Browser User Privacy -
Identifying Users via
Browser Interactions

Submitted by

Zhaoyi Fan

for the degree of Doctor of Philosophy

of the

Royal Holloway, University of London

ROYAL

HOLLOWAY

2023

Declaration

I, Zhaoyi Fan, hereby declare that this thesis and the work presented in it is
entirely my own. Where I have consulted the work of others, this is always
clearly stated.

Signed......ccocvevviiienineen. (Zhaoyi Fan)

To my family

Contents

1 Introduction
1.1 Introduction.
1.2 Motivation
1.3 Objectives
1.4 Contributions
1.5 Structure of the thesis
2 Browser APIs
2.1 Introduction
2.2 Browser APIs
2.2.1 Typesof Browser API
2.3 Examples of browser APl attacks
2.3.1 Attacks based on High-resolution Time API
2.3.2 Attacks based on device APIs
2.3.3 WebRTC IP address leakage
2.4 Device fingerprint oo
2.5 Other possible attacks oL oL
2.6 Conclusion
3 Machine learning
3.1 Imtroduction
3.2 Datacollection
3.2.1 Structured data
3.2.2 Unstructured data
3.2.3 Semi-structured data
3.3 Data preparation L L o
3.3.1 Datacleaning oo
3.3.2 Feature extraction L.
3.3.3 Feature selection
3.4 Types of machine learning techniques
3.4.1 Supervised learning
3.4.2 Unsupervised learning
3.4.3 Semi-supervised learning
3.4.4 Reinforcement learning

O Ol Ot

3.5 Machine learning methods 24

3.5.1 K-Nearest Neighbours 24
3.5.2 Support Vector Machine 24
3.5.3 Decision Tree oo 24
3.5.4 Random Forest 25
3.5.5 Extreme Gradient Boosting 25
3.6 Model evaluation L Lo 25
3.6.1 Cross-validation 25
3.6.2 Hyper-parameter tuning 25
3.6.3 Evaluating metrics oL 25
3.7 Conclusion 27
Behavioural biometrics 28
4.1 Introduction 28
4.2 Keystroke dynamics oo 29
4.2.1 Experimental designs 29
4.2.2 Dataextraction oL 30
4.2.3 Machine learning approaches 32
4.3 Mouse dynamics 33
4.3.1 Experimental designs 34
4.3.2 Dataextraction Lo oL 34
4.3.3 Machine learning approaches 35
4.4 Behavioural biometrics based on combining mouse and dynamics 36
4.4.1 Experimental designs oL 36
4.4.2 Dataextraction L. 37
4.4.3 Machine learning approaches 38
4.5 Behavioural biometrics based on mobile platform 38
4.5.1 Experimental designs oL L. 38
4.5.2 Dataextractiono 39
4.5.3 Machine learning approaches 40
4.6 Discussions and conclusions 40
4.6.1 Discussions 40
4.6.2 Conclusions e 41
Experimental platform 42
5.1 Introduction. 42
5.2 Motivation 43
5.3 Background Lo 44
5.3.1 Keyboard and mouse events 44
5.3.2 Chrome extensions 45
5.4 The experimental platform 45
5.4.1 Development environment 46
5.4.2 The Chrome extension 47
54.3 Theserver. o 49
5.5 Ethicalissueso 49
5.6 User guidance e 50

5.7 Possible future work
5.8 Conclusions oL

Performing the keystroke dynamics experiments
6.1 Introduction

6.2 Data gathering L L
6.3 Data processing Lo oo
6.3.1 Data segmentation00
6.3.2 Feature extraction,
6.3.3 Evaluating metrics Lo L.
6.3.4 Classification methods
6.3.5 Feature selection
6.3.6 Model evaluation
6.3.7 Accumulative methods
6.4 Experimental results L oL
6.4.1 Results on real testingset
6.4.2 Results on fixed text dataset
6.4.3 Comparisons
6.5 Conclusions and possible future work
6.5.1 Conclusions
6.5.2 Possible future worko Lo

Performing the mouse dynamics experiments

7.1 Introduction
7.2 Data gathering o Lo
7.3 Dataprocessing
7.3.1 Data segmentation L0
7.3.2 Feature extraction 0L
7.3.3 Evaluating metricso
7.3.4 Classification methods
7.3.5 Feature selection oL
7.3.6 Model evaluation L.
7.3.7 Accumulative methods oL L.
7.4 Experimental results 0oL
7.4.1 Results on testingset
7.4.2 Results on Bogazici dataset
7.4.3 CompariSons oo
7.5 Conclusions and possible future work
7.5.1 Conclusionso
7.5.2 Possible future work Lo

Combining keystroke and mouse dynamics

8.1 Imtroduction.
8.2 Dataprocessing oo
8.2.1 Dataprocessing.
8.2.2 Classifier configurations

52
52
53
54
56
o7
o8
58
59
99
62
63
63
64
65
66
66
67

69
69
70
71
71
73
78
78
79
79
81
81
81
82
82
85
85
86

8.2.3 Accumulative methods
8.3 Experimental results oo oo
8.3.1 Results on training set
8.3.2 Results on testingset
8.3.3 Comparisons
8.4 Conclusions and possible future work
8.4.1 Conclusions e
8.4.2 Possible future worko

Study on mobile touch behaviour

9.1 Imtroduction

9.2 Experiments on Kim and Kang dateset
9.2.1 Feature engineering
9.2.2 Model tuningo
9.2.3 Experimental result 0L
9.2.4 Comparisons

9.3 Data collection via mobile webpage
9.3.1 Development environment
9.3.2 Web page development
9.3.3 Datacollection L.

9.4 Conclusions and possible future work
9.4.1 Conclusions
9.4.2 Possible future work00 0oL

10 Security and privacy recommendations

10.1 Introduction
10.2 Browser API functionality
10.2.1 PCplatforms o
10.2.2 Mobile platforms oL
10.3 Possible attack scenarios
10.3.1 Scenario One
10.3.2 Scenario Two
10.3.3 Consequenceso
10.3.4 Discussions
10.4 Recommendations
10.5 Possible positive usage L Lo
10.6 Conclusions

11 Conclusions and possible future work

11.1 Summary and conclusions
11.2 Possible future work 0oL 0oL

Bibliography

A Ethics review approval

96
96
96
97
98
98
98
100
100
101
101
103
103
103

104
104
104
105
105
106
106
106
107
107
108
109
109

110
110
112

121

122

B Consent form 127

C N-graph tables 129
C.1 Digraphtable 129
C.2 3-graphtable 141
C.3 4-graphtable 147
C.4 bH-graphtable 148

D Source code 150
D.1 Experimental platform code 150
D.2 Mobile web page code oL 150

D.2.1 Mobile test web page 150
D.3 Python scripts for data analysis 154
D.3.1 Python scripts for analysing keystroke dynamics 154
D.3.2 Python scripts for analysing mouse dynamics 203
D.3.3 Python scripts for combining keystroke and mouse dynamics240
D.3.4 Python scripts for analysing mobile dynamics 294

List of Figures

3.1

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8

7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8

7.9

Machine learning flowchart, 22
Keystroke timing features 30
Diagram of the 8 Cardinal Directions for Mouse Movement . . . 36
The structure of the experimental platform 47
Keystroke raw data at client side 48
Mouse raw data at client side 48
Popup page user interface L. 49
Keystrokeraw datao oL 53
Number of keystrokes from each user’s raw data 55
Distribution of keycode categories for each user in the raw dataset 55
Keystroke Data Extraction for the Word "HELLO’ 58
Feature importance scores obtained from the XGBoost model for

keystroke dynamics analysis oo 60

Confusion matrix representing the classification results for a sin-
gle 4-graph keystroke sample using the tuned XGBoost model . . 61
Comparison of Fl-scores for 1 to 15-graphs across 1 to 30 sam-
ple increments, highlighting the optimal performance of 4-graph

samples oL 63
Confusion Matrix for a Single 4-Graph Keystroke Sample Classi-

fication 65
Mouse dynamics raw data 70
Nine random examples of mouse moving paths 71
Initial time differences between points in mouse movement 72
Nine random examples of refined mouse movement paths after

noise reduction Lo 74
The proportion of segments per participant 79
Importance scores for individual features 80

Confusion matrix for the classification results on the training set 80
Confusion matrix of the classification performance on the testing

Set .o e 83
Visualization of the Bogazici dataset usage 83

8.1

8.2

8.3

8.4

9.1

Al
A2
A3
A4

B.1

Confusion Matrix for the Training Set Using Combined Keystroke

and Mouse Dynamics L oL 91
Confusion Matrix for the Testing Set Using Combined Keystroke

and Mouse Dynamics oL 91
F1-Scores across Various Combinations of Keystroke and Mouse

Dynamics Samples in the Training Set 94
F1-Scores across Various Combinations of Keystroke and Mouse

Dynamics Samples in the Testing Set 94
Screenshot of the web page for data collection 102
Page 1 of ethics review approval, 123
Page 2 of ethics review approval 124
Page 3 of ethics review approval 125
Page 4 of ethics review approval 126

Consent form used for experiments described in Chapters 6, 7
and 8 L e 128

List of Tables

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2

6.1
6.2

6.3
6.4

6.5

6.6

6.7
6.8

6.9
6.10

7.1
7.2

Examples of Event APIs 10
The deviceMotionEvent APT. 11
Common storage APIs 14
Binary classification confusion matrix 26
Extracted timing features in keystroke dynamics studies 31
Summary of classification methods in keystroke dynamics studies 32
Mouse action types and descriptions 35
Classification methods in mouse dynamic 36
Machine learning methods for mobile touch dynamics 40
API calls and their properties for keyboard events 45
API calls and their properties for mouse events 46
Description of the eight elements in keystroke raw data 54
Occurrence of the Top 10 Most Frequently Used Keys for Each

User o 56
Segmentation Statistics for Each User 57
Comparative Performance Metrics of Various Classifiers on Keystroke
Dynamics Data o 59
Best Hyper-parameters of XGBoost Classifier on Keystroke Dy-
NAMICS .« v v v v e v e e e e e e e e e e e e e 59
Classification Scores on Keystroke Training Set from 1 to 30 Sam-

ples . .o 62
Keystroke Counts per User in the Testing Set 63
Classification Performance Metrics for Keystroke Samples by Sam-

ple Size on the Testing Set 64
Classification Performance on the DSL Password Dataset 65

Comparative Overview of Keystroke Dynamics Studies Across
Different Environments and Methods with Corresponding Per-

formance Metrics 67
Explanation of Mouse Raw Data Elements 70
Number of segments extracted at varying IQR thresholds 73

10

7.3
7.4
7.5
7.6

7.7

7.8

7.9

7.10
7.11

8.1
8.2

9.1

9.2

9.3

9.4

10.1

10.2
10.3

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8

Comparative Performance Metrics of Different Classifiers 79

Tuned hyper-parameters of the XGBoost model 81
Performance metrics of the tuned XGBoost classifier 81
Classification Performance Metrics by Sample Size on the Train-
ing Set 82
Comparison of the Number of Extracted Samples to the Raw
Samples for Each User in the Testing Set 84
Classification Performance Metrics by Sample Size on the Testing
Set . .o 85
Classification Performance Metrics by Sample Size on the Bogazici
Dataset L 86

Distribution of extracted samples per user in the Bogazici dataset 87
Comparative Overview of Mouse Dynamics Studies across Differ-
ent Environments and Methods with Corresponding Performance
Metricso 87

Tuned hyper-parameters of each classifier 89
Summary of Combined use of Keystroke and Mouse Dynamics
Studies across Different Environments and Methods with Corre-
sponding Performance Metrics 93

Optimized Hyper-parameters for the XGBoost Classifier Applied

tothe K Dataset 98
XGBoost Classification Performance on the K dataset Using 5-
fold Cross-validation 98
Classification Results on the K Test Dataset for Samples Ranging
from 1to30. 99

Comparative Overview of Mobile Touch Dynamics Studies across
Different Environments and Methods with Corresponding Perfor-
mance Metrics L L Lo 100

Browser version, OS versions and device information on PC plat-

form 105
PC platform test environments 105
Mobile platform test environments 106
Frequently used digraphs 129
Frequently used digraphs 135
Frequently used tri-graphs oL 141
Frequently used tri-graphs 144
Frequently used 4-graphs oL 147
Frequently used 4-graphs oL 148
Frequently used 5-graphs 149
Frequently used 5-graphs L. 149

11

Abstract

Browser Application Programming Interfaces (APIs) allow web developers to
create complex functionality for a website and enrich web user experience.
Browser APIs also allow web sites to access a wide variety of user host data.
Because of this, these APIs have enabled a wide range of user privacy and se-
curity issues and attacks. Of particular relevance to the work described in this
thesis, the KeyboardEvent APIs, the MouseFEvent APIs, the Orientation APIs
and Motion APIs can be potentially be used to extract user behaviour patterns.
This observation has motivated the work described in this thesis.

In recent years, a range of studies have shown that keystroke and mouse
dynamics can be used for user authentication and/or identification. As a result,
it may well be possibly for a curious web site to identify the individual human
who is using a device to access that site. In this thesis, we conduced experiments
for collecting user data with such APIs and applied machine learning techniques
to analyse the collected data. We also tested our machine learning models on
public datasets and achieved promising results.

To assess the real-world significance of the results, we examined various
browsers across a range of platforms. We found that all common browsers
can potentially reveal a user’s identity without user permission or knowledge.
Finally, we give suggestions for simple modifications to browsers to give users
greater control over their privacy.

Acknowledgements

My deepest gratitude goes first and foremost to my supervisor, and mentor,
Professor Chris Mitchell for his patience, guidance and support. Without his
insightful ideas and precious feedback, this thesis would never become possible.

I would like to thank my colleagues and friends, Wanpeng Li, Nasser Al-
Fannah, Fatma Al Magbali and Angela Heeler for the wonderful reading group
and delicious food.

Thank you to all my friends who helped through my experiments, Boxuan
Han, Tao Zhang, Jiaqing Zhao, Yueming Jin, Ran Yi, Xiao Sa, Shi Wang,
Qianjiang Wu, Yingjie Zhao, Jing Sun and Xiao Wang, Rondo, Lina Song,
Feng Gao, Yu, Erdou, Pang, Ting and Jiao Wu. Thank you for your trust and
support.

A very special thank goes to my friends who trained together in the gym. I
will always remember the friendly and motivating atmosphere.

I am extremely grateful to my father, Hua Fan and mother Yumei Zhao for
their support and love in every possible way. They have always been there at
any time. I extend my thanks to all my relatives in my big family. Thank you
all for the encouragement and care.

Last, but not least, I would like to express my gratitude to my beautiful wife,
Shenshen Liu, for her love, support and understanding. I thank for everything
she gave me.

List of Abbreviations

ACC Accuracy

AUC Area Under the Curve

Al Artificial Intelligence

ANN Application Programming Interface
CSS Cascading Style Sheets
DOM Document Object Model
DOS Denial of Service

EER Equal Error Rate

FAR False Acceptance Rate

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FRR False Rejection Rate

GBM Gradient Boosting Machine
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IP Internet Protocol

JS JavaScript

JSON JavaScript Object Notation
K-NN K-Nearest Neighbours

ML
(O1]
PPV
RF
ROC
SVM
TN
TNR
TP
TPR
URL
XGBoost

Machine Learning
Operating System
Positive Predictive Value
Random Forest

Receiving Operating Characteristic Curve
Support Vector Machine
True Negative

True Negative Rate

True Positive

True Positive Rate
Uniform Resource Locater

eXtream Gradient Boosting

Chapter 1

Introduction

1.1 Introduction

Websites are capable of learning a wide range of information about the platform
on which a browser is executing. One major source of such information is the
set of standardised Application Programming Interfaces (APIs) provided within
the browser, which can be accessed by JavaScript downloaded to a browser by
a website; this information can then either be used by the JavaScript or sent
back to the originating site.

Such APIs have been used to enable a wide range of user privacy threats
and security attacks. Al Fannah and Li [7] pointed out that a large number of
websites use Browser fingerprinting techniques to collect user data with such
APIs. The APIs could be used to reveal various types of data relating to a
web user, e.g., Internet Protocol (IP) address [6], user browser information
[88], etc. Additionally, various attacks based on web APIs have been described
[17, 39, 54, 64, 78]. There seems little doubt that the various services offered by
browser APIs enable user devices to be tracked across the Internet.

Apart from the security and privacy issues affecting end user devices based on
web APIs, as we examine in this thesis, browser APIs also pose a direct threat to
the privacy of human users. The KeyboardEvent and MouseFEvent APIs can be
used to continuously provide data when a user is interacting with the browser
via a keyboard and mouse. Mobile sensor APIs can be used to continuously
provide data when a user is interacting with the browser on a mobile device.
Such data could potentially be gathered and analysed via machine learning
techiques to generate either a user biometric template (e.g. for identifying the
same user in future) or for comparing with an existing set of templates. Instead
of using a browser fingerprint to track a specific device, the web user identity
could potentially be revealed directly using such an approach.

This chapter provides an overview of the thesis, and is organised as follows.
Section 1.2 introduces the motivation for the research described in this thesis.
Section 1.3 describes the main objectives of this research. Section 1.4 outlines

the major contributions. The structure of the thesis is described in Section 1.5.

1.2 Motivation

In recent years various user privacy issues arising from the use of browser APIs
have been discussed. Although a number of steps to reduce the privacy impact of
browser APT use have been taken by relevant authorities [21], there are still some
APIs (e.g. the KeyboardEvent APIs, the MouseEvent APIs, and the Motion
APIs) that can be used to reveal user information without any user permission
or knowledge.

At the same time, over the last 30 years, much research has focussed on the
use of keystroke and mouse dynamics as methods for biometric authentication
and identification — see, for example, [4, 10, 13, 34, 46, 59, 60]. However, as
far as the author is aware, none of the previous studies consider their use for a
user identification process in a browser based environment. This observation,
combined with the possibility that user identification could potentially be per-
formed without the knowledge or consent of the user, has motivated the research
described in this thesis.

1.3 Objectives

This thesis attempts to answer the following main question.

e To what extent can a user be identified by a web server using behavioural
data recovered from the web browser in an uncontrolled environment?

In attempting to answer this question we examine four subsidiary questions,
based on the main types of behavioural data available to a web server from a
browser.

e How effectively can browser-provided keystroke dynamics data be used for
user identification in an uncontrolled environment?

e How effectively can browser-provided mouse dynamics data be used for
user identification in an uncontrolled environment?

e How effectively can a combination of browser-provided keystroke and mouse
dynamics data be used for user identification in an uncontrolled environ-
ment?

e How effectively can browser-provided mobile touch data be used for user
identification in an uncontrolled environment?

1.4 Contributions

To enable a range of experiments to be performed, we first surveyed the APIs in
modern browsers and established an open source environmental platform which
can continuously gather a visiting user’s keystroke and mouse dynamics data.

¢ We developed a publicly available (https://github.com/fanzhaoyi/Dat
aCollector) Chrome extension that can continuously and quietly collect
browser user keystroke and mouse movement information, and a server
which can receive and store the data from the extension. This has been
made freely available for use by any individuals who would like to conduct
similar experiments or research.

In our second group of contributions, we demonstrated that browser APIs
on both PC and mobile platforms can be used to reveal a user’s identity. We
used machine learning techniques for analysing keystroke and mouse dynamics
data which were collected in the experiments conducted with our developed
experimental platform, and used similar machine learning methods for analysing
a public mobile sensor dataset. We achieved promising experimental results.

e We firstly performed experimental analysis on keystroke dynamics data
obtained from a set of 20 participants. The experimental environment for
the participants was completely free, i.e. the users could freely type any
text as in their daily routine. The experimental results showed that, using
20 continuous keystrokes on a PC platform, a user could be identified with
89.2% fl-score.

o We secondly performed experimental analysis on mouse dynamics data
obtained from the same set of 20 participants. The experimental results
showed that, using 10 move-and-click mouse actions in a browser-based en-
vironment on a PC platform, a user could be identified with 94.2% fl-score.
We also did a similar analysis using a much larger public mouse dataset
(the Bogazici dataset [52]) which involved 19 users and also achieved a
promising 95.0% fl-score.

e We thirdly performed experimental analysis on the combination of keystroke
and mouse dynamics data obtained from the same set of 20 participants.
The experimental results indicated that the identification performance im-
proved when keystroke and mouse dynamics were combined, compared to
using either one independently. By using 5 move-and-click mouse actions
and 5 consecutive keystrokes in a browser environment on a PC platform,
a user could be identified with 94% fl-score.

o We fourthly performed experimental analysis on mobile keystroke dynam-
ics data from a public dataset [51]. The experimental results showed that,
using 10 continuous keystrokes on a mobile device, a user could be iden-
tified with 96.1% fl-score. We then developed a mobile web page which
can use mobile browser APIs to collect the same type of user data as was
in the public dataset we worked on [51].

https://github.com/fanzhaoyi/DataCollector
https://github.com/fanzhaoyi/DataCollector

Finally, we examined a range of browsers running on various platforms to check
which browsers and platforms our results applied to. We then gave some simple
suggestions for browser functionality which would enable users to exert greater
control over their privacy.

1.5 Structure of the thesis

The remainder of this thesis is organised as follows.

Chapter 2 provides background material on Browser APIs and briefly sum-
marises existing security and privacy issues arising from such APIs.

Chapter 3 introduces the machine learning techniques relevant to this
thesis.

Chapter 4 reviews the behavioural biometrics based on keystroke dynam-
ics, mouse dynamics and mobile sensor data.

Chapter 5 introduces the experimental platform.

Chapter 6 describes the analysis and experimental results on keystroke
dynamics.

Chapter 7 describes the analysis and experimental results on mouse dy-
namics.

Chapter 8 describes the analysis and experimental results on combining
keystroke and mouse dynamics.

Chapter 9 describes the analysis on touch dynamics on mobile device.

Chapter 10 outlines the attack models and possible mitigations for the
identified privacy issues.

Chapter 11 concludes the thesis and highlights possible areas for future
work.

Chapter 2

Browser APIs

2.1 Introduction

The JavaScript language is widely used by websites to enable dynamics be-
haviour. In the context of a web browser, JavaScript code is downloaded along
with the web page. In general, APIs (application programming interfaces) are
constructs made available in programming languagues to allow developers to
create complex functionality more easily. Browser-supported APIs, which can
be accessed by website-originated JavaScript, provide website developers with
more efficient ways to accomplish their goals and provide browser users with a
better experience.

Client-side JavaScript has many available APIs [61]. Browser APIs allow
developers to create web pages that incorporate information from the user’s
environment [90]. In HTML5, a range of browser APIs (e.g. audio, application
cache, canvas, fullscreen, geolocation, local storage, notifications, pointerlock,
video and web database [20]) can be used to provide user information, and can
potentially be used by a malicious website to reveal user personal data.

This chapter provides background material on Browser APIs and briefly
summarises the security and privacy issues arising from such APIs and is struc-
tured as follows. Section 2.2 introduces browser APIs and the information that
can be obtained by browser APIs. Section 2.3 provides a detailed discussion
of all the attacks based on browser APIs. Section 2.4 introduces prior art on
device fingerprinting techniques. Section 2.5 discusses the other possible attacks
based on browser APIs and Section 2.6 concludes this chapter.

2.2 Browser APIs

2.2.1 Types of Browser API

When a user visits a web page, JavaScript code from different sources is down-
loaded into the user’s browser. Running in the user’s browser, this JavaScript

code is able to access to different information via browser APIs. For example
[61], the Document Object Model (DOM) API is able to manipulate HTML
and CSS on a web page. The Fetch APIs can be used to handle requests and
responses in a network activity. the WebGL and Canvas APIs allow uses to
programmatically update the pixel data contained in an HTML element to cre-
ate 2D and 3D scenes. The Audio and Video APIs provide interaction between
users and multimedia. The Device APIs are commonly used for manipulating
and retrieving data from modern device hardware, e.g. camera, microphone and
other device sensors. Client-side storage APIs are able to store data on the
client-side. This section provides a detailed introduction to such browser APIs.

2.2.1.1 APIs for manipulating documents in the browser

The commonly discussed API is probably the DOM API which can create,
remove and change HTML and CSS. The Document interface represents any
web page loaded in the browser and serves as an entry point into the web page’s
content, which is the DOM tree. The Fvent interface, which is one of the various
interfaces that provided by the DOM. The Web Workers API can run a script
operation in a background thread which is separate from the main execution
thread of a web application. The Performance interface is part of the High
Resolution Time API. It provides a DOMHighResTimeStamp which represents
the number of milliseconds elapsed since a reference instant. The interface that
can be accessed by event is as follows.

2.2.1.1.1 KeyboardEvent It describes a user interaction with the key-
board. Each event describes a key with the event type of keydown, keypress
and keyup.

2.2.1.1.2 MouseEvent It represents the events that occur due to the user
interacting with a pointing device, such as a mouse. It can record the events
such as moving a mouse, clicking button, etc.

2.2.1.1.3 FocusEvent It provides handlers tasked with managing focus
events, which correlate with the instances when elements gain or lose focus.

2.2.1.1.4 WheelEvent It passes the wheel event, which is triggered when
the mouse wheel is rotated or a comparable component like a touchpad is used.

2.2.1.1.5 MutationObserver It offers the capability to observe any mod-
ifications to the DOM tree.

2.2.1.1.6 CompositionEvent It allows a user to enter characters that may
not be present on a physical keyboard.

Table 2.1: Examples of Event APIs

API calls properties

KeyboardEvent | It describes a user interaction with the
keyboard. Each event describes a key
with the event type of keydown, key-
press and keyup.

MouseEvent It represents the events that occur due
to the user interacting with a pointing
device, such as a mouse. It can record
the events such as moving a mouse,
clicking button, etc.

2.2.1.2 APIs that fetch data from the server

The XMLHttpRequest and Fetch API allow modern websites and applications
to transfer data between client and server. The Fetch APIs can handle and
modify requests, responses and other network requests.

2.2.1.3 APIs for drawing and manipulating graphics

These APIs are widely used in drawing and manipulating graphics. The most
popular ones are the Canvas and the WebGL. The Canvas can be used to render
a variety of text and graphics. The WebGL exposes different attributes of web
browsers and hardware, such as GL version, max texture size and supported
WebGL extensions, etc.

2.2.1.4 Audio and video APIs

The Web Audio API provides a powerful and versatile system for controlling
audio on the web, allowing developers to choose audio sources, add effects to
audio, create audio visualizations, apply spatial effects and much more. The
Web Real-Time Communications (WebRTC) is a technology which enables Web
applications and sites to capture and optionally steam audio and /or video media,
as well as to exchange arbitrary data between browsers without requiring an
intermediary. It allows to share data and perform teleconferencing peer-to-
peer, without requiring that the user install plug-ins or any other third-party
software. However, Al-Fannah [6] suggests that WebRTC has brought a new
threat to user privacy. Various client IP addresses could be visible due to the
use of the WebRTC API even if a VPN service is in use.

2.2.1.5 Device APIs

Device APIs refer to the APIs that manipulate and retrieve data from modern
device hardware. The Geolocation API gives the Web content access to the
device’s location. The ambientLightSensor API returns an interface for reading

10

the current light level. The deviceMotionEvent provides web developers with
information about the speed of changes for the device’s position. The micro-
phone and camera APIs allow the web application access to the microphone
and camera of a device. Table 2.2 shows the common API calls of the Device-
MotionFEvent.

Table 2.2: The deviceMotionFEvent API

API calls properties

acceleration An object giving the acceleration of the
device on the three axis X, Y and Z.
Acceleration is expressed in m/s2.
accelerationIncludingGravity | An object giving the acceleration of the
device on the three axis X, Y and Z with
the effect of gravity. Acceleration is ex-
pressed in m/s.

rotationRate An object giving the rate of change of
the device’s orientation on the three ori-
entation axis alpha, beta and gamma.
Rotation rate is expressed in degrees
per seconds.

interval A number representing the interval of
time, in milliseconds, at which data is
obtained from the device.

2.2.1.6 Mobile device APIs

When a user is interacting with a web page by touching the touch screen, var-
ious data can be accessed by mobile APIs [62], e.g., the Accelerometer and
Orientation APIs.

2.2.1.6.1 Earth coordinate frames It is important to understand coor-
dinate system where DeviceMotionEvent and DeviceOrientationFvent are used.
The Earth coordinate frame is fixed on the center of the Earth, as described as
X, Y, and Z. The axes are aligned based on the direction of gravity and the
magnetic north orientation.

e X axis: follows along the ground plane, perpendicular to the Y axis and
positive toward the east.

e Y axis: follows along the ground plane, and is positive toward north.

e 7 axis: is perpendicular to the ground plane, and is positive upward.

2.2.1.6.2 Device coordinate frame The device coordinate frame is fixed
on the center of the device, as described as x, y, and z.

11

e x axis: follows along the plane of device screen, perpendicular to the y
axis and positive toward the right.

e y axis: follows along the plane of device screen, and is positive toward
top.

e 7z axis: is perpendicular to the plane of device screen, and is positive
outward from the screen.

2.2.1.6.3 Rotation direction Rotation is measured in degrees, describing
the difference between the device’s coordinate frame and the Earth coordinate
frame. It has the following values.

o Alpha: when rotating the device around the z axis. The alpha angle is 0
when top of the device is pointing to the north and decreases as rotating
toward the left.

e Beta: when rotating the device around the x axis, which is toward of away
from the user. The beta angle is 0 when the y axis of device coordinate
frame is perpendicular to the Z axis of the Earth coordinate frame, and
decreases as tipping away from the user.

o Gamma: when tilting the device toward left or right. The gamma angle
is 0 the x axis of device coordinate frame is perpendicular to the Z axis
of the Earth coordinate frame, and decreases as tilting toward the left.

2.2.1.6.4 DeviceMotionEvent The DeviceMotionEvent API provides the
speed of changes for device’s position and orientation. It has the following
properties:

e acceleration: returns the amount of acceleration recorded by the device
(without the effect of gravity force).

o accelerationIncludingGravity: returns the amount of acceleration recorded
by the device (with the effect of gravity force). It has three values accord-
ing to the three axes: x for X axis, y for Y axis and z for Z axis.

e rotationRate: returns the rate at which the device is rotating around each
of its three axes in degrees per second. It has three values according to
the three axes: aplha for z axis, beta for x axis and gamma for y axis.

2.2.1.6.5 DeviceOrientationEvent The DeviceOrientationEvent API pro-
vides the physical orientation of the device. It has the following properties.

e alpha: returns the rotation of the device around the Z axis, ranged be-
tween 0 to 360 degrees.

e beta: returns the rotation of the device around the X axis, ranged between
-180 to 180 degrees.

12

e gamma: returns the rotation of the device around the Y axis, ranged
between -90 to 90 degrees.

2.2.1.6.6 Gyroscope The Gyroscope API provides the value angular veloc-
ity of the device along all three axes. It has the following properties.

e z: returns the angular velocity of the device along the device’s x axis.

e y: returns the angular velocity of the device along the device’s y axis.

e z: returns the angular velocity of the device along the device’s z axis.
2.2.1.6.7 TouchEvent Apart from the Accelerometer and Motion sensor
APIs, mobile browser also has the Browser APIs similar to those on a PC
platform, e.g. the TouchEvent API which describes one or more points of contact

with the screen. There are three common types of the TouchEvent API, as
described as follows.

e touchstart: triggered when one or more touch points are placed on the
touch screen.

e touchmove: triggered when one or more touch points are moved on the
touch screen.

e touchend: triggered when one or more touch points are removed from the
touch surface.

Additionally, the touchEvent API has the following properties.

e screenX: returns the X coordinate of the touch point relative to the left
edge of the screen.

e screenY : returns the Y coordinate of the touch point relative to the top
edge of the screen.

e clientX: returns the X coordinate of the touch point relative to the left
edge of the browser.

e clientY: returns the Y coordinate of the touch point relative to the left
edge of the browser.

e pageX: returns the X coordinate of the touch point relative to the left
edge of the document, including horizontal scroll.

e pageY: returns the Y coordinate of the touch point relative to the top
edge of the document, including horizontal scroll.

13

2.2.1.6.8 KeyboardEvent The KeyboardEvent API which describes a user
interaction with the keyboard. Ome of its common properties is KeyboardFE-
vent.key which returns the key value of the key represented by the event. There
are two common types of KeyboardEvent, described as follows.

e keydown: triggered when a key is pressed.

o keyup: triggered when a key is released.

2.2.1.7 Client-side storage APIs

These APIs grant web browsers the ability to store data on the client side. Table
2.3 explains the common API calls of storage APIs.

Table 2.3: Common storage APIs

API calls properties
sessionStorage | This gives a separate storage area for
each given origin that’s available for the
duration of the page session.
localStorage This has the similar function as ses-
stonStorage but persists even when the
browser is closed and reopened.

2.3 Examples of browser API attacks

A malicious website can make use of these APIs. A typical example is phishing
websites. An attacker uses a fake website which is pretended to be a genuine one.
The phishing website collects the user’s credentials, (e.g. account information,
bank card information), and sends back to the attacker’s server.

Additionally, a number of side-channel attacks based on the high resolution
timestamp provided by the performance API are described in [39, 54, 65, 87].
The High-resolution Time API (e.g. performance.now) is a sub-millisecond time
measurement which provides precise timestamp. Oren et al. [65] presented a
micro-architectural side-channel cache attack running entirely in the browser.
The attackers used the controlled web page with malicious content to collect
timing information. When the victim visited the untrusted webpage, their
behaviour can be successfully tracked. Gruss et al. [39] presented a page-
deduplication attack that can collect a user’s private information. Lipp et al.
[54] used this APIs to infer a user’s PIN input, and URLs input in the browser.

Mobile sensor APIs provide various functionalities for users and Web devel-
opers. Such APIs can also be used to enable a wide range of user privacy threats
and security attacks. The attackers may use sensor APIs to collect data and
use machine learning techniques to analyse such data and achieve user personal
information. Different side-channel attacks were demonstrated to compromise a

14

user’s privacy, with using various sensor APIs, e.g. the camera and microphone
APIs [78], the Light sensor API[79], the Stereoscopic microphone and Gyroscope
APIs [64], the Orientation and Motion APIs [58].

2.3.1 Attacks based on High-resolution Time API

2.3.1.1 Cache attack

Oren et al. [65] demonstrated a cache attack which is one of the general class of
micro-architectural side-channel attacks. They suggested that the performance
API could be used to distinguish the cache changes in the cache attack. In the
attack model, the victim views a web page that contains the malicious content,
e.g. an advertisement controlled by the attacker. Instead of requiring the victim
to interact with the malicious web page, the web page runs its JavaScript code
to launch the cache attack, which allows the attacker to track accesses to the
victim’s last-level cache over time. They showed that this attack can be used
to track a user’s behaviour. They achieved an accuracy of more than 80% for
detecting the user’s browsing activity.

2.3.1.2 Page deduplication attack

The page-deduplication attack is one of side-channel attacks, which exploit tim-
ing differences in write accesses on deduplicated pages. Gruss et al. [39] demon-
strated a page deduplication attack based on JavaScript. This attack allows
an adversary to gather a victim’s private information, e.g. whether a program
or website is currently opened. In their attacks, they used malloc to create a
large array to fill the page. To measure the write-access time, they used per-
formance.now() which provides a high resolution timestamp. They found that
images and CSS style sheets in websites are page-aligned in memory. Thus,
they leveraged this property to extract the page content. They applied their
attacks on a wide range of platforms (e.g. mobile phone, personal computer
and multi-tenant cloud systems). When a victim visited a web page containing
the malicious contents, the browser downloaded the JavaScript code and then
executed it. After a period of time, the results were sent back to the attacker.
They showed that such attack could be used to extract sensitive information,
e.g. browsing behaviour of a user.

2.3.1.3 Timing attacks

When a user visits a web page, the web server responses according to the requests
sent from the browser. The size of responding message normally differs from
the requesting content. Timing measurements are related to such difference and
could be used to expose the users’ privacy. Van et al. [87] demonstrated the
timing attacks which could expose personal information of user social networks
(e.g. Facebook, Twitter and LinkedIn), and searching history of Google and
Amazon. They used Performance API to measure the timestamp and leveraged
the timing information as the side channel to expose personal data.

15

Lipp et al. [54] used keystroke timestamp as a side channel and demonstrated
the attacks on a range of platforms, e.g. personal computer, laptops, and smart-
phones. They designed their attack into two phases, online phase for gathering
timing traces and offline phase where the collected data were processed. Al-
though the performance.now resolution was changed from 1 microsecond to 5
microseconds [21], it was still possible to use this API to launch timing attack.
In the online phase, the authors used consecutive sliced single-threaded event
loop with an interval of 4ms as an endless loop to record the timestamp. Ad-
ditionally, Web Worker API was used to allow JavaScript code to be executed
in the background. When a user pressed the keyboard, there was an obvious
peak in the loop. Over time, thousands of traces can be gathered. In the offline
phase, the authors used k-Nearest Neighbours (k-NN) algorithm as the classi-
fier to calculate the correlation of traces. As a result, URLs of 10 most visited
websites that a victim entered into the address bar in the browser could be in-
ferred, with a lowest accuracy of 67% and highest accuracy of 96% respectively.
In their experiment of touchscreen interactions, the user’s PIN input could be
inferred with an average accuracy of 50%. It should be noted that this attack
still worked even if the controlled web page run in the background.

2.3.2 Attacks based on device APIs

Modern mobile phones use various hardware and sensors to provide move func-
tionality and better user experience, (e.g. camera, microphone, light sensor,
motion and orientation sensor). An application on the mobile phone can access
to various user data via the APIs provided by such sensors. However, if mali-
cious applications have the permission to use these APIs, the system would be
vulnerable. A range of side channel attacks based on mobile sensor APIs have
been employed — see, for example, [17, 58, 64, 78].

2.3.2.1 Attacks using sound/light sensors

Simon and Anderson [78] developed a system called PIN Skimmer to demon-
strate a side-channel attack by using the front camera and microphone. They
designed a game in the PIN Skimmer to collect training data. The user interface
of the game consisted of 12 icons of emoji which shares the similar layout as
the PIN pad. In the data collecting phase, when a user touched the screen, the
PIN Skimmer toke a picture with the front camera. Then the picture was up-
loaded to a remote server for analysis. At the server side, relevant features were
extracted from the collected data to build profile for the user. When a victim
used other application and entered his/her PIN, the PIN Skimmer turned on
the front camera to film. Then the video was uploaded to the server for data
processing with the trained profile. They pointed out that the camera use might
attract the victim’s attention, such as the LED of the front camera and shutter
sound of taking pictures. However, in the root mode, both the LED and shutter
sound can be disabled via Android APIs. They showed that 50% of the 4-digit
PINs could be correctly guessed after 5 guessing attempts. They indicated that

16

the result might be improved with other sensor involved (e.g. accelerometer and
gyroscope).

Narain et al. [64] showed that the stereoscopic microphone API could leak
sensitive information. They used stereo-microphones and gyroscope to record
the tap sounds and vibrations. They designed their attack model into 5 phases.
First, the adversary developed the malicious application. Second, they lured
the victim to install the controlled application by some means (e.g. social en-
gineering). Third, when the permission was granted, the application started to
collect the victim’s typing behaviour through the custom keyboard and sensor
data from the stereo microphone and gyroscope. Fourth, the collected data was
regarded as training data and sent to a remote server to create specific profile
for the victim. Fifth, the applications run in the background and monitored the
opened application in the system and the current location information. When
a specific application was opened, e.g. bank application, the malicious appli-
cation started to collect sensor data and upload to the server for inferring the
victim’s keystrokes. They achieved a high accuracy over 90% of inferring the
corresponding keys.

2.3.2.2 Attacks using motion sensors

When a user types on the soft keyboard on the mobile phone, the vibration
occurs. Cai and Chen [17] designed an application called ToughLogger based
on Android system. Once the application was installed into the system and
was granted the motion sensor access, it started to spy on the keystroke via
mobile sensors. DeviceOrientationFEvent was used to read the vibration and
collect this orientation data while typing. TouchLogger extracted features from
the motion signals and used supervised learning methods to infer keystrokes.
They trained the TouchLogger with a data set that consists of motion data
with corresponding keys. TouchLogger achieved a 71.5% accuracy. Their work
indicated that motion signal on the mobile system could be leveraged as a side
channel and personal information could be leaked via such side channel.
Mehrnezhad et al. [58] designed a system called TouchSignatures which com-
promised the web security in a browser based on motion sensor data. In contrast
to applications installed in a system, TouchSignatures does not require any per-
missions as it runs in the browser. They developed a listener for recording
sensor data and a web page as an interface for collecting user data. When a
user visited the web page, the JavaScript code was downloaded automatically
and was executed to collect data. In a meanwhile, socket.IO was used to set up
a socket connection between the client and the server. The collected raw data
was sent through this socket connection. A number of features were extracted
from the raw data. They used various classification methods in different data
processing phases. They designed the experiments into two phases, i.e., identify-
ing user touch actions and identifying PINs. In the first phase, they achieved an
overall 87% accuracy of identifying a user’s touch actions, (e.g. click, hold, scroll
and zoom). In the second phase, they achieved an 77% accuracy of inferring a
PIN. They employed their attacks on different platforms with various scenarios.

17

They showed that, when the malicious web page is active, or an iframe window
with the controlled JavaScript code is opened, the attack could be successful in
almost every browser on both the Android and 10S system. Even the web page
run in the background and the screen is locked, there were still some vulnerable
browsers supporting such attacks.

2.3.3 WebRTC IP address leakage

Al-Fannah [6] pointed out that IP addresses could be leaked via the WebRTC
APIs even a VPN service was in use. He showed that five types of client IP
address could be revealed via the WebRTC API, i.e., the public IPv6 address,
the public temporary IPv6 address, the unique local address assigned by LAN,
the private IP address assigned by the VPN server and the private IPv4 address
assigned by LAN. He examined five common browsers (e.g. the Chrome, Firefox,
Edge, Safari and Opera browsers) on Windows and MacOS, with five chosen
VPN programs. The experimental results including 40 testing cases showed that
expect for the Safari browser on MacOS, the rest of browsers could cause IP
address leakage with or without a VPN service to some extends.

2.4 Device fingerprint

Device fingerprinting, also called browser fingerpinting, is commonly used as a
tool for tracking users. Eckersley [28] designed a web site that could identify
its visitor by collecting information provided by the vistor’s browser, e.g. IP
address, User Agent, HTTP headers, cookies usage, screen resolution, timezone,
browser plugins, plugin versions and Multipurpose Internet Mail Extensions
(MIME) types, and system fonts. The results showed that a large number
of the observed browsers had unique fingerprints. Even though the browser
fingerprint changed rapidly, the ‘upgraded’ version of the browser fingerprint
techniques still could be inferred with 99.1% accuracy of guesses.

