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Abstract— High false-negative rates of the Papanicolauo (so-
called ‘Pap’) smear test and the shortage of colposcopists has
led to the desire to find alternative non-expert (automated)
approaches for accurately testing cervical smears for signs of
cancer. Fourier-Transform Infra-Red (FTIR) spectroscopy has
been shown to offer the potential for improving the accuracy
(i.e. sensitivity and specificity) of these tests. This paper details
the application of the machine learning methodology of Support
Vector Machines (SVM) using FTIR data to enhance and
improve upon the standard Pap test. A cohort of 53 subjects
was used to test the veracity of both the Pap smear results
and the FTIR based classifier. The Pap test achieved an overall
classification of 43%, whereas our method achieved a rate of
80%.

I. INTRODUCTION

Cervical cancer is the rapid uncontrolled growth of
severely abnormal cells on the cervix. Scientific studies
[1] point to the HPV (Human Papillomavirus) infection
as a necessary prerequisite and the prime risk factor for
the development of cervical cancer. Genital HPV serotype
viruses are by far the most common sexually transmitted
infections and it is estimated that 80% of sexually active
humans have been infected with a strain of genital HPV
at one time or another. At least 95% of cervical cancer
cases result from high-risk HPV serotypes [2]. Hence,
there is now considerable interest in vaccination against
these particular forms of the virus. However, until their
widespread use, physicians are still relying on the tried
and tested Pap smear screening techniques. As a result,
women are advised to have a Pap smear test annually
after they become sexually active. Unfortunately, due to
the high prevalence of the HPV virus, it is impossible
to use it as an effective tool to test for cervical cancer
though a negative result for the HPV virus can be reassuring.

Worldwide, cervical cancer is the second most common
cancer among women after breast cancer [2]. It is also
the third highest cause of death when compared to other
cancers. In the USA, however, the statistics are different.
Cervical cancer is only the eighth most common cancer
among women, with incidence and mortality rate figures as
low as half of the worldwide figures. This difference can be
attributed in part to the success of effective and widespread
screening using the Pap or smear test in the developed
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world. This makes effective screening a very important tool
in the fight against cervical cancer.

A. Pap or smear test

The Pap test is the first step in cervical cancer screening.
This test was developed by American Dr. Georgios Papaniko-
laous [3] in the 1940s. The test consists of a simple cervical
swab to collect cell samples from a specific area on the
cervix. These cells are then examined in a laboratory for
abnormalities. Though abnormal results do not necessarily
mean the patient has cervical cancer, they are an indication
that changes may be taking place in the cervical cells and
further action needs to be taken.

B. Colposcopy or colcoscopy

In most cases, a colposcopy is performed to further
investigate abnormal results in Pap smear results. It is very
accurate and is in fact considered ‘the gold standard’ test in
the diagnosis of cervical cancer. This simply means that it
is the most reliable test known to diagnose this condition.
Hypothetically, it should have an accuracy of 100% but this
is not always the case as no medical diagnostic technique
is infallible. Colposcopy is a diagnostic procedure that
utilizes a colposcope, which can be likened to a binocular
microscope, to examine an illuminated and magnified view
of the cervix, vulva and vagina. During this examination,
the colposcopist distinguishes normal from abnormal cells
and takes biopsies as required for further pathological
examination.

The Pap smear is simple, effective and relatively cheap
when compared to the colposcopy. On the other hand, it is
not disease specific and has lower sensitivity and specificity.
Though the colposcopy is highly accurate it is also resource
intensive and time consuming. It also requires specially
trained personnel to carry out the procedure (colposcopists).
All these factors make it expensive and hence it is reserved
only for follow up referrals based on abnormal or ambiguous
Pap smear results. Moreover, it is invasive, may be painful
and is definitely very uncomfortable for many women.

Therefore, there exists a demand for a highly accurate,
non-specialist and relatively cheap method to improve
the sensitivity of the Pap smear. This would be of great
benefit to health screening professionals in general, but in
particular benefit to the developing world where due to lack
of screening, cervical cancer is the single largest cause of
mortality in young women.



