare the 

distribution of motion outputs from the sequences with an idealized forward motion 

pattern. In an idealized expanding optic flow pattern, with the FOE at the center of the 

image if we trace a radial line from the center of the image (and hence the center of 
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expansion) to the edge of the image and sum all the hor and ver values along this line 

and then take the direction of the vector formed by the sums then this will be the same 

angle as the angle of the radial line originating in the image center.  For example if we 

trace a line from the center straight out to the right edge of the image, the direction of 

the vector formed by the summed  hor and ver values would be 0º ( i.e. no vertical and 

only positive horizontal motion components), which is the angle of this line in the 

image. In other words, a FOE in the center of the image leading to radial expansion 

motion is always streaming away from the centers into the periphery. Calculating the 

absolute angular difference (avoiding wrap-around issues) between the motion 

direction output along a given radial direction from the image center and the angle of 

this radial direction, we derive an error measure for the FOE estimate from the motion 

signal distribution. 

   

However, although an effort was made to fix the camera on to the trolley pointing 

straight ahead and to avoid any sideways motion of the trolley, some of the scenes 

have centers of expansion that are not central to the image.  This is shown in the 

difference between recordings of the forest scene in Figure 3b and c. In one of the 

recordings there was a larger bias towards rightward direction, implying a leftward 

motion component of the camera center (see Figure 5a) and vice versa in another 

recording (see Figure 5b). In order to extract the direction of heading from these 

scenes we need a method to find the center of expansion. Because of the nature of the 

ideal flow being symmetric horizontally and vertically we could use this for our 

search strategy for matching the output to the ideal flow.  We first choose in turn each 

of the horizontal positions, with the vertical position fixed in the middle.  Each point 

was used as hypothetical center of expansion and the point that resulted in minimum 

error as described above was chosen as the horizontal position. We then fixed this 

horizontal position and varied the vertical position to find the minimum error. This 

differs somewhat from the method used by Zanker & Zeil (2006), who simply 

averaged directions across each horizontal position in the frame and fitted a simple 

left/right direction square wave function.  The horizontal position that provided the 

best fit was used, which would give you an estimate for the FOE in fronto-parallel 

coordinates. Our method uses the matching of a more precise 2D optic flow template 

that also allows for estimation of the height of the FOE. Checking by eye appeared to 

show that this method was fairly accurate at detecting the center of expansion in most 
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cases.  Although we do not know the true heading direction, the averaged direction 

output gives us a sense that is confirmed by the automated process. It should be noted 

that of course heading estimation is much more complicated in natural situations that 

involve rotations of the eye, head or path (Beverley & Regan, 1982), but in this 

simple case where the heading is mostly straight ahead on a straight path with no eye 

movements, this simple estimation method will suffice.  

 

 
 

 

Figure 5.  Examples of average motion responses (thresholded and scaled to 

maximum, see Figure 3b and e, white areas have motion magnitudes below 0.1% of 

maximum possible output) over 144 frames for sequences from the same scene. The 

FOE as automatically located by our method described in the text (shown by a black 

cross). 

 

Figure 6 shows plots of the error as a function of radial angle from the calculated 

FOE, where each example clip from a scene is represented in different shade of gray.  

We find the smallest error in the office scenes (Figure 6a), with systematic errors 

around the oblique directions and more errors along the vertical than the horizontal.  

Although these scenes are dominated by horizontal signals, these do not appear to 

cause great error in the vertical direction, there appear to be enough horizontal 

orientations in the correct parts if the scene to cause the appropriate vertical motion 

(as mentioned above a contour can only cause local motion orthogonal to itself, not 

parallel). In the scene represented by the medium gray dots in Figure 6a, the bottom 

left part of the scene does not contain much structure and hence not much useful 

motion information. In the campus scenes the largest errors occur around the upper 
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half of the image, where in one case there is sky, and in another far away buildings, 

and therefore less motion information causes error in these cases. This is similar to the 

overall findings from Calow & Lappe (2007), where on average they found that the 

difference from radial motion was greatest in the upper visual field. If there is no 

motion to speak of, random noise just causes errors (e.g. blue dots in Figure 5b).  In 

the forest scenes optic flow mostly matches well with expansion, with no clear 

systematic errors, apart from occasional noisy patches in the scene shown by the red 

dots. This also illustrates the additional information that can be seen by not averaging 

all types of scenes together and retaining categories. 