A wide range of information can be used for fingerprinting. Alaca and
Oorschot [8] summarised the common device fingerprinting vectors. They di-
vided the vectors into four categories:

Browser-provided information: software and hardware details, WebGL,
system time, battery, evercookies, webRTC, password autofill.

Inference based on device behaviour: HTML5 canvas, system perfor-
mance, hardware sensors, scroll wheel, CSS feature detection, JavaScript stan-
dards conformance, URL scheme handlers, video RAM detection, font detection,
audio processing.

Browser extensions and plugins: browser plugin (e.g. Java, Flash, Sil-
verlight, etc.), browser extension.

Network- and protocol-level techniques: IP address, geolocation, ac-
tive TCP/IP stack fingerprinting, passive TCP/IP stack fingerprinting, proto-
col, DNS resolver, clock skew, counting host behind NAT, ad blocker.

18

Fifield and Egelman [32] suggested that the onscreen dimensions of font
glyphs could be used as a feature for web browser fingerprinting. These in-
formation can be collected by a web server and potientially reveal the browser
behaviour. Eckersley [28] pointed out that the trade off between fingerprintabil-
ity and users’ privacy needs to be considered.

2.5 Other possible attacks

Permission policies have been widely used in common browsers. When a web
application requests to access to specific content via the mobile sensors, e.g.
geolocation, camera, microphone, JavaScript, notifications, popups, etc., a user
can choose to allow or deny the permission. However, some contents do not
require any permissions. Fvent APIs provide web application accesses to DOM
content. The KeyboardEvent and MouseEvent APIs are widely used by web
applications. For example, the KeyboardEvent API is able to indicate what is
happening on a key, e.g. pressing down a key, holding a pressed key or releasing a
key. This could be leveraged by a phishing website to record a victim’s keyboard
inputs. Additionally, keystroke dynamics and mouse dynamics has been studied
for many years. Ahmed and Traore [3] demonstrated that keystroke dynamics
technique could be used in a biometric recognition system. By analysing key
press value and timing information, they achieved an equal error rate of 2.45%
with 53 users involved in their experiments. Mondal and Bours [60] showed
that a combination of keystroke and mouse could be used as a soft biometric in
continuous authentication.

In a web browser, the keyboardEvent can easily record both a key press value
and timing information, mouse actions can be recorded by the MouseEvent API,
and mobile sensor APIs can be used to provide user data. When a user visits a
website with malicious content, the JavaScript code is downloaded automatically
and executed. The website can record the interacting data from a visiting user
and generate a unique profile for the user. When the profile becomes more
complex and sophisticated, the user’s identity could potentially be recognized
by any parties with such profile. An advertisement company may leverage this
to generate targeted advertising for the victims. Contrasting with traditional
credentials, e.g. password and PINs, the user behaviour patterns may be difficult
to change in a very short period of time. Thus, a potential threat to the online
users’ privacy could be posed once a website gathers sufficient user behavioural
data.

2.6 Conclusion

In this chapter, we introduced the prior art on user privacy threats and security
attacks arising from the misuse of the Browser APIs. Section 2.2 introduces the
Browser APIs that are widely used by web developers and the sensitive informa-
tion revealed by such APIs. Section 2.3 describes a range of side-channel attacks

19

with various channels. Section 2.4 introduces the prior art on browser finger-
printing techniques. Section 2.5 discusses possible other security and privacy
issues arising from the Browser APIs. Although the Browser APIs bring web
users more exciting experience, the awareness of security and privacy should be
considered.

20

Chapter 3

Machine learning

3.1 Introduction

We live in a digital world with various data, e.g. Internet of Things (IoT) data,
cybersecurity data, mobile data, business data, social media data and health
data. [74]. Such data can be used for different intelligent applications, e.g. voice
recognition [83], spam filter [22], traffic prediction [29] and disease diagnostic
[30]. Artificial Intelligence (AI), particularly, machine learning (ML) has gained
more popularity in recent years for analysis with such data.

Machine learning allows a system to learn and make decisions based on the
given data. There are roughly six steps for analysing data with machine learning
techniques [35], i.e., data collection, data preparation, model selection, train-
ing with data, model evaluation and make predictions, as is shown in Figure
3.1. In this chapter, we introduce the relevant machine learning techniques.
The structure of this chapter is organised as follows. Section 3.2 describes data
types in machine learning. Section 3.3 introduces data preparation process,
e.g. data cleansing and feature engineering. Section 3.4 introduces the type of
machine learning techniques. Section 3.5 introduces common machine learn-
ing algorithms. Section 3.6 explains model evaluating process and section 3.7
concludes this chapter.

3.2 Data collection

The first step for analysing data with machine learning is collecting data. As
Sarker [74] introduced, the data can be divided into 4 categories: structured
data, unstructured data, semi-structured data and metadata.

3.2.1 Structured data

Structured data has a well-defined data structure and it is highly organised.
A program can easily access and use such data (e.g. names, dates, addresses,

21

‘ Data collection ‘

‘ Data preprocessing, Feature engineering ‘

‘ Model selection ‘

Train the data

‘ Model evaluation, Hyper-parameter tuning ‘

‘ Real prediction ‘

Figure 3.1: Machine learning flowchart

credit card numbers, stock information, geolocation, genders and colours).

3.2.2 Unstructured data

Unstructured data does not follow a standard format or data structure, i.e., it is
more challenging to capture, process or analyse (e.g. sensor data, emails, audio
files, video files and images).

3.2.3 Semi-structured data

Semi-structured is between the structured and unstructured data. It is not well-
defined but follows certain rules (e.g. HTML document, XML document and
JSON documents).

3.3 Data preparation

3.3.1 Data cleaning

The collected data could be unusable without preprocessing as there could be
some missing or abnormal values in a well-structured data. Normally, data
cleansing is applied for processing corrupt or inaccurate data within a dataset
[92].

22

3.3.2 Feature extraction

Unstructured or semi-structured data, e.g. contents in a webpage or images,
may not directly provide useful features for data analysis. Feature extraction
can create useful and meaningful new features from such dataset. This pro-
vides better understanding of the data, better model performance and reduce
computational cost [74].

3.3.3 Feature selection

Unlike feature extraction, which creates new features, feature selection will not
create any new features. The main method of feature selection is to select
better features from the existing ones by using various algorithms, e.g. Variance
threshold [67], Pearson correlation [67] and Principal component analysis (PCA)
[67].

3.4 Types of machine learning techniques

This section introduces the common machine learning types. Based on the
existence of human supervision, machine learning can be roughly divided into
four groups, i.e., supervised learning, unsupervised learning, semi-supervised
learning and reinforcement learning [35].

3.4.1 Supervised learning

In supervised learning, the model observes input and output pairs and learns a
function mapping from input to output. The input can be called the features
and output can be called the labels [72]. A typical task of such supervised
learning is regression, e.g. predicting price of products.

Another typical task of supervised learning is classification. Classification
can be roughly divided into three categories, i.e., binary classification, multiclass
classification and multi-label classification.

Binary classification refers to a classification task with only two class
labels, e.g. True or False in a spam filter system.

Multiclass classification often refers to the classification tasks with multi-
ple classes more than two. An example of multiclass classification is classifying
different types of networks attacks, e.g. the Denial of Service Attack (DoS), the
User to Root Attack, the Root to Local Attack and the Probing attack [74].

Multi-label classification refers to a classification task with multiple out-
puts for an input [35], i.e., a movie can be classified as an action movie and an
English movie at the same time.

3.4.2 Unsupervised learning

In unsupervised learning, the model learns from the data without labels. It
can be used to extract generative features, identifying trends and structures

23

results, grouping in results, etc. The common tasks of unsupervised learning
are: clustering, density estimation, feature learning, dimensionality reduction,
anomaly detection, etc [35].

3.4.3 Semi-supervised learning

Semi-supervised learning uses both supervised and unsupervised learning meth-
ods. A good application example is photo-hosing service [35]. The system
automatically divides the photos into groups according to person. Then the
system needs the users to add labels for each recognised person. Some other
applications are machine translation, fraud detection, labelling data and text
classification [74].

3.4.4 Reinforcement learning

In reinforcement learning system, the system can observe the environment, select
and perform optimal behaviour and get rewards or penalties and then get the
best strategy with most rewards and least penalties (e.g. robotics, autonomous
driving tasks, and DeepMind AlphaGo) [35, 74].

3.5 Machine learning methods

As the primary machine learning tasks in Chapters 6, 7, 8 and 9 are classifica-
tion, this section mainly introduces the common classification algorithms.

3.5.1 K-Nearest Neighbours

K-Nearest Neighbours (k-NN) is probably one of the most fundamental and
simple classification methods [68]. It is based on a majority vote of the k
nearest neighbours to a testing point, using distance (e.g., Euclidean distance)
for measurement. K-NN can be used for both classification and regression task.

3.5.2 Support Vector Machine

Support Vector Machine (SVM) is widely used for classification, regression, and
outlier detection [35]. In high-dimensional space, SVM constructs a hyper-plane
to separate the data. It can be utilised with different kernel functions, e.g. linear,
polynomial, radial basis function (RBF) and sigmoid kernels.

3.5.3 Decision Tree

Decision trees are popular for classification and regression tasks. A decision tree
model is a flowchart-like structure model with various decision nodes [73].

24

3.5.4 Random Forest

A Random Forest classifier is an ensemble classification technique that operates
by constructing multiple decision tree classifiers and using majority voting or
averaging to determine the outcome. A Random Forest model with its multiple
decision trees is often more effective than a single decision tree model [74].

3.5.5 Extreme Gradient Boosting

Gradient Tree Boosting, also known as Gradient Boosting Machine (GBM), is
an ensemble method that builds upon multiple weak prediction models, e.g. de-
cision tree. A Gradient tree boosting model iteratively learns from weak classi-
fiers with adjusting weights and finally achieves a strong classifier [25]. EXtreme
Gradient Boosting (XGBoost) is a more powerful Gradient Tree Boosting model
with faster training speed and better performance [19].

3.6 Model evaluation

This section introduces model evaluation and the relevant evaluating metrics.

3.6.1 Cross-validation

It is important that a machine learning model performs evenly well on all train-
ing data. K-fold cross-validation method can be used for such purpose. Nor-
mally, 5-fold or 10-fold is selected based on the dataset size. The training set is
divided into k groups and will be computed for k iterations until all the data are
being trained and tested. In each iteration, one group is regarded as temporary
testing set and the rest £ — 1 groups are regarded as temporary training set.
Then an average result is computed as the model performance. Cross-validation
method is usually used with hyper-parameter tuning methods to improve the
performance of a model [35].

3.6.2 Hyper-parameter tuning

Hyper-parameters are higher-level parameters which need to be set manually
before training [2]. Most of the sci-kit learn machine learning models have
their default hyper-parameter settings. It is recommended to search the hyper-
parameters for the best cross-validation score to improve model performance
[67].

3.6.3 Evaluating metrics

To evaluate a machine learning model, specific evlauating metrics are used for
certain tasks. This subsection [23] introduces the common metrics used in clas-
sification tasks. Table 3.1 instroduces the binary classification outcomes, as
shown as following:

25

True Positive (TP): the model correctly predicts the positive case, e.g. a
spam filter correctly filtered a spam email.

True Negative (TN): model correctly predicts the negative case, e.g. a
spam filter correctly identified a genuine email.

False Positive (FP): the prediction on a negative case is positive, e.g. a
spam filter incorrectly labelled a genuine email as a spam email.

False Negative(FN): the prediction on a positive case is negative, e.g. a
spam filter incorrectly labelled a spam email as a genuine email.

Table 3.1: Binary classification confusion matrix

Predicted: True Predicted: False

Actual: True

True Positive (TP) | False Negative(FN)

Actual: False

False Positive (FP) | True Negative (TN)

Based on the above mentioned metrics, more metrics can be calculated as
follows:

e True positive rate (TPR): also known as recall, can be calculated as :

True Negative rate (TNR): can be calculated as :

False Positive Rate (FPR): can be calculated as :

False Negative Rate (FNR): can be calculated as :

TPR,recall = TP}—ﬂi-iPFN (3.1)
TNR= TNT+N FP (3:2)
FPR = TNTf FP (3:3)
FNR= s s NFfT 5 (3.4)

Positive predictive value (PPV): also known precision, can be calculated

as :

Accuracy (ACC): can be calculated as :

. TP
PPV, precision = TP FP (3.5)
TP+TN
ACC=7p +FP+TN + FN (3.6)

26

e Fl-score: a harmonic mean of the precision and recall [67], can be calcu-
lated as :

precision - recall 2TP

F1 —9. _
seore precision + recall 2TP +FN + FP

(3.7)

¢ Receiving operating characteristic curve (ROC): can be used for displaying
between TPR and FPR at different threshold.

e Area Under the ROC (AUC): can be used for calculating the area under
the ROC curve.

e False acceptance rate (FAR): the liklihood that a biometric system incor-
rectly labelled an imposter as a genuine user [4], similarly as False positive
rate [81].

e False rejection rate (FRR): the liklihood that a biometric system incor-
rectly labelled an genuine user as an imposter [4], similarly as False neg-
ative rate [81].

e Equal error rate (EER): the probability when FAR equals to FRR.

e Confusion matrix: a summary of prediction results, as shown in Table 3.1

3.7 Conclusion

In this chapter, we mainly introduced the machine learning techniques rele-
vant to the analysis in this thesis. Section 3.1 explains the common steps of
a machine learning model. Section 3.2 introduces the data types in machine
learning. Section 3.3 explains the common process of preparing the collected
data. Sections 3.4 and 3.5 introduce the type of machine learning techniques
and common machine learning algorithms. Section 3.6 introduces the model
evaluating methods and common measuring metrics.

27

Chapter 4

Behavioural biometrics

4.1 Introduction

The biometric system [86] is an identification and authentication system that
uses unique measurable physical characteristic [86], e.g. fingerprint, palmprint,
face, iris, retina, etc., or behavioural traits [86], e.g. gait, keystroke dynamics
[40], mouse dynamics [4], etc.

Biometric identification involves recognizing an individual based on distinct
physiological and/or behavioural traits [44]. A biometric system operates as a
pattern recognition system that verifies an individual’s identity by authenticat-
ing a unique physiological or behavioural attribute.

Normally, this system consists of enrolment and identification modules. Dur-
ing the enrollment phase, a biometric sensor scans the individual’s biometric
trait, converting it into a digital format. Then a feature extractor extracts the
features and stores them as ‘template’.

During the recognition phase, the biometric system captures the individual’s
characteristic and analyse it. This analysed data is then processed by the feature
extractor to compare with the stored template to determine the individual’s
identity.

Most traditional biometric technologies that are based on physical charac-
teristics can be utilised in various scenarios and often achieve good performance.
However, they possess certain drawbacks [14][86]. Typically, they require addi-
tional sensors to scan the subject and collect the necessary information, requir-
ing subjects actively participate in the recognition process. In contrast, some
behavioural biometrics do not require such expensive and infrequently-used sen-
sors. For example, keystroke and mouse dynamics biometrics only require the
user to interact with a keyboard and mouse, while biometrics based on mobile
sensors simply need access to these sensors on the mobile device. These methods
are less costly and do not demand the user’s active attention.

This study aims to identify browser users by analysing their keystroke and
mouse dynamics data, as well as mobile sensor data, by applying existing be-

28

havioural biometric technologies. In this chapter, we review prior work on
behavioural biometrics focusing on keystroke dynamics, mouse dynamics, and
mobile sensors in terms of experimental designs, data processing, and machine
learning algorithms.

The remainder of this chapter is structured as follows: Section 4.2 introduces
keystroke dynamics. Section 4.3 discusses mouse dynamics. Section 4.4 reviews
the combined approach using keystroke and mouse dynamics. Section 4.5 ex-
plores behavioural biometrics based on mobile sensor data. Finally, Section 4.6
discusses the classification tasks in this study and concludes the chapter.

4.2 Keystroke dynamics

The field of keystroke biometrics has been studied since the 1990s [13]. It is
concerned with the behavioural analysis of users, seeking to identify or au-
thenticate individuals through the distinctive patterns in their typing rhythms.
Such patterns include the duration of key presses, the delay between consecutive
keystrokes, the average speed of typing, the frequency and nature of typograph-
ical errors, individual preferences in keystroke sequences, and the force exerted
on keys [13, 47]. This section reviews prior work on behavioural biometrics
performance based on keystroke dynamic.

4.2.1 Experimental designs

The keystroke studies can be roughly divided into two categories: static analysis
and dynamics analysis. Static keystroke analysis means all the participants are
asked to type in the same predetermined text during the experiments. Killourhy
and Maxion [49] set .tie5Roanl as the predetermined text for their experiments.
They recruited 51 subjects and asked them to complete 8 data-collection sessions
(of 50 passwords each), for a total of 400 password-typing samples.

Araujo et al. [13] selected 10-digit strings as their experimental texts. They
recruited 30 users and set the experiments on three machines with two differ-
ent keyboards. They categorized the experiments into three types: legitimate
user authentication, impostor user authentication, and observer impostor user
authentication. The experimental results indicated that it is difficult to learn
other user typing behaviour in a short period of time. The familiarity of a target
string could significantly influence the authentication performance. They sug-
gested that adaptation mechanism should be used to improve the authentication
performance.

Hosseinzadeh and Krishnan [43] set up their experiments with 41 partici-
pants over a period of four weeks. They developed an application for keystroke
pattern authentication, i.e. KbApp. The users were asked to install the applica-
tion on their own PC and provide keystroke samples regularly.

Kang and Cho [46] developed keystroke data collection programs for different
devices, e.g. traditional PC keyboard, a soft keyboard and touch keyboard. Each

29

Down-down time

A

[|

Keyldown Keylup Keyldown Keylup

i J
I |

Key pressed time Latency Key pressed time

Figure 4.1: Keystroke timing features

user was asked to provide at least 3,000 characters via the program on their
devices.

Gunetti and Picardi [40] set up their experiments for six months. They
recruited 41 volunteers (as legal users) to provide 15 typing samples each. Under
the same condition, another 165 users (as impostors) were asked to provide one
typing sample. Users were free to choose what they would like to provide as
the typing samples. The gathered samples varied in length from 700 to 900
characters.

Rodrigues et al. [71] recruited 20 users and set up their experiments on a
Pentium IV microcomputer platform, using only numeric keyboard part. Each
user was free to choose an eight-digit string as the experimental text. In total,
1400 samples were collected.

Giot et al. [37] used the GREYC keystroke database [36] which involved
133 users with a total number of 7555 samples within 2 months.

Kasprowski et al. [48] conducted their research using the public Buffalo
dataset [82]. This dataset consists of both fixed length of input and free text
from 148 participants. Participants were asked to use a keyboard to type their
answers to several questions. The average interacting period for each user is
about 100 minutes. In their classification tasks, data from 20 users were se-
lected.

Lu et al. [56] used the Buffalo dataset [82] and the Clarkson dataset [89] in
their study. A total of 39 participants contributed to the data collection, with
a mixture of passwords, fixed text, and free text across two sessions, each last-
ing two hours per user. On average, each participant generated approximately
21,533 keystrokes.

Altwaijry [9] invited 85 users for their data collection. Each user was asked
to type in a fixed length of password and a phrase for 400 times in both English
and Arabic in a controlled environment.

4.2.2 Data extraction

Features can be extracted from raw typing data. While typing, keyboard in-
puts, e.g. the pressed key value and relevant timing information, are recorded.
Each key press and release generates two timestamps. Using these timestamps,
various timing features can be derived, as illustrated in Figure 4.1:

30

DD time (Down-Down Time): The latency between consecutive key presses.

UD time (Up-Down Time): The latency between a key release and the
subsequent key press.

e DU time (Down-Up Time): The duration of a single key press.

e UU time (Up-Up Time): The latency between consecutive key releases.

A review of timing features employed in prior research is summarized in
Table 4.1. Pisani and Lorena [69] suggested that DU and UD times are the most
commonly used features. Furthermore, Chang et al. [18] incorporated keystroke
pressure in their study of mobile device usage. However, pressure data cannot
be collected through traditional keyboards as they require additional sensors.

Table 4.1: Extracted timing features in keystroke dynamics studies

Authors Extracted features
Giot et al. [38] DU, DD, UD
Giot et al. [37] DU, DD, UD
Hosseinzadeh and Krishnan [43] DU, DD, UD, UU
Killourhy and Maxion [50] DU, DD, UD
Chang et al. [18] DU, DD, UD
Araujo et al. [13] DU, DD, UD
Kang and Cho [46] DU, UD
Liu et al. [55] DU, DD, UD
Gunetti and Picardi [40] DD
Bartlow and Cukic [15] DU, UD
Rodrigues et al. [71] DU, DD, UD
Kasprowski et al. [48] DU, DD, UD, UU
Lu et al. [56] DU, DD, UD, UU
Altwaijry [9] DD, DU, UD

Giot et al. [38] applied DD, UD, DU, and UU times in their research, along
with a measure of total typing time. Hosseinzadeh and Krishnan [43] reported
DD and DU times as the most popular features. Killourhy and Maxion [50]
examined various combinations of timing features, noting that authentication
performance varied accordingly. Chang et al. [18] concentrated on password
keystroke authentication for touchscreens, employing timing and pressure fea-
tures in their study. In addition to timing features, Araujo et al. [13] included
key code data in their analysis, utilizing mean and standard deviation to process
timing information. They observed that 98% of the collected timing data fell
between 10 ms and 900 ms, with 1-ms precision. Kang and Cho [46] selected DU
and UD times for their study, highlighting the space key as the most frequently
utilised. The vowels ’a’, ’e¢’, ’i’, 0’ and the consonants ’t’ and 'n’ were among
the most commonly typed characters on a PC keyboard. The syllables 'he’,
'th’) ’an’, ’in’, and ’er’ were the most prevalent in their dataset. Gunetti and

31

Picardi [40] employed n-graphs with DD time as their primary timing feature,
while Bartlow and Cukic [15] integrated shift-key patterns into their feature set,
yielding 41 feature vectors for each input sequence. Aratjo et al. [13] employed
the Manhattan distance metric to process their data, applying DU, DD, and UD
timing features in their experiments. They demonstrated that a combination
of these three features resulted in better experimental outcomes compared to
using a single feature alone.

4.2.3 Machine learning approaches

Classification generally aims to find the category that best matches the data
being classified. A variety of classification algorithms have been used in previous
studies, as outlined in Table 4.2.

Table 4.2: Summary of classification methods in keystroke dynamics studies

Authors Classification methods

Giot et al. [38] SVM, Neural Network

Giot et al. [37] SVM, Statistical method

Hosseinzadeh and Krishnan [43] | Gaussian Mixture Model

Killourhy and Maxion [50] Nearest Neighbour, Neural Net-
work

Chang et al. [18] Statistical method

Araujo et al. [13] Statistical method

Kang and Cho [46] Statistical method, k-NN

Liu et al. [55] Statistical method

Gunetti and Picardi [40] Statistical method

Bartlow and Cukic [15] Random Forest (RF)

Rodrigues et al. [71] Hidden Markov Model(HMM),
Statistical method

Kasprowski et al. [48] Artificial Neural Network (ANN)

Lu et al. [56] Convolutional Neural Network
(CNN) and Recursive Neural
Network (RNN)

Altwaijry [9] AdaBoost, Decision Tree (DT),
RF, SVM

4.2.3.1 Support Vector Machine

Support Vector Machine (SVM) is a widely-used supervised learning algorithm
that constructs a decision boundary with the largest possible margin between
different classes, based on support vectors [59]. Giot et al. [37] employed a two-
class SVM during the enrollment phase. Each training set, {x;,y;}, consists
of an enrolled vector x; and a label y; € (—1,1) denoting genuine or impostor
users. A threshold was established to determine the legitimacy of a user. If the

32

verification is successful, an update mechanism is used to refresh the training
sets.

4.2.3.2 Nearest neighbour

K-NN algorithm finds the £ most similar instances based on a certain simi-
larity metric, e.g. the Euclidean distance, the Manhattan distance or the Ma-
halanobis distance [46]. Killourhy and Maxion [50] used Nearest Neighbour
(Manhalanobis) algorithm. In the training phase, training vectors were stored
in the detector and covariance matrix was calculated. In the test phase, the de-
tector calculates the Manhalanobis distance between the testing set and training
set according to the calculated covariance matrix.

4.2.3.3 Manhattan distance

Araujo et al. [13] used Manhattan (scaled) distance in their research. The mean
and deviation of each timing feature is calculated in the training phase. In the
test phase, the score of testing sample is calculated as (4.1)

L~z —
D=— _ 4.1
3o a

Lt ‘
where ;1 and o represents the mean and the standard deviation of the training
sample respectively , ¢ is the ith elements in the samples and n is the number
of elements of the training sample.

4.2.3.4 R measure and A measure

Gunetti and Picardi [40] used n-graphs and applied R measure and A measure in
their study. The R measure referred to the relative typing speed of a user. The
rationale behind the R measures was that the a user’s typing speed may change
due to some reasons. But the changes were expected to affect all the typing in a
similar way. Normally a user’s typing speed in a warm room condition is faster
than that in a cold condition. However, if typing speed of each digraph in a
sample S is exactly twice as the typing speed of the same digraph in a sample
So, the R measure fails to distinguish these two samples. Thus, the A measure
was introduced, referring to the absolute typing speed of each keystroke. Kang
and Cho [46] suggested that the combination of the R and A measures achieved
the best performance in their algorithms.

4.3 Mouse dynamics

Mouse dynamics has been explored for several years as a potential 'soft’ biomet-
ric trait for authentication systems [31, 59, 60, 76]. Similar to keystroke dynam-
ics, mouse dynamics analysis does not require specialized hardware, leveraging
the standard mouse, a primary PC interface, for data acquisition. This section

33

reviews previous work on the performance of behavioural biometrics based on
mouse dynamics.

4.3.1 Experimental designs

Ahmed and Traore [4] engaged 22 participants and developed client software
to record mouse actions and transmit the data to a server in real time. The
users were asked to install the software on their own machines. Running in
the background, the software started monitoring when the user logged in and
stopped when the logged out. Data was collected over a total of 998 sessions,
averaging 45 sessions per user. Over 9 weeks, they collected 284 hours of raw
mouse data, with an average input of 13 hours per user.

Shen et al. [76] developed a Windows application guide users through the
same mouse-operated tasks on the same desktop computer. They invited 37
participants who provided data twice daily for up to 60 days, yielding 5550
samples.

Mondal and Bours [59] used a public mouse dynamics dataset [63] in their
study. 48 users were asked to use their computer and mouse in a normal way,
without any restrictions on the tasks. There is a huge variation in the number
of samples per user (i.e., minimum 3736, maximum 333789, average 60701).

Kili¢ et al. [52] introduced the Bogazici dataset, a large-scale public mouse
dynamics dataset with 24 users and 2550 hours of data. An application in
Python programming language was developed to continuously listen to mouse
movements and clicks and then record them into a file with timestamps, inter-
active applications types and mouse action details. Due to the inadequacy of
training data and the weak training performance associated with the 5 users,
their data were considered potential external threats.

Siddiqui et al. [77] recruited 10 users in their experiment. During this
study, the participants were instructed to play in a 20-minute gaming session of
Minecraft, while their mouse activities were captured through a Python script.

Rahman and Basak [70] refined a public dataset [33]. The improved version
of this dataset has ten users. Each user contributes between 5 to 7 sessions.
Every session in this dataset is close to 120 minutes.

Antal et al. [11] accumulated a large dataset from 120 subjects. They devel-
oped a browser based gaming script. Each user was asked to play the designed
game and follow the instruction, such as clicking on a triangle or double-clicking
on a square, etc.

4.3.2 Data extraction

The raw data collected from a mouse device can be roughly divided into three
categories: the coordinates of the mouse pointer, the click actions and the cor-
responding timestamps. Various features can be extracted from such raw data.
Table 4.3 outlines the mouse actions described in [31, 59, 60, 76]. Features can
be extracted as follows.

34

Table 4.3: Mouse action types and descriptions

Actions Description

Mouse-Move (MM) General mouse movement
Left button down(LD) | Press the left mouse button
Left button up(LU) Release the left mouse button

Right button down(RD) | Press the right mouse button
Right button up(RU) Release the right mouse button
Mouse wheel(W) Scroll the mouse wheel
Drag-and-Drop (DD) Begins with mouse button down,
movement, and then mouse but-
ton up

Point-and-Click (PC) Mouse movement followed by a
click or a double-click

Silence No movement detected

Travelled Distance Histogram (TDH): The distribution of the trav-
elled distance for every action type.

Action Type Histogram (ATH): The relative frequency of the MM,
DD and PC actions within a session.

Movement Direction Histogram (MDH): The ratio of actions per-
formed in each one of the eight directions. This feature is represented by
8 values, as is shown in figure 4.2.

Average Movement Speed per Movement Direction (MDA): The
average speed over all the actions performed in each one of the eight
directions. This feature is represented by 8 values.

Average Movement Speed per Types of Actions (ATA): The av-
erage speed of performing the MM, DD and PC actions.

Movement Speed compared to the Travelled Distance (MSD):
Approximation of the average traveling speed for a given travelling dis-
tance.

Movement elapsed-Time Histogram: The time distribution for per-
forming an action.

4.3.3 Machine learning approaches

Table 4.4 summarises the classification methods employed in previous mouse
dynamics research. Mondal and Bours [59] used the SVM and ANN classifiers
in their studies. Feher et al. [31] applied the Random Forest algorithm in their
work. Shen et al. [76] applied a one-class SVM and Neural Network classifiers.
Additionally, k-NN with Mahalanobis distance was used. During the training

35

S
N

Figure 4.2: Diagram of the 8 Cardinal Directions for Mouse Movement

Table 4.4: Classification methods in mouse dynamic

Classification meth- | References

ods

SVM Shen et al. [76], Mondal and
Bours [59], Antal et al. [11]

Random Forest Feher et al. [31]., Siddiqui et al.

[77], Rahman and Basak [70]
K-NN (Mahalanobis) Shen et al. [76], Rahman and

Basak [70]
Neural Network Ahmed and Traore [4], Shen et
al. [76]

phase, the covariance matrix of the training features was calculated. In the test-
ing phase, the nearest neighbour classifier computed the Mahalanobis distance
from the new feature sample to each sample in the training data.

4.4 Behavioural biometrics based on combining
mouse and dynamics

The previous two sections have conducted a review of keystroke dynamics and
mouse dynamics. Each has demonstrated promising potential for classification
on its own. In practical settings, it is typical for PC users to simultaneously en-
gage with both keyboard and mouse during a given period. This section reviews
the combined use of keystroke and mouse dynamics in behavioural biometrics.

4.4.1 Experimental designs

Bailey et al. [14] conducted experiments with 31 participants, collecting data
from keyboard, mouse, and GUI interactions. They developed a software ap-
plication running on Windows 7 to capture the users’ operations. Participants
were required to answer three questions and write a report ranging from 400 to
500 words for each question. The gathered data was segmented into samples,
each covering a 10-minute interval.

36

Mondal and Bours [60] recruited a total of 53 participants. Participants were
required to install a specially designed software on their personal computers.
They were given complete freedom in terms of their activities and behaviours on
the computer, with no restrictions or specific instructions imposed. Throughout
the duration of the experiment, which spanned 5-7 days, an average of 700,000
events were recorded for each participant. Among these events, keystroke and
mouse events constituted 12.4% and 83.3% of the total, respectively. To dif-
ferentiate between ‘genuine users’ and ‘imposter users’, binary classifiers were
applied. Around 35% of the total data was used for training classifiers, while
approximately 10% was used for tuning hyper-parameters. The remaining 55%
of the data was reserved for the testing phase.

Earl et al. [27] recruited 240 participants in their study, with a 225 right
handed and 15 left handed users. The distribution of age, and gender between
female and male participants was approximately even. The users were asked
to do follow various clicking tasks according to the instructions on the screen.
Additionally, they were asked to type in a long fixed text. Instead of focusing on
authentication/identification tasks for users’ identities, they aimed to identify
users’ handedness, ages and gender.

Wang et al. [91] invited 41 participants in data collection. The participants
were aked to carry out four tasks: typing, browsing Taobao website, browsing
Weibo website, and gaming on the same laptop. Each task took one hour. For
the gaming task, participants played a customized game on Windows, following
the on-screen instructions and move and click mouse. The two website browsing
tasks required the users to use mouse for most of the time and a small amount
of keystroke activities. During the typing task, users were required to type the
same article in Microsoft Office Word.

4.4.2 Data extraction

Bailey et al. [14] computed the average Up-Up (UU) and Down-Up (DU) times
as keytroke dynamics features. In terms of mouse dynamics, they calculated
features such as speed, direction, travel distance, and click timing information
derived from mouse movements and clicks.

Mondal and Bours [60] used digraphs and extracted DD, DU, UD, and UU
for the keystroke features. As for the mouse actions, the study focused on
Mouse Move and Drag-Drop actions, extracting various parameters such as
angles, speed, accelerations, and distance, based on the cursor’s coordinates
and timestamps.

Wang et al. [91] segmented based on time windows ranging from 10s to 480s.
Then they proposed a feature extraction method ‘fusing the Scene-Irrelated
features and User-Related features for User Authentication’ (SIURUA). They
suggest that users’ keystroke and mouse behaviours may vary across different
scenes. So they abandoned such high scene-correlated features as they con-
sidered such features may influence the authentication accuracy. Therefore,
scene-irrealted features were selected and used. In contrast, some features vary
significantly between users but show minimal variation for an individual user.

37

These features are called ‘user-related features’ as they are more distinguish-
able to users than other features. DD, DU, UD, UU features were extracted for
the keystroke dynamic. Data related to mouse dynamics, including movement
speed, direction, travel distance, and timing were extracted.

4.4.3 Machine learning approaches

Bailey et al. [14] employed two classifiers, BayesNet and LibSVM in their anal-
ysis. A combination of classification methods was used by Mondal and Bours
[60] , including Artificial Neural Network (ANN), Counter-Propagation Artifi-
cial Neural Network (CPANN), and Support Vector Machine (SVM). Instead
of focusing solely on authentication metrics such as FRR or FAR, the study
introduced the Average Number of Imposter Actions (ANITA) and the Average
Number of Genuine Actions (ANGA) as alternative evaluation metrics. These
metrics provide insights into the average number of actions an imposter is able
to perform before being locked out by the authentication system. Earl et al.
[27] tested on various algorithms: Random Forest, SVM, Decision Tree, Gaus-
sian Naive Bayes and KNN. Wang et al. [91] used Multiple Kernel Learning
method to combine kernels from multiple source to improve the performance of
the target kernel and used SVM as the classification method.

4.5 Behavioural biometrics based on mobile plat-
form

The footprint of mobile devices expands continuously in this digital world. Xi-
aomei et al. [93] report daily activities involving approximately 400,000 Apple
and 1.3 million Android devices. Mobile applications are capable of using various
mobile sensors (e.g., GPS, gyroscope, compass and accelerometer) and accessing
to user data [58]. Similarly, various browser APIs can access user data during
interactions with webpages. The potential security and privacy risks posed by
mobile APIs have been highlighted, with Bojinov et al. [16] raising concerns that
mobile sensors could be exploited to compromise user anonymity. In addition,
Mehrnezhad et al. [58] demonstrated how orientation and motion sensors might
be leveraged to decipher a user’s PIN entry. Furthermore, Zhang et al. [93] in-
dicated that interactions with mobile devices could produce various collectable
data, which could be instrumental as behavioural biometric identifiers. This
section reviews prior work on behavioural biometrics based on mobile platform.

4.5.1 Experimental designs

Zheng et al. [94] invited over 80 participants in their experiment. The users were
asked to type 4-digit and 8-digit PINs respectively for 25 times on a provided
Samsung Galaxy Nexus, with holding the phong with left hands and tapping
with their right hand index fingers.

38

Gascon et al. [34] recruited 315 users in their experiment. A softkeyboard
prototype for Android OS was developed an installed on the prepared testing
smartphone. All users were asked to type a predefined text with approximately
160 characters.

Antal et al. [12] invited 42 people in their study. The experimental duration
was two weeks. An android application was developed and installed on a Nexus
7 tablet and a Mobil LG Optimus L7 device for data collection. The users were
asked to enter a pre-defined password (.tie5Roanl) for 30 times.

Teh et al. [84] recruited 150 users in their study. A collection tool using Java
and Android API was developed and installed on Sumsung Galaxy tablet. The
experimental location was chosen by the involved users at their best convenience,
including offices, homes, inside cars, classrooms, and public areas. The users
were asked to enter a 4-digit PIN and a 16-digit PIN for 10 times respectively.

Kim and Kang [51] invited 50 participants in the experiment. An Android-
based application was developed for data collection and installed on a provided
Samsung Galaxy S8. Each user was asked to type 20 pre-defined text using
thumbs of both hands in a sitting position.

Acien et al. [1] utilised a publicly available keystroke dataset [66] contributed
to by 260,000 users. During each session, participants were required to memorize
a randomly chosen sentence from a pool of 1,525 examples and then type it as
quickly and accurately as possible on a browser webpage using their personal
mobile device. Each participant was instructed to complete at least 15 such
sessions. Due to the uncontrolled experimental conditions, only 23% of the
participants (equating to 60,000 users) provided usable data. Acien et. focused
their analysis on these 60,000 participants and their initial 15 sessions, extracting
solely timing-based keystroke dynamics and keycode information, as no motion
sensor data were collected in this study. The length of each keystroke sequence
varied between 70 and 100 keystrokes.

4.5.2 Data extraction

Various types of data can be captured through mobile APIs when a user interacts
with a mobile device’s webpage. These data types can be leveraged with machine
learning techniques for in-depth analysis, as follows.

e Gyroscope: Data provided by the Gyroscope API [26, 34, 51, 53, 93, 94].
e Pressure: Data provided by the Pressure API [12, 24, 26, 45, 75, 84, 94].
e Orientation: Data provided by the DeviceOrientationEvent API [34, 51].
e Coordinate: Coordinates of touch points [12, 26, 45].

e Area: Sizes of the touchpoint contacts [24, 26, 51, 53, 84, 94].

e Accelerometer: Data provided by the Accelerometer API [24, 34, 41,
51, 53, 94].

39

e Time: Timing based information, e.g., timestamps of keytouch down
(KD) and up (KU) [1, 12, 24, 26, 34, 41, 45, 46, 51, 53, 75, 80, 84, 94].

4.5.3 Machine learning approaches

Table 4.5: Machine learning methods for mobile touch dynamics

Classification meth- | References

ods

SVM Antal et al. [12], Gascon et al.
[34], Ho [41], Jain et al. [45]

Random Forest Antal et al. [12], Ho [41]

Nearest Neighbours Antal et al. [12], Kang and Cho
[46)

Distance based Antal et al. [12], Zhen et al. [94],
Lee et al. [53], Ho [41]

TyperNet Acien et al. [1]

Transformer Stragapede et al. [80]

Table 4.4 summarises the classification methods applied to mobile touch dy-
namics in previous research. Antal et al. [12] explored various machine learning
algorithms, i.e., distance-based method, k-NN, LibSVM and Random Forest.
Gascon [34] used SVM as the classification algorithms. Zheng et al. applied
a distance-based method. Jain et al. [45] used SVM algorithm in their study.
Lee et al. [53] used both distance-based and SVM methods. Acien et al. [1]
developed a novel classification framework named TypeNet, which was used for
both authentication and identification tasks. Stragapede et al. [80] employed
the Transformer architecture as the machine learning approach.

4.6 Discussions and conclusions

4.6.1 Discussions

Biometric systems can have two distinct functions: authentication (verification)
and identification (recognition) [12]. The verification function operates as a bi-
nary decision-making process. Here, the system evaluates whether to accept or
reject the identity asserted by an individual. This function acts as a gatekeeper,
ensuring that only those whose biometric data matches the pre-registered infor-
mation gain access or authentication.

On the other hand, the identification system should analyse an input pattern
and determine its correspondence to one of the ‘N’ predefined classes (multi-
class) in its database. It is not a matter of ‘yes’ or ‘no’, but a question of ‘which
one’. Identification is important when the user’s claimed identity is unknown.
The system has to look through its stored biometric data to see to find a match.

40

This is important in situations where we need to figure out who someone is just
from their biological or physical characteristics, without them telling us who
they are first.

In this study, our primary goal is to reveal browser users’ real identity via
their interactions with the browser, rather than authenticating them whether
they are the ones they claimed to be. Thus, identification via multi-class clas-
sification would be our main task in all scenarios.

4.6.2 Conclusions

In this chapter, we have presented an overview of behavioural biometrics sys-
tems. More specifically, we reviewed into the details of behavioural biometrics,
examining keystroke dynamics in Section 4.2, mouse dynamics in Section 4.3,
the combination of keystroke and mouse dynamics in Section 4.4, and the uti-
lization of mobile sensors in Section 4.5. Across these four sections, we have
reviewed previous research concerning experimental frameworks, data process-
ing techniques, and machine learning methodologies. This section provides a
conclusion to the chapter.

41

Chapter 5

Experimental platform

5.1 Introduction

Websites are capable of learning a wide range of information about the platform
on which a browser is executing. One major source of such information is the
set of standardised Application Programming Interfaces (APIs) provided within
the browser, which can be accessed by JavaScript downloaded by a website;
this information can then either be used by the JavaScript or sent back to
the originating site. As has been widely discussed, much of this information can
threaten user privacy. The main purpose of this paper is to document a publicly
available platform designed to enable further investigation of one class of such
threats, namely those based on analysing user behavioural data. The platform
has two main components: a Chrome extension that gathers user keystroke and
mouse data via browser APIs, and server software that collects and stores this
data for subsequent experimentation.

The JavaScript language is widely used by websites to enable dynamics be-
haviour. In the context of a web browser, JavaScript code is downloaded along
with the web page. This JavaScript is executed automatically by the browser,
and can access a variety of information via a set of browser-provided Application
Program Interfaces (APIs).

In general, APIs are constructs made available in programming languagues to
allow developers to create complex functionality more easily. Browser-supported
APIs, which can be accessed by website-originated JavaScript, provide web-
site developers with more efficient ways to accomplish their goals and provide
browser users with a better experience.

In a modern browser, Client-side JavaScript can access a range of APIs
[61]. In general, browser APIs allow developers to create web pages that in-
corporate information from the user’s environment [90]. In HTML5, a wide
variety of information can be accessed via browser APIs, such as audio, appli-
cation cache, canvas, fullscreen, geolocation, local storage, notifications, video
and web database [20]. However, browser APIs can also be used by websites

42

to learn potentially privacy-sensitive information about the browser, the plat-
form on which the browser is executing, and even the user of the browser. For
example, platforms can be tracked across multiple web visits using browser fin-
gerprinting techniques [28], it may be possible to learn secret user data such as
PINs [78] and the user location [6], and it may even be possible to learn about
the human user.

