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Predicting Arterial Stiffness From the Digital
Volume Pulse Wavetform
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Abstract—Cardiovascular disease (CVD) is currently the biggest
single cause of mortality in the developed world, hence, the early
detection of its onset is vital for effective prevention therapies.
Aortic stiffness as measured by aortic pulse wave velocity (PWYV)
has been shown to be an independent predictor of CVD, however,
the measurement of PWYV is complex and time consuming. Recent
studies have shown that pulse contour characteristics depend on
arterial properties such as arterial stiffness. This paper presents a
method for estimating PWYV from the digital volume pulse (DVP),
a waveform that can be rapidly and simply acquired by measuring
the transmission of infra-red light through the finger pulp. PWV
and DVP were measured on 461 subjects attending a clinic in
South East London. Techniques for extracting features from the
DVP contour based on physiology and information theory were
compared. Low and high stiffness were defined according to a
threshold level of PWYV chosen to be 10 m/s—!. Using a support
vector machine-based classifier, it is possible to achieve high
overall classification rates on unseen data. Further, the use of
support vector regression techniques lead to a direct real-valued
estimate of PWYV which outperforms previous methods based
on multilinear regression. We, therefore, conclude that support
vector machine-based classification and regression techniques
provide effective prediction of arterial stiffness from the simple
measurement of the digital volume pulse. This technique could
be usefully employed as a cheap and effective CVD screening
technique for use in general practice clinics.

Index Terms—Cardiovascular disease (CVD), digital volume
pulse (DVP), photoplethysmography, pulse wave velocity (PWYV),
support vector machines (SVMs).

I. INTRODUCTION

ARDIOVASCULAR disease (CVD) is the leading cause
Cof mortality in the developed world. An estimated 17
million people die every year from CVD (mainly from myocar-
dial infarction and stroke; source: World Health Organization).
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Established risk factors for CVD include age, sex, cigarette
smoking, high blood pressure (hypertension), serum cholesterol
and the presence or absence of diabetes mellitus. The current
approach for estimating the risk of a CVD event (such as a my-
ocardial infarction or stroke) within an individual involves the
use of these factors in a “risk calculator” derived from regres-
sion equations relating levels of individual risk factors to CVD
events in prospective follow-up studies such as the Framingham
Heart study [1] (or the Cox model study [2]). However, such
risk calculators do not identify a substantial minority of subjects
who subsequently develop CVD. CVD occurs principally as a
result of atherosclerosis and arteriosclerosis, inflammatory and
degenerative conditions of the arterial wall. Initially, changes
occur at the cellular level but then lead to changes in the me-
chanical properties of the wall. The possibility that biophysical
measures of the properties of the arterial wall may provide
a measure of CVD risk has thus received attention recently
[3], [4]. One of the most promising measurements is arterial
stiffness. Arteries stiffen with advancing age and premature
stiffening may result from a combination of arteriosclerosis
and atherosclerosis. In addition, arterial stiffening leads to
systolic hypertension and increased load on the heart. Arterial
stiffness may thus not only provide a marker of the effects of
atherosclerosis/arteriosclerosis on the arterial wall, but in itself
lead to adverse haemodynamic effects that increase CVD risk.
In studies to date [3], [4] large artery stiffness, as measured
by pulse wave velocity (PWV) (shown in the following) has
proven to be a powerful independent predictor of CVD events,
more closely related to CVD risk than traditional risk factors.

A. Estimation of Arterial Stiffness by PWV

Direct measurement of arterial stiffness by simultaneous
measurement of change in arterial pressure and diameter is
technically challenging and in practice the technique most
widely used to measure stiffness is the determination of arterial
PWV. PWV is the velocity with which the pressure pulse
propagates through the arterial tree and is related to arterial
stiffness by the Moens—Korteweg [5] equation

Einch
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PWV = (1)

where Fj, is the incremental Young’s elastic modulus of the
arterial wall, & is the wall thickness, 7 is the radius of the artery,
and p is the density of blood. Carotid-femoral PWV is the mea-
surement that has been used in most outcome studies to date.
It includes the aorta and large elastic arteries that are most sus-
ceptible to age-related stiffening and which determine dynamic
loading on the heart. Carotid-femoral PWV can be determined
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Fig. 1. Stiffness index is related to the time delay (here PPT = ATphyp)
between the systolic and diastolic components of the waveform and the subject’s
height k. Hence, SIpve = h/ATpye, (from [8]).

by application of a noninvasive pressure sensor over carotid and
femoral arteries. The time delay AT between the foot of the
pressure pulse arriving at the carotid and femoral arteries is mea-
sured and the path length L between the arteries estimated from
distance between the site of application of the sensors. PWV
then equals I/ AT measured in meters per second !. The sen-
sors may be applied simultaneously to both arterial sites or to
each site sequentially using the “R-wave” of the ECG as a time
reference.

