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Abstract—In this paper, we present a computationally efficient
sliding window time updating of the Capon and [AU: PLEASE
SPELL OUT APES?] (APES) matched filterbank spectral estima-
tors based on the time-variant displacement structure of the data
covariance matrix. The presented algorithm forms a natural exten-
sion of the most computationally efficient algorithm to date, and
offers a significant computational gain as compared to the compu-
tational complexity associated with the batch re-evaluation of the
spectral estimates for each time-update. Furthermore, via simu-
lations, the algorithm is found to be numerically superior to the
time-updated spectral estimate formed from directly updating the
data covariance matrix.

Index Terms—Adaptive filters, computational complexity,
covariance matrices, iterative methods, spectrum analysis,
time-varying systems.

I. INTRODUCTION

SPECTRAL estimation finds applications in a wide range of
fields, and has received a vast amount of interest in the lit-

erature over the last century. Due to their inherent robustness to
model assumptions, there has lately been a renewed interest in
nonparametric spectral estimators. Among the nonparametric
approaches, the data-dependent filterbank spectral estimators
have many promising properties, allowing for very accurate,
computationally efficient, high-resolution estimates (see, e.g.,
[1] and the references therein). Both the recent [AU: PLEASE
SPELL OUT APES?] (APES) estimator [2] and the ampli-
tude spectrum Capon (ASC) estimator, i.e., the estimator ob-
tained when using the classical Capon filter [3] to estimate a
sinusoidal component at the center frequency of the bandpass
filter, can be seen as matched filterbank methods [4]. Given the
excellent performance of these estimators, several authors have
worked on finding efficient implementations (see [1] for refer-
ences); the most efficient implementation to date was presented
in [5]. This implementation is based on the evaluation of the in-
verse Cholesky factors of the sample covariance matrix using its
inherent displacement structure [6]. Given its low displacement
rank, these Cholesky factors can be obtained efficiently using
the generalized Schur recursion. In several applications, one has
an interest in time updating the spectral estimate as additional
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samples becomes available. Some effort has been made to in-
troduce such an updating for the matched filterbank methods
[7], [8], but neither of these methods exploit the full structure of
the estimator, resulting in updates having higher computational
complexity than that which is required to recompute the spectral
estimate using the method in [5].

In this work, we present a novel computationally efficient
approach to time updating the efficient estimator in [5] using
a sliding window update of the measured data. The presented
update is based on the time-variant displacement structure, al-
lowing for the time updating of the inverse Cholesky factors
of the (forward-backward averaged) covariance matrix estimate
using the numerically robust time-variant generalized Schur al-
gorithm presented in [9]. The resulting time-updated spectral
estimates offers a significant computational gain as compared
with the previously required recalculation of the Cholesky fac-
tors of the covariance matrix in each time step. Furthermore,
via simulations, the method is found to be numerically superior,
yielding a lower error propagation, as compared to a time-up-
dated spectral estimate formed from a more direct (but compu-
tationally costlier) recursive updating of the sample covariance
matrix.

The paper is organized as follows: in Section II, we briefly re-
view the class of matched filterbank spectral estimators. In Sec-
tion III, we discuss the proposed efficient time updating. Then,
Section IV includes some numerical simulations indicating the
computational gain and error propagation behavior of the pro-
posed method, and Section V contains our conclusions.

II. MATCHED FILTERBANK SPECTRAL ESTIMATORS

The matched filterbank spectral estimators are constructed
from a set of data-adaptive frequency-dependent, -tap finite-
impulse response (FIR) filters , such that [2], [4]

(1)

where is the covariance matrix of the signal consisting
of all frequencies except , denotes the conjugate transpose,
and is an -tap Fourier vector, i.e.,

(2)

The classical Capon filter is obtained by minimizing (1) using
the covariance matrix of the measured data as an estimate of

, i.e.,

(3)
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where

(4)

Similarly, the APES filter is obtained by minimizing (1) using

(5)

where

(6)

Here, , where is the total number of samples
used to form the spectral estimate. We remark that the choice of

is a compromise between resolution and statistical stability:
the larger , the better the resolution but the higher the vari-
ance. Furthermore, a larger increases the dimension of ,
and thus, the computational burden of evaluating the spectral
estimate. The corresponding (amplitude) spectral estimate is ob-
tained as [2], [4]

