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Abstract—Deep neural networks show great advancement
in recent decades in classifying medical images (such as CT-
scans) with high precision to aid disease diagnosis. However,
the training of deep neural networks requires significant sample
sizes for learning enriched discriminative spatial features.
Building a high quality dataset large enough to satisfy model
training requirement is a challenging task due to limited disease
sample cases, and various data privacy constraints. Therefore
in this research, we perform medical image classification using
transfer learning based on several well-known deep networks,
i.e. GoogLeNet, Resnet and EfficientNet. To tackle data sparsity
issues, a Wasserstein Generative Adversarial Network (WGAN)
is used to generate new medical image samples to increase
the numbers of training instances of the minority classes. The
transfer learning process itself also allows the building of strong
classifiers by transferring knowledge from the pre-trained image
domain to a new medical domain using a small sample size.
Moreover, the lottery ticket hypothesis is also used to prune
each transfer learning network trained using the new target
image data sets. Specifically, the L1 norm unstructured pruning
technique is used for network reduction. Hyper-parameter fine-
tuning is also performed to identify optimal settings of key
network hyper-parameters such as learning rate, batch size
and weight decay. A total of 20 trials are used for optimal
hyper-parameter selection. Evaluated using multi-class lung X-
ray images for pneumonia conditions and brain tumor CT-scans,
the fine-tuned EfficientNet model obtains the best brain tumor
classification accuracy rate of 96% and a fine-tuned GoogLeNet
model with pruning has the highest pneumonia classification
accuracy rate of 81.5%.

Index Terms—Neural Networks, Medical Imaging, Transfer
Learning, Network Pruning, Computer Aided Diagnosis

I. INTRODUCTION

This research studies a range of distinctive neural network
architectures and makes attempt to apply a variety of
modifications to the network structures as well as training
configurations. Traditional classifiers for computer aided
diagnosis rely on a large number of training samples to
achieve reliable and accurate predictions, e.g. with respect
to brain tumor or lung disease classification [1] [2] [3] [4]
[5]. In this research, we aim to maximise model performance
and generalisation capabilities in a domain with limited
training data. In this regard, transfer learning for computer
vision has shown to be very advantageous in the medical
domain, producing effective classifiers of through re-training
the networks with various different types of medical data [6]

[7] [8] [9]. Such a learning process requires a small number
of new samples in the new target domain, which significantly
increases computational efficiency while attaining reasonable
classification performance [10].

In this work, two core transfer learning techniques will
be explored, i.e. feature extraction (re-training only the last
layer) and fine-tuning (re-training the overall network based
on the pre-trained weights) [11] [12] [13] [14] [15]. The
research in [16] details feature extraction to be more useful
when less data are available and the problem the network was
originally trained for is similar to the new target domain. On
the other hand, fine-tuning is required when the original and
target problems show large variations [17] [18] [19].

Models that are used for transfer learning will typically
have weights that were trained on the IMAGENET1K dataset,
allowing high-level image features the networks have learnt
to be transferred and applied for classification in a new and
perhaps very different domain [20] [21] [22] [23].

In this research, we apply transfer learning to GoogLeNet,
Resnet-18 and EfficientNet architectures. In order to identify
the most optimal training optimiser effectively, Adam, RProp
and SGD, are used for model training. Hyper-parameter
fine-tuning is also conducted to identify the optimal batch
size, learning and weight decay (i.e. L2 regularisation)
settings [16] [24] [25]. Additionally, the pruning algorithm,
i.e. the lottery ticket hypothesis [26], is also applied for
network architecture reduction, in an attempt to improve their
generalisation capabilities and reduce prediction loss.

Once a strong classifier has been produced, oversampling
techniques e.g. Generative Adversarial Networks (GANs), are
explored to generate new images to increase sample sizes
of minority classes. Specifically, the Wasserstein GAN with
Gradient Penalty (WGAN-GP) architecture is used for image
generation. Comprehensive experiments have been carried
out in order to identify if generalisation test accuracy can be
improved by training the networks with generated samples.
The use of WGAN-GP allows effective loss minimisation of
the generator and critic networks whilst improving stability
of network training. It is less likely to result in mode collapse
as the case of the original GAN model [27]. The results in
[27] also show high quality eye sample images of sufficient



variations between healthy or strabismus conditions
(where the eyes are not aligned) were generated using
WGAN. Variation in generated images is also desirable
in our research, otherwise the generated images with high
resemblance may cause overfitting during training.