 

 
 

Figure 6.The absolute error calculated between the angle in the image (from the 

center of expansion) and the average direction of motion calculated along that 

angle calculated for the four examples of each type of scene (a-c) and for a 

random dynamic noise pattern (d). The different shades of gray dots represent 

the different examples of each scene. The maximum possible error is 180º in 

direction. There are more errors in the forest (a) and campus (b) scenes, 
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especially around the upper half of the scene where there are often less motion 

signals.  

 

Magnitude distributions 

 

We also calculated the magnitude of the motion signal at each pixel for each frame 

and binned all these in 256 bins from zero response to the maximum of the response 

range. This generates a distribution of the motion energy of the response maps that 

shows that most of the responses are small (Figure 7a). The distributions have a 

characteristic shape similar to that found by Roth & Black (2007), when they 

artificially generated motion sequences. Although they kept horizontal and vertical 

velocity separate and we measure motion correlation instead of velocity, as mentioned 

above the two are related, and it is interesting that the real-life motion measured here 

in terms of local motion correlation generates similar patterns. This also agrees with 

the work of Calow & Lappe (2004) who also found a peak at low speeds. We also 

summed all the motion magnitudes over all the pixels and all the frames within each 

category to make an overall coarse comparison of the amount of local motion (Figure 

6b) and find more motion as the scenes become less artificial. This can be explained 

by the sparseness of the office scenes and also the increasing noisiness of the campus 

and forest scenes.  We also considered whether the amount of motion in the scene 

helps the extraction of optic flow (Figure 7c) and found no correlation (r=-0.20, 

p=0.523) between the amount of motion and the average angular error away from the 

ideal optic flow for each movie clip. This observation supports the view that 

additional motion signals in outdoor scenes may be caused by other sources of motion 

such as the motion of leaves in the wind and noisiness in the scene, whereas clearly in 

areas with no motion, such as the sky, optic flow extraction is not possible. 
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Figure 7. Measuring the overall magnitude of motion correlation in different 

scene categories. (a) Frequency histograms of motion magnitudes, plotted for 

each pixel in each frame of each sequence, for three types of scenes (log scale y 

axis).  Maximum horizontal/vertical motion output at each pixel is 1, so 

maximum possible magnitude is √2 = 1.41. (b) Areas under the curves summed 

and plotted for ach type of sequence. Error bars are standard error over the four 

clips in each category.  (c) Optic flow error (summed over all angles (shown in 

Figure 6) in the averaged sequence output) plotted against average motion 

correlation magnitude. 

 

Varying spatial scale 

 

So far all our results are calculated at a single spatial (and temporal) scale of the 

elementary motion detector.  Motion detection happens at several spatial scales and it 

could be helpful for global motion extraction to combine the information across these 

scales.  It is therefore important to consider what kind of information is available at 

different scales and whether the patterns we have observed so far change with spatial 

scale. By considering the two example scenes in Figure 8 (which are the same as the 

forest and office scenes in Figure 1a), we can see that the general pattern remains the 

same, although the amounts of motion at different spatial frequencies varies. 
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Figure 8. Motion outputs for forest (a, b) and office scene (c, d) from Figure 1a. 

Shown for different spatial scales (sampling width of motion detector given in 

pixels for 4 different columns) showing direction alone (a, c) and combined 

direction and magnitude (b, d), scaled to the maximum motion magnitude, for 

which the value is given bottom left corner. 

 

To further consider the magnitude of the motion outputs as a function of spatial scale, 

we summed motion correlation magnitude over all pixels in each of the sequences and 

compared across scales. At larger scales the larger sampling distance means that 

motion magnitudes can be calculated for less of the scene, with larger boundary 

regions where motion can not be calculated, (shown by the wider boundary areas in 
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Figure 8b and d). All magnitudes are summed over the valid area at the largest scale, 

with a boundary of 42 pixels. In Figure 9a we see that for all types of scenes there is a 

decrease in the amount of motion correlation as sampling size increases. A one way 

repeated measures (i.e. controlling for variability introduced by different mean 

amounts of motion in each clip) ANOVA on our samples confirms this is significant 

for each type of scene (office: F2,6 = 6.35, p<0.05; campus: F2,6 = 16.46, p<0.005; 

forest: F2,6 = 20.88, p<0.005).  In contrast to the other scenes the office scenes only 

show a reduction in the summed motion magnitude at the largest scale, showing that 

the amount of motion correlation does not follow the same pattern across scales in 

different categories.  In Figure 9(b) we compare how the ability to estimate the FOE 

varies as a function of spatial scale and find that in this case error produced by the 

information available in forest and campus scenes increases at larger scales, (campus: 

