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Abstract. 

The recent breakthrough of deep learning based generative models has led to the escalated generation of photo-

realistic synthetic videos with significant visual quality. Automated reliable detection of such forged videos 

requires the extraction of fine-grained discriminative spatial-temporal cues. To tackle such challenges, we 

propose weighted and evolving ensemble models comprising 3D Convolutional Neural Networks (CNNs) and 

CNN-Recurrent Neural Networks (RNNs) with Particle Swarm Optimization (PSO) based network topology and 

hyper-parameter optimization for video authenticity classification. A new PSO algorithm is proposed, which 

embeds Muller’s method and fixed-point iteration based leader enhancement, reinforcement learning-based 

optimal search action selection, a petal spiral simulated search mechanism, and cross-breed elite signal 

generation based on adaptive geometric surfaces. The PSO variant optimizes the RNN topologies in CNN-RNN, 

as well as key learning configurations of 3D CNNs, with the attempt to extract effective discriminative spatial-

temporal cues. Both weighted and evolving ensemble strategies are used for ensemble formulation with 

aforementioned optimized networks as base classifiers. In particular, the proposed PSO algorithm is used to 

identify optimal subsets of optimized base networks for dynamic ensemble generation to balance between 

ensemble complexity and performance. Evaluated using several well-known synthetic video datasets, our 

approach outperforms existing studies and various ensemble models devised by other search methods with 

statistical significance for video authenticity classification. The proposed PSO model also illustrates statistical 

superiority over a number of search methods for solving optimization problems pertaining to a variety of 

artificial landscapes with diverse geometrical layouts. 
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1. INTRODUCTION 

Deep learning techniques have demonstrated significant advancement in video and signal processing. Deep 

generative methods (e.g., the Generative Adversarial Network (GAN) and its variants) show impressive 

capabilities in generating synthetic images, videos and audios with realistic forgeries. Example deepfake 

generation techniques include facial expression and identity manipulation, scene editing and static/animated 

content generation [1, 2]. These methods are capable of generating photo-realistic synthetic videos by enacting 

facial expressions from one person to another, swapping faces, inserting/deleting background scenes and 

synthesizing novel static views or animations [1, 2]. Besides that, medical deepfakes have also become 

prevailing, e.g., manipulated benign and malignant tumour images with respect to lung conditions [3]. Owing to 

the high quality photo-realistic forgeries in synthetic videos, deepfake detection is a challenging task for human 

observers, which may pose significant security and privacy threats. Because of the fast progression of the 

aforementioned as well as new deep learning generative models, the availability of manipulated videos has been 

significantly escalated [4-9]. As such, automated and accurate identification of video forgery is essential in 

tackling the above challenges. 

 

In parallel, deep neural networks such as 3D Convolutional Neural Networks (CNNs) and CNN-Recurrent 

Neural Network (RNN) show great efficiency in tackling video classification pertaining to human action 

recognition [10-13]. In particular, 3D CNNs such as Inflated 3D ConvNet (I3D) [10-12] and MC3 [14] have 

great superiority in spatial-temporal feature extraction [7]. To take advantage of such pre-trained 3D CNNs on 

human action recognition, we conduct transfer learning using I3D and MC3 for video authenticity identification. 

Owing to the dominance of learning configurations, such as the learning rate, learning rate drop factor and 

regularization coefficient, to network performance as well as model capabilities in undertaking under-fitting and 

over-fitting problems [10, 14, 15], automated hyper-parameter optimization is desirable. In particular, with 

respect to CNN-RNN, since the types and topologies of RNN models, e.g. Gated Recurrent Unit (GRU), Long 

Short-Term Memory (LSTM), and bidirectional LSTM (BiLSTM) as well as their configurations [16-19], play 

important roles in extracting effective temporal cues, the identification of such key network structures that best 

adapt the RNN decoder to different synthetic video classification tasks is essential. 

 

Therefore, in this research, we exploit weighted and evolving ensemble models incorporating 3D CNNs and 

CNN-RNN with Particle Swarm Optimization (PSO)-based optimal network structure and hyper-parameter 

selection for video authenticity classification. Specifically, Inceptionv3-RNN is utilized as the encoder-decoder 

architecture while I3D and MC3 are used as the 3D CNNs for synthetic video identification, owing to their 

superior capabilities in spatial-temporal dynamic extraction in solving video classification tasks [11, 12, 13]. 

Moreover, a PSO variant is proposed to optimize the architectures of Inceptionv3-RNN as well as key hyper-

parameters of I3D and MC3 with the attempt to extract fine-grained discriminative spatial-temporal cues. 

Precisely, we optimize the network type (i.e. GRU, LSTM, and BiLSTM) and structure (i.e. number of hidden 

units) of the RNN decoder in Inceptionv3-RNN. In addition, optimal learning parameters (i.e., the learning rate, 

learning rate drop factor and regularization coefficient) in I3D and MC3 are automatically identified using the 

proposed PSO method to tackle the laborious constraints of manual parameter selection. The new PSO algorithm 

embeds Muller’s method and fixed-point iteration based leader enhancement, a petal spiral simulated search 

mechanism, 3D geometric landscape inspired cross-breed leader generation, and reinforcement learning (RL)-

motivated sequential search deployment, to optimize the aforementioned hyper-parameters and RNN types and 

structures pertaining to video forgery identification.  

 

 

 

  
    

 

 

Figure 1 The proposed PSO-based weighted and evolving ensemble models integrating optimized I3D, MC3 and 

CNN-RNN for video authenticity classification 
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Moreover, two strategies are used for ensemble model formulation, i.e. a weighted ensemble scheme and an 

optimization-based evolving ensemble strategy. The former is able to effectively tackle class imbalanced 

classification problems. In the latter, optimal subsets of optimized Inceptionv3-RNN, I3D and MC3 networks 

are selected by the proposed PSO algorithm for ensemble model formulation. Figure 1 depicts the proposed 

PSO-based weighted and evolving ensemble models by integrating optimized Inceptionv3-RNN, I3D and MC3 

networks for synthetic video classification. 

 

A number of novel aspects of this research are listed, as follows. 

 

1. Owing to the great efficiency in extracting spatial-temporal cues of Inceptionv3-RNN, I3D and MC3, 

we propose weighted and evolving ensemble models integrating these deep networks with PSO-based 

network topology and hyper-parameter fine-tuning for video authenticity classification. A new PSO 

variant is proposed to optimize different types of RNN layers (i.e. LSTM, BiLSTM and GRU) and the 

number of hidden neurons of the selected recurrent layer. On the other hand, the proposed PSO 

algorithm is also employed to identify optimal settings of the learning rate, learning rate drop factor and 

regularization coefficient in I3D and MC3, respectively. Diverse optimized I3D, MC3 and CNN-RNN 

models are subsequently used to construct the base classifier pool. Besides using a weighted ensemble 

scheme, the proposed PSO variant is used to conduct ensemble model formulation by selecting optimal 

subsets of these optimized classifiers to balance between ensemble complexity and performance. 

2. The new PSO variant overcomes limitations of the original PSO operation [20] by exploiting fixed-

point iteration and Muller’s method for swarm leader enhancement, reinforcement learning-inspired 

search strategy selection, cross-breed elite signal generation based on adaptive 3D geometric 

landscapes, as well as a petal spiral-based intensification. Specifically, the aforementioned 

mathematical root finding mechanisms for leader enhancement employ recursive division strategies to 

better estimate global minima to guide local exploitation of the swarm leader. A total of four sets of 

adaptive 3D geometrical landscape oriented crossover formulae are proposed to generate diverse cross-

breed leaders to enhance global exploration. In addition, a petal simulated spiral search action is 

utilized to exploit local jumps by using a petal-spiral search trajectory. To optimize search behaviours 

of each particle, a reinforcement learning algorithm is used to identify the optimal sequential 

deployment of the above local and global search operations. Overall, these search strategies coordinate 

with one another to increase search territories, diversify elite signal generation, steer effective guided 

search action selection and intensification of the swarm leader, to mitigate local optima traps.  

3. In this research, we employ two schemes for ensemble network construction, i.e. (1) a weighted 

scheme, i.e. ensemble scheme 1 (as discussed in Section 5.1), and (2) an evolving ensemble generation 

scheme devised by each optimization algorithm, i.e. ensemble scheme 2 (as depicted in Section 5.2). 

The former is able to effectively tackle class imbalanced classification problems, while the latter is able 

to eliminate weak or redundant base classifiers to minimize ensemble complexity while maximizing 

performance. We employ the weighted ensemble scheme 1 to formulate a pool of models with the same 

types of base networks, while the evolving ensemble scheme 2 using optimization algorithms is used to 

devise a pool of classifiers integrating different types of base networks. In both schemes, the 

aggregation of the proposed PSO-optimized CNN-RNN and 3D CNN models with different learning 

mechanisms, network topologies and parameter configurations further improves the ensemble 

performance. In particular, for evolving ensemble scheme 2, moderate numbers of base classifiers are 

selected to achieve a balance between ensemble complexity and performance, as compared with those 

devised by other search methods. 

4. Evaluated using three well-known video datasets, i.e., Celeb-DFv2 [1], FaceForensics++ [2] and 

Deepfakes [2], for both weighted and evolving ensemble schemes, the proposed PSO-based ensemble 

models outperform those (with optimized learning settings or optimal base classifier subsets) yielded by 

other search methods with a statistical significance. Our ensemble networks also show better 

performance than those of existing state-of-the-art methods for video authenticity classification. The 

proposed PSO variant also illustrates statistically better performance than those of a number of classical 

and advanced search methods for solving numerical benchmark functions with challenging artificial 

landscapes. 

 

The remaining sections are arranged as follows. In Section 2, we introduce state-of-the-art deep learning 

methods and PSO variants for solving synthetic video classification and industrial optimization problems, 

respectively. Section 3 elaborates the proposed PSO variant with numerical analysis methods, petal-driven local 

exploitation, synthetic signals for global exploration, as well as reinforcement learning-based search action 

selection. We conduct hyper-parameter and network topology optimization for 3D CNN and CNN-RNN models 

as well as weighted and dynamic ensemble formulation in Sections 4 and 5, respectively. Performance 



comparison between the proposed PSO algorithm and other search methods for ensemble model construction 

with respect to deepfake detection is provided in Section 6. Finally, research findings and future inspirations are 

summarized in Section 7. 

 

2. RELATED WORK 
We analyse a variety of state-of-the-art deepfake video classification methods as well as swarm intelligence and 

evolutionary algorithms for solving diverse industrial and real-world optimization problems in this section. 

 

2.1 Deepfake Detection 
The escalated synthetic video and audio generation poses significant cybersecurity threats for a number of 

applications, e.g., robotic navigation, auto-pilot, social media, and medical diagnosis. As an example, fake video 

and audio clips could be used to conduct personal attacks via social media and influence political elections, 

public views and medical diagnosis and treatment [6]. Accurate synthetic video classification therefore is crucial 

in detecting such cyber-attacks. A number of related studies were developed in recent years for fake/real video 

classification. Zhang et al. [15] utilized a new 3D CNN model, which embedded a 3D inception module and 

temporal dropout, for synthetic video classification. The network adopted inconsistent subtle spatial-temporal 

hints between video frames to distinguish fake from real videos. Specifically, the inception module was used to 

extract multi-scale spatial features and better capture the inconsistent signals in the video sequences, while the 

dropout function performed random sampling to randomly remove some frames from the raw video volumes for 

deepfake classification. Their network effectiveness was tested using three benchmark synthetic video datasets. 

The model effectiveness could be attributed to the extraction of temporal inconsistencies through a 3D inception 

module and the adoption of a temporal dropout scheme to better preserve local and global temporal information. 

Nonetheless, their work only evaluated the aforementioned strategies on a single 3D CNN architecture, without 

generating more diversified video presentations by integrating with other 3D CNN models, which could limit 

their model performance. Optimization algorithms could be used to identify optimal settings of their proposed 

temporal dropout strategy as well as other key hyper-parameters to further increase network robustness.   

 

In addition, since biological signals embedded in the original videos were difficult to preserve in synthetic 

contents, Ciftci et al. [7] exploited a scheme to capture such biological cues to distinguish fake from real videos. 

Precisely, their work extracted biological signals from both real and synthetic videos pertaining to the facial 

regions (i.e., left and right cheeks and the upper nose region). Then signal transformations to time, frequency, 

time-frequency domains were performed respectively based on these extracted biological hints, to calculate 

spatial-temporal consistencies and correlations for pairwise classification. The respective biological properties 

and indicator maps were subsequently constructed and used to train the Support Vector Machine (SVM) and 

CNN to identify fake from authentic videos. Ensembling of the outputs of each video segment via a majority 

voting mechanism was used to determine the final fake/real video prediction. Their work exploited the 

advantage of a complex biological signal extraction process to learn features from the green colour channel in 

image frames for spatial-temporal consistency identification. Different SVM classifiers were trained using 

different sets of biological signals. But the complementary nature of these extracted features could be further 

strengthened using an evolutionary algorithm-based ensemble construction scheme instead of using a traditional 

majority voting method. This could result in the identification of effective and dynamic sets of base classifiers to 

improve robustness. In addition, instead of using an ImageNet pre-trained deep 2D CNNs or 3D CNNs, a 

comparatively shallow 2D CNN model with three convolutional blocks was used for video authenticity 

classification in their work, which could show limited capabilities in learning high-dimensional features from 

multiple video frames.  

 

Chintha et al. [4] employed a Convolutional Recurrent Neural Network (CRNN) with XceptionNet as the spatial 

feature encoder and BiLSTM as the temporal decoder for authentic video classification. Cross-entropy loss, 

Kullback-Leibler (KL) divergence loss, and their combinations were studied in their experiments for visual 

deepfake classification. In addition, a CRNN, i.e. 1D convolutions combined with BiLSTM layers, as well as a 

residual network with WideBlocks, is utilized for authentic audio identification. Evaluated using a number of 

benchmark video (FaceForensics++ and Celeb-DFv1) and audio (ASVSpoof 2019) datasets, their networks 

obtained improved performance as compared with those of existing studies. The appealing aspect of their work 

was the employment of both visual and auditory inputs for video authenticity classification. Two sets of video 

and audio-based networks were developed respectively to tackle deepfake detection. However, the 

configurations of the hidden layer structures (e.g. the number of hidden units) of the BiLSTM models in both 

XceptionNet-BiLSTM and CRNN for video and audio classification respectively, were pre-determined and fixed, 

which could be dynamically optimized to better adapt to different video/audio classification tasks. 

 



Wang et al. [5] utilized a novel Siamese network for manipulated video classification. A pairwise input of the 

original and manipulated images was exploited to generate two segmentation maps. The localization consistency 

of the two maps was subsequently calculated using an invariance loss. The extracted feature maps and the 

segmentation maps were then used as the inputs to a mask-guided transformer to generate co-occurrence 

characteristics, which were then used to train a feedforward shallow neural network for video authenticity 

classification. Evaluated using FaceForensics++ and Celeb-DFv2, their network showed competitive 

performance for both within and cross-dataset evaluations. The advantage of their model lied on the employment 

of segmented features from the manipulated regions in conjunction with the feature maps extracted from the 

whole authentic image, which were used as inputs to a transformer for more informative feature representation 

generation. But their model operated as a frame-level method and could not be easily deployed for video 

classification tasks. In addition, it purely employed RGB image frames as inputs without the consideration of 

temporal details, which could limit their model flexibility. 

 

Pu et al. [21] proposed a ResNet50-GRU encoder-decoder architecture for real and manipulated video 

classification. The extracted features from ResNet50-GRU were used for both video-level and image-level 

detection. For video classification, the extracted spatial-temporal patterns from the encoder-decoder architecture 

were passed on to the pooling, flatten and dense layers for authenticity classification, while for image-level 

classification, the extracted dynamic temporal features from each frame were used as the inputs to a fully 

connected layer for the classification of manipulated content at the frame-level. A joint loss function was used 

for network training. Their model showed improved capabilities in tackling imbalanced and cross-dataset 

evaluation. Their work combined image-level and video-level streams for video authenticity classification. 

Nonetheless, the network configurations of the GRU decoder in ResNet50-GRU were pre-defined with fix 

settings for evaluating different video deepfake datasets. The decoder network could benefit from the 

incorporation of evolutionary or reinforcement learning algorithms to generate dynamic adaptive settings to 

improve network robustness. Besides the adoption of a CNN-RNN architecture, their work could also take 3D 

CNNs into account to increase classifier diversity. 

 

Motivated by the combination of the original and manipulated contents in a forged video, Shang et al. [22] 

exploited a dual relation network to identify pixel-wise and region-wise relations for authenticity classification. 

The model employed the Pixel-Wise Relation (PR) module to extract similarity information between pixels. The 

PR module also extracted feature representations of the original and forged regions using an attention layer, 

respectively. The Region-Wise Relation component was subsequently used to identify incoherent characteristics 

between the two extracted feature maps using multiple metrics. Such inconsistency comparison was used to 

inform manipulated video classification. The appealing aspect of their work was the integration of the 

aforementioned pixel and region-wise components for authenticity classification. But owing to inconsistency 

measurement at the pixel or region levels, the model showed limited capabilities in identifying completely 

synthesized fake images. 

 

Wang et al. [23] conducted video authenticity detection by using a two-stream architecture fusing spatial and 

frequency-based subnetworks. Global and multi-scale shallow spatial features were extracted using the spatial 

stream, while frequency related features such as amplitude and phase properties were obtained using the 

frequency subnetwork. Early fusion of the two streams was performed by concatenating the yielded spatial and 

frequency characteristics, which were subsequently used to inform contrastive learning and video forgery 

detection. Their model yielded an impressive performance for evaluating several large-scale benchmark 

deepfake datasets. The work employed concatenated features from both spatial and frequency-based networks to 

increase robustness. However their model required additional pre-processing efforts in generating amplitude and 

phase information from the original image inputs based on the discrete Fourier transform (DFS) and could incur 

additional computational cost in comparison with those of existing 2D or 3D CNNs. Moreover, their model 

purely focused on frame-level classification, without considering sequential temporal details. 

 

Chen et al. [24] developed Xception-ConvLSTM with attention mechanisms for video forgery detection. A new 

attention component was exploited with the attempt to preserve sufficient spatial-temporal cues before applying 

feature reduction of the CNN-RNN operations. In particular, their model extracted intra-frame and inter-frame 

correlations using spatial and temporal attention functions respectively. The yielded feature maps were 

subsequently used as the inputs to Xception-ConvLSTM for forged video classification. The ConvLSTM 

structure was also capable of extracting more refined spatial-temporal patterns. Their model showed enhanced 

classification accuracy rates when evaluated using sample videos extracted from several deepfake datasets (e.g., 

Celeb-DFv2 and Deepfake Detection Challenge (DFDC)). The key contribution of their work was the proposal 

of spatial-temporal attention mechanisms for feature learning. However, the model depicted limited robustness 

owing to the excessive extraction of intra- and inter-frame features using their attention models. In addition, the 



key learning configurations of ConvLSTM, such as the dropout rate, number of hidden units and filter sizes and 

numbers, were pre-determined, which could actually be fine-tuned using swarm intelligence algorithms or 

reinforcement learning methods, in order to increase network robustness.  

 

Moreover, capsule networks with features maps yielded by VGG19 were studied by Nguyen et al. [25], and 

ResNet50 trained with photo-realistic images generated using PGGAN was examined by Wang et al. [26] for 

evaluating model generalization capabilities using videos synthesized by other generative models. SCnet with 

embedding of a set of stacked convolutional layers was developed by Guo et al. [27] for video authenticity 

identification. A number of other exiting studies on video deepfake generation and classification have also been 

analysed in detail by Nguyen et al. [8]. Besides manipulated video classification, forged audio classification [28] 

has also been conducted using a variety of deep networks such as BiLSTM [29], Deep4SNet [30], 

MesoInception-4 [31], and Xception [31] for evaluating FakeAVCeleb [32] and ASV spoof 2019 [33] datasets. 

 

Table 1 depicts the key methodologies of the aforementioned existing studies. As indicated in Table 1 and other 

existing works, the research gaps for deepfake detection are as follows. (1) 2D CNNs and CNN-RNN models 

have been commonly adopted in many existing works, while comparatively few studies have employed 3D 

CNNs. (2) Very few studies have combined optimization algorithms with 3D CNNs or CNN-RNNs. As an 

example, most methods have employed fixed RNN settings in CNN-RNN or CRNN models without considering 

optimizing the recurrent layer types and hidden unit configurations using evolutionary algorithms. (3) Early 

feature-level fusion and traditional majority voting methods are mainly adopted in existing studies. Dynamic 

ensemble model formulation using evolutionary algorithms is rarely exploited for video classification. (4) Some 

methods require additional pre-processing (e.g. frequency feature generation using DFS and spatial/temporal 

attention components for feature extraction), leading to additional computational cost and hindering their 

deployment in real-world settings. 

 

To bridge research gaps, we employ three models, i.e. CNN-RNN (Inceptionv3-RNN) and two 3D CNNs (I3D 

and MC3) for deepfake classification in this study. A new optimization algorithm integrating PSO with the 

reinforcement learning (Q-learning) algorithm is proposed for recurrent layer configuration and hyper-parameter 

optimization for CNN-RNN and 3D CNNs, respectively. The optimization process enables these networks to 

adapt to different deepfake detection tasks effectively. These optimized networks are then used for ensemble 

model generation. Specifically, two new schemes are devised in this research for ensemble model formulation, 

i.e. (1) a weighted scheme, i.e. ensemble scheme 1 (as discussed in Section 5.1), and (2) an evolving ensemble 

generation scheme devised by each search algorithm, i.e. ensemble scheme 2 (as depicted in Section 5.2). The 

former is able to effectively tackle class imbalanced classification problems, while the latter is able to eliminate 

weak or redundant base classifiers and to minimize ensemble complexity while maximizing performance. To the 

best of our knowledge, our research on combining PSO variant with reinforcement learning for both hyper-

parameter optimization and evolving ensemble formulation for video authenticity classification is new, therefore 

our contribution. 

 

Table 1 Comparison of key methodologies between this research and existing studies 

 
 Key methodologies Optimization, ensemble or other 

strategies 

Limitations and/or mitigation 

strategies 

Zhang et al. [15] Single 3D CNN with temporal dropout and a 3D 
inception module 

- No other 3D CNNs or hybrid 
networks used 

Ciftci et al. [7] Biological signal extraction + a shallow 2D 

CNN + SVM-based ensemble with a traditional 
majority voting method  

Traditional majority voting 

ensemble 

No dynamic/evolving ensemble 

model construction using 
evolutionary algorithms 

considered  

Chintha et al. [4] XceptionNet-BiLSTM with multiple losses for 

video classification + CRNN and CNN for audio 
classification  

- Fixed layer and neuron settings 

of the BiLSTMs in both CNN-
RNN and CRNN without 

dynamic adaptation or 

optimization. 

Wang et al. [5] A Siamese network integrated with image 

segmenter and transformer-based feature 

learning + a feedforward shallow neural network 
for classification 

A frame-based method purely 

based on RGB frame input 

No consideration of temporal 

inputs and cannot be easily 

deployed for video 
classification tasks. 

Pu et al. [21]  A ResNet50-GRU combined with image-level 

and video-level classifiers 

- Pre-defined fixed settings of 

the GRU decoder in ResNet50-

GRU without optimization 

Wang et al. [23] A two-stream architecture fusing spatial and 

frequency-based subnetworks. 

DFS used for additional 

amplitude and phase information 

extraction 

A frame-based method without 

the consideration of temporal 

cues 



Chen et al. [24]  Spatial-temporal attention mechanisms + 

Xception-ConvLSTM 

Intra- and inter-frame correlations 

extracted using attention methods 

Limited robustness owing to 

the excessive extraction of 

intra- and inter-frame features. 

No optimization applied to key 

settings of ConvLSTM.  

Shang et al. [22] A dual relation network to identify pixel-wise 
and region-wise relations 

Pixel-wise and region-wise 
inconsistency identification 

Limited capabilities in 
identifying completely 

synthesized fake images. 

 
 

This research CNN-RNN, I3D and MC3 with evolutionary 

algorithm-based hyper-parameter optimization 
and ensemble network construction 

Diverse optimized CNN-RNNs 

and 3D CNNs are devised for 
weighted and evolving ensemble 

generation. Optimal hyper-

parameter and base classifier 
selection performed using a 

newly proposed optimizer.  

A new PSO variant combined 

with reinforcement learning is 
proposed for hyper-parameter 

optimization and weighted and 

evolving ensemble model 
construction. 

 

2.2 Particle Swarm Optimization and Its Variant Methods 
Evolutionary algorithms have been intensively deployed in a variety of industrial optimization problems, such as 

robot and drone navigation, path planning, job scheduling and energy efficiency applications. As a typical 

swarm intelligent algorithm, PSO [20] exploits the search space by using personal and global best solutions, as 

indicated in Equations (1)-(2). 

 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1     (1) 

𝑣𝑖𝑑
𝑡+1 = 𝑤 × 𝑣𝑖𝑑

𝑡 + 𝑐1 × 𝑟1 × (𝑝𝑏𝑒𝑠𝑡_𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2 × 𝑟2 × (𝑔𝑏𝑒𝑠𝑡_𝑑 − 𝑥𝑖𝑑

𝑡 )    (2) 

 

In Equation (1), the position and velocity of particle 𝑖 in the 𝑑-th dimension and 𝑡 + 1-th iteration are denoted as  

𝑥𝑖𝑑
𝑡+1 and 𝑣𝑖𝑑

𝑡+1, respectively. The personal and global best experiences, i.e. 𝑝𝑏𝑒𝑠𝑡_𝑖 and 𝑔𝑏𝑒𝑠𝑡 , along with their 

respective acceleration coefficients, 𝑐1 and 𝑐2, are used to dominate the search behaviours of the cognitive and 

social elements, respectively. The effect of the previous velocity to the new one is determined by the inertial 

weight 𝑤. To diversify the search steps of the swarm particles, random vectors, 𝑟1 and 𝑟2, are also used.  

 

We use the random vectors 𝑟1 and 𝑟2 to diversify the search steps for each particle. They are generated using the 

same dimension as that of the swarm particles. Each element of 𝑟1 and 𝑟2 is assigned with a random value in the 

range of [0, 1], so that it randomizes the search step in each dimension to increase robustness. Precisely, 𝑟1 is 

used to randomize the search step in each dimension for the particle to move towards the personal best solution, 

while 𝑟2 randomizes the search step for moving the current particle towards the global best solution. Indicated 

by existing studies [34], instead of using a fix random value for all the elements for 𝑟1 and 𝑟2, respectively, the 

random vectors with a different random value in each dimension may help increase search diversity to mitigate 

local optima traps.  

 

In addition, since PSO relies on the personal and global best solutions to navigate particles in the search space, it 

is likely to converge prematurely. Many existing studies have proposed variants of PSO as well as new swarm 

intelligence algorithms to overcome such limitations. For example, Zhang et al. [35] developed a PSO variant 

with automated subswarm topology and parameter adaptation. To increase search diversity, subswarms were 

automatically formed using the K-means (KM) clustering algorithm where the Calinski-Harabasz (CH) index 

was applied to determine the number of subswarms. Adaptive search coefficients were deployed to fine-tune the 

model behaviours, while Bayesian optimization was also exploited to optimize the boundaries of these search 

hyper-parameters. Besides the original PSO velocity update, particle velocity calculation was also affected by 

the subswarm leaders. Their model showed a better performance for solving standard and complex numerical 

optimization problems and hyper-parameter optimization for image enhancement than those of other existing 

PSO variants. The appealing aspects of their work were the CH index based automatic generation of the optimal 

number of subswarms, and parameter search boundary determination using Bayesian optimization for enabling a 

better trade-off of local and global search behaviours. While both the subswarm leaders and the global best 

solution were used for velocity update, these important optimal leader signals were not further enhanced using 

any random walk or other strategies. In addition, their work only employed a single search operation integrating 

the respective subswarm leader and the global best solution for velocity update, without the adoption of any 

alternative search mechanisms. If this single search action was trapped in local optima, there were no alternative 

search operations for activating the swarm to explore other regions to overcome stagnation. 

 

Zhang et al. [36] studied a PSO model with mutation operators and adaptive search coefficients in combination 

with Monte Carlo search based error simulation for solving precision airdrop tasks. In their PSO algorithm, the 



weighting of the previous velocity was adaptively adjusted to the fitness difference between each particle and 

the swarm leader, divided by the fitness difference between the mean position of the overall swarm and the 

swarm leader. The flexibility of the velocity formula was further enhanced using an additional mutation operator. 

