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ABSTRACT

This paper focusses on the accurate estimation of the Mean
Frequency of surface electromyogram (EMG) signals dur-
ing voluntary isometric contractions. This particular type
of analysis is commonly used by kinesiologists to gain im-
portant information relating to muscle fatigue. These EMG
signals are typically processed to extract the Mean Frequency
(MNF) and studies often follow how these parameters evolve
through time. Traditional approaches to estimate the MNF
variables are based on the periodogram or Burg’s autoregres-
sive approach, but these methods suffer from a high degree
of variability due to the choice of window size and/or signifi-
cant bias in frequency estimation due to other inherent limita-
tions. In this paper we propose the use of a data-adaptive fil-
terbank spectral analysis technique, namely the Power Spec-
trum Capon (PSC) to overcome the problems associated with
the traditional methods. This new method is shown to pro-
vide significant reductions in MNF parameter bias and vari-
ability over a wide range of data window sizes. Experiments
are performed on simulated data with known spectral charac-
teristics in order to compare the relative performance of the
different techniques. This paper follows on from previous
work by the authors showing that the filterbank methods out-
perform currently used methods in terms of consistency on
real patient data.

1. INTRODUCTION

During sustained contractions, muscles progressively be-
come less able to perform as well as at the beginning of the
application of the force, a phenomenon referred to as mus-
cle fatigue. It is possible to quantify this process in a non-
invasive way by monitoring the associated neuromuscular
activation which is manifested in the surface electromyog-
raphy(EMG) signal [1, 2]. Indeed, the spectrum of the EMG
undergoes a compression-like change during the course of a
muscle contraction and this behaviour can be measured by
introducing appropriate descriptors of the alteration. To this
end, spectral variables are typically used to track the spec-
tral shift against time. The mean (MNF) and median (MDF)
spectral frequencies have been the most popular such vari-
ables both in academic studies and in clinical practice owing
to their relevance to underlying physiological processes that
control fatigue. For example, the initial value of MDF has
been associated with the distribution of the muscle fibre type
recruited, while its rate of change has been linked to the fati-
gability properties of the active motor units [3].

Since EMG is a random signal, its power spectral den-
sity (PSD) should be estimated prior to calculating the time-
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course of the spectral variables. There are a number of differ-
ent approaches commonly employed for spectral estimation,
broadly classified in two categories: the classical methods,
e.g. periodogram or Blackman-Tukey estimators, and the
parametric model methods such as the autoregressive (AR),
moving average (MA), and autoregressive moving average
(ARMA) estimators. Each of these spectral estimation meth-
ods has its own strengths and weaknesses and it is important
to assess and compare their performance before adopting one
for subsequent analysis of the EMG data.

A number of additional factors such as the shape and size
of the analysis window (epoch), or the order of the paramet-
ric spectral estimator can also potentially affect the results.
Of course, since both MNF and MDF are global spectral de-
scriptors one expects that minor differences in the estimated
spectra might not have a severe effect on the values of these
variables. This appears to be the case regarding, for exam-
ple, the window shape but on the other hand it has also been
observed that the selection of the spectral estimation method
does affect the computation of the spectral variables. For
instance, an extensive experimental study between the peri-
odogram and the Burg’s AR method was conducted in [4]
which showed that the latter approach provided a more ac-
curate basis for the study of fatigue from the surface EMG
during isometric contractions.

In this paper, we introduce the use of high-resolution
filterbank-based methods, namely the Power Spectrum
Capon [5] as spectral estimators which have characteristics
especially suited for the EMG. We have shown previously [6]
using real EMG data that filterbank methods suffer from less
variability than the periodogram method for different win-
dows lengths. In this work we present new results based on
simulated data of known spectra which show by means of
comparison that the PSC method outperforms both the pe-
riodogram and Burg’s AR method by increasing the accu-
racy of MNF estimation. Specifically, that the new method
of estimating the MNF EMG variables suffer from less bias
and variance than their periodogram or autoregressive based
counterparts.