B. Estimating Arterial Stiffness by Pulse Contour Analysis

Determination of PWV as described before requires a skilled
technician, involves the subject disrobing to expose the femoral
artery, and requires specialized equipment. An alternative, sim-
pler more widely applicable technique would be of great ad-
vantage in screening for CVD. We have previously suggested
that the contour of the digital volume pulse (DVP) may be used
to estimate arterial stiffness [6]-[8]. The DVP waveform can
be rapidly acquired by measuring absorption of infrared light
across the finger pulp (technically referred to as photoplethys-
mography). This varies with red blood cell density and hence in
variation of blood vessel diameter during the cardiac cycle. Al-
though the absolute amplitude of the DVP depends upon local
factors such as temperature and perfusion of the hand, its con-
tour is mainly determined by characteristics of the heart and
large arteries. In many healthy subjects, especially in younger
subjects with low arterial stiffness, the DVP exhibits an ini-
tial systolic peak followed by a diastolic peak, thought to be
formed—at least in part—by pressure waves reflected from the
periphery of the circulatory system. The time between the sys-
tolic and diastolic peaks, the peak-to-peak time (PPT) is related
to the time taken for the pressure wave to propagate from the
heart to periphery and back and is thus related to PWV in the
large arteries. A so-called stiffness index (S1) derived from sub-
ject height (as a measure of path length) and PPT can be used
to estimate PWYV (see Fig. 1). In older subjects and in subjects
with premature arterial stiffening and in some healthy subjects

Fig. 2. DVP recorded by measuring the transmission of IR light through the
finger pulp.

that presumably have differing anatomy, however, the systolic
and diastolic peaks in the DVP become difficult to identify and
SI becomes unreliable as an estimate of stiffness.

This paper sets out to show that it is possible to get a good
estimate of a given patient’s PWV (and by inference, arterial
stiffness and thereby Cardiovascular health) simply and quickly
from their DVP waveform alone. Previously published works
on related topics have tended to rely on a very limited cohort
of subjects. For example, Bhattacharya et al. [9] present an in-
teresting paper on an initial study into the diagnostic potential
of the photo-plethysmographic waveform based on the results
obtained from four subjects. In our paper, we had access to data
collated from a cohort of 461 subjects. Moreover, the aim of our
study was to determine which features of the DVP waveform
could be used most effectively to estimate PWV. A number of
different physiologically motivated and signal subspace based
features (see Section III) were extracted from the DVP wave-
form and tested using machine learning techniques to determine
the optimum set or combination thereof. Support vector ma-
chine (SVM) [10]-[12] supervised learning theory (introduced
in Section IV) was applied to find the best features extracted
from the DVP waveform to give good prediction of high and
low PWV. These features were also tested using the more tra-
ditional artificial neural network (ANN) [13] machine learning
approach to provide a benchmark for comparison with the SVM
method.

II. PHOTOPLETHYSMOGRAPHY

The data acquisition system consisted of a handheld pho-
toplethysmography data capture device (Micro Medical Ltd.,
Chatham, U.K.). The equipment transmitted infrared light at
940 nm and was placed on the index finger of the right hand
(see Fig. 2). The signal from the plethysmograph was digitized
using a 12-bit analog-to-digital converter with a sampling fre-
quency of 100 Hz. The DVP signals were recorded over a 10-s
period resulting in the capture of a number of waveforms. These
sequences of waveforms were subsequently ensemble averaged
to obtain a single waveform per subject. The final waveforms
were subject to baseline wander removal and normalized to 100
samples per waveform and the amplitude was arbitrarily scaled
ranging from O to 1000.
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A. Study Population

A cohort of 461 subjects were recruited from the local area of
South East London. No subject had a previous history of CVD or
was receiving vasoactive drugs. The subjects were in a range of
16 to 81 years of age and the average age was 50 with a standard
deviation of 13.6 years. A number of basic physiological indica-
tors were measured from each subject including systolic and di-
astolic blood pressure along with their DVP waveform and their
PWV. Specifically, the Carotid-femoral PWV was measured by
ECGe-referenced carotid and femoral tonometry (SphygmoCor,
Atcor, Australia). The mean value of the stiffness index in all
subjects (9.4 m/s~!) was of similar magnitude to that of PWV
(10.4 m/s~1).

