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Abstract—Action Recognition in videos is a topic of interest
in the area of computer vision, due to potential applications
such as multimedia indexing and surveillance in public areas.
In this research, we first propose spatial and temporal Con-
volutional Neural Network (CNNs), based on transfer learning
using ResNet101, GoogleNet and VGG16, for undertaking human
action recognition. Besides that, hybrid networks such as CNN-
Recurrent Neural Network (RNN) models are also exploited
as encoder-decoder architectures for video action classification.
In particular, different types of RNNs such as Long Short-
Term Memory (LSTM), Bidirectional-LSTM (BiLSTM), Gated
Recurrent Unit (GRU), and Bidirectional-GRU (BiGRU), are
exploited as the decoders for action recognition. To further
enhance performance, diverse aggregation networks of CNN and
CNN-RNN models are implemented. Specifically, an Average
Fusion method is used to integrate spatial and temporal CNNs
trained on images, as well as CNN-RNN trained on videos, where
the final classification is formed by combining Softmax scores of
these models via a late fusion. A total of 22 models (1 motion
CNN, 3 spatial CNNs, 12 CNN-RNNs and 6 fusion networks)
are implemented which are evaluated using UCF11, UCF50, and
UCF101 datasets for performance comparison. The empirical
results indicate the significant efficiency of Average Fusion of
multiple Spatial-CNNs with one Motion-CNN, and ResNet101-
BiGRU, among all the networks for undertaking realistic video
action recognition.

Index Terms—Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN), Long Short-Term Memory (LSTM),
Bidirectional-LSTM (BiLSTM), Gated Recurrent Unit (GRU),
CNN-LSTM, CNN-BiLSTM, CNN-GRU, CNN-BiGRU, and Av-
erage Fusion

I. INTRODUCTION

Human action recognition experiences an exciting era in
computer vision due to the recent advancement of deep
learning techniques. The purpose of action recognition is to
automatically interpret actions performed in videos. A video
can be regarded as a sequence of frames, usually 30 frames per
second. Therefore, a potential approach for action recognition
is to apply a classifier on individual frames of an video, with
an aggregation method used to combine results from all frames
to form a final prediction. Motivated by such observations, in
this research, we propose spatial and temporal Convolutional
Neural Networks (CNNs), hybrid CNN-Recurrent Neural Net-
work (RNN) models, as well as their fusion networks for video
action recognition.
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Firstly, owing to the powerful classification performance of
pre-trained CNNs such as ResNet101, GoogleNet and VGG16,
transfer learning based on these networks is employed for
action recognition. We construct two types of CNN classi-
fiers with RGB image frames and optical flow as inputs,
respectively. Specifically three spatial CNNs using ResNet101,
GoogleNet and VGG16 as backbones and one motion CNN
based on ResNetl01 are developed using transfer learning.

Secondly, hybrid encoder-decoder architectures such as
CNN-RNN models are also exploited to extract spatial-
temporal features directly from video inputs to inform
action recognition. In particular, different CNNs such as
ResNet101, GoogleNet and VGG16 are employed as the
encoders and variants of RNN such as Long Short-Term Mem-
ory (LSTM), Bidirectional-LSTM (BiLSTM), Gated Recurrent
Units (GRU), and Bidirectional-GRU (BiGRU), are utilized as
the decoders. A set of 12 resultant CNN-RNNs is adopted for
classifying different actions from video inputs.

After generating transfer learning networks (1 motion CNN
and 3 spatial CNNs) and 12 hybrid models, 6 additional
aggregation networks based on Average Fusion are proposed
to integrate spatial and temporal CNNs and CNN-RNNs to
further enhance performance.

Several UCF action datasets [1] such as UCF11, UCF50
and UCF101 are employed for evaluating the aforementioned
methods. The novel aspects of this research are as follows.

e We propose diverse Spatial and Motion-CNNs, and
encoder-decoder hybrid architectures for undertaking hu-
man action recognition from realistic videos. Transfer
learning based on ResNetl01, GoogleNet and VGG16
is used to develop one temporal and three spatial net-
works using video frames. In addition, encoder-decoder
architectures are also utilized to conduct action recog-
nition using video inputs directly, where several CNNs
(ResNet101, GoogleNet, and VGG16) and RNN variants
(LSTM, BIiLSTM, GRU, and BiGRU) are employed as
encoders and decoders, respectively. In short, 1 motion
CNN, 3 spatial CNNs, and 12 hybrid CNN-RNN models
are developed as base classifiers for action recognition.