F2,6 = 6.49, p  < 0.05; forest: F2,6 = 16.82, p  < 0.005) but the scale has no effect on the 

amount of error in office scenes (office: F2,6 = 1.86, p = 0.26). The relationship 

between motion magnitudes per se does not necessarily predict the ability to extract 

optic flow, as office scenes at small spatial scales contain much less motion signal 

than the other scenes, yet this does not seem to affect the ability to extract optic flow. 

This suggests that a large proportion of the motion correlation signals in the forest 

scene arise from noise that is not informative of the FOE. The fact that the largest 

motion signals are not necessarily the most informative about direction is reflected to 

some extent in the findings from Calow & Lappe (2007), who found minimal spatial 

correlation between direction and speed estimates and found different patterns of 

distribution for direction and speed signals. 
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Figure 9. (a) Motion magnitudes summed over each pixel in each frame of each 

sequence (within the boundary limit constrained by the cut-off area under sampling 

distance 16, see text).  Sampling width corresponds to the scale at which motion is 

detected. Motion output magnitude shown, where maximum possible output is 

horizontal or vertical output ate ach pixel is 1.  (b) Summed angular error relative to 

ideal optic flow summed over all angles calculated based on the averaged horizontal 

and vertical outputs (within the valid region left by the largest spatial sampling width). 

 

 

Eccentricity  

 

The final aspect to consider is where the motion information can be found in the 

visual scenes, and how this changes over different spatial scales.  In order to do this, 

we divide each scene up into a circle immediately around the FOE as calculated above 

(assuming this is what would be focussed on the fovea) and into two rings further 

away out from the FOE.  We chose three equally spaced radius distances from the 

FOE. Magnitudes were averaged over the number of pixels that lay within each area 

within the image (as sometimes the FOE was not central, some parts of the outer rings 

were not contained within the images, making for unequal areas).  The average over 

the number of frames was used as a more meaningful measure in this case.  
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Figure 10. Average motion correlation magnitudes (ordinate) at different eccentricities 

(abscissa) with increasing sampling width (s.w. 4, 8, 16 in a-c), for three different 

types of scenes (see legend). Error bars indicate standard error over the 4 scenes in 

each category. 

 

We again find a decrease in the amount of motion correlation with increased sampling 

width, whilst generally the same general trend is maintained that slightly larger 

motion magnitudes are found at higher eccentricities. This is to be expected as there 

are larger displacements caused in the periphery by a typical optic flow pattern, 

whereas there is not much motion typically at the FOE. The pattern doesn’t change 

much with spatial scale, just the overall amount of motion. We find that for all types 

of scenes the amount of information increases as we move away from the FOE, and 

this holds true across all scales, apart from in the campus scenes. For the forest scenes 

there is significant effect of eccentricity only at the largest scale (F2,6 = 5.92, p<0.05), 

whereas for the office scenes there as a significant effect of eccentricity at all scales 

(s.w.4: F2,6 = 5.97, p < 0.05;  s.w.8: F2,6 = 7.84, p < 0.05; s.w.4: F2,6 = 13.40, p < 0.01).  

As the office scenes are broadband we expect greater velocity to correlate with greater 

motion correlation (Meso & Zanker, 2009) and optic flow causes greater 

displacements in the periphery - and this is what we observe. Again, this is a pattern 

we observe in the work of Calow & Lappe (2007) where in the overall distributions 

velocity increases towards the periphery of the visual field. This effect may be 

reduced in the other scenes due to the distance of objects in the periphery, yet it is 

interesting that in forest scenes it emerges most at the large spatial scales, which 

coincides with where the most error was to be found in the FOE calculation, possible 

because a great deal of the periphery is not captured in the scene. 

 

 

4. Discussion 

 

Much has been made in the past of the properties of natural scenes as the training set 

for humans, with strong explanatory power for the properties of the visual system.  