III. FEATURE EXTRACTION

Numerous measurements (or features) can be derived from
the DVP waveform. Previous work in this field [8] has led to the
selection of what we now term physiologically motivated fea-
tures. That is to say, parameters associated with the physiolog-
ical properties of the aorta and arterial characteristics in general.
Since then, we have focused our attention on exploiting infor-
mation theoretic approaches to feature extraction and we refer to
these as signal subspace-based features. The details of the two
extraction processes are elucidated in Sections III-A and III-B,
respectively.

A. Physiologically Motivated Features

Several different combinations of features were compared
and after experimentation it was found that, in fact, a specific
set of four of these features give the best classification of high
or low PWV. Interestingly, two of these features have been in-
dependently cited in the literature [6], [8], and [15] as having a
bearing on cardiovascular pathology. When the DVP was first
measured in 1941, Dillon and Hertzman [15] observed that sub-
jects with hypertension and/or arteriosclerosis had an “increase
in the crest time” compared to healthy subjects. The crest time
(CT), i.e., the time from the foot of the waveform to its peak [as
shown in Fig. 3(c) and (d)] has proved to be a useful feature for
the classifier. Also, peak-to-peak time (PPT), defined as the time
between the first peak and the second peak or inflection point of
the DVP waveform [see Fig. 3(c) and (d)]. As mentioned pre-
viously in the Introduction, the second peak/inflection point on
the DVP is generally accepted to be due to reflected waves. So
its timing would be related to arterial stiffness and PWV. This
has indeed been confirmed in two separate studies where PPT
was found to correlate well with aortic transit time [6] and the
so-called stiffness index (SI) (subject height divided by PPT)
was shown to correlate well to aortic PWV [8].

The definition of PPT depends on the DVP waveform as its
contour varies with subjects. When there is a second peak as is
the case with “Waveform A” in Fig. 3(a), PPT is defined as time
between the two maxima. In other words, PPT is the time be-
tween the two positive to negative zero-crossings of the deriva-
tive. However, in some DVP waveforms, there is no clear second
peak as in “Waveform B” in Fig. 3(b). In this case, PPT is de-
fined as the time between the peak of the waveform and the in-
flection point on the downslope of the waveform [which is a

DVP Waveform A DVP Waveform B

(a) (b) A

»”
<

Derivative of DVP Waveform A

(©) (d)

Fig. 3. (a)-(d) Two DVP waveforms and their respective derivatives.

local maximum of the first derivative, as shown in Fig. 3(d)].
These three features then: PPT, CT, and SI were empirically
found to be among the best features for accurate classification
of PWV.

B. Signal Subspace-Based Features

This method of feature extraction, by contrast, makes no as-
sumptions about the physical generation of the waveform and
relies instead on signal processing and decomposition. Exhaus-
tive tests were made on a number of different methods of ex-
tracting suitable features from the DVP waveform (and these
are presented here [16]). They included kernel principal com-
ponent analysis [17], wavelet packet decomposition, and signal
subspace analysis. In fact, it was found that certain ranges of the
eigenvalues of the covariance matrix (formed by the autocorre-
lation of the DVP waveform with its mean removed) outper-
formed all the other information theory motivated features and
methods. These subspace-based features can be related to the
Fourier components in the power spectrum of the DVP wave-
form. In order to calculate these features, the autocorrelation
sequence (ACS) of the DVP data (with mean removed, denoted
by d) is determined up to 100 lags. Then, a 100 x 100 covari-
ance matrix, A, is formed by constructing a Toeplitz matrix [18]
from half of this sequence (the ACS is symmetrical and real).
Hence, the elements of A can be formed as follows:

a(t,7) = a(4,1) = ZCZ’I’L—L (n—173), 0<4i, j<100

@
where d (n) is the nth element of the DVP amplitude data vector
with its mean removed, i.e., d = {d(1),...,d(N)} with the
data vector normalized to length N = 100. These covariance
matrices (one per subject) can be then be decomposed using
Eigenvalue decomposition [18] such that

A=VIVL 3)

Here V is the matrix of eigenvectors of A and X its eigen-
values, where ¥ = diag{o1,09,...,0n}. During experimen-
tation, it was found that some ranges of eigenvalues, for in-
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stance, ¥ = {o3,...,09}, gave good results. It is hypothesized
that the first one or two eigenvalues o1 and o5 primarily repre-
sent the fundamental signal subspace data, which is common to
all waveforms in the database and the smallest eigenvalues con-
stitute the noise subspace, hence, the removal of these improve
the orthogonality of the data and its subsequent classification.