« Distinctive fusion strategies are exploited. Besides the
original two-stream spatial and temporal fusion, the inte-
gration of several spatial CNNs with a motion CNN, as



well as the fusion of several CNN-RNN networks with a
motion CNN, is proposed. A total of six fusion networks
are implemented in this research.

« Evaluated using several well-known video action datasets
(i.e. UCF11, UCF25 (half of UCF50), UCF50 and
UCF101), among all the 22 proposed base and fusion
models, the aggregation networks of multiple Spatial-
CNNs and one Motion-CNN, as well as some of hybrid
CNN-RNN models, achieve superior performance and
outperform existing methods, for realistic video action
recognition.

II. RELATED WORK

Action recognition from realistic videos is a challenging
problem because of complexity of the actions involved and
cluttered background. Realistic action videos extracted from
YouTube, movies and TV shows are employed to test model
efficiency. Many benchmark algorithms have been devel-
oped. For example, state-of-the-art two-stream and spatial-
temporal algorithms have been proposed with highest accu-
racy rates for realistic video action recognition, including
MARS+RGB+Flow [2], two-stream I3D [3], two-stream LGD-
3D [4], two-stream R[2+1]D [5], multi-stream I3D [6] and
R[2+1]D-RGB [5]. We discuss several recent state-of-the-art
developments below.

Thatipelli et al. [7] extracted higher order spatial and
temporal cues using local patch-level and global frame-level
feature learning components, respectively, which led to high
classification performance on challenging SSv2 benchmark
dataset. Radevsk et al. [8] proposed a multi-head attention
method over spatio-temporal layouts, which was proven to be
effective for spatial reasoning. The work showed improvement
in performance when fusing appearance-based methods with
layout-based models. Luo et al. [9] adopted 3D-CNN in con-
junction with a decomposition method for action recognition.
The decomposition method was able to break down feature
channels into spatial and temporal characteristics and measure
the distinctive contributions of these respective elements. But
their resultant method also increased computational cost sig-
nificantly.

The study of Materzynska et al. [10] showed that interac-
tions between spatial and temporal networks can help better
understand relationships between the subject and object in an
video. Their experiments also hinted that when using the I3D
model with ResNet50 as the base model showed a gain in
model performance, in comparison with other baseline meth-
ods. In addition, when the I3D model was combined/fused
with baseline models, their work obtained an even higher top-
1 accuracy rate.

Du et al. [11] employed a spatial-temporal attention mech-
anism for the extraction of key global features for RNN-
based action prediction. Their experiments also indicated the
effectiveness of spatial and temporal streams for boosting
network discriminative capabilities in tackling action clas-
sification. The model showed competitive performance for
UCF101, HMDB51 and JHMDB datasets. Plizzari et al. [12]

embedded spatial and temporal attention schemes into a two-
stream architecture with the attempt to capture intra-frame in-
teractions and inter-frame correlations, respectively, for action
classification.

Yu et al. [13] integrated attention mechanisms with 3D
convolution to extract more enhanced motion and spatial
details. In addition, their work adopted a BiLSTM-based
attention module to extract temporal patterns from video cubes
to tackle action recognition using long videos. Yang et al.
[14] employed temporal and spatial attention mechanisms to
improve action recognition where the temporal attention com-
ponent extracted the most significant sequential patterns from
lengthy videos and the spatial attention function identified the
most discriminative motion details from optical flow. Their
model showed enhanced performance than those of existing
methods for UCF101 and HMDB51 datasets.

This research is particularly motivated by the following
existing state-of-the-art methods. Simonyan and Zisserman
[15] investigated two-stream architectures comprising spatial
and motion CNNs, with linear and Support Vector Ma-
chine (SVM)-based fusion strategies for action recognition.
Kinghorn et al. [16] investigated encoder-decoder modeling
for video captioning, while Inception-style Temporal-ConvNet
was also explored by [17] to extract refined temporal details.
There are also other 3DCNN, hybrid and transformer based
methods proposed in recent years for video action recognition.

III. THE PROPOSED METHODOLOGIES

In this research, spatial and temporal CNNs, hybrid CNN-
RNN models, as well as aggregation networks are exploited
for video action recognition. We discuss each of the proposed
models below.

Firstly, we explore transfer learning with CNNs for ac-
tion recognition. As mentioned earlier, several ImageNet pre-
trained CNN models are fine-tuned using video frames and
optical flow respectively. Specifically, one motion and three
spatial CNN models are implemented using transfer learning,
i.e. ResNetl01 (Motion), ResNetl01 (Spatial), GoogleNet
(Spatial) and VGG16 (Spatial). The Motion ResNet101 is re-
trained using optical flow extracted from the video inputs,
while the three spatial CNNs are fine-tuned with the video
frames.