2. FILTERBANK SPECTRAL ANALYSIS

There has recently been a renewed interest in non-parametric
spectral estimators, due in part to their inherent robustness to
model assumptions. Among the non-parametric approaches,
the data-dependent filterbank spectral estimators have many
promising properties, allowing for low bias, computationally
efficient, high-resolution estimates (see, e.g., [5]). The Power
Spectrum Capon estimator, i.e., the estimator obtained when
using the classical Capon filter to estimate a sinusoidal com-
ponent at the center frequency of the bandpass filter, can be



seen as a matched filterbank method.
Matched filterbank spectral estimators are constructed

from a set of data-adaptive, frequency dependent, L-tap FIR
filters, hω , such that

min
hω

h∗
ωQωhω subject to h∗

ωaω = 1 (1)

where Qω is the L×L covariance matrix of the signal con-
sisting of all frequencies except ω , (·)∗ denotes the conjugate
transpose, and aω is an L-tap Fourier vector, i.e.,

aω =
[

1 eiω . . . eiω(L−1)
]T

(2)

The classical Capon filter is obtained by minimizing (1) us-
ing the covariance matrix of the measured data as an estimate
of Qω , i.e.,

Qω =Rx ≡ E {xtx
∗
t } (3)

where

xt = [ x(t) x(t + 1) . . . x(t +L− 1) ]
T

(4)

and our estimate of the covariance matrix

R̂x =
1

M

M

∑
t=1

xtx
∗
t (5)

Here, M = N − L+ 1, where N is the length of the sample
frame (or epoch) and L is the filter tap length. As is the
case with autoregressive spectral estimators (such a Burg’s
method), the choice of L is a compromise between resolution
and statistical stability. That is to say, the larger L, the bet-
ter the resolution but the higher the variance. Furthermore, a

larger L increases the dimension of R̂x and thus the compu-
tational burden of evaluating the spectral estimate. Previous
work in the field by Merletti [7] based on Burg’s method has
shown that for the target application a filter order of around
L = 10 is a good compromise, hence this was the value used
for the Capon estimator too. The subsequent Capon spectral
estimate is obtained as [5]

φ̂PSC
x (ω) =

1

a∗ωQ
−1
ω aω

(6)

It is worth noting though, that there are numerous computa-
tionally efficient methods in the literature presented in [8] to
increase the speed of the calculations for fixed window sizes
and in [9] for sliding window based implementations among
others.

3. EMG BENCHMARK VARIABLES

The most commonly used spectral variables in EMG fatigue
analysis studies are the Mean Frequency (MNF) and the Me-
dian Frequency (MDF). The MNF is the centroid frequency
of the power spectrum and is defined as follows:

MNF =
∑M

i=1 fiPi

∑M
i=1 Pi

(7)

where Pi is the ith line of the power spectrum; fi is the
frequency variable; and M is the highest harmonic consid-
ered (i.e. just below the Nyquist Frequency). Previously, we
have shown [6] that the filterbank approach has, in general,

lower variance than traditional methods (i.e. the Welch peri-
odogram). In this study we shall focus attention on the MNF
variable and the accuracy of its estimation through time. In
general, the EMG signal is segmented into consecutive short
time-windows and then PSD estimation takes place, using
the traditional periodogram method, Burg’s AR method or
the new Capon method. This is then followed by computa-
tion of the spectral variable MNF for all three methods for
different window (epoch) lengths. The initial value and the
rate of change of the spectral variable are calculated by fit-
ting a least-square regression line to the MNF time course.
The resulting ‘points of intercept’ and ‘slopes’ serve as in-
dices [4] of the fatiguing process. See Figures 1 and 2 (a),
(b) and (c) which shows the estimate of MNF for sources
A and B using the periodogram, Burg and PSC methods re-
spectively. The (green) dotted line on each plot indicates the
ideal time course for MNF. A good degree of agreement can
be observed for each approach, however, the Capon method
clearly shows a truer spectrum estimate, the details of the re-
sults will be discussed in the next section. As these indices
are used by physicians as the basis for various diagnostic and
therapeutic purposes [10], it is essential that they are as ac-
curate as possible.