Two datasets in the medical domain are used in our study
to test transfer learning, hyper-parameter tuning and network
pruning methods. The first dataset is a collection of brain CT
scans representing four classes, i.e. no tumor, glioma tumor,
meningioma tumor and pituitary tumor. The scans in this
dataset are all from different angles of the brain, thus finding
very tumor specific features is a key for a neural network to
correctly classify a given sample. Varying angles as shown in
Figure 1 are used for CT-scan image capture to better observe
patients’ conditions.

Fig. 1. Collection of 16 CT-scan samples.

The second dataset is a collection of chest X-rays of
patients who are either healthy or with pneumonia disease
conditions. It consists of three classes, i.e. normal, viral
pneumonia and bacterial pneumonia. All X-ray images in
this dataset are taken from very similar if not the same angle
to a patient. With all the images being taken from the front
of the patient in laying down positions, with slight variances
in the angle.

II. RELATED WORK

Oversampling with GANs is conducted when real-life
disease cases or examples of minority classes are difficult or
costly to obtain. Many GANs and their variants are used for
image generation. E.g., [28] uses a WGAN model to generate
URLs for potentially malicious phishing sites. Naturally there
will be far more available examples of benign URLs, so
the objective is to use a text GAN to generate the required
number of malicious URLs to balance the classes in the
dataset before it is used to train a neural network classifier
for malicious URL classification.

Class imbalance is an issue that exists in any domain of
decision making. The work of [29] discusses addressing data
imbalance issues itself, rather than designing an oversampling
method to balance the class distribution. Comparing
oversampling methods such as SMOTE and WGAN. It
was found that GAN-based oversampling produced better
performance with improved recall, F1-score and AUC results.

The study of [30] employs oversampling methods to assist
fine-grained classification of lung nodules. Between GAN,
DCGAN, WGAN as well as random rotation of a sample
from 0 to 359 degrees, oversampling through WGAN image
generation was found to balance the dataset with the best
samples, resulting in improved CNN classifier performance.

Pneumonia classification using Convolutional Neural
Networks (CNNs) with X-ray scans has been previously

explored by [31]. A total of 5863 data samples were
used to train four different models to classify healthy,
viral pneumonia and bacterial pneumonia, as well as a
binary classifier for healthy and pneumonia. Each model had
different augmentations applied to the datasets beforehand.
The augmentations including rotating the images and
increasing image contrast. Their work achieved a 3-class
accuracy rate of 85% and a binary classification result of
90.5%.

Similarly, [32] focuses on classification in the medical
domain. A binary classification is performed using MRI scans
of the brains to identify brain tumor or healthy cases. Transfer
learning is used based on pre-trained ResNet, Xception and
MobilNet-V2 networks. These models were pre-trained on
the IMAGENET1K dataset. A total of 928 tumor samples and
588 tumor-free samples are used for training. Their results
indicated that MobileNet-V2 achieves the highest accuracy
rate of 98.25% and a F1 score of 98.42%.

The study in [33] shows the use of Resnet50 and VGG16 as
binary classifiers for predicting healthy or pneumonia cases
from CT-scan images. The models are trained with 5216
original images over 20 epochs. The VGG16 model obtained
the best accuracy rate of 85.58% with Resnet50 having an
accuracy rate of 82.21%, when tested with 624 images.

III. THE PROPOSED METHODOLOGY

The aim of this work is to produce an optimal classifier
with limited training samples. To achieve this, each network
will be trained with each of the chosen optimisers. The best
network and optimiser will be used for transfer learning tasks
where hyper-parameters are fine-tuned. The lottery ticket
hypothesis is then applied to the resulting transfer learning
model for network pruning. A total of 25 epochs will be used
as the standard number of training epochs, with training over
reduced epochs also explored to reduce network overfitting.

For the brain tumor dataset [34], 640, 160 and 200 images
are used for training, validation and test respectively. For the
chest X-ray [35] images, there are 640, 160, 200 samples
provided for training, validation and test respectively.

In the case of pneumonia classification, to evaluate
the benefits of image generation using WGAN, fine-tuned
transfer learning model will be trained on additional WGAN-
generated samples.

A. Oversampling with GANs

This research uses a conditional WGAN-GP architecture
for image generation, where its training method is provided
in [36]. The work of [36] builds on the model presented in the
original WGAN paper [37], using a gradient penalty driven
through an interpolation of generated and real images. This
gradient penalty enforces the Lipschitz constraint as shown
in Equation (1) more effectively which governs the image
generation process in WGAN.

max
||f ||L≤1

Ex∼pr [f(x)]− Ex∼pθ
[f(x)] (1)

The WGAN-GP generated images also possess sufficient
variations which is the key to avoid overfitting. The WGAN



along with gradient penalty can also effectively prevent
mode collapse. Therefore in the case of chest X-ray image
generation, our generated X-rays appear to be from slightly
different angles. The rib cages and body shapes were also
noticeably different.