Secondly, encoder-decoder networks are constructed for
action recognition. Precisely we employ three pre-trained
models, i.e. ResNet101, GoogleNet and VGG16, as the en-
coders, and four RNN variants, i.e. LSTM, BiLSTM, GRU and
BiGRU, as the decoders. Such hybrid CNN-RNN models are
able to extract sufficient discriminative spatial-temporal cues
from video inputs directly for video classification. Diverse
permutations of encoder and decoder networks are conducted
which result in the generation of 12 hybrid networks for action
recognition.

Beside the proposal of spatial and temporal CNNs and
hybrid networks, we perform late fusion of these methods,
which includes,



— Average Fusion of Spatial-CNN & Motion-CNN (two
streams).

— Average Fusion of all CNN Models & Motion-CNN
(Multiple streams).

— Average Fusion of all CNN-LSTM Models & Motion-
CNN (Multiple streams).

— Average Fusion of all CNN-BiLSTM Models & Motion-
CNN (Multiple streams).

— Average Fusion of all CNN-GRU Models & Motion-CNN
(Multiple streams).

— Average Fusion of all CNN- BiGRU Models & Motion-
CNN (Multiple streams).

In these fusion networks, we aggregate three spatial CNNs
with one motion CNN. We also integrate multiple hybrid
CNN-RNNs with the motion CNN. Such spatial and temporal
methods are able to provide complementary information for
aggregated network construction.

A set of 22 models are implemented including 4 CNNs
(3 spatial CNNs, 1 motion CNN), 12 CNN-RNNs, and 6
Average Fusion models. All these 22 Models are trained and
evaluated on four different datasets, i.e. UCF-11, UCF-25 (half
of UCF50), UCF-50, UCF-101. This results in a total of 88
training and evaluation runs.

We will introduce each of proposed models in detail below
for a better understanding of its architecture and underlying
reasoning principles.

A. CNNs

CNNs have achieved superior performance on many
complex vision tasks in recent years. They are used as
feature extractors to extract features from video frames.
CNNs are mainly used in video surveillance, image re-
trieval/classification, and object detection for diverse applica-
tions (e.g. self-driving cars and underwater pipeline inspec-
tion). CNNs can also be used in other deployments to tackle
voice recognition or acoustic scene classification.

Some basics of CNNs are as follows. CNNs embrace several
different types of hidden layers for feature exaction with
millions of parameters, allowing them to learn complicated
objects and patterns. It uses convolution and pooling processes
to “sub-sample” the given input before applying an activation
function. The image is “scanned” by applying convolutions,
i.e., filters., which are learnable.

Owing to the impressive performance of CNNs, in this
research, we adopt pre-trained well-known CNN architectures,
i.e. ResNetl101, GoogLeNet and VGG16, for action recogni-
tion. All these models are pre-trained on the ImageNet dataset.
These networks are then re-trained using either image frames
or optical flow inputs to develop spatial or temporal CNNs.
Specifically, we develop three spatial CNNs (ResNetl0l1,
GoogLeNet and VGG16) and one motion CNN (ResNet101).

In addition, we use Stochastic Gradient Descent (SGD) as
the optimizer for all models. Cross-Entropy Loss is used as
the objective function to calculate the gradient descent for
weight adjustment. The learning rate scheduler, i.e. ReduceL-
ROnPlateau, is used in training for all models in our study. A

maximum number of 50 epochs is used to train all networks.
A GPU with 32GB GPU RAM is used in our experiments.

1) Motion-CNN — ResNetl0l: A pre-trained ResNet101
[15] is re-trained using the optical flow images extracted from
UCF101 to construct the Motion-CNN model. In other words,
it is re-trained on motion streams of videos. Motion streams
are extracted from the actual videos in the respective UCF
datasets. To be precise, we aim to capture motion details (e.g.
movement of humans, objects and camera views) to inform
action classification. This Motion-CNN is adopted in Average
Fusion to further boost classification accuracy in combination
with different types of Spatial-CNNs.

During transfer learning using motion inputs, the weights
of the pre-trained ResNet101 model are further adjusted to
satisfy the requirements of action recognition tasks.

The Motion-CNN adopts a different dataloader from those
of other models. It is called Motion_DatalLoader, for the
purposes of loading a video as it needs to convert it into optical
flow outputs.