Fig. 1. FTIR spectrum of healthy cervical cells, from [4].

II. BACKGROUND THEORY

Recent medical research [4] has shown that infra-red
spectra obtained from exfoliated cervical cells hold vital
clues when it comes to diagnosingdysplasia, a distinct pre-
malignant state, or full blown cancer. Cervical cells contain
specific building blocks which result in certain absorption
bands being prominent in the infra-red spectrum. These clues
are contained in the changes observed in the dominant bands.
Some of the bands that are of interest include those at:
• 1025cm−1 and 1047cm−1 which are mainly from the

vibrational modes of -CH2OH groups and the C-O
stretching coupled with C-O bending of the C-OH
groups of carbohydrates.

• 1082cm−1 which is due mainly to the symmetric phos-
phate (PO−2 ) stretching mode.

• 1244cm−1 which is due to the asymmetric phosphate
(PO−2 ) stretching mode.

Fig. 1 shows the infra-red spectrum of a normal cervical cell
sample showing the bands of interest. The infra-red spectra of
malignant cervical samples display the differences outlined
below:
• Significant changes in intensities of the bands

at 1025cm−1, 1047cm−1, 1082cm−1, 1155cm−1,
1244cm−1 and 1303cm−1.

• Significant shifts of the peaks normally appearing at
1082cm−1, 1155cm−1 and 1244cm−1.

• An additional band peaking at 970cm−1.
The infra-red spectrum of a sample with dysplasia displayed
similar features as the malignant samples but less signifi-
cantly changed [4]:
• Intensity of the glycogen bands is intermediate between

those of normal and malignant samples.
• The peak of 1082cm−1 band is not shifted.
• The center of gravity of the 1155cm−1 is shifted less

than cervical cancer.
• There is still an additional band at 970cm−1 but it is

less intense than that of cervical cancer.

Fig. 2. FTIR spectra of healthy and malignant cells, from [4].

A comparison of the FTIR response of a normal and malig-
nant sample is shown in Fig. 2 clearly exhibiting the shift in
peaks described.

III. SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) [5]–[7] have received
a great deal of attention recently proving themselves to be
very effective in a variety of pattern classification tasks.
They have been applied to a number of problems ranging
from hand-written character recognition, bioinformatics to
automatic speech recognition (amongst many others) with a
great deal of success. A brief summary of the mathematical
theory of SVMs follows, for a complete and accessible
treatment please see [7].

Consider a binary classification task with a set of linearly
separable training samples

S =
{

(x1, y1) · · · (xm, ym)
}

, (1)

wherex ∈ Rd, i.e., x lies in a d-dimensional input space,
and yi is the class label such thatyi ∈ {−1, 1}. The label
indicates the class to which the data belongs. A suitable
discriminating function could then be defined as:

f(x) = sgn(〈w,x〉+ b) . (2)

Where vectorw determines the orientation of a discriminant
plane (or hyperplane),〈w,x〉 is the inner product of the
vectors,w andx and b is the bias or offset. Clearly, there
are an infinite number of possible planes that could correctly
classify the training data. Intuitively one would expect the
choice of a line drawn through the “middle”, between the
two classes, to be a reasonable choice. This is because small
perturbations of each data point would then not affect the
resulting classification. This therefore implies that a good
separating plane is one that is more general, in that it is
also more likely to accurately classify a new set of, as yet
unseen, test data. It is thus the object of an optimal classifier



to find the bestgeneralizing hyperplanethat is equidistant or
furthest from each set of points. The set of input vectors is
said to beoptimally separatedby the hyperplane if they are
separated without error and the distance between the closest
vector and the hyperplane is maximal. This approach leads
to the determination of just one hyperplane.