(7)

It is worth noting that (7) in combination with (3), the so-called
ASC estimator is in general different from the classical power-
spectrum Capon (PSC) estimator, which is formed as

(8)

Further, using the matrix inversion formula, one may write both
(7) and (8) using a number of matrix-vector multiplications and
Fourier transforms of the inverse Cholesky factor of (see
also [1], [4]). This fact is exploited in the efficient implemen-
tation of (7) and (8) presented in [5], which is based on the
inherent displacement structure of to efficiently evaluate
the inverse Cholesky factors of using the generalized Schur
algorithm (see, e.g., [6]); together with efficient matrix-vector
multiplications and the fast Fourier transform (FFT) this forms
the efficient implementation. As is typically unknown, one
needs to estimate it; this is commonly achieved using the for-
ward–backward averaged outer-product estimate (see [10] for
a more detailed discussion on the benefits of this estimator as
compared to the forward-only estimator)

(9)

where is the exchange (or reversal) matrix formed as

(10)

(11)

Herein, we consider the problem of time updating as ad-
ditional data samples become available, by exploiting the time-
invariant displacement structure of to efficiently form a
time-update of the inverse Cholesky factors. To find this up-
dating, we first need an expression to update the Cholesky factor
itself.

III. TIME UPDATING CHOLESKY FACTORS

Numerous signal processing problems form matrices ex-
hibiting a significant degree of structure. This structure can be
exploited to reduce the computational burden as well as the
memory requirements for operations on such matrices. In this
work, we focus on the displacement structure of the sample
covariance matrix to find an efficient time updating algorithm.
A time-variant Toeplitz-like matrix is said to have
a time-variant displacement structure if the matrix difference

defined by [6], [9]

(12)

has low rank, say , where , for some lower tri-
angular matrix . The time-variant displacement rank, ,
provides a measure of the degree of structure present, with lower
rank indicating stronger structure. Thus, if is close to ,
there is little point in pursuing the displacement framework. We
note that the sliding window time updating of the estimated for-
ward–backward covariance matrix estimate can be expressed as

(13)

where and are given below, allowing for a
time-variant displacement structure with and .
Combining (12) and (13), yields

(14)

where is an generator matrix and is an
full rank diagonal signature matrix with either along

its diagonal. Here, (15), shown at the bottom of the page, holds,
and

(16)

From (16), we note that for the forward-backward
covariance matrix estimate. This value of can often be sig-
nificantly less than typical values of , which depending on the

...
...

...
...

(15)
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application usually is very large. We note that the positive-defi-
nite nature of guarantees the existence of a unique (lower
triangular) Cholesky factor, , such that

(17)

which, exploiting (13), can be expressed as [9]

(18)

Hence, it follows that there exists an -unitary rotation
matrix1, , such that

(19)

Note that has the effect of rotating the generator ma-
trix onto the expression to produce the updated
Cholesky factor and a block zero entry in the left-hand
side of (19). The rotational transform is typically im-
plemented as a sequence of elementary transforms, such that

, where annihilates the th
row of the generator matrix, e.g.,2

(20)

Note how the sequence of rotations in (20) updates one column
of the Cholesky factor at a time, leaving the lower ranks un-
changed. Further, note that the remaining rows of the generator
matrix are also updated, this to enable the updating of the next
column of the Cholesky factor in turn. This procedure continues
until all the ranks of have been updated to and
the entire generator matrix, has been completely nullified.
In this way, the updated columns of the Cholesky factor are
evolved in an efficient recursive manner. We remark that such
a recursion is also beneficial for efficient use of memory alloca-
tion and numerical contraction during matrix-vector products.

1Here, a J-unitary matrix��� is defined as any matrix��� such that���J��� = J.
Further, a�b denotes a matrix with the submatrices a fn�ng andb fm�mg
concatenated to produce a matrix of size f(m+ n)� (m+ n)g.

2In this example, (20) shows a rank-2 generator matrix, where L = 3 and x
indicating time-updated elements of a given matrix.