The possibility of behavioural monitoring using browser APIs motivates the
work described in this paper, namely the development of a platform to enable
the collection of behavioural data. The platform has been designed to support
experiments which aim to determine the degree to which individual users can
be identified via browser APIs. When a web user is browsing a website, the
standard Document Object Model (DOM) enables executing JavaScript to ac-
cess information about keyboard and mouse events. These keyboard and mouse
events can potentially be used to identify individual users using techniques de-
veloped for biometric identification and authentication [14]. The platform we
describe in the remainder of this paper has been designed to support experiments
aimed at understanding how effective such identification can be. However, the
platform is not restricted to this application, and is being made available as a
potential tool for further research on browser security and privacy.

The platform involves a Chrome extension that has been implemented to
collect keystroke and mouse data from browser users. In addition, server func-
tionality has been developed to receive and store this data.

The remainder of this chapter is structured as follows. Section 5.2 explains
the motivation of the work in this chapter. Section 5.3 introduces the browser
APIs used by the extension. Section 5.4 then addresses the implementation
of the extension. Section 5.5 explains the ethical issues of the experiments.
Section 5.6 introduces the user guidance of the experimental platform. Section
5.7 describes possible ways in which the current platform might be extended
and Section 5.8 contains concluding remarks.

5.2 Motivation

When a user browses a web page, the providing website can download JavaScript
that gathers keystroke and mouse data using browser APIs. The main objective
of the planned research is to understand the degree to which such gathered data
can be used to identify the user. To perform this research a means of collecting
reasonably large data sets from a significant number of different users is needed.

The first proposed approach for collecting the data was to develop a special
website (and accompanying JavaScript) to collect data from users. Test subjects
would then be asked to interact with this website. However, this approach
was abandoned for two main reasons. Firstly, developing a website which is
sufficiently feature-rich to generate meaningful user interactions would be a very
difficult and time-consuming task. Secondly, persuading a sufficient number of
users to engage with this website for the time necessary to generate the required
volume of data is also likely to be very difficult.

43

This analysis led to the development of the current experimental platform,
involving a browser extension and a server to collect data from the extension.
The browser extension gathers keystroke and mouse use data using the browser
APIs in exactly the same way as website-provided JavaScript would. From
time to time the extension uploads the gathered data to the server for storage
and later processing. Experimental participants are simply asked to install
the extension and sign in whenever they start using their browser, and their
keystroke and mouse use data is gathered without any further user involvement.
This should enable large datasets to be gathered from a significant number of
different individuals.

One shortcoming of this approach is that it gathers more data than a single
website would be able to gather, since all web activity is monitored and not
just activity with one website. That is, it has the ability to gather more data
than a single website would be able to. However, this seems reasonable as a
first step in gaining an understand of what is possible — also, many websites use
JavaScript provided by third parties (such as Google — see, for example, [5]),
and such third party providers would thereby be able to gather keystroke and
mouse data from user interactions with a multiplicity of sites. At a later stage
the extension could be modified to only monitor keystroke and mouse activity
when the user is visiting a particular site.

5.3 Background

5.3.1 Keyboard and mouse events

We first introduce the browser API calls used by the experimental platform
to collect data on user behaviour. Specifically we detail APIs which provide
information regarding user interactions with keyboards and pointing devices
(e.g. a mouse).

The most commonly discussed browser API is probably the DOM API which
can create, remove and change HTML and CSS. The Document interface pro-
vides a representation of a web page loaded in the browser, and serves as an
entry point into the web page content in the form of the DOM tree. The Event
API, one of the interfaces provided by DOM, provides the KeyboardFEvent and
MouseFEvent APIs.

The KeyboardEvent API provides information regarding user interactions
with a keyboard. Each event is triggered by an action on a key, and can have an
event type of keydown, keypress or keyup. Table 5.1 summarises the API calls
for the KeyboardEvent API.

The MouseFEvent API delivers details on interactions with a pointing device,
e.g. a mouse, capturing various activities — moving a mouse, clicking a button,
etc. Table 5.2 outlines the API calls related to the MouseEvent.

44

Table 5.1: API calls and their properties for keyboard events

API call Property description
KeyboardEvent.code Returns a string that represents
the physical key code of the key
associated with the event.

KeyboardEvent.key Returns the value of the key as-
sociated with the event.

keydown Triggered when the key is de-
pressed.

keyup Triggered when the key is re-
leased.

5.3.2 Chrome extensions

Chrome extensions are programs designed to to customize the browsing ex-
perience. They enable users to modify Chrome functionality and behaviour
according to individual needs or preferences. Built on web technologies, e.g.
HTML, JavaScript, and CSS, these extensions can leverage browser-supported
APIs to collect user data and transmit it to remote servers.

Extensions consist of various components, which can include background
scripts, content scripts, a manifest file and option pages. We next briefly review
these component types.

The manifest file provides information about the extension. Typically the file
manifest.json contains general information about the extension (name, version,
etc.), its permissions (download, URLs, etc.) and settings for option pages.

Background scripts can work with or without a background HTML file. A
background page is loaded when it is needed and unloaded when it becomes idle.
It can communicate with content scripts and popup pages by sending messages
and listening for an event.

By using the DOM, content scripts can read details of web pages visited
by the browser, make changes to them and pass information to other script
pages. Working in an isolated environment, a content script is able to change
the JavaScript environment of a loaded page without conflicting with the page
or other scripts. It can be regarded as a part of the loaded page; however, a
content script is not permitted to access any variables or functions created by the
web page. The Cross-Origin XMLHttpRequest policy prevents a content script
from directly sending a XML HttpRequest to a remote server. Instead, message
passing can be used to pass messages from a content script to the background
script.

5.4 The experimental platform

This experimental platform is to provide an approach that collects the user’s
keystroke and mouse dynamics data in a fully unconstrained way. An extension

45

Table 5.2: APT calls and their properties for mouse events

API call Property description

click Triggered when the mouse button is pressed
and released on a single element.

mousemove Triggered when the pointer moves over an el-
ement.

mousedown Triggered when the mouse button is pressed
on an element.

Mouseup Triggered when the mouse button is released
on an element.

wheel Triggered when the mouse wheel is crolling
over an element.

pageX Returns the X coordinate of the mouse pointer
relative to the whole document.

pageY Returns the Y coordinate of the mouse pointer
relative to the whole document.

screenX Returns the X coordinate of the mouse pointer
in global (screen) coordinates.

screenY Returns the Y coordinate of the mouse pointer
in global (screen) coordinates.

clientX Returns the X coordinate of the mouse pointer
in the applications’ client area. It changes
when the page is scrolled.

clientY Returns the Y coordinate of the mouse pointer

in the applications’ client area. It changes
when the page is scrolled.

is able to run in the browser without any influence to the browser users. A
Chrome extension for collecting user’s keystroke data and mouse movement
data was developed, and a remote server for receiving and storing data was
established. We next describe their development and operation. The structure

of the experimental platform is shown in Figure 5.1.

5.4.1 Development environment

Software development was performed on Windows 10 system, with details as

follows.

e Programming tool: Sublime Text (Version 3.1.1, Build 3176).

e Programming languages: HTML and JavaScript (client-side) and ASP

(server-side).

e Google Chrome version: 68.0.3440.106 (Official Build).

46

SQL Server 2008
Client side Popup page & database
Web page Background script ASP file

!

| Content Script

Server side

Figure 5.1: The structure of the experimental platform

To set up the server, an Alibaba Cloud Web hosting service was used ,with
supporting the ASP language and a 1GB SQL database.

5.4.2 The Chrome extension

The extension consists of a manifest.json file, a popup HTML page, a popup.js
script file, a background.js script file and a content.js script file. Upon clicking
the extension icon, the popup page appears, prompting users to register and log
in. After the user logs in, the content script starts to monitor web pages visited
by the user. Both KeyboardEvent and MouseEvent APIs are used to track
the user’s keyboard and mouse actions. Since content scripts cannot directly
communicate with a remote server, the sendMessage method is called to pass
the parameters from the content script to the background script. When the
background script receives the data, the XMLHttpRequest method is used to
communicate with the server.

Figure 5.1 illustrates how the content script captures keystroke and mouse
data using browser APIs before forwarding this data to the background script.
The popup page interacts with the background script, updating the user’s login
status. Permissions specified in manifest.json allow the extension to access
URLs and use cookies.

Content scripts can read the DOM of a web page. In this extension, the
content script has six event listeners: mousemouve, mousedown, mouseup, wheel,
keydown and keyup. Each event activation generates a timestamp, captures the
corresponding data, and sends it to the background script.

Data is categorized into two action types: keystroke and mouse. For a single
keystroke, the data is regarded as an object with eight elements: keystroke
timestamps, key value, and the usage of functional keys (Ctrl key, Alt key, Shift
key and CapsLock key), as shown in Figure 5.2. When a key is depressed,
an object of type keystroke with eight elements is created. When the key is
released, the timestamps are updated and the data is sent to the background
script.

FEach single mouse action data consists of one of eight mouse action types

47

keyStroke {key: "D", keydown: 1535052622836, keyup: 1535852622947, code: "KeyD", ctrl: "false", .}

alt: "false"”
caps: "true"
code: "KeyD"

ctrl: "false"”
wn: 1535852622836
keyup: 1535852622947
shift: "false"

ke

Figure 5.2: Keystroke raw data at client side

vmouseobj {t: 1, x: 488, y: 358, ts: 111311859604} B
t: 1
ts: 111311859@04
x: 438
y: 358

w [[Prototype]]: Object

» constructor: £ mouseobj(t,x,y,ts)
» [[Prototype]]: Object

Figure 5.3: Mouse raw data at client side

(mouse move, left button down, left button up, right button down, right button
up, wheel rolls, wheel down and wheel up), mouse coordinates (X and Y) and
the timestamp, as shown in Figure 5.3.

The background script receives the request message from content script and
popup script with the following code:

chrome.runtime.onMessage.addListener(
function(request, sender, sendResponse){
if (request.type == action type){
SendToServer ({
data: request.data,
type: request.type,})}})

The primary role of the background script is communicating with other scripts
and the server. When the background script receives a message from another
script, an XML HttpRequest is established to send the data to remote server:

xmlhttp.open("GET", URL+data, TRUE)
xmlhttp.send ()

Users can complete registration and login via the popup page, and subse-
quent login status is passed to the server through the background script.

Since the extension records all keystroke and mouse movements, it may
inadvertently collect sensitive personal data, e.g. passwords for certain websites,
bank card number, date of birth. Thus if a user has any concerns that the
data they are typing is possibly sensitive, the user is recommended to log out
by clicking the ‘logout’ button; the user can log in again when the sensitive
interactions have been completed.

48

Please log in.
Gmail

User name:
Password:

login || logout
Checkstatus
Register

Figure 5.4: Popup page user interface

5.4.3 The server

At the server side, ASP files are used to interact with the client and database.
The data is stored in a SQL Server 2008 database. To prevent potential SQL
injection attacks, a regular expression check is used when data is received. To
connect with the SQL server database, the ADODB.CONNECTION method is
used in a ASP file:

Set Conn=server.CreateObject ("ADODB.CONNECTION")
StrConn=" Provider=SQLOLEDB;Data Source= domain;User ID=

userID;Password= pwd;Initial Catalog= databaseName"
Conn.open StrConn

When registration is completed, relevant data is then sent to the server. To
distinguish data sent from different subjects, the server creates a cookie for each
user:

response.cookies("uname") = username

When a user logs out, the server deletes the cookie. The server creates two
databases for each user, one to store keystroke data and the other to store mouse
use data.

5.5 Ethical issues

The use of this experimental platform to gather keystroke and mouse use data
involves certain ethical issues. In particular, since all key depressions are moni-
tored and recorded, all the data typed into the browser by each user, including
passwords and other sensitive data, is recorded by the server.

As a result, before a participant installs the browser extension, he/she is
given a written statement of what data is gathered and how it will be treated,
which the participant is required to sign to give informed consent. All data

49

gathered in this experiment will be held on a server to which only I have access,
and the data will only be processed automatically for the purposes of performing
the necessary processing. Unfortunately, this means that the dataset can never
be made public, at least unless it has been very carefully processed first (e.g. to
leave only timing information).

A formal description of the proposed experiments and the ethical issues
involved, has been approved by the ISG, see Figures A.1, A.2, A.3 and A.4
in Appendix A. Consent to perform the experiments has been obtained before
large-scale data gathering was performed, see Figure B.1 in Appendix B.

5.6 User guidance

This section introduces the user guidance of using the extension. This extension
is not available on Chrome Extension Store because it may gather user sensitive
and privacy information. Thus, instead of installing from the Stroe, the user
needs to manually install step by step. The installation procedure is introduced
as follows.

e Step 1: Click the ‘three dots’ icon (Customise and control Google Chrome)
at the right above of Chrome browser, go to More tools and then go to
Extensions.

e Step 2: Turn on the ‘Developer mode’.

e Step 3: Click ‘Load unpacked’ and find the location of the extension file,
then click OK.

Once installation is completed, the extension will show on the browser. To
make the data collection start, the user need to register and log in. Once the
user logs in, the extension will automatically record every keystroke and mouse
movement data and send them to the server when the user is interacting with
the browser.

The extension is publicly available on https://github.com/fanzhaoyi/D
ataCollector. It is completely free to anyone who would like to conduct and/or
participate in such experiments. Due to the ethical issues, the dataset cannot
be publicly available. It will only be accessed by the experimental conductor.
For any concerns of this platform, the author can be reached at zhaoyi.fan.2
016@live.rhul.ac.uk.

5.7 Possible future work

As illustrated in Chapter 4, the keystroke and mouse dynamics can be used
in behavioural biometrics systems for user authentication. The prior work has
demonstrated promising performance outcomes. The KeyboardEvent and Mouse
can effectively collect data that could be potentially used in such biometric anal-
ysis. Additionally, keystroke and mouse dynamics do not need extra devices or

50

https://github.com/fanzhaoyi/DataCollector
https://github.com/fanzhaoyi/DataCollector
zhaoyi.fan.2016@live.rhul.ac.uk
zhaoyi.fan.2016@live.rhul.ac.uk

sensors — only keyboard and mouse which are probably the most commonly
used input devices on a personal computer. Beyond the KeyboardEvent and
Mouse APIs, alternative APIs may lack the same level of efficacy and robust
functionality for collecting user data from keyboard and mouse interactions.
Consequently, KeyboardEvent and Mouse was selected as the primary data gath-
ering APIs.

The experimental platform is currently capable of gathering keyboard event
and mouse event data. However, there may be other behaviour-related (and
hence privacy-sensitive) data that could be gathered by the platform. For ex-
ample, motion sensor data for a mobile device is accessible via motion sensor
APIs. Extensions to the platform are envisaged which would gather such data.

5.8 Conclusions

This chapter described the functioning and use of an experimental platform
designed to gather user-related data from a browser. The platform has been
developed to support experiments aimed at understanding the degree to which
individual users can be identified using browser-gathered behavioural data. It is
hoped that the platform will be of value to other researchers performing similar
experiments.

Section 5.2 provides the motivation of this work and Section 5.3 introduces
the browser APIs used by the experimental platform. Section 5.4 provides
details of the implementation. Section 5.5 explains the possible ethical issues.
Section 5.6 provides the user guidance of the experimental platform. Section
5.7 describes possible further development of the platform.

o1

Chapter 6

Performing the keystroke
dynamics experiments

6.1 Introduction

Keystroke biometrics has been studied for decades since the 1990s [13]. It in-
volves measuring behaviour that attempts to identify users by analysing their
typing rhythm patterns, e.g. the duration of a key hold, the latency between two
keystrokes, average typing speed, typing error, typing preference and keystroke
pressure [13, 47]. Most prior work focused on the user authentication process
based on keystroke dynamics. As far as the author is aware, none of the previ-
ous works apply their studies on a user identification process through keystroke
dynamics data obtained via browser APIs in a browser-based environment. The
rich features of the Browser APIs can also provide sufficient data for such iden-
tification analysis. This observation motivates the work in this chapter.

In this chapter, we set up experiments to collect user keystroke dynamics
data. The goal of the experiments is to use part of the collected keystroke
dynamics data as the training data to develop a biometric template for each
user, and then to use the remaining data as the testing data to see how well a
user can be identified. We analysed the keystroke dynamics data with machine
learning techniques. Python was selected as the primary language for data
analysis. The source code used in this chapter is listed in Appendix D.3.1. The
experimental results indicate that the web users could potentially be identified
via their typing habits in a web environment.

The structure of this chapter is organised as follows. Section 6.2 intro-
duces the data collection. Section 6.3 introduces the data preparing and model
building processes. Section 6.4 describes the experimental results based on the
collected dataset and public dataset with machine learning techniques. Section
6.5 provides the discussions based on the experimental results and concludes
this chapter.

92

KEYWVALUE KEYDOWN KEYUP KEYCODE CTRL ALT

1 Shift 1535736123426 1553736125788 Shiftleft false false
2 T 1535736123625 1553736125787 KeyT false false
3 h 1535736123309 1533736125898 KevH false falze
4 i 1533736123969 1535736124073 Keyl false false
5 s 1533736124139 1535736124308 Key3 false false
6 1533736124426 1533736124914 Space false false
7 1 1535736124683 1553736124777 Keyl false false
8 = 1535736124310 1533736125002 KeyS false false
9 1535736125113 1553736126235 Space false false
10 CapsLock 1538736126379 1RE3736126515 CapsLock false false
11 T 1535736127129 1533736127265 KeyT false falze
12 CapsLock 1533736127603 1533736127718 CapsLock falze falze
12 h 1533736128049 1535736128145 KeyH false false
14 e 1533736128217 1533736128338 KeyE false false
15 1535730128722 1553736128841 Space false false
16 Shift 1535736129209 1533736129714 Shiftleft false false
17 T 1535736129545 1553736125674 KeyT false false
18 =& 1535736129201 1553736125905 KevE false false
19 = 1535736130011 1533736130154 Kevs false falze
20 t 1533736130225 1535736150348 KeyT false false
21 . 1533736136826 1535736136922 Feriod false false

Figure 6.1: Keystroke raw data

6.2 Data gathering

In our experiments, we invited 20 users. Each user used the experimental tool
for a period of at least one month. All users in the experiments are bilingual
— Chinese (native level) and English (proficient level). The experimental en-
vironment was free of controls. They could type any of these two languages at
any time and were totally free to stop the extension by clicking logout whenever
they wanted.

One user’s data was separated from the other 20 users as the data size was
too small. This user’s data was used for initial data analysis. The data of the
rest 20 users were used for further training and testing. Figure 6.1 illustrates
the keystroke raw data stored in the database. The data is ordered ascendantly
by keydown timestamp. Each line of the data represents a single keystroke with
8 elements as described in Table 6.1. In our experiments, five elements were
selected for further analysis, i.e., keycode (K), keydown (KD), keyup (KU), Caps
and Shift. For each keystroke, the keyup value should always be greater than

93

SHIFT
true
true
false
false
false
falze
falze
falsze
falze
falze
false
false
false
falze
falze
true
true
falze
false
false
false

CAPS
nal
true
false
false
false
nal
false
falze
nal
nal
true
nal
false
falze
nal
nal
true
false
false
false

nal

Table 6.1: Description of the eight elements in keystroke raw data

Element Explanation
KEYVALUE | Key value generated by the keystroke
KEYDOWN | Timestamp when the key is pressed down, de-

noted as D

KEYUP Timestamp when the key is released, denoted
as U

KEYCODE | Physical key position on the keyboard, de-
noted as K

CTRL Usage of the Ctrl key during the keystroke;

‘false’ indicates not in use, ‘true’ indicates in
use, denoted as Ctrl.

ALT Usage of the Alt key during the keystroke;
‘false’ indicates not in use, ‘true’ indicates in
use, denoted as Alt.

SHIFT Usage of the Shift key during the keystroke;
‘false’ indicates not in use, ‘true’ indicates in
use, denoted as Shift.

CAPS State of the CapsLock key during the
keystroke; ‘false’ indicates not active, ‘true’
indicates active, ‘nal’ indicates the key is not
one of the 26 English letters, denoted as Caps.

its keydown value and the keydown value of its next keystroke would always be
greater than its keydown value due to the natural data gathering process. It
should be noted that, the keyup values of two consecutive keystrokes may not
have an absolute relationship. The number of keystrokes for each user in raw
data ranges from 7816 to 33212, as shown in Figure 6.2.

6.3 Data processing

Before using the collected data, it is essential to process it to extract the relevant
features. As examples, we next describe possible approaches to such process-
ing, used in experiments that were performed with the aid of the platform we
introduced in Chapter 5.

Collected data can be downloaded into the local machine and processed with
Python packages (sklearn [67]). To avoid potential data leakage and to simulate
the actual identification process, the raw data was simply divided into two parts:
first 80% of the data gathered for each user were used for generating a biometric
classifier, and the remaining 20% of the gathered data for each user were used
for further user identification.

Figure 6.3 shows the number of keycodes used for each user. The differences
may result from user occupations, daily routines, keyboard layouts or operating

o4

User
=
(=]

Mean

T T T T T T
] 5000 10000 15000 20000 25000 30000
Keystroke samples

Figure 6.2: Number of keystrokes from each user’s raw data

User

k T T T T T
] 10 20 30 40 50 60 70 80
Number of keycode categories

Figure 6.3: Distribution of keycode categories for each user in the raw dataset

99

systems etc. For example, a standard PC keyboard with US-international or
UK layout does not have Volume control key but has a keypad area at the right
side, while keyboard on a 13-inch MacBook Pro has the Volume control key
but does not have the keypad area. These differences could potentially reveal a
user’s device information but not user behaviour. Thus, only the keys used by
all users were selected in this experiment. Table 6.2 shows the occurrence of top
10 frequently used keys for each user. The Space and Key I keys are the two
most frequently used keys and the five vowels (A,E,1,0,U) are in the top 10.

Table 6.2: Occurrence of the Top 10 Most Frequently Used Keys for Each User

User] Space| I A N Backs| E U H [e) G Enter
0 884 504 687 658 638 407 388 363 424 352 209
1 821 635 425 579 1287 638 206 185 254 166 601

10 1879 1869 | 1634 | 1464 | 869 1074 | 980 970 917 808 451
11 485 390 368 416 601 270 239 194 194 186 144
12 2670 2355 | 2092 | 1907 | 1328 1535 | 1328 | 1248 | 1278 | 1114 | 538
13 2446 2167 | 1913 | 1758 | 1135 1482 | 1270 | 1257 | 1132 | 969 496
14 2556 2456 | 2090 | 2005 | 1285 1622 | 1259 | 1300 | 1159 | 1153 | 534
15 1120 725 877 634 1022 566 463 428 475 258 438
16 1255 679 675 711 822 518 388 410 404 378 584
17 1094 533 471 521 739 440 283 320 290 241 431
18 3095 2665 | 2312 | 2182 | 1500 1877 | 1404 | 1551 | 1405 | 1127 | 645
19 573 422 438 415 721 445 296 238 388 226 431
2 3307 2928 | 2559 | 2287 | 1427 1917 | 1710 | 1493 | 1422 | 1158 | 676
2943 2644 | 2239 | 2033 | 1471 1806 | 1439 | 1345 | 1231 | 1040 | 508
3297 3110 | 2690 | 2490 | 1772 2068 | 1883 | 1663 | 1588 | 1301 | 805
616 521 527 531 515 342 231 301 350 270 375
947 524 639 470 753 543 293 270 336 197 291
2918 2563 | 2179 | 2144 | 1388 1614 | 1482 | 1458 | 1274 | 1137 | 553
3123 2843 | 2416 | 2390 | 1510 1823 | 1570 | 1451 | 1403 | 1351 | 667
532 494 510 547 852 471 307 355 340 289 484
Total 36561 | 31027| 27741 26142 21635 | 21458 17419] 16800| 16264 13721 9861

© 00O U kAW

6.3.1 Data segmentation

The main method of distinguishing users via their keystroke behaviours is to
find out their typing rhythms. A single keystroke is not regarded as a stand-
alone sample, as it may be relative to its preceding or subsequent keystroke,
thus the data needs to be split into several multi-keystroke segments. Araujo et
al. [13] suggested that more than 98% of the latencies between two consecutive
keys are less than one second. Therefore, we set one second as the threshold
for segmenting data in our experiments. That is, in each segment, the DD time
difference between two consecutive keystrokes is less than 1,000 (milliseconds).
The Train_test_split method was used to split the segments into training and
testing sets for model evaluation. It should be noted that one segment may
not be regarded as a sample, as it may contain a number of keystrokes. The
total number of segments for all users is 30,491 and the average length for all
segments is 9.5, as shown in Table 6.3.

96

Table 6.3: Segmentation Statistics for Each User

User Number of | Minimal Maximum Average
segments length length length

0 1439 1 95 6.3
1 1977 1 50 4.8
10 669 1 152 22.0
11 723 1 55 7.3
12 2206 1 103 9.1
13 1138 1 126 15.7
14 1333 1 157 15.0
15 1882 1 82 5.4
16 2663 1 46 3.5
17 1552 1 65 4.3
18 1551 1 173 15.3
19 963 1 80 7.5
2 1755 1 110 13.4
3 1893 1 79 11.2
4 1458 1 159 17.8
5 1384 1 57 4.4
6 1651 1 70 4.4
7 1198 1 141 17.5
8 1681 1 203 13.9
9 1375 1 68 5.5
9 1375 1 68 5.5
Total 30491 20 203 9.5

6.3.2 Feature extraction

This section introduces the feature extraction process. The features can be
divided into two categories: typing rhythms based on timing information, and
typing habits based of functional key (Ctrl, Alt, Shift, CapsLock) use. Digraph
was used as the experimental samples in majority of prior work. A common
digraph could exist in many different scenarios. For example, the digraph en
could be in word pen or word end. This situation also may apply to 3-graph —
pen could be in pen, pencil, happen or open. The typing rhythm of pen would
probably be different while a user is typing in such four words. Tables (C.1 and
C.2), Tables (C.3 and C.4), Tables (C.5 and C.6) and Tables (C.7 and C.8) (see
appendix) describe the most common used digraphs, 3-graphs, 4-graphs and
5-graphs for the users, with a total number of 211, 87, 20 and 5 respectively. It
should be noted that there are no 6-graphs being used by all uses at the same
time. In this research, 4-graph was used as the experimental samples for feature
extraction for the following reasons: it has various types and includes a range
of frequently used digraphs and 3-graphs.

Each 4-graph sample consists of 4 keystrokes. Each keystroke consists of
4 elements and can be described as S = {T,F} where T and F represents
28 timing features and 8 features of function key usage respectively. Timing
features T can be divided into 5 groups, as described as follows.

e Duration: time elapsed from one key pressed to released.
e DD time: time elapsed from one key pressed to its followed keys pressed.

e DU time: time elapsed from one key pressed to its followed keys released.

o7

% 4-graph sample 1 ——>

pif " Tu1

D2 U2
D3 .[L | U3

D4 U4

Dsl o |U5‘

— 4-graph sample 2 4;‘
\

Figure 6.4: Keystroke Data Extraction for the Word "HELLO’

e UU time: time elapsed from one key released to its followed keys released.

e UD time: time elapsed from one key released to its followed keys pressed.

F features can be described as: {S, C'} where S represents the Shift key usage
and C represents the CapsLock key usage. For a given 4-graph, 4 Duration
features, 6 DD features, 6 DU features, 6 UU features, 6 UD features, 4 S
features and 4 C' features can be extracted.

One segment may consist of more than 4 keystrokes. Figure 6.4 illustrates
the feature extracting process for word HELLO. Two 4-graphs can be extracted,
i.e., HELL and ELLO. Although both HELL and ELLO has a overlap of 3-graph
(ELL), the position of ELL in each 4-graph sample are different.

6.3.3 Evaluating metrics

The main area for this research is multi-class identification rather than binary-
class authentication. Thus, fl-score, precision score, recall score and confusion
matrix were used.

6.3.4 Classification methods

The machine learning algorithms presented in 6.4 have demonstrated good per-
formance in various scenarios [57] [42]. Determining the most effective algorithm
for our study from existing literature is challenging due to variations in sample
characteristics and experimental methodologies. Therefore, we determined our
classifier choice through testing results, consistent with the approach utilised in
Chapters 7 and 9. We tested various machine learning algorithms, e.g., SVMs,

98

Table 6.4: Comparative Performance Metrics of Various Classifiers on Keystroke
Dynamics Data

Classifier F1 score Precision| Recall ACC Time
XGBoost 0.440 0.487 0.441 0.525 109s
Random Forest 0.355 0.412 0.408 0.357 1188s
LinearSVC 0.111 0.145 0.156 0.252 5755s
SVC(linear kernel) | 0.181 0.251 0.200 0.307 12891s
SVC(rbf kernel) 0.257 0.351 0.270 0.374 9323s

Random Forest and eXtreme Gradient Tree Boosting (XGBoost). For SVMs,
three different approaches were tested — LinearSVC (One vs Rest), SVC (One
vs One) with linear kernel, SVC (One vs One) with rbf kernel were selected.
Each classifier was set by using default hyper-parameters and 10-fold cross val-
idation was used. As is shown in Table 6.4, the XGBoost classifier achieved
both the highest scores and lowest running time. Although tuning the hyper-
parameters could change the performance of a classifier, the significant difference
in performance led to the selection of the XGBoost classifier as the classification
method in this approach. The data analysis was processed on a PC with an
AMD 7800X3D CPU and an RTX 4090 GPU.

6.3.5 Feature selection

Figure 6.5 shows the scoring for each feature. The use of Shift key (32, £33,
34, £35) gains more weights than other features. The results indicate that the
user habit of typing uppercase letters, i.e., some user may choose use CapsLock
while others may choose to hold Shift key, may be an interesting feature to
distinguish users.

6.3.6 Model evaluation

Table 6.5: Best Hyper-parameters of XGBoost Classifier on Keystroke Dynamics

Hyper-parameter Value
objective multi:softprob
eval_metric mlogloss
tree_method gpu_hist
learning_rate 0.3
n_estimators 600
max_depth 5
min_child_weight 5

The Grid search method was used for tuning hyper-parameters with 10-fold
cross validation. Table 6.5 shows the tuned hyper-parameters. Additionally,
sample_weight was used to solve sample imbalance. Figure 6.6 shows the confu-
sion matrix of classification result with tuned hyper-parameters on one 4-graph
sample.

99

14.652673852410C
643612279

Feature importance
13.541199
13.128645315213634
B1

12.2144135661360

10.42066369859873

9.371820732098607
8.965961528080417
8.8394515727209

7.864622241505894
7.531702106367046
7-197122796058515

6.284923246397521
6.108165444667326
5.885649977121227
5.822772944666552
5.250378739987563
5.146828157611005
5.131104313807524
5.0868905122544295
4,779659378797255
4.647553200590783
4.55417076595121
4.372739971986812
4.2351074685134025
4.190467525802799
3.6261191170894067
3.137143955684286
3.0954560411785383
2.99855790697155
2.94105611858396
2.8865817923445563
2.866450798990737

2.8043673256368846
2.506286791120925
2.5042641556975553
2.484741603112083

T T
4 6 8 10 12 14
F score

Figure 6.5: Feature importance scores obtained from the XGBoost model for

keystroke dynamics analysis

60

80

24 70

60

74 50

40

True label

10 A
11 A
12 A |30
13 A
14 -
I 20
15 A
16 -
17 A I 10

18 q

19 4

— T T T T T T T T T 7T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Predicted label

Figure 6.6: Confusion matrix representing the classification results for a single
4-graph keystroke sample using the tuned XGBoost model

61

Table 6.6: Classification Scores on Keystroke Training Set from 1 to 30 Samples

Samples F1 score Precision| Recall ACC
1 0.514 0.510 0.523 0.559
2 0.575 0.575 0.581 0.622
3 0.622 0.630 0.624 0.671
4 0.663 0.678 0.661 0.712
5 0.700 0.722 0.695 0.749
6 0.730 0.758 0.722 0.779
7 0.756 0.790 0.746 0.805
8 0.779 0.816 0.766 0.826
9 0.797 0.836 0.784 0.844
10 0.814 0.854 0.799 0.860
11 0.831 0.872 0.815 0.874
12 0.845 0.887 0.829 0.886
13 0.857 0.898 0.840 0.896
14 0.868 0.909 0.850 0.906
15 0.878 0.918 0.860 0.914
16 0.885 0.926 0.867 0.921
17 0.892 0.933 0.874 0.927
18 0.899 0.939 0.880 0.932
19 0.905 0.944 0.886 0.937
20 0.910 0.948 0.891 0.942
21 0.915 0.951 0.896 0.945
22 0.919 0.954 0.900 0.948
23 0.923 0.958 0.905 0.951
24 0.926 0.960 0.908 0.953
25 0.929 0.963 0.911 0.956
26 0.932 0.965 0.914 0.958
27 0.935 0.967 0.918 0.960
28 0.937 0.969 0.920 0.962
29 0.939 0.97 0.921 0.963
30 0.941 0.971 0.924 0.964

6.3.7 Accumulative methods

When a user is continuously typing with a keyboard, more actions are generated
and more data can be gathered. For each 4-graph sample S, the predicting
result can be computed in a probability way with predict_proba and described
as {p1,p2,...,pn} where p; represents the predicting probability of this action
belonging to user;. Thus, the probability prediction of m 4-graph samples
{s1, 82, ..., $m } from n users can be described as:

P11 ... DPin

1 — 1 —
Popn=2¢ @ . y={= ey — in :
: . : {mzpﬂ mzpj } (6.1)
Jj=1 Jj=1
Pm1 --- Pmn

Hence, the user corresponding to the maximum probability value in P,,, is
identified as the prediction result. As shown in Table 6.6 , the classification
performance improves consistently with the increment of keystroke samples.

Apart from using 4-graph, other n-graphs were also tested, as shown in
Figure 6.7. We concluded that the classification result increases consistently for
each n-graph situation; for a given series of continuous keystrokes, the 4-graph
achieves the best result in most cases.

62

Performance on various n-graphs and samples sizes

0.9 4

0.8

2_graphs
3_graphs
4_graphs
5_graphs
6_graphs
7_graphs
8_graphs
—— 9_graphs

10_graphs
—— 11_graphs
—— 12_graphs

13_graphs
—— 14 _graphs
—— 15_graphs

Fl-score
o
S
)

o
@
L

0.5 1

0.4

0.3

T T T T T T T
0 5 10 15 20 25 30
Samples number

Figure 6.7: Comparison of Fl-scores for 1 to 15-graphs across 1 to 30 sample
increments, highlighting the optimal performance of 4-graph samples

6.4 Experimental results

In Section 6.3, we described the implementation of the XGBoost classifier on
the training set. In this section, we discuss the performance of our well-tuned
models on our testing dataset and on another public dataset.

6.4.1 Results on real testing set

As previously mentioned, the raw data were separated into two sets. The first
80% of the raw data was used as the training set for model setup and the
remaining 20% of the raw data was used for testing the established model.
Table 6.7 displays the number of keystrokes for each user in the testing set.

Table 6.7: Keystroke Counts per User in the Testing Set

User Raw User Raw User Raw
0 2298 7 5304 14 5036
1 2646 8 5947 15 2669
2 5947 9 1941 16 2393
3 5357 10 3749 17 1863
4 6644 11 1565 18 6000
5 1647 12 5089 19 1938
6 2723 13 4500 Total 75256

All data in the testing set were extracted into several 4-graph samples. The
testing samples were not shuffled but retained the same order as when they were
collected. This approach simulates the actual scenario where a user’s keystroke

63

Table 6.8: Classification Performance Metrics for Keystroke Samples by Sample
Size on the Testing Set

Samples F1 score Precision| Recall ACC
1 0.496 0.496 0.509 0.545
2 0.559 0.559 0.570 0.610
3 0.606 0.610 0.613 0.659
4 0.648 0.657 0.651 0.701
5 0.684 0.699 0.683 0.737
6 0.715 0.735 0.711 0.768
7 0.743 0.766 0.737 0.795
8 0.766 0.791 0.757 0.816
9 0.786 0.815 0.776 0.835
10 0.802 0.834 0.789 0.849
11 0.817 0.850 0.803 0.863
12 0.829 0.864 0.814 0.873
13 0.840 0.876 0.825 0.884
14 0.850 0.886 0.834 0.893
15 0.859 0.894 0.842 0.900
16 0.867 0.903 0.850 0.907
17 0.874 0.910 0.856 0.913
18 0.881 0.916 0.863 0.918
19 0.887 0.922 0.869 0.923
20 0.892 0.927 0.874 0.927
21 0.897 0.930 0.879 0.930
22 0.902 0.935 0.884 0.934
23 0.906 0.938 0.889 0.937
24 0.909 0.941 0.892 0.940
25 0.913 0.944 0.896 0.942
26 0.916 0.947 0.899 0.944
27 0.919 0.949 0.903 0.947
28 0.922 0.952 0.905 0.948
29 0.924 0.954 0.907 0.950
30 0.926 0.955 0.909 0.952

information is continuously gathered. Table 6.8 shows the classification results,
i.e., continuously increasing from 1 4-graph sample to 30-graph samples. Figure
6.8 illustrates the confusion matrix for all users on one single 4-graph sample.

6.4.2 Results on fixed text dataset

We also conducted tests on another public dataset. Killourhy and Maxion [49]
provided a keystroke dataset based on a fixed text of ‘.tie5Roanl’. It is a strong
password with 10 characters, containing both uppercase and lowercase letters,
numbers and punctuation. 51 participants were invited in this data collection.
They were asked to type this password correctly 400 times in at least 2 weeks.
This approach was intended to minimize the proficiency bias that might occur
if a user types the same password within a very short period.

The dataset comprises 31 timing features for each sample. We used train_test_split
method to partition the data into a training set (80%) and a testing set (20%).
A variety of machine learning algorithms were evaluated, all of which achieved
commendable classification performance, as detailed in Table 6.9.

64

60

50

40

True label

30

12 4
134
14 20
16 4

r10
174
18 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Predicted label

Figure 6.8: Confusion Matrix for a Single 4-Graph Keystroke Sample Classifi-
cation

Table 6.9: Classification Performance on the DSL Password Dataset

Classifiers Hyper- F1- Precision Recall ACC
parameters score

XGBClassifier default 0.921 0.922 0.921 0.921

RandomForest default 0.924 0.926 0.924 0.924

SVC kernel:linear 0.836 0.837 0.837 0.837

SVC kernel:rbf 0.870 0.875 0.869 0.869

k-NN k:5, met- | 0.895 0.901 0.895 0.895
ric:manhattan

Light GBM default 0.935 0.936 0.935 0.935

6.4.3 Comparisons

Despite the differences in experimental approaches from those used in prior
work, it remains significant to conduct a comparison, as depicted in Table 7.11.
The prior studies discussed in this chapter were primarily focused on authenti-
cation tasks, with the exception of the research by Kasprowski et al. [48], which
addressed both authentication and identification tasks. While none of the earlier
studies employed browser APIs for data collection, an exception is found in the
research by Earl et al. [27]. However, their experimental environment was highly
controlled and they combined keystroke and mouse dynamics data, which will
be discussed in Chapter 8. To the best of our knowledge, the study presented in
this chapter is the first to describe the identification of users through keystroke
dynamics data obtained via browser APIs in a completely uncontrolled browser-

65

based environment. A summary of prior work is as follows.

A comparison with prior work is described in Table 6.10.

Kasprowski et al. [48] conducted their research based on public dataset —
the Buffalo dataset [82]. This dataset consists of both fixed length of input and
free text from 148 participants. They used ANN as the classification methods.
They achieved an accuracy of 82% for identification task with 20 users selected.

Lu et al. [56] used the Buffalo dataset [82] and the Clarkson dataset [89]
in their study. A total of 39 participants contributed to the data collection,
with a mixture of passwords, fixed text, and free text across two sessions, each
lasting two hours per user. On average, each participant generated approxi-
mately 21,533 keystrokes. They achieved 1.89% FRR and 2.83% FAR on the
Buffalo dataset, 6.61% FRR and 5.31% FAR on the Clarkson dataset based on
a sequence length at 50 for each keystrokes sample.

Altwaijry [9] invited 85 users for the data collection. Each user was asked to
type in a fixed length of password and a phrase for 400 times in both English and
Arabic in a controlled environment. AdaBoost achieved the best performance
with accuracies of 98.9% and 99.1% on their fixed phrase dataset for Arabic and
English respectively.

It should be noted that, while prior studies have demonstrated promising
results in authentication tasks, their datasets and methods may not be suitable
for this study. In a browser-based real-world scenario, users are unlikely to
repeatedly input their passwords for a single website. Furthermore, modern
browsers offer features such as password management tools, allowing users to
bypass manual password input in secure environments.

Additionally, the requirement to type a phrase of a long fixed length is not
applicable to the context of this study. In real-world scenarios, repeatedly typing
a fixed-length phrase would challenge a user’s patience and could result in an
unpleasant experience. This negative condition could potentially influence the
user’s typing behaviour. Moreover, users rarely have the need to enter a long,
fixed phrase multiple times at a single website.

In contrast, our dataset is unconstrained and is based on a browser environ-
ment, including a wide variety of real-life scenarios. That is, we believe that the
dataset we gathered represents a more likely real-world scenario than has been
examined previously.

6.5 Conclusions and possible future work

6.5.1 Conclusions

In this chapter, we studied the identification of browser users based on their
keystroke typing information. We conducted experiments to collect user key-
board and mouse interaction data using the experimental platform described in
Chapter 5. We recruited 21 bilingual users (Chinese native and English pro-
ficient) in our experiments. Each participant used the experimental tool for a
period of 4 to 6 weeks without any restrictions, as the experimental environ-

66

Table 6.10: Comparative Overview of Keystroke Dynamics Studies Across Dif-
ferent Environments and Methods with Corresponding Performance Metrics

Author Year| Users| Environment Browser| Method Task | Performance
APIs

Giot et 2011 | 100 controlled No SVM auth 15.28% ERR
al. [37]
Kang et 2015 | 35 controlled No R and A auth 5.64% EER
al. [46] measures
Lu et al. 2020 | 39 controlled No RF, KNN auth 1.74%
[56] FPR,29.23%

FNR
Kasprowski| 2022 | 20 controlled No ANN auth 82% accuracy
et al. [48]
Altwaijry 2023 | 85 controlled No AdaBoost, | auth 99.1% accuracy
et al. [9] DT, RF,

SVM

This 2023 | 20 uncontrolled Yes XGBoost iden 0.802 F1l-score
study

RF: Random Forest, SVM: Support Vector Machine, ANN: Artificial Neural Network, DT:
Decision Tree, auth: authentication, iden: identification

ment was unrestricted. 20 users provided sufficient keystroke and mouse data
for analysis in this chapter and in Chapter 7 respectively.