Evaluated using challenging real-world cases, their model showed enhanced precision for airdrop assignment as 

compared with those of several existing PSO variants. The advantage of their studies was the adoption of the 

adaptive inertia weight coefficient fine-tuning the new velocity generation, as well as the additional random 

mutation operator for velocity diversification. Although such a random-based mutation operator could increase 

search diversity, it incurred additional search iterations to achieve convergence. Instead of using a random 

operator, more informative mathematical numerical analysis or Gaussian-based fitness estimation methods could 

be used to implement the mutation action and to accelerate convergence while increasing search territories. 

Similar to the above studies, a single search operation integrating the original PSO operation with the new 

random operator was used for velocity update. No additional alternative search mechanisms and multiple leaders 

were considered. When this single search strategy led by the swarm leader became stagnant, no additional 

momentum was injected via the execution of other search actions guided by other elite signals to drive the 

swarm out of stagnation. 

 

Liang et al. [37] utilized an enhanced PSO algorithm in combination with Fuzzy C-Means (FCM) clustering for 

estimating air quality. Specifically, the weight matrix of FCM was optimized by their PSO method. In their PSO 

variant, the inertia weight was diversified in accordance with the fitness score of each particle and further 

randomized in each search dimension. To enhance local exploitation of each search agent, another particle was 

randomly selected from the same subswarm to conduct Differential Evolution (DE)-based position updating. In 

addition, the global search operation of their model was improved by using two subswarms where the subswarm 

leaders were used in conjunction with the personal best experiences for position updating. The switching 

between the original PSO operation and this new subswarm leader-based search operation was controlled by a 

random factor. Evaluated using several air pollution datasets, their hybrid model outperformed other search 

methods inspired FCMs in terms of several error metrics. The advantage of their model was the employment of 

the DE-based local search strategy to overcome limited local search capabilities of the PSO algorithm. However, 

the determination between the new subswarm leader-based global search action and the original PSO operation 

was purely conducted based on a random factor instead of using more informative strategies (e.g. reinforcement 

learning), therefore limiting their model performance. In addition, no additional operations were exploited for 

swarm or subswarm leader enhancement. 

 

Liu et al. [38] exploited a PSO variant with both attraction and repulsion behaviours. Specifically, the velocity 

update of each particle was guided by the personal best experiences of the overall swarm. Each particle was 

attracted to the fitter personal best individuals and repelled from the less optimal personal best experiences. Next, 

the personal best solutions of the overall swarm were randomly paired. Information exchange was conducted 

between each pair of such randomly selected search agents. Precisely, a crossover operator was used to generate 

offspring of the selected personal best solutions, which were used to replace weaker parent chromosomes. 

Evaluated using a set of 22 hybrid and rotated benchmark functions, their algorithm outperformed several 

existing PSO variants. Their work leveraged information exchange between personal best individuals to generate 

new leader signals. Owing to the guidance of all the personal best experiences in the overall swarm for the 

position update of each particle, such a position update is computationally costly. In addition, the approach could 

lead to oscillatory behaviours of each particle by following all the personal best individuals of the entire swarm. 

Moreover, there was only a single search action used for position update without the consideration of additional 

position updating mechanisms. Their model could therefore highly likely be trapped in local optima when their 

main search operation became stagnant, owing to the unavailability of alternative search operations to activate 

sudden movements of the swarm. 

 

Neuroscience inspired PSO was developed by Liu et al. [39]. Besides the traditional PSO velocity formula, an 

additional nervous guidance scheme was proposed for velocity updating. Randomly generated and immune 

orientation based leaders were used to lead this new search action. Such an additional term enabled the extension 

of the search territory with better capabilities in tackling early stagnation. The switching of this new velocity 

updating action and the original PSO operation was conducted based on a random factor. An immune orientation 

component was also used with a local optimal guiding signal to update the particle movement. Adaptive 

coefficients were also generated using an endocrine regulation mechanism to adapt the search process to several 

key search stages. Complex numerical optimization and real-world scenarios were utilized for model evaluation. 

Their work had the benefit of having an additional nervous guidance velocity updating formula in conjunction 

with the original PSO operation. Nevertheless, the activation of this new search action on top of the original 

PSO operation was based on a random factor without taking other informative strategies into account, such as 



convergence checking or reinforcement learning-inspired methods, which could limit their model robustness and 

affect its convergence speed. 

 

Lu et al. [40] studied a multi-subswarm PSO algorithm where several cooperative strategies were deployed to 

increase subswarm diversity in accordance with diverse search circumstances. Four subswarms were formed in 

the initial search stage. A stagnation inspection component was also utilized to examine the stagnation status of 

the subswarm leaders. A new exemplar solution was also constructed based on the global best solution and the 

stagnant subswarm leader to lead and re-activate the stagnant subswarm. Specifically, each dimension of the 

new leader signal was generated based on either the crossover operation using the swarm leader and the stagnant 

subswarm leader or a random initialization process. In addition, the former crossover operation for combining 

two leaders was also performed using randomly generated weighting factors. Moreover, a re-initialization 

method was also used to re-dispatch particles in other subswarms to remote regions when they showed high 

position proximities to those of the most optimal subswarm. Because of the increased search areas using the 

above search schemes, their PSO variant achieved a good performance for solving the CEC2017 test suite. The 

advantages of their study included stagnation checking strategies and construction of combined leaders for re-

activating respective stagnant subswarms. However, in each dimension, their activation leader generation was 

based on either a random initialization process or a random combination of the stagnant subswarm leader and the 

global best leader using random weighting coefficients. The switching between these strategies was also based 

on the position closeness checking between subswarms. Therefore, when the former random initialization 

operation became dominating, the resulting new leader solution was likely to be randomly assigned, which could 

not guarantee to be an optimal signal. On the other hand, if the latter crossover process became dominating, 

because of the random allocation of weighting factors of the parent individuals, the new combined leader could 

still inherit many characteristics from the stagnant subwarm leader, therefore could not be effective enough to 

divert the subswarm out of stagnation. Moreover, since the dispatch re-initiation operation in their model was 

activated based on the position closeness checking between subswarms, customization effort was needed for 

different optimization contexts. 

 

Li et al. [41] exploited a dynamic learning PSO model. Firstly, the swarm distribution was examined and used to 

determine different search stages. Next, in accordance with distinctive search stages, the cognitive and social 

search parameters were dynamically adjusted. The effect of the previous velocity was also fine-tuned in 

accordance with the swarm distribution. DE was applied to further improve the personal and global best 

solutions, to diversify the leader signals. Besides that, particles in the direct neighbourhood of these optimal 

indicators, i.e. personal and global best individuals, were used to replace them at different search stages for 

velocity update. To further diversify the search process, a compound signal integrating two elite solutions was 

also produced by using a dimension-based scheme. Evaluated using a set of 12 numerical optimization functions, 

their model showed a superior performance over those from five baseline PSO variants. The appealing aspects of 

the work included DE-based optimal individual enhancement and search coefficient and leader signal allocation 

corresponding to different search stages. One shortcoming was the pure adoption of the original PSO operation 

for velocity update without the integration of additional search mechanisms to diversify the search behaviours.  

As such, there was no alternative operation provided to inject momentum if the current PSO operation became 

stagnant before the search switched to the next stage. In comparison with reward-motivated schemes, a distance-

based strategy was used to determine different search stages for search operation allocation, which required 

customization according to different optimization tasks. The Q-learning based search coefficient and action 

selection could also be considered to further increase robustness. 

 

Chen et al. [42] diversified the original PSO operation using crossover formulae for elite signal generation. Such 

offspring compound signals were produced with the personal best solutions as the parent chromosomes. 

Stagnation monitoring was also performed. A fitter cross-breed leader was randomly selected to guide the search 

process when the current compound signal did not show improvement for several iterations. Their PSO 

algorithm obtained better accuracy rates in solving a number of mathematical landscapes as compared with those 

from several PSO variant methods. The integration of diverse personal best solutions for combined leader 

solution generation was advantageous to increase search robustness. However, the hybrid leader generation 

process employed random weighting coefficients for integrating two leader individuals, which could affect the 

balance between exploitation and diversification. Instead of using multiple distinctive combined leader signals to 

guide each particle, their work purely relied on single combined leader for position update for the entire swarm. 

Moreover, their model only employed single search operation to guide the search process. Alternative search 

strategies could be used in conjunction with diversified leader generation processes to better tackle stagnation. 

Besides the above studies, a variety of other PSO algorithms were also exploited for optimizing hyper-

parameters in CNNs and CNN-RNNs with respect to skin lesion and pathological brain classification [43, 44, 



45], optical disc segmentation [46], video action recognition [13, 47], and environmental, respiratory and heart 

sound identification [18]. 

 

There are also other automated machine learning (AutoML) methods for network architecture and hyper-

parameter optimization. As an example, Lorenzo et al. [48] conducted optimal hyper-parameter selection for 

shallow CNN architectures using the original PSO algorithm. The model was used to optimize hyper-parameters, 

i.e. the numbers of filters and filter sizes of the convolutional and pooling layers, in simple CNNs with one 

convolutional block and 1 to 3 additional convolutional layers, another simple CNN with two convolutional 

blocks, as well as a LeNet-4 model. Their work investigated the effects of different settings of population and 

network depth to network performance for evaluating the MNIST and CIFAR-10 datasets. The experimental 

studies indicated that the network performance improved by increasing the network depth. In addition, despite 

the enhancement of optimization robustness with the increase of the population size for different image 

classification tasks, the effectiveness of using a small population size (e.g. 4 particles) for optimal parameter 

selection was also evidenced in their empirical studies. The work benefited from the investigations of optimizing 

hyper-parameters for different CNN architectures, but the employed network architectures were comparatively 

shallow dedicated to comparatively less challenging image classification tasks. Moreover, only the original PSO 

algorithm was used in their work for hyper-parameter search without the integration with any new search 

mechanisms or swarm leader enhancement strategies. If the original PSO algorithm was trapped in local optima, 

there were no alternative search operations to help overcome stagnation, which could limit their model 

performance.  

 

Lorenzo et al. [49] exploited a parallel PSO for automated hyper-parameter optimization using shallow CNN 

architectures. Their parallel PSO model incorporated the original PSO operations but conducted the fitness 

evaluations of multiple particles in parallel. It optimized the filter sizes and numbers of filters of the 

convolutional and pooling layers as well as the number of nodes in the fully-connected dense layers in a shallow 

CNN and a LeNet-4 model. CNN models with optimized hyper-parameters were archived so that fitness scores 

could be extracted from those of the archived models directly when the newly optimized networks presented the 

same network configurations, in order to save cost. Two shallow CNN models with one convolutional block (i.e. 

the simple CNN) and two convolutional blocks (i.e. LeNet-4) were used as the base architectures. Evaluated 

using MNIST with a resolution of 28x28, the parallel PSO model obtained a better performance than the 

sequential/conventional PSO. However, their evaluation studies were only performed using comparatively 

shallow CNN models with 1-2 convolutional blocks on a comparatively simple image classification task. In 

addition, as the complexities of the optimization targets and test datasets increased, their parallel fitness 

evaluation strategy could be heavily constrained on the GPU resources available. The archive process of storing 

optimized parameters could also become resource consuming with reduced effects owing to the complexity of 

the high-dimensional search space and significantly diversified optimal network architectures. Their work also 

did not embed new search strategies to overcome limitations of the original PSO operation. Deeper neural 

networks including hybrid architectures (CNN-RNN) and those with residual connections in conjunction with 

large-scale datasets could be used to further evaluate the effectiveness of their proposed model.  

 

Junior and Yen [50] developed a customized PSO operation for CNN architecture generation. An encoding 

mechanism was exploited to represent the respective deep neural architecture denoted by each particle. Search 

operations for velocity updating and position difference calculation were developed to allow the generation of 

new offspring networks based on the existing parent solutions. Despite the improved performance for evaluating 

on several small-scale image classification datasets, their customized search operations were not only 

constrained to specific CNN architectures, but also could not prevent the generation of invalid deep architectures. 

Their encoding and optimization processes also could not be easily extended to other types of networks such as 

RNNs, and CNN-RNNs and 3D CNNs. Lawrence et al. [51] performed residual network architecture generation 

using PSO. A new encoding scheme was developed for the swarm particles, with particle sub-dimensions 

representing the number of network clusters, the number of residual blocks within each cluster, the number of 

output channels, filter sizes and pooling types. Bespoke search operations were also designed to allow velocity 

updating between particles representing distinctive residual network architectures. Evaluated using MNIST and 

its variant datasets, their model outperformed other existing studies. But their encoding scheme was only 

dedicated to specific residual architectures with limited flexibilities of scaling the optimization process to 

completely distinctive or other more complex architectures. 

 

Moreover, proposed by Baker et al. [52], reinforcement learning methods such as Q-learning were used for CNN 

architecture optimization in MetaQNN. The architecture generation process was guided by the Markov decision 

process and the Bellman equation, which maximized the expected reward return of the generated optimal policy 

(i.e. network architectures). However, owing to the generation of an effective Q-table for each pair of action-



state combinations, their model required a significantly expensive computation cost, consuming 10 GPUs even 

for a small-scale image classification dataset (e.g. CIFAR-10). Zoph and Le [53] performed RNN architecture 

search with a policy gradient reinforcement learning method, REINFORCE. The architecture search was guided 

by the policy optimization strategies via reward and punishment principles. While their model also achieved 

state-of-the-art performance with an error rate of 3.65% for solving image classification using CIFAR-10, it 

required a large number of GPU resources (800 GPUs with 672 GPU hours) for optimized architecture 

generation. Such an RL-based optimization process using Q-learning, REINFORCE, Proximal Policy 

Optimization (PPO) and Deep Deterministic Policy Gradient (DDPG) only generated one optimal solution, 

instead of a swarm of possible solutions as the cases for swarm intelligence algorithms. Since these RL methods 

were sensitive to the design of the reward schemes, instability in performance could occur [54-56].  

 

Fielding and Zhang [43] performed evolving deep CNN architecture generation using a PSO variant with 

adaptive cosine search coefficients. A set of four convolutional blocks and a fully-connected block were 

optimized with each block containing 1-10 convolutional or fully-connected layers. A weight sharing 

mechanism was also employed to share network weights with generated similar architectures. In comparison 

with RL-based deep architecture optimization, their model achieved competitive performance with significantly 

reduced computational cost. But despite the proposal of cosine adaptive coefficients, their PSO algorithm largely 

relied on the original PSO operation, which could be further enhanced by adopting hybrid or multiple elite 

signals to better tackle local optima traps.  

 

Tan et al. [45] developed a PSO variant with dimensional leader enhancement and random coefficients 

implemented using sine, cosine and circle formulae. It split the swarm particles into three subswarms and 

randomly generated a set of 10 offspring solutions using corresponding adaptive search parameters for each 

subswarm. The most optimal offspring individual was selected to replace the current particle in each subswarm. 

Partial dimensions of the swarm leader were updated in turn to improve the swarm leader. Their model 

outperformed classical and other PSO variants for deep architecture generation pertaining to skin lesion 

classification. The work took advantage of subswarm-based search processes with different search coefficients, 

but the position update operation in the each subswarm mainly depended on the original PSO operation, without 

any alternative new search strategies provided to help better deal with stagnation. Another PSO model was 

implemented by Tan et al. [57], which integrated multiple search actions led by randomly selected leader 

individuals, the mean solution of neighbouring fitter solutions, as well as the swarm leader for position update. 

Random walk and Genetic Algorithm (GA) operations were also used to improve top ranking particles. Their 

model employed multiple search actions with the attempt to better mitigate premature convergence, but the 

deployment of different search actions was performed based on a random selection instead of using RL-based 

strategies.  

 

A Firefly Algorithm (FA) variant was also developed by Zhang et al. [58] for hyper-parameter optimization with 

respect to semantic segmentation. Neighbouring and randomly selected leader solutions were used to lead the 

top-ranking individuals in the swarm, while the remaining lower-ranking search agents were guided by three 

best swarm leaders integrated using diverse weighting coefficients to increase search flexibility. Their FA model 

was used to optimize key learning configurations of DeepLabV3+ for solving underwater image segmentation 

tasks. Their model increased search effectiveness by using multiple search actions led by distinctive elite leader 

signals. But the dispatch of different search actions was purely conducted based on a random factor. Fallahi et al. 

[59] utilized the Q-learning algorithm for search parameter generation for both PSO and DE, respectively. Their 

hybrid PSO and DE models were equipped with great flexibility owing to dynamic parameter generation. But in 

each of their hybrid models, the search process was largely dominated by either the original PSO operation 

guided by the swarm leader or the original DE operation, without additional search actions available. Therefore 

these single search actions could be prone to local optima traps. 

 

Zhang et al. [60] exploited the integration of bare-bones PSO (BBPSO) with reinforcement learning (PSORL) 

for deep neural architecture generation for medical data classification. Besides the realization of search 

operations with local and global best signals, their PSO variant embedded the Q-learning algorithm to optimize 

the deployment of several root-finding algorithms for swarm leader enhancement. The effectiveness of PSORL-

based deep networks was evidenced for evaluating diverse large-scale medical image datasets, coughing audio 

data for COVID detection as well as video action recognition. But in comparison with our studies in this 

research, their work deployed the RL strategies purely for the enhancement of several top-ranking particles, 

without customizing search actions of the majority of the swarm.  

 

He et al. [61] studied a comprehensive survey of AutoML techniques for automated feature selection, deep 

architecture generation and hyper-parameter optimization without human intervention. Data oversampling 



techniques such as SMOTE and data synthesis methods (such as GANs) were firstly studied to increase the 

sample sizes of the minority classes. A variety of augmentation techniques methods such as affine 

transformation, word embedding and noise injection and time shift for image, text, and audio data were 

discussed to help tackle overfitting. Feature optimization using feature ranking, Principal Component Analysis 

(PCA), and evolutionary algorithms were briefly addressed. Various variants of swarm intelligence algorithms 

have been studied for wrapper-based feature optimization. Architecture generation and hyper-parameter 

optimization for traditional machine learning methods (such as SVM) and deep neural networks (CNN and RNN) 

were investigated. Different types of architecture optimization methods were discussed including evolutionary 

algorithm (e.g. GA, Simulated Annealing (SA), PSO and FA), Bayesian optimization, random search, 

reinforcement learning (e.g. PPO and Q-learning algorithms), as well as hybrid methods (e.g. evolutionary 

algorithm combined with RL). Surrogate-based methods were also introduced to speed up the optimization 

process, where a surrogate model was used to replace the original objective function evaluation to guide 

architecture search and reduce computational cost. One-phase and two-phase strategies were adopted for 

optimizing deep networks. Specifically, the parameter search and final model evaluation were conducted in two 

processes in the two-stage method, while in one-stage method, these processes were conducted in parallel and 

the resulting optimized network did not require additional fine-tuning. 

 

Another survey studies on AutoML techniques were conducted by Elshawi et al. [62]. A variety of deep 

architecture and hyper-parameter optimization methods were discussed, e.g. grid search, RL and swarm 

intelligence algorithms. Specifically, GA and SA were studied for various optimal hyper-parameter and network 

architecture identification processes, while the RL method, i.e. the Q-learning algorithm, was introduced for 

optimal network structure generation. Various challenges were summarized in their studies such as the limited 

scalability of many existing methods (e.g. Meng et al. [63]), no universal optimization strategies outperforming 

all other methods in any given optimization tasks, simple optimization targets (e.g. comparatively shallow 

network architectures), as well as expensive computational costs.  

 
After the analysis of various existing studies, we identify the following research gaps, which motivate this 

research.  

 

Despite the success of using RL algorithms such as Q-learning and PPO methods, as indicated in Baker et al. [52] 

and Zoph et al. [53], respectively, for architecture generation, these RL-based methods require substantial GPU 

time, which may not be affordable in most cases. The RL-based optimization processes are sensitive to the 

reward principle design, which may result in instability in cross-domain deployment. In addition, the RL 

algorithms usually recommend only one optimal solution, instead of multiple optimized solutions as compared 

with the case of evolutionary algorithms. Therefore, we propose a hybrid model combining RL with PSO in this 

research to diversify and stabilize the optimization process, while increasing search efficiency and generating 

multiple optimized solutions. 

 

On the other hand, swarm intelligence algorithms have shown great efficiency in architecture and hyper-

parameter search. Nevertheless, owing to substantial randomness embedded in diverse search operations in 

evolutionary algorithms introduced by random search coefficients (e.g. PSO, FA, Cuckoo Search (CS), DE, 

Dragonfly Algorithm (DA)), random search action deployment (Tan et al. [57]), mutation operations (e.g. GA), 

and random walk strategies (e.g. Levy and Gaussian distributions in FA, SA, Bat Algorithm (BA), Flower 

Pollination Algorithm (FPA)), more effective guiding strategies and mathematics-driven methods are required to 

increase search efficiency. As an example, although many new variants of PSO, FA, GA and other search 

methods have incorporated various search actions to overcome local optima traps, as indicated in Table 2, the 

majority of the aforementioned studies employ a random or threshold-based selection mechanism (controlled by 

distance thresholds and iteration numbers) to dispatch different search operations (e.g. Liu et al. [39], Lu et al. 

[40], Li et al. [41], Tan et al. [57], Zhang et al. [13], and Zhang et al. [58]), therefore comprising model 

efficiency.  

 

To tackle the above limitations and increase search efficiency, we employ an RL algorithm, i.e. the Q-learning 

algorithm, in this research to dispatch distinctive search actions. This leads to the best long-term cumulative 

reward for each particle, instead of using random or threshold-based selection as in existing studies. Moreover, 

such RL-based optimal action selection is applied to each particle in each interaction to diversify swarm 

behaviours, instead of purely deploying it to several top-ranking individuals as in existing publications (e.g. 

Zhang et al. [60]). 

 

To better tackle local optima traps, unlike many existing studies which rely on the original PSO operation 

guided purely by the swarm leader (Junior and Yen [50], Lawrence et al. [51], and Fielding and Zhang [43]), in 



this research, diverse hybrid leaders are generated to lead distinctive local and global search actions, in order to 

further increase search diversity. Also, instead of using random factors for combining leader signals as in 

existing studies (e.g. Lu et al. [40] and Chen et al. [42]), adaptive weighting coefficients yielded using 

distinctive 3D formulae are utilized to better fine-tune the effects of the two leader signals, in order to gain a 

better balance between diversification and intensification.  

 

On the other hand, random walk actions such as Levy, Gaussian and Cauchy distributions are often utilized in 

many classical and advanced search algorithms (e.g., Jordehi [64] and Zhang et al. [65]) for swarm leader 

enhancement. Instead of using such random jump operations, we exploit root-finding algorithms guided by the 

mathematical principles to provide more informative mechanisms for swarm leader enhancement. 

 

Unlike existing studies where hyper-parameter search and architecture generation are normally performed for 

2D CNNs for image classification in most cases, we leverage the proposed PSO variant to identify optimal 

hyper-parameters of hybrid networks (e.g. CNN-RNN) and 3D CNNs (I3D and MC3) for video classification. 

 

In short, to tackle the limitations of RL (instability and sensitivity to reward strategy design and significant 

computational cost) and existing evolutionary algorithms (random operations for search action dispatch and 

swarm leader enhancement), in this research, a hybrid search algorithm integrating evolutionary algorithms and 

RL methods is formulated. RL is used to perform optimal local and global search action selection in our 

proposed model. Diverse hybrid leaders fine-tuned using adaptive weighting factors yielded by 3D contours in 

conjunction with swarm leader enhancement using mathematical informative root-finding algorithms are 

exploited to further increase search efficiency and robustness. Our empirical studies also further ascertain the 

effectiveness of the proposed hybrid PSO algorithm for hyper-parameter optimization in CNN-RNN and 3D 

CNNs, as well as evolving ensemble generation, for tackling challenging manipulated video deepfake 

identification. 

 

Table 2 Comparison of different search strategies in existing studies 

 
 Algorithm Multiple 

leaders 

Multiple 

search 

actions 

Any new search 

operations 

Switching 

between 

different 
search actions 

Adaptive/new 

search 

coefficients 

Integration 

with other 

search 
methods 

Leader 

improvement 

Zhang et al. 

[35] 

PSO 

variant 

Subswarm 

leaders and the 
global best 

solution used 

for velocity 
update 

- Subswarm 

formed using 
KM and a CH 

index used to 

identify the 
number of 

clusters 

- Adaptive 

nonlinear 
coefficients 

Bayesian 

optimization  
to identify 

search 

boundaries of 
hyper-

parameters 

- 

Zhang et al. 

[36] 

PSO 

variant 

- - PSO operation 

with an 
additional 

mutation 

operator 

- Adaptive 

inertia weight 
coefficient 

- - 

Lorenzo et al. 

[48] 

PSO - - No (PSO 

operation) 

- - - - 

Lorenzo et al. 
[49] 

Parallel 
PSO 

- - No (PSO 
operation, but 

with 

simultaneous 
fitness 

evaluation for 

multiple 
particles) 

- - - - 

Junior and Yen 

[50] 

PSO 

variant 

- - New velocity 

and position 

difference 
calculation 

- - - - 

Lawrence et al. 

[51] 

PSO 

variant 

- - New velocity 

and position 
difference 

calculation 

dedicated to 
residual 

networks 

- Linear 

adaptive search 
steps 

- - 

Baker et al. [52] RL (Q-

learning) 

- - - - - - - 

Zoph et al. [53] RL (PPO) - - - - - - - 



Jordehi [64] 

 

PSO 

variant 

- - No (PSO 

operation) 

- - - Random walk, 

DE and 

opposition 

based leader 

improvement 

Tan et al. [45] 
 

PSO 
variant 

Subswarm 
leaders 

- No (PSO 
operation led by 

different search 

coefficients in  
subswarms) 

- Adaptive 
search 

parameters 

implemented 
using sine-

cosine 

functions 

- Swarm leader 
enhancement 

using PSO 

operation in 
partial 

dimensions 

Tan et al. [45] 

 

PSO 

variant 

Subswarm 

leaders 

- No (PSO 

operation but 

with several 
random 

offspring 

solutions 
generated in 

each subswarm) 

- Adaptive 

nonlinear sine-

cosine 
coefficients 

- Swarm leader 

enhancement 

using PSO 
operation in 

partial 

dimensions 

Tan et al. [57] PSO 

variant 

Swarm leader 

and 

neighbouring 

signals 

Yes PSO, FA and 

local search 

actions 

Random 

switching 

-  - GA-based 

leader 

enhancement 

Zhang et al. 
[58] 

FA variant Combing three 
best leaders 

using adaptive 

weighting 
factors  

Yes Search 
operations led 

by hybrid 

leaders 

Random 
switching 

Adaptive 
nonlinear sine-

cosine 

coefficients 

- - 

Fallahi et al. 

[59] 

PSO or DE 

+ RL (Q-
learning)  

- - No (PSO/DE 

actions) 

- Search 

coefficients 
selected using 

RL 

Q-learning for 

search 
parameter 

generation 

- 

Zhang et al. 

[60] 

BBPSO + 

RL (Q-
learning)  

Neighbouring 

and global best 
signals 

Yes BBPSO + local 

and global 
search actions 

with different 

averaged leader 
signals 

Random 

switching 

Coefficients 

produced using 
random 

distributions 

Q-learning 

used for 
leader 

enhancement 

by selecting 
one of the 

root-finding 

algorithms  

Root-finding 

algorithms 
and RL for 

leader 

enhancement 

Liang et al. [37] PSO 

variant 

Two 

subswarm 

leaders and the 
swarm leader  

Yes A DE-based 

local search and 

subswarm 
leader based 

global search 

Random 

switching 

Adaptive 

inertia weight 

coefficient 

- - 

Liu et al. [38] PSO 

variant 

All personal 

best 
experiences  

- A modified 

PSO velocity 
operation using 

all personal best 

experiences as 
leaders for 

position update 
of each particle 

- A coefficient 

generated 
based on the 

fitness 

difference 
between the 

current particle 
and its 

personal best 

solution  

- Randomly 

selected 
personal best 

individuals for 

information 
exchange  

Liu et al. [39] PSO 
variant 

Randomly 
generated and 

immune 

orientation 
based leaders 

Yes A new nervous 
guidance 

scheme for 

velocity update 

Random 
switching 

Adaptive 
coefficients 

yielded by an 

endocrine 
regulation 

mechanism 

- - 

Lu et al. [40]  PSO 

variant 

An activation 

leader 

combining the 

swarm leader 
and stagnant 

subswarm 

leader using 
random 

weighting 

factors 

Yes A re-

initialization 

method used to 

re-dispatch 
particles to 

unexplored 

regions 

Threshold-

based 

(distance-

based)  
activation 

- - - 
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2.3 Ensemble Model Construction 
A number of studies have explored ensemble model development. As an example, Zhang et al. [66] studied 

ensemble model development with imbalanced class distribution using genetic programming (GP). Multi-

objective processes with the focus on false positive and negative rates and ensemble size were designed for 

selecting optimal subsets of the base classifiers while improving ensemble classification performance. After 

obtaining the Pareto front solutions from the evolutionary process, a weighted aggregation scheme was proposed 

to generate the final prediction using the results from each base classifier. A set of 40 UCI datasets was used to 

assess the effectiveness of the GP-based dynamic ensemble generation process. Their work exploited both GP-

based base model selection and a weighted scheme for joint decision making. In view of the adoption of a multi-

objective optimization process, their ensemble building process was computationally expensive in particular for 

multi-class classification problems. Their evaluation mainly focused on UCI datasets with traditional machine 

learning methods as the base classifiers, without involving large-scale video datasets with deep networks as the 

base learners. Since the base model diversity could have a significant influence toward the ensemble 

performance, their GP process could be also used to perform feature selection to generate more diversified base 

classifiers.  