C. Combinations of Features

While it was impractical to attempt all the possible combina-
tions of feature sets, it was found that certain combinations of
physiologically motivated and signal subspace-based features
showed the most consistently reliable results overall. Hence, in
this paper, we present the findings based primarily on exper-
iments with just physiologically motivated features and then
just signal subspace-based features and, finally, combinations
of the two types and show the best of these types of data sets in
Section V. Further, Table V contained in the Appendix shows
the Pearson correlation coefficients determined for all 11 fea-
tures used in the results of this study.

IV. SUPPORT VECTOR MACHINES

SVMs [10]-[12] have received a great deal of attention re-
cently proving themselves to be very effective in a variety of
pattern classification tasks. They have been applied to a number
of problems ranging from handwritten character recognition,
bioinformatics to automatic speech recognition (among many
others) with a great deal of success. A brief summary of the
mathematical theory of SVMs follows, for a complete treatment
please see [12].

A. Hard-Margin Classifier

Consider a binary classification task with a set of linearly sep-
arable training samples

§={(x191), s (Km ym) } )

where x € R4, i.e., x; lies in a d-dimensional input space and
y; is the class label such that y; € {—1, 1}. The label indicates
the class to which the data belongs. A suitable discriminating
function could then be defined as

f(x) = sgn((w,x) +b) ()

where vector w determines the orientation of a discriminant
plane (or hyperplane), (w,x) is the inner product of the vec-
tors, w and x, and b is the bias or offset from the origin. Clearly,
there are an infinite number of possible planes that could cor-
rectly classify the training data. Intuitively one would expect
the choice of a line drawn through the “middle,” between the
two classes, to be a reasonable choice. This is because small
perturbations of each data point would then not affect the re-
sulting classification. This, therefore, implies that a good sepa-
rating plane is one that is more general, in that it is also more
likely to accurately classify a new set of, as yet unseen, test
data. It is thus the object of an optimal classifier to find the
best generalizing hyperplane that is equidistant or furthest from
each set of points. The set of input vectors is said to be opfi-
mally separated by the hyperplane if they are separated without

error and the distance between the closest vector and the hy-
perplane is maximal. This approach leads to the determination
of just one hyperplane by maximizing the margin we effec-
tively need to minimize (1/2)||w]||? subject to the following
constraint: y;({(w,x;) +b) > 1.

B. Soft-Margin Classifier

Typically, real-world data sets are in fact linearly inseparable
in input space, this implies that the maximum margin classi-
fier approach is no longer valid and a new model must be in-
troduced. This means that the constraints of the maximum or
hard margin classifier (which requires that there are no errors
of classification) need to be relaxed somewhat to allow for the
minimum amount of misclassification. Therefore, the points that
subsequently fall on the wrong side of the margin are consid-
ered to be errors. They are, as such, apportioned a lower influ-
ence (according to a preset slack variable) on the location of
the hyperplane. In order to optimize the soft-margin classifier,
we must try to maximize the margin while allowing the margin
constraints to be violated according to the preset slack variable
&. This leads to the minimization of: (1/2)||w|*+C Y, &,
subject to y; ((w, x;)+b) > 1—¢;,and §; > Ofori =1,...,m.
The minimization of linear inequalities is typically solved by the
application of Lagrangian duality theory [12]. Hence, forming
the primal Lagrangian