The keystroke data were divided into two categories: fixed text password and
free text. In the fixed text experiment, DSL-password dataset (.tie5Roanl) [49]
was used. The dataset contains 51 users and each user provides 400 samples.
31 timing features were extracted in each sample. We achieved an experimental
result of 93.5% (f1-score).

In the free text experiments, we analysed data collected from 20 participants.
Every keystroke from a user was captured and sent to the server, containing 8
elements: keycode, timestamp of key pressed, timestamp of key released, the
CapsLock, Ctrl, Alt and Shift key uses. Features based on 4-graph were ex-
tracted from the raw data. The XGBoost classifier was selected as the clas-
sification algorithm, and the fl-score was chosen as the primary metric. We
achieved a classification result based on one single 4-graph sample containing
four consecutive keystrokes of 49.6% fl-score. With 20 consecutive keystrokes,
we achieved an experimental result of 89.2% fl-score. The results indicate that
a browser user can be identified via their typing habits without their knowl-
edge in a browser-based environment and the identification performance could
improve with more keystroke inputs within one identifying session. Another
interesting finding is that the method of typing an uppercase letter, whether
using the CapsLock key or holding the Shift key, can be a distinctive feature in
such analysis.

6.5.2 Possible future work

There are many aspects of work that could be pursued in the future, such as
recruiting more participants from various scenarios, extracting better features
from raw data with sophisticated data pre-processing techniques, using bet-
ter machine learning tools for classification. Additionally, the combination of

67

function key uses might also be an interesting feature for distinguishing users.

68

Chapter 7

Performing the mouse
dynamics experiments

7.1 Introduction

Mouse dynamics have been studied for years. A number of prior studies indi-
cate that mouse dynamics can be used as soft biometric in an authentication
system [31, 59, 60, 76]. Similar to keystroke dynamics, mouse dynamics anal-
ysis does not require a special device for data collection. A mouse device may
be the primary interactive device with the computer. In a web environment,
the MouseFvent API provided by DOM can be accessed via JavaScirpt when a
web page is loaded. Such APIs can potentially be used to reveal user data via
machine learning techniques.

In this chapter, we described the data analysis with machine learning tech-
niques based on the mouse dynamics data from the same set of 20 users de-
scribed in Chapter 6. We used part of the collected mouse dynamics data as
the training data to develop a biometric profile for each user, and then to use
the remaining data as the testing data see how well a user can be identified.
The Python scripts used in this chapter are listed in Appendix D.3.2. We also
applied our machine learning models on a public mouse dynamics dataset (the
Bogazici dataset [52]). We achieved promising experimental results. It strongly
indicates that a user can be identified via his/her mouse using habit in a web
environment.

This chapter is structured as follows. Section 7.2 explains the mouse dynam-
ics data collection with the experimental tools described in Chapter 5. Section
7.3 provides data processing with machine learning techniques in details. Sec-
tion 7.4 illustrates the experimental results on our experimental dataset and
public dataset and section 7.5 concludes this work.

69

TYPE X Y TIMESTAMP

1 627 595 1911516500
0 627 595 1911516290
Q 627 595 1911516307
2 627 595 1911516714
Q 632 589 1911517251

Figure 7.1: Mouse dynamics raw data

7.2 Data gathering

We used the mouse dynamics data obtained from the same set of 20 participants
described in Chapter 6. The extension recorded every mouse action of users.
The experimental environment was free of controls. During the experiments,
the users did not need to do any specific actions. Hence, there was no limits
or tasks for the use of mouse. They were totally free to stop the extension by
clicking logout whenever they wanted.

One participant’s data was separated from the other 20 users as the data
size is too small. This user’s data was used for initial data analysis. The rest
20 users’ data were used for further training and testing.

Figure 7.1 shows the mouse raw data. A mouse event can be triggered by
a number of different action types, such as mouse movement, left button click,
right button click and wheel scrolling. Each mouse event was regarded as a single
object containing the following elements: type of event action, X coordinate of
the mouse, Y coordinate of the mouse, and a timestamp of corresponding action,
as described in Table 7.1.

Table 7.1: Explanation of Mouse Raw Data Elements

Elements explanation

TYPE type of event action

X X coordinate of the mouse on the screen
Y Y coordinate of the mouse on the screen
TIMESTAMP| timestamp of the corresponding action

The TYPFE elements represents the mouse action types, as described as
follows.

e 0: mouse moving.
e 1 and 2: left button pressed down and released respectively.
e 3 and 4: right button pressed down and released respectively.

e 5: mouse wheel pressed.

6 and 7: mouse wheel scrolling up and down respectively.

70

Figure 7.2: Nine random examples of mouse moving paths

e 8: unexpected actions.

7.3 Data processing

The collected data can be downloaded into the local machine and processed with
Python packages (sklearn). To prevent potential data leakage and to mimic the
actual identification process, the raw data were divided into two parts: first
80% of the data gathered for each user were used for generating a biometric
classifier, and the remaining 20% were used for further user identification.

7.3.1 Data segmentation

In most first-person shooter (FPS) video games, the operating behaviour (e.g.
the efficiency and accuracy of aiming and firing) of players can differ due to
individual proficiency. Similarly, the behaviour of web browser users, for exam-
ple, moving the mouse cursor onto a specific element and clicking, can also vary.
While a game player may enhance performance through rigorous training and
concentration, web users are less likely to intentionally and rapidly change their
mouse operation habits. Based on this observation, Point-and-Click movements
were selected as the primary mouse action for analysis of such mouse behaviour
for the following reasons.

e The number of left-click actions is much higher than that of right-click
actions.

e Point-and-click actions contain both mouse movement and left click.

71

14000 -

12000 A

10000 A

8000 -

Frequency

6000 -

4000 A

2000 -

T T T T
0 500 1000 1500 2000
Time difference between each point in milliseconds

Figure 7.3: Initial time differences between points in mouse movement

e Point-and-click actions occur more frequently than other types of actions
[10].

Table 4.3 lists nine types of mouse actions. To isolate point-and-click action,
raw data were segmented, retaining only the points with types ‘0’, ‘1’, and ‘2’.
Each segment contained all three types of points, starting with a type ‘0’ (i.e.,
moving action) and ending with a type ‘2’ (i.e., left button release), denoted
as S; = [P(0), P(0),..., P(1), ..., P(2)], where the subscript indicates the action
type, and the number of points between P(1) and the subsequent P(2) can
be zero or more. Segments had a timing difference between each point. To
reduce noise from inactivity, the total time span from start to end was capped
at 3 seconds. The nine random examples in Figure 7.2 illustrate actual mouse
movement paths with x and y denoting cursor coordinates. However, such data
do not directly indicate the efficiency and accuracy of a user’s point-and-click
actions due to excessive noise. For example, a user aiming to move the cursor
to a specific point and click will not perform random circular movements as
depicted in the fifth example in Figure 7.2. Therefore, further noise reduction
was necessary. Figure 7.3 displays the initial time intervals between points. As
shown, most intervals are under 500 ms. The time differences correspond to
various moving action types, such as smooth and continuous movement, brief
pauses, or sudden changes in direction. It is important to note that the minimal
interval between two consecutive points depends on the software and hardware
configuration. To discern these differences in each segment, a threshold was
initially set from one to five times the interquartile range (IQR), calculated
as (2.5Q3 — 1.5Q1) where Q3 and @7 represent the third and first quartiles,
respectively. The chosen threshold affected the number of samples extracted, as
shown in Table 7.2. In practice, if the interval between two consecutive points
exceeded the threshold, a breakpoint was introduced, discarding all preceding

72

points. For our experiments, a threshold of three times the IQR was selected.

Table 7.2: Number of segments extracted at varying IQR thresholds

user orginal segements 1 IQR 2 IQR 3 1Q3 4 IQR 5 IQR
0 4158 1471 2431 2742 2937 3071
1 4590 1523 2495 2737 2899 3003
2 5020 1774 2951 3397 3615 3751
3 4444 1305 2331 2769 3061 3298
4 9351 2750 4982 5595 6059 6319
5 3004 688 1272 1460 1665 1811
6 11710 3087 4428 4617 4724 4818
7 4966 2053 3140 3486 3730 3878
8 13968 4199 5978 6343 6550 6679
9 8911 2748 3845 4066 4185 4263
10 3495 1170 1940 2267 2434 2552
11 2726 925 1493 1651 1754 1832
12 12798 3997 5523 5846 6008 6123
13 5714 1739 2970 3318 3527 3692
14 4589 1605 2832 3093 3218 3283
15 4062 1423 2282 2570 2717 2832
16 4418 1563 2387 2720 2934 3065
17 7104 2058 3994 4520 4854 5058
18 15996 4443 6250 6586 6771 6918
19 8002 2771 3804 3989 4131 4224

7.3.2 Feature extraction

This section introduces the feature extraction process. Figure 7.4 displays nine
random examples of mouse movement paths after noise reduction. For each
segment, all points can be divided into two sets: the moving set as the first sub-
set, followed by the clicking set as the second subset. All features are extracted
based on four original attributes of each point—action type, x-coordinate, y-
coordinate, and timestamp. A segment can be regarded as one sample and
described as:

S = {M,{La, Lu}}

M refers to moving set and the points in this set can be described as the following
4 elements:

a = {a;}}_,, the action type of point 1.
x = {x;}I_,, the x coordinate of point i.
v = {y;}_,, the y coordinate of point 1.
t = {t;}, the timestamp of point i.

In the second subset, Ly refers to left click button pressed down point and L,
represents left button released up point. These two points can be described as:

Lg = {adq,xd,yd,ta}

L, = {am muayqutu}’

73

g

Figure 7.4: Nine random examples of refined mouse movement paths after noise
reduction

For a given segment with n points in moving set and a clicking set, extracted
features can be described as following:
Time: time elapsed from the first point to the last point in moving set. For-
mally:
t=t,—t (7.1)

Points: the number of total points of moving set. Formally:
p=n (7.2)

Time (mean): mean time difference between each pair of consecutive points

in moving set. Formally:
1
= —1 7.3
mean; = —— (7.3)
Gap: time difference between left button pressed and the point it followed.
Formally:

ty=ta —tn (7.4)

Distance (straight): Euclidean distance between the first and last point in
moving set. Formally:

ds =v/(xn — 1)2 + (yn — 11)? (7.5)
Distance (curl): sum of the Euclidean distances between each pair of consec-
utive points in moving set. Formally:

n

d. = Z\/(wz —xic1)?+ (Yi —yi-1)? (7.6)

=2

74

Direction: the angel from the positive y axis to the vector from the first point
to the last point. The angel of segment j is described in a trigonometric way as
(sinj, cos;). Formally:

Tp — T1

V(@n = 21)? + (yn — 11)?

(7.7)

sin =

cos = Yn — U1 (7.8)

\/(xn - 33'1)2 + (yn - y1)2

Speed (straight): moving speed for Euclidean distance between the first point
to the last point in moving set. Formally:

ds
Vg = 7 (79)

Speed (each): moving speed at each point in moving set. Formally:

. 2 .. 2
v; = \/(xz ‘(L'zfl) + (yz yzfl) (710)
ti —ti—1

where i € [2,n]. For the first point where ¢ = 1, we give that v; =0
Speed (curl): moving speed for sum of the distances between each pair of
consecutive points in moving set. Formally:

R 11
ve =" (7.11)

Angel: for each point in moving set, angel feature refers to the angel between
the vector from its previous point to itself and the vector from itself to its next
point. Formally:

(i —zi—1)(@it1 —) + (i — Yi-1) Wir1 — Vi) (7.12)
Vi@ —2i21)? + (W — yie1) (@it — 20)? + Wisr — 1:)?]

an; = arccos

where i € [2,n—1]. Additionally, 4 features are extracted here — the maximum
angel,the minimum angel, the mean angel and standard deviation of angel.
Formally:

max = max{an; }7 (7.13)
an
min = min{an;}7=,} (7.14)
1 n—1
Mmeany, = P ; an; (7.15)
1 n

Z(ani — meanqgy,)? (7.16)

=2

San =

n—3

()

Width: the vertical distance from a point to the main vector (from the first
point to the last point in moving set). Formally:

(i —x1) (Y1 — yn) — (1 — 20) (Yi — 11)
\/(1'1 - l'n)z + (yl - yn)2 (717)

where ¢ € [2,n — 1]. Additionally, 3 features are extracted here — difference
between the maximum width and the minimum width, the mean width and
standard deviation of width. Formally:

w; =

dy = max{w; }1 7} — min{w;}7=} (7.18)
1 n—1
meany = —— 22 w; (7.19)
Sw = ! zn:(w — meany,)? (7.20)
w n— 3 Pt K2 w .

Acceleration: the ratio of speed and time change from the previous point of
one point to itself in moving set. Formally:
Vi — Vj—1
acc; = —— 7.21
Coti— i (7.21)
where i € [2,n]. Additionally, 4 features are extracted here — maximum, mini-
mum, mean and standard deviation. Formally:

max = max{ace; } o (7.22)
min = min{ace; }1 o (7.23)
1 n
MeaNgee = | ZZ; acc; (7.24)
Sace = ! zn:(acc- — Mmeange:)? (7.25)
acc n — 2 Pt T acc .

Absolute speed change: the pure speed change from the previous point of
one point to itself in moving set. Formally:

A’Ui = V; — Vi—1 (726)

where i € [2,n]. Additionally, 4 features are extracted here — maximum, mini-
mum, mean and standard deviation. Formally:

max = max{Auv; }7, (7.27)

76

rglin = min{Auv; }I', (7.28)

v;

1 n
meansv, = —— Z Av; (7.29)
i=2
1 < 5
Sav =) | = g(Avi — meana,) (7.30)

Correlation with speed (4): correlation between speed change and angle
change for each point. Formally:

i Av;
(an; + jam |)Avi + (Av; + |Av |)ani Av; #0,an; # 0
an; Av;
C)i = Y an; Av; = 0 (7.31)
Av; an; =0

where i € [2,n]. Additionally, 4 features are extracted here — maximum, mini-
mum, mean and standard deviation. Formally:

max = max{c(y); }i—o (7.32)

vy
min = min{c); }i=s (7.33)

C(v)i

1 n
mean, ., = 1 Z Clv)i (7.34)
=2
1 <)
Sav =yl Z(C(W — mean,,,,) (7.35)
i=2

Correlation with acceleration: correlation between acceleration and angel
change for each point. Formally:

(an; + o] ace; + (ace; + Jacei| Jan; acc; # 0,an; # 0
. an; acc; 7.36
Clacc)i = an; acc; =0 (’)
acec; an; =0

where i € [2,n]. Additionally, 4 features are extracted here — maximum, mini-
mum, mean and standard deviation. Formally:

cr(Ila>>(~ = max{c(acc)i}?:Q (737)
min = min{c(gee)i }ima (7.38)
Clace)i

(s

1 n
meanc(mc)i = m Z Clace)i (739)
=2

n

1

— Z(C(acc)i - meanc(acc)i)2 (7.40)

sc(acc)i = n —
=2

Backward relatively: this feature refers to the times that current moving
direction is backward relatively. If at any point, the angel between its current
moving vector and its previous moving vector is greater than 90 degree, then
this point will be regarded as a relative backward point. The angel can be
described formally:

(@i —@io1)@ir1 — @) + (Y — Yim1) Wit1 — %)
VI = 2im1)? + (i — i) A[(@i1 —)2 + (Wir1 —)7
(7.41)
Backward absolutely: this feature refers to the times that current moving
direction is backward absolutely. If at any point, the direction of the vector
projection of its current moving vector on its main vector is opposite to the
direction of the vector projection of its previous vector, then this point will be
regarded as a absolute backward point. The angel of current moving vector and
main vector can be described formally:

an(yy; = arccos

(xn = 21)(@it1 — i) + (Yn — Y1) (Yir1 — ¥i)
VIen =212+ Wn — y1)?[(@ig1 — 26)? + (Yir1 — %:)?]

Backward both: this feature refers to the times that current moving direc-
tion is backward both relatively and absolutely. If any point is both relative
backward point and absolute backward point, this point will be regarded as a
both-backward point.

A total of 50 features were extracted and labeled as a single sample. Figure
7.5 illustrates the distribution of the number of samples extracted per partici-
pant. Overall, 42,970 samples were derived from 80,540 raw segments.

an(q); = arccos (7.42)

7.3.3 Evaluating metrics

F1l-score, precision score, recall score and confusion matrix were used in our
experiments for the multi-class identification tasks.

7.3.4 Classification methods

The SVM, Random Forest, and eXtreme Gradient Boosting (XGBoost) algo-
rithms were evaluated. Three SVM configurations were tested: LinearSVC
(One vs Rest), SVC (One vs One) with a linear kernel, and SVC (One vs
One) with an RBF kernel. Default hyper-parameters were applied, and 10-fold
cross-validation was utilised. As Table 7.3 demonstrates, the XGBoost classifier
achieved the highest scores and the shortest running time. Although hyper-
parameter tuning and feature engineering could further refine performance and

8

Bl Extracted segments

11 153% mm Abandoned segments

10 184%
15 172%
4] 193%
16 160%
3 165%
14 206%
1 147
7 235%
2 209%
13 138%
17 174%
19 99%
9 83%
4 148%
6 65%
12 84%
8 83%
18 69%

User

T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
Number of segments

Figure 7.5: The proportion of segments per participant

Table 7.3: Comparative Performance Metrics of Different Classifiers

Classifier F1 score Precision| Recall ACC Time
XGBoost 0.601 0.610 0.598 0.614 146s
Random Forest 0.502 0.529 0.500 0.529 279s
LinearSVC 0.281 0.306 0.307 0.341 1668s
SVC(linear kernel) | 0.398 0.412 0.403 0.425 1345s
SVC(rbf kernel) 0.403 0.422 0.405 0.436 1102s

affect rankings, the XGBoost classifier was selected for this research due to its
significant lead.

7.3.5 Feature selection

Figure 7.6 presents the importance scores assigned to each feature. Despite their
high performance, the features timepp and scurlpp were excluded because they
are directly influenced by a user’s hardware and software configuration, which
may vary with a change in devices.

7.3.6 Model evaluation

It is recommended to search for the optimal hyper-parameters through cross-
validation before training the classifier with data. Therefore, the Grid Search
method was utilised to tune the hyper-parameters using 10-fold cross-validation,
as shown in Table 7.4. Additionally, sample_weight was employed to address
sample imbalance issues. The classification results based on a single mouse
point-and-click action are presented in Table 7.5, while Figure 7.7 depicts the

79

durantion_17
acc_s!
vfsegimlg—m
distance_T8
accirtmr] 26
ral

bac%wa |2
e

ints;
angle_prgax 24
acc_ep_mean_25
acc_mean_11
acc_g mlp7
acc_ep. std_26
width-std 8
v_seg std 38
acc_max_21
scurl”19
v_seg_mean_37
angle_min_23
ac_c_ep_min~35

Vel

squ/stral_I5

vV C_ep_mean—29
€_c_ep_mean_33
Width-mean_7

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Figure 7.6: Importance scores for individual features

80

70

60

True label

20

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Predicted label

Figure 7.7: Confusion matrix for the classification results on the training set

80

Table 7.4: Tuned hyper-parameters of the XGBoost model

Hyper-parameter Value
objective multi:softprob
eval_metric mlogloss
tree_method gpu_hist
learning_rate 0.3
n_estimators 600
max_depth 5
min_child_weight 3

Table 7.5: Performance metrics of the tuned XGBoost classifier

Classifier [F1 score [Precision[Recall [ACC
XGBoost | 0.601 | 0.610 | 0.598 | 0.614

confusion matrix for these results.

7.3.7 Accumulative methods

Table 7.5 presents the classification result from a single action, which indicates
that the ability to identify a web user’s identity based on a single mouse point-
and-click action stands at 78.1%. As a user continues to engage with a device,
an increased number of actions can be collected. For each action sample S, the
predictive result can be calculated probabilistically using predict_proba, repre-
sented as {p1, pa, ..., pn} Where p; represents the probability that this action is
associated with user;. Consequently, the combined probability prediction for
m-action samples {s1, 2, ..., S} from n users can be described as:

P11 .. DPin 1 1
Pmn: :{Ezpjl’,azpjn} (743)
Pm1 -v+ DPmn

Therefore, the user number of the maximum probability value in P,,,, would
be predicting result. As is shown in Table 7.6, the classification performance is
improved consistently from 1-action to 30-action samples.

7.4 Experimental results

7.4.1 Results on testing set

As previously mentioned, the testing set was partitioned from the raw data.
Therefore, it can be considered a realistic representation of an identification
scenario. The data processing procedure for the testing set is identical to that
used for the training set. Table 7.7 displays the number of extracted samples
for each user in the testing set.

81

Table 7.6: Classification Performance Metrics by Sample Size on the Training
Set

Samples F1 score Precision| Recall ACC
1 0.597 0.600 0.596 0.608
2 0.725 0.732 0.724 0.739
3 0.814 0.824 0.809 0.825
4 0.869 0.881 0.862 0.879
5 0.901 0.912 0.895 0.911
6 0.923 0.933 0.918 0.932
7 0.938 0.947 0.933 0.948
8 0.953 0.961 0.949 0.961
9 0.958 0.966 0.955 0.967
10 0.964 0.972 0.961 0.972
11 0.970 0.977 0.967 0.977
12 0.975 0.982 0.972 0.982
13 0.979 0.985 0.977 0.985
14 0.981 0.987 0.979 0.988
15 0.982 0.988 0.979 0.988
16 0.982 0.989 0.980 0.989
17 0.983 0.990 0.981 0.990
18 0.985 0.991 0.982 0.991
19 0.985 0.991 0.983 0.992
20 0.986 0.992 0.984 0.992
21 0.987 0.992 0.985 0.993
22 0.986 0.992 0.984 0.993
23 0.988 0.993 0.986 0.994
24 0.988 0.993 0.986 0.994
25 0.988 0.993 0.986 0.994
26 0.987 0.993 0.985 0.993
27 0.988 0.993 0.986 0.994
28 0.988 0.993 0.986 0.994
29 0.988 0.993 0.986 0.994
30 0.988 0.993 0.986 0.994

Figure 7.8 presents the confusion matrix for the classification results based
on a single-action sample from the testing set. Table 7.8 details the classification
outcomes for samples ranging from one-action to thirty-action increments.

7.4.2 Results on Bogazici dataset

The Bogazici dataset can be categorized into five distinct groups based on usage,
as illustrated in Figure 7.9. For this research, only the browsing data were
extracted to replicate a similar scenario. The Bogazici dataset encompasses
1,058,772 samples from 19 users, as detailed in Table 7.10. In this dataset, user
18 contributed only 177 samples. Therefore, the data of user 18 was excluded
due to significant imbalance. Classification outcomes ranging from a single-
action sample to 30-action sample are presented in Table 7.9.

7.4.3 Comparisons

Although the experimental process is different from those employed in previous
work, it is still meaningful to make a comparison, as in Table 7.11.

The prior studies discussed in this chapter were primarily focused on au-
thentication tasks. Among the related literature, two studies are particularly
relevant to the scope of this chapter. Mondal and Bours [59] utilised a public

82

True label

13 4

19 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
predicted label

Figure 7.8: Confusion matrix of the classification performance on the testing
set

Browsing

File System

Entertainement

Office

Development

Figure 7.9: Visualization of the Bogazici dataset usage

83

Table 7.7: Comparison of the Number of Extracted Samples to the Raw Samples
for Each User in the Testing Set

User Extracted| Raw User Extracted| Raw
0 888 1427 10 569 898
1 477 779 11 410 678
2 811 1198 12 1773 3833
3 904 1712 13 537 865
4 1765 2921 14 1067 1508
5 367 770 15 657 958
6 1138 2729 16 634 1010
7 669 1004 17 691 1096
8 1193 2795 18 1816 4933
9 868 2208 19 1002 1944
Total 18294 35266

dataset that included the behaviour of 48 users in an entirely uncontrolled set-
ting. Nonetheless, it is important to note that this dataset also comprises activ-
ities not based on browser usage and it was not collected via any browser APIs.
Antal et al. [11] developed a JavaScript-based web application and employed
browser APIs similar to those discussed in chapter for data acquisition. And
However, this is a highly controlled environment. To the best of our knowledge,
the study presented in this chapter is the first to describe the identification of
users through mouse dynamics data obtained via browser APIs in a completely
uncontrolled browser-based environment.

Shen et al. [76] developed a specialized Windows-based application for desk-
top computers designed to capture user interaction through mouse-operated
tasks. They engaged 37 participants who were instructed to complete identi-
cal mouse-operating tasks in two separate data collection sessions per day. The
dataset comprised 5,550 samples across the 37 subjects. They tested with SVM,
Neural Network and Nearest Neighbour and achieved the best performance with
8.74% FAR and 7.69% FRR for authentication tasks within 11.8 seconds.

Mondal and Bours [59] used a publicly available mouse dynamics dataset
[63] in their studey. 48 users were asked to use their computer and mouse in a
normal way, without any restrictions on the tasks. They used SVM and ANN
as the machine learning methods and achieved 2% FNMR and 0.17% FMR for
continuous authentication tasks.

Siddiqui et al. [77] recruited 10 users in their experiment. Participants were
tasked with a 20-minute session of the Minecraft game, during which their mouse
interactions were recorded via a Python script. Multiple binary RF classifiers
were employed for their authentication process and achieved 92% of accuracy.

Rahman and Basak [70] applied the public dataset [33] with ten users data.
Each user provided 5 to 7 sessions. Every session in this dataset is close to
120 minutes. They compared Random Forest and KNN and achieved better
results on Random Forest with 1.74% FPR and 29.23% FNR for a 10-second
authentication task. It should be noted that the FNR is much higher than the
FPR. It practical applications, this comination of a low FPR and a high FNR
will prevent unauthorised user access but also reject a genuine user or need
longer input session before gaining access.

84

Table 7.8: Classification Performance Metrics by Sample Size on the Testing
Set

Samples F1 score Precision| Recall ACC
1 0.594 0.595 0.598 0.612
2 0.708 0.711 0.714 0.728
3 0.787 0.793 0.789 0.804
4 0.839 0.847 0.838 0.853
5 0.874 0.882 0.872 0.885
6 0.895 0.902 0.894 0.905
7 0.912 0.918 0.910 0.921
8 0.927 0.933 0.925 0.936
9 0.937 0.943 0.935 0.945
10 0.942 0.949 0.940 0.950
11 0.949 0.955 0.947 0.956
12 0.954 0.960 0.951 0.961
13 0.957 0.963 0.955 0.965
14 0.961 0.967 0.959 0.969
15 0.964 0.969 0.962 0.971
16 0.966 0.972 0.964 0.973
17 0.968 0.973 0.965 0.974
18 0.969 0.975 0.967 0.976
19 0.971 0.977 0.968 0.977
20 0.972 0.978 0.969 0.978
21 0.973 0.979 0.970 0.979
22 0.974 0.981 0.972 0.981
23 0.975 0.982 0.972 0.982
24 0.975 0.983 0.973 0.982
25 0.977 0.983 0.974 0.983
26 0.977 0.984 0.975 0.984
27 0.978 0.985 0.975 0.984
28 0.978 0.986 0.975 0.985
29 0.978 0.986 0.975 0.985
30 0.978 0.987 0.975 0.985

Antal et al. [11] invited 120 participants in their study. Each user was
instructed to play the designed game on in a designed browser-based page. One-
class SVM was selected as their machine learning algorithm. They achieved 0.94
AUC within 15-second authentication process.

7.5 Conclusions and possible future work

7.5.1 Conclusions

In this chapter, we conducted an experimental analysis on mouse dynamics
data. We employed XGBoost classifier for classification tasks using the mouse
dynamics data from the 20 users described in Chapter 6. The raw mouse data
was segmented. FEach segment represents a sequence of mouse movements and
followed by a left clicking action (point-and-click). We extracted 48 features
from each segment based on timing and mouse coordinate data. The XGBoost
classifier was then utilised for classification. In Section 7.4, we report promising
experimental outcomes. Using a single mouse action, we attained an fl-score
of 59.4%. This increased to 94.2% with 10 consecutive mouse actions. Further-
more, using the public Bogazici dataset [52], we observed fl-scores of 44.7% for
a single mouse action and 94.5% for 10 consecutive actions. The results suggest

85

Table 7.9: Classification Performance Metrics by Sample Size on the Bogazici
Dataset

Samples F1 score Precision| Recall ACC
1 0.445 0.434 0.516 0.507
2 0.585 0.566 0.662 0.664
3 0.689 0.667 0.755 0.763
4 0.769 0.748 0.819 0.832
5 0.829 0.811 0.863 0.877
6 0.870 0.856 0.894 0.907
7 0.900 0.890 0.917 0.928
8 0.922 0.915 0.933 0.944
9 0.937 0.932 0.946 0.955
10 0.950 0.946 0.956 0.964
11 0.959 0.956 0.963 0.970
12 0.966 0.964 0.969 0.975
13 0.972 0.970 0.974 0.979
14 0.975 0.974 0.977 0.982
15 0.979 0.978 0.981 0.985
16 0.982 0.981 0.984 0.987
17 0.984 0.983 0.986 0.988
18 0.986 0.986 0.988 0.990
19 0.988 0.987 0.989 0.991
20 0.989 0.989 0.991 0.992
21 0.991 0.990 0.991 0.993
22 0.992 0.991 0.992 0.994
23 0.992 0.992 0.993 0.994
24 0.993 0.993 0.994 0.995
25 0.994 0.993 0.994 0.995
26 0.995 0.994 0.995 0.996
27 0.995 0.995 0.996 0.996
28 0.996 0.995 0.996 0.997
29 0.996 0.996 0.996 0.997
30 0.996 0.996 0.997 0.997

that a website can identify the browser users via their mouse activities in a
browser-based environment.

The prior art on mouse dynamics mainly focused on user authentication
[10, 59, 76, 85] while the work in this chapter aims at user identification. Two
different dataset were applied in this research: dataset collected from experi-
mental extension (Extension dataset) and Baziciga dataset. Section 7.3 showed
that 52% of the raw data could be processed and extracted as samples for further
analysis. One extracted sample is based on a series of mouse moving actions
and followed by a left clicking action. Each sample consists of 48 features and a
label. XGBoost classifier model was built and applied as classification method.
The experimental results showed that 10 valid mouse clicking actions may pro-
vide a promising identification result of 95% fl-score. This proves that a web
user’s identity can be identified simply via mouse using activities without any
knowledge.

7.5.2 Possible future work

It would be valuable to collect user data across diverse known usage scenarios.
Users may have different mouse devices, so it would be intriguing to standardize
the experimental data collection by having all users employ the same device.

86

Table 7.10: Distribution of extracted samples per user in the Bogazici dataset

User Extracted| User Extracted| User Extracted
Userl 17709 User7 94404 Userl3 | 48186
User2 8961 User8 36285 Userl4 | 58560
User3 91992 User9 64029 Userl5 | 7422
User4 37365 Userl0 | 19104 Userl6 | 5802
Userb 103674 Userll | 121731 Userl7 | 83673
User6 61446 Userl2 | 50388 Userl9 | 147864
Userl8 | 177
Total 1058772

Table 7.11: Comparative Overview of Mouse Dynamics Studies across Different
Environments and Methods with Corresponding Performance Metrics

Author Year| Users| Environment Browser| Method Task | Performance
APIs

Feher et 2012 | 25 controlled No SVM, auth 10% ERR

al. [31] ANN

Shen et | 2013 | 37 controlled No SVM auth 8.74% FAR,

al. [76] 7.69% FRR

Modal 2015 | 49 uncontrolled No SVM, auth 2% FNMR,

and ANN 0.17% FMR

Bours

[59]

Siddiqui 2021 | 10 controlled No RF auth 92.73% accu-

et al. [77] racy

Rahman 2021 | 10 controlled No RF, KNN auth 1.74% FPR,

and 29.23% FNR

Basak

[70]

Antal et 2021 | 120 controlled Yes SVM auth 0.94 AUC

al. [11]

This 2023 | 20 uncontrolled Yes XGBoost iden 0.94 Fl-score

study

RF: Random Forest, SVM:

Support Vector Machine, GNB: Gaussian Naive Bayes, ANN:

Artificial Neural Network, CPANN: Counter-Propagation Artificial Neural Network, DT:
Decision Tree, MKL: Multiple Kernel Learning, auth: authentication, iden: identification

The performance of well-trained machine learning models on such standardized
data could provide insightful results.

87

Chapter 8

Combining keystroke and
mouse dynamics

8.1 Introduction

The previous two chapters have thoroughly investigated the dynamics of keystrokes
and mouse movements, demonstrating promising performance for classification
tasks when used independently. In real scenario, it is very common for browser
users to interact with a browser using both the keyboard and mouse simulta-
neously over a specific duration. Combining keystroke and mouse dynamics
could potentially enhance such identification performance, which motivates the
method of this chapter.

This chapter takes a closer look at using both keyboard and mouse together,
demonstrating a picture of how they work in real situations. The Python scripts
used in this chapter are listed in Appendix D.3.3.

The structure of this chapter is organised as follows. Section 8.2 introduces
the data gathering, data preparing and model building processes. Section 8.3
describes the experimental results on the collected dataset with machine learning
techniques. Section 8.4 provides the discussions based on the experimental
results and concludes this chapter.

8.2 Data processing
For our analyses, we utilised the comprehensive dataset previously mentioned

in Chapters 6 and 7. This dataset was subjected to the same preprocessing and
feature extraction techniques as detailed earlier.

88

8.2.1 Data processing

We deployed two separate XG'Boost classifiers to assess the mouse and keystroke
dynamics independently. The configuration of these classifiers remained aligned
with the parameters and setups from Chapters 5 and 6 for the reasons outlined
below:

e The origin of the data is identical.

e It has been noted that sometimes, we might encounter situations where
only one type of data, either keystroke or mouse, is accessible. And such
a condition may persist for an unpredictable period. In such context,
a classification method relying solely on a single data source becomes
applicable, leading to the same circumstances as described in Chapters 6
or 7.

e Searching for hyper-parameters and potential alternative classifiers with
two source of data together would require substantial time investment.

Given the considerations mentioned above, the data processing procedure
remain the same and we choose to approach our data analysis from the perspec-
tive of successful interactions, such as key presses and mouse activities, rather
than focusing on timing intervals.

8.2.2 Classifier configurations

We choose to use the same configurations as described in Chapters 5 and 6, and
as shown in Table 8.1

Table 8.1: Tuned hyper-parameters of each classifier

Hyper-parameter Keystroke Mouse
objective multi:softprob multi:softprob
eval_metric mlogloss mlogloss
tree_method gpu_hist gpu_hist
learning_rate 0.3 0.3
n_estimators 600 600
max_depth 5 5
min_child_weight 5 3

8.2.3 Accumulative methods

In Chapters 6 and 7, we introduced an accumulative approach to handling action
samples. For a give action sample S, we can calculate the prediction probabil-
ities as {p1,p2, ..., pn}, using the predict_proba function, where p; indicates the
probability that the action sample belongs to user;. As users interact with
their devices over time, we accumulate a significant volume of data from both

89

keyboard and mouse inputs. For each keystroke sample K, the predicted prob-
abilities are computed using predict_proba and represented as {ki,ko,...,kn},
where k; denotes the probability that this keystroke sample belongs to user;.
Similarly, for each mouse sample M, the predicted probabilities are computed
and denoted as {mi, ma,...,m, }, with m; indicating the probability for user;.

Therefore, for a series of actions consisting of k-keystroke samples and m-
mouse samples for n users, the combined probability prediction can be expressed
as:

k m k m
1 1 1 1
Prmn = {EZkﬂ+Ezmj1,...,%2k’jn+azpjn} (8.1)
j=1 j=1 j=1 j=1

Here, k and m represent the number of keystroke and mouse samples, respec-
tively, and n is the number of users, which is at most 20, as that is the total
number of participants in this experiment.

8.3 Experimental results

This section demonstrates the experimental results from the combined use of
XGBoost classifiers for keystroke and mouse dynamics.

8.3.1 Results on training set

Figure 8.1 displays the confusion matrix for training set, which includes data
from one keystroke and one mouse dynamics sample. Figure 8.3 illustrates the
F1-scores obtained for various combinations of keystroke and mouse dynamics
samples within the training set. An Fl-score of 0.950 was achieved with a
combination of five valid mouse actions and one 4-keystroke sample.

8.3.2 Results on testing set

Figure 8.2 shows the confusion matrix for the testing set, which includes data
from one keystroke and one mouse dynamics sample. Figure 8.4 illustrates the
F1-scores for various keystroke and mouse dynamics samples combinations in
testing set. An Fl-score of 0.914 was achieved with the combination of five valid
mouse actions and a single 4-keystroke sample.

8.3.3 Comparisons

Although our experimental methods differ from those employed in previous
studies, it is still meaningful to make comparisons to the most recent work, as
in Table 8.2.

The prior studies discussed in this chapter were primarily focused on au-
thentication tasks, with the exception of the research by Wang et al. [91], which
addressed both authentication and identification tasks. Among them, three

90

0 05 20 0537 06 0
14 2.9 06 59 09 14 11
104 03 03 06 0326 0
114 4.8 04 2.4 52 08 51 80
124 0 1 020101 0
13 0.8 05 09 05 0.7 09
14 4 06 1.1 05 01 09 0.1
154 0331 130101 0 60
16 4 3 0 18 07 26 26
% 174 03 02 05 04 25 08
Té 18 1 0.6 02 0.4 04 14 08
" 19 1 01 07 02 01 02 0 L a0
24 01070501 0 O
3422 0 0602 0 75 2 08 04 06 2.8 36 1
4404 14 01 78 04 13 1 11 57 01 07 01 01
5410 06 1.7 09 1 12 17 45 0.2 0.6 0.8 3.6 18 Lo
640 36 03 39 07 07 08 23 15 0.7 05 03 0
7415 020144 0 0 0101020801 0 O
8411 04 06 09 02 08 42 03 39 2323 0 0 o
940 09 0 02 0 17 0 0 O 12 0 0 O o
(IJ i l‘O l‘l 1‘2 £3 1'4 1‘5 1‘6 1‘7 l‘B £9 é 3 4 .'; 6 7 8 9 -

Predicted label

Figure 8.1: Confusion Matrix for the Training Set Using Combined Keystroke
and Mouse Dynamics

0 6.9 1.4 46 3.4 04 03 48 01 05
14 011 0 0 031501 0408
10 01 2 0998 0 0 24 06 04
11 51046219 0 0 24 0 02 8
12 48 3 04 09 02 04 0.7 2.9 07
13 011501 0 23 19 15 0.2 3.4
14 15 0 0604 0 0 0402 0
15 0825 0 0 06 06 31 34 06 60
16 0 03350237 11 03 38 55
% 17 1504 10 7.7 0 0 06 12 02
TE’ 180 01 11 02 36 0.1 0.5 0.8 0.3 0.2 0.8
a 19{52 02 04 13 11 09 02 03 0.1 17 03 L 40
2402 06 15 0 16 05 01 34 03 © 02
3425 0 02 2 12 01 0 02 11 12 03
4407 0 09 0208010201 0 12 01
5{06 18 07 02 1455 0 2349 01 12 20
6408 04 0 ©0 4609 0 12 12 © 13
7415 03 04 0.6 15 05 0.1 0.8 0.5 02 05
8401 1 08 0 08 0629 19 L4 04 01
9402 15 0 01 07 54 01 0.4 34 04 17 05 0.4 05 02 14 9.9 09
— — ————— —Lo

0 1 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9
Predicted label

Figure 8.2: Confusion Matrix for the Testing Set Using Combined Keystroke
and Mouse Dynamics

91

previous studies are more close related to the scope of this chapter than other
studies. Although Wang et al. [91] instructed the participants in their experi-
ment to accomplish several designed tasks in a browser-based environment, they
did not utilise any browser APIs to collect the experimental data. In Modal
and Bour’s experiments [60], participants were free to use their own comput-
ers, however, data was gathered through specially designed software. Earl et
al. [27] employed the similar browser APIs as described in this study in their
experiments to collect experimental data, however, their experimental environ-
ment was fully controlled — users were asked to perform several highly designed
tasks to generate experimental data. To the best of our knowledge, the study
described in this chapter is the first to present the identification of users by
combining user keystroke and mouse dynamics data obtained via Browser APIs
in a completely uncontrolled browser-based environment. A summary of prior
work is as follows.

Bailey et al. [14] invited 31 participants in their study. Each participant
was asked to answer three inquiries, composing a report of 400 to 500 words
for each on the designed Window software. The gathered data was segmented
into samples, each covering a 10-minute interval. For keystroke dynamics, they
computed the average Up-Up (UU) and Down-Up (DU) times as features. In
terms of mouse dynamics, they calculated features such as speed, direction,
travel distance, and click timing information derived from mouse movements and
clicks. The keystroke and mouse data were then combined, and two classifiers,
BayesNet and LibSVM, were employed for the analysis. In the authentication
tasks, they achieved a FAR of 3.76% and a FRR of 2.51% when using the
BayesNet classifier. The LibSVM classifier resulted in a FAR of 11.67% and a
FRR of 18.80%.

Mondal and Bours [60] invited 53 individuals for their study. These partici-
pants installed a custom software on their computers and used them freely for
5-7 days, generating an average of 700,000 events per user. Keystroke and mouse
interactions accounted for 12.4% and 83.3% of events, respectively. Digraphs
was used in keystroke while mouse movements and Drag-Drop was applied for
mouse dynamic. Parameters such as angles, speed, acceleration, and distance
were extracted for the analysis. The study used binary classifiers to distinguish
between legitimate users and imposters, allocating 35% of data for training,
10% for tuning, and the remaining 55% for testing. ANN, CPANN, and SVM
were employed for classification. The study also proposed the metrics ANIA
and ANGA to measure the effectiveness of the authentication system. In terms
of authentication performance, imposters were detected after an average of 252
actions.

Earl et al.[27] recruited 240 participants in their study, with 15 left handed
and 225 right handed users. The distribution of age, and gender between female
and male participants was approximately even. Participants engaged in a series
of designated clicking tasks as per on-screen instructions. Additionally, they
were required to input a fixed text passage. Instead of focusing on authenti-
cation or identification tasks for users’ identities, they focused on identifying
users’ handedness, ages and gender. Various classifiers was employed, including

92

Random Forest, SVM, Decision Tree, Gaussian Naive Bayes, and KNN. Among
them, Random Forest achieved the best performance with accuracy of 68.3%
in identifying gender, 64% of the handedness, and 26.9% of the age. While
the classification results might not seem highly accurate, they present valuable
insights in this field.