 

Fan et al. [67] developed a multi-tree GP for ensemble model construction. Their encoding process used one GP 

to represent one ensemble classifier. A multi-objective fitness evaluation was employed to increase ensemble 

accuracy while minimizing ensemble cost. The tree structures within the GP individuals were designed for 

image classification tasks. Specifically, the base classifiers within an individual GP consisted of feature 

descriptors such as LBP and SIFT, combined with machine learning algorithms such as SVM, Linear Regression 

(LR) and Random forest (RF). The NSGAII optimizer was used to guide optimal base classifier search with an 

ensemble by performing random crossover/mutation operations. After the search process, the GP solutions in the 

Pareto front were used to build the final ensemble classifier, where the outputs of the selected base classifiers 

were fused using a traditional majority voting method. Their model was evaluated using several image 

classification datasets. While the adoption of a GP embedding multiple trees (base classifiers) for ensemble 

model generation offered an advantage, the base model diversity method could be constrained by such tree 

structure representations. Moreover, their work mainly used hand-crafted features extracted by feature 

descriptors combined with traditional machine learning algorithms (e.g. SVM and RF), which could be replaced 

by deep CNNs, owing to the efficiency of machine learned features using deep networks for spatial pattern 

extraction. Bosowski et al. [68] studied dynamic ensemble development using GA for disease diagnosis from 

chest X-ray images. Deep CNN models (e.g. ResNet and VGG) pre-trained on ImageNet were employed as the 

base networks. Each search agent in the swarm represented the construction of one ensemble model. Besides the 

adoption of traditional ensemble strategies such as majority voting, supervised schemes were applied to fuse the 

selected base classifiers. Specifically, three additional classifiers (e.g. SVM, a feedforward neural network and a 

gradient boosting classifier) were trained as supervised meta-learners to combine the results from the selected 

base networks. The effectiveness of the GA-based ensemble construction was evaluated using 9 datasets. The 

advantage of their studies included the adoption of different types of base networks, increasing ensemble 

diversity, as well as the integration of three meta-learners. However, their model relied on the original GA 

algorithm for ensemble network development without integrating new search strategies to overcome premature 

convergence of the GA. 

 



Nalepa et al. [69] exploited ensemble model construction with a supervised fusion scheme. Different base 

networks including different types of CNNs, such as 1D, 2.5D and 3D CNNs, were employed as the base 

learners for image classification problems, while 1D and 3D CNNs were adopted for image unmixing tasks. In 

addition, new 1D CNN base models were yielded by embedding Gaussian noise on network weights of the 

original base 1D CNN methods. The original base networks and any augmented networks (if applicable) were 

employed to construct the base classifier pool. A supervised ensemble scheme was subsequently used to 

combine the results of all the networks in the base classifier pool to generate the final ensemble prediction. 

Specifically, for each sample, the prediction probabilities of each base network for all the classes were 

concatenated and used as the inputs of the supervised ensemble learner. Three machine learning methods, i.e. RF, 

SVM and decision tree (DT), were applied as the supervised ensemble learners. The ensemble models showed 

an impressive performance in a number of image classification and unmixing tasks. While the formulated 

supervised ensemble learners and Gaussian noise-augmented base classifiers were useful, their ensemble 

strategy took outputs of all the base networks, regardless of their performance, into account for ensemble result 

generation via a supervised learner. In this regard, evolutionary algorithm-based ensemble construction methods 

could be exploited, in order to eliminate weak base classifiers and reduce cost. A weighted ensemble scheme 

could also be incorporated to enhance the impact of the original base classifiers in comparison with those from 

the augmented base learners.  

 

Pratama et al. [70] constructed a dynamic ensemble fuzzy classifier for data stream classification. Concept drift 

detection, real-time feature selection, and ensemble pruning methods were incorporated in their model. A new 

base model was inserted if the drift of concepts was detected from the input stream. Two ensemble pruning 

schemes were developed by measuring the relevance and generalization impact of respective base learners. 

Moreover, the online feature selection method enabled the elimination or selection of a specific attribute by 

assigning binary crisp values. Evolving classifiers at the base and ensemble levels were devised. Evaluated using 

15 datasets, their model achieved a superior performance. Their model benefited greatly from the integration of 

the aforementioned drift detection and base classifier pruning based on dynamic determination of the relevance 

and effectiveness of respective learners. But their online feature selection process relied on the importance 

measure of individual features without the consideration of feature interaction, where the significance of a 

feature could be affected by the presence of other features, as evidenced in evolutionary algorithm-based feature 

selection strategies [45, 57]. 

 

Ngo et al. [71] developed an evolutionary ensemble bagging scheme. A bootstrapping method with replacement 

was used to generate the initial bags (i.e. subsets of training data) for individual classifiers. Instead of using fixed 

samples as in the conventional bagging ensemble method, an evolutionary process including crossover and 

mutation operations was used to modify/improve training samples in the bags, based on the performance of the 

DT base classifiers. A ranking strategy was employed to select fitter individuals for offspring generation. To 

increase data diversity, in each iteration, a number of new bags were randomly generated using bootstrapping. 

Such a process could be used to replace weaker base learners through iterations. The work was useful for 

generating evolving samples using genetic operators to boost ensemble diversity. Nonetheless, their study 

focused on the evaluation using UCI or similar datasets. The scalability of their method could be further 

ascertained using comparatively more complex datasets. 

 

Zhang et al. [72] developed an FA variant for dynamic ensemble model construction. The FA variant was 

equipped with local and global best and worst experiences to lead the attractiveness and fleeing operations, 

respectively. Their FA model performed optimal base classifier selection for dynamic ensemble model 

development, where each firefly was used to represent a candidate ensemble model. To further increase base 

model diversity, PSO was used to perform feature selection in order to generate corresponding new base learners. 

Their optimization process balanced between performance and ensemble complexity. The model outperformed 3 

classical and 5 FA variants for solving a variety of high-dimensional classification datasets as well as complex 

benchmark functions. Their work exploited the strength of PSO-based feature selection for diversified base 

learner generation as well as the benefit a modified FA-based ensemble model construction for minimizing 

ensemble complexity while maximizing classification accuracy. However, the selected base classifiers within an 

optimized ensemble model were fused using a traditional majority voting scheme, instead of a weighted 

integration strategy to give more influence to those well-behaved base classifiers.  

 

Besides the above, there are also a number of other studies using PSO and PSO variant methods for ensemble 

model construction, such as Cai et al. [73], Malhotra and Khanna [74], Hong et al. [75], Shafqat et al. [76] and 

Tan et al. [77]. A survey study for evolutionary algorithm-based ensemble construction was also performed by 

Cagnini et al. [78]. 



3. THE PROPOSED SWARM INTELLIGENCE ALGORITHM 

We propose a variant of the PSO algorithm for network topology and hyper-parameter identification in CNN-

RNN, I3D and MC3, as well as weighted and evolving ensemble construction for fake/real video classification. 

It incorporates the fixed-point iteration and Muller’s method based leader enhancement, cross-breed leader 

generation using 3D adaptive parametric surfaces, a petal helix search mechanism and reinforcement learning-

inspired sequential search operation deployment for solving a variety of optimization problems.  

 

We first initialize a swarm with random particle positions. Configurations of each particle are used to establish 

the respective network with optimized settings for fitness evaluation. The particle with the most optimal solution 

is identified as 𝑔𝑏𝑒𝑠𝑡 , which is further improved using numerical analysis algorithms, i.e., Muller’s method and 

fixed-point iteration. Subsequently, crossover operators are exploited to integrate personal and global best 

solutions for elite cross-breed leader generation. Specifically, a set of four 3D geometric surfaces is used to 

generate adaptive weighting coefficients. They are used to fine-tune the effects of the personal and global best 

individuals for the cross-breed leader generation, in order to balance well between diversification and 

intensification. For each particle, such a customized combined leader is generated using a randomly selected set 

of crossover formulae among the four operators. A petal helix search intensification is also utilized to exploit 

optimal local regions. Moreover, a reinforcement learning algorithm, i.e. the Q-learning algorithm, is used to 

identify the optimal sequential deployment of these local and global search mechanisms to increase robustness. 

We elaborate each proposed scheme in detail, as follows.   

 

3.1 Local Exploitation Using Muller’s Method 
Two numerical analysis methods, i.e., Muller’s method and fixed-point iteration, are exploited for leader 

enhancement. The former adopts three guesses while the latter uses one to estimate a new root. Such numerical 

analysis methods take advantage of recursive root finding mechanisms for global minima estimation. Therefore, 

they are more capable of finding global optimality in comparison with other un-directed random search 

strategies for leader enhancement. Equations (3)-(4) illustrate the formula for the Muller’s method [79].  

 

𝑥𝑗 = 𝑥𝑗−1 −
2𝑓(𝑥𝑗−1)

𝑏±√𝑏2−4𝑓(𝑥𝑗−1) × 𝑑𝑓[𝑥𝑗−1,𝑥𝑗−2,𝑥𝑗−3]
                                               (3) 

 

         𝑏 = 𝑑𝑓[𝑥𝑗−1, 𝑥𝑗−2] +  𝑑𝑓[𝑥𝑗−1, 𝑥𝑗−3] − 𝑑𝑓[𝑥𝑗−2, 𝑥𝑗−3]                                             (4) 

 

where 𝑥𝑗−1, 𝑥𝑗−2, and 𝑥𝑗−3 indicate the three initial estimations of the root, and 𝑓(𝑥𝑗−1), 𝑓(𝑥𝑗−2), and 𝑓(𝑥𝑗−3) 

denote their respective function values. In addition, 𝑥𝑗 is the approximation of the root for the current iteration. 

The sign ‘±’ in Equation (3) is selected based on the attempt to maximize the denominator to make it as large as 

possible in magnitude. Moreover, 𝑑𝑓[𝑥𝑗−1, 𝑥𝑗−2] , 𝑑𝑓[𝑥𝑗−1, 𝑥𝑗−3] , 𝑑𝑓[𝑥𝑗−2, 𝑥𝑗−3] , and 𝑑𝑓[𝑥𝑗−1, 𝑥𝑗−2, 𝑥𝑗−3] 

represent the divided differences, which is a mathematical algorithm with a recursive division process. The 

divided differences algorithm is used to compute the coefficients of the interpolation polynomial of the given 

input data samples [79].  

 

In this research, we employ the top three global best solutions, i.e., 𝑔𝑏𝑒𝑠𝑡 , the second and the third bests, as the 

three initial approximations of the root, i.e.  𝑥𝑗−1, 𝑥𝑗−2, and 𝑥𝑗−3. 𝑓(𝑥𝑗−1), 𝑓(𝑥𝑗−2), and 𝑓(𝑥𝑗−3) signify their 

respective fitness values (i.e., error rates) with respect to synthetic video classification. This process of Muller’s 

method is used to estimate a new root. It terminates when a significantly small error rate is obtained. If the new 

estimated root is fitter than 𝑔𝑏𝑒𝑠𝑡 , then it is used to update 𝑔𝑏𝑒𝑠𝑡 , otherwise the current 𝑔𝑏𝑒𝑠𝑡  is kept for 

subsequent processing. Such a steered guided leader enhancement can accelerate convergence with a better 

chance of finding global optima. 

 

3.2 Local Exploitation Using Fixed-point Iteration 
To diversify the search process, another numerical analysis method, i.e., fixed-point iteration, is used to improve 

the swarm leader. Equation (5) defines the detailed formula [79]. In comparison with Muller’s method, it only 

requires one initial guess instead of three to calculate fixed points of a given function. 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘)                                                                         (5) 

 

where 𝑘 = 0, 1, 2, … 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , and 𝑥𝑘 denotes the initial guess. The process iterates until it reaches the 

maximum number of trials. In this research, we employ 𝑔𝑏𝑒𝑠𝑡  as the initial estimation, while 𝑓(𝑥𝑘) denotes the 

fitness score of 𝑔𝑏𝑒𝑠𝑡 , i.e., the error rate of video forgery classification. Because of the adoption of root 



estimation strategies, similar to Muller’s method, this fixed-point iteration method is more capable of attaining 

global optima as compared with chaotic movements, random mutations and Levy/Cauchy distributions.  

 

These two numerical analysis methods, i.e. Muller’s method and fixed-point iteration, are randomly selected to 

exploit leader enhancement. 

 

3.3 The Cross-breed Leader-motivated Global Exploration 
To diversify the search process, a new velocity generation formula is proposed, as shown in Equations (6)-(7). 

Instead of using the historical optimal solutions in separate social and cognitive components, Equation (6) 

adopts a cross-breed compound leader 𝐶𝑖 to guide the search process. Equation (7) further defines the generation 

of this hybrid leader 𝐶𝑖  with adaptive parameters 𝛼 and 𝛽 implemented using each of the four 3D geometric 

surfaces. 

 

Specifically, four 3D geometric shapes are exploited for compound elite leader generation, which implement 

fine-grained, moderate and drastic non-linear varying increasing 𝛼 and decreasing 𝛽 trajectories to adjust the 

effects of the global and personal best signals for compound leader generation, as indicated in Equation (7). 

Such cross-breed signals serve as adaptive elite leaders to widen search territories and exploit optimal regions 

effectively.  

 

To be precise, these four 3D geometric shapes implement distinctive border patterns for production of 

incremental and decremental adaptive coefficients, 𝛼 and 𝛽, to empower diversified compound leader generation. 

In particular, as indicted in Equation (7), the decreasing 𝛽  and increasing 𝛼  trajectories are signified to 

emphasize the leadership of the personal best solutions at an initial level and the global elite signal towards the 

final search stage.  

 

𝑣𝑖𝑑
𝑡+1 = 𝑤 × 𝑣𝑖𝑑

𝑡 + 𝛼 × 𝑟𝑎𝑛𝑑 × (𝐶𝑖𝑑 − 𝑥𝑖𝑑
𝑡 )                                                         (6) 

𝐶𝑖𝑑 = 𝛼𝑔𝑏𝑒𝑠𝑡_𝑑 + 𝛽𝑝𝑏𝑒𝑠𝑡_𝑖𝑑                                                                       (7) 
 

where 𝛼  and 𝛽  represent the increasing and decreasing adaptive crossover factors implemented using 3D 

geometric surfaces. In addition, 𝐶𝑖𝑑 denotes the yielded cross-breed leader for particle 𝑖 in a specific dimension. 

Owing to the variations of 𝑝𝑏𝑒𝑠𝑡_𝑖 for each particle, a distinctive bespoke 𝐶𝑖  is generated for each individual. 

Besides that,  𝛼  is also used as the search parameter in Equation (6) to fine-tune the effects of diversification 

and intensification. Precisely, the increasing coefficient 𝛼  applies smaller forces while moving towards the 

cross-breed leader 𝐶𝑖𝑑 to encourage global exploration in early iterations and adapts to larger strength of moving 

towards 𝐶𝑖𝑑 to boost local exploitation in final search steps. Moreover, a random coefficient, 𝑟𝑎𝑛𝑑, is  used to 

multiply with 𝛼, in Equation (6) to diversify search steps. The yielded new velocity in Equation (6) is then used 

for position updating using Equation (1). 

 

We subsequently elaborate the generation of the cross-breed leader, 𝐶𝑖𝑑, as well as the crossover factors, 𝛼 and 𝛽, 

using four 3D geometric shapes in Subsections 3.3.1-3.3.4. 

 

3.3.1 The Generation of the First Cross-breed Leader  
To mitigate the likelihood of being trapped in local optima, four sets of adaptive functions are exploited for 

cross-breed leader generation. To diversify the search process, a bespoke leader signal is generated for each 

particle by taking varied proportions of the global and personal best signals in accordance with the proposed 

adaptive 3D geometrical surfaces. Equations (8)-(10) define the first set of formulae for the cross-breed leader 

generation.  

 

𝑥 = 1.5 × ((|𝑐𝑜𝑠 (
5𝜑

4
)| + |𝑠𝑖𝑛 (

5𝜑

4
)|)−1) × ((|𝑐𝑜𝑠 (

5𝜎

4
)| + |𝑠𝑖𝑛 (

5𝜎

4
)|)−1) × 𝑐𝑜𝑠 (𝜑) × 𝑐𝑜𝑠 (𝜎)               (8) 

 

𝑦 = 1.5 × ((|𝑐𝑜𝑠 (
5𝜑

4
)| + |𝑠𝑖𝑛 (

5𝜑

4
)|)−1) × ((|𝑐𝑜𝑠 (

5𝜎

4
)| + |𝑠𝑖𝑛 (

5𝜎

4
)|)−1) × 𝑠in(𝜑) × 𝑐𝑜𝑠 (𝜎)               (9) 

 

𝑧 = 1.5 × ((|𝑐𝑜𝑠 (
5𝜎

4
)| + |𝑠𝑖𝑛 (

5𝜎

4
)|)−1) × 𝑠in(𝜎)                                                (10) 

 

where 𝜑 = [−𝜋: 0.05: 𝜋] and 𝜎 = [−𝜋/2: 0.05: 𝜋/2]. The above formulae generate a complex 3D geometrical 

shape as illustrated in Figure 2, with smooth border patterns in the z-axis. The value range of the z-axis is [-

1.3883, 1.3883]. First of all, we extract 7,938 numbers of unique absolute values from the z-axis of the yielded 

geometrical curve. These values are then ranked in increasing and decreasing orders, respectively. Each ranked 



sequence is divided into 𝑇 proportions, where 𝑇 denotes the termination iteration number. As such, we employ a 

step of 7,938/𝑇, from both ranked increasing and decreasing sequences, to assign cross-breed factors, i.e., 𝛼 and 

𝛽, respectively, for compound leader generation. 

 

As indicated in Equation (7), such adaptive increasing and decreasing coefficients, i.e. 𝛼 and 𝛽, are able to 

assign smaller emphasis of 𝑔𝑏𝑒𝑠𝑡  and larger impact of 𝑝𝑏𝑒𝑠𝑡 in early iterations, while as the iteration increases, 

the search process adapts to a larger influence of 𝑔𝑏𝑒𝑠𝑡  and a smaller effect of 𝑝𝑏𝑒𝑠𝑡 . Owing to the variations of  

𝑝𝑏𝑒𝑠𝑡 for each particle in each iteration, a unique cross-breed leader is yielded for each individual. This tailored 

elite leader guides each search agent to explore a distinctive search region, independently. 

 
Figure 2 The respective 3D geometrical shape generated using Equations (8)-(10) 

 

3.3.2 The Generation of the Second Cross-breed Leader  
Besides the above geometrical formulae, hybrid leader generation is inspired by irregular adaptive artificial 

landscapes. The first irregular 3D surface is defined by Equations (11)-(13). Figure 3 shows the respective 

yielded 3D landscape. In comparison with the aforementioned surface generated using Equations (8)-(10) with 

regular smooth border outlines as shown in Figure 2, this new 3D layout contains irregular drastic border 

trajectory patterns to diversify cross-breed leader generation.  

 

𝑥 = 2 × ((|𝑐𝑜𝑠 (5𝜑)|5 + |𝑠𝑖𝑛 (5𝜑)|25)−
1

10) × ((|𝑐𝑜𝑠 (5𝜎)|5 + |𝑠𝑖𝑛 (5𝜎)|25)−
1

10) × 𝑐𝑜𝑠 (𝜑) × 𝑐𝑜𝑠 (𝜎)           (11) 

 

𝑦 = 2 × ((|𝑐𝑜𝑠 (5𝜑)|5 + |𝑠𝑖𝑛 (5𝜑)|25)−
1

10) × ((|𝑐𝑜𝑠 (5𝜎)|5 + |𝑠𝑖𝑛 (5𝜎)|25)−
1

10) × 𝑠𝑖𝑛(𝜑) × 𝑐𝑜𝑠 (𝜎)            (12) 

 

𝑧 = 2 × ((|𝑐𝑜𝑠 (5𝜎)|5 + |𝑠𝑖𝑛 (5𝜎)|25)−
1

10) × 𝑠𝑖𝑛(𝜎)                                               (13) 

 

where 𝜑 = [−𝜋: 0.05: 𝜋] and 𝜎 = [−𝜋/2: 0.05: 𝜋/2]. 

 
Figure 3 The respective 3D geometrical shape generated using Equations (11)-(13) with needle-shaped borders  

 

This elliptical shape is constructed using 7,938 numbers of 3D points with a value range of [-3.3271, 3.3271] for 

the z-axis. The irregular trajectories of the z-dimension are used to produce the adaptive breeding factors. As 

shown in Figure 3, such trajectories from the z-axis have needle-shaped border styles, in comparison with 

smooth border trails yielded using Equations (8)-(10). As such, the resulting surface illustrates different border 



patterns in the z-axis with more drastic variations between adjacent points. A total of 7,938 unique absolute 

values from the z-axis are also collected, which are subsequently ranked in the increasing and decreasing orders 

for breeding factor generation. Next, each adaptive border trajectory is divided into 𝑇 portions. The two sets of 

adaptive coefficients are assigned as the respective breeding factors, 𝛼 and 𝛽, for 𝑔𝑏𝑒𝑠𝑡  and 𝑝𝑏𝑒𝑠𝑡 respectively, in 

accordance with the iteration numbers with a step of 7,938/𝑇. As such, they enforce stronger influence of  𝑝𝑏𝑒𝑠𝑡  

along with subtle effects of 𝑔𝑏𝑒𝑠𝑡  in the early iterations, and adapt to increasing emphasis of 𝑔𝑏𝑒𝑠𝑡  with a minute 

impact of 𝑝𝑏𝑒𝑠𝑡  as the search progresses. In comparison with adaptive factors generated using Equations (8)-(10), 

these elliptical curves with irregular increasing and decreasing borders are able to yield distinctive weighting 

factors to diversify compound leader generation. 

 

3.3.3 The Generation of the Third Cross-breed Leader  
To maintain robust and resilient search behaviours, another geometrical shape is employed for adaptive cross-

breed factor generation. Equations (14)-(16) define the respective geometrical contour with Figure 4 depicting 

the respective visualised 3D shape. 

 

𝑥 = 2 × ((|𝑐𝑜𝑠 (7.5𝜑)|−10 + |𝑠𝑖𝑛 (7.5𝜑)|65)−
1

88) × ((|𝑐𝑜𝑠 (7.5𝜎)|−10 + |𝑠𝑖𝑛 (7.5𝜎)|65)−
1

88) × 𝑐𝑜𝑠 (𝜑) × 𝑐𝑜𝑠 (𝜎)        (14) 

 

𝑦 = 2 × ((|𝑐𝑜𝑠 (7.5𝜑)|−10 + |𝑠𝑖𝑛 (7.5𝜑)|65)−
1

88) × ((|𝑐𝑜𝑠 (7.5𝜎)|−10 + |𝑠𝑖𝑛 (7.5𝜎)|65)−
1

88) × 𝑠𝑖𝑛(𝜑) × 𝑐𝑜𝑠 (𝜎)         (15) 

 

𝑧 = 2 × ((|𝑐𝑜𝑠 (7.5𝜎)|−10 + |𝑠𝑖𝑛 (7.5𝜎)|65)−
1

88) × 𝑠𝑖𝑛(𝜎)                                               (16) 

 

where 𝜑 = [−𝜋: 0.05: 𝜋] and 𝜎 = [−𝜋/2: 0.05: 𝜋/2]. 

 
Figure 4 The respective 3D geometrical shape generated using Equations (14)-(16) with wave-like borders  

 

Again, the unique absolute values of z-axis in the range of [-1.9873, 1.9873] are extracted and then ranked in 

both increasing and decreasing sequences. Then both ranking sequences are split into 𝑇 proportions, which are 

utilized to assign the respective decremental and incremental values as the breeding factors for the 𝑝𝑏𝑒𝑠𝑡 and 

𝑔𝑏𝑒𝑠𝑡  solutions, respectively, based on the iteration number. Since the resulting geometrical curve illustrates 

different wave-like border patterns in the z-axis with comparatively less drastic but moderate variations between 

adjacent points, it generates distinguishing weighting factors for cross-breed signal generation, as compared with 

those yielded by other aforementioned strategies. The resulting bespoke leader for each particle is thus able to 

explore wider search regions to better tackle local optimal traps. 

 

3.3.4 The Generation of the Fourth Cross-breed Leader  
The fourth set of formulae used for breeding leader generation is provided in Equations (17)-(19) where the z-

axis has the value range of [-1.1206, 1.1206]. In comparison with those defined earlier, the visualized respective 

surface derived from Equations (17)-(19) shown in Figure 5 possesses distinctive tile-like border outlines with 

comparatively more mild and subtle variations between neighbouring points. A total of 7,938 unique absolute 

values are extracted from the z-axis and subsequently ranked. The resultant increasing and decreasing sequences 

are cropped into 𝑇 portions, respectively, with a step of 7,938/𝑇 and employed to assign the breeding factors, 𝛼 

and 𝛽, with respect to 𝑔𝑏𝑒𝑠𝑡  and 𝑝𝑏𝑒𝑠𝑡 respectively, for compound leader generation.  

 

𝑥 = ((|𝑐𝑜𝑠 (−5𝜑)|65 + |𝑠𝑖𝑛 (−5𝜑)|10)−
1

88) × ((|𝑐𝑜𝑠 (−5𝜎)|65 + |𝑠𝑖𝑛 (−5𝜎)|10)−
1

88) × 𝑐𝑜𝑠 (𝜑) × 𝑐𝑜𝑠 (𝜎)          (17) 

 

𝑦 = ((|𝑐𝑜𝑠 (−5𝜑)|65 + |𝑠𝑖𝑛 (−5𝜑)|10)−
1

88) × ((|𝑐𝑜𝑠 (−5𝜎)|65 + |𝑠𝑖𝑛 (−5𝜎)|10)−
1

88) × 𝑠𝑖𝑛(𝜑) × 𝑐𝑜𝑠 (𝜎)           (18) 



 

𝑧 = ((|𝑐𝑜𝑠 (−5𝜎)|65 + |𝑠𝑖𝑛 (−5𝜎)|10)−
1

88) × 𝑠𝑖𝑛(𝜎)                                               (19) 

 

where 𝜑 = [−𝜋: 0.05: 𝜋] and 𝜎 = [−𝜋/2: 0.05: 𝜋/2]. 

 
Figure 5 The respective 3D geometrical shape generated using Equations (17)-(19) with tile-like borders  

 

The above four sets of adaptive crossover factor assigning schemes use subtle, moderate and drastic non-linear 

varying increasing and decreasing trajectories to generate diverse compound elite signals to overcome stagnation. 

Overall, these varying cross-breeding factors are able to obtain a better trade-off of diversification and 

intensification. They accentuate global diversification by allocating larger weights to 𝑝𝑏𝑒𝑠𝑡  in early iterations and 

highlight local exploitation by strengthening the influence of  𝑔𝑏𝑒𝑠𝑡  in subsequent iterations.  

 

3.4 Local Exploitation Using Petal Helix Search 
Besides the global exploration using Equations (6)-(7), a simulated petal helix local exploitation action is 

proposed as indicated in Equation (20)-(21). It embeds a new helix parameter 𝛿 to fine-tune search steps with 

the attempt to intensify the search around the cross-breed leader. 

 

𝑥𝑖𝑑
𝑡+1 = 𝐶𝑖𝑑 + 𝛿 × (𝐶𝑖𝑑 − 𝑥𝑖𝑑

𝑡 )                                                                  (20) 

 

𝛿 = 1.5 𝑐𝑜𝑠(4𝜃)                                                                             (21) 
 

where 𝛿 denotes the proposed petal helix coefficient with 0 ≤ 𝜃 ≤ 2𝜋.  The value range of 𝛿 is [-1.5, 1.5]. 