This explanation can occur at two levels: that of a visual system shaped by evolution 

in such a way that it is well adapted by birth to the environment and also a visual 

system that is plastic be wired over a lifetime in such a way as to be adapted to 
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incoming stimuli.  Natural images are often considered a special class of stimulus in 

themselves, with statistical properties that hold a great deal of explanatory power such 

as the 1/f power spectrum observed (van der Schaaf & van Hateren, 1996) and the 

sharp differences between the amount of oblique and cardinal orientations (Coppola et 

al., 1998).  These properties have been observed in stationary stimuli and can help us 

understand a great deal about human psychophysical responses to visual stimuli.  

Furthering this work on stationary images we have analysed the statistics in dynamic 

stimuli, which to date has been carried relatively rarely in realistic dynamic scenes of 

motion through an environment (Dakin et al. 2005).  Some work has looked at 

recreating the dynamics of movie scenes and is important for comparison as in these 

ground truth is known, unlike in our stimuli (Roth & Black, 2007; Calow & Lappe, 

2007). 

 

In contrast with these studies of Dakin et al. (2005) and Calow & Lappe (2007) we 

find that the bias towards cardinal directions for motion does not necessarily hold true 

in all types of scenes. Not surprisingly, it is a definitive feature in the more artificial 

indoor scenes, which contain many horizontal and vertical orientations. The sparse 

nature of these scenes means that local motion measurements are more subject to the 

aperture problem, leading to only the detection of motion orthogonal to these high 

contrast edges. However it is not at all present in our collection of outdoor scenes, 

despite the presence of vertical structure such as tree trunks, the cardinal motion 

appears to be drowned out by the other motion directions present. In this case the 

edges are often lower contrast and are also surrounded by dense texture that would 

reduce the aperture problem, leading to a signal less biased in the orthogonal direction 

to the contour. Of course, in natural scenes not all this motion is due to self-motion, 

but also the movement of branches in the wind for example, something the 

reconstructed motion from scenes in the Roth and Black (2007) study would not 

contain. This work serves to highlight these differences, but it is for further work to 

investigate in the detail the cause of these.   

 

We did replicate from previous studies the shape of the motion magnitude distribution 

(Roth & Black, 2007; Calow & Lappe, 2007).  We find the same distinctive shape, 

showing that this is true also for real life motion and that our estimates of local motion 

are similar despite using the 2DMD model first rather than ground truth motion.  This 
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supports other findings suggesting that if we consider the motion system as operating 

within a Bayesian framework it may assume a prior probability distribution centered 

on zero velocity (Weiss et al. 2002). The use of the term ‘prior’ indicates the shaping 

of the visual system over the lifetime, whereby the experienced distribution of speeds 

influences subsequent perception of speed. 

 

By successfully using the motion directions to find the FOE in most cases, we were 

able to quantify the amount of error in matching to an optic flow template. We find 

this error mostly to be low, demonstrating that local motion contains the information 

needed to extract optic flow (although due to long the averaging times used here it is 

not clear how the visual system is able to extract it), even though it is sparse and 

noisy. This sparseness of motion in natural scenes found here agrees with previous 

findings (Zanker & Zeil, 2005). We find this even as our camera physically moves 

through the natural scene, rather than just advancing on a short gantry. However, there 

are characteristic deviations from flow, shown clearly in the motion direction 

histograms, away from a perfectly circular even representation of each direction. A 

great deal of local motion is due to the image structure (anything that is different 

between the scenes, as self-motion was the same in each scene), so gives clues to both 

self-motion and the contents of the scene. Calow & Lappe (2007) considered which 

areas of the visual scene provided more information in terms of structure and found 

the lower region of the visual field less informative.  In their work they consider 

structure in terms of depth information, whereas in the work here we refer to the 2D 

contour information, which will be characteristic for different types of scene.  We 

found large differences between the different types of scenes, with clear 

characteristics of different kind of scenes becoming apparent even over these few 

examples. To simply class these together as part of a set of ‘natural images’, could be 

misleading. These differences may provide a way of teasing apart evolution versus 

development.  For instance, this work ties in with well-known past physiological 

studies on cats reared in artificial environments, where biases in environment were 

reflected in the cat physiology (Wiesel, 1982).  Similarly if indeed oblique versus 

cardinal differences exist in human neural make-up as reflected in processing ability 

this may be due more to the built environment surrounding humans now then the kind 

of natural environment that may have driven human visual evolution.     
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This work is also of relevance to the literature on ‘gist’ perception.  Past research has 

investigated our ability to rapidly categorize different kinds of scenes (Friedman, 

1979; Rousselet et al., 2005). These studies have shown that humans are able to form 

a quick overall impression of a scene without necessary perceiving it in detail to make 

a categorization choice. The current results suggests that local motion information 

could also provide considerable cues to the type of scene we are moving through and 

so could be important for gist perception, which in real life situations must be 

performed during locomotion through an environment and be required for rapid 

adjustment of motor outputs. 