Wang et al. [91] invited 41 participants in data collection. The participants
were instructed to perform four tasks on the same laptop: typing, browsing
Taobao website, browsing Weibo website, and gaming. Each task was assigned
for one hour. The gathered data was divided into segments, varying from 10s
to 480s. They employed Multiple Kernel Learning method to improve the per-
formance of the target kernel. SVM was selected as the classification method.
They achieved best classification performance with a 300s time window sample
with a FAR of 16.9%, a FRR of 15% and F1-score of 83.9%.

Most of the prior work focused on segmenting the data based on a timing
interval, such as 10 minutes in [14] and 300 seconds in [91]. Wang et al. [91]
provided a variety of data across different contexts which make the data closer to
real life scenarios. However their participants actually took part in four intense
tasks and they used 300s as the time window for sample segmentation. Given
the intensity of such tasks, users could generate plenty of data within the 300
seconds. In our study, only 5 valid mouse clicks and 4 consecutive keystrokes
gave promising classification results.

Table 8.2: Summary of Combined use of Keystroke and Mouse Dynamics Studies
across Different Environments and Methods with Corresponding Performance
Metrics

Author Year| Users| Environment Browser| Method Task | Performance
APIs
Bailey et 2014 | 31 controlled No BayesNet, | auth 3.76% FAR and
al. [14] SVM 2.51% FRR,
11.67% FAR
and 18.80%
FRR
Mondal 2015 | 53 uncontrolled No ANN;, auth imposters de-
and CPANN, tected after 252
Bours SVM actions
[59]
Earl et al. 2021 | 240 controlled Yes RF, auth 68.3% accuracy
[27] SVM, of gender, 64%
DT, of handedness,
GNB, 26.9% of age
KNN
Wang et 2022 | 41 controlled No MKL, auth, 16.9% FAR
al. [91] SVM iden and 15% FRR,
83.9% F1l-score
This 2023 | 20 uncontrolled Yes XGBoost iden 0.95 Fl-score
study

RF: Random Forest, SVM: Support Vector Machine, GNB: Gaussian Naive Bayes, ANN:
Artificial Neural Network, CPANN: Counter-Propagation Artificial Neural Network, DT
Decision Tree, MKL: Multiple Kernel Learning, auth: authentication, iden: identification

93

97.5

95.0
975 925
95.0

o925 0.0

% 900 N

S 875
85.0 87.5
82.5
80.0 85.0

0 82.5
80.0

Figure 8.3: F1-Scores across Various Combinations of Keystroke and Mouse
Dynamics Samples in the Training Set

0.975
0.950

0.975]
0.9501 0.925

70,925

a

4 0.9007] 0.900

(=]

208757 N
0.850]] 0.875
0.825
0.800 0.850

30
Mty 0.825
0.800

Figure 8.4: F1-Scores across Various Combinations of Keystroke and Mouse
Dynamics Samples in the Testing Set

94

8.4 Conclusions and possible future work

8.4.1 Conclusions

In this chapter, we performed experimental analysis that combined keystroke
and mouse dynamics data. Then we applied the XGBoost classifier for multi-
class classification, covering both keystroke dynamics (outlined in Chapter 6)
and mouse dynamics (detailed in Chapter 7). By fusing these two classifiers,
we obtained promising results with a 73% F1-score for individual mouse clicks
and keystrokes. The Fl-score increased to 95% as mouse clicks raised to 5 and
consecutive keystrokes is 5. The results indicate that the browser users could
be identified through their mouse and keystroke dynamics data in a browser
based environment. Moreover, integrating keystroke and mouse dynamics can
improve classification performance.

8.4.2 Possible future work

It would be very valuable to collect user data from different using scenarios
as user behaviour can vary across different contexts. With appropriate post-
processing of user data, a new data gathering experiment with recording the
browser’s web url would provide a valuable extension to this work.

95

Chapter 9

Study on mobile touch
behaviour

9.1 Introduction

We live in a digital world where mobile devices have become increasingly popu-
lar. Xiaomei et al. [93] have indicated that daily activity encompasses 400,000
Apple and 1.3 million Android devices. Various mobile sensors (e.g., GPS, gy-
roscope, compass and accelerometer) can be used by mobile applications to gain
access to user data [58]. Meanwhile, Browser APIs can obtain user data during
interactions with a webpage. It has been pointed out that mobile APIs could
potentially pose user security and privacy issues. Bojinov et al. [16] suggested
that mobile sensors could be used to de-anonymize mobile device. Mehrnezhad
et al. [58] demonstrated an attack on PIN input using Orientation and Motion
sensors. Zhang et al. [93] suggested interactions with mobile devices produce
collectable data that may serve as behavioural biometric features.

While browsing a webpage on a mobile device, the hosting website may
employ browser APIs to collect user data. The primary focus of this chapter
is to explore the extent to which such collected data can contribute to user
identification. Python scripts were used for data analysis in this chapter, and
are listed in Appendix D.3.4.

The structure of this chapter is organised as follows. Section 9.2 introduces
data analysis with Kim and Kang’s dataset [51] dataset. Section 9.3 introduces
the implementation of the web page for data collection. Section 9.4 concludes
the work in this chapter and highlights potential possible future work.

9.2 Experiments on Kim and Kang dateset

In this section, we examined the classifications result using the XGBoost classi-
fier on the dataset (K dataset) provided by Kim and Kang [51]. The purpose of

96

this experiment is to determine whether mobile users can be identified through
mobile sensor data. The reasons for selecting the K dataset are as follows.

e The K dataset is of a sufficient size to apply machine learning techniques
effectively.

e The dataset includes timing information, touchpoint coordinates, and data
from the Motion API.

e The data was collected using 20 different pre-defined text scripts. Com-
pared to the use of PINs with a fixed length, the K dataset is the closest
to an uncontrolled free text environment.

e It was the only publicly available dataset that provides keystroke dynamics
data for mobile devices in the context of free and lengthy text entry.

9.2.1 Feature engineering

Each sample in the K dataset was derived from digraph data. For each sam-
ple, 32 features were extracted into four categories: timing-based features (6
in total), key values (2 in total), coordinate-based features (12 in total), and
motion-sensor-based features (12 in total). 75% of the data were selected as the
training set and the remaining 25% was used as the testing set.

9.2.1.1 Timing-based data

As previously introduced in Chapter 6, timing-based features can calculated
from the keydown (D) and keyup (U) timestamps. Within a digraph sample
(D1,Uy, Do, Us), six combinations can be extracted: DUy, D1Us, DyUy, DoUs,
D1D2 and U1U2.

9.2.1.2 Key values

This feature refers to the key value of input, such as key ‘A’ and key ‘B’.

9.2.1.3 Coordinate-based data

This feature refers to the coordinates of a touch point. When a user taps on
the screen, there are a number of points (X;,Y;) that could be touched. The
minimum (X,nin, Yiin), average (Xmean, Ymean) and maximum (Ximaz, Yimaz)
of each sample were used.

9.2.1.4 Motion-sensor-based features

This feature refers to the acceleration values (z,y,z) when a key is pressed down
and released respectively.

97

9.2.2 Model tuning

XGBoost was selected as the classifier for this multiclass classification task.
For the best performance of the classifier, the gridsearch method was used as
the hyper-parameter tuning methods with 5-fold cross-validation. The hyper-
parameters that yielded the best performance are shown in Table 9.1. The
classification results with 5-fold cross-validation are shown in Table 9.2.

Table 9.1: Optimized Hyper-parameters for the XGBoost Classifier Applied to
the K Dataset

Hyper-parameter Value
objective multi:softprob
eval_metric mlogloss
tree_method gpu_hist
learning_rate 0.2
n_estimators 600
max_depth 6
min_child_weight 3

Table 9.2: XGBoost Classification Performance on the K dataset Using 5-fold
Cross-validation

Classifier [F1 score [Precision] Recall | ACC
XGBoost [0.5652 [0.5646 [0.5696 [0.5724

9.2.3 Experimental result

Table 9.3 presents the classification results of the XGBoost classifier, utilizing
the hyper-parameters specified in Table 9.1 on the test set. An fl-score of 96.1%
was attained using 10 samples.

9.2.4 Comparisons

Despite the differences in experimental methodologies between our study and
prior research, a comparison remains valuable, as described in Table 9.4. It is
important to note that the approach employed in this chapter is for identification
tasks, in contrast to previous studies that concentrated on the authentication
process.

Gascon et al. [34] invited more than 300 participants in their study. 303
users were asked to enter a fixed text (160 characters) on an Android smart-
phone only once, acting as imposters, while the rest 12 participants entered
the same text for 10 times which was considered as authorized users. They
extracted features from gyroscope, orientation, accelerometer and timing based
keystroke information. SVM was selected as the classification method. They

98

Table 9.3: Classification Results on the K Test Dataset for Samples Ranging
from 1 to 30

Samples F1 score Precision| Recall ACC
1 0.598 0.598 0.600 0.603
2 0.695 0.697 0.698 0.701
3 0.771 0.774 0.773 0.776
4 0.828 0.831 0.829 0.832
5 0.869 0.872 0.870 0.872
6 0.899 0.902 0.900 0.901
7 0.922 0.924 0.922 0.923
8 0.939 0.941 0.939 0.940
9 0.952 0.953 0.951 0.952
10 0.961 0.962 0.961 0.962
11 0.968 0.969 0.968 0.969
12 0.974 0.975 0.974 0.974
13 0.979 0.979 0.979 0.979
14 0.982 0.983 0.982 0.982
15 0.985 0.986 0.985 0.985
16 0.988 0.988 0.988 0.988
17 0.989 0.990 0.989 0.989
18 0.991 0.991 0.991 0.991
19 0.992 0.993 0.992 0.992
20 0.993 0.993 0.993 0.993
21 0.994 0.994 0.994 0.994
22 0.995 0.995 0.995 0.995
23 0.996 0.996 0.996 0.996
24 0.996 0.996 0.996 0.996
25 0.997 0.997 0.997 0.997
26 0.997 0.997 0.997 0.997
27 0.997 0.997 0.997 0.997
28 0.998 0.998 0.998 0.998
29 0.998 0.998 0.998 0.998
30 0.998 0.998 0.998 0.998

have heterogeneous classification performance, for each user, the AUC ranges
from 0.5 to 0.9, and a high FPR at 35%.

Antal et al. [12] invited 42 users in their experiment. The users were asked
to type in the same password for 30 times during 2 sessions. They extracted
coordinates, pressure and timing based keystroke information from the samples.
Random Forest, Bayesian nets and SVM were tested as the classifiers. They
achieved an accuracy of 93.04% with Random Forest, 91.94% with Bayesian
nets, and 88.33% with SVM.

Lee et al. [53] invited 22 participants in the study. An Android application
was developed for the data collection. Each user was asked to input 6-digit
PIN ‘766420’ for 100 times on the same mobile device. They extracted features
from gyroscope data, the area of touching points, accelerometer data and timing
based keystroke information. They used distance-based classificaiton algorithms
and achieved 7.89% EER for the authentication tasks.

Kim and Kang [51] invited 50 participants in their study. An Android ap-
plication was developed for data collection. Each participant was asked to type
20 predefined text using both hands in in a sitting position with the same de-
vice. Each text consists of approximately 200 keystrokes. 32 features based on
accelerometer, touch coordinate and timing based keystroke information were
extracted. R measure was selected as the classification methods. They achieved

99

an EER below 0.05% with one sample of 200 keystrokes for both Korean and
English input.

Acien et al. [1] developed a novel classification framework named TypeNet,
which they applied to both authentication and identification tasks. In the au-
thentication task, they achieved an EER of 9.2%. They achieved an accuracy of
94.2% in the identification task, with a test set comprising 1,000 users for each
evaluation.

Stragapede et al. [80] used the same mobile keystroke dataset described in
[1]. They extracted features from digraphs within samples containing between
50 to 70 keystrokes. They employed Transformer architecture as the machine
learning approach and achieved an EER of 3.15% for the authentication tasks
with 10 enrolment sessions of 50 samples each.

Table 9.4: Comparative Overview of Mobile Touch Dynamics Studies across
Different Environments and Methods with Corresponding Performance Metrics

Author Year Subjects | Environment Method task Performance

Antal et 2015 42 controlled RF, Bayesian, auth 93.04%,

al. [12] SVM 91.94%,88.33%
of accuracy

Gascon et 2014 300 controlled SVM auth 35% FPR

al. [34]

Lee et al. 2018 22 controlled Distance- auth 7.89% EER

[53] based

Kim and 2020 41 controlled R measure auth 0.05% EER

Kang [51]

Acien et 2021 60,000 controlled TypeNet auth, 0.05% EER,94.2%

al. [1] iden accuracy

Stragapede| 2023 60,000 controlled Transformer auth 3.15% EER

et al. [80]

This 2023 41 uncontrolled XGBoost iden 0.95 of Fl-score

study

RF: Random Forest, SVM: Support Vector Machine, GNB: Gaussian Naive Bayes, auth:
authentication, iden: identification

9.3 Data collection via mobile webpage

In Section 9.2, we demonstrated promising classification results using data from
the Android generic sensor APIs. Similarly, browser APIs on mobile devices
can provide access to such data. In this section, we introduce a webpage that
collects data via sensor APIs while a user interacts with the browser on a mobile
device. The source code for the webpage is provided in Appendix D.2.

9.3.1 Development environment

All software development was carried out on a Windows 10 system. The devel-
opment tools and programming languages used were as follows.

¢ Programming tool: Sublime Text (Build 4126).

e Programming languages: HTML and JavaScript (client-side).

100

9.3.2 Web page development

The web page was developed to gather user data via mobile browser APIs. De-
viceOrientationEvent and DeviceMotionEvent were used to access sensor data
as follows.

if (window.DeviceOrientationEvent){
window.addEventListener(’deviceorientation’,
deviceOrientationHandler, false);
function deviceOrientationHandler (e){
var gamma = e.gamma;
var beta = e.beta;
var alpha = e.alpha;
}
¥
}
if (window.DeviceMotionEvent){
window.addEventListener(’devicemotion’,function(event){
var gacc = event.accelerationIncludingGravity;
var gx = gacc.X;
var gy = gacc.y;
var gz = gacc.z;
var rotation = event.rotationRate;
if (rotation){
var rx = rotation.alpha;
var ry = rotation.beta;
var rz = rotation.gamma;
}
}, false)

9.3.3 Data collection

The web page was tested in Safari browser on a iPhone 12. Figure 9.1 displays
the data collection interface. The first four lines show the data collected when
the key A is pressed and released. For each keystroke, four types of data are
collected: timing information, and data from the Accelerometer, Orientation
and rotationRate APIs.

Furthermore, when a user interacts with the mobile browser, such as scrolling
through the webpage, additional data are also captured. This includes the co-
ordinates of the touch point and data from the Accelerometer API, Orientation
and rotationRate APIs.

101

07:31¢ H

4))
{

Mobile sensor test

Click to authorize (A W

Down:A(62605)(-0.06,-5.96,-7.86)(-0.34,4.38,0.04)
(3.78,37.23,0.68)
Up:A(62629)(0.05,-5.97,-7.76)(1.89,0.18,-0.76)
(3.77,37.27,0.71)

Action type: (coordinates),(acceleration),(orientation),
(rotationRate)
Start:(235,262)(0.16,-6.08,-7.19)(10.07,38.71,0.80)
(1.77,3.97,1.74)
End:(235,284)(0.32,-6.22,-7.94)(10.29,38.14,0.77)
(-1.76,0.47,3.62)

Move:(235,271)(0.14,-6.08,-7.89)(10.18,38.37,0.97)
(3.63,-0.17,1.97)
Move:(235,274)(0.07,-6.06,-7.64)(10.21,38.43,0.94)
(2.91,-1.68,1.34)
Move:(235,276)(0.02,-6.08,-7.52)(10.23,38.45,0.89)
(0.03,-2.72,0.33)
Move:(235,278)(-0.03,-6.07,-7.28)(10.21,38.40,0.85)
(-5.04,-2.39,-1.15)
Move:(235,280)(0.06,-6.14,-7.38)(10.19,38.30,0.84)
(-6.79,-1.23,-0.72)
Move:(235,283)(0.20,-6.22,-7.66)(10.21,38.21,0.82)
(-4.89,-0.36,1.91)
Move:(235,284)(0.32,-6.22,-7.94)(10.29,38.14,0.77)
(-1.76,0.47,3.62)

AA & ikwyr.com @

< h m O

Figure 9.1: Screenshot of the web page for data collection

102

9.4 Conclusions and possible future work

9.4.1 Conclusions

In this chapter, we explored user identification on mobile devices through mobile
sensor APIs. In Section 9.2, we used the public mobile keystroke dataset [51]
and employed XGBoost algorithm for classification. The original raw data was
gathered using various mobile APIs through an experimental application on
an Android device and was processed into digraph samples. 30 features were
extracted based on timing, motion and orientation information. We achieved F1-
scores of 59.8% with a single sample and 96.1% with ten samples, respectively.
The experimental results indicate that the mobile user can be identified with
such data. In Section 9.3, we then developed a web page capable of collecting
user data in a browser-based environment using mobile browser APIs, e.g. the
Orientation and Motion APIs. The dataset collected by our custom-designed
webpage shares similarities with the data from the study by Kim and Kang
[561]. ,indicating that machine learning techniques could potentially unmask the
identity of a mobile browser user through these browser APIs.

9.4.2 Possible future work

We aim to create a mobile webpage enriched with features that can capture
meaningful user interactions effectively. Additionally, we plan to conduct an
experiment to gather data on browser user interactions using such a webpage
on mobile devices.

103

Chapter 10

Security and privacy
recommendations

10.1 Introduction

This chapter discusses the security and privacy issues arising from the findings
of Chapters 6, 7, 8 and 9.

The structure of this chapter is as follows. Section 10.2 provides context
for the remainder of the chapter by examining the availability of the API func-
tionality employed in the work described in Chapters 5, 6 and 7 for a range of
browsers and host platforms. Section 10.3 discusses possible attack scenarios.
Section 10.4 gives recommendations for possible mitigations to the security and
privacy issues described in Chapters 6, 7, 8 and 9. Of course, enabling user
identification in a continuous fashion without user involvement may also offer
benefits, and Section 10.5 considers possible applications.

10.2 Browser API functionality

Before looking in detail at the findings of Chapters 6, 7, 8 and 9, we consider the
degree to which the choice of browser and platform influences the effectiveness
of user identification. In particular, we examined the availability of the browser
API information that was used in the reported experiments on a range of com-
mon user browsers and computing platforms. Clearly, if a browser does not
provide the information that was used, then the identification process cannot
operate, and user privacy is protected.

When examining the various browsers, we examined both ‘normal mode’ and
‘private mode’, where ‘private mode’ is an option provided by all the browsers
we examined which is designed to prevent users being tracked. We examined
browsers on both PC platforms (Windows and MacOS), and mobile platforms
(Android and IOS).

104

Table 10.1: Browser version, OS versions and device information on PC platform

Browser \ Device \ 0OS
PC
Chrome 97.0.4692.99 (64-bit) Desktop PC | Windows 10 Home 19044.1466
Firefox 96.0.3 (64-bit) Desktop PC | Windows 10 Home 19044.1466
Microsoft Edge 97.0.1072.76 (64-bit) | Desktop PC | Windows 10 Home 19044.1466

Chrome 97.0.4692.71 (x86_64)

MacBook Pro

macOS 11.6.2 (20G314)

Firefox 96.0.3 (64-bit)

MacBook Pro

macOS 11.6.2 (20G314)

Safari 15.2 (16612.3.3.1.8, 16612)

MacBook Pro

macOS 11.6.2 (20G314)

Table 10.2: PC platform test environments

Browser \ Device \ (OR]
Mobile

iPhone 12 Pro
iPhone 12 Pro

iPhone 12 Pro

Chrome 97.0.4692.84
Firefox 60.0 (7403)
Safari 15

10S 15.0.0 (19A404)
T10S 15.0.0 (19A404)
10S 15.0.0 (19A404)

Chrome 97.0.4692.98 Galaxy A02s Android 11
Firefox 96.2.0 Galaxy A02s Android 11
Samsung Internet 16.0.6.23 | Galaxy A02s Android 11

10.2.1 PC platforms

We examined the browsers on Windows and MacOS. Table 10.1 summarises
the testing environment that was employed. For Windows, we examined the
Firefox, Chrome and Microsoft Edge browsers, in both normal and private
modes. For MacOS, we examined the Firefox, Chrome and Safari browsers,
again in both normal and private modes.

The results were consistent across all browsers and platforms; that is, the
KeyboardEvent and MouseEvent APIs were accessible in all browsers, on all
platforms, and at all times, i.e. regardless of whether the browser was operating
in normal or private mode.

10.2.2 Mobile platforms

We also examined key browsers on mobile platforms, i.e. on the Android and
I0OS. Table 10.2 shows the testing environments for the mobile platforms. For
I10S, we examined the Firefox, Chrome and Safari browsers; for MacOS, we
examined the Firefox, Chrome and Samsung Internet browsers. Table 10.3
summarises the results. The results indicate that all the relevant APIs can be
accessed, although in some cases explicit user consent is required. The Key-
boardEvent and TouchEvent APIs can be accessed and without user consent on
all the browsers we examined. On the IOS platform, all browsers require user
consent to access the Motion and Orientation sensors, whereas on the Android

105

Table 10.3: Mobile platform test environments

Android I10S
Firefox | Chrome | Samsung | Firefox | Chrome | Safari
KeyboardEvent y/n y/n y/n y/n y/n y/n
TouchEvent y/n y/n y/n y/n y/n y/n
Orientation y/n y/n y/n y/y y/y v/y
Acceleration y/n y/n y/n y/y y/y y/y
RotationRate y/n y/n y/n y/y y/y v/y

y/n: accessible/no permission required, y/y: accessible/permission required

platform, no permissions were required by any of the browsers.

10.3 Possible attack scenarios

Keyboard and mouse are probably the two most widely used input devices for
PC users. It is almost impossible to interact with a browser without using
either keyboard or mouse simultaneously. These interactions can generate data,
potentially revealing a user’s true identity. Chapters 6, 7, 8 and 9 illustrate
such methods, demonstrating promising experimental results. This section will
explore potential attack scenarios derived from such findings.

10.3.1 Scenario One

User A frequently visits website B, providing B with an extensive dataset from
A’s mouse movements and keystrokes over time. By employing appropriate
techniques which are introduced in Chapters 6, 7, 8 and 9, B has successfully
transformed this data into a distinctive user template, effectively capturing User
A’s unique behaviour signature.

In an effort to protect privacy, User A opts to visit B in a private browsing
mode and without logging in to the site, which seems to be an anonymous way.
However, due to the unique user template that B has generated, B still can find
out this ‘anonymous’ user’s identity, thereby compromising the user’s privacy.

10.3.2 Scenario Two

In this scenario, User A is a regular visitor to website B. B continuously collects
vast amounts of data from A’s mouse and keystroke interactions. By employing
appropriate techniques which are introduced in Chapters 6, 7, 8 and 9, B has
successfully transformed this data into a distinctive user template, essentially
capturing the unique behaviour signature of User A.

Website B shares user A’s template with Website C for some reasons. Armed
with User A’s template, C can easily identify User A during visits, even in private
browsing mode, which means the user’s privacy has been breached. Once the

106

user’s identity is confirmed, C can also share such data with other potential
third parties.

10.3.3 Consequences

The aforementioned scenarios pose potential detrimental consequences, espe-
cially when the user’s identity falls into the wrong hands. This risks the user’s
privacy in several ways:

e Targeted advertising: A website can present highly personalised ads.

e Third-party sharing: Once the user’s template is established, the website
could potentially sell the user’s information to third parties without the
user’s consent.

e Phishing and Social engineering: With access to personalized information,
attackers can deploy more convincing and dangerous phishing and social
engineering attacks, making users more vulnerable.

10.3.4 Discussions

It is important to note that a single website is typically unable to track visitors
across multiple sites, which means that the experiments we conducted may not
yield reasonable data to support the above mentioned attack scenarios. In our
experiments, the user data collected was derived from various websites. The
user template in our experiments reflects general keystroke and mouse usage
patterns rather than being specific to a single site, whereas in scenarios One
and T'wo, the adversary is a specific website.

User behaviour may be more consistent across similar types of sites, such as
news sites like BBC and CNN. In scenario T'wo, if websites B and C belong to
similar categories and offer similar content, user behaviour may remain relatively
consistent.

On the other hand, user behaviour can vary significantly across different
webpages; for example, interacting with Gmail versus browsing BBC News. It
might be possible to divide the users’ experimental data by analysing the cursor
position and the browser size. However, categorizing the webpage content visited
by users is a challenging task:

e It is technically difficult to initially distinguish user activity by captur-
ing URL entries within the address bar. The FEvent listener used in this
study responds to keydown and keyup. Theses APIs are only active when
the user interacts with the main content of the web page. The address
bar, located outside the main content area, does not trigger these APIs.
Additionally, analysing the keystrokes within the address bar may raise
significant privacy and ethical concerns. For these reasons, it is very un-
likely to ascertain tab-switching behaviour by analysing URL addresses.

107

e The event handlers Mousemove, mouseup and mousedown are restricted
to interactions within the main body of a webpage. Since browser tabs
reside above the main content area, they fall outside the scope of these
listeners. While a cursor’s Y-coordinate may return ’0’ when moved be-
yond the upper boundary of the web content area, this does not provide
reliable information about whether a user has clicked to change tabs. Con-
sequently, it is unlikely that mouse activity alone will accurately indicate
tab-switching events.

e A user may switch applications by holding the Al¢t key and then pressing
the Tab key. In such instances, the webpage or extension (in this study)
can only log the activity of the Alt key; it cannot detect the subsequent
Tab keystroke. Once the application switch is complete, the web page
loses focus, leading to the detection of a successful switch to a different
application or browser tab. However, in the new switched tab, web page
only gets focus when the user interact with it in the main content area,
which means it is very difficult to ascertain the type of the tab-switching
activity.

Considering the aforementioned limitations, it is very difficult and challeng-
ing to distinguish the user’s webpage content based on tab-switching behaviour.
Assigning specific tasks to users may probably be a easier way to access to
such data. However, that approach would require a different experimental de-
sign within a controlled environment, which vary from the methodology of this
study.

10.4 Recommendations

Building on the findings reported in Section 10.2, we propose the following
recommendations for browser users and manufacturers.

On a PC platform, none of the browsers we examined require user consent
to access the KeyboardEvent and MouseFvent APIs. Additionally, disabling the
KeyboardEvent and MouseEvent APIs may negatively affect important function-
ality of a web page. Based on these two points, we give the following suggestions.

o We suggest that browser providers can let the users decide whether they
are willing to grant such permissions.

o We suggest the browser users try to behave in a new way such as changing
keystroke typing habits or changing mouse moving speed, etc.

For a mobile plaform, we strongly recommend that the Orientation and
Motion permissions are not granted to untrusted websites, except in special
circumstances.

108

10.5 Possible positive usage

Contrasting with the security and privacy issues posed by browser APIs, these
APIs may also be used for genuine purpose.

e In an email system, if the typing or mouse using behaviour of the email
sender is significantly different from usual, then a security check in back-
ground could be conducted.

e For a website, if a user is using web scraping techniques and generating
significantly unusual clicking behaviour, then he/she could be marked and
security check could be conducted.

10.6 Conclusions

In this chapter, we discussed the security and privacy issues posed by various
browser APIs. We first examined various browsers on a range of platforms. We
then demonstrated potential attack scenarios and at last we proposed possible
suggestions for counter-measures.

109

Chapter 11

Conclusions and possible
future work

11.1 Summary and conclusions

This work described in this thesis was motivated by the growing privacy threats
arising from the functionality in Browser APIs and the availability of modern
machine learning techniques.

In Chapter 2, we outlined the relevant aspects of Browser APIs, and reviewed
the security and privacy issues posed by such APIs. Chapter 3 introduced the
machine learning techniques relevant to the analysis in this thesis. In Chapter 4,
we introduced the behavioural biometrics based on keystroke dynamics, mouse
dynamics, and mobile sensors data.

In Chapter 5, we described the functionality and implementation of the
experimental platform that was developed to enable investigation of the possible
privacy threat posed by user-activity-related sensors. We developed a Chrome
extension for collecting user keystroke and mouse dynamics data and set up a
server for receiving data from the extension and storing such data.

We conducted experiments for collecting users’ keyboard and mouse dynam-
ics data with the experimental platform described in Chapter 5. We invited 21
participants who are all bilingual (Chinese native and English proficient) in the
experiments. Each user used the experimental tool for a period from four to six
months. The experimental environment was totally free of controls. 20 of them
provided sufficient data which were used for data analysis in Chapters 6 and 7.

In Chapter 6, we provided a description of the application of machine learn-
ing techniques (XGBoost) for classification tasks based on keystroke dynamics
data collected from 20 users. The keystroke dynamics data was used to gener-
ate 4-graph samples incorporating various features including timing information
and function key use. The fl-score was selected as the measuring metrics for this
multiclass classification task. The result based on four keystrokes (one single
4-graph sample) was 49.6%, and the result based on 20 consecutive keystroke

110

inputs was 89.2%. The results indicate that the web users can be identified via
their typing habits without their knowledge in a browser-based environment,
and the identification accuracy improves with more keystroke inputs within a
single identifying session.

In Chapter 7, we provided a description of the application of machine learn-
ing techniques (XGBoost) for classification tasks based on mouse dynamics data
collected from 20 users. The raw mouse data was processed and split into seg-
ments. Each segment represents a single mouse action (point-and-click) as one
sample. For each sample, various features were extracted based on timing and
mouse coordinate information. The fl-score was selected as the measuring met-
rics for this multiclass classification task. The result based on one single mouse
action was 59.4%. By combining five mouse actions, we achieved a result of
87.4% which increased further to 94.2% when the action times were increased
to 10. We also worked with a Bogazici dataset containing data for a set of 19
users and with a larger data size and achieved promising experimental results.
The results for a single mouse action and 10 mouse actions were 44.5% and
95.0% respectively. These results strongly suggest that a web user could be
identified via their mouse use without his/her knowledge in a browser-based
environment.

In Chapter 8, we provided a description of the application of machine learn-
ing techniques (XGBoost) for classification tasks based on combining keystroke
and mouse dynamics data collected from 20 users used in Chapters 6 and 7.
The Fl-score was selected as the measuring metrics for this multiclass classi-
fication task. The result based on one single mouse action and one 4-graph
keystroke sample was 72.7%. This performance is better than solely using ei-
ther keystroke dynamics or mouse dynamics. By combining five mouse actions
and 5 keystrokes (two 4-grpah samples), we achieve a result of 93.5%. These
results suggest that a web user could be identified via their keystroke and mouse
use without his/her knowledge in a browser-based environment, and combining
keystroke and mouse dynamics can improve the identification performance.

In Chapter 9, we investigated the application of machine learning techniques
(XGBoost) for classification tasks on the public mobile keystroke dataset from
the work of Kim and Kang [51]. The raw data was processed into digraph
samples. From each sample, timing information and 3-dimensional coordinates
based on Orientation and Motion sensors were extracted. The fl-score was
selected as the measuring metrics of this multiclass classification task. The
results based on 1 sample and 10 samples were 59.8% and 96.1% respectively.
These results suggest that mobile device sensor data could be used for user
identification. Contrasting with previous work, which has mostly been based
on special-purpose Android apps, we developed a web page which can collect
the same type of user data via mobile browser APIs as were gathered by Kim
and Kang [51]. Based on the machine learning results and the web page we
developed, we concluded that it may well be possible to discover the identity of
a user when they are using mobile browser.

Building on the findings reported in Chapters 6, 7, 8 and 9, in Chapter
10 we examined a range of browsers running on various platforms. We con-

111

cluded that all the browsers we examined potentially allow compromise of a user
identity via the browser APIs in normal mode, and even in privacy-protected
mode. Additionally, we described the possible attack models. We considered
the effectiveness of existing privacy-relevant counter-measures against such pri-
vacy issues. It is important to observe that disabling the KeyboardFEvent and
MouseFEvent APIs may adversely affect important functionality of a web page,
and hence this simple countermeasure needs to applied judiciously. We there-
fore suggest allowing users to decide whether they are willing to grant a visited
website permissions to access to the KeyboardFEvent and MouseEvent APIs on a
PC platform. For a mobile platform, we strongly recommend that Orientation
and Motion permissions are not granted to untrusted websites, except in special
circumstances.

11.2 Possible future work

In Chapter 5, we introduced a novel experimental platform for collecting the
data necessary to conduct the experiments. Because sensitive information may
be recorded during the experiments, only relatively few participants were willing
to take part in the experiments, although it was formally stated to participants
that all the collected data would be highly confidential and be accessed only by
the author and only for the specified purpose. This limited the number of users
involved in our experiments. Clearly, if we could work with larger datasets, we
could obtain more definitive results.

It would also be very valuable to collect user data from different working
scenarios. In the experiments described in this thesis, all users used their own
devices, which means that they are likely to have a high level of proficiency
in use of their device while participating the experiments. Hence, it would be
interesting to require all the users to use the same device to provide testing data
and then see how the machine learning model performs with such new data.

In Chapters 6 and 7, the use of sophisticated machine learning algorithms
during the feature engineering stage might improve the quality of extracted fea-
tures and improve the classification performance. In the context of the work
described in Chapter 9, it would be better to conduct an experiment for collect-
ing data via the implemented webpage, although designing a mobile web page
with sufficiently rich features for generating meaningful user interactions would
be a very difficult and challenging task. Additionally, recruiting participants in
a face-to-face environment could be problematic in a pandemic-affected world.
We hope that such an experiment could be conducted in the future. Given that
browsers continue to evolve rapidly, it is likely that new API functionality will
continue to emerge; in this context, it is vitally important to monitor such new
functionality to see if novel, and possible unexpected, user privacy and security
threats emerge.

112

Bibliography

1]

Alejandro Acien, Aythami Morales, John V Monaco, Ruben Vera-
Rodriguez, and Julian Fierrez. Typenet: Deep learning keystroke biomet-
rics. IEEE Transactions on Biometrics, Behavior, and Identity Science,
4(1):57-70, 2021.

T Agrawal. Hyperparameter optimization in machine learning: Make your
machine learning and deep learning models more efficient. Apress: New
York, NY, USA, 2020.

Ahmed A. Ahmed and Issa Traoré. Biometric recognition based on free-text
keystroke dynamics. IEEE Trans. Cybernetics, 44(4):458-472, 2014.

Ahmed Awad E. Ahmed and Issa Traoré. A new biometric technology based
on mouse dynamics. IEEE Trans. Dependable Sec. Comput., 4(3):165-179,
2007.

N. M. Al-Fannah, W. Li, and C. J. Mitchell. Beyond cookie monster am-
nesia: Real world persistent online tracking. To appear in: Proceedings of
ISC 2018: The 21st Information Security Conference Guildford, Surrey,
UK, September 9-12, 2018.

Nasser Mohammed Al-Fannah. One leak will sink a ship: Webrtc IP ad-
dress leaks. In International Carnahan Conference on Security Technology,
ICCST 2017, Madrid, Spain, October 23-26, 2017, pages 1-5. IEEE, 2017.

Nasser Mohammed Al-Fannah and Wanpeng Li. Not all browsers are cre-
ated equal: comparing web browser fingerprintability. In International
Workshop on Security, pages 105-120. Springer, 2017.

Furkan Alaca and Paul C. van Oorschot. Device fingerprinting for augment-
ing web authentication: classification and analysis of methods. In Stephen
Schwab, William K. Robertson, and Davide Balzarotti, editors, Proceed-
ings of the 32nd Annual Conference on Computer Security Applications,
ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016, pages 289-301.
ACM, 2016.

Najwa Altwaijry. Authentication by keystroke dynamics: The influence of
typing language. Applied Sciences, 13(20):11478, 2023.

113

[10]

[11]

[16]

[17]

Margit Antal and Elod Egyed-Zsigmond. Intrusion detection using mouse
dynamics. IET Biometrics, 02 2019.

Margit Antal, Norbert Fejér, and Krisztian Buza. Sapimouse: Mouse
dynamics-based user authentication using deep feature learning. In 2021
IEEFE 15th International Symposium on Applied Computational Intelligence
and Informatics (SACI), pages 61-66. IEEE, 2021.

Margit Antal, Laszl6 Zsolt Szabd, and Izabella Laszlé. Keystroke dynamics
on android platform. Procedia Technology, 19:820-826, 2015.

Livia C. F. Araijo, Luiz H. R. Sucupira, Miguel Gustavo Lizarraga,
Lee Luan Ling, and Joao Baptista T. Yabu-uti. User authentication
through typing biometrics features. IEEE Trans. Signal Processing, 53(2-
2):851-855, 2005.

Kyle O. Bailey, James S. Okolica, and Gilbert L. Peterson. User identifi-
cation and authentication using multi-modal behavioral biometrics. Com-
puters & Security, 43:77-89, 2014.

Nick Bartlow and Bojan Cukic. Evaluating the reliability of credential
hardening through keystroke dynamics. In 17th International Symposium
on Software Reliability Engineering (ISSRE 2006), 7-10 November 2006,
Raleigh, North Carolina, USA, pages 117-126, 2006.

Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan Boneh. Mo-
bile device identification via sensor fingerprinting. arXw preprint
arXiw:1408.1416, 2014.

Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen
from smartphone motion. In Patrick D. McDaniel, editor, 6th USENIX
Workshop on Hot Topics in Security, HotSec’11, San Francisco, CA, USA,
August 9, 2011. USENIX Association, 2011.

Ting-Yi Chang, Cheng-Jung Tsai, and Jyun-Hao Lin. A graphical-based
password keystroke dynamic authentication system for touch screen hand-
held mobile devices. Journal of Systems and Software, 85(5):1157-1165,
2012.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting sys-
tem. In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785-794, 2016.

Chrome. Chrome JavaScript Web APIs. https://developer.chrome.com
/apps/api_other. Accessed: 28-February-2018.

Chrome. Chrome Update log. https://bugs.chromium.org/p/chromium
/issues/detail?id=158234#c110. Accessed: 28-February-2018.

114

https://developer.chrome.com/apps/api_other
https://developer.chrome.com/apps/api_other
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110

[22]

[28]

[29]

[30]

[31]

Michael Crawford, Taghi M Khoshgoftaar, Joseph D Prusa, Aaron N
Richter, and Hamzah Al Najada. Survey of review spam detection using
machine learning techniques. Journal of Big Data, 2(1):1-24, 2015.

Pratap Dangeti. Statistics for machine learning. Packt Publishing Ltd,
2017.

Ignacio de Mendizabal-Vazquez, Daniel de Santos-Sierra, Javier Guerra-
Casanova, and Carmen Sénchez-Avila. Supervised classification methods
applied to keystroke dynamics through mobile devices. In 2014 Interna-
tional Carnahan conference on security technology (ICCST), pages 1-6.
IEEE, 2014.

Thomas G Dietterich. An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and random-
ization. Machine learning, 40(2):139-157, 2000.

Benjamin Draffin, Jiang Zhu, and Joy Zhang. Keysens: Passive user au-
thentication through micro-behavior modeling of soft keyboard interaction.
In International Conference on Mobile Computing, Applications, and Ser-
vices, pages 184-201. Springer, 2013.

Sally Earl, James Campbell, and Oliver Buckley. Identifying soft biometric
features from a combination of keystroke and mouse dynamics. In Inter-
national Conference on Applied Human Factors and FErgonomics, pages
184-190. Springer, 2021.

Peter Eckersley. How unique is your web browser? In Mikhail J. Atallah
and Nicholas J. Hopper, editors, Privacy Enhancing Technologies, 10th
International Symposium, PETS 2010, Berlin, Germany, July 21-23, 2010.
Proceedings, volume 6205 of Lecture Notes in Computer Science, pages 1—
18. Springer, 2010.

Anieckan Essien, Ilias Petrounias, Pedro Sampaio, and Sandra Sampaio.
A deep-learning model for urban traffic flow prediction with traffic events
mined from twitter. World Wide Web, 24(4):1345-1368, 2021.

Meherwar Fatima, Maruf Pasha, et al. Survey of machine learning algo-
rithms for disease diagnostic. Journal of Intelligent Learning Systems and
Applications, 9(01):1, 2017.

Clint Feher, Yuval Elovici, Robert Moskovitch, Lior Rokach, and Alon
Schclar. User identity verification via mouse dynamics. Inf. Sci., 201:19—
36, 2012.

David Fifield and Serge Egelman. Fingerprinting web users through font
metrics. In Rainer B6hme and Tatsuaki Okamoto, editors, Financial Cryp-
tography and Data Security - 19th International Conference, FC 2015, San
Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, volume
8975 of Lecture Notes in Computer Science, pages 107-124. Springer, 2015.

115

[33]

[42]

A. Filop, L. Kovécs, T. Kurics, and E. Windhager-Pokol. Balabit mouse
dynamics challenge data set. https://github.com/balabit/Mouse-Dyn
amics-Challenge, 2016.

Hugo Gascon, Sebastian Uellenbeck, Christopher Wolf, and Konrad Rieck.
Continuous authentication on mobile devices by analysis of typing motion
behavior. Sicherheit 2014—-Sicherheit, Schutz und Zuverldssigkeit, 2014.

Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems.
O’Reilly Media, 2019.

Romain Giot, Mohamad El-Abed, and Rosenberger Christophe. Greyc
keystroke: a benchmark for keystroke dynamics biometric systems. In IEEE
International Conference on Biometrics: Theory, Applications and Systems
(BTAS 2009), Washington, District of Columbia, USA, 2009. IEEE Com-
puter Society.

Romain Giot, Mohamad El-Abed, Baptiste Hemery, and Christophe Rosen-
berger. Unconstrained keystroke dynamics authentication with shared se-
cret. Computers & Security, 30(6-7):427-445, 2011.

Romain Giot, Mohamad El-Abed, and Christophe Rosenberger. Keystroke
dynamics authentication for collaborative systems. In 2009 International
Symposium on Collaborative Technologies and Systems, CTS 2009, Balti-
more, Maryland, USA, May 18-22, 2009, pages 172-179, 2009.

Daniel Gruss, David Bidner, and Stefan Mangard. Practical memory dedu-
plication attacks in sandboxed javascript. In Giinther Pernul, Peter Y. A.
Ryan, and Edgar R. Weippl, editors, Computer Security - ESORICS 2015
- 20th European Symposium on Research in Computer Security, Vienna,
Austria, September 21-25, 2015, Proceedings, Part I, volume 9326 of Lec-
ture Notes in Computer Science, pages 108-122. Springer, 2015.

Daniele Gunetti and Claudia Picardi. Keystroke analysis of free text. ACM
Trans. Inf. Syst. Secur., 8(3):312-347, 2005.

Grant Ho et al. Tapdynamics: strengthening user authentication on mo-
bile phones with keystroke dynamics. Technicalreport, StanfordUniversity,
73:74, 2014.