There are two transformations applied in
Motion_DatalLoader, i.e. the first is .resize([224, 224]),
which resizes the data input, and the second is .ToTensor(),
which converts the data to tensor to be used with a GPU for
faster processing.

The Datal.oader class from Pytorch is used in such a way
that it avoids blocking computation code with data loading.
The num_workers argument is used and the value is set to
8, which means there would be 8 processes simultaneously
loading the incredibly large dataset into memory for faster
processing.

2) Spatial-CNN — ResNet101: Similar to the above Motion-
CNN, this Spatial-CNN [15] also uses pre-trained ResNet101
as the backbone. The key difference is that it is trained
on image frames of videos instead of videos themselves.
This Spatial-CNN model has comparatively lower number of
parameters when compared with those of the Motion-CNN
Model. In comparison with the Motion-CNN, this Spatial-
CNN is faster to train because the inputs are image frames of
the video, instead of videos. Out of three pre-trained models
used in this research (i.e. ResNet101, GoogleNet, VGG16),
ResNet101 has the highest top-1 accuracy among these three
models on the ImageNet dataset. For the transfer learning
model based on ResNet101, it also achieves more impressive
performance for action recognition.

3) Spatial-CNN - GoogleNet: Another Spatial-CNN is con-
structed using transfer learning with pre-trained GoogleNet as
the underlying network. GoogleNet is equipped with a number
of Inception modules for effective feature learning. Out of
three pre-trained models used in this work (i.e. ResNet101,
GoogleNet, VGG16), GoogleNet has the second highest top-1
accuracy for image classification on ImageNet. When fine-
tuning it using action frames, GoogleNet shows reasonable
capabilities in tackling spatial structure extraction and action
classification.

4) Spatial-CNN — VGGI16: The third Spatial-CNN is im-
plemented based on the ImageNet pre-trained VGG16 [18].



In VGGI16, the network depth is increased by using small
3x3 convolutional filters, which shows a significant improve-
ment on diverse image classification tasks. Out of three pre-
trained models, VGG16 has the lowest top-1 accuracy on the
ImageNet dataset but outperformed other well-known deep
networks. We also re-train this VGG16 network using diverse
video action frames for distinguishing different actions.

B. Hybrid CNN-RNN Models

RNN models are designed to extract temporal information
by using data in a sequence to improve prediction accuracy.
Essentially, RNNs take an input, and then re-use the hidden
h_t activations of previous/later nodes in the sequence to influ-
ence the output. This is very important in action recognition, as
we need temporal predictions which are based on the previous
frames.

Besides the above transfer learning models, encoder-decoder
architectures based on CNN and RNN are also developed for
action recognition using video inputs directly. Specifically we
use different pre-trained CNNs mentioned above (ResNet101,
GoogleNet, and VGG16) as the encoders and different RNNs
(LSTM, BiLSTM, GRU, and BiGRU) as the decoders. A total
number of 12 resulting CNN-RNN models are implemented by
combining the aforementioned CNNs and RNNs. We elaborate
the construction of these hybrid networks below.

1) CNN-LSTM: The first series of hybrid networks are
referred as CNN-LSTM, where each of three aforementioned
CNN models (i.e. ResNet101, GoogleNet and VGG16) is used
as the encoder, and LSTM is used as the decoder. Instead of
using image frames or optical flow as inputs, it employs video
as input directly for classifying different actions.

Specifically, the model is composed with CNN and LSTM
networks. The CNN model is first used to extract features
from the input data, which are video frames in our case,
while the LSTM model is then used to learn sequential
patterns from spatial features learned by CNN to distinguish
different actions. In addition, LSTM has a cell state which
transfers the relative information all the way till the end of
the sequence chain (which can be considered as the memory).
This information is added/removed to the cell states via gates.

In a CNN-LSTM architecture, CNN is integrated with
LSTM, whose output is then connected with a dense layer for
outputting a prediction. The spatial features are thus extracted
and interpreted across time steps.

2) CNN-BiLSTM: We combine each of CNNs with BiL-
STM, i.e. CNN-BiLSTM, for developing the second set of
hybrid networks. BiILSTM is an extension of LSTM, as it has
two LSTM layers, to learn the data from backwards (future to
past) and forwards (past to future) passes respectively. Benefits
of incorporating a BiLSTM network is to extract sequential
information in both directions, whereby the model can analyse
the data backwards and forwards which are vital for action
recognition [19], [20], [21], [22].