 

At different scales our findings remain the same up to a point, but high spatial 

frequencies play a greater role in the motion patterns of some scenes than others, and 

in general, where there is more motion more optic flow can be extracted, although this 

is not a very strict relationship.  Relative differences in motion magnitudes between 

images change as the spatial scale changes. As our images are largely broadband, the 

motion correlation can be expected to be similar at all scales, however it seems we 

would need to combine over many spatial scales to get a comprehensive picture as 

suggested by Meso et al. 2009.  Although optic flow is a global percept, it seems in 

order to extract it, at first we may need to take into account high spatial frequency 

local information. 

 

When examining the spatial layout of the motion signals we found that more 

peripheral areas contained more of the motion information, which is interesting 

because this might be an additional way in which the visual system is matched to 

commonly experienced stimulus properties as contrary to other visual attributes 

sensitivity to motion does not decrease in peripheral vision (McKee & Nakayama, 

1984; Lappin et al. 2009). This would tie in with the efficient coding scheme 

proposed by Calow and Lappe (2008). Of course not all fixations during self motion 

are at the FOE, especially when negotiating obstacles (Hollands et al.,1995), but when 

moving straight ahead in an obstacle free environment is seems that most of fixations 

are near to the FOE (Wilkie & Wann, 2003). In this work we have not been able to 

comment on the very important factor of eye movements in general as the camera 

angle is fixed, and it should be noted that a similar pattern of motion magnitudes may 

be caused by smooth pursuit movements. Mobile eye tracking technology should be 
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able to open up this whole area more in the future to be able to measure more realistic 

input. 

  

We now arrive at a brief consideration of the motion model used.  It is a simple 

correlation model and we claim that these results are not specific to artefacts in this 

model.   We showed that with a black and white noise input there are no great 

artefacts and we have seen that the scale we chose didn’t matter greatly to the results.  

This model differs from some other models such as gradient based approaches (Horn 

& Schunk, 1982; Johnston et al., 1999) in that it doesn’t extract velocity and it is 

contrast dependent, so the results need to be understood in this context.  A large part 

of the spatial variation will be due not only to more motion in that area, but to higher 

contrast, but this is indeed what local motion signals will initially reflect in the human 

visual system.   These are the initial limitations that we are describing and at later 

levels velocity and contrast independent motion signals as well as over all optic flow 

directions may be extracted, but they will all be dependent on the motion information 

that is available at this level. Therefore our conclusions aim to generalize to the 

concept of local motion in general, not just in terms of the 2DMD model outputs.  

 

Another factor that we have briefly mentioned in this manuscript, but deserves further 

consideration is that of depth.  Similar work exists, which measures depth in natural 

scenes (Calow & Lappe, 2007).  Just as motion signal in the model varies with 

contrast it is also sensitive to how far away an object is.  Distant buildings in one of 

the campus clips for example elicit noisy and small motion response as the further 

away something is, the less distance it will move in the clip.  The movie clips used 

here are roughly equivalent in the distances of the objects in the scene, but this is not 

something we have controlled.  In further studies, acquiring range data as well as 

motion data will be useful in disambiguating these two aspects.  

 

In conclusion, by considering the statistical properties of local motion outputs we can 

find the limits on information available and the kind of differences the visual system 

has to overcome to extract self-motion.  However these differences may not be totally 

discarded as they are useful for extracting object structure and finding differences 

between scenes.  Combining different spatial scales can give important, more 

complete information as the location of motion signals in the scene varies over 
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different scales. Future work could further investigate the spatial variation in motion 

signals , extending this work and that of Roth & Black (2007), which considered the 

derivatives of the velocity field.  From this work we conclude that large differences 

exist in the statistical properties of local motion caused my self-motion through 

natural scenes caused by the differential influence of the aperture effect. Although 

sparse local motion information does provide adequate information of extracting our 

heading direction and the large differences between different types of scenes may be 

crucial for fast gist perception during self-motion. 
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