 

 
 

Figure 6 The 2D shape implemented using Equation (21) 

 

The petal trajectories implemented by Equation (21) are shown in Figure 6. This yielded a flower shape with 

distinctive spiral petals is able to empower each particle to exploit optimal regions by traversing through 

irregular nonlinear paths. For each particle, we randomly select a 𝜃 value between 0 and 2𝜋 to produce the helix 



coefficient 𝛿, which is then used in Equation (20) to calculate the respective new position of each particle. Since 

both positive and negative values can be produced for 𝛿 using Equation (21), the particles are able to move 

towards or away from the cross-breed signal and thoroughly examine the optimal regions. 

 

3.5 Reinforcement Learning-inspired Search Action Selection 
The optimal deployment of the aforementioned global and local search schemes defined in Equations (6)-(7) and 

Equations (20)-(21) respectively is important in attaining global optimality. A reinforcement learning algorithm, 

i.e. the Q-learning algorithm [80], is thus used to identify the optimal sequential deployment of these local and 

global search operations for each particle. The working principle of reinforcement learning is to reward desired 

actions and punish undesired ones. A reinforcement learning agent takes an action from a set of actions to transit 

from one state to another. It perceives the environments via the reward signals based on trial-and-error. The Q-

learning algorithm employs the Bellman equation as shown in Equation (22) to select a sequence of optimal 

actions that maximize the cumulative reward. Such a cumulative reward score with respect to each action-state 

pair is kept in a Q-table, which is used to guide the selection of an optimal action from a specific state. 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = (1 − 𝛾) × 𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛾 × (𝑟𝑡 + 𝜏 × max𝑎 𝑄(𝑠𝑡+1, 𝑎))                       (22) 

 

where 𝑠𝑡 and 𝑎𝑡 denote a state and an action respectively. The Q-value, i.e. 𝑄(𝑠𝑡 , 𝑎𝑡), produced using Equation 

(22) is used to update the Q-table. An immediate reward 𝑟𝑡 is calculated by performing the action 𝑎𝑡 in the state 

𝑠𝑡 . A discount coefficient 𝜏 is used to fine-tune the effect of the future reward max𝑎 𝑄(𝑠𝑡+1, 𝑎), i.e. the reward to 

be obtained from the new state 𝑠𝑡+1. The learning rate 𝛾 is used to adjust the effect of the new reward to the Q-

value update. The immediate reward 𝑟𝑡 has a score of ‘1’ if the new fitness is improved by implementing the 

action 𝑎𝑡 in the state 𝑠𝑡 in comparison with the previous fitness, otherwise ‘-1’. 

 

The above Q-learning process is used to identify the optimal sequential deployment of the global and local 

search operations defined in Equations (6)-(7) and Equations (20)-(21) respectively. Each particle maintains a 

2x2 Q-table in order to ensure the optimal deployment of the above local and global search actions. Therefore 

these local and global search operations are selected in a way to optimize search behaviours of each search agent. 

By assigning sequential customized search actions to each individual via solving Bellman optimality, the Q-

learning-based strategy leads to a better balance between diversification and exploitation.  

 

Overall, the proposed adaptive cross-breed operators oriented from 3D geometric surfaces, a helix-driven search 

mechanism, reinforcement learning-based search scheme deployment, and numerical analysis-inspired leader 

enhancement, work co-ordinately to overcome stagnation and increase search flexibility. The interactions of the 

aforementioned search strategies are depicted in Algorithm 1.  

 

Algorithm 1: Data flow of the Proposed PSO Model 

1. Start 

2. Initialize a swarm with 𝑛 particles randomly; 

3. Calculate the fitness score of each particle; 

4. Select the swarm leader 𝑔𝑏𝑒𝑠𝑡 based on the fitness scores; 

5. While (!Stagnation) { 

6.      Perform 𝑔𝑏𝑒𝑠𝑡 enhancement using any of the following operations; 

7. 1. Improve 𝑔𝑏𝑒𝑠𝑡 using the Muller’s method (with three guesses) as defined in 

Equations (3)-(4); 

8. 2. Improve 𝑔𝑏𝑒𝑠𝑡 using the fixed-point iteration method (with one guess) as indicated 

in Equation (5); 

9.      For (particle 𝑖 in the swarm) do { 

10. Choose any of the following mechanisms for cross-breed leader generation; 

11. 1. Generate cross-breed leader 1 using adaptive 3D coefficients yielded using 

Equations (8)-(10); 

12. 2. Generate cross-breed leader 2 using adaptive 3D coefficients yielded using 

Equations (11)-(13); 

13. 3. Generate cross-breed leader 3 using adaptive 3D coefficients yielded using 

Equations (14)-(16); 

14. 4. Generate cross-breed leader 4 using adaptive 3D coefficients yielded using 

Equations (17)-(19); 

15. Use the Q-learning algorithm to select the following local and global search actions; 

16. 1. Perform global search using the selected cross-breed leader and the respective 

adaptive coefficient 𝛼 as defined in Equations (6)-(7) and (1);  

17. 2. Perform local search using the selected cross-breed leader and the helix coefficient 

𝛿 as defined in Equations (20)-(21); 



18.            Update the 𝑝𝑏𝑒𝑠𝑡 if the newly derived individual is fitter; 

19.      } End For 

20.     Update 𝑔𝑏𝑒𝑠𝑡; 

21. } Until (Stagnation) 

22. Output 𝑔𝑏𝑒𝑠𝑡; 
23. End 

 

We subsequently introduce optimal network topology and hyper-parameter identification in CNN-RNN and 3D 

CNNs, respectively, as well as weighted and evolving ensemble generation, using the proposed PSO algorithm 

for video forgery classification. 

 

4. GENERATION OF EVOLVING 3D CNN AND CNN-RNN MODELS 
In this research, we conduct deepfake detection using CNN-RNNs and 3D CNNs with PSO-based optimal 

learning for configuration identification, along with weighted and evolving ensemble formulation. Specifically, 

for the hybrid CNN-RNN model, we employ Inceptionv3 as the CNN encoder and different types of RNNs as 

the decoder. In particular, trial-and-error is also conducted using other encoder networks such as ResNet50, 

ResNet101, VGG19 and VGG16. Inceptionv3 is selected owing to its significant superiority in spatial feature 

learning and a better trade-off between performance and cost. Specifically, to further enhance the spatial-

temporal feature extraction capabilities, the new PSO variant discussed in Section 3 is used to optimize the type 

(i.e., BiLSTM, LSTM and GRU) and the number of hidden neurons of the RNN decoder for the identification of 

manipulated videos. In particular, these different RNN models employ different gating structures and 

unidirectional and bidirectional learning mechanisms. Precisely, LSTM and BiLSTM extract temporal patterns 

by using unidirectional and bidirectional sequences, respectively. In addition, an LSTM unit contains input, 

output, and forget gates, while GRU has a simpler structure with only reset and update gates embedding fewer 

parameters. Therefore, BiLSTM, LSTM and GRU possess significantly different temporal feature learning 

mechanisms as well as gating topologies to diversify memory management and increase flexibility. In addition, 

the internal structure of the yielded RNN layer also determines network capabilities in extracting sequential 

details. For instance, large and small numbers of hidden neurons can lead to the extraction of excessive or 

insufficient temporal patterns. Optimization of the network type and the number of hidden units of the RNN 

decoder is thus able to yield diverse learners with different learning strategies. The detailed Inceptionv3-RNN 

architecture used in this research is shown in Figure 7. 

 

 

 

 

 

         
 

         
 

 

Figure 7 The network architecture of Inceptionv3-RNN with the proposed PSO-based hyper-parameter 

optimization (where the proposed algorithm is used to optimize the layer types, i.e. BiLSTM, LSTM and GRU, 

and number of hidden units of the RNN model) 

 

Moreover, I3D [10-12] and MC3 [14] are employed as the 3D CNNs for manipulated video identification, 

owing to their impressive performance in comparison with those of 3D ResNeXt and ResNet models [14]. These 

two networks are provided by Python built-in libraries. In particular, the MC3 network is a variant of the 3D 

ResNet model where the latter contains 5 groups of 3D convolutions. Instead of using all 3D convolutions, MC3 

embeds mixed convolutions, where 3D convolutions are substituted with 2D ones in the last 3 groups.  

 

Both I3D and MC3 models are pre-trained using RGB frames of a large video action dataset, i.e. Kinetics, for 

the classification of 400 human actions. We are taking advantage of such pre-trained models with superior 

spatial-temporal feature learning capabilities by assigning the respective networks with their pre-trained weights 

on the human action dataset. Transfer learning is subsequently conducted to further fine-tune the 3D CNNs for 

tampered video classification. We optimize network learning configurations of both 3D CNNs, i.e., the initial 
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learning rate, learning rate decay/drop factor, and the regularization coefficient, to adapt them to different 

synthetic video classification tasks effectively. Different settings of these learning configurations in I3D and 

MC3 regulate significant distinctive learning behaviours and network capabilities in tackling under-fitting and 

over-fitting episodes. 

 

Table 3 Key elements to be optimized 

 
 Key parameters Search ranges 

Inceptionv3-RNN Type of RNN layers GRU, LSTM, BiLSTM 

 Number of hidden units [500, 1800] 

I3D Learning rate [0.001, 0.01] 

 Learning rate drop factor [0.01, 0.1] 

 Regularization coefficient [0.0001, 0.003] 

MC3 Learning rate [0.001, 0.01] 

 Learning rate drop factor [0.01, 0.1] 

 Regularization coefficient [0.0001, 0.003] 

 

In particular, the learning rate is the most important hyper-parameter of the optimizer. The initial learning rate 

and the learning rate drop factor work cooperatively to adjust network learning paces. The learning rate drop 

factor is a pre-defined constant value, which defines the proportion to decrease the current learning rate over a 

certain number of training epochs. For example, a large initial learning rate in combination with a small learning 

rate decay factor is more likely to alter the optimizer more drastically to overlook global optima. On the contrary, 

a small initial learning rate fine-tuned with a large learning rate decay schedule is inclined to perform an 

insufficient small adjustment to the optimizer to result in under-fitting. Furthermore, the regularization factor 

(i.e., the weight decay) adjusts the effects of the regularization term in the loss function with the attempt to fine-

tune network capabilities in tackling over-fitting. A network with a very small weight decay coefficient can learn 

the training dataset exclusively tightly to result in over-fitting. Therefore, the aforementioned three hyper-

parameters, i.e., the initial learning rate, learning rate decay schedule and regularization coefficient, are 

optimized using the proposed PSO model for both I3D and MC3. We summarize the fine-tuned parameters and 

their respective search ranges for different networks in Table 3. 

 

 
 
 

 

 
 

 

 
 

Figure 8 Interaction between a specific particle (in orange) and deep networks for fitness evaluation pertaining 

to hyper-parameter search (A set of optimized learning settings represented by a specific particle is used to set 

up a neural network whereby the validation accuracy rate is used as the fitness score of the current particle.) 
 

Figure 8 depicts the interaction between a specific particle and deep networks for fitness evaluation with respect 

to hyper-parameter search. To be specific, for hyper-parameter search, we initialize a swarm with a dimension of 

two or three for the optimization of two or three hyper-parameters, e.g. in CNN-RNN, I3D and MC3 networks. 

A continuous search space is assigned for each dimension. For the fitness evaluation of each particle, each 

element of each search agent is converted into a hyper-parameter for the respective network. A set of optimized 

hyper-parameters represented by each particle is used to formulate the respective network. The resulting network 

is then trained using the training samples and tested using the validation instances. The accuracy rate of the 

validation dataset is utilized as the fitness score of each particle. The search strategies of each algorithm are used 

to update the position of each particle during the optimization. After reaching the maximum number of function 

evaluations, the most optimal hyper-parameter settings represented by the swarm leader are used to formulate 

the final network. This network, together with the identified optimal learning configuration, is then trained using 

the training samples and evaluated using the test instances. The detailed experimental studies are elaborated as 

follows. 

 

5. ENSEMBLE MODEL CONSTRUCTION 
In this research, we employ two new schemes for ensemble network construction, i.e. (1) a weighted scheme, i.e. 

ensemble scheme 1 (as discussed in Section 5.1), and (2) an evolving ensemble generation scheme devised by 

each optimization algorithm, i.e. ensemble scheme 2 (as depicted in Section 5.2). The former is able to 

effectively tackle class imbalanced classification problems, while the latter is able to eliminate weak or 
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redundant base classifiers and to minimize the ensemble sizes while maximizing performance. We employ the 

weighted scheme 1 to formulate ensemble models with the same types of base networks, while the evolving 

ensemble scheme 2 using optimization algorithms is used to devise ensemble classifiers integrating different 

types of base networks. In addition, for evolving ensemble generation scheme 2, each search algorithm is used to 

extract an optimal subset of base networks among all the base classifiers for ensemble network construction. 

After identifying the optimal subsets of base classifiers using each search algorithm, the above weighted 

ensemble scheme 1 (discussed in Section 5.1) is leveraged to integrate the results of these selected base 

networks and to form the ensemble prediction outcome. We introduce these two ensemble formulation schemes 

in detail, as follows. 

 

5.1 Weighted Ensemble Construction 
Firstly, we employ a weighted ensemble scheme (i.e. ensemble scheme 1) introduced by Zhang et al. [66], for 

ensemble model construction. Since our employed video deepfake datasets (e.g. Celeb-DFv2 and 

FaceForensics++) are extremely imbalanced for most test cases, as indicated in Zhang et al. [66], such a 

weighted ensemble strategy offers better capabilities in tackling samples with imbalanced class distributions. 

This weighted ensemble scheme is therefore employed in our studies to combine the predicted outputs from the 

same types of optimized base networks. Precisely, it is used to fuse the outputs of either a set of three optimized 

CNN-RNNs or a set of three optimized 3D CNNs. The detailed operations for this weighed ensemble scheme 

are explained, as follows. 

 

During the training stage, we obtain the numbers of false positive (FP) and false negative (FN) instances of the 

training set from a classifier 𝑖, as denoted by 𝑀𝑓𝑝
𝑖  and 𝑀𝑓𝑛

𝑖 , respectively. The corresponding maximum numbers 

of the FP and FN samples are retrieved among the three optimized base classifiers, as represented by 𝑀𝑓𝑝
′  and 

𝑀𝑓𝑛
′ , respectively. Equation (23) is defined to generate the weight, 𝑤𝑖 , of the base classifier 𝑖. 

 

𝑤𝑖 = (1 −  
𝑀𝑓𝑝

𝑖  

𝑀𝑓𝑝
′ ) × (1 −  

𝑀𝑓𝑛
𝑖 ,

𝑀𝑓𝑛
′ )                                                       (23) 

 

During the test stage, the weight 𝑤𝑖  of base classifier 𝑖  obtained from training is used to multiple with the 

respective prediction results for a test sample 𝑗. The summation of the resulting weighted prediction from each 

classifier is calculated for both real and fake classes, as indicated in Equations (24) and (25), respectively.  

 

𝑊𝑟𝑒𝑎𝑙
𝑗

=  ∑ 𝑤𝑖
𝐵
𝑖=1 × 𝑓(𝑖𝑟𝑒𝑎𝑙)                                                            (24) 

𝑊𝑓𝑎𝑘𝑒
𝑗

=  ∑ 𝑤𝑖
𝐵
𝑖=1 × 𝑓(𝑖𝑓𝑎𝑘𝑒)                                                           (25) 

 

where 𝐵 = 3 indicates the three optimized base networks and 𝑓(𝑖𝑟𝑒𝑎𝑙) and 𝑓(𝑖𝑓𝑎𝑘𝑒) indicate the respective real 

and fake class prediction outputs from classifier 𝑖 , respectively. If 𝑊𝑟𝑒𝑎𝑙
𝑗

>  𝑊𝑓𝑎𝑘𝑒
𝑗

, the final prediction for 

sample 𝑗 is real, otherwise synthetic. We employ this weighted ensemble scheme for homogeneous ensemble 

generation where three optimized base networks of the same types are used for ensemble generation. This 

weighted ensemble scheme is also used in evolving ensemble generation strategy 2 (presented in Section 5.2) to 

integrate the results of selected optimal subsets of networks to generate the ensemble prediction outcome. 

 

5.2 Optimization Algorithm-based Evolving Ensemble Model Construction 
Besides the weighted ensemble construction, the proposed PSO algorithm is employed for evolving ensemble 

generation by balancing between ensemble complexity and performance. We denote this optimization algorithm-

based ensemble construction as ensemble development scheme 2, which is used to formulate ensemble models 

with different types of base networks (e.g. ensemble generation using optimized Inceptionv3-RNN, I3D and 

MC3 networks). Such an optimization algorithm-based ensemble model formulation enables the elimination of 

weak/redundant base classifiers to reduce cost, while maximizing performance. 

 

After performing hyper-parameter optimization using each search method, we obtain optimized CNN-RNN, I3D 

and MC3 networks. We establish the base classifier pool by recruiting 30 best-performing models from different 

types of optimized networks. Therefore, a total of 30 base networks are used as the base classifiers. Each search 

method is subsequently used to identify the most optimal subset among these 30 base networks for evolving 

ensemble network construction. After identifying the optimal subset of base classifiers using each search method, 

the weighted ensemble scheme 1 discussed in Section 5.1 is used to integrate the outputs of these selected base 

networks for yielding the ensemble prediction outcome. We explain the detailed process for evolving ensemble 

generation, as follows.  



Figure 9 depicts the evolutionary process for optimal ensemble construction during the training stage. 

Specifically, each search algorithm extracts an optimal subset of base classifiers among all the 30 base methods 

for ensemble network construction. The training and validation instances of each dataset are used for searching 

the optimal ensemble networks. Firstly, a swarm is initialized where each particle has a dimension of 30 

representing 30 base networks. In other words, each element of the particle denotes a base classifier. A 

continuous search space in each dimension is used for base classifier selection. The search process is conducted 

using search operations of each optimization algorithm. For fitness evaluation of each particle, each dimension 

of a particle is transformed into a binary value by comparing it against a pre-defined threshold (e.g. 0.5), to 

determine the selection or elimination of a specific base classifier. After obtaining a set of selected base 

classifiers recommended by each particle, we employ the weighted ensemble formulation process defined in 

Equations (23)-(25) discussed in Section 5.1, to generate the ensemble prediction outcome with respect to the 

validation set by combining the results of the selected base networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 The evolutionary process for optimal ensemble construction in the training stage 

 

Specifically, the weighting of each selected base model is calculated using Equation (23) based on its 

performance on the validation dataset. The ensemble prediction outcome fusing the results from all the selected 

base classifiers is obtained by using Equations (24)-(25). The resulting weighted ensemble accuracy rate of the 

above process on the validation dataset, as well as the number of the selected base classifiers, is used for fitness 

calculation as defined in Equation (26). This fitness evaluation formula is designed in such a way to reduce 

ensemble complexity by selecting an optimal subset of base classifiers, while increasing performance, as follows.  

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝑤1 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 + 𝑤2 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙𝑠𝑖)−1                              (26) 

 

where 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 and 𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙𝑠𝑖  represent the accuracy rate of the constructed ensemble on the 

validation dataset via the weighted scheme, and the number of selected base networks, respectively. In addition, 

we set the weighting factor 𝑤1 for the ensemble accuracy rate as 0.9 and define the weighting coefficient 𝑤2 for 

the number of selected base classifiers as 0.1. In other words, we employ a higher weighting (𝑤1 = 0.9) for the 

ensemble performance and a lower weighting (𝑤2 = 0.1) for the number of selected base networks, in order to 

ensure a higher priority of generating an ensemble model with a competitive performance than the generation of 

the smallest ensemble network. In this way, we take both criteria, i.e. the ensemble accuracy rate of the 

validation set and the number of selected base classifiers, into account to minimize computational cost while 

improving ensemble performance.  

 

The final swarm leader obtained by the overall search process denotes the recommended most optimal subset of 

base networks for final ensemble model formulation. This identified most optimal ensemble model is then used 

for evaluation using unseen samples in the test set for each dataset. The final ensemble prediction outcome 

combining the outputs of all the selected base networks for the test set are also calculated using the weighted 

scheme shown in Equations (23)-(25). The above ensemble construction process is performed by each search 

method. The respective ensemble model results in terms of various evaluation metrics are used for performance 

comparison. 

 

6. EXPERIMENTAL STUDIES 
Several well-known synthetic video datasets have been used to test model efficiency, i.e., Celeb_DFv2 [1], 

FaceForensics++ [2] and Deepfakes (a subset of FaceForensics++) [2]. Celeb_DFv2 [1] comprises 590 original 

YouTube videos contributed by 59 celebrities from different age, gender, and ethnic groups. It also contains 
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5,639 corresponding synthetic videos generated using face swapping. We employ the official train-test split for 

this dataset in our studies. FaceForensics++ [2] consists of 1,000 real and 4,000 fake videos, where 1,000 

synthetic videos are generated by each of the following generative methods, i.e., Deepfakes (i.e., deep learning 

based face identity manipulation), Face2Face (i.e., enacting facial expressions from one personal to another), 

FaceSwap (i.e., swapping faces using simple image processing methods) and NeuralTextures (i.e., deep learning 

based scene editing and static/dynamic content generation). In particular, Deepfakes [2] in FaceForensics++ has 

been regarded as the most challenging subset in comparison with counterparts yielded using other generative 

methods. Therefore, a performance comparison has also been conducted for this subset separately. For each of 

the above datasets, we employ a pre-processing procedure, i.e. Multi-Task Cascaded CNN (MTCNN) [81], to 

crop the facial regions automatically owing to the fact that facial regions are the targets of the attacks. A set of 

50 frames is randomly extracted from each video for video authenticity classification.  

 

For each dataset, optimal hyper-parameter and network topology selection has been performed for each network 

using the proposed PSO model. All the experiments employ the same maximum number of function evaluations, 

i.e., population (15) × iterations (20) = 300. Each search method is performed 10 times. Each network with 

identified optimized configurations is then trained using 25, 35, and 50 epochs, respectively.  

 

Firstly, a weighted ensemble mechanism, i.e. the aforementioned ensemble scheme 1, is used to aggregate the 

results from three randomly selected optimized networks of the same types (i.e. the ensemble of CNN-RNN 

methods, the ensemble of I3D networks, or the ensemble of MC3 networks). In this way, we construct 10 

ensemble models by using the resulting 30 optimized networks of a particular type. Evaluation metrics of the 

mean results of these 10 aggregated models are calculated for performance comparison.  

 

In addition, to take advantage of different types of networks, e.g., CNN-RNN and 3D CNNs, besides 

constructing weighted ensemble models with the same types of base networks, cross-model ensemble 

formulation is implemented by embedding different types of base methods (e.g., the ensemble model consisting 

of Inceptionv3-RNN+I3D+MC3) for performance comparison. The optimization algorithm-based ensemble 

construction, i.e. the aforementioned ensemble scheme 2, is performed to formulate aggregation models with 

different types of optimized base networks. Specifically, we recruit the most performing 30 base networks from 

different types and an optimal subset is subsequently identified by an optimization algorithm from all the 30 

base classifiers, for ensemble formulation.  

 

A total of 14 baseline swarm intelligence and reinforcement learning methods are utilized in our experiments for 

performance comparison. These include, (i) classical search methods, i.e. PSO, GA, SA, FA [82], DA [83], CS 

[84], (ii) PSO variants, i.e. modified PSO with adaptive linear coefficients (MPSO) [44], PSO with elliptical 

coefficients (EPSO) [46], PSO with group-based autonomous search coefficients (AGPSO) [85], PSO integrated 

with Gravitational Search Algorithm (GSA) (PSOGSA) [86], PSO with random sine/cosine search coefficients 

and GA-based particle enhancement (RCPSO) [45], (iii) reinforcement learning algorithms, i.e. PPO [53, 56] 

and DDPG [55, 56], as well as (iv) a hybrid model integrating PSO with the reinforcement Q-learning algorithm 

(i.e. PSORL) [60]. Motivated by Lorenzo et al. [49], the original PSO model and all other search methods used 

in our experiments are equipped with parallel/simultaneous fitness evaluation for multiple individuals to reduce 

cost. 

 

Specifically, PPO and DDPG are on-policy Actor-Critic (AC) reinforcement learning algorithms. Both 

algorithms learn an optimal policy that maximizes the total expected reward return. Each algorithm employs a 

pair of neural networks, i.e. a value-function critic and a policy-function actor, to approximate the cumulative 

long-term reward and determine optimal network hyper-parameters, respectively. In PPO, the Critic network 

employs the environmental observations (i.e. the fitness scores of individual particles in the swarm) as the input 

and produces a long-term reward return score as the output. Owing to the prediction of continuous optimal 

hyper-parameters, a continuous Gaussian actor is used in PPO to predict an optimal action (i.e. the network 

hyper-parameters) converted from a Gaussian distribution with environmental observations as the input.  

Precisely, the Actor network predicts the mean and standard deviations of the Gaussian distribution as the 

outputs based on the current observation. These predicted results are then transformed based on the Gaussian 

distribution to yield the respective valid optimized hyper-parameters for deep networks with respect to the 

fitness score and immediate reward calculation. 

   

Moreover, DDPG also employs the Critic and Actor networks to learn an optimal policy by maximizing the total 

reward return. It leverages both the environmental observations (i.e. the fitness scores of individual particles in 

the swarm) and the action (i.e. the predicted hyper-parameters) as the inputs and produces the estimated 

cumulative reward as the scalar output. Instead of using Gaussian distribution-based sampling for optimal 



parameter approximation as in PPO, the Actor network in DDPG predicts continuous optimal hyper-parameters 

as the output directly with environmental observations as the input. The DDPG and PPO agents are implemented 

using built-in functions in existing Python libraries in our experiments. Both Critic and Actor networks in 

DDPG and PPO are trained using a large number of episodes with 30 time steps for each episode. Once a 

threshold cumulative reward is reached over several successive episodes, the training process is concluded. The 

identified optimal hyper-parameters are used for performance comparison. For all other swarm-based 

optimization algorithms (e.g. classical search methods and PSO and FA variants), the search process is 

completed once the maximum number of function evaluations is fulfilled. Two evaluation metrics are used in 

our studies, i.e., the global accuracy rate and Area under the ROC (receiver operating characteristic curve) Curve 

(AUC) score, to assess the model performance. 

 

The variable configurations of all the above baseline optimizers including swarm intelligence algorithms and 

reinforcement learning methods are extracted from their respective existing studies. Table 4 shows the parameter 

settings of the proposed PSO algorithm, which are mainly generated using mathematical formulae. Specifically, 

as discussed earlier, a new global search operation led by cross-breed leaders is defined in Equations (6)-(7), 

where adaptive weighting coefficients (i.e. 𝛼 and 𝛽) are used for cross-breed leader formulation. Four sets of 3D 

formulae defined in Equations (8)-(10), (11)-(13), (14-16) and (17)-(19) are used to generate increasing and 

decreasing weighting coefficients, i.e. 𝛼 and 𝛽, respectively. These increasing (𝛼) and decreasing (𝛽) weighting 

factors are utilized to adjust the effects of the global and personal best solutions for cross-breed leader 

generation to balance well between exploration and intensification. In addition, the respective increasing 

weighting coefficients 𝛼 generated by the above four sets of 3D formulae is also used as the search parameter of 

the global search operation as defined in Equation (6). The swarm leader improvement is performed using two 

root-finding algorithms, i.e. Muller’s method and fixed-point iteration algorithm, respectively.  

 

Besides the aforementioned global search operation using Equations (6)-(7), a local search action is also 

developed as shown in Equation (20). It employs a new helix parameter 𝛿 defined in Equation (21) to fine-tune 

search steps to exploit search regions around the cross-breed leader. Finally, the reinforcement Q-learning 

algorithm is used to conduct the optimal selection between the global and local search actions provided in 

Equations (6)-(7) and (20)-(21) respectively, based on the Bellman principle defined in Equation (22). 

 

Table 4 Parameter configurations of the proposed PSO model 

 
Parameters of the propose model Functions/processes used for parameter generation 

Adaptive weighting coefficients (i.e. 𝛼  and 𝛽 ) for cross-

breed leader generation as defined in Equations (6)-(7) 

Four sets of 3D formulae defined in Equations (8)-(10), 

(11)-(13), (14-16) and (17)-(19) are used to generate 

increasing and decreasing weighting coefficients, i.e. 𝛼 and 

𝛽, respectively, for cross-breed leader formulation. 

The increasing weighting coefficient 𝛼 is also used as the 

search parameter for the global search operation as defined 

in Equation (6). 