The rotation matrix can be formed in numerous different
ways. Here, we will use a combination of the Householder and
Givens rotations. Both of these transforms have the general form

(21)

where for a Householder and
for a Givens rotation. The corresponding rotation

matrices are given as

(22)

(23)

The Givens rotation is used for “updating” the factor with new
samples and the Householder rotation has the effect of “down-
dating” the factor by removing those samples which are no
longer present in the time-updated sample frame. In this way, an
appropriate combination of rotations can be determined to cor-
rectly time-update each Cholesky factor column vector in turn.
One should note tha,t in practice, each column of the Cholesky
factor is concatenated with the generator matrix to make an

matrix, see (24), and as each vector
is updated, this process is repeated whilst each row of the gen-
erator matrix is annihilated until all the column vectors of the
new Cholesky factor are produced

followed by

etc. (24)

Thus, an appropriate rotation matrix is an
matrix of the form (25), shown at the bottom of the

page, where

Whilst the time updating of the Cholesky factor is interesting in
itself, for instance for solving sets of linear equations by simple
back-substitution or Gaussian elimination, it can not be used to

(25)
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Fig. 1. ASC estimate of a time-varying signal.

Fig. 2. Spectrogram estimate of a time-varying signal.

efficiently find the time-update of the filterbank spectral esti-
mate. However, it is possible to extend the above procedure to
also yield the inverse Cholesky factor by augmenting (20) as [9]

Here, the upper triangular (or transpose conjugate) of the inverse
Cholesky factor, , have been appended below the ma-
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Fig. 3. Computational gain of the proposed time-updated PSC, ASC, and APES spectral estimators as compared to the brute-force re-evaluation using [5].

Fig. 4. Error propagation of the ASC spectral estimate using covariance updating vs. Cholesky updating.

trix in (20). Further, an matrix of zeros is also appended
to produce the above matrix. By applying the
exact same rotation, , we thus find an efficient time updating
of the inverse Cholesky factor, yielding one column vector per
iteration. As a side effect, the iteration produces an inverse gen-
erator matrix ( in the above example) which must be stored
as it is required to correctly update each vector in turn.

IV. NUMERICAL EXAMPLE

As an illustration of the superior quality of the filterbank
spectral estimators, the ASC estimate is shown in Fig. 1 for a
time-varying signal consisting of 3 complex-valued sinusoids
with time-varying frequency. Here, the estimates are computed

for 256 frequency points using samples for each time
step, using a -tap adaptive filter. As a comparison, Fig. 2
shows the (unwindowed) Spectrogram spectral estimate for the
same data set, clearly illustrating the superior resolution of the
ASC estimator. Fig. 3 illustrates the computational gain of the
proposed time updating of the PSC, the ASC, and the APES
spectral estimators for varying filter lengths as compared to the
“brute-force” re-evaluation of the spectral estimates for each
time-update using the efficient implementation in [5]. The pre-
sented measurements are calculated from the relative time taken
to execute 100 evaluations, this is to minimize the variance as-
sociated with spurious processor loading from the operating
system (though this effect is still somewhat evident). As seen
from the figure, quite significant gains are achieved even for rel-
atively short filter lengths.
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Further, we define the spectral error, , as the distance
between the spectral estimates evaluated over frequency bins,
i.e.,

(26)

where is the true spectrum, the time-updated spec-
tral estimate at time , and denotes the th frequency bin.
Fig. 4 shows the spectral error propagation of the ASC spec-
tral estimate3 using a sliding window covariance updating as
compared to the proposed Cholesky updating, clearly showing
the robustness of the suggested updating. This robustness is ex-
pected, as the Cholesky updating operates on the matrix square
root instead of the matrix itself, and is thus preferable [11].

V. CONCLUSION

In this paper, we have proposed a time updating of the Capon
and the APES spectral estimators based on the updating of
the inverse Cholesky factor of the forward-backward averaged
sample covariance matrix. This updating can be found via the
numerically robust time-variant generalized Schur algorithm,
providing a natural extension of the current most efficient batch
implementation of the estimators. Numerical simulations indi-
cate a significant computational gain over the batch estimation
methods for larger filter lengths. Further, studies of the error
propagation shows the proposed method to be superior to a
sliding window update of the covariance matrix estimate.
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