L(w,b & @.B) = SIwlP+ O D&~ > Bk
=1 =1

=Y ailnltwx) +D) - 146 ©

=1

where «; and f3; are independent Lagrangian multipliers. The
dual-form can be found by setting each of the derivatives of the
primal to zero thus, w = > 1", y;a;x; and Yo yie; = 0,
then resubstituting into the primal thus

m 1 m
L(a) = Zoz,; —5 Z Vi (X, X,). @)
i—1

4,j=1

Interestingly, this is the same result as for the maximum margin
classifier. The only difference is the constraint o; + 3; = C' V 7,
where @ and B > 0, hence, 0 < a; < C V 7. This implies that
the value C, sets an upper limit on the Lagrangian optimization
variables «; and (3;, sometimes referred to as the box constraint.
The value of C' offers a tradeoff between accuracy of data fit
and regularization, the optimum choice of C will depend on
the underlying nature of the data and is usually determined by
cross-validation (whereby the classifier is tested on a section of
unseen data). The dual criterion L(a) is maximized and this is
typically solved using quadratic programming (QP) algorithms.
There are many online resources of such algorithms available
for download (see the website referred to in [12] for an up to
date listing).

Another possible realization of the soft-margin classifier, is
termed v-SVM and uses the so-called v-parameterization ap-
proach [14]. In this case, the parameter C' is replaced by a pa-
rameter v € (0, 1] which is asymptotically a lower bound on the
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Fig. 4. Diagram depicting support vector regression in linear input space with
e-insensitive loss function “tube” [19].

number of support vectors and an upper bound on the number
of margin errors (i.e., data points that lie on the wrong side
of the hyperplane). This has the overall effect of providing a
quasi-linear range on the regularization constraint (the actual
relationship will depend on the data set) and provides a useful
framework from which to perform a grid search for hyper-pa-
rameter optimization. This method has been used in the classi-
fication results of this paper.

C. Support Vector Machines for Regression

SVMs lend themselves as easily to the task of regression
with only a small extension in theory. Essentially they allow for
real-valued targets to be estimated by modeling a linear func-
tion (see Fig. 4) in feature space (see Section IV). The same
maximum margin concept is maintained but it is augmented by
a so-called e-insensitive loss-function; so long as the training
data points lie within the range of the loss function then no
error is deemed to have occurred. In a manner analogous to
the soft-margin classifier, errors are accounted for by the in-
clusion of slack variables that allow data points to violate this
constraint in a limited fashion. This leads to a slightly modified
set of constraints requiring the minimization of: (1/2)||w]|* +
O, (& + &), subject to i — (w,x;) = b < e + &, and
(W, X)) +b—y; <e+ & withg, & >0fori=1,...,m.
The solution for the previous QP problem is provided once again
by the use of the Lagrangian duality theory, however, we have
omitted a full derivation for the sake of brevity (please see [19]
and the references therein).

D. Kernel Functions

It is quite often the case with real-world data that it is linearly
inseparable, it may, however, exhibit a relatively simple under-
lying nonlinear characteristic nature (such as quadratic). Kernel
mappings offer an efficient solution to this problem by nonlin-
early projecting the input data into a higher dimensional feature
space to allow the successful separation of such cases. The key
to the success of Kernel functions is that special types of map-
ping, that obey Mercer’s Theorem, offer an implicit mapping
into feature space. This means that the explicit mapping need
not be known or calculated, rather the calculation of a Kernel
inner-product itself is sufficient to provide the mapping. This
simplifies the computational burden dramatically and in com-
bination with SVM’s inherent generality largely mitigates the
so-called “curse of dimensionality.” Further, this means that the
input feature inner-product can simply be substituted with the
appropriate Kernel function to obtain the mapping while having

TABLE 1
KEY FOR PRESENTED DATA SETS

[ Dataset || Features |

P1 {CT, PPT}
P2 CT, PPT, SI}
31 {o3,...,09
32 02,...,09

no effect on the Lagrangian optimization theory. Hence, the rel-
evant classifier function then becomes

nSVs
f(x) =sgn | > yioiK(xi,x) + b ®)
=1
and for regression
nSVs
F) =Y (@i —aj) K(xi, %) +b ©)

i=1

where n.SV s denotes the number of support vectors, y; are the
labels, «;; and @ are the Lagrangian multipliers, b the bias, x;
the Support Vectors previously identified through the training
process, and x the test data vector. The use of Kernel func-
tions transforms a simple linear classifier into a powerful and
general nonlinear classifier (or regressor). There are a number
of different Kernel functions available [12], however, the most
commonly used are the gaussian radial basis function (GRBF)
kernel, given by

K(x;,x) = exp (—'y||xi — x||2) (10)
where «y defines the size or width of the radial basis function,
and the polynomial kernel, given by

K(xi,x) = ((xi,x) +¢)? (11)

where c is an offset constant and p is the polynomial degree or
order.