The corresponding increasing weighting coefficient 𝛼 

generated by the above four sets of 3D formulae is also 

utilized as the search parameter in Equation (6). 

A new helix parameter 𝛿 used as the search step in local 

search mechanism illustrated in Equations (20)-(21) 

The local search parameter 𝛿  is produced using Equation 

(21). 

Swarm leader improvement using two numerical analysis 

algorithms 

Muller’s method and the fixed-point iteration algorithm are 

used to improve the swarm leader as shown in Equations 

(3)-(4) and (5), respectively.  

The selection of local and global search operations defined 

in Equations (6)-(7) and (20)-(21) respectively, using 

reinforcement learning 

The dispatch of local and global search operations is 

determined using the reinforcement learning algorithm (the 

Q-learning algorithm) based on the long-term cumulative 

reward calculated using the Bellman optimality, as defined 

in Equation (22). 

 

6.1 Evaluation Using the Celeb_DFv2 Dataset 
We first employ the Celeb_DFv2 dataset to evaluate the optimized ensemble model comprising Inceptionv3-

RNN, I3D and MC3 networks for synthetic video classification. As discussed earlier, we employ the official 

train-test split in our experiments. In the training set, we notice that the size of synthetic videos is significantly 

larger than that of the original ones. We duplicate the real samples in the training set 7.4 times in order to 

achieve a balanced distribution of both fake and real class instances. Note the videos in the unseen test set are 

not duplicated. The augmented training set is further divided into 80-20 for training and validation. The 

weighted ensemble formulation using ensemble scheme 1 with the same types of base networks, as well as 

dynamic ensemble development using ensemble scheme 2 with different types of base learners selected by each 

search method are introduced in detail, as follows. We utilize ‘+’, ‘-’, and ‘=’ to indicate whether our resulting 



ensemble models are better, worse, or the same as those devised by other search methods based on the Wilcoxon 

rank sum test. 

 

6.1.1 Evaluation Using the CNN-RNN model 
We first employ the Inceptionv3-RNN model for undertaking deepfake detection. Different types of RNNs with 

different number of hidden units are produced using the proposed PSO model. Multiple trials are performed for 

each optimizer. The network with identified optimal settings is trained using 25, 35 and 50 epochs, respectively. 

As mentioned earlier, we employ the first weighted ensemble scheme 1 discussed in Section 5.1 to aggregate 

three yielded Inceptionv3-RNN models within an ensemble. The mean results of 10 such weighted ensembles 

are used for performance comparison. A weighted ensemble model comprising Inceptionv3-BiLSTM, 

Inceptionv3-LSTM and Inceptionv3-GRU, with a constant number (1800) of hidden neurons, is also utilized as 

a default baseline method for performance comparison. Table 5 shows the detailed results of the weighted 

ensemble Inceptionv3-RNN models devised by each search method. 

 

Table 5 Mean results of the weighted ensemble Inceptionv3-RNN models using Celeb-DFv2 
 
Methods 

 
Ensemble topologies 

Mean 
accuracy rates 

Mean AUC Rank sum 
test results 

Proposed PSO-based Ensemble New PSO + aggregated Inceptionv3-RNN model 0.7992 0.7105 n/a 

MPSO-based Ensemble MPSO + aggregated Inceptionv3-RNN model 0.7722 0.6685 + 
EPSO-based Ensemble EPSO + aggregated Inceptionv3-RNN model 0.7780 0.6770 + 

PSO-based Ensemble PSO + aggregated Inceptionv3-RNN model 0.7355 0.6272 + 

CS-based Ensemble CS + aggregated Inceptionv3-RNN model 0.7587 0.6502 + 
GA-based Ensemble GA + aggregated Inceptionv3-RNN model 0.7568 0.6528 + 

SA-based Ensemble SA + aggregated Inceptionv3-RNN model 0.7490 0.6362 + 

FA-based Ensemble FA + aggregated Inceptionv3-RNN model 0.7896 0.6938 + 
DA-based Ensemble DA + aggregated Inceptionv3-RNN model 0.7568 0.6461 + 

RCPSO-based Ensemble RCPSO + aggregated Inceptionv3-RNN model 0.7394 0.6395 + 

AGPSO-based Ensemble AGPSO + aggregated Inceptionv3-RNN model 0.7625 0.6545 + 
PSOGSA-based Ensemble PSOGSA + aggregated Inceptionv3-RNN model 0.7568 0.6514 + 

PPO-based Ensemble PPO + aggregated Inceptionv3-RNN model 0.7683 0.6629 + 

DDPG-based Ensemble DDPG + aggregated Inceptionv3-RNN model 0.7625 0.6558 + 
PSORL-based Ensemble PSORL + aggregated Inceptionv3-RNN model 0.7606 0.6557 + 

Default Ensemble Model Aggregation of Inceptionv3-BiLSTM, Inceptionv3-

LSTM and Inceptionv3-GRU with default settings 0.7336 0.6204 

+ 

 

Table 5 depicts ensemble performance of each optimizer. Our devised weighted ensemble Inceptionv3-RNN 

models obtain a better performance than those of the counterparts optimized by all other classical search 

methods and PSO variants. Moreover, among the baseline methods, FA, PPO, MPSO and EPSO-based 

ensemble networks are comparatively more effective with better accuracy and AUC scores, while DA, RCPSO, 

SA and PSO-based ensemble models have the lowest accuracy or AUC results. Owing to the embedding of 

diverse base networks with different optimized configurations, the ensemble Inceptionv3-RNNs generated by all 

search methods outperform those with default settings in most test cases. The statistical test is also performed to 

compare the accuracy result distributions of our algorithm and those from other search methods. The ‘+’ symbol 

in Table 5 indicates the statistical significance of our ensemble against those devised by other search methods.  

 

Table 6 Optimized network topologies of Inceptionv3-RNN generated by each optimizer using Celeb-DFv2 

 
 Layer type No. of hidden units 

Prop. PSO BiLSTM 1342.67 

MPSO BiLSTM/GRU 1372.33 

EPSO BiLSTM/GRU 1232.00  

PSO LSTM/GRU 1752.50 

CS LSTM 1172.55 

GA BiLSTM 1155.00 

SA LSTM/GRU 1578.15 

FA BiLSTM/LSTM 1266.28 

DA LSTM/GRU 1487.54 

RCPSO BiLSTM/LSTM 1020.45 

AGPSO LSTM 1443.89 

PSOGSA LSTM 1176.97 

PPO LSTM 1237.55 

DDPG LSTM/GRU 1393.71 

PSORL BiLSTM/GRU 1205.03 

Default BiLSTM/LSTM/GRU 1800 

 



Table 6 shows the identified network configurations for the Inceptionv3-RNN models. The proposed PSO model 

and GA construct BiLSTM networks in majority of the test cases. MPSO, EPSO and PSORL yield RNN models 

with BiLSTM and GRU layers, while FA and RCPSO generate recurrent networks with BiLSTM and LSTM 

layers. CS, AGPSO, PSOGSA, and PPO establish networks with LSTM layers in most cases, with SA, DA, 

DDPG and PSO formulating models mainly with LSTM and GRU layers. Besides the above, the smallest 

numbers of hidden units are embedded into the RCPSO, GA, CS and PSOGSA-yielded BiLSTM/LSTM 

networks, while the largest numbers of hidden nodes are included in the DA, AGPSO, SA and PSO-optimized 

LSTM/GRU models. Therefore, the former networks are more likely to overlook important temporal features, 

while the latter methods are more inclined to capture redundant excessive details for manipulated video 

classification. Moderate numbers of hidden units are employed by the proposed PSO, DDPG, MPSO, FA, PPO 

and EPSO-optimized BiLSTM/LSTM/GRU networks, which indicate better discriminative dynamic sequential 

feature extraction and generalization capabilities. The default network employs the largest number of hidden 

units which may result in extracting excessive details. 

 

6.1.2 Evaluation Using the I3D Network 
The 3D CNNs are also used for video forgery classification. We optimize the I3D network by identifying the 

optimal learning options (i.e., the initial learning rate, learning rate decay factor and regularization coefficient) 

using the proposed PSO method. Each optimized network is subsequently trained using 25, 35, and 50 epochs, 

respectively. Next, the ensemble scheme 1, i.e. the weighted ensemble formation, is used to aggregate the 

optimized I3D base networks. A default weighted baseline ensemble model with fixed learning configurations is 

also implemented, where we assign learning rate, learning rate decay factor and regularization coefficient with 

0.001, 0.1 and 0.0001, respectively.  

 

Table 7 Mean results of the weighted ensemble I3D networks using Celeb-DFv2 

 
 
Methods 

 
Ensemble topologies 

Mean 
accuracy rates 

Mean AUC Rank sum 
test results 

Proposed PSO-based Ensemble New PSO + aggregated I3D model 0.9093 0.8747 n/a 

MPSO-based Ensemble MPSO + aggregated I3D model 0.8571 0.7975 + 
EPSO-based Ensemble EPSO + aggregated I3D model  0.8591 0.8257 + 

PSO-based Ensemble PSO + aggregated I3D model  0.8397 0.7695 + 

CS-based Ensemble CS + aggregated I3D model  0.8378 0.7667 + 
GA-based Ensemble GA + aggregated I3D model  0.8552 0.7893 + 

SA-based Ensemble SA + aggregated I3D model 0.8327 0.8422 + 

FA-based Ensemble FA + aggregated I3D model  0.8822 0.8514 + 
DA-based Ensemble DA + aggregated I3D model 0.8436 0.8019 + 

RCPSO-based Ensemble RCPSO + aggregated I3D model 0.8745 0.8696 + 

AGPSO-based Ensemble AGPSO + aggregated I3D model 0.8340 0.7624 + 
PSOGSA-based Ensemble PSOGSA + aggregated I3D model 0.8378 0.7654 + 

PPO-based Ensemble PPO + aggregated I3D model 0.8359 0.7679 + 

DDPG-based Ensemble DDPG + aggregated I3D model 0.8533 0.7945 + 
PSORL-based Ensemble PSORL + aggregated I3D model 0.8436 0.7872 + 

Default Ensemble Model Aggregation of I3D with default 

settings 

0.8475 0.7808 + 

 

We present the results of the optimized I3D ensemble models in Table 7. For all search methods, the resulting 

weighted ensemble I3D networks show better feature learning capabilities with more competitive performance 

than those of devised ensemble Inceptionv3-RNN methods. The proposed PSO-based ensemble I3D networks 

outperform those yielded by all other search methods with statistical significance, owing to the search processes 

inspired by diverse cross-breed leaders, petal search trajectories, reinforcement learning-based search action 

selection, as well as numerical recursive leader enhancement. In addition, FA, RCPSO, SA, DA, and EPSO-

devised ensemble models achieve a better performance than those formulated by MPSO, PSO, GA, PSOGSA, 

CS, PSORL and AGPSO, as well as those built using reinforcement learning algorithms, i.e. DDPG and PPO. 

DDPG-based ensemble networks also outperform those yielded by PPO, PSO, CS, PSOGSA and AGPSO. 

Optimized ensemble I3D models generated by each search method show better capabilities in distinguishing 

fake from real videos than those from the default networks in most test cases.  

 

Table 8 Optimized learning configurations of the I3D networks generated by each optimizer using Celeb-DFv2 

 
 Learning 

rate 

Learning rate 

drop factor 

Weight decay 

Prop. PSO 0.007576 0.06452 0.000585 

MPSO 0.003942 0.06123 0.000594 

EPSO 0.006771 0.05882 0.000399 



PSO 0.009465 0.05128 0.000175 

CS 0.008310 0.01290 0.000341 

GA 0.001800 0.07000 0.000900 

SA 0.003270 0.06755 0.000883 

FA 0.005800 0.02132 0.000116 

DA 0.003320 0.05421 0.000229 

RCPSO 0.005550 0.01102 0.000550 

AGPSO 0.004860 0.03853 0.000754 

PSOGSA 0.009260 0.06603 0.000382 

PPO 0.008210 0.04608 0.000633 

DDPG 0.005120 0.04836 0.000505 

PSORL 0.001555 0.06316 0.000573 

I3D (default) 0.001000 0.10000 0.000100 

 

Table 8 shows the key learning configurations identified by each algorithm. The proposed model obtains a 

comparatively moderate mean initial learning rate with a larger mean learning rate drop factor as well as a larger 

average weight decay. As such, the resulting I3D networks are equipped with effective learning steps for pattern 

extraction and have better capabilities in avoiding over-fitting. In contrast, PSO, PSOGSA, PPO and CS 

methods identify the largest initial learning rates with the small or moderate learning rate decay schedules in 

most cases, which are more likely to cause oscillations in weight updates. Similar to the proposed optimizer, the 

efficiency of the ensemble networks generated using FA, RCPSO, SA, DA, and EPSO is dependent on the 

moderate initial learning rates, which lead to refined but effective updates of the learning mechanisms. GA and 

PSORL produce the smallest initial learning rates with comparatively larger decreasing drop schedule rates, 

which may result in model under-fitting. Similarly, the network with the default learning settings is more likely 

to be under-fitted, because of the adoption of a small initial learning rate and a large decreasing decay rate, in 

combination with a very small regularization factor. In addition, the performance of the default ensemble model 

is limited by the fixed model configurations. 

 

6.1.3. Evaluation Using the MC3 Network 
Another 3D CNN, i.e. MC3, is also used for performance comparison. We optimize the same learning options, 

i.e. learning rate, learning rate decay factor and regularization coefficient, of the MC3 model. A similar 

experimental setting is utilized with a set of 10 trials. The weighted ensemble scheme 1, discussed in Section 5.1, 

is also utilized for ensemble construction with optimized MC3 networks as the base classifiers. The mean results 

of the resulting 10 weighted ensemble models with each comprising three optimized MC3 networks are used for 

performance comparison.  

 

Table 9 Mean results of the weighted ensemble MC3 networks using Celeb-DFv2 

 
 

Methods 

 

Ensemble topologies 

Mean 

accuracy rates 

Mean AUC Rank sum 

test results 

Proposed PSO-based Ensemble New PSO + aggregated MC3 model 0.8890 0.8546 n/a 

MPSO-based Ensemble MPSO + aggregated MC3 model 0.8475 0.7982 + 

EPSO-based Ensemble EPSO + aggregated MC3 model  0.8282  0.7754 + 
PSO-based Ensemble PSO + aggregated MC3 model  0.8532 0.8012 + 

CS-based Ensemble CS + aggregated MC3 model 0.8147 0.7611 + 

GA-based Ensemble GA + aggregated MC3 model 0.8687 0.8384 + 
SA-based Ensemble SA + aggregated MC3 model 0.8263 0.7472 + 

FA-based Ensemble FA + aggregated MC3 model 0.8591 0.7949 + 

DA-based Ensemble DA + aggregated MC3 model 0.8398 0.7923 + 
RCPSO-based Ensemble RCPSO + aggregated MC3 model 0.8571 0.7921 + 

AGPSO-based Ensemble AGPSO + aggregated MC3 model 0.8436 0.8033 + 

PSOGSA-based Ensemble PSOGSA + aggregated MC3 model 0.8417 0.7710 + 
PPO-based Ensemble PPO + aggregated MC3 model  0.8745 0.8308 + 

DDPG-based Ensemble DDPG + aggregated MC3 model 0.8668 0.8169 + 

PSORL-based Ensemble PSORL + aggregated MC3 model 0.8726 0.8333 + 
Default Ensemble Model Aggregation of MC3 with default settings 0.8301 0.7702 + 

 

Table 9 presents the performance of the optimized weighted ensemble MC3 networks for all the search methods. 

These resulting models show a better performance than those of optimized Inceptionv3-RNN architectures, but 

an inferior performance to those of devised I3D networks, for most search methods. The proposed PSO-based 

weighted ensemble MC3 networks depict a competitive performance, outperforming the counterparts generated 

by all other search methods with statistical significance. In addition, GA, PPO, DDPG, PSORL and AGPSO-

devised networks outperform those optimized by all other baseline methods, while SA, CS and PSOGSA-based 

ensemble models show least efficiency. Because of the diverse optimized base model configurations 

recommended by all the search methods, their resulting weighted ensemble networks outperform those with 

default parameter configurations in most test cases. 



Table 10 Optimized learning configurations of the MC3 networks generated by each optimizer using Celeb-

DFv2 

 
 Learning 

rate 

Learning rate 

drop factor 

Weight decay 

Prop. PSO 0.001556 0.05882 0.000183 

MPSO 0.002669 0.04762 0.000727 

EPSO 0.003698 0.04545 0.000311 

PSO 0.002856 0.04762 0.000783 

CS 0.007731 0.05025 0.000679 

GA 0.001397 0.04781 0.000596 

SA 0.008977 0.05064 0.000824 

FA 0.003323 0.03656 0.000225 

DA 0.003485 0.05570 0.000814 

RCPSO 0.002622 0.02067 0.000662 

AGPSO 0.006592 0.01465 0.000230 

PSOGSA 0.009214 0.03669 0.000735 

PPO 0.001060 0.05638 0.000490 

DDPG 0.004852 0.01269 0.000520 

PSORL 0.001191 0.03197 0.000332 

MC3 (default) 0.001 0.1 0.0001 

 

As shown in Table 10, the initial learning rate setting in the MC3 model has more effects on the model 

performance in comparison with those of other parameters. The empirical results indicate that the best results are 

correlated with small or moderate initial learning rates, while large learning rates tend to result in poor accuracy 

rates. Specifically, the proposed algorithm, GA, PPO and PSORL select the smallest initial learning rates with 

the large/moderate learning rate decay factors as compared with those obtained by other search methods. The 

detailed results indicate that such learning configurations are able to improve the network performance steadily 

over a number of learning epochs. The largest mean initial learning rates are extracted by SA, CS and PSOGSA, 

and their resulting networks are more likely to overlook the global optima and suffer from oscillations in 

gradient descent as the training progresses. DDPG and AGPSO with moderate initial learning rates also show 

competitive performance with effective learning steps to update the learning mechanisms. The MC3 ensemble 

with default parameter settings also achieves a reasonable performance. However, because of the adoption of the 

fixed base model configurations, their resulting weighted ensemble networks have limited diversity with 

comparatively small performance improvements. 

 

6.1.4. Ensemble Model Construction Using Optimization Algorithms 
We subsequently use the optimization algorithm-based scheme for ensemble formulation, i.e. ensemble scheme 

2, provided in Section 5.2. In other words, we employ each search method to identify an optimal subset of 

Inceptionv3-RNN, I3D and MC3 networks with optimized settings for ensemble model construction.  

 

As mentioned earlier, for hyper-parameter search, we perform 10 runs for each method. For each identified 

configuration, we train the respective network using three different epochs, i.e. 25, 35, and 50 epochs. For the 

base classifier pool construction for each search method, we select the top 10 Inceptionv3-RNN, top 10 I3D and 

top 10 MC3 networks on the validation set with the corresponding optimal settings obtained from the previous 

process. The selected 30 base classifiers with respective optimized settings are used for ensemble model 

construction by each search method. We explain the optimal ensemble construction process in detail, as follows. 

 

Specifically, each search method is used to extract an optimal subset of base classifiers among all the 30 base 

methods for ensemble network construction. The training and validation datasets of Celeb-DFv2 are utilized for 

searching the optimal subsets of base networks. As mentioned earlier, each search agent in each search method 

has a dimension of 30 with each element representing a base classifier. The optimization process is performed 

using search operations within each search method. For the fitness evaluation of each particle, as discussed 

earlier, we first compare the value of each dimension against a threshold value (e.g. 0.5) to determine the 

selection or omission of the respective base classifier. After obtaining the selected subset of networks, the 

weighted ensemble strategy shown in Equations (23)-(25) is used to fuse the results of all the selected base 

classifiers. The resulting validation accuracy rate along with the number of selected base networks is employed 

for fitness calculation, as shown in Equation (26). After the completion of the required number of function 

evaluations, the swarm leader representing the most optimal subset of the selected base classifiers is attained. 

This subset of the selected most optimal base networks is used to form the final optimized ensemble, which is 

used to evaluate unseen samples in the test set. Their weighted ensemble results calculated using Equations (23)-

(25) are used for performance comparison. 

 



The optimal base classifier selection is performed using the following configurations, i.e. a dimension of 30 and 

a maximum number of function evaluations of 1,000 (population=20 and iterations=50). The mean result of a set 

of 30 runs is produced for each search method. A default ensemble model is also formulated by integrating 30 

base networks with 10 I3D, 10 MC3 and 10 CNN-RNN models using default learning configurations. 

 

Table 11 depicts the mean ensemble performance comparison over 30 runs. As indicated in Table 11, for all 

search methods, the aggregation of three different types of optimized base learners (i.e., Inceptionv3-RNN, I3D 

and MC3) with different learning mechanisms using the evolving ensemble construction method further boosts 

the performance and achieves the best results for synthetic video classification, in comparison with those from 

other devised homogeneous ensembles with the same types of base networks. In particular, our optimized 

ensemble model aggregating three different types of networks outperforms the counterparts yielded by all other 

search methods, as evidenced by the statistical test results. Most search methods select 16-22 base classifiers 

among the 30 respective distinctive base networks. The proposed PSO algorithm identifies moderate numbers 

(e.g. 16.76) of base models for ensemble network construction, as compared with those devised by other search 

methods, resulting in improved efficiency while maintaining sufficient diversity. CS and AGPSO develop the 

largest ensemble models with 21.8 and 21.1 selected base classifiers on average, respectively. These ensemble 

models with the largest numbers of base networks are highly likely to cause redundancy and contradiction in 

decision making, therefore obtaining lower accuracy rates and AUC scores. In contrast, MPSO and PSOGSA 

form the smallest ensemble networks with 15.2 and 16.4 selected base classifiers on average, respectively, which 

may limit network diversity. Similar to the proposed model, RCPSO, FA and GA identify moderate numbers of 

base networks, i.e. 17.5, 17 and 17.6, respectively, which balance well between robustness and cost. Most 

ensemble models built by search methods with optimized numbers of base networks outperform the default 

ensemble network with all 30 base classifiers. This is owing to high flexibility and robustness in the optimized 

ensemble models yielded by most search algorithms. 

 

Table 11 Mean results for optimal ensemble networks integrating Inceptionv3-RNN, I3D and MC3 devised by 

each search method for Celeb-DFv2 

 
 

Methods 

 

Ensemble topologies 

Mean 

accuracy rates 

Mean AUC Ensemble 

size 

Rank sum 

test results 

Proposed PSO-based Ensemble New PSO + aggregation of Inceptionv3-RNN, I3D and MC3 0.9498 0.9270 16.76 n/a 

MPSO-based Ensemble MPSO + aggregation of Inceptionv3-RNN, I3D and MC3 0.8919 0.8454 15.20 + 

EPSO-based Ensemble EPSO + aggregation of Inceptionv3-RNN, I3D and MC3 0.8958 0.8523 17.20 + 
PSO-based Ensemble PSO + aggregation of Inceptionv3-RNN, I3D and MC3 0.8900 0.8466 20.60 + 

CS-based Ensemble CS + aggregation of Inceptionv3-RNN, I3D and MC3 0.8745 0.8228 21.80 + 

GA-based Ensemble GA + aggregation of Inceptionv3-RNN, I3D and MC3 0.8972 0.8785 17.60 + 

SA-based Ensemble SA + aggregation of Inceptionv3-RNN, I3D and MC3 0.8745 0.8509 19.40 + 

FA-based Ensemble FA + aggregation of Inceptionv3-RNN, I3D and MC3 0.9151 0.8858 17.00 + 

DA-based Ensemble DA + aggregation of Inceptionv3-RNN, I3D and MC3 0.8938 0.8669 20.20 + 
RCPSO-based Ensemble RCPSO + aggregation of Inceptionv3-RNN, I3D and MC3 0.9163 0.9079 17.50 + 

AGPSO-based Ensemble AGPSO + aggregation of Inceptionv3-RNN, I3D and MC3 0.8770 0.8425 21.10 + 

PSOGSA-based Ensemble PSOGSA + aggregation of Inceptionv3-RNN, I3D and MC3 0.8764 0.8390 16.40 + 
PPO-based Ensemble PPO + aggregation of Inceptionv3-RNN, I3D and MC3 0.8919 0.8614 18.38 + 

DDPG-based Ensemble DDPG + aggregation of Inceptionv3-RNN, I3D and MC3 0.8996 0.8673 18.56 + 

PSORL-based Ensemble PSORL + aggregation of Inceptionv3-RNN, I3D and MC3 0.8996 0.8713 17.29 + 
Default Ensemble Model Aggregation of Inceptionv3-RNN, I3D and MC3 with default 

settings 0.888 0.8438 

30.00 + 

 

6.2 Evaluation Using the FaceForensics++ Dataset 
We have evaluated the proposed PSO-optimized I3D and MC3 networks using FaceForensics++, owing to their 

impressive performance in comparison with optimized inceptionv3-RNN models, as evidenced in the previous 

experiments. Besides 1,000 original YouTube videos, the FaceForensics++ dataset contains 4,000 manipulated 

videos with 1,000 forged videos generated using FaceSwap, Deepfakes, NeuralTextures, and Face2Face, 

respectively. We combine all the synthetic videos yielded using different techniques into one fake video set of 

4,000. As such, a dataset of 1,000 original and 4,000 synthetic videos is studied in this experiment. As 

mentioned earlier, the I3D and MC3 networks are employed owing to their superiority over the Inceptionv3-

RNN network. As recommended in existing studies [15], both 3D CNNs employ a 60-20-20 train-validation-test 

split of each class for model evaluation. The original authentic videos in the training and validation sets are 

duplicated a number of times to ensure balanced numbers of authentic and synthetic videos for training and 

validation.  Such a duplication process is not applied to the test set. We present the detailed ensemble results for 

each search method, as follows. The weighted ensemble classifiers with the same types of the base networks, as 

well as ensemble networks with optimal subsets of different types of base learners devised by each search 



method, are formulated. The detailed ensemble performance comparison for both ensemble schemes is provided 

below. 

 

6.2.1 Evaluation Using the I3D Network 
We optimize I3D using each search method for video forgery classification using FaceForensics++. The same 

experimental setting used for Celeb-DFv2 is also used in this experiment. We repeat hyper-parameter search 10 

times for each search method. Each devised network is trained using several different training epochs. The 

weighted ensemble scheme 1 presented in Section 5.1 is used for ensemble model formation using optimized 

I3D networks. Specifically the weighted strategy defined in Equation (23)-(25) is used to combine the outputs of 

three optimized I3D networks in one ensemble classifier. The mean result of these weighted ensemble models is 

used for performance comparison. Table 12 summarizes the weighted ensemble result comparison between 

different search methods. 

 

Table 12 Mean results of the weighted ensemble I3D networks using FaceForensics++ 

 
 
Methods 

 
Ensemble topologies 

Mean Accuracy 
rates 

Mean 
AUC 

Rank sum 
test results 

Proposed PSO-based Ensemble New PSO + aggregated I3D model 0.9255 0.9281 n/a 

MPSO-based Ensemble MPSO + aggregated I3D model 0.9040 0.9025 + 
EPSO-based Ensemble EPSO + aggregated I3D model  0.9030 0.8830 + 

PSO-based Ensemble PSO + aggregated I3D model  0.8920 0.8519 + 

CS-based Ensemble CS + aggregated I3D model 0.8710 0.9194 + 
GA-based Ensemble GA + aggregated I3D model 0.8975 0.9003 + 

SA-based Ensemble SA + aggregated I3D model 0.8920 0.8870 + 
FA-based Ensemble FA + aggregated I3D model 0.8723 0.8916 + 

DA-based Ensemble DA + aggregated I3D model 0.8978 0.8855 + 

RCPSO-based Ensemble RCPSO + aggregated I3D model 0.9179 0.8532 + 
AGPSO-based Ensemble AGPSO + aggregated I3D model 0.8920 0.8369 + 

PSOGSA-based Ensemble PSOGSA + aggregated I3D model 0.8880 0.8363 + 

PPO-based Ensemble PPO + aggregated I3D model 0.8860 0.8425 + 
DDPG-based Ensemble DDPG + aggregated I3D model 0.8850 0.8975 + 

PSORL-based Ensemble PSORL + aggregated I3D model 0.9002 0.9001 + 

Default Ensemble Model Aggregation of I3D with default settings 0.8790 0.8513 + 

 
As depicted in Table 12, our weighted ensemble I3D networks achieve a reliable performance for identifying 

both original and manipulated samples with statistical significance in performance. From the AUC score 

perspective, MPSO, CS, GA, and PSORL-based ensemble models are comparatively more effective than those 

generated by the remaining baseline search methods, as well as those constructed by the RL methods, i.e. PPO 

and DDPG. In addition, DDPG-based weighted ensemble networks outperform those formulated by EPSO, PSO, 

SA, FA, DA, RCPSO, AGPSO, PSOGSA, and PPO, respectively. AGPSO and PSOGSA-devised ensemble 

networks achieved the least efficiency. In addition, owing to the adoption of the same base model configurations 

with the default configurations, the weighted default ensemble model is less competitive than those with optimal 

learning settings yielded by most of the search methods. 

