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Abstract— Over recent years, Singular Spectrum Analysis
(SSA) has gained popularity as an effective means to de-
noise biologically sourced single channel signals, especially
Electromyogram (EMG) and Electrocardiogram (ECG) signals
amongst others. There are numerous applications whereby the
signal acquisition process results in the mixing of both types
of signals along with body motion artifacts and the inevitable
electromagnetic interference. Both ECG and EMG signals are
very useful to physicians, though preferably in isolation, though
they rarely present themselves in this manner. Simple filtering
techniques are ineffective in their separation as both signal
spectra overlap in the frequency domain. In this paper, we
propose a technique based on a sliding SSA algorithm which
proves to be more successful in separating real mixed EMG
and ECG signals than traditional block based approaches on
single channel data. SSA is a non-parametric technique that
decomposes the original time series into a number of additive
components, each of which can then be readily identified based
on statistical analysis as belonging to EMG or ECG signals.
This approach could be applied equally to other signal types
using different statistical methods as required, moreover, this
technique is relatively straight-forward to implement and does
not require any reference signals or training.

Index Terms— Singular Spectrum Analysis, Electromyogram,
Electrocardiogram, Signal Separation.

I. INTRODUCTION

The digital acquisition of biomedical signals is becoming
increasingly common amongst biomedical engineers, physi-
cians and researchers. These signals are prone to interference
due to their low voltage nature. Electromyogram (EMG)
and Electrocardiogram (ECG) signals are frequently inad-
vertently mixed in the human body in applications from
simple ECG monitors, to surface EMG (sEMG) [1] and
diaphragmatic EMG (EMGdi) acquisition systems. In this
paper, we focus our attention on the application of EMGdi
recovery from a real mixture of signals that were acquired
using an esophageal catheter based device, see Figure 1. As
can be clearly observed, this device is susceptible to sig-
nificant levels of interference principally from ECG signals
the source of which are in close physical proximity to the
diaphragm muscles. The focus of previous work [2] was
the application of Blind Source Separation (BSS) techniques
using Independent Component Analysis (ICA) [3] to un-
mix the original signals from multichannel data which has
been mixed in an assumed non-convolutive manner. This
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technique works well in a synthetic environment when the
mixtures are simply additive; real sampled data, however,
often doesn’t lend itself to un-mixing so well. Nevertheless,
some success has been reported using ICA both on multi-
channel data [2], [4] and single channel data [5] where
another mechanism is used to split the data into quasi-
multichannel data using either FFT, Wavelet or Empirical
Mode Decomposition (EMD) techniques.

The work presented in this paper proposes that an SSA
technique based on kurtosis be applied alone to the EMGdi
data requiring only a single channel input and not only
simplifies the signal separation process it also improves on
the previous ICA based technique. Moreover, it is shown
that results can be improved further by applying the SSA
method using a sliding window approach, this method will
be detailed in the rest of the paper which is organised as
follows. The next section introduces the theoretical basis
of the Singular Spectrum Analysis technique. The Experi-
mentation section entails a comparison of Block SSA versus
Sliding SSA on synthetically mixed EMG and ECG data for
quantitative evaluation. Subsequently, there is a section of
Results based on the application of the proposed sliding SSA
method to the effective removal of ECG interference from
sampled EMGdi data from an esophageal catheter. Finally, a
Conclusions section provides a summary of the work at the
end of the paper.
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Fig. 1. Esophageal catheter acquired EMGdi data showing significant ECG
interference.



II. SINGULAR SPECTRUM ANALYSIS

Singular Spectrum Analysis is a well established and
powerful time-series analysis technique with relevance to
multivariate statistics, dynamic systems and signal process-
ing [6]. The applications of SSA are manifold, including
signal source separation, financial modelling and biomedical
signal denoising [7]. Essentially, SSA works by embedding
a time-series into a Hankel matrix form, applying Singular
Value Decomposition (SVD) to this matrix and then ex-
tracting the so-called eigentriples. Each eigentriple represent
different components of the original signal including slowly
varying trends, periodic components and unstructured noise.
Hence, SSA can be used as an effective denoising or signal
separation tool. There are typically two stages in the SSA
process, decomposition and reconstruction and each stage
consists of two steps.