4. RESULTS AND DISCUSSION

The EMG data analysed in this paper was obtained from the
SENIAM [11] cohort of synthetic EMG signals so that their
parameters were known a priori which was necessary to fa-
cilitate testing and comparison. The sampling rate used to
generate the signals was 1024Hz as this is commonly used
in practice. There are two synthetic signals under test in this
work, and they are labelled Sources A & B. Both sources
comprise 20480 samples each having a duration of 20s and
are formed by passing a noise source through a time-varying
shaped filter. Source A has a mean frequency of 80Hz ini-
tially and finishes at 60Hz at its end, whilst Source B has
a mean frequency of 80Hz initially and finishes at 40Hz at
its end. Hence, ideally we would expect to measure 80Hz
as a point of intercept for both sources and a slope (rate of
descent in frequency over time) of exactly −1.0Hz.s−1 and
−2.0Hz.s−1 for Sources A & B respectively. For each signal
the point of intercept and slope was calculated for various
window sizes on a block basis with no overlap (i.e. values
of N = 256,512,768,1024,1280,1536,1792,2048). Further,
the variation (i.e. the ratio of their standard deviations di-
vided by their means, Coefficient of Variation (CoV) = σ/µ)
in these parameters was determined and used as a measure of
consistency (see Table 1).

Figures 1 and 2 show the estimate of the MNF for a
constant and commonly used window size of N = 256 (i.e.
250ms) for each method; Welch periodogram, Burg’s method
and the Capon method. It can be seen that for both sources
the new method gives a truer estimate of the point of inter-
cept and either equal best (Source A) or the best (Source B)
estimate of the slope. Lack of space precludes including all
the plots for all eight windows sizes, but our experimentation
shows that this result is consistent across all eight window
sizes and this is borne out in the averaged error shown in
Figure 3.

Table 1 shows the variability of the point of intercept
and slope in estimating the Mean Frequency across eight dif-
ferent window sizes using the three methods; Welch peri-
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Fig. 1. (a)
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Figure 1: MNF Estimation using (a) Welch, (b) Burg, (c)
Capon methods for window size N = 256 for source A.
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Figure 2: MNF Estimation using (a) Welch, (b) Burg, (c)
Capon methods for window size N = 256 for source B.



Source A Source B
PoI Slope PoI Slope

Welch Method 0.0152 0.1120 0.0187 0.0607
Burg Method 0.0022 0.0202 0.0037 0.0176

Capon Method 0.0034 0.0191 0.0032 0.0137

Table 1: CoV for Point of Intercept and Slope for MNF Esti-
mation using three different methods for the two sources

odogram, Burg’s AR and finally using Capon approach for
the two synthetic sources as before. The ‘best’ results are
highlighted in bold type. It can be seen that the Capon
method provides lower variability than the Welch method
for both features and sources and improves upon the Burg
method in all but one measure.

5. COMPUTATIONAL CONSIDERATIONS

Finally, standard batch type algorithms were used to calcu-
late the filterbank based variables and they required some-
what more processing time than those for the periodogram
or Burg based methods. An Intel Quad Core 2.33GHz pro-
cessor based PC environment using Matlab c© 2007b was
used to run the various algorithms. The periodogram method
took 0.11s to complete all the calculations, whereas the Burg
method took 0.41s and the Capon method took 1.54s to fin-
ish. Clearly, then the Capon method is noticeably more com-
putationally burdensome than the traditional approaches. Al-
though, considering that each timed run required each source
to be analysed eight times over (effectively constituting 160s
of data), all methods could be easily evaluated in real-time if
necessary.
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Figure 3: Estimation error for both Point of Intercept and
Slope of line of best fit for three methods and both synthetic
sources A & B averaged over the eight different window
sizes.

6. CONCLUSIONS AND FUTURE WORK

This paper presents new results on the application of a filter-
bank based spectral analysis technique applied to the estima-
tion of fundamental variables derived from EMG data. These
new approaches give rise to more consistent and, in particu-
lar, more accurate estimates of the variables which can be
used by physicians to quantify the effects of muscle fatigue.
This work is ongoing and it is envisaged that further exper-
imentation incorporating an extended cohort of real subject
data will be used to extend and deepen this work in the future.
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