 
Table 13 Optimized learning configurations of the I3D networks generated by each optimizer using 

FaceForensics++ 

 
 Learning 

rate 

Learning rate 

drop factor 

Weight decay 

Prop. PSO 0.001223 0.06667 0.000202 

MPSO 0.001336 0.08333 0.000141 

EPSO 0.001584 0.05000 0.000223 

PSO 0.003061 0.05556 0.000806 

CS 0.001710 0.06074 0.000526 

GA 0.001090 0.05700 0.000866 

SA 0.005198 0.01433 0.000170 

FA 0.004456 0.02223 0.000887 

DA 0.002491 0.04967 0.000537 

RCPSO 0.003349 0.01664 0.000816 

AGPSO 0.008467 0.02276 0.000776 

PSOGSA 0.009693 0.02850 0.000694 

PPO 0.006274 0.06833 0.000129 

DDPG 0.005353 0.03777 0.000743 

PSORL 0.001329 0.01813 0.000320 

I3D (default) 0.001 0.1 0.0001 

 



The hyper-parameters identified by each algorithm are listed in Table 13. The empirical results indicate the 

preferences of the smaller learning rate, moderate/large learning rate drop factor and moderate weight decay 

parameters, which are correlated with an improved network performance pertaining to fake/real video 

classification. Such settings are favoured by the proposed model, MPSO, EPSO, CS, GA and PSORL with 

competitive/reasonable classification performance for both original and manipulated video classes. 

Comparatively, larger learning rates are yielded by AGPSO, PSOGSA, and PPO, therefore the performance of 

their resulting networks is significantly affected by large oscillations in weight updates, leading to suboptimal 

outcomes. The default I3D network adopts a small learning rate, which allows granular learning steps to 

improve network performance, but it shows limited capabilities in tackling over-fitting by using a small weight 

decay factor. Owing to the adoption of same base network configurations, its resulting weighted ensemble model 

depicts limited flexibility and complementary properties to boost network performance. 

 

6.2.2 Evaluation Using the MC3 Network 
We also evaluate the proposed PSO-optimized ensemble MC3 network using FaceForensics++. Again we repeat 

hyper-parameter search 10 times for each search method. Each optimized network is trained using several larger 

numbers of training epochs. The aggregation of devised MC3 networks is performed by using the weighted 

ensemble strategy shown in Equations (23)-(25). Table 14 shows the detailed ensemble performance with 

respect to each algorithm. 

 

Table 14 Mean results of the weighted ensemble MC3 networks using FaceForensics++ 
 
Methods 

 
Ensemble topologies 

Mean 
accuracy rates 

Mean 
AUC 

Rank sum 
test results 

Proposed PSO-based Ensemble New PSO + aggregated MC3 model 0.9200 0.9156 n/a 

MPSO-based Ensemble MPSO + aggregated MC3 model 0.8910 0.8475 + 
EPSO-based Ensemble EPSO + aggregated MC3 model  0.8893 0.8752 + 

PSO-based Ensemble PSO + aggregated MC3 model  0.8745 0.8794 + 

CS-based Ensemble CS + aggregated MC3 model 0.8916 0.9045 + 
GA-based Ensemble GA + aggregated MC3 model 0.8747 0.8863 + 

SA-based Ensemble SA + aggregated MC3 model 0.8760 0.8306 + 

FA-based Ensemble FA + aggregated MC3 model 0.8710 0.8988 + 
DA-based Ensemble DA + aggregated MC3 model 0.8810 0.8628 + 

RCPSO-based Ensemble RCPSO + aggregated MC3 model 0.8841 0.8363 + 

AGPSO-based Ensemble AGPSO + aggregated MC3 model 0.8650 0.8350 + 
PSOGSA-based Ensemble PSOGSA + aggregated MC3 model 0.8610 0.8288 + 

PPO-based Ensemble PPO + aggregated MC3 model 0.8870 0.8394 + 

DDPG-based Ensemble DDPG + aggregated MC3 model 0.8720 0.8338 + 
PSORL-based Ensemble PSORL + aggregated MC3 model 0.8850 0.8400 + 

Default Ensemble Model Aggregation of MC3 with default settings 0.8670 0.8250 + 

 
Table 14 depicts the mean weighted ensemble network performance regarding each search method. The default 

and devised MC3 networks perform generally worse than those of the respective I3D models. Our yielded MC3 

weighted ensemble models outperform the counterparts generated by all other search methods with a statistical 

margin in performance. The root-finding algorithm driven swarm leader enhancement, Q-learning based search 

action selection and hybrid leader-motivated local and global search mechanisms offer better capabilities in 

tackling local optima traps. CS, FA, GA, PSO and EPSO-devised weighted ensemble networks achieve better 

AUC scores in comparison with those of the networks optimized by other baseline search methods. PPO-based 

ensemble networks achieve more competitive accuracy and AUC results than those of RCPSO, AGPSO, DDPG, 

SA, and PSOGSA-based models. The weighted ensemble networks constructed by all search methods 

outperform the counterpart with default settings in terms of the AUC scores. 

 

Table 15 Optimized learning configurations of the MC3 networks generated by each optimizer using 

FaceForensics++ 

 
 Learning 

rate 

Learning rate 

drop factor 

Weight decay 

Prop. PSO 0.001753 0.05000 0.000327 

MPSO 0.002563 0.05556 0.000316 

EPSO 0.002097 0.04545 0.000205 

PSO 0.002026 0.04545 0.000194 

CS 0.001488 0.03163 0.000631 

GA 0.001013 0.03264 0.000762 

SA 0.005916 0.06968 0.000786 

FA 0.001220 0.05347 0.000899 

DA 0.002269 0.03278 0.000117 

RCPSO 0.003730 0.01416 0.000397 



AGPSO 0.004340 0.05735 0.000708 

PSOGSA 0.006131 0.01225 0.000213 

PPO 0.002940 0.05566 0.000434 

DDPG 0.003964 0.01129 0.000397 

PSORL 0.002973 0.02541 0.000124 

MC3 (default) 0.001 0.1 0.0001 

 

Table 15 illustrates key learning options yielded by each method. The most robust networks are yielded by the 

proposed PSO model with identified moderate mean learning rate, moderate mean learning decay factor and 

moderate mean weight decay configurations. The resulting networks conduct a refined but effective adjustment 

to the network weights while deploying reasonable penalties to the loss function via the regularization term to 

reduce over-fitting. FA, GA and CS identify smallest learning rates, which may prevent their optimized 

networks from achieving the best performances within the required number of iterations. RCPSO, DDPG, 

AGPSO, SA, and PSOGSA extract comparatively larger learning rates. Thus, their resulting networks may 

experience oscillatory behaviours over epochs with comparatively more significant learning steps, and are prone 

to a fast convergence toward suboptimal solutions. All the devised ensemble networks of each search method 

embed a variety of base network learning settings in comparison with those of the default ensemble model, 

therefore illustrating better performances.  

 

6.2.3. Ensemble Model Construction Using Optimization Algorithms 
After obtaining optimized I3D and MC3 networks, ensemble model construction using optimization algorithms, 

i.e. the ensemble scheme 2 discussed in Section 5.2, is used to build fusion models with different types of base 

networks. Specifically, each search algorithm is subsequently used to construct optimized ensemble models. As 

mentioned earlier, since we employ a set of 10 runs for each search method, and each optimized I3D/MC3 

network with the identified configurations are trained using three different numbers (i.e. 25, 35 and 50) of 

epochs, we obtain 30 optimized I3D and 30 optimized MC3 networks with respect to each search algorithm. The 

top 15 optimized I3D and top 15 optimized MC3 networks on the validation dataset are used to construct the 

ensemble base classifier pool. 

 

Each search algorithm is then used to extract an optimal subset of base classifiers among all the 30 base methods 

for ensemble network construction. Again, each particle has a dimension of 30 with each element representing a 

base classifier. The optimization process is performed using search operations within each search method, with a 

maximum number of function evaluations of 1,000. Such a search process is repeated 30 times for each method. 

For fitness evaluation of each particle, we first compare the value of each dimension against a threshold value 

(e.g. 0.5) to determine the selection or omission of the respective base classifier. After obtaining the selected 

subset of networks, the weighted ensemble strategy shown in Equations (23)-(25) is used to aggregate the results 

of all the selected base classifiers. The resulting validation accuracy rate along with the number of selected base 

networks is used for fitness calculation as shown in Equation (26). After the completion of the search process, 

the swarm leader representing the most optimal subset of the selected base classifiers is obtained. This subset of 

the selected most optimal base networks is used to form the final optimized ensemble, which is used to evaluate 

unseen samples in the test set. The weighted ensemble results calculated using Equations (23)-(25) are used for 

performance comparison. 

 

Table 16 presents the mean ensemble results of the selected devised I3D and MC3 networks by each search 

method over 30 runs. Because of the optimal selection of two types of base networks in combination with 

unique optimized learning configurations of each base classifier, the resulting hybrid ensemble models show 

significant robustness and obtain a better performance. For all search methods, these optimized hybrid ensemble 

networks outperform those constructed purely by either optimized I3D or MC3 networks. Moreover, the 

statistical test results indicate the significance in performance of our hybrid ensembles over the counterparts 

yielded by other search methods. 

 

Table 16 Mean results for optimal ensemble networks integrating I3D and MC3 devised by each search method 

for FaceForensics++ 
 
Methods 

 
Ensemble topologies 

Mean 
accuracy rates 

Mean 
AUC 

Ensemble 
size 

Rank sum 
test results 

Proposed PSO-based Ensemble New PSO + aggregation of I3D and MC3 0.9620 0.9425 20.0 n/a 

MPSO-based Ensemble MPSO + aggregation of I3D and MC3 0.9200 0.9156 22.0 + 
EPSO-based Ensemble EPSO + aggregation of I3D and MC3 0.9390 0.8963 20.8 + 

PSO-based Ensemble PSO + aggregation of I3D and MC3 0.9130 0.8856 23.1 + 

CS-based Ensemble CS + aggregation of I3D and MC3 0.9050 0.9275 23.0 + 
GA-based Ensemble GA + aggregation of I3D and MC3 0.9120 0.9225 21.4 + 

SA-based Ensemble SA + aggregation of I3D and MC3 0.9076 0.8908 22.2 + 

FA-based Ensemble FA + aggregation of I3D and MC3 0.8840 0.9209 23.2 + 



DA-based Ensemble DA + aggregation of I3D and MC3 0.9140 0.8919 25.4 + 

RCPSO-based Ensemble RCPSO + aggregation of I3D and MC3 0.9270 0.8700 19.4 + 

AGPSO-based Ensemble AGPSO + aggregation of I3D and MC3 0.9050 0.8563 23.4 + 

PSOGSA-based Ensemble PSOGSA + aggregation of I3D and MC3 0.8930 0.8506 19.8 + 

PPO-based Ensemble PPO + aggregation of I3D and MC3 0.8990 0.8656 18.8 + 
DDPG-based Ensemble DDPG + aggregation of I3D and MC3 0.9120 0.9075 18.4 + 

PSORL-based Ensemble PSORL + aggregation of I3D and MC3 0.9230 0.9088 22.4 + 

Default Ensemble Model Aggregation of I3D and MC3 with default 
settings 0.8930 0.8600 

30.0 + 

 

As indicated in Table 16, the proposed algorithm selects a mean size of 20 base classifiers for ensemble model 

construction with over 30 runs. Our resulting ensemble models depict a better performance than those 

established by other search methods, statistically. DA, FA, CS, PSO, and AGPSO produce the largest ensemble 

models with mean ensemble sizes of 25.4, 23.2, 23, 23.1, and 23.4, respectively. Such large ensemble models 

cause high computational costs for all four search methods, as well as contradictory decisions for AGPSO. On 

the other hand, RCPSO, PSOGSA, PPO, and DDPG establish the smallest ensembles with mean ensemble sizes 

of 19.4, 19.8, 18.8 and 18.4, respectively. Their devised fusion networks show enhanced efficiency, but in 

exchange of limited complementary characteristics, affecting the aggregation performance. Similar to the 

proposed model, GA, MPSO, and PSORL extract moderate numbers of base classifiers with mean ensemble 

sizes of 21.4, 22 and 22.4, respectively, and achieve a reasonable balance between ensemble complexity and 

weighted ensemble performance. Ensemble networks optimized by most search algorithms possess sufficient 

diversity and depict a better performance than those from the default ensemble method integrating all 30 base 

classifiers with default learning settings. 

 

6.3 Evaluation Using the Deepfakes Dataset 
The deepfake dataset generated using the deepfake synthetic method is the most challenging subset in 

FaceForensics++. We employ 1,000 synthetic videos from this deepfake subset together with 1,000 original 

videos in this experiment. A 60-20-20 split is applied for training, validation and test, respectively. The proposed 

PSO-optimized I3D and MC3 networks are used in this experiment owing to their competitive performance 

when compared with those of devised Inceptionv3-RNNs. Specifically, each search method is employed to fine-

tune the hyper-parameters of the two 3D CNN models. A set of 30 optimized I3D or MC3 networks is generated, 

respectively. Besides building weighted ensemble models with the same types of base networks using ensemble 

scheme 1, dynamic ensembles comprising optimal subsets of I3D and MC3 networks identified by each search 

method using ensemble scheme 2, are also generated for synthetic video classification. The evaluation details of 

each optimized 3D CNN, and within- and cross-network ensemble models are presented, as follows. 

 

6.3.1 Evaluation Using the I3D Network 
We conduct hyper-parameter search for 10 trials. Each devised 3D CNN is trained using the maximum numbers 

of 25, 35 and 50 epochs, respectively. The weighted ensemble scheme 1 as defined in Section 5.1 is used to 

construct ensemble networks with optimized I3Ds as the base classifiers. As depicted in Table 17, the average 

results of a set of 10 weighted ensembles are used for performance comparison. The statistical test is also 

performed to compare accuracy result distributions of our optimized ensemble I3D networks against those 

formulated by the baseline methods. 

 

Table 17 Mean results of the weighted ensemble I3D networks using Deepfakes 

 
 

Methods 

 

Ensemble topologies 

Mean 

Accuracy rates 

Mean AUC Rank sum 

test results 

Proposed PSO-based Ensemble New PSO + aggregated I3D model 0.9825 0.9825 n/a 

MPSO-based Ensemble MPSO + aggregated I3D model 0.9550 0.9550 + 

EPSO-based Ensemble EPSO + aggregated I3D model  0.9725 0.9725 + 
PSO-based Ensemble PSO + aggregated I3D model  0.9600 0.9600 + 

CS-based Ensemble CS + aggregated I3D model 0.9675 0.9675 + 

GA-based Ensemble GA + aggregated I3D model 0.9633 0.9633 + 
SA-based Ensemble SA + aggregated I3D model 0.9650 0.9650 + 

FA-based Ensemble FA + aggregated I3D model 0.9438 0.9438 + 

DA-based Ensemble DA + aggregated I3D model 0.9375 0.9375 + 
RCPSO-based Ensemble RCPSO + aggregated I3D model 0.9325 0.9325 + 

AGPSO-based Ensemble AGPSO + aggregated I3D model 0.9300 0.9300 + 

PSOGSA-based Ensemble PSOGSA + aggregated I3D model 0.9588 0.9588 + 
PPO-based Ensemble PPO + aggregated I3D model 0.9575 0.9575 + 

DDPG-based Ensemble DDPG + aggregated I3D model  0.9317 0.9317 + 

PSORL-based Ensemble PSORL + aggregated I3D model 0.9713 0.9713 + 
Default Ensemble Model Aggregation of I3D with default 

settings 0.9250 0.9250 

+ 



From Table 17, our weighted ensemble I3D networks outperform counterparts fine-tuned by all baseline search 

methods statistically as indicated by the statistical test results. EPSO, PSORL, CS, SA and GA-based ensemble 

models show competitive performance than those of the ensemble models formulated by other baseline search 

algorithms. In particular, the weighted ensemble models developed by the hybrid algorithm, i.e. PSORL, achieve 

comparatively more robust performances than those of the ensemble networks yielded by PPO and DDPG 

algorithms. Among the evolutionary algorithms, AGPSO, RCPSO, DA and FA-based ensemble models show 

the least efficiency. All weighted ensemble networks established by all search algorithms outperform the 

corresponding ensemble model with default settings.  

 

Table 18 Optimized learning configurations of the I3D networks generated by each optimizer using Deepfakes 
 

 Learning 

rate 

Learning rate 

drop factor 

Weight 

decay 

Prop. PSO 0.003061 0.05556 0.000806 

MPSO 0.006636 0.06667 0.000141 

EPSO 0.002045 0.10000 0.000671 

PSO 0.005989 0.04762 0.000655 

CS 0.004755 0.06612 0.000595 

GA 0.001538 0.04158 0.000667 

SA 0.004934 0.02934 0.000442 

FA 0.007126 0.02350 0.000896 

DA 0.007199 0.02874 0.000545 

RCPSO 0.007749 0.02632 0.000762 

AGPSO 0.009483 0.07321 0.000310 

PSOGSA 0.006179 0.06573 0.000596 

PPO 0.006406 0.02925 0.000290 

DDPG 0.009447 0.02997 0.000108 

PSORL 0.004360 0.04081 0.000126 

I3D (default) 0.001 0.1 0.0001 

 

The hyper-parameters identified by each optimizer are shown in Table 18. The correlation of moderate learning 

parameters settings with reliable network performance can be observed in Table 18. Such settings are often 

retrieved by the proposed PSO model. Similar to the proposed model, EPSO, CS, SA and PSORL identify 

moderate mean learning rate settings, which show great efficiency in refining network learning weights while 

tackling stagnations. On the contrary, MPSO, FA, DA, RCPSO, AGPSO, PSOGSA, PPO and DDPG yield 

comparatively larger learning rates, therefore their resulting networks are more likely to overlook the global 

optima owing to the instability of gradient descent-based learning updates as well as the employment of 

comparatively larger learning steps. GA obtains comparatively much smaller learning rates, and its resulting 

ensemble networks demonstrate less competent performance than some of other devised networks within the 

pre-defined number of training epochs. A similar observation is also applied to the default ensemble model with 

comparatively smaller learning rates. Its performance is further affected by its limited base model flexibility.  

 

6.3.2 Evaluation Using the MC3 Network 
The weighted ensemble MC3 networks based on ensemble scheme 1 are also subsequently established, where 

each ensemble model consists of three MC3 networks with distinctive learning settings. Table 19 depicts the 

model performance based on the average result of 10 such weighted ensemble models. It can be observed that 

optimized MC3 networks achieve similar results as compared with those of devised I3D models for most search 

methods. 

 

 Table 19 Mean results of the weighted ensemble MC3 networks using Deepfakes 

 
 

Methods 

 

Ensemble topologies 

Mean 

Accuracy rates 

Mean AUC Rank sum 

test results 

Proposed PSO-based Ensemble New PSO + aggregated MC3 model 0.9850 0.9850 n/a 

MPSO-based Ensemble MPSO + aggregated MC3 model 0.9600 0.9600 + 

EPSO-based Ensemble EPSO + aggregated MC3 model  0.9450 0.9450 + 
PSO-based Ensemble PSO + aggregated MC3 model  0.9575 0.9575 + 

CS-based Ensemble CS + aggregated MC3 model 0.9573 0.9573 + 

GA-based Ensemble GA + aggregated MC3 model 0.9375 0.9375 + 
SA-based Ensemble SA + aggregated MC3 model 0.9675 0.9675 + 

FA-based Ensemble FA + aggregated MC3 model 0.9593 0.9593 + 

DA-based Ensemble DA + aggregated MC3 model 0.9609 0.9609 + 
RCPSO-based Ensemble RCPSO + aggregated MC3 model 0.9392 0.9392 + 

AGPSO-based Ensemble AGPSO + aggregated MC3 model 0.9383 0.9383 + 

PSOGSA-based Ensemble PSOGSA + aggregated MC3 model 0.9690 0.9690 + 
PPO-based Ensemble PPO + aggregated MC3 model 0.9581 0.9581 + 



DDPG-based Ensemble DDPG + aggregated MC3 model 0.9400 0.9400 + 

PSORL-based Ensemble PSORL + aggregated MC3 model 0.9425 0.9425 + 

Default Ensemble Model Aggregation of MC3 with default settings 0.9350 0.9350 + 

 

As shown in Table 19, the proposed PSO-based weighted ensemble models show a statistically better 

performance than those of the ensembles formulated by all baseline algorithms. The weighted fusion networks 

with learning settings extracted by PSOGSA, SA, DA and MPSO achieve better results than those of ensembles 

optimized by other baseline search algorithms. GA, AGPSO, and RCPSO-based ensemble networks obtain the 

lowest performance. The optimized base networks generated by all search methods depict adaptive learning 

behaviours which outperform those with default learning configurations in most test scenarios.  

 

Table 20 Optimized learning configurations of the MC3 networks generated by each optimizer using Deepfakes 

 
 Learning 

rate 

Learning rate 

drop factor 

Weight decay 

Prop. PSO 0.003912 0.04348 0.000119 

MPSO 0.002670 0.05000 0.000171 

EPSO 0.006409 0.05556 0.000551 

PSO 0.004942 0.07143 0.001061 

CS 0.007193 0.01963 0.000809 

GA 0.001141 0.03319 0.000445 

SA 0.002656 0.01665 0.000450 

FA 0.005844 0.03577 0.000418 

DA 0.005784 0.03141 0.000606 

RCPSO 0.008718 0.06086 0.000690 

AGPSO 0.008909 0.03087 0.000660 

PSOGSA 0.002193 0.06527 0.000793 

PPO 0.004895 0.04861 0.000808 

DDPG 0.008782 0.06208 0.000218 

PSORL 0.001260 0.06872 0.000632 

MC3 (default) 0.001 0.1 0.0001 

 

Table 20 reveals the identified learning configurations for each search method. The performance of devised 

MC3 networks is largely dominated by the optimized learning rates. As an example, AGPSO, RCPSO, DDPG, 

and EPSO generate larger learning rates, while GA, PSORL, and the default MC3 model use smaller learning 

rates. The former leads to large alterations to the networks in each learning step, while the latter results in an 

insufficient learning pace susceptible to under-fitting. Moderate learning rate configurations are produced by the 

proposed model, PSOGSA, SA, MPSO, DA and FA, which adopt reasonable learning paces for gradient update.  

 

6.3.3. Ensemble Model Construction Using Optimization Algorithms 
To take advantage of optimized I3D and MC3 networks, evolving ensemble models with optimal subsets of 

different types of base networks are constructed using ensemble scheme 2 as explained in Section 5.2. 

Specifically, each search algorithm is used for ensemble model construction using optimized I3D and MC3 

networks as the base classifiers. For each 3D CNN, we generate a set of 10 optimized settings using each search 

algorithm as discussed earlier. For each optimized setting, we train the respective network with three (i.e. 25, 35 

and 50) epochs, respectively. We select the top 15 optimized I3D and top 15 devised MC3 networks for the 

validation sets to construct the base classifier pool.  

 

Each search algorithm is then used to extract an optimal subset of base classifiers among all the 30 base methods 

for ensemble network construction. Again, each particle has a dimension of 30 with each element representing a 

base classifier. A dimension of 30 is assigned to each particle with each dimension representing the selection or 

omission of a specific base classifier. The optimal subset base network selection is guided by the search 

mechanisms of each search method. The optimization process is performed with a maximum number of function 

evaluations of 1,000, and is repeated for 30 trials. For the fitness evaluation, we first compare the value of each 

dimension in each particle against a threshold value to determine the selection or elimination of the respective 

base classifier. After obtaining the selected subset of networks, the weighted ensemble strategy shown in 

Equations (23)-(25) is deployed to fuse the results of all the selected base classifiers. The resulting validation 

accuracy rate along with the number of selected base networks is employed for fitness calculation as shown in 

Equation (26). After the completion of the evolutionary process, the swarm leader representing the most optimal 

subset of the selected base classifiers is derived. This subset of the selected most optimal base networks is 

leveraged to form the final optimized ensemble, which is used to evaluate unseen samples in the test set. The 

weighted ensemble results calculated using Equations (23)-(25) are utilized for performance comparison. 

 



Table 21 depicts the mean results of the resulting optimized ensemble networks over a set of 30 runs. By 

assembling an optimized subset of I3D and MC3 networks with distinctive learning configurations, ensemble 

models formulated by each search method improve the performance as compared with those with the same types 

of base networks. The statistical results positively showcase the significance in performance of the optimized 

ensemble models identified by the proposed optimizer over those generated by other search algorithms. 

 

Table 21 Mean results for optimal ensemble networks integrating I3D and MC3 devised by each search method 

for Deepfakes 
 
Methods 

 
Ensemble topologies 

Mean Accuracy 
rate 

Mean AUC Ensemble 
size 

Rank sum 
test results 

Proposed PSO-based Ensemble New PSO + aggregation of I3D and MC3 0.9988 0.9988 16.60 n/a 

MPSO-based Ensemble MPSO + aggregation of I3D and MC3 0.9723 0.9723 18.60 + 
EPSO-based Ensemble EPSO + aggregation of I3D and MC3 0.9771 0.9771 17.20 + 

PSO-based Ensemble PSO + aggregation of I3D and MC3 0.9675 0.9675 17.09 + 

CS-based Ensemble CS + aggregation of I3D and MC3 0.9725 0.9725 19.60 + 
GA-based Ensemble GA + aggregation of I3D and MC3 0.9654 0.9654 17.20 + 

SA-based Ensemble SA + aggregation of I3D and MC3 0.9737 0.9737 21.50 + 

FA-based Ensemble FA + aggregation of I3D and MC3 0.9616 0.9616 15.60 + 
DA-based Ensemble DA + aggregation of I3D and MC3 0.9623 0.9623 19.80 + 

RCPSO-based Ensemble RCPSO + aggregation of I3D and MC3 0.9438 0.9438 21.10 + 

AGPSO-based Ensemble AGPSO + aggregation of I3D and MC3 0.9413 0.9413 15.00 + 
PSOGSA-based Ensemble PSOGSA + aggregation of I3D and MC3 0.9720 0.9720 18.60 + 

PPO-based Ensemble PPO + aggregation of I3D and MC3 0.9606 0.9606 14.33 + 

DDPG-based Ensemble DDPG + aggregation of I3D and MC3 0.9432 0.9432 16.20 + 
PSORL-based Ensemble PSORL + aggregation of I3D and MC3 0.9733 0.9733 16.90 + 

Default Ensemble Model Aggregation of I3D and MC3 with default 
settings 0.9408 0.9408 30.00 

+ 

 

As indicated in Table 21, the proposed algorithm extracts a moderate mean number, i.e. 16.6, of base classifiers 

over 30 runs with high classification accuracy rates and reasonable computational costs. In comparison with our 

devised ensemble models, CS and SA-based ensemble networks show competitive performance, but their 

devised ensemble networks consist of comparatively much larger numbers of base classifiers, i.e. 19.6 and 21.5, 

respectively, with much costly computational complexity. In addition, PPO, AGPSO, FA, and DDPG identify 

smallest ensemble networks with mean ensemble sizes of 14.33, 15, 15.6, and 16.2, respectively. Such ensemble 

networks with very small numbers of selected base classifiers demonstrate limited complementary capabilities 

with suboptimal performances. On the contrary, RCPSO and DA also establish much larger ensemble networks 

with mean ensemble sizes of 21.1 and 19.8, respectively. Besides increased complexity, their ensemble networks 

are highly likely to suffer from redundancy, with lower accuracy rates. Ensemble networks optimized by all 

search algorithms possess significant robustness and demonstrate better performance than those of the default 

ensemble method integrating all 30 base classifiers. 