A. Soft-Margin Classifier

Typically, real-world data sets are in fact linearly insepa-
rable in input space, this means that the maximum margin
classifier approach is no longer valid and a new model must
be introduced. This means that the constraints need to be
relaxed somewhat to allow for the minimum amount of
misclassification. Therefore the points that subsequently fall
on the wrong side of the margin are considered to be errors.
They are, as such, apportioned a lower influence (according
to a presetslack variable) on the location of the hyperplane.
In order to optimize the soft-margin classifier, we must try to
maximize the margin whilst allowing the margin constraints
to be violated according to the preset slack variableξi. This
leads to the minimization of:12‖w‖2 +C

∑m
i=1 ξi subject to

yi(〈w,xi〉 + b) ≥ 1 − ξi and ξi ≥ 0 for i = 1, . . . , m. The
minimization of linear inequalities is typically solved by the
application of Lagrangian duality theory [7]. Hence, forming
the primal Lagrangian,

L(w, b, ξ,α, β) =
1
2
‖w‖2 + C

m∑

i=1

ξi −
m∑

i=1

βiξi −
m∑

i=1

αi [yi(〈w,xi〉+ b)− 1 + ξi] , (3)

whereαi andβi are independentLagrangian multipliers. The
dual-formcan be found by setting each of the derivatives of
the primal to zero thus,w =

∑m
i=1 yiαixi and

∑m
i=1 yiαi =

0, then re-substituting into the primal thus,

L(w, b, ξ, α,β) =
m∑

i=1

αi − 1
2

m∑

i=1

yiyjαiαj〈xi,xj〉 . (4)

Interestingly, this is the same result as for the maximum
margin classifier. The only difference is the constraintα +
β = C, whereα andβ ≥ 0, hence0 ≤ α ≤ C. This implies
that the valueC, sets an upper limit on the Lagrangian
optimization variablesαi, this is sometimes referred to as
thebox constraint. The value ofC offers a trade-off between
accuracy of data fit and regularization, the optimum choice
of C will depend on the underlying nature of the data and
is usually determined bycross-validation(whereby the clas-
sifier is tested on a section ofunseendata). These equations
can be solved mathematically using Quadratic Programming
(QP) algorithms. There are many online resources of such
algorithms available for download, see website referred to in
[7] for an up to date listing.

B. Kernel Functions

It is quite often the case with real-world data that not
only is it linearly non-separable but it also exhibits an
underlying non-linear characteristic nature. Kernel mappings

offer an efficient solution by non-linearly projecting the
data into a higher dimensional feature space to allow the
successful separation of such cases. The key to the success
of Kernel functions is that special types of mapping, that
obey Mercer’s Theorem, offer animplicit mapping into
feature space. This means that the explicit mapping need
not be known or calculated, rather the inner-product itself
is sufficient to provide the mapping. This simplifies the
computational burden dramatically and in combination with
SVM’s inherent generality largely mitigates the so-called
“curse of dimensionality”. Further, this means that the input
feature inner-product can simply be substituted with the
appropriate Kernel function to obtain the mapping whilst
having no effect on the Lagrangian optimization theory.
Hence, the relevant classifier function then becomes:

f(x) = sgn

[
nSV s∑

i=1

yiαiK(xi,x) + b

]
(5)

and for regression

f(x) =
nSV s∑

i=1

(αi − α∗i )K(xi,x) + b , (6)

wherenSV s denotes the number of support vectors,yi are
the labels,αi and α∗i are the Lagrangian multipliers,b the
bias,xi theSupport Vectorspreviously identified through the
training process, andx the test data vector. The use of Kernel
functions transforms a simple linear classifier into a powerful
and general non-linear classifier (or regressor). There are a
number of different Kernel functions available [7], however,
one of the most consistently useful is theGaussian Radial
Basis Function(RBF) Kernel, given by

K(xi,x) = exp(−‖xi − x‖2/2σ2) . (7)

It was found that using this Kernel gave the best performance
for both classification and regression results.