A. Decomposition

The time series data is decomposed by first embedding it
in a Hankel type matrix.

1) Embedding: Consider the real-valued non-zero time
series s where

s = (s1, s2, ..., sr−1). (1)

where r > 2 as a minimum. Embedding relates to the process
of mapping x into k multidimensional lagged vectors of
length l such that,

xi = [si−1, si−2, ..., si+l−2]
T (2)

where k = r−l+1, and the window length 1 ≤ l ≤ r, and the
superscript T denotes vector transpose operation. Selection
of suitable window lengths l and lagged vectors k depends
partially on prior knowledge of signals of interest and
often ultimately relies on experimentation. To complete the
embedding process a so-called trajectory matrix is formed
from vectors of xi. The trajectory matrix is thus,

X = [x1, x2, ..., xk] (3)

or

X =


s0 s1 s2 · · · sk−1

s1 s2 s3 · · · sk
s2 s3 s4 · · · sk+1

...
...

...
. . .

...
sl−1 sl sl+1 · · · sr−1

 (4)

X is clearly a Hankel matrix made up from the sample data
whereby all its diagonal elements are equal.

2) Singular Value Decomposition (SVD): Here we define
S = XXT and since S must be positive definite, we know that
its eigenvalues λ1, λ2, ..., λl must be positive valued also, fur-
ther we place the eigenvalues of S in descending order so that
they are monotonically decreasing in value from elements 1
to l, such that, λ1 ≥ λ2 ≥ ... ≥ λl ≥ 0 and U1, U2, ..., Ul

are the corresponding orthonormal eigenvectors such that
‖Ui‖ = 1.

If we now define Vi = XTUi/
√
λi, then the trajectory

matrix can be broken down into individual components such
that,

X = X1 + X2 + . . .+ Xd (5)

where d = arg(maxi){λi > 0} is often referred to as
the rank of the matrix and Xi =

√
λiUiV

T
i . The set of

data elements {
√
λi, Ui & V T

i } is often referred to as
the ith eigentriple of the trajectory matrix X [8]. Each
eigentriple contains progressively different statistical natured
sub-components of the original time-series data and careful
selection or grouping of the components can yield useful
results in many source separation problems.

B. Reconstruction

The reconstruction stage comprises two parts, namely
grouping and diagonal averaging.

1) Grouping: There is no general rule for grouping, it all
depends on the application, the grouping rule will be defined
by the special requirements of the problem and the statistical
nature of the signal of interest or even its noise. In our case
we are primarily interested in separating ECG signals from
EMG signals and therefore we can use statistical means
to select the eigentriples which correspond to the relevant
signal distribution function. Experimentation has shown that
the fourth standardized moment, kurtosis, (see Eq. 6) is an
effective statistical measure to differentiate ECG and EMG
type signals; typically ECG has a significantly higher kurtosis
figure than that of EMG being more noise like in nature its
kurtosis is typically less than 4. A simple threshold can be
set to group all eigentriples with low kurtosis as EMG and
the rest to be ECG. Further, a novel sliding window approach
is adopted, which improves upon the standard block-based
methods by avoiding arbitrary end effects caused by abrupt
transitions of blocks. Whilst this method increases compu-
tational complexity significantly the results show marked
improvement, the algorithm runs approximately one order of
magnitude slower than real-time on a modern PC with Intelr

i5-6600K processor running at 3.5GHz using Matlabr on a
64-bit Windowsr 10 PC. Research is currently under way
to reduce the computational burden of the SVD algorithm
when using a sliding window.

κ(x) = E

[(
x− µ
σ

)4
]

(6)

Kurtosis is a useful and simple statistical measure that can
be applied to each eigentriple Xn which can then be grouped
accordingly.

X̂ = X1 + X2 + . . . (7)

2) Diagonal Averaging: The final stage of the reconstruc-
tion process involves the reconversion from matrix back to
vector format and this is achieved by averaging the diagonal
elements of the reformed Hankel matrix X̂ which is simply
a sum of the subset of desired eigentriples according to the
grouping rules stated in the previous sub-section. Once the
new Hankel matrix is determined it is straight forward to



de-embed the new time-series data. Normally, one Hankel
matrix is reconstructed of entirely ECG selected eigentriples
and then the resultant time series is simply subtracted from
the original mixed times series to yield the de-noised EMG
signal trace.