 

6.4 Computational Cost Comparison 
A computational cost analysis of the proposed model is conducted, as follows. The computational cost of the key 

operations in the proposed algorithm is represented in Equation (27). 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑝𝑟𝑜𝑝 =  𝑂(𝑚𝑎𝑥𝑖𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  × (𝑡𝑖𝑚𝑒𝑔𝑏𝑒𝑠𝑡𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡
+ 𝑛′ × (𝑡𝑖𝑚𝑒𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑡𝑖𝑚𝑒𝑅𝐿𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

+

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)))   (27) 

 

where 𝑚𝑎𝑥𝑖𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 indicates the pre-defined maximum number of iterations for all search methods, while 𝑛′ 

represents the adjusted smaller swarm size for the proposed model. Note that 𝑛′ is a proportion of the original 

swarm size 𝑛 to ensure that our model conducts the same maximum number of function evaluations as those of 

other search methods for establishing a fair comparison. In each iteration, we take the following costs into 

account for analysing the complexity, i.e. the cost for swarm leader enhancement (𝑡𝑖𝑚𝑒𝑔𝑏𝑒𝑠𝑡𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡
), as 

well as the cost incurred for each particle in the swarm. To be specific, the costs of each particle in each 

iteration include the time allocated for (1) cross-breed leader generation (𝑡𝑖𝑚𝑒𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛), (2) Q-learning 

based local/global search action selection (𝑡𝑖𝑚𝑒𝑅𝐿𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
), and (3) fitness evaluation (𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) 

of its respective offspring individual. 

 

For the swarm leader improvement, we randomly select one root-finding algorithm, i.e. Muller’s method or 

fixed-point iteration with the cost of 𝑂(𝑑), where 𝑑 denotes the dimension of the swarm leader. An additional 

function evaluation with the cost of 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 is incurred to evaluate the newly generated offspring 

leader individual using one of these mathematical operations. We therefore have the following updated 

complexity formula as shown in Equation (28) with respect to the cost for the swarm leader enhancement. 



 

𝑡𝑖𝑚𝑒𝑔𝑏𝑒𝑠𝑡𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡
=  𝑂(𝑑) + 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦                                        (28) 

 

Equation (29) provides a breakdown cost of each fitness function evaluation using optimized deep networks. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  (𝑘𝑒𝑝𝑜𝑐ℎ × 𝑡𝑟𝑎𝑖𝑛𝑠𝑖𝑧𝑒 +  𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒) × (𝑡𝑖𝑚𝑒𝑓𝑜𝑟𝑤𝑎𝑟𝑑) 

= 𝑂((𝑘𝑒𝑝𝑜𝑐ℎ × 𝑡𝑟𝑎𝑖𝑛𝑠𝑖𝑧𝑒 +  𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒) × (𝑁𝑓𝑟𝑎𝑚𝑒 × ∑ 𝑎𝑙
𝐿
𝑙=1 × 𝑠l

2 × 𝑔𝑙 × 𝑣l
2))             (29) 

 

where 𝑙 is the index of a specific convolutional layer out of 𝐿 convolutional layers, while 𝑎𝑙, 𝑣𝑙 , 𝑠𝑙 and 𝑔𝑙 denote 

the number of input channels, output feature map size, filter size and filter number, respectively.  

 

For each deep network, frame-level spatial features from a sequence of video frames are extracted. Owing to the 

slightly different operations for such feature learning processes for different networks, we employ the typical 

convolutional operation of ∑ 𝑎𝑙
𝐿
𝑙=1 × 𝑠l

2 × 𝑔𝑙 × 𝑣l
2 for spatial feature learning. Since we need to perform such 

feedforward feature learning processes for all the image frames (e.g. 50 frames) extracted from each video, the 

overall complexity of spatial feature learning becomes 𝑁𝑓𝑟𝑎𝑚𝑒 × ∑ 𝑎𝑙
𝐿
𝑙=1 × 𝑠l

2 × 𝑔𝑙 × 𝑣l
2, where 𝑁𝑓𝑟𝑎𝑚𝑒  denotes 

the number of frames extracted from each video. The above spatial feature learning process is performed for 

both training and test datasets with sample sizes of 𝑡𝑟𝑎𝑖𝑛𝑠𝑖𝑧𝑒  and 𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒 , respectively. In particular, in the 

training stage, this feedforward process is repeated for 𝑘𝑒𝑝𝑜𝑐ℎ  number of training epochs. Equation (30) is 

generated by incorporating the cost details pertaining to the fitness evaluation illustrated in Equation (29). 

 
𝑡𝑖𝑚𝑒𝑔𝑏𝑒𝑠𝑡𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡

=  𝑂(𝑑) + 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 

 

= 𝑂(𝑑) + 𝑂((𝑘𝑒𝑝𝑜𝑐ℎ × 𝑡𝑟𝑎𝑖𝑛𝑠𝑖𝑧𝑒 +  𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒) × (𝑁𝑓𝑟𝑎𝑚𝑒 × ∑ 𝑎𝑙
𝐿
𝑙=1 × 𝑠l

2 × 𝑔𝑙 × 𝑣l
2))   

≈ 𝑂((𝑘𝑒𝑝𝑜𝑐ℎ × 𝑡𝑟𝑎𝑖𝑛𝑠𝑖𝑧𝑒 +  𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒) × (𝑁𝑓𝑟𝑎𝑚𝑒 × ∑ 𝑎𝑙
𝐿
𝑙=1 × 𝑠l

2 × 𝑔𝑙 × 𝑣l
2))  

=  𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦                                                                                        (30) 

 

Since the fitness evaluation using deep networks is comparatively more costly than those from the root-finding 

method for swarm leader enhancement, we further simplify Equation (30) by omitting the cost of 𝑂(𝑑).  
 

Moreover, Equation (31) represents the updated new complexity formula by replacing the swarm leader 

enhancement cost in Equation (27) with Equation (30). 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑝𝑟𝑜𝑝 ≈  𝑂(𝑚𝑎𝑥𝑖𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  × (𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝑛′ × (𝑡𝑖𝑚𝑒𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑡𝑖𝑚𝑒𝑅𝐿𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
+

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)))   (31) 

 

As mentioned earlier, for each particle, there are three costs, i.e. the costs for (1) cross-breed leader generation 

𝑡𝑖𝑚𝑒𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , (2) Q-learning based search action selection 𝑡𝑖𝑚𝑒𝑅𝐿𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
, and (3) one fitness 

function evaluation for its offspring solution 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 . We analyse these cost details pertaining to each 

particle, as follows. 

 

Firstly, for each particle, a cross-breed leader is generated for its position update, where weighting coefficients 

of the global and personal best solutions are produced using a set of 3D formulae. This process has a 

computational complexity of 𝑂(𝑚),  where 𝑚  represents the number of 3D points generated using the 

corresponding 3D formulae. Because of the ranking of these generated values in the z-axis using a Python built-

in function, it requires an additional cost of 𝑂(𝑚). Therefore, the total cost of the adaptive weighting coefficient 

generation with respect to cross-breed leader production is 2 × 𝑂(𝑚). We simplify the cost representation by 

omitting the constant factor, as shown in Equation (32). 

 

𝑡𝑖𝑚𝑒𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑂(𝑚)                                                      (32) 

  

Secondly, each particle employs the Q-learning method to select local and global search operations. This results 

in one additional function evaluation for measuring the fitness of the new particle position by performing a 

selected action (i.e. either a selected local or a global search operation). This new fitness result is employed to 

compare with the previous fitness score of the current particle for immediate reward generation. Therefore, we 

define 𝑡𝑖𝑚𝑒𝑅𝐿𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 as follows.  

 

𝑡𝑖𝑚𝑒𝑅𝐿𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
= 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 +  𝑂(𝑑) ≈  𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦                        (33) 



where 𝑂(𝑑) denotes the cost for implementing the selected search action. As discussed earlier, since this position 

updating operation cost for each particle is comparatively smaller as compared with the time spent for fitness 

evaluation, it is omitted. 

 

We replace the cost details obtained in Equations (32) and (33) with the corresponding components in Equation 

(27).  Equation (34) shows the updated complexity formula. 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑝𝑟𝑜𝑝 =  𝑂(𝑚𝑎𝑥𝑖𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  × (𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝑛′ × (𝑂(𝑚) + 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦))) 

≈ 𝑂(𝑚𝑎𝑥𝑖𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 × (𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝑛′ × (𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 +  𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)))    

 = 𝑂(𝑚𝑎𝑥𝑖𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ×  (2𝑛′ + 1) × 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)                                                   (34) 

                            

As indicated earlier, since the fitness evaluation involving deep networks is a far more computationally complex 

process than the cost of the adaptive weighting coefficient generation, we further simplify Equation (34) by 

discarding the cost of 𝑂(𝑚).  

 

In our experimental studies, all search methods are established to execute the same pre-defined number of 

function evaluations, in order to ensure their results are comparable. Because of employing additional function 

evaluations as discussed above during the search process, we adjust the population size of the proposed model to 

𝑛′ = (𝑛 − 1)/2, where 𝑛 is the original population size for all other search methods without the requirement of 

additional function evaluations. Such a process for population size adjustment is also applied to other PSO/FA 

variants if additional function evaluations are incurred. We further update the complexity calculation in Equation 

(34) to the following formula. 

 

                                𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑝𝑟𝑜𝑝 =  𝑂(𝑚𝑎𝑥𝑖𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑛 × 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)                       (35)                            

 

As depicted in Equation (35), the computational complexity of the proposed model largely relies on the pre-

defined maximum number of function evaluations, i.e. 𝑚𝑎𝑥𝑖𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑛.  

 

After performing the complexity analysis, we also perform a practical computational cost comparison between 

the proposed model and all baseline search methods for hyper-parameter search using the three video deepfake 

datasets. Table 22 depicts the computational-wise comparison for Celeb-DFv2, FaceForensics++, and Deepfakes 

datasets, respectively. 

 

Table 22 Computational cost comparison with respect to hyper-parameter search using video deepfake datasets 

(in seconds) 

 
Methods Celeb-DFv2 FaceForensics++ Deepfakes 

Prop. PSO 60.5368 111.1530 51.4215 
MPSO 60.1449 108.7653 49.9884 

EPSO 63.0685 114.4960 54.5360 

PSO 59.1618 108.7589 49.0206 
CS 59.2949 108.8343 48.4897 

GA 59.9933 109.4659 50.3709 

SA 59.6803 108.8736 49.5974 
FA 59.4326 108.4193 49.0232 

DA 59.1697 107.7223 49.8914 

RCPSO 60.6861 112.5235 51.8656 
AGPSO 60.2443 109.6587 50.2418 

PSOGSA 60.3211 110.1778 50.9331 

PPO 81.2031 125.1420 70.0105 
DDPG 78.2640 122.2030 67.0715 

PSORL 68.2307 119.9914 56.7037 

 

As discussed earlier, a pre-defined maximum number of function evaluations is utilized as the termination 

criterion for all the search methods with respect to a specific dataset. Since such a fitness evaluation procedure 

embedding deep networks is the most computationally expensive process in comparison with other search 

related operations, the time spent for hyper-parameter search for each optimization algorithm is comparatively 

identical. In order to indicate the operational variations of different search algorithms, we generate the mean 

computational cost in seconds with respect to one fitness evaluation in conjunction with the time spent in 

traversing through the key search operations of each algorithm over a set of 30 runs. The cost variations between 

different algorithms indicate the operational differences in execution of these methods. The cost details in Table 

22 are obtained using a NVIDIA RTX 3090 GPU. 



As showcased in Table 22, our algorithm has obtained a better balance between performance and computational 

cost with moderate mean computational costs over 30 runs across all three video datasets. In addition, owing to 

the employment of neural network-based cumulative reward score generation and hyper-parameter prediction, 

DDPG and PPO illustrate larger computational costs as compared with those of the proposed model and other 

swarm-based methods. PSORL also shows comparatively higher computational costs because of the 

construction of a larger Q-table for the dispatching of several root-finding algorithms for top-ranking particle 

enhancement. EPSO is also computationally more costly owing to the integration of multiple search actions fine-

tuned by nonlinear geometric function-based search parameters and DE-based swarm leader enhancement. 

RCPSO also requires slightly larger computational costs than those of the proposed model, because of multiple 

distinctive subswarm-based search actions with sine/cosine-based search parameters.  

 

The remaining PSO variants (PSOGSA, AGPSO and MPSO) and classical search algorithms show lower costs 

than those of the proposed optimizer. For instance, PSOGSA illustrates longer processing time than those of 

AGPSO and MPSO, due to the integration of GSA with PSO. The smallest costs are obtained by CS, FA, PSO, 

DA, and SA, due to the simplicity of these classical search algorithms. In short, the proposed model is equipped 

with not only effective search strategies but also reasonable computational efficiency as compared with those of 

all the swarm-based and reinforcement learning algorithms, as evidenced in cost comparison results. 

 

To visualize the effects of feature learning capabilities of the optimized 3D CNNs, the gradient-weighted class 

activation mapping (Grad-CAM) algorithm [87] is utilized to generate heatmaps. Such heatmaps use different 

colour schemes to illustrate which image pixels/regions contribute the most to the target class prediction. To be 

specific, we firstly calculate gradient descent back-propagated to the final convolutional layers with respect to 

the target fake/real classes. These gradient descent results are subsequently summed and averaged to produce the 

dominating weights for the corresponding feature maps. We then multiply these weights with the respective 

feature maps to generate the Grad-CAM heatmaps. These heatmaps are used to indicate which convolutional 

features are comparatively more significant to the fake or real class prediction. Figure 10 shows examples of real 

and manipulated video frames taken from the Celeb-DFv2 dataset, along with the Grad-CAM heatmaps 

produced using the I3D and MC3 networks for the manipulated samples with optimal hyper-parameters yielded 

by the proposed model. 

 

As discussed earlier, since face swap has been performed on this Celeb-DFv2 dataset, a facial cropping 

algorithm, i.e. MTCNN [81], is employed in the pre-processing stage to extract facial regions automatically. 

This also allows us to better present the significance of different facial attributes to deepfake detection. The 

colours embedded in the Grad-CAM heatmaps range from bright red to dark blue, indicating the most significant 

(bright red) to the most irrelevant (dark blue) facial characteristics to video authenticity classification. 

 

As indicated in existing studies [1, 2], manipulated facial image frames can include a variety of properties, such 

as blurred mouth, nose and eye regions, unsmoothed textures of mouth/nose and facial borders, asymmetric eye 

pupils and facial hair, misaligned jawlines, and unnatural facial lighting and expressions. As indicated in Figure 

10, our optimized I3D and MC3 models are able to extract such important synthetic facial features highlighted 

by the red colour in the generated heatmaps pertaining to the fake images to inform deepfake detection. For 

instance, the blurred eye and mouth regions, misaligned teeth, unsmoothed facial borders, and unnatural high 

contrast lighting around eye pupils have been regarded as the most dominating features by both of our optimized 

3D CNNs with respect to manipulated video frame classification.  

 

Since a set of 50 image frames is randomly extracted from an input video, a sequence of such highly 

discriminative feature maps is used for the identification of a synthetic and real video input by each optimized 

network. These heatmaps extracted by our optimized networks further ascertain the network effectiveness in 

spatial-temporal feature learning, leading to high classification accuracy for various video forgery detection, as 

indicated in our experimental studies.  

  

 

 

 

 

 



      

      

      

      

      

      

      

      
 

Figure 10 Example video frames taken from Celeb-DFv2 along with extracted Grad-CAM heatmaps for the 

manipulate frames (For each set of images, the first and second rows illustrate the original and synthetic images, 

with the third and fourth rows showing the heapmaps generated by our optimized I3D and MC3, respectively.) 

 

A comparison with existing state-of-the-art related studies is presented in Tables 23-25 for Celeb-DFv2, 

FaceForensics++ and Deepfakes, respectively. Some related studies employed the same official train-test split 

for Celeb-DFv2, or the same experimental settings for Deepfakes and FaceForensics++ as those in this research, 

while other studies were trained using combined or other significantly larger datasets. As indicated in Tables 23-

25, our model depicts a competitive performance for all the three test datasets owing to the adoption of diverse 

networks, e.g. CNN-RNN, I3D and MC3, with distinctive spatial-temporal feature extraction and learning 

mechanisms. These unique learning behaviours are strengthened by applying the proposed PSO-based network 

structure and hyper-parameter fine-tuning method. The evolving ensemble generation with the identification of 

optimal subsets of different types of optimized networks is able to even further boost the performance of 

individual classifiers. In comparison with our approach, most existing studies utilize homogenous single 2D or 

3D networks without taking advantage of diverse distinctive learning mechanisms of different networks and 



evolutionary algorithm-based hyper-parameter optimization and dynamic ensemble construction mechanisms, 

therefore constraining their model performance. 

 

Table 23 Related work comparison for Celeb-DFv2 

 
Related works Strategies  Accuracy AUC 

Zhang et al. [15] Temporal Dropout 3D CNN 0.8108 0.8883 

Ciftci et al. [7] FakeCatcher 0.9150 - 

Pu et al. [21] CNN-LSTM 0.874±0.23 85.5±0.35 

Pu et al. [21] CNN-GRU 0.923±0.17 89.9±0.37 

Demir and Ciftci [88] Gaze tracking 0.8835 - 

Afchar et al. [89] Meso4 0.720±0.99 83.0±1.65 

Afchar et al. [89] MesoInception4 0.853±1.53 89.7±2.11 

Nguyen et al. [90] Capsule network 0.91±0.35 88.5±0.26 

Rossler et al. [2] XN-max 0.8989 - 

Wang et al. [5] LiSiam - 0.7821 

Wang et al. [91] FakeSpotter - 0.668 

Liu et al. [92] SPSL - 0.7688 

Zhao et al. [93] Multi-attention - 0.6744 

Yang et al. [94] MTD-Net - 0.7012 

Wang et al. [23] MC-LCR - 0.7161 

Zhou et al. [95] A dual neural network - 0.7341 

Li et al. [1] Xception-c23 - 0.653 

Li et al. [1] Xception-c40 - 0.655 

Li and Lyu [96] D-FWA - 0.646 

Ours The proposed PSO-based evolving 
ensemble model combining 

Inceptionv3-RNN, I3D and MC3 

0.9498 0.9270 

 

Table 24 Related work comparison for FaceForensics++ 

 
Related works Strategies Accuracy  AUC 

Zhang et al. [15] Temporal Dropout 3D CNN (60:20:20) 0.7909 0.7222 

Ciftci et al. [7] FakeCatcher (60:40) 0.9465 - 

Fridrich and Kodovsky [97]  Steganalysis features + SVM 0.7097 - 

Cozzolino et al. [98] LD-CNN (72:14:14) 0.7845 - 

Bayar and Stamm [99] Constrained Conv (72:14:14) 0.8297 - 

Rahmouni et al. [100] CustomPooling CNN (72:14:14) 0.7908 - 

Afchar et al. [89] MesoNet (72:14:14)  0.8310 - 

Gunawan et al. [101] Xception-ELA (72:14:14) 0.9386 - 

Demir and Ciftci [88] Gaze tracking 0.9248 - 

Zhang  et al. [102] Face-Alignment (FA)-LSTM 0.825 - 

Zhang et al. [102] Dense Face-Alignment (DFA)-LSTM 0.924 - 

Kim et al. [103] CNN-Eye 0.791 - 

Li et al. [104] LRCN 0.836 - 

Güera and Delp [105] ConvLSTM 0.8784 - 

Sohrawardi et al. [106]  FaceNetLSTM 0.8957 - 

Nguyen et al. [25] ClassNSeg 0.7976 - 

Sabir et al. [107] DenseNetAligned 0.9053 - 

Li et al. [108] Face X-ray - 0.874 

Li and Lyu [96] D-FWA - 0.575 

Ours The proposed PSO-based evolving 

ensemble model combining I3D and MC3 
(60:20:20) 

0.9620 0.9425 

 

 
Table 25 Related work comparison for Deepfakes  

 
Related works Strategies  Accuracy AUC 

Li and Lyu [96] D-FWA 0.512 0.514 

Nguyen et al. [90] Capsule network 0.846±0.12 0.847±0.13 

Ciftci et al. [7] FakeCatcher 0.9375 - 

Afchar et al. [89] Meso4 0.704±1.02 0.776±0.85 

Afchar et al. [89] MesoInception4 0.823±1.32 0.839±0.93 

Pu et al. [21]  ResNet50-GRU  0.948±0.25 0.984±0.23 

Pu et al. [21] CNN-LSTM 0.892±0.23 0.887±0.31 

Pu et al. [21] CNN-GRU 0.912±0.65 0.899±0.27 

Rossler et al. [2] Xception 0.835±0.75 0.899±0.53 

Shang et al. [22]  Pixel-Region Relation Network 0.8470 - 

Xu and Yayilgan  [109] Xception 0.9877 - 



Xu and Yayilgan  [109] Resnet152+LSTM 0.8853 - 

Li et al. [110] Sharp multi-instance learning 0.9071 - 

Li et al. [110] LSTM 0.8500 - 

Carreira and Zisserman [10] 3D CNN 0.93 - 

Güera and Delp [105] ConvLSTM 0.9429 - 

Sohrawardi et al. [106]  FaceNetLSTM 0.9571 - 

Nguyen et al. [25] ClassNSeg 0.6429 - 

Sabir et al. [107] DenseNetAligned 0.9643 - 

Zi et al. [111] ADDNet-2D 0.9011 - 

Ours The proposed PSO-based evolving ensemble 
model combining I3D and MC3 

0.9988 0.9988 

 

6.5 Evaluation Using Numerical Optimization Problems 
Besides the evaluation using deepfake video classification problems, we exploit unimodal (Sum of Different 

Powers, Dixon-Price, Sum Squares, Rotated Hyper-Ellipsoid, Sphere, Zakharov and Rosenbrock) and 

multimodal (Ackley, Griewank, Rastrigin, and Powell) numerical functions, to further assess model efficiency in 

optimization. These benchmark functions possess complex artificial geometric contours with single or many 

local optima. They have been widely used to evaluate the diversification and intensification search capabilities 

of swarm intelligence algorithms in dynamic search space. Besides the previous 12 selected classical and 

advanced search methods, a total of 12 additional baseline methods are employed for performance comparison, 

namely a classical research method (i.e. Moth-Flame Optimization (MFO) [112]), PSO variants (i.e. PSO with 

cosine search coefficients (CPSO) [43], Genetic PSO (GPSO) [113], PSO with preserved neighbourhood 

learning (DNLPSO) [114], Genetic and Mutated PSO (GMPSO) [65], and PSO with opposition and DE-based 

leader mutation (ELPSO) [64]), and FA variants (i.e. Repulsive FA (RFA) [115], FA with Logistic map-oriented 

search coefficients (LFA) [116], FA with Gauss map-based search parameters (GFA) [117], FA with an adaptive 

randomization factor (VSSFA) [118], an FA variant (FAV) [119], and Neighbourhood Attraction FA (NaFA) 

[120]). These algorithms are selected owing to their competitive performance in tackling diverse mathematical 

landscapes in optimization.  

 

In this study, a total of 25,000 function evaluations, a dimension of 30 and 30 trials are employed to test model 

convergence and accuracy rates in attaining global minima. We provide the average, best (minimum), worst 

(maximum), standard deviation and statistical test results of each search algorithm for all the numerical 

optimization functions in Table 26. As evidenced by results in Table 26, the proposed model is able to obtain the 

minimum mean results for solving nearly all the benchmark functions as compared with those of 24 baseline 

methods. In particular, it achieves the global optima (i.e. ‘0’) for 5 unimodal (Sum of Different Powers, 

Zakharov, Sum Squares, Sphere and Rotated Hyper-Ellipsoid) and 3 multimodal (Griewank, Rastrigin, and 

Powell) mathematical landscapes. PSORL obtains the global minimum solution of ‘0’ for two benchmark 

functions, i.e. Griewank and Sum of Different Powers. In addition, PSOGSA, GMPSO, MPSO, CPSO, NaFA 

and RFA show comparatively better results than those from other baseline methods.    

 

A further Wilcoxon rank sum test is conducted, where ‘+’, ‘-’ and ‘=’ are used to indicate if our results are 

statistically better, worse, or the same as compared with those from the baseline methods. As shown in Table 26, 

the proposed model shows significance in performance difference against 24 baseline methods in most 

evaluation scenarios. The rare exceptional cases are, for Rosenbrock, CPSO, MPSO, PSOGSA, NaFA, FA and 

PSORL obtain similar results to those of the proposed model, while for Dixon-Price, PSORL obtains statistically 

better results than those from our algorithm with PSOGSA achieving similar result distributions to those from 

the proposed model. 
 

Table 26 Evaluation and statistical results of unimodal and multimodal artificial landscapes over 30 runs 

 
 Prop. PSO EPSO GPSO AGPSO DNLPSO ELPSO GMPSO CPSO MPSO PSOGSA 

Ackley mean 4.44E-16 1.70E+01 1.76E+01 2.69E+00 2.73E+00 1.50E+01 3.12E+00 1.21E+01 1.68E+01 1.25E+01 

 min 4.44E-16 1.44E+01 1.60E+01 1.16E+00 9.01E-02 1.34E+01 1.50E+00 1.07E+01 1.44E+01 3.93E+00 

 max 4.44E-16 1.88E+01 1.83E+01 9.04E+00 5.47E+00 1.60E+01 5.68E+00 1.34E+01 1.81E+01 1.82E+01 

 std 0.00E+00 9.92E-01 5.17E-01 1.38E+00 1.55E+00 5.94E-01 1.27E+00 6.49E-01 8.47E-01 3.94E+00 

 RS n/a + + + + + + + + + 

Dixon mean 6.67E-01 1.32E+05 5.01E+05 1.57E+01 2.55E+02 1.39E+05 6.95E-01 6.15E+00 1.13E+01 6.71E-01 

 min 6.67E-01 1.27E+04 2.45E+05 6.67E-01 6.67E-01 4.21E+04 6.67E-01 6.67E-01 6.67E-01 6.67E-01 

 max 6.67E-01 4.66E+05 8.96E+05 3.21E+02 6.63E+03 2.17E+05 1.27E+00 8.32E+01 3.21E+02 8.02E-01 

 std 2.38E-05 1.16E+05 1.79E+05 5.97E+01 1.21E+03 4.64E+04 1.15E-01 2.08E+01 5.85E+01 2.46E-02 

 RS n/a + + + + + + + + = 

Griewank mean 0.00E+00 1.19E+02 2.88E+02 3.92E-02 7.32E-01 1.44E+02 1.38E-02 2.63E-02 5.66E-02 1.89E+01 

 min 0.00E+00 1.20E+01 2.05E+02 1.22E-04 8.69E-05 8.87E+01 7.66E-09 6.03E-04 5.56E-04 5.04E-02 

 max 0.00E+00 3.15E+02 3.80E+02 1.71E-01 2.88E+00 1.99E+02 6.58E-02 1.14E-01 5.36E-01 9.11E+01 

 std 0.00E+00 7.42E+01 4.22E+01 3.94E-02 8.52E-01 2.31E+01 1.48E-02 2.89E-02 9.98E-02 3.65E+01 

 RS n/a + + + + + + + + + 



Rastrigin mean 0.00E+00 2.45E+02 3.51E+02 5.82E+01 9.02E+01 2.72E+02 4.27E+01 6.63E+01 5.09E+01 1.35E+02 

 min 0.00E+00 1.45E+02 2.71E+02 3.38E+01 3.67E+01 2.12E+02 1.87E+01 3.78E+01 3.18E+01 7.96E+01 

 max 0.00E+00 3.11E+02 3.87E+02 1.10E+02 2.23E+02 3.12E+02 7.83E+01 1.10E+02 9.75E+01 1.86E+02 

 std 0.00E+00 4.36E+01 2.52E+01 1.78E+01 4.22E+01 2.53E+01 1.55E+01 1.75E+01 1.54E+01 2.84E+01 

 RS n/a + + + + + + + + + 

Rothyp mean 0.00E+00 7.77E+04 1.99E+05 2.82E+02 1.84E+03 8.86E+04 7.28E-06 5.63E+02 9.27E-04 7.90E+03 

 min 0.00E+00 1.40E+04 1.29E+05 6.83E-05 1.44E-03 4.70E+04 4.58E-08 3.45E-04 7.46E-05 2.42E-01 

 max 0.00E+00 1.59E+05 2.71E+05 4.23E+03 3.94E+04 1.23E+05 1.41E-04 1.27E+04 2.95E-03 6.76E+04 

 std 0.00E+00 3.59E+04 3.40E+04 1.07E+03 7.22E+03 1.78E+04 2.55E-05 2.41E+03 7.82E-04 1.86E+04 

 RS n/a + + + + + + + + + 

Rosenbrock mean 2.83E+01 1.39E+05 3.71E+05 1.09E+02 1.15E+03 1.10E+05 3.61E+01 2.45E+02 9.91E+01 4.01E+01 

 min 2.78E+01 2.08E+04 1.90E+05 3.39E+00 1.78E+01 3.99E+04 1.39E+01 2.76E+00 3.94E+00 1.96E+01 

 max 2.87E+01 4.47E+05 6.46E+05 1.07E+03 1.44E+04 2.11E+05 9.14E+01 2.58E+03 1.01E+03 1.26E+02 

 std 2.24E-01 9.58E+04 1.11E+05 1.86E+02 3.55E+03 4.16E+04 2.47E+01 6.53E+02 1.92E+02 3.05E+01 