Wandong Hong, Xiaoying Zhou, Shengchun Jin, Yajing Lu, Jingyi Pan,
Qingyi Lin, Shaopeng Yang, Tingting Xu, Zarrin Basharat, Maddalena
Zippi, et al. A comparison of xghoost, random forest, and nomograph
for the prediction of disease severity in patients with covid-19 pneumonia:
implications of cytokine and immune cell profile. Frontiers in cellular and
infection microbiology, 12:819267, 2022.

116

https://github.com/balabit/Mouse-Dynamics-Challenge
https://github.com/balabit/Mouse-Dynamics-Challenge

[43]

[54]

Danoush Hosseinzadeh and Sridhar Sri Krishnan. Gaussian mixture model-
ing of keystroke patterns for biometric applications. IFEFE Trans. Systems,
Man, and Cybernetics, Part C, 38(6):816-826, 2008.

Anil Jain, Lin Hong, and Sharath Pankanti. Biometric identification. Com-
munications of the ACM, 43(2):90-98, 2000.

Lohit Jain, John V Monaco, Michael J Coakley, and Charles C Tappert.
Passcode keystroke biometric performance on smartphone touchscreens is
superior to that on hardware keyboards. International Journal of Research
in Computer Applications € Information Technology, 2(4):29-33, 2014.

Pilsung Kang and Sungzoon Cho. Keystroke dynamics-based user authen-
tication using long and free text strings from various input devices. Inf.
Sci., 308:72-93, 2015.

M. Karnan, M. Akila, and N. Krishnaraj. Biometric personal authentica-
tion using keystroke dynamics: A review. Appl. Soft Comput., 11(2):1565—
1573, 2011.

Pawel Kasprowski, Zaneta Borowska, and Katarzyna Harezlak. Biometric
identification based on keystroke dynamics. Sensors, 22(9):3158, 2022.

Kevin S. Killourhy and Roy A. Maxion. Comparing anomaly-detection
algorithms for keystroke dynamics. In Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2009,
Estoril, Lisbon, Portugal, June 29 - July 2, 2009, pages 125-134, 2009.

Kevin S. Killourhy and Roy A. Maxion. Why did my detector do That?! -
predicting keystroke-dynamics error rates. In Somesh Jha, Robin Sommer,
and Christian Kreibich, editors, Recent Advances in Intrusion Detection,
18th International Symposium, RAID 2010, Ottawa, Ontario, Canada,
September 15-17, 2010. Proceedings, volume 6307 of Lecture Notes in Com-
puter Science, pages 256-276. Springer, 2010.

Junhong Kim and Pilsung Kang. Freely typed keystroke dynamics-based
user authentication for mobile devices based on heterogeneous features.
Pattern Recognition, 108:107556, 2020.

Arjen Aykan Kilig, Metehan Yildirim, and Emin Anarim. Bogazici mouse
dynamics dataset. Data in Brief, 36:107094, 2021.

Hyungu Lee, Jung Yeon Hwang, Dong In Kim, Shincheol Lee, Sung-Hoon
Lee, and Ji Sun Shin. Understanding keystroke dynamics for smartphone
users authentication and keystroke dynamics on smartphones built-in mo-
tion sensors. Security and Communication Networks, 2018, 2018.

Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine
Maurice, and Stefan Mangard. Practical keystroke timing attacks in
sandboxed javascript. In Simon N. Foley, Dieter Gollmann, and Einar

117

[58]

[64]

Snekkenes, editors, Computer Security - ESORICS 2017 - 22nd European
Symposium on Research in Computer Security, Oslo, Norway, September
11-15, 2017, Proceedings, Part II, volume 10493 of Lecture Notes in Com-
puter Science, pages 191-209. Springer, 2017.

Chao-Liang Liu, Cheng-Jung Tsai, Ting-Yi Chang, Wang-Jui Tsai, and
Po-Kai Zhong. Implementing multiple biometric features for a recall-based
graphical keystroke dynamics authentication system on a smart phone. J.
Network and Computer Applications, 53:128-139, 2015.

Xiaofeng Lu, Shengfei Zhang, Pan Hui, and Pietro Lio. Continuous au-
thentication by free-text keystroke based on cnn and rnn. Computers &
Security, 96:101861, 2020.

Dorothy Martin and Soo See Chai. A study on performance comparisons
between knn, random forest and xgboost in prediction of landslide suscep-
tibility in kota kinabalu, malaysia. In 2022 IEEE 13th Control and System
Graduate Research Colloguium (ICSGRC), pages 159-164. IEEE, 2022.

Maryam Mehrnezhad, Ehsan Toreini, Siamak Fayyaz Shahandashti, and
Feng Hao. Touchsignatures: Identification of user touch actions and pins
based on mobile sensor data via javascript. J. Inf. Sec. Appl., 26:23-38,
2016.

Soumik Mondal and Patrick Bours. A computational approach to the con-
tinuous authentication biometric system. Inf. Sci., 304:28-53, 2015.

Soumik Mondal and Patrick Bours. A study on continuous authentication
using a combination of keystroke and mouse biometrics. Neurocomputing,
230:1-22, 2017.

Morzilla. Client-side Web APIs. https://developer.mozilla.org/en-U
S/docs/Learn/JavaScript/Client-side_web_APIs/Introduction. Ac-
cessed: 28-February-2018.

Mozilla. Resources for developers. https://developer.mozilla.org/en
-US/docs/Web/API. Accessed: 30-01-2022.

Youssef Nakkabi, Issa Traoré, and Ahmed Awad E. Ahmed. Improving
mouse dynamics biometric performance using variance reduction via ex-
tractors with separate features. IEEFE Trans. Systems, Man, and Cyber-
netics, Part A, 40(6):1345-1353, 2010.

Sashank Narain, Amirali Sanatinia, and Guevara Noubir. Single-stroke
language-agnostic keylogging using stereo-microphones and domain specific
machine learning. In Gergely Acs, Andrew P. Martin, Ivan Martinovic,
Claude Castelluccia, and Patrick Traynor, editors, 7th ACM Conference on
Security € Privacy in Wireless and Mobile Networks, WiSec’14, Ozford,
United Kingdom, July 23-25, 2014, pages 201-212. ACM, 2014.

118

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API

[65]

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: Practical cache attacks in
javascript and their implications. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October
12-6, 2015, pages 1406-1418. ACM, 2015.

Kseniia Palin, Anna Maria Feit, Sunjun Kim, Per Ola Kristensson, and
Antti Oulasvirta. How do people type on mobile devices? observations
from a study with 37,000 volunteers. In Proceedings of the 21st Inter-
national Conference on Human-Computer Interaction with Mobile Devices
and Services, pages 1-12, 2019.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
the Journal of machine Learning research, 12:2825-2830, 2011.

Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

Paulo Henrique Pisani and Ana Carolina Lorena. A systematic review on
keystroke dynamics. J. Braz. Comp. Soc., 19(4):573-587, 2013.

Md Muhaimenur Rahman and Sarnali Basak. Identifying user authenti-
cation and most frequently used region based on mouse movement data:
A machine learning approach. In 2021 IEEE 11th Annual Computing
and Communication Workshop and Conference (CCWC), pages 1245-1250.
IEEE, 2021.

Ricardo N. Rodrigues, Glauco F. G. Yared, Carlos R. do N. Costa, Joao
Baptista T. Yabu-uti, Fabio Violaro, and Lee Luan Ling. Biometric access
control through numerical keyboards based on keystroke dynamics. In
Advances in Biometrics, International Conference, ICB 2006, Hong Kong,
China, January 5-7, 20006, Proceedings, pages 640-646, 2006.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach, eBook, Global Edition. Pearson Education, 2021.

S.R. Safavian and D. Landgrebe. A survey of decision tree classifier method-
ology. IFEE Transactions on Systems, Man, and Cybernetics, 21(3):660—
674, 1991.

Igbal H Sarker. Machine learning: Algorithms, real-world applications and
research directions. SN Computer Science, 2(3):1-21, 2021.

Sougata Sen and Kartik Muralidharan. Putting ‘pressure’on mobile authen-
tication. In 2014 seventh International Conference on mobile computing

and ubiquitous networking (ICMU), pages 56-61. IEEE, 2014.

119

[76]

[30]

[81]

[82]

[83]

[84]

Chao Shen, Zhongmin Cai, Xiaohong Guan, Youtian Du, and Roy A. Max-
ion. User authentication through mouse dynamics. IEEE Trans. Informa-
tion Forensics and Security, 8(1):16-30, 2013.

Nyle Siddiqui, Rushit Dave, and Naeem Seliya. Continuous user authen-
tication using mouse dynamics, machine learning, and minecraft. In 2021
International Conference on Electrical, Computer and Energy Technologies
(ICECET), pages 1-6. IEEE, 2021.

Laurent Simon and Ross J. Anderson. PIN skimmer: inferring pins through
the camera and microphone. In William Enck, Adrienne Porter Felt, and
N. Asokan, editors, SPSM’13, Proceedings of the 2013 ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, Co-located with
CCS 2013, November 8, 2013, Berlin, Germany, pages 67-78. ACM, 2013.

Raphael Spreitzer. PIN skimming: Exploiting the ambient-light sensor in
mobile devices. In Cliff Wang, Dijiang Huang, K1 Singh, and Zhenkai Liang,
editors, Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices, SPSM@QCCS 201/, Scottsdale, AZ, USA,
November 03 - 07, 2014, pages 51-62. ACM, 2014.

Giuseppe Stragapede, Paula Delgado-Santos, Ruben Tolosana, Ruben
Vera-Rodriguez, Richard Guest, and Aythami Morales. Mobile keystroke
biometrics using transformers. In 2023 IEEE 17th International Confer-
ence on Automatic Face and Gesture Recognition (FG), pages 1-6. IEEE,
2023.

Shridatt Sugrim, Can Liu, Meghan McLean, and Janne Lindqvist. Ro-
bust performance metrics for authentication systems. In Network and Dis-
tributed Systems Security (NDSS) Symposium 2019, 2019.

Yan Sun, Hayreddin Ceker, and Shambhu Upadhyaya. Shared keystroke
dataset for continuous authentication. In 2016 IEEE International Work-
shop on Information Forensics and Security (WIFS), pages 1-6. IEEE,
2016.

Nishtha H Tandel, Harshadkumar B Prajapati, and Vipul K Dabhi. Voice
recognition and voice comparison using machine learning techniques: A
survey. In 2020 6th International Conference on Advanced Computing and
Communication Systems (ICACCS), pages 459-465. IEEE, 2020.

Pin Shen Teh, Ning Zhang, Andrew Beng Jin Teoh, and Ke Chen. Recog-
nizing your touch: Towards strengthening mobile device authentication via
touch dynamics integration. In Proceedings of the 13th International Con-
ference on Advances in Mobile Computing and Multimedia, pages 108-116,
2015.

120

[85]

[83]

[89]

Issa Traore, Isaac Woungang, Mohammad S Obaidat, Youssef Nakkabi, and
Iris Lai. Combining mouse and keystroke dynamics biometrics for risk-
based authentication in web environments. In 2012 fourth international
conference on digital home, pages 138-145. IEEE, 2012.

J.A. Unar, Woo Chaw Seng, and Almas Abbasi. A review of biometric tech-
nology along with trends and prospects. Pattern Recognition, 47(8):2673—
2688, 2014.

Tom van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is still
ticking: Timing attacks in the modern web. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, Denver, CO, USA,
October 12-6, 2015, pages 1382-1393. ACM, 2015.

Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rou-
voy. Fp-stalker: Tracking browser fingerprint evolutions. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 728-741. IEEE, 2018.

Esra Vural, Jiaju Huang, Daqing Hou, and Stephanie Schuckers. Shared
research dataset to support development of keystroke authentication. In
IEEE International joint conference on biometrics, pages 1-8. IEEE, 2014.

W3C. W3C JavaScript Web APIs. https://www.w3.org/standards/web
design/script.html. Accessed: 28-February-2018.

Xiujuan Wang, Yutong Shi, Kangfeng Zheng, Yuyang Zhang, Weijie Hong,
and Siwei Cao. User authentication method based on keystroke dynamics

and mouse dynamics with scene-irrelated features in hybrid scenes. Sensors,
22(17):6627, 2022.

Shaomin Wu. A review on coarse warranty data and analysis. Reliability
Engineering & System Safety, 114:1-11, 2013.

Xiaomei Zhang, Pengming Zhang, and Haomin Hu. Multimodal continuous
user authentication on mobile devices via interaction patterns. Wireless
Communications and Mobile Computing, 2021:1-15, 2021.

Nan Zheng, Kun Bai, Hai Huang, and Haining Wang. You are how you
touch: User verification on smartphones via tapping behaviors. In 2014
IEFEFE 22nd International Conference on Network Protocols, pages 221-232.
IEEE, 2014.

121

https://www.w3.org/standards/webdesign/script.html
https://www.w3.org/standards/webdesign/script.html

Appendix A

Ethics review approval

122

ROYAL
HOLLOWAY

Ethics Review Details

You have chosen to self certify your project.

Name: Fan, Zhaoyi (2016)

Email: PCAI004@live.rhul.ac.uk

Title of research project or grant: Can users be identified via their browser?
Project type: Royal Holloway postgraduate research project/grant
Department: Information Security

Academic supervisor: Chris Mitchell

Email address of Academic Supervisor: me@chrismitchell.net

Funding Body Category: No external funder

Funding Body:

Start date: 18/09/2016

End date: 18/09/2019

Research question summary:

A website is able to learn link multiple visits by a single user by using

the browser fingerprinting technique. However, this does not mean the human user can be identified, and knowing the user identity could be
of interest for a range of reasons.

Itis of general interest to understand to what degree a human user can be identified by a website through use of the APIs offered to a
website by a browser. For the purposes of this research | am initially focussing on APIs giving information on keyboard use and mouse use.
Those APIs can allow a website to collect use keystroke data and mouse movement data. Such data can be used as biometric features for

an authentication system.

Research method summary:
This research is aimed at understanding the degree to which a user can be identified by a visited website from keyboard/mouse interactions
with a browser. In this research keyboard/mouse interaction data from as many different individuals as possible is needed. A Chrome

browser extension has been developed for gathering the interaction data.

Risks to participants

Does your research involve any of the below?
Children (under the age of 16),
No

Participants with cognitive or physical impairment that may render them unable to give informed consent,

No

Participants who may be vulnerable for personal, emotional, psychological or other reasons,

No

Participants who may become vulnerable as a result of the conduct of the study (e.g. because it raises sensitive issues) or as a result of
what is revealed in the study (e.g. criminal behaviour, or behaviour which is culturally or socially questionable),

No

Participants in unequal power relations (e.g. groups that you teach or work with, in which participants may feel coerced or unable to
withdraw),

No

Participants who are likely to suffer negative consequences if identified (e.g. professional censure, exposure to stigma or abuse, damage to

professional or social standing),

Figure A.1: Page 1 of ethics review approval

123

No

Details,

Design and Data
Does your study include any of the following?

Will it be necessary for participants to take part in the study without their knowledge and/or informed consent at the time?,

No

Is there a risk that participants may be or become identifiable?,

Yes

Is pain or discomfort likely to result from the study?,

No
Could the study induce psychological stress or anxiety, or cause harm or negative consequences beyond the risks encountered in normal
life?,

No

Does this research require approval from the NHS?,

No

If so what is the NHS Approval number,

Are drugs, placebos or other sub to be admi ed to the study participants, or will the study invelve invasive, intrusive or
potentially harmful procedures of any kind?,
No

Will human tissue including blood, saliva, urine, faeces, sperm or eggs be collected or used in the project?,

No

Wil the research involve the use of administrative or secure data that requires permission from the appropriate authorities before use?,

No

Will financial inducements (other than reasonable expenses and compensation for time) be offered to participants?,

No

Is there a risk that any of the material, data, or outcomes to be used in this study has been derived from ethically-unsound procedures?,

No

Details,

The purpose of the research is to find out how effectively a web user can be identified via their keyboard and mouse interactions whilst
visiting a website. To study this a Chrome browser addon has been developed to capture large quantities of such interactions for later
analysis. | propose to ask for volunteers to install this addon into their browser, so that | can capture data from a number of different users.

After installing the addon, the sue is asked to enrol. At the enrolment stage, the user is asked to register with a user name and password.

Figure A.2: Page 2 of ethics review approval

124

The user name is used as a label for this user (it can be anything of the user's choice) and the keyboard and mouse interaction data is sent
to the server. There is a risk that the participant may be identified by their data, even if the user name they choose is completely opaque.
However, the data will only be used to conduct the research outlined in this document. The captured data will not be released to any other
party without the explicit additional consent of the party whose computer generated it.

Risks to the Environment / Society

Will the conduct of the research pose risks to the environment, site, society, or artifacts?,
No

Will the research be undertaken on private or government property without permission?,
No

Will geological or sedimentological samples be removed without permission?,
No

Will cultural or archaeological artifacts be removed without permission?,
No

Details,

Risks to Researchers/Institution

Does your research present any of the following risks to researchers or to the institution?

Is there a possibility that the researcher could be placed in a vulnerable situation either emotionally or physically (e.g. by being alone with
vulnerable, or potentially aggressive participants, by entering an unsafe environment, or by working in countries in which there is unrest)?,
No

Is the topic of the research sensitive or controversial such that the researcher could be ethically or legally compromised (e.g. as a result of
disclosures made during the research)?,

No

Will the research involve the investigation or observation of illegal practices, or the participation in illegal practices?,

No
Could any aspects of the research mean that the University has failed in its duty to care for researchers, participants, or the environment /
society?,

No

Is there any reputational risk concerning the source of your funding?,

No

Is there any other ethical issue that may arise during the conduct of this study that could bring the institution into disrepute?,

No

Details,

Figure A.3: Page 3 of ethics review approval

125

Declaration

By submitting this form, | declare that the questions above have been answered truthfully and to the best of my knowledge and belief, and

that | take full responsibility for these responses. | undertake to observe ethical principles througholit the research project and to report any

changes that affect the ethics of the project to the University Research Ethics Committee for review.

Certificate produced for user ID, PCAI004

Date: 15/10/2018 14:10
Signed by: Fan, Zhaoyi (2016)

Digna\ Signatura.

ZHAOQY| FAN

Certificate dated:

10/15/2018 2:58:38 PM

Files uploaded:

Full-Review-1321-2018-10-11-17-42-PCAI004.pdf
Full-Review-1321-2018-10-11-17-43-PCAI004.pdf

Figure A.4: Page 4 of ethics review approval

126

Appendix B

Consent form

Figure B.1 illustrates the consent form used in the experiments described in
Chapters 6, 7 and 8. All users have signed the form before participating the
experiments.

127

Informed Consent Form

Can users be identified via their browser?

1. | agree to take part in the above Royal Holloway, University of
London research project. | have had the project explained to me,
and | have read the participant information sheet, which | may keep
for my records.

| understand this will involve:
installing an extension to the Chrome browser on my
computer;
+ signing up and legging in to the extension;
+ gathering my mouse movement and keystroke data.

Yas of No

2. | This information will be held and processed for the following
purpose:

- using machine learning technigues to differentiate users
from their mouse movements and keystroke timings.

| understand that any information | provide is confidential, and that
no information that could lead to the identification of any individual
will be disclosed in any reports on the project, or to any other party.
Mo identifiable personal data will be published. The identifiable data
will not be shared with any other organisation.

Yas of No

3. | understand that my participation is woluntary, that | can choose not
to participate in part or all the project, and that | can withdraw at any
stage of the project without being penalized or disadvantaged in any
way. | also understand that any data gathered from my participation
in this project will be immediately deleted if | make a request to this
effect.

Yes or No

4. | agree to Royal Holloway, University of London recording and
processing this information about me. | understand that this
information will be used only for the purpose(s) set out in this
statement and my consent is conditicnal on the University complying
with its duties and obligations under the Data Protection Act 1998.

Yesof No

5. | agree to take part in the above study.

Yas of No

Mame of Participant Signature Date

Mame of Researcher Signature Date

128

Figure B.1: Consent form used for experiments described in Chapters 6, 7 and

8

Appendix C

N-graph tables

Appendix C shows the common used n-graphs described in Chapter 6.

C.1 Digraph table

Table C.1 illustrates the common used digraphs described in Chapter 6.

Table C.1: Frequently used digraphs

Keys Total UO| Ul| U2| U3| U4| U5| Ue| UT7| U8| U9
Back Back 10781 334| 628| 407| 361| 625| 542| 637| 463| 438| 412
AN 10482 271| 80 | 617| 164| 822| 753| 849| 253| 201| 154
NG 9269 | 225| 71 | 572| 125| 750| 631| 766| 167| 265| 167
E Space 5969 | 118] 74 | 305| 20 | 455| 524| 503| 122| 45 | 38
I Space 5591 | 135 19 | 379| 20 | 461| 429| 450| 110| 61 | 47
S H 5457 | 78 | 21 | 344| 30 | 482| 416| 407| 106| 126| 114
TA 5390| 52 | 25 | 333| 30 | 436| 399| 478| 125| 103| 55
EN 5146 | 87 | 92 | 303| 59 | 390| 345| 413| 81 | 136| 90
IN 4303 | 82 | 247| 218| 81 | 282| 255| 309| 111| 143| 113
N Space 42761 99 | 59 | 246| 66 | 338| 290| 340| 121| 60 | 64
J1 4160| 50 | 33 | 257| 44 | 339| 279| 358| 69 | 82 | 61
AO 41451 79 | 20 | 268| 19 | 388| 328| 352| 75 | 80 | 46
HI 3534 | 49 | 22 | 219| 29 | 284| 275| 320| 59 | 42 | 49
HE 3443| 63 | 15 | 165| 31 | 275| 240| 259| 84 | 118| 104
Al 3355 | 62 | 18 | 257| 27 | 253| 283| 271| 41 | 40 | 36
ZH 3328 34 | 7 188| 41 | 252| 258| 301| 61 | 58 | 42
HU 3230| 76 | 8 184| 48 | 236| 258| 215| 89 | 59 | 43
Space Enter 3204 | 73 | 31 | 194| 46 | 201| 189| 214| 148| 89 | 91
HA 3056 | 101| 42 | 187| 41 | 241| 222| 229| 83 | 86 | 50

129

X1 3017 | 55 | 15 | 199| 11 | 234| 219| 260| 42 | 70 | 38
OoOU 2885| 68 | 26 | 196| 16 | 238| 216| 227| 61 | 43 | 34
O Space 2881 | 77 | 13 | 160| 14 | 234| 233| 224| 54 | 34 | 20
G Space 28721 99 | 26 | 149| 24 | 239| 207| 209| 77 | 46 | 43
A Space 2833 | 129| 8 197] 10 | 206| 218| 215| 51 | 14 | 13
DE 2828 | 37 | 54 | 155| 8 244| 245| 211| 33 | 31 | 26
U Space 2723 | 55 | 11 | 186| 18 | 206| 215| 205| 76 | 32 | 30
ON 2586 | 100| 36 | 138| 49 | 207| 171| 189| 88 | 92 | 80
Y1 2291| 25 | 6 165| 55 | 150| 162| 204| 43 | 49 | 31
UA 21501 99 | 8 120] 46 | 172| 152| 154| 52 | 58 | 42
UO 2110 29 | 7 131] 14 | 179| 175| 152| 28 | 17 | 11
EI 2017| 38 | 54 | 122| 26 | 161| 147| 140| 22 | 27 | 29
LE 1856 | 31 | 58 | 97 | 10 | 128| 160| 169| 27 | 14 | 26
DA 1794| 28 | 18 | 114| 16 | 136| 138| 145| 36 | 43 | 30
W O 1759 | 11 | 6 123] 1 154| 164| 136 11 | 5 1

Space D 1757 52 | 17 | 75 | 7 163| 129| 121| 55 | 7 11
ME 1703|120 | 24 | 86 | 8 110| 124| 136| 31 | 22 | 7

CH 1682| 30 | 47 | 82 | 48 | 90 | 92 | 137| 68 | 48 | 32
LI 1622| 35 | 42 | 56 | 29 | 115| 103| 120| 63 | 85 | 53
HO 1542 15 | 12 | 92 | 11 | 109| 102| 135| 51 | 41 | 26
GE 1516| 24 | 53 | 87 | 8 125| 130| 144| 21 | 28 | 9

Space Space 1512 16 | 6 107 18 | 137| 133| 140| 30 | 14 | 5

Space Y 1456 | 41 | 2 92 | 5 117| 118| 129| 27 | 13 | 8

Space Back 1408 99 | 33 | 82 | 21 | 87 | 101| 90 | 46 | 8 19
Ul 1394| 20 | 3 78 | 12 | 150| 119| 107| 30 | 25 | 25
Space Z 1388 14 | 1 93 | 2 114| 122| 100| 24 | 5 6

BU 1364 |24 | 11 | 74 | 9 111| 128/ 98 | 16 | 13 | 4

QI 1363| 15 | 1 77 | 17 | 101| 109| 104| 7 | 39 | 23
TA 1326| 20 | 18 | 102| 9 135| 106| 101| 19 | 14 | 16
Y A 1286| 44 | 14 | 70 | 6 122 77 | 111] 19 | 12 | 3

MA 1270 37 | 39 | 58 | 13 | 54 | 70 | 71 | 39 | 62 | 39
Space S 1265| 33 | 15 | 73 | 18 | 102| 97 | 88 | 45 | 7 16
NI 1264| 20 | 16 | 72 | 6 78 98 | 90 | 17 | 30 | 25
T1E 12551 13 | 30 | 89 | 10 | 80 | 82 | 114| 23 | 22 | 21
10 1241 10 | 5 61 | 7 | 87 | 87 | 106] 8 | 40 | 22
IS 1218 26 | 45 | 77 | 18 | 99 | 83 | 75 | 38 | 12 | 28
BA 1167 27 | 11 | 72 | 22 | 89 | 89 | 111| 20 | 37 | 23
TI 1113 | 8 40 | 65 | 18 | 92 | 86 | 74 | 34 | 23 | 12
RE 1110 13 | 32 | 53 | 27 | 84 | 47 | 92 | 32 | 29 | 25
DI 1062 | 8 21 |64 | 13 |90 | 74 | 86 | 39 | 21 | 20
GU 105519 | 4 | 60 | 23 | 88 | 68 | 102| 17 | 19 | 17
1J 1046 | 9 1 75 |21 | 81 | 60 | 88 | 16 | 21 | 24
Space H 1008| 12 | 8 |61 | 4 72 | 84 | 81 | 18 | 6 5

130

ER 1002| 11 | 82 | 36 | 23 | 68 | 35 | 57 | 51 | 30 | 34
N A 986 | 41 | 25 | 64 | 17 | 51 | 85 | 62 | 14 | 17 | 7
Space B 973 |22 | 13 |57 |10 | 69 | 68 | 81 | 26 | 10 | 11
Space J 962 | 11 | 2 65 | 5 73170 |97 |18 |5 |4
Space W 956 | 13 |9 |63 |3 74 | 83 | 72 |16 | 4 9
ND 955 | 20 | 28 | 42 | 15 | 68 | 64 | 82 | 29 | 15 | 28
GA 946 | 17 | 5 57 [12 | 80 | 92 | 83 | 17 | 19 | 12
ID 929 | 16 | 6 55 | 7 | 66 | 87 | 82 | 19 | 22 | 21
1Y 918 | 16 | 5 48 | 6 61 | 75 | 73 | 17 | 19 | 10
UE 917 | 26 | 25 | 41 | 6 62 |82 | 71 |7 |8 5
UN 894 | 32 | 41 | 45 | 15 | 45 | 56 | 67 | 35 | 36 | 33
F A 876 | 10 | 16 | 52 | 6 75 | 57 | 70 | 25 | 21 | 19
YU 833 |30 | 7 |42 |8 64 | 77 | 72 | 18 | 34 | 20
US 831 | 16 | 15 | 51 [12 | 60 | 51 | 52 | 31 | 17 | 13
DU 829 | 17 | 4 |48 |10 | 63 | 64 | 75 | 30 | 15 | 18
NS 821 |15 | 8 |45 |10 | 53 | 49 | 59 | 21 | 36 | 31
W E 814 | 16 | 25 |39 | 10 | 75 | 56 | 60 | 27 | 15 | 6
LA 811 | 17 [23 |33 | 14 | 65 | 63 | 67 | 13 | 28 | 26
NT 805 | 2 181 17 | 14 | 57 | 45 | 44 | 25 | 22 | 18
IL 804 | 11 | 18 | 42 | b 71| 57 | 58 | 21 | 13 | 12
QU 771 |11 14 | 44 |9 56 | 62 | 49 |22 | 14 | 4
Space G 751 | 30 | 7 47 | 5 71 | 61 | 67 | 7 4 1
BI 741 |7 |8 |48 |5 50 |48 |80 |35 |7 |8
NE 737 | 15 | 30 | 40 | 14 | 46 | 47 | 60 | 27 | 15 | 22
DO 732 | 52 | 4 22 |7 |66 |45 |47 | 16 | 26 | 16
KA 722 119 | 5 53 |2 |49 |68 |49 |9 10 | 5
Space M 709 | 23 119 |35 |3 |49 |54 |44 |11 |9 6
Space N 709 | 11 | 12 | 47 | 1 37 160 | 52 | 11 | 6 9
BE 701 | 22 | 21 |24 |21 |57 |38 |31 |15 |22 | 36
W A 686 | 17 | 7 |45 |10 | 44 | 54 | 56 | 14 | 19 | 12
Space L 682 | 27 | 2 28 | 6 60 | 59 | 51 | 19 | 11 | 12
I Back 657 | 4 16 | 36 | 15 | 41 | 45 | 63 | 20 | 6 7
ES 642 | 6 23 | 36 | 15 | 42 | 26 | 47 | 26 | 22 | 22
Space C 639 | 19 | 8 27 | 8 37 |38 | 53|15 |8 12
GS 628 | 16 | 5 49 | 9 57 42 | 49 | 11 |10 | 7
IH 617 | 17 | 6 |45 |4 |49 |48 | 54 |5 17 |5
R A 617 | 4 21 |39 | 35|43 |30 |46 | 30 | 10 | 15
ED 615 | 10 | 4 27 | 6 38 | 47 | 37 |20 | 11 | 21
oY 613 | 3 4 13513 59 | 50 | 47 | 20 | 16 | 11
NJ 608 | 2 4 |37 |5 |40 |41 60|12 |9 8
Z1 598 | 7 2 46 | 9 44 | 44 | 51 | 18 | 11 | 6
1G 597 | 15 | 7 | 37 | 11 | 54 | 46 | 50 | 13 | 5 9
17 593 | 3 1 38 14 |50 |42 |67 |5 10 | 11

131

KE 591 | 16 | 20 | 30 | 6 31 | 46 | 49 | 27 | 6 11
AL 584 | 20 |59 |21 |14 |22 |24 |39 |19 |15 |24
OL 581 | 17 | 10 | 32 | 3 40 | 40 | 57 | 12 | 18 | 11
YE 561 | 9 3 2519 46 | 50 | 54 | 6 18 | 1
UL 556 | 8 21 |24 | 14 |49 |51 |35 |14 |3 3
GO 955 | 4 5 3717 99 | 52 | 53 | 4 9 13
IT 548 | 12 | 17 | 36 | 20 | 47 | 38 | 29 | 20 | 18 | 14
SU 048 | 4 15 |25 | 14 | 52 | 34 | 36 | 28 | 12 | 6
S1 545 | 14 | 13 | 32 | 16 | 56 | 34 | 36 | 13 | 6 10
TO 932 | 12 | 6 49 120 | 34 | 36 | 34 | 27 | 17 | 21
0D 531 | 4 4 43 | 3 47 141 | 34 | 13 | 11 | 10
1B 524 | 3 4 31 |6 43 | 56 | 40 | 10 | 3 6
MI 523 | 12 | 23 | 28 | 9 32 |23 |41 | 16 | 14 | 23
N Z 922 |1 3 33 |5 26 |39 |49 | 16 | 4)
I1C 518 | 9 27 |21 |13 |39 |36 | 37 | 25 | 16 | 15
EY 516 | 11 | 3 31 | 4 26 | 32 | 47 | 12 | 14 | 8
oM 511 | 17 | 17 | 25 | 12 | 24 | 11 | 40 | 31 | 20 | 13
N L 510 | 3 5 3519 27 | 45 | 41 | 15 | 10 | 12
OS o508 | 7 11 | 32 | 2 48 139 | 28 | 23 |11 |1
CA 505 | 7 2 17 113 |33 |31 26| 11 | 13 | 16
Back S 500 | 12 | 11 | 15 | 1 30 [39 | 37|29 |11 | 16
TE 496 | 15 | 59 | 22 | 14 | 16 | 15 | 21 | 41 | 23 | 17
NY 487 | 30 | 6 20 |4 | 47 | 34 |47 | 8 1119
GD 481 | 2 2 39 |1 58 [29 | 51 | 5 14 19
UD 468 | 4 23 |24 | 4 36 (32 37|10 |13 |9
N Back 461 | 3 13 135 |18 |20 |31 |30 |14 |2 8
EM 449 | 7 16 | 23 | 3 19 {1526 | 7 32 | 16
Back Z 443 | 7 4 16 | 8 39 |32 |38 |11 |3 8
Uy 437 | 13 | 2 32 | 6 26 | 36 | 30 | 6) 4
FE 435 | 13 | 3 21 | 4 39 (21 13310 |13 |3
AS 432 | 7 19 | 18 | 14 | 23 | 22 |29 | 39 | 19 | 28
GY 432 | 6 1 34 110 | 32 | 25 |41 |9 13 | 13
Back D 431 |12 | 4 30 | 4 28 |36 | 28 | 23 | 6 8
A Back 419 | 5 7 (30|11 |41 |31 |26 |12 |5 8
TH 416 | 16 | 4) 7 15| 10 | 26 | 54 | 11 | 20
GZ 415 | 3 2 23 |5 34 |28 1353 8 6
PI 406 | 3 4 23| 7 28 26 | 19 | 26 | 12 | 10
Space F 405 | 16 | 4 19 | 8 26 |22 135 |14 | 4 4
H Space 402 | 3 14 | 26 | 4 18 |37 | 30 | 15 | 5 4
NH 398 | 5 2 35 |5 34 (30 28 |12 |11 | 3
U Back 397 | 1 5 17 113 |24 |24 |36 |14 |5 6
AG 395 | 2 43 | 15 | 6 20 129 13819 3 3
AR 394 | 10 | 20 | 12 | 8 24 |7 32 | 28 |20 | 26

132

GL 391 | 3 5 8 5 19 | 20 | 45 | 8 20 | 10
CcoO 380 | 16 | 26 | 7 17 |14 |4 |20 |24 |19 | 17
RI 380 | 10 | 131| 3 1811214 |3 42 | 18 | 13
Back H 371 | 23 | 4 20 (10 |23 |34 |22 |15 |5 6
Back Y 371 | 10 | 6 23 | 6 30 (24124 |10 |5 9
O Back 367 | 6 10 |17 |7 |32]33|23]14 |3 7
R Space 364 | 12 | 33 | 10 | 8 15 123|128 (19 |8 12
GG 354 | 1 2 27 | 3 23 (39 25|16 |6 3
ST 350 | 14 | 84 | 2 18 19 2 8 31116 | 19
TU 348 | 3 28 | 14 |7 |27 |18 |11 | 14 | 8 14
UG 337 | 2 1 21 | 6 31 (3137 |7 |3 3
PA 334 |19 | 4 11 | 8 15 | 11 | 26 | 22 | 8 12
S Space 334 | 5 22 | 4 14 116 | 2 19 | 37 | 5 17
E Back 333 | 4 16 |16 | 11 |19 | 25 | 28 | 13 | 1 11
GB 333 | 7 1 17 | 2 17118 | 28 | 9 10 | 3
UR 331 | 8 12 |11 |13 | 11 | 5 13|21 |16 | 8
D Space 326 | 11 |18 | 9 9 17 | 8 18 |24 | 5 11
LU 325 | 6 4 10 {12 |26 [12 | 21 | 10 | 16 | 10
07Z 320 | 7 1 31 |1 20 | 29 | 24 | 2 5 3
AT 317 | 2 20 |12 | 18 | 17 | 7 12 139 | 9 14
EL 315 | 1 28 | 11 | 6 22 |22 122 (15 |11 | 16
T Space 312 | 6 37 | 4 8 22 |12 119 | 34 | 4 12
Back A 301 | 8 9 20 |7 | 23|16 |20 |20 |4 3
OR 299 | 8 29 | 5 18 | 8 9 10 | 27 |9 9
UB 297 | 10 | 4 12 |5 22 |21 |18 |11 |5 |4
RO 205 | 22 | 14 | 2 15 | 8 12 119 | 32 | 16 | 13
UuT 295 | 8 2 17| 2 26 (27 |16 |15 |7 |7
FU 294 | 8 5 13 112 |17 |17]9 13 |21 | 12
NB 292 | 34 | 3 14 |2 26 | 13 | 19 | 4 3 1
oT 280 |4 |8 13 1 12 | 14 | 17 | 10 | 11 | 12
B O 285 | 43 | 13 | 2 2 3|7 |8 20 |9 6
Back T 285 | 5 10 | 19 | 5 22 |13 | 14 | 22 | 4 8
AB 284 | 2 11 |7 |4 22 |19 | 28 | 9 11 |3
AD 283 | 8 3 1514 |9 12|17 |19 | 16 | 7
Back N 281 |4 | 6 15 | 4 14 | 17 | 27 | 10 | 3 2
D Back 276 | 2 5 6 1 4 1 3 113| 1 3
LO 275 | 24 | 26 | 4 4 12 | 6 6 19 | 15 | 20
Back Enter 273 | 3 28 |14 |7 |4 |8 19 | 23 | 7 11
Back G 273 | 13 | 3 18 |1 1711921 |6 |6 3
GM 272 | 1 3 14 |3 18|14 |16 | 3 |8 10
10 271 |13 |11 |16 | 15|20 | 10 | 7 13 | 2 8
Back X 263 | 3 2 23 | 2 16 | 12 | 20 | 7 1 6
S A 256 | 3 2 24 | 3 14 | 13 | 17 |10 | 21 | 8

133

Back W 255 | 4 2 13 |1 18 124|116 | 9 1 2
H Back 254 | 5 5 20 | 5 20 |17 |22 |8 (4 |4
AY 252 | 6 1 26 | 4 22 116 | 18 | 19 | 4 5
Back B 250 | 13 | 7 12 | 4 15121 |19 |9 5 5
ET 247 | 5 25 |10 | 18 | 16 | 10 | 18 | 10 | 3 15
00 247 | 3 8 13 |1 2 7 18 12 126 | 3
Back L 246 | 7 15 | 10 | 1 17 |10 | 17 | 12 | 7 9
IK 245 | 2 5 15 | 1 1811919 |3 3 3
Back M 243 | 8 4 19 2 18|15 |18 |9 |4 8
Back E 242 | 3 16 | 13 |9 11|15 |10 |17 |9 16
PE 242 | 5 22 124 110 | 15 |9 9 17 | 4 6
NC 240 | 5 1 14 112 |13 | 5 22 | 14 | 13 | 4
Back 1 236 | 7 |9 7 |4 17 |11 |17 |17 | 8 | 4
RU 231 | 1 12 |12 | 6 22 |11 |7 |7 11 | 17
G Back 228 | 8 1 12 | 6 16 | 19 | 23 | 2 4 |4
UucC 226 | 3 2 14 | 8 107 | 20|10 |4 6
EA 219 |15 |3 |6 5 1417 |8 19 | 9 10
M O 219 | 3 6 5 2 17 | 8 13125 (19 |9
UM 219 | 2 5 13 |1 13 | 8 26 |3 |3 2
IR 218 | 2 7 10 | 27]9 13|21 | 2 12 | 5
AX 212 | 21 | 6 12 | 2 9 7 12 | 6 7T |4
Back Space 211 | 3 26 | 12 | 7 13 |14 | 13 |20 | 4 4
Back C 208 | 6 4 10 110 | 13 |9 15114 |3 | 4
OH 207 | 3 3 9 2 21 1 25 | 18 | 6 4 4
VE 206 |9 1219 |4 |7 |5 14 | 17 | 5 21
LL 203 |7 | 34 |4 2 8 8 7 15|18 |4
Digit2 Enter 202 | 5 3 16 | 5 22 | 8 10 |8 |4 6
SO 201 |7 |8 11 | 3 15 1159 14 | 14 | 11
Y Space 196 | 3 1 2 1519 6 TO127T |7 15
OF 194 | 5 4 19 11 | 20 | 10 | 2 7 1 4
MU 193 | 3 13 |6 7 16 | 9 12 |11 |7 |3
NN 191 | 6 13 110 | 4 12 | 17 | 9 13|15 |4
S Back 189 | 2 5 11 |2 9 5 11 |18 |1 5
EX 182 | 2 8 |9 |4 7 12 | 13 | 17 | 4 3
GR 182 | 6 2 9 1 18 | 14 | 22 | 2 4 5
1P 181 |1 1 12 | 7 7 1119 1519 8
EC 179 |1 5 7T |7 |8 9 8 14 | 4 12
UK 178 | 1 3 19 2 7 14 | 15 | 8 5 |4
CI 170 | 1 3 17 |10 | 11 | 6 12 | 7 2 7
EW 168 | 5 4 7 |6 16 |10 |10 | 4 | 4 1
oP 159 | 8 7T | 4 2 5 3 6 10 | 3 2
CE 155 | 1 1 3 7T 07 14]9 17 | 6 8
Back F 153 | 3 3 8 2 12 |19 14 | 5 2 4

134

Back R 149 | 2 14 |19 6 8 8 2 10 | 3 9

L Space 144 | 2 6 |3 8 13 |3 9 23 | 4 3
AH 133 | 1 19 | 5 5 9 11 | 6 6 2 5
Space E 127 | 1 5 7T |2 1011019 |9 1 1
PO 109 | 4 7 |5 5 5 5 7T 07 |4 7
AK 98 3 2 3 2 5 3 3 7 |3 8
R Back 84 3 4 13 |4 |5 2 8 8 1 3
Space U 73 2 7T |4 1 1 1 5 11 13 2

C Back 65 1 2 4 3 6 2 6 3 3 1
Total 2497025374 4786 140643398 185781 742619054909 5332 452

Table C.2 illustrates the common used digraphs described in Chapter 6.
Table C.2: Frequently used digraphs