Oversampling is also performed for the pneumonia dataset.
Since these samples are from the same angle, WGAN shows
more impressive performance for image generation.

B. Data Pre-Processing

All data used for training, validation and testing requires
pre-processing before they are used for network training and
test. Each image is resized to have the smaller side of a length
of 225, with the other side resized to maintain the original
aspect ratio. The image is then cropped around the center to
produce an image of size 224x224. The cropped image is
then normalised so that each colour channel has a mean of
0.485, 0.456 and 0.406, and a standard deviation of 0.229,
0.224 and 0.225, respectively. Each value represents the red,
blue and green channels respectively. Any images produced
by a GAN are pre-processed in this way before training.

The above color channel values are adopted as they
match the pre-processing steps used on IMAGENET1K
samples, which the models used for transfer learning were
originally trained on. It is important that the normalisation
pre-processing steps are matched as otherwise the networks
will fail to successfully extract features from given samples.

Fig. 2. Brain CT-scan pre-processing steps.

It is clear from Figure 2 how these normalisation steps
enhance key features of the brain scan image.

C. The Proposed Models

We perform transfer learning using the following networks,
i.e. Resnet18, GoogLeNet and EfficientNet. Using these pre-
trained models as feature extractors means that only the final
classifying layer will be re-trained using the new dataset. The
gradients of all layers of these networks will be frozen apart
from the final layer, which will be initialised with random
weights and set to produce the correct number of outputs for
how many classes it is trained with.

The process of fine tuning described by [16] is to fine-tune
the whole entire network with a small learning rate as to not
change the original weight values of the network too much.
This will be applied by resetting the final classifying layer of
the network as described before, but not freezing any layers
of the network, so all weights will be adjusted by the chosen
optimiser.

When training the models for the transfer learning baseline
experiments, the hyper-parameters used were as follows in

Table I. Note that no regularisation is used in the baseline
experiments.

TABLE I
HYPER-PARAMETERS USED WHEN TRAINING MODELS FOR THE

BASELINE EXPERIMENTS.

Learning rate 0.0001
Batch size 4
Epochs 25
Optimisers Adam, SGD, RProp
Loss function Cross-entropy loss

D. Lottery Ticket Hypothesis

The lottery ticket hypothesis is a network architecture
pruning technique [26]. When applying the lottery ticket
hypothesis, pruning will be applied to model weights to
remove 50% of the weights using L1 norm unstructured
pruning. This pruning will be applied to all layers of the
target network once it has been trained on the new target
domain. The pruned weights are re-initialised to the original
IMAGENET1K weights that the network held before being
trained on the net target domain, and then the model is trained
again with the goal to increase generalisation capability and
reduce the loss in the target domain.

E. Hyper-Parameter Tuning

The hyper-parameters that will be optimised include
the learning rate, batch size and weight decay (i.e. L2
regularisation). The range of values that will be explored are
shown in Table II.

TABLE II
EXPLORED HYPER-PARAMETER RANGES.

Learning Rate Log-Uniform range 1e-4 to 1e-1
Batch Size 16, 32, 64, 128
Weight Decay Choice of 0 or Log-Uniform range 1e-8 to 1e-1

20 trials are performed where parameters are randomly
sampled from this variable space.

F. Sample Generation with GANs

To generate high quality chest X-ray images, a conditional
WGAN-GP was used. This network was trained over
100 epochs using the Adam optimiser with the detailed
parameters shown in Table III.

Using the conditional WGAN-GP model, 192 bacterial
pneumonia, 192 healthy and 192 viral pneumonia samples
are generated. Therefore a total of 576 samples are generated,
which are then divided into a 80-20 training-validation split,
with 461 training and 115 validation images.

IV. EVALUATION

A. Classification of brain tumors through CT scan images

1) GoogLeNet: The transfer learning using GoogLeNet
shows great efficiency. But there are also cases that the
network is prone to over-fitting. Pruning the GoogLeNet
transfer learning model showed a decrease in training loss



TABLE III
HYPER-PARAMETERS USED TO TRAIN THE WGAN-GP.

Learning rate 0.0001
Batch Size 64
Latent Noise size 100
Label embedding size 100
Generator Latent Features 128
Critic Latent Features 128
Epochs 100
Optimiser Adam
Optimiser Betas (0, 0.9)

Critic iterations 5
Gradient Penalty Lambda 10

from 0.223207 to 0.187564 and an increase in testing
accuracy from 91% to 94%. The identified optimal hyper-
parameters are also shown in Table IV. Figure 3 shows
performance of GoogLeNet with Adam optimiser and fine-
tuned parameters, which was the best performer.