Specifically, the LSTM model only has the forward layer,
which indicates that it can only go from past to future, i.e., in
only one direction. For BiLSTM model, in comparison with

LSTM, it employs both forward and backward LSTM layers
to interpret different actions in two directions.

3) CNN-GRU: We subsequent combine CNNs with GRU
(CNN-GRU) for the third set of hybrid network generation.
In our experiments, we notice that there are improvements
when a GRU model is used instead of LSTM, because it
fixes the problem with LSTM which is Short-Term Memory.
Specifically, in LSTM, the layers stop learning when a small
gradient update (in earlier layers) is obtained. The outcome of
this is that the “forget gate” forgets these old layer inputs in
longer sequences. That is why the name Short-Term Memory.
GRUs have different types of gates and these gates can learn
which data in a longer sequence is important or unimportant
and will only forget the unimportant data. This helps the
predictions as it only keeps the relevant information, hence
better accuracy.

Therefore, unlike LSTM, GRU does not have cell state, in
fact it has hidden states which are used to transfer information.
GRU is also a slightly faster than LSTM, as it uses some tensor
operations when running on a GPU machine. In comparison
with LSTM, GRU also has less parameters to train, which
speeds up training/evaluation as well.

4) CNN-Bidirectional-GRU: CNNs are also combined with
BiGRU (i.e. CNN-BiGRU) to develop the fourth set of hybrid
networks. Its working mechanism is very similar to that of
CNN-BIiLSTM. Similar to BiLSTM, BiGRU consists of two
GRU layers with backwards (future to past) and forwards (past
to future) passes for sequential feature learning. BiGRU has
relatively less parameters to train as compared to those of
BiLSTM.

C. Average Fusion

Average Fusion is an aggregation architecture inspired by
[15], where two separate spatial and temporal streams, i.e.
Spatial-CNN and Motion-CNN, are combined by a late fusion.

This research takes a similar approach. Instead of combining
only two network streams, we combine one Motion-CNN with
three Spatial-CNN streams, i.e. ResNet101, GoogleNet, and
VGG16, by a late fusion.

When these fusion architectures are trained from scratch,
they achieve better accuracy than all other singular architec-
tures used prior to this section. We introduce each of the fusion
architectures below.

1) Average Fusion of Motion-CNN + Spatial-CNN: We
first develop a baseline Average Fusion model. It consists of
traditional two streams [15]. The first stream is Motion-CNN,
which is trained on optical flow input extracted from videos
and the second stream is Spatial-CNN, which is trained on
video frames. This hybrid model is used as the baseline to
compare with other fusion models introduced below.

In this research, we re-train both Motion-CNN and Spatial-
CNN on the action recognition dataset, and store the pickle
files of both models (i.e. their best predictions, which are
evaluated after every epoch and the best one is saved) on the
disk for future use. While combining both models for fusion
prediction, we load both the model predictions from the pickle



file, combine them with softmax and evaluate the results of
topl and top5 predictions.

The following models are used in this fusion scheme. 1.
Motion-CNN (ResNet101) and 2. Spatial-CNN (ResNet101).

2) Average Fusion CNNs: Average Fusion of multiple
Spatial-CNNs with one Motion-CNN is an evolved architec-
ture hypothesis based on the traditional two-stream model.
Specifically, we combine three Spatial CNNs with one Motion-
CNN, to further improve classification accuracy.

This fusion model has achieved by far the best accuracy
result among all 22 models proposed in this research.

Specifically, the following models are combined under this
fusion scheme. 1. Motion-CNN (ResNet101), 2. Spatial-CNN
(ResNet101), 3. Spatial-CNN (GoogleNet) and 4. Spatial-CNN
(VGG16).

3) Average Fusion CNN-LSTMs: The strategy of Average
Fusion CNN-LSTMs is similar to that of Average Fusion
CNNs. All the CNNs models are replaced by their CNN-
LSTM methods.

Therefore, this scheme includes the fusion of the follow-
ing models. 1. Motion-CNN (ResNet101), 2. Spatial-CNN-
LSTM (ResNet101), 3. Spatial- CNN-LSTM (GoogleNet) and
4. Spatial-CNN-LSTM (VGG16).

Similar to other Average Fusion models, in this fusion
scheme, all CNN-LSTM models have to be trained prior to
the fusion, hence the name late fusion.