Keys Total U10 U11 U12 U13 U14 U15 U16 U1y U18 U1¢
Back Back 10781 750| 380| 658| 733| 881| 291| 306| 675| 738| 522
AN 10482 919| 145| 102 881| 1018 158| 126| 938| 972| 136
N G 9269 | 773| 157| 763| 715| 899| 195| 118| 801| 945| 164
E Space 5969 | 596| 65 | 622| 612] 640| 27 | 88 | 510| 589| 16
I Space 5591 | 498] 76 | 617| 476] 610 50 | 64 | 531| 528| 30
S H 5457 | 510| 50 | 471| 499| 550| 87 | 49 | 479| 468| 170
TA 5390 | 481| 55 | 596| 509| 507| 71 | 68 | 463| 548| 56
EN 5146 | 414| 102| 467| 410| 510| 87 | 86 | 422| 496| 156
IN 4303 | 382| 78 | 295| 300| 387| 116| 83 | 325| 388| 108
N Space 4276 | 390| 52 | 470| 305| 410| 25 | 68 | 378| 446| 49
J1 4160 | 369| 36 | 426| 353| 414| 87 | 46 | 345| 459| 53
AO 4145 | 345| 44 | 403| 323| 432| 74 | 45 | 340| 425| 59
HI 3534 | 344| 53 | 377| 314| 362| 24 | 41 | 343| 306| 22
HE 3443 | 305| 29 | 282| 287| 321| 88 | 67 | 257| 301| 152
Al 3355 | 302] 50 | 335| 294| 376| 53 | 29 | 292| 293| 43
ZH 3328 | 295| 64 | 323| 272| 374| 63 | 61 | 267| 327| 40
HU 3230 | 282| 41 | 293| 273| 372| 47 | 57 | 284| 308| 57
Space Enter 3204 | 252| 77 | 257| 173| 377| 94 | 77 | 268| 266| 87
HA 3056 | 268| 34 | 245| 226| 316| 76 | 40 | 258| 244| 67
X1 3017| 269] 28 | 278| 298| 353| 39 | 36 | 243| 290| 40
ou 2885 253| 91 | 291| 241| 300| 45 | 26 | 225| 250| 38
O Space 2881 | 248] 40 | 290| 240| 328| 56 | 32 | 261| 295| 28
G Space 2872 | 251| 38 | 259| 243| 255| 52 | 42 | 268| 304| 41
A Space 2833 | 263| 20 | 308| 246| 352| 16 | 26 | 265| 260| 16
DE 2828 | 260| 35 | 288| 286| 312| 19 | 32 | 252| 281| 19
U Space 2723 | 221| 85 | 293| 227| 271| 39 | 21 | 241| 261| 30

135

ON 2586 | 216| 27 | 205| 151| 212| 56 | 78 | 192| 244| 55
Y1 2291 153| 27 | 239| 206| 253| 32 | 24 | 216| 224| 27
UA 2150| 161} 40 | 192| 137| 221| 20 | 32 | 194| 214| 36
Uo 2110 189| 24 | 203| 203| 277| 22 | 29 | 209| 194| 17
El 2017 | 167 23 | 196| 195| 203| 45 | 34 | 171| 175| 42
LE 1856 | 167| 13 | 189| 175| 195| 20 | 44 | 150| 173| 10
DA 1794 | 135| 17 | 177| 169| 188| 47 | 23 | 129| 168| 37
W O 1759 | 172 16 | 199| 187| 229| 12 | 3 175] 140| 14
Space D 1757| 192 31 | 213| 166| 145| 11 | 18 | 162| 173| 9

ME 1703 | 177| 62 | 164| 155| 189| 23 | 42 | 152| 150| 21
CH 1682 | 144| 29 | 142| 110| 171} 55 | 32 | 165| 131| 29
LI 1622 | 115| 37 | 134| 107| 130| 29 | 38 | 118] 139| 74
HO 1542 | 120| 37 | 151| 116| 168| 32 | 36 | 126| 142| 20
GE 1516 | 128| 48 | 135| 126] 151| 8 17 | 103| 159| 12
Space Space 1512 181| 4 118] 124| 139| 8 21 | 160| 147| 4

Space Y 1456 | 104| 11 | 178| 145| 140| 9 7 144| 159| 7

Space Back 1408 | 142| 57 | 112| 96 | 147| 10 | 18 | 126| 108| 6

Ul 1394 | 111 11 | 151| 104| 157| 22 | 13 | 128| 115| 13
Space Z 1388 | 142| 19 | 196| 110| 164| 5 7 120| 141 3

BU 1364| 95 | 5 160| 138| 173| 9 8 153} 130| 5

QI 1363 | 127| 14 | 126| 160| 135| 7 19 | 120| 148| 14
TA 1326 | 97 | 21 | 114| 140] 135| 11 | 8 136] 112| 12
Y A 1286 | 109| 7 150| 125| 158| 17 | 12 | 106| 109| 15
MA 1270 | 107| 41 | 118 89 | 121| 34 | 37 | 76 | 88 | 77
Space S 1265| 108| 23 | 106| 130| 132| 10 | 28 | 108| 116| 10
NI 1264 | 85 | 11 | 133| 119| 169| 52 | 20 | 113| 99 | 11
IE 1255 | 119| 18 | 113| 120| 140} 21 | 11 | 79 | 137| 13
10U 1241| 82 | 15 | 126] 121| 140| 24 | 10 | 111| 128| 51
IS 1218 125| 12 | 95 | 102| 129| 19 | 25 | 109| 83 | 18
B A 1167 | 113| 9 93 | 82 | 125] 22 | 13 | 84 | 104| 21
TI 1113 131) 12 | 95 | 94 | 70 | 11 | 31 | 85 | 105] 27
RE 1110| 131 14 | 100 89 | 109| 11 | 40 | 90 | 82 | 10
DI 1062| 92 | 17 | 102| 95 | 86 | 19 | 23 | 89 | 78 | 25
GU 1055| 87 | 17 | 101| 73 | 107| 21 | 12 | 109| 89 | 22
1J 1046 | 81 | 9 92 | 96 | 108] 35 | 9 68 | 124| 28
Space H 1008 | 100| 8 99 | 78 | 122| 8 13 | 115| 101} 13
ER 1002| 79 | 69 | 76 | 57 | 73 | 27 | 44 | 60 | 57 | 33
N A 986 | 81 | 8 91 | 91 | 106| 25 | 16 | 62 | 113| 10
Space B 973 | 74 | 8 114| 81 | 95 | 6 10 | 89 | 122] 7

Space J 962 | 102| 5 110| 80 | 103| 6 5 99 | 101] 1

Space W 956 | 85 | 15 | 102] 106| 99 | 5 10 | 96 | 86 | 6

ND 955 |88 | 16 |89 |82 | 8 | 11 | 19 | 79 | 70 | 28
GA 946 | 63 | 10 | 103| 89 | 92 | 13 | 2 76 | 89 | 15

136

ID 929 | 78 | 5 97 179 |1 98 | 8 12 | 74 | 88 | 9
1Y 918 | 81 | 14 | 95 | 97 | 119| 12 | 8 7 | 82 |5
UE 917 | 72 | 6 120 86 | 121| 1 17 | 82 | 75 | 4
UN 894 | 62 | 14 | 66 | 62 | 67 20 | 69 | 80 | 42
FA 876 | 84 | 11 | 73 |49 | 80 | 24 | 14 | 90 | 82 | 18
YU 833 | 54 | 11 | 92 | 50 | 83 | 7 12 | 71 | 64 | 17
U S 831 |91 |7 |75 |69 | 8 |9 11 | 66 | 77 | 24
DU 829 | 64 | 11 | 78 | 64 | 85 | 1 23 |74 | 74 | 11
N S 821 | 76 | 10 | 59 | 56 | 69 | 33 | 11 | 59 | 48 | 73
WE 814 | 65 | 13 | 83 | 78 | 67 | 9 10 | 58 | 88 | 14
LA 811 | 64 | 19 | 69 |49 | 72 | 24 | 15 | 65 | 57 | 28
NT 805 | 79 | 8 59 | 46 | 47 | 22 | 20 | 44 | 41 | 14
IL 804 | 65 | 25 |60 | 68 | 71 | 15 | 15 | 68 | 75 | 34
QU 771 | 58 | 6 76 |82 |81 |13 |6 88 | 82 | 4
Space G 751 | 55 | 5 68 | 65 | 83 |9 6 4797
B1I 741 | 66 | 2 77|55 | Th | 4 18 149 |92 | 7
N E 737 | 50 | 16 | 53 | 61 | 78 | 8 17 | 73 | 44 | 21
DO 732 | 71 161 |59 | 47 | 63 | b 11 | 43 | 57 | 14
KA 722 |65 |6 |69 |72 |8 |12 |2 65 | 78 | 3
Space M 709 | 55 | 12 | 86 | 67 | 78 | 14 | 12 | 63 | 63 | 6
Space N 709 | 57 | 9 73 (8 | 77 |11 | 13 | 68 | 68 | 4
BE 701 | 55 | 38 | 53 | 41 | 49 | 33 | 18 | 28 | 65 | 34
WA 686 | 50 | 10 | 66 | 63 | 52 | 11 | 11 | 68 | 65 | 12
Space L 682 | 50 | 12 | 66 | 63 | 66 | 5 11 | 51 | 68 | 15
I Back 657 | 66 | 6 56 [51 | 68 | 11 |9 | 65 | 61 | 11
ES 642 | 79 | 12 | 54 | 36 | 55 | 12 | 38 | 41 | 41 | 9
Space C 639 | 80 | 17 | 61 | 29 | 60 | 9 23 | 58 | 65 | 12
GS 628 | 55 | 6 |48 |41 |60 | 13 | 4 55 | 79 | 12
IH 617 | 49 | 1 81 |42 |72 | 3 7 |47 161 | 4
R A 617 | 65 | 14 | 45 | 52 | 50 | 12 | 18 | 46 | 31 | 11
ED 615 | 58 | 12 | 50 | 69 | 74 | 8 27149 | 39 | 8
oY 613 | 46 | 6 70 | 42 | 65 | 14 | 12 | 55 | 38 | 17
NJ 608 | 48 | 4 |64 |50 |65 |21 |4 94 | 78 | 2
71 5998 | 54 |9 |60 | 44 | 68 | b 10 | 50 | 54 | 6
I1G 597 | 59 | 6 72 | 40 | 56 | 3 8 50 | 44 | 12
172 593 | 46 | 12 | 56 | 58 | 66 | 8 12 | 46 | 53 | 5
KE 591 |31 16 |62 |66 |51 |20 |8 |60]|38 |7
AL 584 | 51 | 11 | 50 | 37 | 49 | 30 | 20 | 26 | 37 | 16
OL 581 | 56 | 10 | 65 | 42 | 45 | b 8 52 (49 | 9
YE 561 | 59 | 3 99 | 40 | 56 | 3 4 95 | 54 | 7
UL 556 | 41 | 18 | 47 | 52 | 62 | b 16 | 41 | 43 | 9
GO 955 | 45 | 4 ol | 27 | 51 | 8 5 42 164 | 15
IT 548 | 38 | 13 | 38 | 36 | 46 | 14 | 27 | 43 | 36 | 6

137

S U 548 | 45 | 8 53 | 45 | 62 | 6 14 | 54 |29 | 6
S1 945 |39 19 |42 |35 |65 |6 20 | 40 | 52 | 7
T O 532 | 45 | 8 50 [23 |26 | 11 | 19 | 39 | 44 | 11
OD 531 | 45 | 14 | 41 |48 | 61 | 13 |4 | 36 | 41 | 18
IB 524 | 42 |7 |64 |42 |50 | 5 4 51 | 55 | 2
MI 523 | 34 | 11 | 41 | 44 | 61 | 15 | 12 | 25 | 47 | 12
N Z 522 |49 16 |60 |51 |64 |9 8 47 144 | 1
I1C 018 |37 |8 |33 |24 |72 |16 |18 | 28 | 36 | 8
EY 516 | 35 | 9 70 | 48 | 72 | 3 1 43 | 43 | 4
OM 911 | 41 | 37 | 30 | 22 | 45 | 17 | 17 | 28 | 30 | 34
N L 510 | 50 | 4 53 | 20 | 59 | 4 19 | 48 | 42 | 9
OS 508 | 40 | 11 | 41 | 41 |60 | 10 | 11 | 43 |42 | 7
CA 505 | 55 | 16 | 46 | 38 | 55 | 14 | 19 | 26 | 54 | 13
Back S 500 |52 | 18 |39 |33 |49 |14 |9 |39 |35 |11
TE 496 | 27 | 24 | 24 | 30 | 41 | 9 3523|2218
NY 487 | 45 |3 |44 136 |45 |4 |3 40 | 40 | 11
GD 481 | 28 | 6 |47 | 27 |61 |9 6 |34 |45 |8
UD 468 | 35 |4 |42 | 45 |58 | 13 | 3 37134 |5
N Back 461 | 38 |4 |42 |28 |46 |4 | 6 50 | 55 | 14
EM 449 145 |6 |36 | 32 |41 | 24 | 10 | 26 | 28 | 37
Back Z 443 | 44 | 18 | 38 | 32 | 36 | © 3 43 | 47 | 11
Uy 437 131 | 10 | 45 | 41 | 58 | 2 12 129 | 46 | 3
FE 435 |31 |6 |68 |33 |49 |10 |22 |22 |27 |7
AS 432 | 35 | 8 28 |31 1223 18 | 22 | 31 | 16
GY 432 | 30 | 1 39 123|160 |7 |4 |46 |31 |7
Back D 431 1309 |37 [37(39]|5 15139 | 37 | 4
A Back 419 |36 | 3 |41 |40 |47 |7 |3 24 139 | 3
TH 416 | 46 | 23 | 26 | 25 |20 |4 |45 |35 |18 |6
GZ 415 | 41 | 6 26 | 36 | 57 | 14 | 2 36 | 47 | 3
PI 406 | 44 |8 |31 22|31 |7 |5 38 | 55 | 7
Space F 405 | 41 |8 |31 |37 |41 |6 18 129 | 36 | 6
H Space 402 |55 |3 |35 (32|30 |3 6 |48 |32 |2
NH 398 |34 |4 |41 |39 36|15 |3 34 |23 |4
U Back 397 | 43 | 5 40 | 27 | 57 | 1 5 34 132 |8
AG 395 | 45 | 3 28 |35 | 34 | 2 7T |28 (31|14
AR 394 | 30 | 49 | 16 | 10 | 15 | 16 | 24 | 17 | 8 22
GL 391 | 36 | 3 27 129 |45 |4 |4 |39 |48 |13
coO 380 | 28 |36 |19 |7 |21 |17 |27 |14 | 23 | 24
RI 380 |22 |4 |6 12 | 6 10 | 22 | 15 | 12 | 17
Back H 371 | 30 | 5 32 122 |43 |3 8 271 | 32 | 7
Back Y 371 | 2819 |34 |28 |43 |4 |8 30 |34 |6
O Back 367 |47 |3 |31 | 24|32 |2 6 |31 (33 |6
R Space 364 | 33 | 10 | 31 | 26 | 27 | 1 13 134 |19 | 2

138

GG 354 | 26 | 6 32125 |31 |6 3 47 136 | 7
ST 350 | 34 | 5 9 9 7 6 35 | 8 12 | 22
TU 348 | 36 | 12 | 34 | 32 | 20 | 8 8 21 |27 | 6
UG 337 | 21 | 4 43 121 |33 | 4 1 28 |33 |7
P A 334 | 25 110 | 34 |29 |23 | 4 19 | 26 | 11 | 17
S Space 334 | 37 | 6 20 |17 | 31 | 6 28 | 21 |23 | 4
E Back 333 | 37 | 4 24 124139 |1 7 28 |23 | 2
GB 333 |33 |19 |21 | 28 |26 |32 |5 21 |32 | 4
UR 331 | 37 | 11 | 31 | 17 | 25 | 4 26 | 24 | 22 | 16
D Space 326 | 41 | 19 |16 | 25 | 16 | 7 24 | 18 | 22 | 8
LU 325 | 25 | 6 32 11935 |6 6 10 | 38 | 21
07Z 320 | 24 | 3 26 | 24 | 41 | 7 4 30 |35 |3
AT 317 | 24 119 | 8 21 |16 | 5 36 | 11 | 17 | 10
EL 315 |21 |19 |21 |14 | 25 | 4 11 | 20 | 15 | 11
T Space 312 | 28 | 8 20 [20 |9 3 34 |17 |13 | 2
Back A 301 | 30 | 4 27 | 27 130 | 2 3 19 | 27 | 2
OR 299 | 37 |28 |11 |13 |9 9 20 121 |15 | 4
UB 297 | 24 | 15 | 28 | 22 |42 |1 9 21 |21 | 2
RO 295 | 16 | 8 11 |11 {20 | 9 26 | 9 14 | 18
uT 295 | 17 19 30 129 |20 |4 10 | 29 | 17 | 3
FU 294 | 23 | 4 25 |27 |31 |7 9 9 25 | 7
NB 292 | 23 | 11 | 18 | 28 | 40 | 2 4 19 124 | 4
OoT 289 | 24 |31 |14 |23 |17 |6 13119 | 32 |8
BO 285 |14 | 36 | 13 |9 13129 |4 8 26 | 10
Back T 285 | 34 19 12 123 |25 |1 10 | 23 | 20 | 6
A B 284 | 26 | 8 27 | 28 | 34 | 2 8 12 120 | 3
AD 283 | 18 | 10 | 17 | 29 | 24 | 3 30 | 12 | 18 | 12
Back N 281 | 14 | 3 26 |25 | 37|10 |5 22 |30 | 7
D Back 276 | 10 | 3 9 6 7 2 82 |10 | 7 1
LO 275 | 13 | 8 14 19 11 |17 |12 | 21 | 9 25
Back Enter 273 |12 | 18 | 18 | 6 2519 23 | 10 | 16 | 12
Back G 273 | 27 | 4 24 |16 | 41 | 6 6 21 | 17 | 4
G M 272 | 32 | 4 27 120 |31 |4 5 17 | 26 | 16
10 271 | 38 | 8 18 126 | 12 | 1 16 | 14 | 11 | 12
Back X 263 | 22 | 4 25122131 |1 5 28 129 | 4
S A 256 | 26 | 3 23 |16 | 21 |12 |3 20 | 12 | 5
Back W 255 | 14 | 4 33 124129 |2 2 21 | 34 | 2
H Back 254 | 26 |1 23 |16 | 26 | 4 1 29 |15 | 3
AY 252 | 15 | 3 17 |17 | 21 | 7 5 21 | 18 | 7
Back B 250 | 17 | 9 24 |21 123 |6 3 13 119 |5
ET 247 | 11 | 8 14 12 |11 | 7 24 | 14 | 7 9
00 247 |23 |13 |11 |17 |16 | 24 | 6 10 | 14 | 31
Back L 246 | 16 | 10 | 20 | 15 | 23 | 4 8 17 | 15 | 13

139

IK 245 | 24 | 2 14 122132 |14 |2 30 122 |5
Back M 243 |27 110 |12 |19 | 31 | 3 7 16 | 18 | 5
Back E 242 | 18 | 12 | 10 | 18 | 14 | 7 8 22 19 5
PE 242 | 11 | 5 16 | 17 | 15 | 4 12 119 | 16 | 6
NC 240 | 22 | 4 22 | 14 | 13 | 8 9 25 |16 | 4
Back I 236 | 19 | 6 22 |12 1 22 | 2 8 16 |21 | 7
RU 231 | 14 | 5 30 112 |15 |6 1 19 | 18 | 5
G Back 228 | 18 | 5 17 | 17 | 23 | 4 1 22 124 |2
UC 226 | 17 | 2 23 | 18 | 22 | b 2 21 | 28 | 4
E A 219 |19 | 40 | 6 8 6 8 14 110 | 5 7
M O 219 | 22 | 3 5 5 14 121 |6 14 112 | 10
UM 219 | 22 |1 21 |18 | 32| 7 5 14 | 18 | 5
IR 218 | 27 | 3 8 16 | 156 | 5 4 22 19 1
AX 212 | 17 | 5 16 121 |31 |1 2 11 119 | 3
Back Space 211 | 14 | 2 9 10 | 11 | 4 23 |10 | 5 7
Back C 208 | 19 | 4 8 18 | 22 | 2 10 | 21 | 14 | 2
OH 207 | 15 | 2 20 | 24 | 16 | 5 1 20 | 6 3
VE 206 | 19 | 12 | 4 4 14 | 5 1919 9 8
LL 203 | 18 | 9 6 10 | 11 | 7 20 | 8 7 10
Digit2 Enter 202 | 13 | 2 1819 16 | 12 | 6 9 19 | 11
SO 201 | 23 | 4 12 | 3 6 3 6 13 |18 | 6
Y Space 196 | 14 | 5 9 14 110 | 5 26 | 10 | 8 3
OF 194 | 24 | 5 12 111 |18 | 1 18 12119 2
MU 193 | 14 | 4 1919 15 |1 5 7 21 | 11
NN 191 | 11 | 5 9 17 | 23 | 2 8 7 14 | 2
S Back 189 | 14 | 42 | 7 9 8 4 5 15 115 |1
E X 182 | 10 | 6 9 8 27 | 3 11 | 8 17 | 4
GR 182 | 26 | 4 12 110 | 10 | 1 14 | 11 | 8 3
IP 181 |22 |7 |8 9 9) 2 15 |17 | 7
EC 179 | 15 | 4 1317 8 4 15 |12 | 12 | 14
UK 178 | 17 | 5 10 | 13 | 18 | 17 | 3 14 |7 6
Cl 170 | 9 4 8 10 | 19 | 2 6 11 | 23 | 2
EW 168 | 24 | 5 11 11519 1 8 9 18 | 1
oPp 159 | 22 |9 3 13 | 8 12 | 6 9 19 | 8
CE 155 | 20 | 5 6 4 7 3 23 | 8 11 | 5
Back F 153 | 9 5 15 | 8 14 | 4 5 12 115 | 4
Back R 149 |7 |8 15|13 |11 |1 4 9 7 3
L Space 144 | 16 | 5 8 6 11 |1 11 | 6 4 2
AH 133 | 6 2 9 10 | 11 | 6 2 7 7T |4
Space E 127 | 5 6 11 |13 | 7 1 7 13 | 8 1
PO 109 | 6 2 3 10 | 5 8 7T |4 6 2
AK 98 8 5 10 | 9 7 2 8 5 3 2
R Back 84 2 5 2 8 7 1 7 7 3 1

140

Space U 73 1 1 3 3 4 8 7 4 1 4
C Back 65 4 1 2 4 |5 1 5 5 5 2
Total 2497(2215324505 2278@R20111248204245 4744 205522283724
C.2 3-graph table
Table C.3 illustrates the common used 3-graphs described in Chapter 6.
Table C.3: Frequently used tri-graphs

Keys Total UO| Ul| U2| U3| U4| U5| U6| U7| U8| U9
Back Back Back 5599 | 165| 381| 185| 228| 293| 256| 321| 230| 269| 257
ANG 3304 | 62 | 17 | 203| 38 | 285| 226| 256| 56 | 76 | 54
TAN 3294 | 27 | 10 | 218| 22 | 273| 219| 313| 76 | 55 | 36
N G Space 2822| 97 | 25 | 149| 23 | 237| 205| 207| 70 | 45 | 43
A N Space 2439| 46 | 6 139| 44 | 202| 188| 211| 58 | 27 | 30
SHI 24021 29 | 12 | 158| 12 | 208| 207| 211] 30 | 21 | 21
ING 2398 | 46 | 39 | 137| 37 | 178| 149| 191| 48 | 74 | 69
ONG 1923 | 88 | 4 120| 23 | 173| 154| 160| 34 | 61 | 30
HEN 1802| 38 | 6 | 87 | 23 | 148| 127| 135| 26 | 86 | 66
XTA 1609| 33 | 13 | 101] 3 131} 116| 145| 23 | 26 | 12
EN G 1526 | 25 | 2 107| 24 | 104| 97 | 150 24 | 39 | 13
UAN 1508 | 72 | 4 65 | 40 | 122| 110| 108| 42 | 43 | 35
H I Space 1390 24 | 3 79 | 4 126| 109| 130 22 | 15 | 11
A O Space 1365| 38 | 1 83 |9 113| 115 118| 30 | 26 | 12
JIA 1285| 6 3 |8 |7 |92 |100] 125| 31 | 32 | 15
ZHE 1189 7 1 68 | 2 103| 111| 109| 15 | 13 | 4
A T Space 1127 29 | 2 7|1 76 95 |89 | 14 |5 6
TAO 1113 18 | 11 | 57 | 3 1050 93 | 77 | 32 | 21 | 6
O U Space 1035| 28 | 1 74 |3 74 (82 | 79|14 |8 13
HAN 985 | 66 | 1 67 | 25 | 81 | 57 | 71 | 29 | 26 | 11
1J1 965 | 7 1 71 (19 | 79 | 57 | 83 | 13 | 20 | 21
SHE 950 | 30 | 4 |39 |3 77 |53 |48 19 | 65 | 58
SHU 942 | 11 | 2 75 | 4 78 | 84 | 55 | 31 | 6 6
Space Back Back 939 | 65 | 11 | 54 |15 | B8 | 71 | 59 | 36 | 1 14
E N Space 938 |31 |14 |69 |6 72 |56 | 69 | 10 | 21 | 9
HAO 917 | 27 | 3 58 | 3 T4 17T 162 |20 | 25 | 13
JIN 902 | 13 | 27 | 48 | 20 | 76 | 47 | 68 | 4 22 | 25
Space S H 899 | 19 | 3 59 | 2 81 | 76 | 65 | 23 | 2 1
HUA 854 |41 |3 |49 | 23 |59 | 68 | 61 | 24 | 23 | 16
HOU 831 |9 1 57 |4 166 | 63 |83 |14 |10 | 3
JIU 766 | 2 3 145 |1 62 | 64 | 68 | 6 2 8

141

ZHI 760 | 4 1 47 | 8 54 | 55 | 81 | 13 | 13 | 19
MEN 700 | 8 4 138 1|5 38 136 66 |3 |9 2
HUI 658 | 7 1 39 |7 |8 |51 |40 |5 13 |6
USH 623 | 11 | 2 43 |1 49 | 44 | 44 | 7 11 |6
NGS 619 | 15 |4 |49 |9 57 | 42 | 48 | 11 [10 | 7
NSH 608 | 11 | 2 35 |1 41 | 44 | 37 |7 | 27 | 25
H E Space 598 | 13 |3 |31 |3 |40 |42 |43 |28 |7 |8
G E Space 558 |10 |19 |30 [2 |41 |59 |59 |12 |14 |1
REN 552 | 3 8 1396 50 | 36 | b1 | 3 2 1
HON 551 | 3 1 34 |15 33 |32 |46 | 27 | 23 | 12
ZHO 543 | 3 1 38 14 |40 |38 |51 |7 1315
I Space Enter 536 | 10 | 7 |32]9 46 | 20 | 37 | 25 | 25 | 15
GUO 526 | 15 | 2 27 |4 |49 |41 |43 |5 10 | 6
MEI 520 |7 |4 |30 |1 42 | 51 | 37 | 1 3 2
DAN 504 | 2 7T 243 53 |38 |44 |3 |6 5
E Space Enter 496 | 11 | 6 24 | 4 39 | 48 |43 | 15 | 3 2
FAN 478 | 1 6 23 |2 |46 |35 |35 |15 |16 |4
LTA 477 | 5 2 28 |5 |49 |49 |31 |13 |6 2
NGD 476 | 2 2 39 | 1 55 [29 | 50 | 5 14 19
DAO 469 | 5 2 31 |3 32 | 33 |47 | 3 11 | 6
BETI 447 | 14 | 5 19 | 13 | 44 | 30 | 26 | 2 11 | 23
AND 430 | 3 13 120 |3 34 |26 | 47 | 15 | 2 9
I Back Back 429 | 3 11 |21 |10 | 26 | 28 | 36 | 13 | 6 6
I E Space 429 | 3 6 28 | 3 20 | 27 |31 | 6 5 3
TTA 418 | 1 4 29 | 2 30 | 28 | 37| 6 13 | 4
CHU 417 | 9 1 16 | 11 |19 |27 | 37| 17 | 5 8
I N Space 415 | 9 17 114 |4 |30 |24 |25 |21 |4 5
NGZ 410 | 3 2 23 |5 33 128 1353 8 6
ANS 401 | 9 4 22 |6 |40 | 32|34 |12 |6 3
CHA 401 | 2 2 21 | 6 29 | 26 |33 |16 |14 | 6
Space H A 392 | 6 3 26 | 2 27 1 47 1 34 | 1 2 2
G Space Enter 385 | 12 | 1 19 | 4 19 | 17 | 29 | 24 | 20 | 23
N Space Enter 385 | 8 2 26 | 15 | 18 | 18 | 25 | 24 | 13 | 18
ZHU 383 | 5 3 12 116 [21 | 29|32 |10 |9 5
NJI 371 | 2 4 21 | 2 23 (19 |38 |10 |7 |38
ANJ 369 | 2 2 22 |4 |24 (132|316 |4 |4
I1ZH 368 | 3 1 23 | 4 30 | 24 | 46 | 5 5 1
NGL 368 | 3 3 |8 5 18 120 | 45 | 6 17 | 10
Space D A 358 |4 |8 19 |1 26 |33 118 |9 2 1
WEN 352 |1 2 12 |1 351341329 |4 1
END 350 | 3 8 17 |1 27 |34 124 | 5 3 5
1 U Space 346 | 4 1 19 | 2 26 | 28 | 24 | 2 7 1
BAN 343 | 2 5 20 (4 | 24|36 |31 |7 1 8

142

ANY 3290 | 30 | 4 12 | 2 29 | 20 | 32 | 5 5 9
DON 320 | 42 | 1 7 |4 32 119 | 24 |10 | 22 | 15
Back S H 315 | 3 2 10 | 1 21 | 27 | 28 | 8 6 6
CHE 315 | 2 4 21 {20 |16 |22 |24 |12 |10 |9
U Space Enter 299 | 5 2 24 | 5 10 | 14 | 18 | 20 | 9 15
O Space Enter 284 | 2 1 19 | 4 16 |22 |15 |14 |7 | 4
IDA 279 | 8 2 17 | 2 17 122 |21 | 4 10 | 7
ENS 274 | 3 1 13 1 10 | 10 | 12 | 5 25 | 23
N Back Back 267 | 2 7 18 |12 |13 |19 | 17 | 8 1 7
Space H U 267 | 3 1 14 |2 16 | 20 | 17 | 6 3 1
THE 265 | 10 | 1 4 2 10 | 9 20 | 25 | 6 9
U Back Back 265 | 1 2 7 9 18 | 15 | 27 | 8 4 1
ICH 264 | 3 23 | 14 | 7 19120 | 13 | 6 7 9
INT 263 | 1 127] 6 4 14 | 10 | 10 | 6 1 5
AOY 262 | 2 2 10 | 2 22 |18 |19 |10 | 13 |9
AIL 257 | 3 8 12 | 4 28 | 20 | 14 | 2 7 7
A Back Back 253 | 3 5 18 | 8 28 | 17 |19 |7 |4 4
Back Back S 252 | 7 2 8 1 17123 |18 | 12 | 5 8
I Space Back 249 | 15 | 1 14 |3 12 | 24 | 15 | 4 2 1
NZH 246 | 1 1 11 | 5 11 | 20 | 18 | 13 | 2 3
MIN 245 | 9 15 10 | 3 18 |14 |22 3 8 11
MAI 242 | 10 | 8 12 | 3 8 21 |13 |1 6 7
Back Back Z 237 | 3 2 10 | 6 19 |19 |19 | 7 2 5
O Back Back 230 | 3 8 10 | 3 17 |24 |19 | 7 2 3
E Back Back 229 | 4 12 |10 | 5 16 | 16 | 22 | 8 1 5
TON 228 | 1 1 20 | 6 18 | 25 | 12 | 2 6 15
Back Back D 227 | 7 2 15 | 3 12 | 18 | 13 | 9 2 4
Back X 1 222 | 2 1 22 |1 14 | 10 | 19 | 4 1 3
Back Back Y 220 | 9 3 18 | 4 14 | 13 | 14 | 4 2 4
BAO 206 | 4 1 13 | 4 17 | 13126 | 1 15 | 2
Back Back H 206 | 15 | 1 9 7 10 | 22 |10 | 9 2 3
ION 198 | 6 9 12 |13 | 17 | 6 4 10 | 1 6
Space D I 174 | 1 3 6 1 18 |7 17 |12 | 1 2
Back Back T 162 |1 5 11 | 2 9 7 11 | 14 | 2 3
Space W A 158 | 3 1 11 | 2 14 |12 |13 |1 1 4
Back Back B 135 | 7 5 10 | 3 10 | 8 14 | 5 2 2
G Back Back 135 | 5 1 6 6 9 9 11 | 2 2 2
Space B E 135 | 6 4 4 3 12 |12 |11 | 5 3 4
Back Back L 126 | 6 5 5 1 10 | 4 6 5 4 5
G Space Back 107 | 6 1 6 4 6 8 7 3 2 1
Back Back A 105 | 5 7 5 2 7 5 7 9 2 1
HIN 94 2 1 6 14 | 4 11 | 4 2 2 1
Back B A 84 4 1 3 3 8 6 11 | 2 2 1

143

OUR 80 4 2 1 2 3 1 3
Total 79947 1725 1102 4515 1077 6115 5665 6299 1842 1798 147
Table C.4 illustrates the common used 3-graphs described in Chapter 6.
Table C.4: Frequently used tri-graphs

Keys Total UO| U1l| U2| U3| U4| U5| Ue6| UT7| U8| U9
Back Back Back 5599 | 357| 208| 309| 357| 438| 181| 161| 315| 346| 342
ANG 3304 | 291| 54 | 301| 269| 354| 64 | 28 | 307| 323| 40
TAN 3294 | 301| 30 | 373| 326/ 304| 31 | 33 | 284| 333| 30
N G Space 2822 | 243| 38 | 254| 238| 252| 52 | 41 | 264| 298| 41
A N Space 2439 | 215| 24 | 271| 196| 238| 13 | 27 | 227| 259| 18
SHI 2402 | 235| 28 | 252| 240| 246| 13 | 19 | 242| 207| 11
ING 2398 | 214| 31 | 162| 185| 205| 86 | 48 | 191| 232| 76
ONG 1923 | 152| 10 | 166| 121| 181| 26 | 19 | 167| 203| 31
HEN 1802 | 125| 18 | 131| 137| 153| 61 | 32 | 139| 137| 127
XTA 1609 | 150| 16 | 159| 186| 173| 15 | 12 | 146| 131| 18
EN G 1526 | 112| 59 | 122| 137| 153| 17 | 19 | 131| 177| 14
UAN 1508 | 109| 28 | 135| 89 | 144| 17 | 26 | 143| 150| 26
H I Space 1390 | 143| 24 | 160| 125| 129| 8 9 150| 117| 2
A O Space 1365 | 122| 7 133] 97 | 149| 28 | 10 | 109| 150| 15
JITA 1285 | 102| 14 | 156| 95 | 132 22 | 21 | 87 | 153| 9
ZHE 1189 119| 8 122| 123| 144| 9 18 | 94 | 116/ 3
A T Space 1127 | 111 13 | 141| 104| 142| 11 | 5 96 | 104| 6
IAO 1113| 97 | 15 | 126| 85 | 101| 18 | 17 | 106| 112| 13
O U Space 1035| 97 | 63 | 115| 82 | 93 | 23 | 7 79 | 90 | 10
HAN 985 | 96 | 20 | 67 | 69 | 88 | 17 | 8 88 | 74 | 24
I1JI 965 | 76 | 7 |8 |8 |93 |34 |9 61 | 114| 28
SHE 950 | 55 | 12 | 43 | 71 | 62 | 47 | 13 | 65 | 72 | 124
SHU 942 | 94 | 4 89 | 94 | 123] 9 5 77| 87 | 8
Space Back Back 939 | 107 37 | 75 | 63 | 99 | 6 8 86 | 72 | 2

E N Space 938 | 79 | 15 | 113/ 65 | 94 | 10 | 12 | 86 | 91 | 16
HAO 917 | 74 | 1 80 | 68 | 109] 29 | 15 | 72 | 90 | 17
JIN 902 | 94 | 8 59 | 51 | 82 |44 | T 74 | 101} 32
Space S H 899 | 79 | 12 | 78 | 103| 106| 7 5 86 | 89 | 3
HUA 854 | 64 | 12 | 73 | 62 | 78 | 8 21 | 68 | 81 | 20
HOU 831 |59 | 7 |90 | 67 | 101]| 15 | 8 75 | 88 | 11
JIU 766 | 57 | 1 97 | 83 | 88 | 3 1 88 | 83 | 4
ZHI 760 | 67 | 17 | 95 | B3 | 67 | 5 12 1 69 | 77 | 3
MEN 700 | 85 | 44 | 66 | 51 | 84 | 8 3 73|72 |5
HUI 658 | 57 | 4 72 | 51 190 | 5 8 65 | 45 | 7

144

USH 623 | 70 | 2 64 | 59 | 60 | 8 4 56 | 65 | 17
NGS 619 | 55 | 5 47 140 | 59 | 12 | 4 55 | 78 | 12
NS H 608 | 56 | 5 40 | 45 | 51 | 22 | 6 55 | 33 | 65
H E Space 598 | 74 | 3 55 | 58 | 54 | 6 16 | 47 | 63 | 4
G E Space 558 | 56 | 2 49 | 47 | 55 | 2 8 30 | 60 | 2
REN 552 | 48 | 6 58 | 48 | 74 | 5 7 |50 | 54 |3
HON 551 | 51 | 3 49 | 44 | 57 | 13 | 22 | 41 | 48 | 7
ZHO 543 | 42 | 4 54 | 40 | 67 | 24 | 5 50 | 51 | 6
I Space Enter 536 | 53 | 6 43 | 31 | 54 | 13 | 21 | 41 | 36 | 12
GUO 526 | 35 | 7 |57 |40 | 67 | 12 |7 |55 |34 |10
MEI 520 | 54 | 6 |63 |59 |62 |4 |2 46 | 40 | 6
DAN 504 | 42 | 3 57 |54 | 56 |4 |4 |37 |57 |5
E Space Enter 496 | 41 |9 |45 |28 |71 |8 4 | 47 | 42 | 6
FAN 478 |39 |6 |41 |26 |50 |16 | 7 |57 |44 |9
LIA 477 1 36 | 5 50 | 43 | 34 | 3 5 48 | 56 | 7
NGD 476 |28 | 6 |46 | 27 | 61 | 9 6 34 145 | 8
DAO 469 | 40 | 2 53 | 45 | 46 | 15 | 1 42 | 42 | 10
BEI 447 133 |4 |30 |26 |37 |26 |6 23 |49 | 26
AND 430 | 38 | 6 |47 |42 |34 |5 12 133 |35 | 6
I Back Back 429 | 48 |3 |34 (36|39 |11 |6 43 | 44 | 5
I E Space 429 | 44 | 12 | 54 | 43 | 49 | 2 3 31 | 57 | 2
TIA 418 149 |4 |36 [30|36 |6 2 43 | 52 | 6
CHU 417 | 31 |7 |43 | 31 |47 | 7 7 | 58 342
I N Space 415 | 44 |9 |47 22 |38 |1 6 38 152 |5
NGZ 410 | 39 | 6 25 | 35 | 57 | 14 | 2 36 | 47 | 3
ANS 401 [37 |7 |39 |36 |36 |8 5 39 |22 | 4
CHA 401 [36 |9 |34 |31 |37|8 3 |49 |27 | 12
Space H A 392 | 39 |3 |43 |27 |45 |5 5 37132 |6
G Space Enter 385 |24 |7 |22 |17 132|224 |32]35]|22
N Space Enter 385 | 25 | 6 26 | 15 | 50 | 7 10 | 30 | 38 | 11
ZHU 383 | 34 |20 | 28 | 20 | 46 | 3 13|15 (49 | 13
NJI 371 |27 13 |37 |25 (35|21 |2 36 | 49 | 2
ANJ 369 | 28 |3 |35 |42 (35|14 |1 36 | 42 | 2
1ZH 368 | 29 |7 |30 |31 |48 |3 8 34 133 |3
NGL 368 | 35 | 3 27 |27 |44 |4 |3 38 | 44 | 8
Space D A 358 |40 | 6 |48 | 38 |24 |9 2 33 134 |3
WEN 352 | 3313 |49 29|29 |3 1 20 | 52 | 2
END 350 | 41 | 1 34 135 |35 |2 4 141129 |1
I U Space 346 | 20 | 3 42 | 30 | 37 | 2 2 51 | 43 | 2
BAN 343 | 39 | 2 27 | 27 | 50 | 3 2 27 | 24 | 4
ANY 329 | 28 | 2 31 12328 |2 3 28 | 30 | 6
DON 320 | 21 | 5 15111 |25 |4 |6 15 132 | 10
Back S H 315 |36 |7 |23 |25 (32|10 |3 34 126 |7

145

CHE 315 | 21 | 2 26 | 21 | 26 | 17 | 7 21
U Space Enter 299 | 10 | 40 |19 | 14 | 30 | 16 | 3 20
O Space Enter 284 | 22 | 2 27 | 12 | 40 | 11 | 3 24
IDA 279 | 16 | 1 33 124 (311 6 21
ENS 274 | 17 | 1 9 11123 |19 |3 15
N Back Back 267 | 21 | 2 25 | 14 | 28 | 3 6 19
Space H U 267 | 27 | 1 25 125 133 |1 5 36
THE 265 | 42 | 4 23 20 | 17 | 3 18 | 23
U Back Back 265 | 28 | 4 27 (21 139 |1 4 23
ICH 264 | 18 | 2 23 |16 |35 |14 |1 21
INT 263 | 15 | 2 16 | 7 16 | 1 4 10
AOY 262 | 16 | 1 32 17|19 |11 |7 19
AIL 257 |19 | 24 |22 |22 | 16 | 3 4 13
A Back Back 253 |19 | 1 23 22129 |3 1 14
Back Back S 252 |29 |10 |19 |18 | 21 | 4 3 22
I Space Back 249 | 25 | 12 | 26 | 14 | 29 | 4 4 24
NZH 246 | 20 | 3 23 |21 129 |8 8 28
MIN 245 | 13 | 3 23 120 |31 |1 3 10
MAI 242 | 17 | 25 | 17 | 14 | 23 | 9 3 18
Back Back Z 237 |1 25| 9 23 | 14 | 17 | 4 1 19
O Back Back 230 | 35 | 3 15 11 | 21 | 2 1 19
E Back Back 229 | 26 | 3 16 | 17 | 19 | 1 7 24
TON 228 | 11 | 1 25 |12 | 11 |1 8 21
Back Back D 227 | 18 | 6 15 123|122 1|5 2 24
Back X 1 222 | 18 | 3 21 |22 123 |1 5 23
Back Back Y 220 | 20 | 3 20 | 16 | 24 | 3 5 19
BAO 206 | 16 | 2 13 |11 |15 | 7 1 9
Back Back H 206 | 20 | 3 16 | 14 |21 |1 3 16
ION 198 | 31 | 7 14 118 |11 |1 14 | 6
Space D 1 174 | 25 | 1 24 |12 | 12 | 2 2 14
Back Back T 162 | 21 | 6 8 13111 5 17
Space W A 158 | 9 3 18 |18 [12 | 1 4 20
Back Back B 135 | 11 | 8 9 1119 3 1 5
G Back Back 135 | 13 | 4 10 |10 | 13 | 4 1 14
Space B E 135 | 13 | 1 9 11 | 10 | 3 2 6
Back Back L 126 | 8 6 8 8 10 | 2 2 9
G Space Back 107 | 10 | 1 10 | 13 | 7 1 1 8
Back Back A 105 | 6 3 13 |7 11 | 1 1 3
HIN 94 9 5 2 4 8 1 9 4
Back B A 84 5 1 5 9 11 |1 1 4
OUR 80 7 13 11 | 2 5 1 7T |8
Total 79947 6908 1339 7291 6326 7896 1497 1118 6774 744

146

C.3 4-graph table

Table C.5 illustrates the common used 4-graphs described in Chapter 6.