Predicted Label

G
T

M
T

N
T

PT

Tr
ue

L
ab

el GT 0.9 0.058 0.038 0
MT 0 0.96 0.018 0.018
NT 0 0 1 0
PT 0 0.047 0 0.95

Fig. 3. Validation and testing performance of GoogLeNet using Adam and
fine-tuned parameters for tumor classification, where GT is Glioma Tumor,
MT is Meningioma Tumor, NT is No Tumor and PT is Pituitary Tumor.

TABLE IV
OPTIMAL HYPER-PARAMETERS FOUND FOR THE FINE-TUNED

GOOGLENET.

Learning rate 0.0009747398181460825
Batch Size 128
Weight Decay 1.2076289887829432e-07

2) Resnet18: Optimal hyper-parameter identification is
also performed for Resnet18, with detailed settings illustrated
in Table V. This optimized model produced a testing accuracy
rate of 88%. The lottery ticket pruning method caused a
validation loss being larger than that of the original model,
with it increasing from 0.314897 to 0.361918. Figure 4 shows
performance of the optimized Resnet18 model with Adam
optimizer.
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el GT 0.85 0.096 0.058 0
MT 0.036 0.91 0.036 0.018
NT 0 0 1 0
PT 0 0.016 0 0.98

Fig. 4. Validation and testing performance of Resnet18 using Adam and
fine-tuned parameters for tumor classification.

TABLE V
OPTIMAL HYPER-PARAMETERS FOUND FOR THE FINE TUNED RESNET18.

Learning rate 0.0001061193920871678
Batch Size 64
Weight Decay 1.6475858424935896e-06

3) EfficientNet: EfficientNet was only comparatively more
effective with the Adam optimiser and fine-tuned parameters,
with the detailed performance displayed in Figure 5.
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el GT 0.88 0.096 0.019 0
MT 0 0.98 0.018 0
NT 0 0 1 0
PT 0 0.016 0 0.98

Fig. 5. Validation and testing performance of EfficientNet using Adam and
fine-tuned parameters for tumor classification.

B. Pneumonia classification through chest X-rays

1) GoogLeNet: The transfer learning process using
GoogLeNet was comparatively more effective for the chest
X-ray dataset for lung condition classification, with the Adam
and RProp optimisers producing the test accuracy rates of
77% and 77.5%, respectively.



Using Adam with fine-tuned hyper-parameters showed
much stable training. The optimal parameters identified are
provided in Table VI.

TABLE VI
OPTIMAL HYPER-PARAMETERS FOUND FOR THE GOOGLENET MODEL.

Learning rate 0.0002983176352303694
Weight Decay 0.0008982934181184593
Batch Size 16

The parameters in Table VI achieved a validation accuracy
rate of 81.88% and a testing accuracy rate of 80%. A decrease
in loss in the baseline was observed from 0.76 to 0.536.
Pruning for this dataset was slightly effective, with the test
score reaching 81.5%. Figure 6 shows the results of the
pruned GoogLeNet with optimal hyper-parameters.

Predicted Label
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el BP 0.72 0.015 0.27
N 0 0.95 0.046

VP 0.15 0.074 0.78

Fig. 6. Pruned GoogLeNet performance with the optimal hyper-parameters
found, where the confusion matrix shows classification accuracy for bacterial
pneumonia as BP, normal as N and viral pneumonia as VP.

2) Resnet18: We use both Adam and Rprop in hyper-
parameter tuning for Resnet18. The identified parameters are
provided in Table VII. The experiments indicate that using
the Rprop optimiser obtains the highest test accuracy. Pruning
these models was more effective for the RProp model, with
the test score rising to 75.5%. The validation loss was reduced
from 0.455575 to 0.428489.

In contrast, the pruning had little to no effect on the model
produced with Adam, with test accuracy remaining at 0.78
and changes to validation loss and accuracy being negligible.
Figure 7 shows the performance comparison between the
fine-tuned and pruned Resnet18 models, both with optimized
hyper-parameters.

TABLE VII
OPTIMAL HYPER-PARAMETERS FOUND FOR THE RESNET18 MODEL.

Adam RProp
Learning rate 0.0024808160755579877 0.00200901124909481
Weight Decay 0.00010424329777131112 x
Batch Size 64 32

Predicted Label
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el BP 0.77 0.082 0.15
N 0.018 0.93 0.055

VP 0.29 0.097 0.61

Fig. 7. Validation performance of the Resnet18 model with identified
optimal parameters compared to those of the same model with pruning
applied. Testing performance of the pruned model presented in the confusion
matrix.