4) Average Fusion CNN-Bidirectional-LSTMs: This Av-
erage Fusion network uses several CNN-BiLSTM models
combining with the Motion-CNN. Specifically, it includes
the fusion of: 1. Motion-CNN (ResNet101), 2. Spatial-CNN-
BiLSTM (ResNet101), 3. Spatial-CNN-BiLSTM (GoogleNet)
and 4. Spatial-CNN-BiLSTM (VGG16).

5) Average Fusion CNN-GRUs: The Average Fusion
CNN-GRUs scheme includes the fusion of the following
networks. 1. Motion-CNN (ResNetl101), 2. Spatial-CNN-
GRU (ResNet101), 3. Spatial-CNN-GRU (GoogleNet) and 4.
Spatial-CNN-GRU (VGG16).

6) Average Fusion CNN-Bidirectional-GRUs: Similarly,
the Average Fusion CNN-BiGRUs mechanism includes the
fusion of the models below. 1. Motion-CNN (ResNet101),
2. Spatial-CNN-BiGRU (ResNet101), 3. Spatial-CNN-BiGRU
(GoogleNet) and 4. Spatial-CNN-BiGRU (VGG16).

We subsequently evaluate the above six fusion models along
with other transfer learning CNNs, and hybrid CNN-RNN
methods using several UCF video action datasets. The detailed
experimental studies are provided below.

IV. EVALUATION

In this research, we employ four video action datasets
for model evaluation, i.e. UCF11, UCF25 (half of UCF50),
UCF50 and UCF101. Evaluation results of all 22 models are
provided in the subsequent sections.

A. CNNs

As introduced earlier, one Motion-CNN and three Spatial-
CNNs are implemented in our experiments. These CNNs are

pre-trained on ImageNet. We re-train the last fully connected
layer with other layer weights maintaining the same as before
(i.e. the pre-trained weights) in each network. The categories
are updated as per the dataset used (e.g. 101 categories for
UCF101).

The top1 prediction accuracies of all these CNN Models are
provided in Table I.

TABLE I
CNNS RESULTS
Model Name UCF-11 UCF-25 UCF-50 UCF-101
ResNet101 (Spatial) | 90.43280029 | 87.5920105 81.68865204 | 79.91012573
VGG16 (Spatial) 85.42140961 | 83.17560577 | 73.82585907 | 72.21781921
GoogleNet (Spatial) | 84.51024628 | 84.33228302 | 75.46173859 | 74.04176331
Resnet101 (Motion) | 71.52619171 | 76.86645508 | 59.84168625 | 61.14195251

The highest accuracy is achieved by Spatial-ResNet101, as
it also has the best accuracy in its pre-trained form on the
ImageNet dataset among all the adopted deep architectures.

We can also see that, as the number of categories increases,
from 11 to 25, 50, and then to 101, the performance of each
model decreases. We can therefore conclude that there is a
relation between the number of action categories as well as
the size of datasets and the performance of the models.

B. CNN-RNNs

RNNs are used along with CNNs to improve the perfor-
mance owing to the better extraction of temporal dynamics.

This research uses LSTMs and GRUs and their bidirectional
versions for temporal feature extraction. LSTMs has short-
term memory and GRUs in theory are meant to have better
memory management than LSTMs. We analyse the results of
each type of hybrid networks below.

1) CNN-LSTM and CNN-BiLSTM: For CNN-LSTM,
LSTM is used as the last second layer, just before the fully
connected layer. We can see from Table II that ResNet101-
LSTM achieved the highest accuracy rate among all CNN-
LSTM models for all the test datasets. Note that ResNet101
has the largest number of parameters. Again, for each network,
as the number of action categories increases, the network
performance decreases owing to increasing complexity of the
classification tasks.

TABLE 1I
CNNSs wITH LSTM

Model Name UCF-11 UCF-25 UCF-50 UCF-101
ResNet101-LSTM | 83.82688141 | 86.33017731 | 73.50923157 | 66.21728516
GoogleNet-LSTM | 69.47608185 | 70.55731201 | 53.08707047 | 45.91593933

VGG16-LSTM 53.98633194 | 78.54889679 | 68.49604034 | 65.23922729

Now, we combine the same CNN models with BiLSTM
layers with the results provided in Table III. ResNetl01-
BiLSTM obtained the best performance among all the hybrid
networks. In some cases, CNN-BiLSTM models outperform
CNN-LSTM methods because of the employment of both
forward and backward directions for temporal information
extraction.