V. RESULTS

This section contains the best results obtained after thorough
experimentation for both support vector classification and sup-
port vector regression. Both these methods were compared to
the baseline technique of a “standard” three-layer ANN. Results
for classification are presented in percentages with overall (or
“total” rate) then the sensitivity or “true positive” rate followed
by the specificity or “true negative” rate. The regression results
are compared in terms of the standard deviation of their errors
from the actual values for the entire data set. In actual fact, a
wide range of possible feature sets and combinations exist that
performed the required tasks satisfactorily, however, for ease of
readability and conciseness, we have selected those which we
found to perform the best overall. The results presented here are
based on the best two sets of each of the physiologically moti-
vated features, two sets of signal subspace-based features and
finally the two best combinations of the each type of feature
set. During experimentation, the two sets of physiologically-
based features that performed the best were found to be: P1 =
{CT,PPT} and P2 = {CT,PPT, SI}. The two sets of signal
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TABLE II
ANN CLASSIFICATION RATES % AND (SD) FOR VARIOUS DATA SETS (SEE TABLE I)
Datasets
Physiological Eigenvalues Combinations
P1 [ P2 31 [ 32 S1+P1 | X1+P2
Total || 80.2 (1.8) | 78.1 3.1) || 79.2 (1.8) | 81.3 (0.0) || 80.5 (1.3) | 81.3 (0.1)
Sens || 83.3(3.2) | 82.8 (6.8) || 81.0 (5.5 | 84.4(1.9) || 86.0 (1.4) | 85.8 (1.2)
Spec 78.0 (4.8) | 76.7 (6.0) 78.5 (5.7) | 779 (1.2) 74.9 (1.6) | 77.1 (0.8)

subspace based features that performed the best were also found
accordingly, ¥1 = {o3,...,09} and X2 = {09, ...,09}. The
key to these feature sets is shown in Table I. Finally, the exe-
cution time taken for the feature extraction process for all fea-
ture types was very short, typically of the order of less than one
second and significantly shorter than the training process for
either SVM or ANN classifier on a standard PC, (the training
times being of the order of a minute or two).

The entire cohort of 461 subjects, with complete DVP wave-
form data and PWV measurements was used in this study. The
PWYV values were grouped into low and high values. Studies
[21] have shown that values of <9 m/s~! are low risk and values
>11 m/s~! indicate a high CVD risk category. Moreover, the
mean PWYV value of our cohort was found to be around 10
m/s~ !, hence, a binary target label was determined according to
this threshold. The cohort was gapped to remove those subjects
with PWV of between 9 and 11 m/s~ to avoid ambiguity of the
target classes. The remaining 315 records underwent three fold
cross-validation whereby 90% were used for training and 10%
for testing in any given fold.

A. ANN Benchmark

An ANN [13] benchmark method was used to provide base-
line results for both classification and regression with which to
compare those of the SVM techniques. There are many different
architectures available for an ANN, but perhaps the most com-
monly used arrangement is the three-layer feed-forward net-
work with resilient back propagation which is favored for its
resistance to local-minima and fast convergence properties. The
hidden layer neurons used the sigmoid transfer function and the
output node used a signum transfer function for classification
(a linear function was used for regression). Only the number of
hidden nodes then remained to be specified. This was chosen by
cross-validation on separate unseen data to optimize generaliza-
tion performance. Networks with between 4 and 7 hidden nodes
were considered and the cross-validation errors always showed
a clear optimum within this range; its precise location depended
on the dataset but was always between 4 and 7 hidden nodes.
The MATLAB neural network toolbox was used to perform these
experiments and the results for ANN classifier are shown in
Table II. It can be seen that many data sets give a reasonably
high overall classification rate around 80%—-81%. In general,
however, the classifier tends to favor sensitivity over specificity
by around five to ten percentage points. This implies a minor
tendency toward false positives, which is generally preferable
to the opposite bias. Notwithstanding, it can be seen that for the
ANN, combinations of physiological and eigenvalue-based fea-
tures provide little improvement over the eigenvalue-based sets

alone. We shall compare and contrast these results with those
obtained from the support vector classifier in Section V-B.