 RS n/a + + + + + + = = = 

Sphere mean 0.00E+00 4.21E+01 7.97E+01 1.32E-06 2.16E-01 3.70E+01 3.01E-09 1.74E-03 1.08E-03 7.94E-19 

 min 0.00E+00 1.11E+01 4.34E+01 4.78E-09 1.17E-09 2.72E+01 6.27E-11 2.59E-04 1.39E-04 4.56E-19 

 max 0.00E+00 9.15E+01 1.06E+02 1.24E-05 3.53E+00 5.07E+01 2.37E-08 6.35E-03 1.13E-02 1.47E-18 

 std 0.00E+00 1.94E+01 1.44E+01 2.47E-06 6.62E-01 5.84E+00 5.60E-09 1.26E-03 2.00E-03 2.31E-19 

 RS n/a + + + + + + + + + 

Sumpow mean 0.00E+00 2.88E-03 1.49E-01 2.63E-17 1.76E-06 1.65E-02 1.43E-27 5.86E-07 3.90E-07 2.02E-09 

 min 0.00E+00 3.91E-06 4.22E-03 1.03E-23 2.28E-37 5.58E-05 6.75E-34 3.83E-09 4.55E-10 1.34E-10 

 max 0.00E+00 2.45E-02 7.66E-01 4.09E-16 4.24E-05 4.03E-02 1.90E-26 5.85E-06 7.46E-06 8.85E-09 

 std 0.00E+00 5.67E-03 1.77E-01 8.53E-17 7.81E-06 1.13E-02 4.10E-27 1.29E-06 1.36E-06 2.17E-09 

 RS n/a + + + + + + + + + 

Zakharov mean 0.00E+00 3.75E+02 4.75E+02 7.56E+01 1.09E+02 3.46E+02 3.18E+01 2.98E+02 4.13E+02 2.21E+02 

 min 0.00E+00 2.57E+02 4.06E+02 3.69E+01 5.12E+01 3.03E+02 1.14E+01 2.41E+02 3.13E+02 1.24E+02 

 max 0.00E+00 5.62E+02 5.29E+02 1.14E+02 2.11E+02 3.93E+02 5.04E+01 3.34E+02 6.19E+02 3.11E+02 

 std 0.00E+00 8.15E+01 2.84E+01 1.76E+01 5.10E+01 2.49E+01 1.04E+01 2.11E+01 6.30E+01 5.54E+01 

 RS n/a + + + + + + + + + 

Sumsqu mean 0.00E+00 5.41E+02 1.16E+03 2.84E-05 8.44E+00 5.79E+02 6.61E-08 1.75E+00 1.02E-03 2.30E-17 

 min 0.00E+00 1.29E+02 7.29E+02 1.86E-07 7.16E-10 3.64E+02 3.29E-10 4.53E-04 9.84E-05 5.96E-18 

 max 0.00E+00 1.38E+03 1.55E+03 2.63E-04 1.73E+02 7.18E+02 4.45E-07 2.62E+01 3.07E-03 4.78E-17 

 std 0.00E+00 2.72E+02 2.22E+02 5.51E-05 3.16E+01 9.41E+01 1.13E-07 6.65E+00 7.16E-04 9.72E-18 

 RS n/a + + + + + + + + + 

Powell mean 0.00E+00 1.63E+03 4.17E+03 1.91E+01 9.64E+00 1.78E+03 6.43E-02 3.59E+02 4.61E+03 1.00E-01 

 min 0.00E+00 1.46E+02 1.27E+03 2.48E-03 6.23E-04 5.47E+02 7.05E-04 1.77E+02 5.25E+02 4.47E-03 

 max 0.00E+00 5.47E+03 6.69E+03 1.04E+02 1.19E+02 2.51E+03 9.02E-01 5.66E+02 1.77E+04 4.41E-01 

 std 0.00E+00 1.47E+03 1.31E+03 3.58E+01 2.25E+01 4.71E+02 1.68E-01 8.80E+01 3.99E+03 1.04E-01 

 RS n/a + + + + + + + + + 

 

 
 Prop. PSO RFA LFA GFA VSSFA FAV NaFA PSO FA DA CS MFO 

Ackley mean 4.44E-16 7.31E-03 1.57E+01 1.46E+01 1.04E+01 2.02E+01 8.34E-03 1.50E+01 4.43E-02 7.30E+00 3.76E+00 1.14E+01 

 min 4.44E-16 6.09E-03 1.46E+01 1.33E+01 9.38E+00 2.02E+01 6.23E-03 1.39E+01 2.68E-02 1.72E+00 2.67E+00 4.31E-01 

 max 4.44E-16 7.97E-03 1.65E+01 1.53E+01 1.10E+01 2.02E+01 1.07E-02 1.60E+01 8.44E-02 1.15E+01 4.89E+00 1.67E+01 

 std 0.00E+00 4.92E-04 4.46E-01 4.77E-01 4.37E-01 4.12E-15 1.25E-03 5.40E-01 1.32E-02 2.31E+00 5.93E-01 4.66E+00 

 RS n/a + + + + + + + + + + + 

Dixon mean 6.67E-01 7.44E-01 1.48E+05 1.30E+05 1.08E+04 1.62E+06 1.48E+00 1.19E+00 3.96E+00 1.15E+03 9.67E+00 3.90E+04 

 min 6.67E-01 6.90E-01 6.35E+04 8.78E+04 7.20E+03 1.62E+06 6.68E-01 6.76E-01 7.26E-01 1.96E+01 5.16E+00 3.03E+00 

 max 6.67E-01 8.28E-01 2.26E+05 1.76E+05 1.80E+04 1.62E+06 1.18E+01 4.59E+00 2.09E+01 7.85E+03 1.61E+01 5.42E+05 

 std 2.38E-05 3.93E-02 4.09E+04 2.32E+04 2.89E+03 1.62E-10 2.14E+00 9.84E-01 5.22E+00 1.78E+03 2.98E+00 1.15E+05 

 RS n/a + + + + + + + + + + + 

Griewank mean 0.00E+00 1.92E-03 1.66E+02 1.55E+02 4.46E+01 6.08E+02 3.74E-03 3.08E-01 5.27E-03 1.00E+01 1.14E+00 1.28E+01 

 min 0.00E+00 1.23E-03 1.13E+02 1.10E+02 3.06E+01 6.08E+02 2.23E-03 1.14E-02 2.95E-03 2.07E+00 1.08E+00 2.73E-01 

 max 0.00E+00 2.73E-03 2.05E+02 1.86E+02 5.17E+01 6.08E+02 6.00E-03 1.08E+00 8.06E-03 2.47E+01 1.22E+00 1.81E+02 

 std 0.00E+00 3.37E-04 2.46E+01 1.84E+01 4.98E+00 2.36E-13 1.16E-03 3.64E-01 1.26E-03 6.38E+00 3.55E-02 3.91E+01 

 RS n/a + + + + + + + + + + + 

Rastrigin mean 0.00E+00 9.14E-04 2.75E+02 2.67E+02 2.09E+02 4.29E+02 3.01E+01 5.27E+01 2.48E+01 1.24E+02 1.09E+02 1.45E+02 

 min 0.00E+00 6.08E-04 2.34E+02 2.47E+02 1.70E+02 4.29E+02 1.49E+01 3.29E+01 1.56E+01 1.00E+00 7.63E+01 7.87E+01 

 max 0.00E+00 1.19E-03 2.95E+02 2.84E+02 2.27E+02 4.29E+02 8.06E+01 8.76E+01 3.51E+01 2.51E+02 1.40E+02 2.16E+02 

 std 0.00E+00 1.40E-04 1.41E+01 1.07E+01 1.36E+01 1.13E-13 1.22E+01 1.33E+01 5.66E+00 5.83E+01 1.52E+01 3.70E+01 

 RS n/a + + + + + + + + + + + 

Rothyp mean 0.00E+00 1.03E-02 1.10E+05 1.02E+05 2.94E+04 4.38E+05 3.72E+01 5.58E-01 8.88E+00 4.96E+03 7.88E+01 1.27E+04 

 min 0.00E+00 7.27E-03 7.32E+04 7.40E+04 1.97E+04 4.38E+05 1.29E+00 1.13E-02 2.61E-01 9.00E+02 4.01E+01 3.42E+00 

 max 0.00E+00 1.25E-02 1.38E+05 1.20E+05 3.59E+04 4.38E+05 1.75E+02 4.84E+00 3.43E+01 1.76E+04 1.36E+02 6.76E+04 

 std 0.00E+00 1.44E-03 1.69E+04 1.07E+04 3.44E+03 2.01E-10 4.42E+01 1.28E+00 8.96E+00 3.78E+03 2.21E+01 1.68E+04 

 RS n/a + + + + + + + + + + + 

Rosenbrock mean 2.83E+01 2.86E+01 1.09E+05 7.97E+04 8.01E+03 2.84E+06 4.13E+01 8.84E+01 4.18E+01 2.14E+03 1.66E+02 6.69E+04 

 min 2.78E+01 2.85E+01 6.52E+04 5.30E+04 4.22E+03 2.84E+06 2.48E+01 1.55E+00 2.69E+01 2.07E+02 9.36E+01 3.26E+01 

 max 2.87E+01 2.87E+01 1.76E+05 1.03E+05 1.12E+04 2.84E+06 1.06E+02 1.06E+03 1.25E+02 1.29E+04 2.25E+02 2.23E+05 

 std 2.24E-01 4.92E-02 2.27E+04 1.41E+04 1.71E+03 4.74E-10 2.53E+01 1.87E+02 2.95E+01 2.62E+03 4.06E+01 6.86E+04 

 RS n/a + + + + + = + = + + + 

Sphere mean 0.00E+00 4.80E-06 5.03E+01 4.44E+01 1.28E+01 1.77E+02 6.00E-06 3.52E-02 1.45E-03 2.61E+00 3.85E-02 5.25E+00 

 min 0.00E+00 3.38E-06 3.52E+01 3.38E+01 8.86E+00 1.77E+02 3.30E-06 1.26E-02 3.30E-04 2.75E-01 1.76E-02 3.99E-04 

 max 0.00E+00 6.19E-06 5.73E+01 5.08E+01 1.54E+01 1.77E+02 1.04E-05 8.54E-02 4.27E-03 1.25E+01 6.85E-02 2.62E+01 

 std 0.00E+00 6.14E-07 4.72E+00 3.94E+00 1.41E+00 2.64E-14 1.69E-06 1.89E-02 1.05E-03 2.54E+00 1.32E-02 1.07E+01 

 RS n/a + + + + + + + + + + + 

Sumpow mean 0.00E+00 1.19E-13 8.95E-03 7.55E-03 2.07E-04 5.82E-01 8.39E-08 1.93E-05 3.58E-07 2.44E-05 4.81E-11 2.33E-10 

 min 0.00E+00 2.08E-15 2.18E-03 1.17E-03 8.50E-05 5.82E-01 6.52E-09 4.22E-07 4.80E-08 2.07E-28 1.64E-12 6.55E-15 

 max 0.00E+00 7.19E-13 2.29E-02 1.83E-02 3.60E-04 5.82E-01 2.31E-07 1.01E-04 1.68E-06 3.07E-04 2.77E-10 3.89E-09 

 std 0.00E+00 1.46E-13 4.53E-03 4.06E-03 8.39E-05 1.47E-16 5.88E-08 2.16E-05 3.79E-07 6.95E-05 5.56E-11 7.18E-10 

 RS n/a + + + + + + + + + + + 

Zakharov mean 0.00E+00 2.04E-03 3.77E+02 3.35E+02 2.39E+02 8.89E+02 3.52E+01 3.57E+02 2.57E+01 1.82E+02 1.47E+02 2.05E+02 



 min 0.00E+00 1.47E-03 3.09E+02 2.90E+02 2.11E+02 8.89E+02 1.99E+01 3.15E+02 1.25E+01 8.90E+01 1.08E+02 1.21E+02 

 max 0.00E+00 2.42E-03 4.04E+02 3.71E+02 2.64E+02 8.89E+02 5.07E+01 3.97E+02 4.23E+01 3.60E+02 1.87E+02 3.00E+02 

 std 0.00E+00 2.41E-04 1.95E+01 2.01E+01 1.18E+01 3.23E-13 7.37E+00 2.32E+01 6.31E+00 5.78E+01 1.97E+01 4.82E+01 

 RS n/a + + + + + + + + + + + 

Sumsqu mean 0.00E+00 6.38E-05 6.90E+02 6.17E+02 1.80E+02 2.74E+03 2.44E-01 9.37E-02 3.87E-01 2.78E+01 5.22E-01 1.20E+02 

 min 0.00E+00 5.07E-05 5.24E+02 4.62E+02 1.40E+02 2.74E+03 2.03E-03 9.53E-03 5.40E-02 6.62E-01 2.73E-01 1.12E-02 

 max 0.00E+00 7.79E-05 8.04E+02 7.37E+02 2.21E+02 2.74E+03 2.07E+00 1.29E+00 1.18E+00 1.69E+02 9.05E-01 7.60E+02 

 std 0.00E+00 6.21E-06 6.84E+01 6.85E+01 2.02E+01 5.66E-13 4.01E-01 2.32E-01 2.93E-01 3.36E+01 1.38E-01 1.86E+02 

 RS n/a + + + + + + + + + + + 

Powell mean 0.00E+00 2.77E-05 1.73E+03 1.42E+03 3.01E+02 8.55E+03 1.90E+00 1.12E+03 3.76E+00 6.65E+01 4.41E-01 6.16E+02 

 min 0.00E+00 1.76E-05 1.04E+03 8.37E+02 1.87E+02 8.55E+03 2.26E-01 6.49E+02 4.26E-01 4.90E+00 1.13E-01 1.53E-01 

 max 0.00E+00 4.15E-05 2.35E+03 1.87E+03 4.09E+02 8.55E+03 4.53E+00 1.68E+03 9.06E+00 3.52E+02 1.23E+00 3.19E+03 

 std 0.00E+00 6.75E-06 4.11E+02 2.77E+02 5.88E+01 1.01E-12 1.17E+00 2.55E+02 2.49E+00 7.76E+01 2.58E-01 8.42E+02 

 RS n/a + + + + + + + + + + + 

 
 

 Prop. PSO PSORL RCPSO GA SA 

Ackley mean 4.44E-16 6.33E+00 1.61E+01 2.16E+01 2.05E+01 

 min 4.44E-16 2.22E+00 1.28E+01 2.14E+01 1.96E+01 

 max 4.44E-16 1.29E+01 1.95E+01 2.18E+01 2.11E+01 

 std 0.00E+00 2.67E+00 1.82E+00 9.59E-02 3.77E-01 

 RS n/a + + + + 

Dixon mean 6.67E-01 3.43E-08 7.43E+04 9.99E+06 1.11E+06 

 min 6.67E-01 1.42E-09 2.46E+03 7.79E+06 7.48E+05 

 max 6.67E-01 3.68E-07 3.80E+05 1.17E+07 1.53E+06 

 std 2.38E-05 7.10E-08 1.03E+05 8.80E+05 1.98E+05 

 RS n/a - + + + 

Griewank mean 0.00E+00 0.00E+00 9.43E+01 8.69E+01 4.84E+02 

 min 0.00E+00 0.00E+00 3.18E+01 7.50E+01 3.65E+02 

 max 0.00E+00 0.00E+00 2.63E+02 9.20E+01 5.74E+02 

 std 0.00E+00 0.00E+00 4.83E+01 4.03E+00 4.49E+01 

 RS n/a = + + + 

Rastrigin mean 0.00E+00 6.71E+01 2.35E+02 3.38E+01 3.92E+02 

 min 0.00E+00 3.38E+01 1.40E+02 1.19E+01 3.52E+02 

 max 0.00E+00 1.13E+02 2.89E+02 5.76E+01 4.25E+02 

 std 0.00E+00 1.87E+01 3.00E+01 1.25E+01 1.74E+01 

 RS n/a + + + + 

Rothyp mean 0.00E+00 1.20E-167 5.96E+04 1.28E+06 3.15E+05 

 min 0.00E+00 0.00E+00 1.43E+04 1.16E+06 2.48E+05 

 max 0.00E+00 3.30E-166 1.71E+05 1.41E+06 3.68E+05 

 std 0.00E+00 0.00E+00 3.29E+04 7.12E+04 2.87E+04 

 RS n/a + + + + 

Rosenbrock mean 2.83E+01 4.73E+01 8.66E+04 1.13E+07 8.33E+05 

 min 2.78E+01 5.65E+00 4.41E+03 9.50E+06 5.21E+05 

 max 2.87E+01 9.48E+01 4.84E+05 1.26E+07 1.19E+06 

 std 2.24E-01 3.27E+01 1.00E+05 8.06E+05 1.92E+05 

 RS n/a = + + + 

Sphere mean 0.00E+00 2.14E-177 2.17E+01 5.08E+02 1.42E+02 

 min 0.00E+00 0.00E+00 1.05E+01 4.56E+02 1.09E+02 

 max 0.00E+00 6.32E-176 5.40E+01 5.63E+02 1.63E+02 

 std 0.00E+00 0.00E+00 1.09E+01 3.17E+01 1.27E+01 

 RS n/a + + + + 

Sumpow mean 0.00E+00 0.00E+00 1.41E-02 2.98E+01 1.58E+00 

 min 0.00E+00 0.00E+00 1.54E-06 2.93E+01 3.14E-01 

 max 0.00E+00 0.00E+00 3.05E-01 3.00E+01 3.14E+00 

 std 0.00E+00 0.00E+00 5.59E-02 2.20E-01 6.56E-01 

 RS n/a = + + + 

Zakharov mean 0.00E+00 1.15E+02 4.08E+02 6.30E+02 6.26E+02 

 min 0.00E+00 6.67E+01 2.46E+02 5.36E+02 5.34E+02 

 max 0.00E+00 1.75E+02 5.41E+02 7.27E+02 7.01E+02 

 std 0.00E+00 2.97E+01 7.69E+01 3.93E+01 4.37E+01 

 RS n/a + + + + 

Sumsqu mean 0.00E+00 2.16E-174 3.30E+02 7.95E+03 2.02E+03 

 min 0.00E+00 0.00E+00 5.71E+01 6.79E+03 1.49E+03 

 max 0.00E+00 6.47E-173 7.54E+02 9.53E+03 2.34E+03 

 std 0.00E+00 0.00E+00 1.83E+02 5.97E+02 1.89E+02 

 RS n/a + + + + 

Powell mean 0.00E+00 5.10E-04 8.76E+02 8.36E+03 7.81E+03 

 min 0.00E+00 1.75E-04 1.76E+02 5.56E+03 4.27E+03 

 max 0.00E+00 1.55E-03 2.96E+03 1.14E+04 1.28E+04 

 std 0.00E+00 2.51E-04 7.86E+02 1.58E+03 1.85E+03 

 RS n/a + + + + 

 

6.5.1. Convergence Analysis and Comparison  
We conduct a theoretical convergence analysis of the proposed PSO variant, as follows. As discussed earlier, the 

proposed model incorporates reinforcement learning-based optimal search action selection, cross-breed elite 

signal generation based on adaptive 3D geometric contours, mathematical root-finding algorithm based swarm 

leader enhancement, and a spiral simulated search mechanism, to bridge the current research gaps and overcome 

limitations (local optimum traps) of the original PSO model. Specifically, in comparison with random walk 

operations such as Levy distributions for swarm leader improvement as in existing studies (Jordehi [64] and 

Zhang et al. [65]), we exploit root-finding algorithms, i.e. Muller’s method and the fixed-point iteration 



algorithm, guided by the mathematical principles, to provide more informative mechanisms for swarm leader 

enhancement. Such a strategy is able to accelerate convergence within a small number of iterations in 

comparison with those from random jump mechanisms. In order to better balance between search diversification 

and intensification, instead of using random or threshold-based search action selection, the reinforcement Q-

learning algorithm is used to dispatch a sequence of local and global search actions, leading to the most optimal 

long-term cumulative reward, therefore diversifying search behaviours while accelerating convergence.   

 

To overcome local optima traps, instead of using a single swarm leader as in the original PSO model and other 

existing works, a variety of hybrid leaders integrating the global and personal best solutions are used to lead the 

search process and to divert the search out of local optima traps when the search operation led by the single 

global best solution becomes stagnant. Moreover, adaptive weighting coefficients using distinctive 3D formulae 

are utilized to better adjust the impact of the two local and global leader signals, achieving a better balance 

between diversification and intensification. 

 

In short, our proposed search strategies, i.e. the reinforcement learning search action selection, hybrid leaders 

fine-tuned using adaptive weighting factors in conjunction with swarm leader improvement using mathematical 

informative root-finding methods, operate cooperatively to increase search diversity, avoid local optimum traps 

and fasten model convergence.  

 

 
Figure 11 Mean convergence curve comparison between the proposed PSO and all baseline search methods for 

Ackley over 30 runs (Top: in the original forms, bottom: in the logarithm scales) 

 

To ascertain the above theoretical convergence analysis, Figure 11 depicts a convergence comparison between 

our algorithm and other search methods for Ackley over 30 runs. The convergence curve of each method is 

generated by averaging the global best solutions in each iteration over 30 runs, as indicated in the top row in 

Figure 11. To further indicate the convergence speed of the proposed model, a logarithm function with a base of 

10 is used to convert the convergence curves into the logarithm scale, as shown in the bottom row in Figure 11. 

As indicated in Figure 11, the proposed model, guided by multiple hybrid leaders, root finding algorithm-based 

leader enhancement and Q-learning based optimal search action selection, demonstrates faster convergence rates 

than those from all other search methods for the Ackley function. RFA, NaFA, FA, CS and GMPSO also 

illustrate comparatively faster convergence rates than those from other search methods. 

 



We also conduct a convergence speed comparison between our algorithm and baseline search methods for the 

Rastrigin function over a set of 30 trials, as shown in Figure 12. To clearly showcase the model convergence 

speed, the original convergence curves and the converted convergence graphs in the log scale are provided in the 

top and bottom rows in Figure 12, respectively. As indicated in Figure 12, our model depicts the fastest 

convergence speed as compared with those from all the baseline methods, and obtains the minimum solution of 

‘0’ on average at iteration 107 over a set of 30 runs. Owing to the fact that log10(0) = −∞, which cannot be 

represented by a numerical value, our convergence graph in the log scale (i.e. the bottom row in Figure 12) 

shows the mean global best values until iteration 106. In addition, RFA, GMPSO, AGPSO, NaFA and FA also 

achieve better results than those from other baselines over 30 runs with a comparatively faster convergence 

speed. 

 

 
 

Figure 12 Mean convergence curve comparison between the proposed PSO and all baseline search methods for 

Rastrigin over 30 runs (Top: in the original forms, bottom: in the logarithm scales) 

 

Figure 13 depicts the convergence comparison between our algorithm and other search methods for the Powell 

function over 30 runs. Again, the proposed model outperforms all baseline search methods with the fastest 

convergence rates. The proposed model attains the global minimum of ‘0’ at iteration 72 and log10(0) = −∞, 

therefore the log-scale convergence graph in the bottom row in Figure 13 is provided until iteration 71. PSORL, 

RFA, GMPSO, PSOGSA, CS, NaFA and FA also demonstrate competitive performance than those from other 

baseline search methods with a comparatively faster convergence speed. Similar faster convergence rates of the 

proposed model are also observed as compared with those from all other search methods for nearly all numerical 

functions.  

 



 

 
 

Figure 13 Mean convergence curve comparison between the proposed PSO and all baseline search methods for 

Powell over 30 runs (Top: in the original forms, bottom: in the logarithm scales) 

 

We justify model performance variations from theoretical perspectives. MPSO and CPSO use adaptive linear 

and cosine coefficients to formulate search exploration and exploitation. However, because these methods adopt 

a single swarm leader as in the original PSO, they are likely to become stagnant. Instead of using linear or cosine 

search coefficients, EPSO employs elliptical functions for search parameter generation as well as DE for leader 

enhancement to diversify the search process. Nonetheless, its search operation is guided by either the global best 

solution or an average leader signal determined by a random probability, without producing any fused leader 

signals. In addition, genetic operators and probability distributions such as Levy flight are embedded in GMPSO 

for swarm leader enhancement. GPSO and ELPSO employ crossover, and opposition and DE-based operators 

for leader and population diversity enhancement, while AGPSO utilizes adaptive search coefficients to fine-tune 

intensification and diversification. DNLPSO adopts dynamic historical neighbouring elite signals for search 

exploration. PSOGSA embeds PSO and GSA for undertaking exploration and exploitation, respectively. Notice 

that these PSO variants either rely on the original PSO operation or a neighbouring optimal signal-led search 

process for position updating, without taking advantage of hybrid leader indicators.  

 

RFA, NaFA, and VSSFA employ repulsive strategies, reserved neighbourhood attraction, and variable step sizes 

for search diversification, while LFA and GFA exploit Logistic and Gauss maps-motivated search coefficients, 

to overcome stagnation. FAV leverages the Tent map for population initialization and a swarm leader-based 

search process combined with a FA-based neighbourhood attraction mechanism. The primary search operations 

of these FA variants mainly adopt either individual neighbouring or global best signals in search for optimality 

without exploiting adaptive composite leaders. Besides PSO and FA employing global and neighbouring optimal 

solutions for position updating, MFO employs a spiral search operation to exploit the optimal regions of each 

flame. CS uses signals selected using random permutation to guide the swarm. These classical search methods 

use either global/neighbouring elite indicators or random search agents as the guiding signals without taking 

advantage of the fusion of these signals for search exploration, therefore yielding less optimal performance with 

slow convergence rates.  

 



In comparison with the above methods, instead of using random mutations, the proposed PSO algorithm 

employs fixed-point iteration and Muller’s method as navigated steered leader enhancement strategies. It also 

takes advantage of the fusion of diverse local and global elite signals constructed by adaptive 3D geometrical 

operators to tackle the constraints of local optima traps suffered by the original PSO algorithm. A petal helix 

search mechanism is utilized to exploit optimal regions around the cross-breed leaders. The Q-learning method 

is then adopted to identify an optimal distribution of these local and global search operations to assist a better 

balance of exploration and intensification. The aforementioned 3D geometric landscape-inspired cross-breed 

leader generation, reinforcement learning-based sequential search scheme deployment, petal spiral local 

intensification and root finding algorithm-based leader enhancement, account for the strength and superiority of 

the proposed PSO algorithm against other search methods in solving diverse numerical optimization formulae 

with a variety of challenging landscapes.  

 

7. CONCLUSIONS 
In this research, we have devised weighted and evolving ensemble models integrating CNN-RNN, I3D and MC3 

networks with newly proposed PSO-based network topology and hyper-parameter optimization for video 

authenticity classification. The ensemble robustness is enhanced by the proposed PSO-optimized network hyper-

parameters as well as the optimal selection of subsets of base classifiers. Specifically, the new PSO variant 

employs several schemes, including numerical analysis-based leader enhancement, the Q-learning based optimal 

search operation selection, petal helix search intensification and cross-breed elite signal generation using 

adaptive 3D landscapes, to overcome the limitations of the original PSO model.  

 

In both weighted and evolving ensemble schemes, the superior performance of our devised ensemble models 

integrating diverse optimized base networks is evidenced in our experimental studies and through the statistical 

test results, as compared with those from counterparts yielded by existing search algorithms. Because of the 

optimal selection of complementary subsets of base classifiers using the proposed algorithm, our resulting 

evolving ensemble models achieve the most competitive performance, while maintaining efficient computational 

costs, in comparison with those from the fusion models yielded by other search methods. The proposed 

algorithm also outperforms 24 baseline search methods with statistical significance in solving diverse numerical 

optimization problems with challenging landscapes. 

 

In future work, other 3D CNNs such as 3D ResNeXt and 3D ResNet will be examined to complement spatial-

temporal feature learning and to further boost performance. Besides video deepfake detection, the proposed PSO 

algorithm will be employed to formulate other deep networks, e.g. BiLSTM and CRNN [28], to tackle audio 

deepfake detection. The fusion of optimized audio and video forgery detection methods will also be investigated 

to enhance the performance from single modality [28]. The proposed PSO-based deep architecture and key 

learning configuration search will be applied to other challenging vision processing tasks such as video/image 

generation [121] and captioning [122, 123]. 
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