TABLE III
CNNs wWITH BILSTMs

TABLE VI
AVERAGE FUSION CNNSs

Model Name UCF-11 UCF-25 UCF-50 UCF-101 Model Name UCF-11 UCF-25 UCF-50 UCF-101
ResNetl0I-BILSTM | 87.01594543 | 85.59411621 | 72.71767426 | 68.5170517 Average Fusion (Two-Stream) | 88.61047363 | 90.01051331 | 85.06596375 | 8437747955
GoogleNet-BILSTM | 65.14806366 | 75.39432526 | 56.25329590 | 43.2089693 Average Fusion CNNs 94.98860931 | 9242902374 | 84.64379883 | 84.87972260

VGGI6-BiLSTM | 21.41230011 | 76.97161102 | 60.15830994 | 54.2162323

2) CNN-GRU and CNN-BiGRU: GRUs have better
schemes for memory management and have less parameters
when compared to those of LSTMs. All of the above CNNs
are also combined with GRUs. Table IV shows their topl
prediction results. The empirical results indicate significant
performance improvements of CNN-GRU over those of CNN-
LSTM and CNN-BiLSTM.

TABLE 1V
CNNs wiTH GRUs

Model Name UCF-11 UCF-25 UCF-50 UCF-101
ResNet101-GRU | 88.15489960 | 88.85383606 | 81.00263977 | 80.9410553
GoogleNet-GRU | 71.07061768 | 82.43953705 | 67.81002808 | 62.4900856

VGG16-GRU 70.15945435 | 84.85804749 | 73.24538422 | 70.8961182

Subsequently, the CNNs are also combined with BiGRU,
which has two GRU layers with forward and backward passes.
The results for CNN-BiGRUs are provided in Table V.

TABLE V
CNNs wiTH BIGRUS

Model Name UCF-11 UCF-25 UCF-50 UCF-101
ResNet101-Bi-GRU | 92.02733612 | 87.9074707 | 82.63851929 | 79.83082581
GoogleNet-Bi-GRU | 74.71526337 | 82.22923279 | 68.28495789 | 60.34893036

VGG16-Bi-GRU 37.81320953 | 74.44795227 | 61.68865204 | 66.87813568

C. Average Fusions

We conduct diverse late fusions of the proposed transfer
learning and hybrid networks. The detailed results are provided
below.

1) Average Fusion of CNNs: The Average Fusion of CNNs
is the late fusion of three Spatial-CNNs (including Spatial-
ResNet101, Spatial-GoogleNet and Spatial-VGG16) combined
with Motion-ResNet101.

As indicated in Table VI, this multiple-stream Average
Fusion scheme has achieved the best performance among
those of all the 22 models. In particular, it outperforms the
original baseline two-stream fusion method (1 Spatial-CNN +
1 Motion-CNN)) significantly as indicated in Table VI.

For example, this fusion scheme achieves 94.99% on UCF-
11, 92.43% on UCF-25, 84.64% on UCF-50, and 84.88% on
UCF-101. It benefits from the combination of multiple spatial
and temporal streams which provide sufficient complementary
information for action recognition.

2) Average Fusion of CNN-LSTMs & Average Fusion of
CNN-BiLSTMs: Similarly, Average Fusion of Motion-CNN
with all other CNN-LSTM and CNN-BiLSTM models is also
evaluated. The results are shown in Table VII.

TABLE VII
AVERAGE FUSION CNN-LSTMS & AVERAGE FUSION CNN-BILSTMs
Model Name UCF-11 UCF-25 UCF-50 UCF-101
Average Fusion CNN-LSTMs | 86.33257294 | 90.01051331 | 82.32189941 | 81.20539093
Average Fusion CNN-BiLSTMs | 84.96582794 | 89.27445221 | 79.6306076 | 79.11710358

As observed in Table VII, late fusion of Motion-CNN
and CNN-LSTM models has better accuracy rates on the
test datasets as compared to those of Motion-CNN combined
with the CNN-BIiLSTMs models, despite the fact that some
CNN-BiLSTM models achieved better results than those of
respective CNN-LSTM methods.

3) Average Fusion of CNN-GRUs and Average Fusion of
CNN-BiGRUs: In our experiments, CNN-GRU models com-
bined with Motion-CNN are supposed to have better perfor-
mance, with CNN-BiGRU models integrating with Motion-
CNN having the potential to achieve even better results.
We test this hypothesis by late fusion of Motion-CNN with
all CNN-GRU and CNN-BiGRU models, respectively. The
detailed results are shown in Table VIII.