B. Support Vector Classification

Here a binary classifier based upon the Ohio State University
SVM toolbox for MATLAB [20] was employed using a number
of different kernel functions in combination with a soft margin
classifier. It was found during experimentation that the GRBF
kernel performed as well or better than the others and, hence,
the results in Table III are based on this kernel (the perfor-
mance of the other kernels is discussed below in Table IV).
After performing a thorough model parameter grid searches (see
Fig. 5), results were averaged from a “block” of nine individual
results obtained from a range of both constraint factor v and
GRBF width v. This technique was applied to all the results
to mitigate against over-training of the model parameters, en-
suring a more general classifier and unbiased results. As shown
in Table III, the SVM method using physiologically motivated
feature set P1 yields a fairly high degree of classification accu-
racy, with a significantly high proportion 90.3% of true posi-
tives achieved. There was a slightly lower result of only 77.4%
true negatives. Hence, the overall average successful classifica-
tion rate becomes 84.0%. By comparison the ANN approach
achieved at best only 83.3% sensitivity, 78.0% specificity, and
80.2% overall. Hence, the SVM method outperformed the ANN
method (with the exact same data) by quite some margin. Per-
haps of greater significance, however, are the results for the
signal subspace-based features, which show a distinct improve-
ment in the specificity when compared with those of the physi-
ologically motivated features, especially for the SVM classifier.
Here, it is readily possible to achieve sensitivities in the region
of 90%, with specificities of over 80%, bringing overall clas-
sification to 85.3% (this rate can be achieved with a range of
model parameters and represents an overall mean rate). Again,
Tables II and III indicate that the ANN results are inferior to
those of the SVM, moreover, they show that the eigenvalue
based features with SVM gave better results than those based
on physiological features alone. Finally, combinations of both
physiological and signal subspace feature sets were tested and
the best two pairs are also included in the table. The other two
combinations came quite close, but none were as effective as
the two presented. It can be seen that the combinations of %1 +
P1 and ¥1 4+ P2 gave the best results. The latter set gave an
overall classification rate of 87.5%, with a balanced sensitivity
and specificity of the same value. This is significantly the best
figure achieved thus far in this study and represents a very high
classification rate for PWV based on features extracted solely
from the DVP waveform. Tests with different kernel functions
were performed to compare with those of the GRBF kernel;
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TABLE III
SVM CLASSIFICATION RATES % AND (SD) FOR VARIOUS DATA SETS USING GRBF KERNEL (SEE TABLE I)
Datasets
Physiological Eigenvalues Combinations
P1 [ P2 31 [ 32 Y1+P1 | X1+P2

Total || 84.0 (0.5) [ 84.0 (0.5) || 85.1 (1.4) | 853 (1.6) || 86.1 (0.9) | 87.5 (0.0)

Sens 90.3 (2.0) | 88.2 (2.1) || 90.3 (3.3) | 90.3 (4.0) || 86.7 (1.4) | 87.5(0.0)

Spec 77.4 (0.5) | 79.9 (1.0) || 80.2 (2.8) | 80.5 (3.4) || 85.3 (2.5) | 87.5 (0.0
TABLE 1V

OVERALL SVM CLASSIFICATION RATES % AND (SD) FOR VARIOUS KERNEL FUNCTIONS FOR EACH DATA SET (SEE TABLE I)

Datasets
Physiological Eigenvalues Combinations
Kernel P1 [ P2 31 [ 32 S1+P1 | 31+P2
Linear || 84.0 (0.5) | 83.3(0.0) || 82.3(0.9) | 80.9 (0.5) || 84.4 (0.0) | 85.8 (0.5)
Poly2 83.9 (0.8) | 84.0(0.5) || 839 (1.4) | 84.5(1.1) || 86.0 (1.2) | 86.8 (0.5)
Poly3 83.7(0.9) | 839 (1.1) || 85.0(0.9) | 84.6 (1.4) || 86.1 (0.9) | 86.5 (0.0)
GRBF 84.0 (0.5) | 84.0 (0.5) || 85.1 (1.4) | 85.3 (1.6) || 86.1 (0.9) | 87.5 (0.0
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Fig. 5. Grid search showing classification rate is high for a wide range of -y and
v for data set (X1 + P2).

linear and polynomial (second and third degree) were tested but
the GRBF kernel consistently gave the best overall results of the
four kernel functions for all of the data sets (see Table IV).