3) EfficientNet: Fine tuning using the EfficientNet model
with Adam optimizer showed impressive results on its own,
with detailed performance presented in Figure 8.

Predicted Label
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el BP 0.74 0.028 0.24
N 0 0.91 0.09

VP 0.23 0.049 0.72

Fig. 8. Performance of the EfficientNet model with parameter fine-tuning
and Adam optimizer for pneumonia classification.

Overall, all the transfer learning models show reasonable
performance for both datasets with the detailed results shown
in Tables VIII and IX. The best results for each model are
highlighted using bold text.

4) Training with GAN generated images: In transfer
learning using a pre-trained GoogLeNet for 3-class lung
condition identification, the model was trained over 10 epochs
with 1000 real data samples. This achieved a best validation
accuracy rate of 81.25% and a test accuracy rate of 71.5%.
A final loss of 0.545 was also obtained.



TABLE VIII
OVERVIEW OF BRAIN TUMOR CLASSIFICATION TEST ACCURACY RESULTS.

Model Method Adam SGD RProp Tuning LTH

GoogLeNet Fine Tune (last layer) 69% 38% 39% - -
Fine Tune (all layers) 95% 54% 77.5% 91% 94%

Resnet18 Fine Tune (last layer) 66.5% 44.5% 34% - -
Fine Tune (all layers) 93% 67.5% 86.5% 88% -

EfficientNet Fine Tune (last layer) 74% 40.5% 55% - -
Fine Tune (all layers) 96% 50.5% 82% - -

TABLE IX
OVERVIEW OF PNEUMONIA CLASSIFICATION TEST ACCURACY RESULTS.

Model Method Adam SGD RProp Tuning w/ RProp Tuning w/ Adam LTH w/ Rprop LTH w/ Adam

GoogLeNet Fine Tune (last layer) 70.5% 45% 45.5% - - - -
Fine Tune (all layers) 77% 63.5% 77.5% - 80% - 81.5%

Resnet18 Fine Tune (last layer) 69% 62.5% 53% - - - -
Fine Tune (all layers) 72.5% 72.5% 75% 77.5% 78% 77.5% 78%

EfficientNet Fine Tune (last layer) 76% 58.5% 62.5% - - - -
Fine Tune (all layers) 79% 56.5% 77% - - - -

Fig. 9. WGAN-GP training loss and samples generated by the conditional
WGAN-GP, with bacterial pneumonia (top), normal (middle) and viral
pneumonia (bottom).

Then training this classifier with generated data, the results
showed over-fitting, with a validation accuracy of 97%, final
loss of 0.1146 but a testing accuracy of 51.5% for the 3-class
classification task.

However, the empirical results in Figure 10 indicated a
success in model improvement as a binary classifier, with a
very large increase in viral pneumonia classification accuracy
from 62% to 86%, and a slight increase in normal/healthy
classification from 81% to 85%. Figure 9 shows the training
loss comparison of the generator and critic, as well as
generated example images using WGAN. Figure 10 shows
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VP 0.31 0.062 0.62

Predicted Label

B
P

N V
P

Tr
ue

L
ab

el BP 0.15 0.098 0.75
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VP 0.062 0.078 0.86

Fig. 10. Comparison of classifiers trained on real data only (top) and
combination of real and generated data (bottom).

the detailed confusion matrix result comparison.

V. CONCLUSION

In this research, we explore transfer learning, network
pruning and hyper-parameter fine-tuning. In addition, WGAN
is used for image generation to tackle data sparsity
issues. As indicated in Tables VIII and IX, our transfer
learning and some pruned networks achieved much improved
performance. The empirical results indicate the effectiveness
of the transfer learning methods and pruning algorithms.
Adjusting all the weights of the entire network to fit the new
target domain is comparatively more effective, than simply
re-training the last network layer as in traditional transfer
learning. In addition, pushing the models further using the
network pruning and hyper-parameter fine-tuning results in
increases in generalisation accuracy.

The use of GAN-generated images is proven to be
effective at improving model’s generalisation capabilities, but
distinguishing more complex class cases requires the WGAN-
GP to be more optimised, as multi-class classification was
more challenging [25] [12] [38] [15], with the features of



the different pneumonia types being more complex than what
the WGAN-GP model learnt. Future work would involve
improving the performance of the WGAN-GP model, e.g.
by training it over a greater number of epochs to generate
higher quality X-ray samples that allow better differentiation
between viral and bacterial pneumonia cases.
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