TABLE VIII
AVERAGE FUSION CNN-GRUS & AVERAGE FUSION CNN-BIGRUS
Model Name UCF-11 UCF-25 UCF-50 UCF-101
Average Fusion CNN-GRUs | 88.38269043 | 91.79811096 | 84.96041870 | 85.69918060
Average Fusion CNN-BiGRUs | 90.88838196 | 90.32597351 | 85.85752106 | 84.45677948

When combining Motion-CNN with spatial CNN-RNN
methods, we can see that GRU models are in fact better
performing RNN models in comparison with LSTM models
in our experimental studies.

We summarize the results of all the proposed 22 models in
Table IX, which are ranked based on model performance.



TABLE IX
ALL RESULTS OF THE PROPOSED 22 MODELS

Model Name UCF-11 UCF-25 UCF-50 UCF-101
Average Fusion CNNs 94.98860931 | 92.42902374 | 84.64379883 | 84.87972260
ResNet101-BiGRU 92.02733612 | 87.90747070 | 82.63851929 | 79.83082581
Average Fusion CNN-BiGRU 90.88838196 | 90.32597351 | 85.85752106 | 84.45677948
ResNet101 (Spatial) 90.43280029 | 87.59201050 | 81.68865204 | 79.91012573
Average Fusion (Two-Stream) 88.61047363 | 90.01051331 | 85.06596375 | 84.37747955
Average Fusion CNN-GRU 88.38269043 | 91.79811096 | 84.96041870 | 85.69918060
ResNet101-GRU 88.15489960 | 88.85383606 | 81.00263977 | 80.94105530
ResNet101- BiLSTM 87.01594543 | 85.59411621 | 72.71767426 | 68.51705170
Average Fusion CNN-LSTM 86.33257294 | 90.01051331 | 82.32189941 | 81.20539093
VGG16 (Spatial) 85.42140961 | 83.17560577 | 73.82585907 | 72.21781921
Average Fusion CNN-BILSTM | 84.96582794 | 89.27445221 79.6306076 79.11710358
GoogleNet (Spatial) 84.51024628 | 84.33228302 | 75.46173859 | 74.04176331
ResNet101-LSTM 83.82688141 | 86.33017731 | 73.50923157 | 66.21728516
GoogleNet-BiGRU 74.71526337 | 82.22923279 | 68.28495789 | 60.34893036
ResNet101 (Motion) 71.52619171 | 76.86645508 | 59.84168625 | 61.14195251
GoogleNet-GRU 71.07061768 | 82.43953705 | 67.81002808 | 62.49008560
VGG16-GRU 70.15945435 | 84.85804749 | 73.24538422 | 70.89611816
GoogleNet-LSTM 69.47608185 | 70.55731201 | 53.08707047 | 45.91593933
GoogleNet-BiLSTM 65.14806366 | 75.39432526 56.2532959 43.29896927
VGG16-LSTM 53.98633194 | 78.54889679 | 68.49604034 | 65.23922729
VGG16-BiGRU 37.81320953 | 74.44795227 | 61.68865204 | 66.87813568
VGG16-BiLSTM 21.41230011 | 76.97161102 | 60.15830994 | 54.21623230

V. CONCLUSION

In this research, we propose spatial and temporal CNNs,
hybrid CNN-RNN methods, as well as diverse late fusion
schemes of these networks, for undertaking action recogni-
tion. A total of 22 models are proposed in this research.
Since Motion-CNN and Spatial-CNNs often adopt different
backbone architectures, when evaluated on different datasets,
we found that the pre-trained model such as ResNetl01
which has the most accuracy on its pre-trained ImageNet
dataset, also shows the best accuracy rates on UCF datasets.
Hence, ResNetl01 as a pre-trained model always performs
exceptionally well than other CNNs in our experiments. With
respect to the hybrid CNN-RNN models, CNN-BiGRU is the
most performing network in comparison with other CNN-
RNN variants. Moreover, among the proposed 22 models,
the Average Fusion CNNs scheme which is a late fusion
of one Motion-CNN and three Spatial-CNNs has the highest
accuracy rates on all UCF datasets. The results of this fusion
strategy also outperform a number of existing state-of-the-
arts in the field. For future work, other pre-trained models
such as ViT_H_14, RegNet_Y_128GF, and ViT_L_16 have
even higher accuracy rates than those of ResNetlO1 will
be studied in combination with other spatial and temporal
networks [23], [24], [25]. In addition, since other advanced
transformer architectures (e.g. Swinv2) show even competitive
performance, the fusion of spatial and temporal CNNs with
such transformer networks will be exploited to further enhance
performance.
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