III. EXPERIMENTATION

In order to evaluate the performance of the proposed
method under varying signal-to-noise conditions, synthetic
data was generated using ECG and EMG data acquired
from standard online corpora. The ECG data was specifically
sourced from the PhysioNet hosted MIT-BIH database [9]
and the EMG data was sourced from the SENIAM EMG
database [10]. The two signals were mixed linearly at differ-
ent levels of signal-to-noise ratio (SNR), here we considered
the ECG to be the source of noise and the EMG the desired
signal of interest. SNRs of 20, 15, 10, 5 and 0 dB were
created and these were tested using both block and sliding
based algorithms for different thresholds of kurtosis, (κ = 7,
6.5, 6, 5.5, 5, 4.5, 4, 3.5 and 3). The results were quantified
by determining the relative root mean square error (RRMSE)
accordingly [5]:

RRMSE =
RMS(xemg − x̂emg)

RMS(xemg)
(8)

where

RMS(x) =

√
xT x
N

(9)

and
SNR = 20log

{
RMS(xemg)

RMS(xecg)

}
(10)

Figure 2 shows the results of the simulated runs for five
different values of SNR and nine different values of kurtosis
threshold for block SSA. It can be seen that there is a
downward trend in RRMSE as SNR increases as would be
expected. It can also be seen that RRMSE value seems to
plateau for Kurtosis threshold values between 4 and 5. This
is consistent with the knowledge that typical EMG signals
are generally akin to white noise and have a lower value of
kurtosis close to 3, whereas typical ECG signals are super-
Gaussian in nature and therefore have a high Kurtosis value
usually in excess of 10. The results from the sliding SSA
method, see Figure 3 show lower RRMSE values again at
each SNR level, whilst confirming the optimal threshold for
κ to be around 5. This information was then used to inform
the application of the SSA algorithm to the real EMGdi data.
Figure 4 shows the result of applying the block-based SSA
algorithm to the synthetic test signal. The sliding window
based SSA algorithm was then applied to the same signal
and results shown in Figure 5. The comparison shows that
the sliding window method has a clear advantage over the
block based method.

IV. RESULTS

The real EMGdi data used in this paper was acquired
from patients at the Royal Brompton Hospital1 suffering

1The Institution’s Ethical Review Board approved all experimental pro-
cedures involving data obtained from human subjects.
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Fig. 2. RRMSE vs Kurtosis, κ, for Block Based SSA.
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Fig. 3. RRMSE vs Kurtosis, κ, for Sliding SSA.

from some form of respiratory disease. Figure 1 shows a
10s segment of the test signal that originates from one
channel of data acquired from the esophageal catheter which
shows significant unknown mixing of EMG and ECG signals.
Figure 6 shows the results from the application of the block-
based SSA algorithm to the test signal. Figure 7 shows
the results from the sliding window based SSA algorithm
when applied to the same signal. Whilst the results for the
block approach are quite reasonable, especially considering
the challenging source of the data, some ECG artifacts
remain. The sliding window method, however, shows a clear
advantage over the block based method with virtually no
evidence of ECG interference remaining. Our work improves
upon the standard SSA result significantly, the initial settings
of the SSA method remain unchanged; the window length
used was, N = 500 samples, the depth or rank of the
decomposition was set to, r = 50 for both methods as was
the kurtosis threshold, κ, where experimentation on synthetic
mixed data yielded a threshold of around 5 to be optimal.
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Fig. 4. Synthetic mixed EMG and ECG (5dB) de-noised using κ = 5 with
block based SSA (RRMSE = 0.4192).
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Fig. 5. Synthetic mixed EMG and ECG (5dB) de-noised using κ = 5 with
sliding SSA (RRMSE = 0.2874).

V. CONCLUSIONS

The results of the sliding window SSA approach shows
clear improvements over the previously published work in
this field. Future work could include computational improve-
ments using an iterative SVD algorithm to reduce the com-
putational complexity to facilitate real-time implementation.
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Fig. 6. Real mixed EMG and ECG data de-noised using κ = 5 with block
based SSA.
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