IV. RESULTS

A. Classification of Dyskaryosis

There are a number of different phases of cervical cancer
defined by physicians and tested for by the screening process.
Dyskaryosisis the term used to describe the abnormal cells
taken at a cervical smear. They are observed microscopically.
The smear may show mild, moderate or severe dyskaryosis.
A borderline smear result suggests there may be some
slightly abnormal cells on the cervix but there is some
uncertainty. The cervix may be entirely normal but there are
some cells on the smear which cause the clinicians some
minor concerns. Most clinicians will ask for an HPV test
on these smears. If the result is positive then a colposcopy
is required. If the result is negative then colposcopy is not
usually necessary.Dysplasiais the term given to abnormal
cells seen on the biopsy. Dysplasia is divided into three
grades, CIN1, CIN2 and CIN3 to describe the different levels
of abnormality. Cervical intraepithelial neoplasia (CIN) is an
abnormality confined to the epithelial layer and therefore
not in itself cancerous. CIN1 is usually observed as it



Pap Smear
Normal Border+CIN1 CIN2,3

Colp. Normal 71.4% 14.3% 14.3%
Colp. Border+CIN1 59.0% 38.5% 2.6%

Colp. CIN2,3 28.6% 28.6% 42.9%
TABLE I

PAP CLASSIFICATION OF CERVICAL CELLS

may well return to normal. CIN2 and 3 is regarded as an
abnormality which may develop into cancer in some people
if left untreated. Therefore most patients with CIN2 or 3 will
require some form of treatment.

B. Data preprocessing

The data provided by St. George’s hospital Tooting, Lon-
don contained the FTIR spectra of 53 cervical cancer patients
along with their Pap smear and colposcopy results. The FTIR
spectra were normalized to a standard amplitude scale and
certain bands according to section II were used as features
for the support vector classifier and the colposcopy results
as training targets. Given the fairly limited size of the cohort
currently available the test classes were re-grouped to three
classes from the original five. Hence, class 1 represents
normal, class 2, borderline and CIN1 cases and class 3
represents CIN2 and CIN3 cases.

C. Pap test results

Table 1 shows the results for the comparison of the Pap
smear results when compared to the colposcopy results. As
can be seen, a perhaps surprising degree of mis-classification
occurs. The overall weighted correct classification being
around 44%. Although quite sensitive to normal cases, this
drops off when differentiating between borderline, CIN1,
CIN2 and 3 cases. This is why all Pap smear examinations
that appear abnormal are referred for colposcopy or at least
HPV testing.

D. FTIR using SVM results

The OSU SVM Maltabr toolbox [8] was used to train
and test a Support Vector Classifier using the FTIR data. A
Gaussian Radial Basis Function Kernel was used and after
some experimentation a constraint factor ofC = 1000 and
σ = 1.5 was found to be optimum. 33 data sets were used
to train the SVC and 20 to test it and Table 2 shows the
results. The sensitivity to both borderline, CIN1, CIN2 and
3 classes is very good, significantly better than the Pap test.
However, it can also be seen that half of the normal cases
have been lumped into the borderline class. This result is
less of a concern as it represents a tendency to false positive
and notwithstanding the overall weighted classification when
compared to the colposcopy is around 80%. In spite of the
limitation of this initial study, the figures are clearly superior
to those of the Pap smear and represent a very encouraging
result.

FTIR/SVM Classifier
Normal Border+CIN1 CIN2,3

Colp. Normal 50% 50% 0%
Colp. Border+CIN1 7.1% 85.8% 7.1%

Colp. CIN2,3 0% 0% 100%
TABLE II

FTIR/SVM CLASSIFICATION OF CERVICAL CELLS

V. CONCLUSIONS

This paper presents the application of a machine learning
methodology to cervical cancer screening based on FTIR
absorption data. These initial results show significant
potential, giving higher sensitivity and specificity than
the traditional Pap smear test. The method would require
little expert knowledge to implement and could lead to a
new technique for cheap and effective screening against
cervical cancer. This would be particularly attractive as
a replacement for the Pap smear and could be usefully
deployed in developing countries where mortalities caused
by this form of cancer are very high.

The results presented here represent an initial study
based on a fairly small cohort. The authors intend to extend
the work to include a larger number of patients and optimize
the classification process to try to approach the accuracy of
the colposcopy gold standard.
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