C. Support Vector Regression

The same SVM toolbox was capable of providing regres-
sion figures and was used in this study also. Again, after per-
forming careful grid searches, a GRBF Kernel, using a typical
constraint factor in the region of C' = 1000 and ¢ = 1.0, ap-
peared to give the best results (though these model values were
not critical). The PWV data from all subjects was used (with no
gapping), multifolded cross-validation was employed whereby
90% of the population was used for training and the remaining
10% for testing. The test results were ten-fold cross-validated
and subsequently aggregated and compared to the actual target
PWYV. The standard deviation (SD) of the difference (error) be-
tween the actual and predicted PWV was found to be 2.25 m/s !
with the physiologically motivated features alone and just 2.13
m/s~? for the signal subspace-based features. Though the im-
provement with combinations of features was marginal, it was

possible to achieve a SD of just 2.03 m/s~!. Nevertheless, these
results compare very favorably to the traditional multiregres-
sion techniques whereby a best SD of 2.60 m/s~* was achieved.
Finally, the best ANN regressor achieved a SD of 2.07 m/s~1,
thus, the difference in performance of the SVR and ANN based
regressor was much less significant here. Hence, it has been
demonstrated that it is possible to directly predict (to a degree of
accuracy approaching that of the measuring equipment i.e., =1
m/s~1) the PWV from features extracted solely from the DVP
waveform.

VI. CONCLUSION

A method to accurately classify subjects into high and low
PWYV (equivalent to high and low CVD risk) using features
extracted from their DVP waveform has been presented. Both
SVM methods of classification and regression are shown to
provide superior results when compared with either traditional
multilinear classifiers or the popular ANN approaches in this
specific application. Many of the methods and feature sets
within the study were capable of achieving better than 80%
successful classification, with the overall best classification of
PWYV reaching 87.5%. The best results were obtained while
using a combination of different features extracted from the
DVP waveform (i.e., both physiologically motivated and signal
subspace-based features). Measuring DVP and extracting these
features is very simple and rapid, we, therefore, conclude that
this method offers the very exciting property of being suitable
for use by health professionals as a screening facility for the
assessment of CVD risk, such as in a General Practice clinic.

VII. FUTURE WORK

Work is currently under way to investigate new feature ex-
traction methods to further improve the classification and re-
gression results. The statistical significance of this study grows
as we continuously gather new data on subjects from different
geographical, ethnical, and pathological backgrounds. Further-
more, as subject follow-up outcome data becomes available, we
intend to investigate and disseminate a study into the ability of
the classifier to predict actual CVD events.
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TABLE V
CORRELATION AMONGST PAIRS OF FEATURES USED IN THE STUDY
[ CT PPT SI o2 a3 2 a5 o6 a7 a8 79
CT 1.000 | -0.547 | -0.147 | -0.633 0.303 | -0.175 0.126 0.066 0.512 0.513 0.591
PPT | -0.547 | '1.000 | 0.189 | 0.449 | -0.339 | -0.092 | -0.450 | -0.419 | -0.678 | -0.642 [ -0.743
SI -0.147 0.189 1.000 0.206 | -0.176 0.031 | -0.073 | -0.040 | -0.161 | -0.135 | -0.237
o2 -0.633 | 0449 | 0206 | 1.000 | -0.183 | 0.524 | 0.164 | 0.309 | -0.445 | -0.485 | -0.429
o3 0.303 | -0.339 | -0.176 | -0.183 1.000 0.470 0.290 0.340 0.330 0.248 0.366
o4 -0.175 ] -0.092 | 0.031 | 0.524 | 0.470 | 1.000 [ 0.775 | 0.805 | 0.149 | 0.041 | 0.145
a5 0.126 | -0.450 | -0.073 0.164 0.290 0.775 1.000 0.943 0.497 0.406 0.490
a6 0.066 | -0.419 | -0.040 | 0.309 | 0.340 | 0.805 | 0.943 | 1.000 | 0.525 [ 0.416 | 0.456
a7 0.512 | -0.678 | -0.161 | -0.445 0.330 0.149 0.497 0.525 1.000 0.976 0.806
Ig 0.513 | -0.642 | -0.135 | -0.485 0.248 0.041 0.406 0.416 0.976 1.000 0.807
a9 0.591 | -0.743 | -0.237 | -0.429 0.366 0.145 0.490 0.456 0.806 0.807 1.000
APPENDIX

Table V shows the Pearson correlation coefficients deter-
mined for all 11 features used in the results of this study, i.e.,
{CT/ PPT/ SL T2y v vy 0'9}.
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