Table C.5: Frequently used 4-graphs

Keys Total UO| Ul| U2| U3| U4| Us| U6| U7T| US| U9
Back*4 2967 | 77 | 253| 89 | 155| 137| 107| 160| 120| 167| 156| 168
A N G Space 1007| 32 | 4 65 | 9 78 |70 | 70 | 25 | 16 | 14 | 80
XTAN 953 | 19 | 2 69 | 3 8 | 62 [92 |12 | 17 | 6 100
IANG 935 | 13 | 2 62 | 4 87 | 68 | 67 | 16 | 16 | 7 85
SHEN 868 | 30 | 4 34 | 2 69 | 53 | 48 | 8 60 | 56 | 48
I N G Space 752 |20 | 13 |35 | 7 65 | 40 | 53 | 19 | 10 | 20 | 86
HANG 687 | 12 | 1 50 | 14 | 57 | 41 | 60 | 17 | 17 | 5 83
HEN G 627 | 6 2 37 | 13149 | 53 | 72 | 17 | 21 | 8 42
O N G Space 530 | 28 | 1 22 | 5 52 | 57 |31 | 13 |10 | 6 42
JIAN 529 | 2 1 33 |6 48 | 26 | 55 | 20 | 9 11 | 39
JING 514 | 9 1 30 |11 |46 | 25 |37 |1 17 | 20 | 50
HONG 505 | 3 1 34 |5 33 |31 |46 |14 |19 |9 48
E N G Space 502 | 14 | 1 26 | 2 41 | 36 | 49 | 12 | 8 3 34
HUAN 451 | 16 | 1 15 119 |37 | 37|36 |19 | 12 | 11 | 29
N G Space Enter 382 [12 |1 19 | 4 19 | 16 | 29 | 23 | 19 | 23 | 24
ZHON 359 | 1 1 25 | 4 25 |25 |31 |7 9 4 38
UANG 349 | 8 1 16 | 10 | 21 | 22 | 28 | 7 12 | 12 | 18
IJIN 343 | 3 1 15 114 | 31 | 18 | 24 | 3 11 | 17 | 29
LIAN 290 | 4 2 18 | 4 19 | 28 | 18 | 12 | 3 2 28
DONG 289 | 42 | 1 6 4 31119 |24 |7 19 | 6 21
A N Space Enter 233 | 6 1 10 |12 |10 | 13 |17 |14 | 9 14 | 12
CHEN 220 | 2 1 18 | 17 | 11 | 14 | 22 | 8 7 5 16
INGD 209 | 1 1 13 1 25 15 120 |1 11 | 8 11
ANJI 197 | 2 2 12 | 2 12 | 17 | 16 | 4 4 4 16
CHAN 196 | 2 1 14 |5 19 | 13 | 18 | 6 1 2 13
I Back Back Back 181 | 2 6 12 19 10 | 10 | 19 | 4 3 5 19
ZHUA 164 | 5 1 4 8 7 12 |22 | 7 7 3 7
ANGZ 146 | 1 2 9 2 12 | 7 7 1 2 1 10
Back Back Back S 121 | 4 1 4 1 8 15 | 8 4 3 6 12
N G Space Back 102 | 5 1 6 4 6 8 7 3 2 1 8
TANS 101 | 2 1 8 3 11 | 5 11 |1 2 2 5
MAIL 98 1 8 2 2 6 2 3 1 4 5 3
A Back Back Back | 93 1 2 3 5 12 | 5 8 4 1 1 6
A 1 Space Enter 80 2 2 2 1 4 3 7 6 3 1 10
Total 1598() 387| 324| 817| 367| 1188 973| 121H 436| 531| 454| 124

Table C.6 illustrates the common used 4-graphs described in Chapter 6.

147

Table C.6: Frequently used 4-graphs

Keys Total U11 U12 U13 U14 U15 U16 U1y U18 U19
Back*4 2967 | 168| 127| 146| 165| 222| 111| 85 | 147| 162| 213
A N G Space 1007 | 80 | 16 | 111| 88 | 100| 13 | 5 104| 97 | 10
XTAN 953 | 100| 8 | 94 | 117/ 1024 |6 |83 |69 |3
ITANG 935 | 85 | 8 107/ 92 | 103| 11 |5 | 8 | 94 | 3
SHEN 868 | 48 | 10 | 39 | 63 | 54 | 42 | 9 | 54 | 65 | 120
I N G Space 752 | 8 |9 |48 | 66 | 54 | 25 | 21 | 63 | 83 | 15
HANG 687 | 83 | 16 | 54 | 50 | 64 | 16 | 2 | 65 | 53 | 10
HENG 627 | 42 | 11 | 48 | 52 | 64 | 6 17 140 | 60 | 9
O N G Space 530 |42 |5 |47 |42 |49 |7 |5 |46 | 54 |8
JIAN 529 |39 |7 |66 |34 |59 7 | 36|66 |3
JING 514 | 50 | 6 |24 | 26 |42 |37 |7 |43 |53 | 29
HONG 505 | 48 | 3 | 46 |42 | 57 | 13 |6 |40 | 48 | 7
E N G Space 502 | 34 | 8 |45 | 41 | 47 | 6 10 | 50 | 62 | 7
HUAN 451 | 29 | 5 31 |23 |41 |7 17 | 37 | 46 | 12
N G Space Enter 382 |24 |7 |22 |17 32|22 |4 |32]|35]|22
ZHON 359 | 38 |3 |41 |33 |41 |8 |2 28 |29 | 4
UANG 349 | 18 |4 |30 |29 |35 |6 10 | 23 | 45 | 12
IJIN 343 |29 |3 |21 |18 |24 |27 |4 |21 |33 |26
LTAN 290 | 28 | 2 24 126 |18 3 |3 [31]39]|6
DONG 289 | 21 | 2 14 |11 |24 |3 |2 15 |32 | 6
A N Space Enter 233 | 12 | 2 16 | 11 | 29 | 5 7 15124 | 6
CHEN 220 | 16 | 1 16 |13 12216 |5 13 120 |3
INGD 209 | 11 | 2 13 112|278 |2 10 | 22 | 6
ANIJI 197 | 16 | 2 11 |17 (12 14 |1 21 | 26 | 2
CHAN 196 | 13 | 6 19 [21 | 17| 2 1 26 |4 |6
I Back Back Back 181 |19 | 1 8 17|11 |6 |4 15 | 17 | 3
ZHUA 164 |7 |3 12 | 8 16 | 1 6 |8 1819
ANGZ 146 |10 |2 |9 |8 |22 |14 |2 11 |21 |3
Back Back Back S 121 (12|16 |7 |9 |7 |3 [2 |8 |9 |4
N G Space Back 102 | 8 1 10 |12 | 6 1 1 8 1 |1
TANS 101 | 5 2 7T 18 |7 |3 1 13 |8 1
MAIL 98 3 23 | 5 7 13 |3 |3 1 3 13
A Back Back Back | 93 6 1 7 6 9 3 1 6 10 | 2
A T Space Enter 80 10 | 1 7 8 8 2 2 5 3 3
Total 15980 1240 313| 1205 1192 1420 447| 265 1203 1421 587

C.4 5-graph table

Table C.7 illustrates the common used 5-graphs described in Chapter 6.

148

Table C.7: Frequently used 5-graphs

Keys Total UO| Ul1l| U2| U3| U4| U5| Ue| U7| U8| U9
Back*5 1556 | 40 | 169| 46 | 106 53 | 43 | 76 | 64 | 101| 84
XITANG 563 | 12 | 1 44 | 1 47 | 45 | 48 | 10 | 9 2
ZHONG 354 | 1 1 25 | 4 25 |24 |31 |7 9 4
IJING 264 | 3 1 12 19 27 | 13 | 17 | 1 10 | 16
H E N G Space 248 | 3 1 10 | 1 24119 | 23 |10 | 3 2
HUANG 219 | 6 1 7 10 |12 |15 | 14 | 5 1119
CHENG 166 | 2 1 12 | 10 | 8 10 | 22 | 7 6 3
ZHUAN 145 | 5 1 2 8 7 10 | 15 | 7 7 3
Total 3515| 72 | 176| 158| 149| 203| 179| 246| 111| 156| 123
Table C.8 illustrates the common used 5-graphs described in Chapter 6.
Table C.8: Frequently used 5-graphs

Keys Totall U10 U11 U12 U13 U14 U15 U16 U1y U18 U1}
Back*5 1556 78 | 77 | 65 | 68 | 112| 66 | 44 | 65 | 73 | 126

XIANG 563 | 52 58 [62 |68 |4 |5 |46 |43 |1

ZHONG 354 | 36 40 | 32 | 41 | 8 2 28 129 | 4

IJING 264 | 19 14 110 | 13 | 25 | 4 16 | 26 | 26

HUANG 219 | 11 16 116 | 21 | 5 9 16 | 24 | 9

CHENG 166 | 9 16 | 9 20 | 4 3 8 12 | 3

5
3
2
H E N G Space 248 | 16 | 4 18 122 | 28 | 2 10 | 18 | 27 | 7
2
1
2

ZHUAN 145 | 6 10 | 8 14 |1 5 |8 1719

Total 3515 | 227 96 | 237| 227| 317| 115| 82 | 205| 251| 185

149

Appendix D

Source code

Appendix D lists important source code used in Chapters 5, 6, 7, 8 9 and 10.
Full version of the source code can be accessed at https://github.com/fanzh
aoyi/ThesisCode

D.1 Experimental platform code

The full version of experimental platform can be accessed at https://github
.com/fanzhaoyi/DataCollector

D.2 Mobile web page code

This section lists the sources of code used on the mobile web page described in
Chapter 9. This web page is for examining the

D.2.1 Mobile test web page

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8"/>
<meta name="viewport"
content="width=device-width, initial-scale=1.0,
maximum-scale=1.0, minimum-scale=1.0, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-touch-fullscreen" content="yes">
<title>Mobile Touch Test</title>
</head>
<body>
<h2 id=’out’>Mobile sensor test</h2>
<button id="btn">Click to authorize</button>

150

https://github.com/fanzhaoyi/ThesisCode
https://github.com/fanzhaoyi/ThesisCode
https://github.com/fanzhaoyi/DataCollector
https://github.com/fanzhaoyi/DataCollector

<input type="text" id=’inputtext’>

<div type=’text’ id="kd"></div>

<div type=’text’ id="ku"></div>

<div id="msg">Action type: (coordinates), (acceleration),
(orientation), (rotationRate)</div>

<div type=’text’ id="motion"></div>

<div type=’text’ id="orientation"></div>

<div type=’text’ id="otest"></div>

<div type=’text’ id="rotation"></div>

<div type=’text’ id="start">start</div>

<div type=’text’ id="end">end</div>

<div type=’text’ id="move'">move</div>

</body>

<script type="text/javascript">
document .getElementById("btn") .addEventListener("click", function() {
if (typeof DeviceMotionEvent.requestPermission === ’function’) {
DeviceMotionEvent.requestPermission()
.then(permissionState => {
if (permissionState === ’granted’) {
window.addEventListener(’devicemotion’,
deviceMotionHandler, false);
function deviceMotionHandler (){}

B
.catch((err) => {
alert("Not authorized");
B
} else {
alert("not found")

1))

window.addEventListener(’load’, load, false);

var Xg=Yg=7Zg=0;

var Xo=Yo=Zo=0;

var Xr=Yr=Zr=0;

function load (){
document .addEventListener (’touchstart’, touch, { passive: false

b

document .addEventListener (’touchmove’, touch, { passive: false });
document . addEventListener (’touchend’, touch, { passive: false });
function touch (event){

var event = event || window.event;

var g = n (||+ Xg+ n s "y Yg+ n s "y Zg+ u) n ;
var r = n (||+ Xr+ n s LS Yr+ n s "y Zr+ ll) n ;
var o = "("+ Xo+ " ., "+ Yo+ ", "+ Zo+ nyn ;

switch(event.type){
case "touchstart":
outstart = event.changedTouches[0].clientX.toFixed(0)
+ n , n +

151

event.changedTouches[0] .clientY.toFixed(0);
document . getElementById(’start’) .innerHTML="Start: ("+
outstart+ ")"+ g+ o+ r;
document .getElementById(’move’) .innerHTML="";
break;
case "touchend":
outend = event.changedTouches[0].clientX.toFixed(0) +
", " + event.changedTouches[0] .clientY.toFixed(0);
document .getElementById(’end’) . innerHTML="End: ("+
outend+ ")'"+ g+ o+ r;
break;
case "touchmove":
event.preventDefault();
outmove = event.changedTouches[0].clientX.toFixed(0) +
", " + event.changedTouches[0] .clientY.toFixed(0);
document .getElementById(’move’) .innerHTML=document .getElementById(’move’) .innerHTML+
"</br>"+ "Move: ("+ outmove+ ")'"+ g+ o+ r;
break;

}

if (window.DeviceOrientationEvent){
window.addEventListener(’deviceorientation’,
deviceOrientationHandler, false);
function deviceOrientationHandler (e){
var gamma = e.gamma; var beta = e.beta; var alpha = e.alpha;
if (e.gamma)q{
var out= e.gamma.toFixed(2);
Xo=alpha.toFixed(2);
Yo=beta.toFixed(2);
Zo=gamma.toFixed(2);

}
if (window.DeviceMotionEvent){
window.addEventListener (’devicemotion’, function(event){
var gacc = event.accelerationIncludingGravity;
var gx = gacc.X; var gy = gacc.y; var gz = gacc.z;
Xg=gx.toFixed(2);
Yg=gy.toFixed(2);
Zg=gz.toFixed(2);
var rotation = event.rotationRate;
if (rotation){
var rx = rotation.alpha; var ry = rotation.beta; var rz =
rotation.gamma;
Xr=rx.toFixed(2);
Yr=ry.toFixed(2);
Zr=rz.toFixed(2);

152

}, false)
}
document . onkeydown=keyDown;
document .onkeyup = keyUp;
function keyDown(e){

var g = "("+ Xg+ ", "+ Yg+ ", "+ Zg+ ")
var r = "("+ Xr+ ", "+ Yr+ ", "+ Zr+ ")";
var o = "("+ Xo+ ", "+ Yo+ ", "+ Zo+ ")";
e=e| |event;
if (e.key){

var thekey=’Down:’+ e.key;
Yelse{

var thekey =’Down:’+ e.code;

}

var t = Date.now();

document .getElementById(’kd’) . innerHTML=thekey+ " ("+
t.toString() .substr(-5, 5)+ ")"+ g+ r+ o;

}
function keyUp(e){
var g = n (||+ Xg+ " s "y Yg+ " s "y Zg"‘ n) n ;
var r = "("+ Xr+ " , "+ Yr+ ", "+ Zr+ nyn ;
var o = " (n+ Xo+ " s "+ Yo+ " s "+ Zo+ n) n ;

e=e| |event;
var t = Date.now();
if (e.key){
var thekey=’Up:’+ e.key;
Yelse{
var thekey =’Up:’+ e.code;
}
document . getElementById(’ku’) . innerHTML=thekey+ "("+
t.toString() .substr(-5, 5)+ ")"+ g+ r+ o;
}
</script>
</html>

153

D.3 Python scripts for data analysis

This section lists the Python scripts for data analysis in Chapters 6, 7, 8 and 9.

D.3.1 Python scripts for analysing keystroke dynamics

List D.3.1 lists the Python scripts for keystroke dynamics analysis used in Chap-
ter 6.

import numpy as np

import sys

import csv

import pandas as pd

import math

from numpy import *

from time import time

import time

import datetime

import matplotlib.pyplot as plt

from sklearn import preprocessing

from sklearn import svm

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsOneClassifier
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
import random

import sklearn

from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import KFold,StratifiedKFold
from sklearn.metrics import make_scorer

from sklearn import linear_model

from sklearn.metrics import r2_score

from sklearn.ensemble import BaggingRegressor

from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import AdaBoostRegressor

from sklearn.metrics import fl_score,precision_score,recall_score
from sklearn.metrics import accuracy_score

from sklearn import tree

from xgboost import XGBClassifier,plot_importance,DMatrix,cv
from xgboost import XGBRegressor

from sklearn.ensemble import VotingClassifier

from sklearn.pipeline import Pipeline

154

from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix,ConfusionMatrixDisplay
from sklearn.metrics import classification_report
from collections import Counter

import os

import string

from sklearn.utils import class_weight

from itertools import combinations

from functools import reduce

import gc

import scikitplot as skplt

import lightgbm as 1gb

import seaborn as sns

pd.set_option(’display.max_rows’,500)
pd.set_option(’display.max_columns’,500)
pd.set_option(’display.width’,1000)
pd.set_option(’max_colwidth’,1000)
np.set_printoptions (suppress=True)

figure_pathl = ’C:/Zhaoyi_Fan/Figures/’
’C:/Zhaoyi_Fan/Latex/Figures/’

figure_path2

def myweight(y=arange(19)):
myweights = {}
for j in np.unique(y):
myweights[jl=1len(y)/(y.tolist().count(j)*len(np.unique(y)))
try:
for i in mychanges:
myweights[i[0]]=myweights[i[0]]*i[1]
except:
mychanges=[]
return myweights,mychanges

def tobi(strr):
if strr==’true’:
return 1
else:
return 0O

def iskeyX(d):
if di=>7:
if d[-1].isupper() and len(d)==4:
return True

def switch(d):
if d!=’’:
if d[-1].isupper() and len(d)==4:
return d[-1]

155

elif d==’Backspace’:
return ’Back’
else:
return d
else:
return d

def is_bp(k):
bad = [’Backspace’,’Arrow’,’keycode’,’Volume’]
for b in bad:
if b in k[3]:
return True
return False

def extractfeatures_keystroke():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/’
groups = [’training’,’testing’,’All’]
for group in groups:
if group ==’Al11’:
continue
newpath = path+group+’/samples/’
users = os.listdir(newpath)
for user in users:
dest = path+group+’/features/’+user+’/’
if not os.path.exists(dest):
os.makedirs(dest)
print (dest,’created’)

files = os.listdir(newpath+user+’/’)
for the_file in files:
the_temp_name = the_file.split(’.csv’) [0]
if the_temp_name.split(’_’) [1]==’mouse’:
continue
#frequently used keys: k_keys
f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’,
’KeyE’, ’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’,
’KeyC’, ’KeyD’, ’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’,
’ShiftLeft’, ’Digitl’, ’KeyB’, ’Digit0’, ’KeyZ’,
’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’, ’KeyP’, ’KeyF’,
’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’, ’KeyQ’,
’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]
x=[]
y=0
X=[]
v=[]

file = newpath+user+’/’+the_file
name = the_file.split(’.csv’) [0]
with open(file,’r’,encoding=’UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist() [1:]

156

out = []

temp=[]

the_data= []

for i in data[l:]:

if len(temp) ==
temp.append (i)

else:
d=i[3]
if int(i[2]1)-int(i[1]1)<10000 and int(i[2])-int(i[1])>0
and d!=’’ and d!=’ArrowRight’ and d!=’ArrowlLeft’
and d!=’ArrowDown’ and d!=’ArrowUp’ and
d!="keycode’ and ’Volume’ not in d:
if int(i[1]1)-int(temp[-1]1[1]1)<1000:
temp.append (i)
else:
out.append (temp)
X.append (temp)
Y.append (name)
temp=[]
temp.append (i)
n=4

for d,name in zip(X,Y):
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False

if boolean:

durations = []
DD = []
uu = (]
DU = []
UD = [1]
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j] [2])-int(d[i+j]1[1]))
caps.append (tobi(d[i+j] [-1]))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))

for ¢ in combo:
DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [1]))
UU.append(int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [1]))

157

UD.append (int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))
¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
the_data.append(my_feature+[name])
pd.DataFrame (the_data) .to_csv(dest+the_file.split(’.csv’) [0]+’ _features.csv’,header=0,index

print (user,group,’data extraction
completed’,len(the_data),’samples involved’)

def keystroke_raw_size():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’
users = os.listdir(path)
size = []
for user in users:
with
open(path+user+’/’+user+’_keystroke_train.csv’,’r’,encoding="UTF-8’)
as f:
data = np.array(pd.DataFrame(csv.reader(£f)))
size.append(len(data))
sorted_data = sorted(zip(users,size), key=lambda x: (x[1]))
users,size = zip(*sorted_data)
users=list (users)
size = list(size)
print (size[0],size[-1])
users.append(’Mean’)
size.append(np.mean(size))
plt.figure(figsize=(10, 6))
plt.barh(users, size, color=’blue’)
plt.xlabel (’Keystroke samples’)
plt.ylabel(’User’)
plt.gca() .invert_yaxis()
plt.savefig(figure_pathl+’ks_raw_size.png’)
plt.savefig(figure_path2+’ks_raw_size.png’)
plt.show()

def type_of_keycode():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’
users = os.listdir(path)
types = []
for user in users:
temp = []
with
open(path+user+’/’+user+’_keystroke_train.csv’,’r’,encoding="UTF-8’)
as f:
data = np.array(pd.DataFrame(csv.reader(f)))[1:]
for d in data:
if d[3] not in temp:
temp.append (d[3])

158

types.append(len(temp))
sorted_data = sorted(zip(users,types), key=lambda x: x[1])
users,types = zip(*sorted_data)
plt.figure(figsize=(10, 6))
plt.barh(users, types, color=’blue’)
plt.xlabel(’Number of keycode categories’)
plt.ylabel(’User’)
plt.gca() .invert_yaxis()
plt.savefig(figure_pathi+’key_type.png’)
plt.savefig(figure_path2+’key_type.png’)
plt.show()

def 0ccurrence_of_frequently_used_keys_for_each_user():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’
users = os.listdir(path)

types = {}
for user in users:
temp = []

if user not in types:
types [user]={}
with
open(path+user+’/’+user+’ _keystroke_train.csv’,’r’,encoding=’UTF-8’)
as f:
data = np.array(pd.DataFrame(csv.reader(f)))[1:]
for d in data:
if d[3] not in types([user]:
types [user] [d[3]]1=0
types [user] [d[3]]+=1

df = pd.DataFrame(types).T
df = df.dropna(axis=1)
sorted_columns = df.sum(axis=0).sort_values(ascending=False).index
df = df [sorted_columns]
keys_sum = df.sum(axis=0)
df.loc[’Total’] = keys_sum
for col in df.columns:

if df[col].dtype == ’float64’:

df [col] = df[col].astype(int)

for d in np.array(df):

print (d)
print (df)
print (df.iloc[:, :10])
pd.DataFrame (df) .to_csv(’KeyOccurrence.csv’ ,header=True,index=True)

def ngraphs_check(n=2):
path = path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’

users = os.listdir(path)

159

user_names=[]
user_profiles = {}

key_type = []
di = []
for user in users:
name = user.split(’.’)[0]
user_names . append (name)
digraphs = []
with
open(path+user+’/’+user+’ _keystroke_train.csv’,’r’,encoding=’UTF-8’)
as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist() [1:]

for i in range(len(data)-n+1):
bad = False
for j in range(n-1):
if int(datali+1+j][1])-int(datal[i+j][1])>=1000 or
int(datali+j][2])-int(datal[i+j] [1])>=10000:

bad = True
break

d = datali][3]

temps = [switch(data[i] [3])]

for k in range(n-1):
temps.append(switch(datal[i+1+k] [3]))

di_temp = ’ ’.join(temps)

#di_temp = datal[i] [3]+’+’+datali+1] [3]

if d!=’’ and d!=’ArrowRight’ and d!=’ArrowLeft’ and
d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and not
bad:

#int (datal[i+1] [1])-int(datal[i] [1]) <1000 and
int(datal[i] [2])-int(data[i] [1]1)<10000 and
int(data[i+1] [2])-int(data[i+1] [1])<10000:

digraphs.append(di_temp)

di.append(di_temp)
user_profiles[name]=digraphs
#print (len(np.unique(digraphs)))

#total_di = np.unique(di)

alldi = dil[:]
total_di = np.unique(di)

total_di_temp = total_dil[:].tolist()

160

for key in total_di:
for user in user_profiles:
if key not in user_profiles[user]:
total_di_temp.remove (key)
break

total_di_shared = total_di_temp[:]
print (len(total_di_shared))

keysort = []
for key in total_di_shared:
keysort.append([alldi.count (key) ,key])

keysort = sorted(keysort ,key=(lambda x:x[0]),reverse=True)
#print (keysort)

data_compare=[]
for user in user_profiles:
data = user_profiles[user]
data_temp = []
for key in total_di_shared:
data_temp.append([data.count (key) ,key])
b = sorted(data_temp ,key=(lambda x:x[0]),reverse=True)
data_compare.append (np.array(b) .T[1] .T.tolist () [:100])
#print (user,b[:10])
#print (user,np.array(b).T[1].T.tolist()[:10])

print (reduce(np.intersectld, (data_compare)))
out = []
index = []
for key in keysort:
line = []
index.append (key[1])
for user in user_profiles:
t =
>%.1£°%(100*user_profiles[user] .count (key[1])/len(user_profiles[user]))+’%’
line.append(user_profiles[user].count(key[1]))
temp =[]
line.reverse()
line.append(np.sum(line))
line.reverse()
for i in range(len(line)):
#temp.append (’&’)
temp.append(line[i])

#temp.append (’\\\\’)
out .append (temp)
sums=[]
for i in np.array(out).T:

161

#print (i)
try:
sums . append (np.sum(i.astype(int)))
except:
print (’aaa’)
#sums.append (’&’)
#continue
#sums [-11="\\\\"
out .append (sums)
print (len(out))

print (pd.DataFrame(out,index=index+[’Total’]))
pd.DataFrame (out,index=index+[’Total’]) .to_csv(str(n)+’graphs_ks.csv’,header=True,index=True)

def segments():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’
users = os.listdir(path)

x,y,X,Y=[1,01,0,]
TL = []
users = os.listdir(path)
names = []
sumarry = []
for user in users:
file = path+user+’/’+user+’_keystroke_train.csv’
name = user.split(’_’)[0]
names . append (name)
with open(file,’r’,encoding="UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist()
out = []
temp=[]
the_data= []

for i in datal[l:]:
if len(temp) ==
temp.append (i)

else:
d=1i[3]
if int(i[2])-int(i[1])<10000 and int(i[2])-int(i[1])>0 and

d!=’’ and d!=’ArrowRight’ and d'!=’ArrowLeft’ and
d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and
’Volume’ not in d:
if int(i[1])-int(temp[-1][1]1)<1000:
temp.append (i)

else:

out.append (temp)
X.append (temp)

162

Y.append (name)
#sublength = sublength+len(temp)
temp=[]
temp.append (i)
sublength = [len(i) for i in out]
TL.append (sublength)
sumarry.append([len(out),’&’ ,np.min(sublength),’&’ ,np.max(sublength),’&’ ,np.round(np.mean(sublen
print
(name,len(out),len(out) ,np.min(sublength) ,np.max(sublength) ,np.mean(sublength) ,np.std(sublen

totallength = [len(i) for i in X]
plt.figure(figsize=(10, 6))

ax = sns.boxplot(data=TL)
ax.set_xticklabels (names)
plt.savefig(figure_pathl+’segments.png’)
plt.savefig(figure_path2+’segments.png’)

plt.show()
print (pd.DataFrame (sumarry,index=names))
print
(’Total:’,len(X),len(Y) ,np.min(totallength) ,np.max(totallength) ,np.mean(totallength) ,np.std(tot

def classifier_select(n=4):
train_path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’
users = os.listdir(train_path)

#frequently used keys: k_keys
f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZ’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,
’KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]
x=[]
y=[]
X=[]
¥=[]
for user in users[:]:
file = train_path+user+’/’+user+’_keystroke_train.csv’
name = user.split(’.csv’)[0]
with open(file,’r’,encoding=’"UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist()
out = []
temp=[]
the_data= []
for i in datal1:]:

163

if len(temp) ==
temp.append (i)
#print (0,i[3])

else:
d=i[3]
if int(i[2]1)-int(i[1]1)<10000 and int(i[2]1)-int(i[1]1)>0 and

d!=’’ and d!=’ArrowRight’ and d!=’ArrowLeft’ and
d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and
’Volume’ not in d:

if int(i[1])-int(temp[-1]1[1])<1000:
#if int(i[1])-int(temp[-1][1])<1000 and d in f_keys:

temp. append (i)

#print (’<1000’,i[3])
else:

out . append (temp)

X.append (temp)

Y. append (name)

temp=[]

temp.append (i)

print (len(X),len(Y))

labelencod=preprocessing.LabelEncoder() .fit (Y)
Y = labelencod.transform(Y)
X = np.array(X,dtype=object)

if not os.path.exists(newh_xgb):
os.makedirs (newh_xgb)

cross_val = StratifiedKFold(n_splits=10)

f1_scores = []

acc_scores = []

pres_scores= []

recall_scores = []

cms = []

i=1

start_xgb = time.time()

print (’Xgb cross validate starts’)

for train_index, test_index in cross_val.split(X,Y):

X_train, X_test X[train_index], X[test_index]
Y_train, Y_test = Y[train_index], Y[test_index]
#print (train_index)
#print (test_index)

x_train,x_test,y_train,y_test=[1,[],[],[]

164

for d,name in zip(X_train,Y_train):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []
uD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int (d[i+j] [2])-int (d[i+j][1]))
caps.append (tobi(d[i+j]1[-1]1))
shifts.append(tobi(d[i+j][-21))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int(d[c[1]+i] [11)-int (d[c[0]+i] [1]))
UU.append (int (d[c[1]+i] [2])-int(d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD.append(int (d[c[1]+i] [1]1)-int (d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
Xx_train.append(my_feature)
#x.append([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_train.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)

#print (’Training Data extraction completed’,len(y_train),’samples
involved’)

unwanted=[]

#x = np.delete(x,unwanted,axis=1)

#print (np.unique(y))

#labelencod = preprocessing.LabelEncoder().fit(y_train)

165

#y = labelencod.transform(y)

for d,name in zip(X_test,Y_test):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:

durations = []
DD = []

uu = []

DU = []

UD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j] [2])-int(d[i+j]1[1]))
caps.append(tobi(d[i+j][-11))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]1+i] [1]1)-int(d[c[0]+i] [11))
UU. append(int(d[c[1]+i] [2])-int(d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD.append(int (d[c[1]+i] [1])-int (d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]

x_test.append(my_feature)
#x.append([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_test.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)

#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)

#print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

166

unwanted=[]

x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)

clf_xgb =
XGBClassifier(eval_metric=’mlogloss’,tree_method=’gpu_hist’,use_label_encoder=False)

#clf_xgb = RandomForestClassifier()

clf_xgb.fit(x_train,y_train)

y_pred = clf_xgb.predict(x_test)

f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)

acc = accuracy_score(y_test,y_pred)

cm = confusion_matrix(y_test,y_pred)

pres =
precision_score(y_test,y_pred,average=’macro’,zero_division=0)

recall =
recall_score(y_test,y_pred,average=’macro’,zero_division=0)

pres_scores.append (pres)

recall_scores.append(recall)

f1_scores.append(£f1)

acc_scores.append(acc)

cms . append (cm.tolist())

pd.DataFrame(cm) .to_csv(newh_xgb+str(i)+’_cm.csv’,header=0,index=False)
i=i+1
result = np.sum(cms,axis=0)
t_used = time.time()-start_xgb
pd.DataFrame (result) .to_csv(newh_xgb+str(11)+’ _cm.csv’,header=0,index=False)
print (np.mean(f1_scores) ,np.std(f1_scores,ddof=1),t_used)
pd.DataFrame ([f1_scores,pres_scores,recall_scores,acc_scores]) .to_csv(newh_xgb+str(12)+’_report.csv

print (’Xgb cross validate completed. Time used:’,)

#random forest-------——-—-—-—-——————————— :
newh_rf =
’C:/Zhaoyi_Fan/Dataset/Combo/training/ks_classifier’+str(n)+’/RandomForest/’
if not os.path.exists(newh_rf):
os.makedirs (newh_rf)

cross_val = StratifiedKFold(n_splits=10)
f1_scores = []
acc_scores = []

167

pres_scores= []

recall_scores = []
cms = []
i=1

start_rf = time.time()

print (’Random forest cross validate starts’)

for train_index, test_index in cross_val.split(X,Y):
X_train, X_test = X[train_index], X[test_index]
Y_train, Y_test = Y[train_index], Y[test_index]

x_train,x_test,y_train,y_test=[1,[1,[],[]

for d,name in zip(X_train,Y_train):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []
uD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int (d[i+j] [2])-int (d[i+j][1]))
caps.append (tobi(d[i+j]1[-1]1))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [1]))
UU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD.append(int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
x_train.append(my_feature)
#x.append([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_train.append(name)

temp2=my_featurel[:]

168

temp2.append (name)
the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’ ,header=0,index=False)

#print (’Training Data extraction completed’,len(y_train),’samples
involved’)

unwanted=[]

#x = np.delete(x,unwanted,axis=1)

#print (np.unique(y))

#labelencod = preprocessing.LabelEncoder().fit(y_train)

#y = labelencod.transform(y)

for d,name in zip(X_test,Y_test):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:

durations = []
DD = []
uu = []
DU = []
UD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j] [2])-int(d[i+j]1[1]))
caps.append (tobi(d[i+j][-11))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]1+i] [1]1)-int(d[c[0]+i] [1]))
UU. append (int (d[c[1]+i] [2])-int(d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD.append(int (d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]

169

x_test.append(my_feature)

#x.append ([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_test.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)

#print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

unwanted=[]

x_train = np.array(x_train).astype(float)
y_train = np.array(y_train)

x_test = np.array(x_test).astype(float)
y_test = np.array(y_test)

clf_rf = RandomForestClassifier()
try:

clf _rf.fit(x_train,y_train)
except:

for xx in x_train:

if np.isnan(xx).any(Q):
print (xx)
print (np.isnan(x_train).any())

y_pred = clf_rf.predict(x_test)

f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)

acc = accuracy_score(y_test,y_pred)

cm = confusion_matrix(y_test,y_pred)

pres =
precision_score(y_test,y_pred,average=’macro’,zero_division=0)

recall =
recall_score(y_test,y_pred,average='macro’,zero_division=0)

pres_scores.append (pres)

recall_scores.append(recall)

f1_scores.append(f1)
acc_scores.append(acc)
cms.append (cm.tolist())

pd.DataFrame(cm) .to_csv(newh_rf+str(i)+’_cm.csv’ ,header=0,index=False)
i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_rf+str(11)+’_cm.csv’ ,header=0,index=False)
pd.DataFrame ([f1_scores,pres_scores,recall_scores,acc_scores]).to_csv(newh_rf+str(12)+’ _report.csv’
print (np.mean(f1_scores) ,np.std(f1_scores,ddof=1))

170

print (’Random forest cross validate completed. Time
used:’ ,time.time()-start_rf, [f1_scores,pres_scores,recall_scores,acc_scores])

#print (cm)

#SVM linearSVC OvR---—---------"-"---—-—-mm :

newh_linearSVC =
’C:/Zhaoyi_Fan/Dataset/Combo/training/ks_classifier’+str(n)+’/linearSVC/’
if not os.path.exists(newh_linearSVC):
os.makedirs (newh_linearSVC)
cross_val = StratifiedKFold(n_splits=10)
f1_scores 1
acc_scores = []
pres_scores= []

recall_scores = []
cms = []
i=1

start_linearSVC = time.time()

print (’linearSVC cross validate starts’)

for train_index, test_index in cross_val.split(X,Y):
X_train, X_test = X[train_index], X[test_index]
Y_train, Y_test = Y[train_index], Y[test_index]

x_train,x_test,y_train,y_test=[1,[1,[],[]

for d,name in zip(X_train,Y_train):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int (d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []
UuD = [1
caps=[]
shifts=[]

for j in range(n):
durations.append(int (d[i+j] [2])-int (d[i+j][1]))
caps.append (tobi(d[i+j]1[-11))
shifts.append(tobi(d[i+j][-2]))

171

combo = list(combinations(np.arange(n),2))
for c in combo:

DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [1]))
UU. append(int(d[c[1]+i] [2])-int(d[c[0]+i][2]))
DU.append (int (d[c[1]1+i] [2])-int(d[c[0]+i] [11))
UD.append(int (d[c[1]+i] [1])-int (d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
x_train.append(my_feature)
#x.append([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_train.append (name)

temp2=my_featurel[:]

temp2.append (name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’ ,header=0,index=False)

#print (’Training Data extraction completed’,len(y_train),’samples
involved’)
unwanted=[]

#y_train = labelencod.transform(y_train)

for d,name in zip(X_test,Y_test):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int (d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []
UuD = [1
caps=[]
shifts=[]

for j in range(n):
durations.append(int (d[i+j] [2])-int (d[i+j][1]))
caps.append (tobi(d[i+j]1[-11))
shifts.append(tobi(d[i+j][-2]))

172

combo = list(combinations(np.arange(n),2))
for c in combo:

DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [1]))
UU. append(int(d[c[1]+i] [2])-int(d[c[0]+i][2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]1))
UD.append(int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]

x_test.append(my_feature)
#x.append([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_test.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’ ,header=0,index=False)

#print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

unwanted=[]

x_train = np.array(x_train).astype(float)
y_train = np.array(y_train)

x_test = np.array(x_test).astype(float)
y_test = np.array(y_test)

x_train = preprocessing.StandardScaler().fit_transform(x_train)
x_test = preprocessing.StandardScaler().fit_transform(x_test)

#clf_linearSVC =
XGBClassifier(eval_metric=’mlogloss’,tree_method=’gpu_hist’,use_label_encoder=False)

clf_linearSVC = LinearSVC()

clf_linearSVC.fit(x_train,y_train)

y_pred = clf_linearSVC.predict(x_test)

f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)

acc = accuracy_score(y_test,y_pred)

cm = confusion_matrix(y_test,y_pred)

pres =
precision_score(y_test,y_pred,average=’macro’,zero_division=0)

recall =
recall_score(y_test,y_pred,average=’macro’,zero_division=0)

pres_scores.append (pres)

recall_scores.append(recall)

f1_scores.append(£f1)

acc_scores.append(acc)

173

cms.append(cm.tolist())

pd.DataFrame(cm) .to_csv(newh_linearSVC+str(i)+’_cm.csv’ ,header=0,index=False)

i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_linearSVC+str(11)+’ _cm.csv’ ,header=0,index=False)
pd.DataFrame ([f1_scores,pres_scores,recall_scores,acc_scores]).to_csv(newh_linearSVC+str(12)+’ _repo
print (np.mean(f1_scores),np.std(f1_scores,ddof=1))
print (’LinearSVC cross validate completed. Time

used:’,time.time()-start_linearSVC, [f1_scores,pres_scores,recall_scores,acc_scores])

#SVM SVC with linear OvO0--—--—----—--—--——————————— :

newh_SVClin =
’C:/Zhaoyi_Fan/Dataset/Combo/training/ks_classifier’+str(n)+’/SVClin/’

if not os.path.exists(newh_SVClin):
os.makedirs(newh_SVClin)

cross_val = StratifiedKFold(n_splits=10)

f1_scores = []

acc_scores = []

pres_scores= []

recall_scores = []

cms = []

i=1

start_SVClin = time.time()

print (’SVClin cross validate starts’)

for train_index, test_index in cross_val.split(X,Y):
X_train, X_test = X[train_index], X[test_index]
Y_train, Y_test = Y[train_index], Y[test_index]

x_train,x_test,y_train,y_test=[1,[],[],[]

for d,name in zip(X_train,Y_train):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = []
DU = []
UD = [1]
caps=[]
shifts=[]

174

for j in range(n):
durations.append(int (d[i+j] [2])-int (d[i+j][1]1))
caps.append (tobi(d[i+j]1[-1]1))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int(d[c[1]1+i] [11)-int(d[c[0]+i] [1]))
UU.append(int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [11))
UD.append(int (d[c[1]+i] [1])-int (d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
Xx_train.append(my_feature)
#x.append ([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_train.append (name)
temp2=my_featurel[:]
temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)

#print (’Training Data extraction completed’,len(y_train),’samples
involved’)

unwanted=[]

#x = np.delete(x,unwanted,axis=1)

#print (np.unique(y))

#labelencod = preprocessing.LabelEncoder().fit(y_train)

#y = labelencod.transform(y)
#y_train = labelencod.transform(y_train)

for d,name in zip(X_test,Y_test):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []

175

uD = []

caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j] [2])-int(d[i+j]1[1]))
caps.append (tobi(d[i+j][-1]))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int(d[c[0]+i] [11))
UU.append(int (d[c[1]1+i] [2])-int (d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]+i] [1])-int(d[c[0]+i][2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]

x_test.append (my_feature)

#x.append ([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_test.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)

#print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

unwanted=[]

x_train = np.array(x_train).astype(float)
y_train = np.array(y_train)

x_test = np.array(x_test) .astype(float)
y_test = np.array(y_test)

x_train = preprocessing.StandardScaler().fit_transform(x_train)
x_test = preprocessing.StandardScaler().fit_transform(x_test)

#clf_linear =
XGBClassifier(eval_metric=’mlogloss’,tree_method=’gpu_hist’,use_label_encoder=False)

clf_SVClin = SVC(kernel=’linear’)

clf_SVClin.fit(x_train,y_train)

y_pred = clf_SVClin.predict(x_test)

f1 = fl_score(y_test,y_pred,average=’macro’,zero_division=0)

176

acc = accuracy_score(y_test,y_pred)

cm = confusion_matrix(y_test,y_pred)

pres =
precision_score(y_test,y_pred,average=’macro’,zero_division=0)

recall =
recall_score(y_test,y_pred,average="macro’,zero_division=0)

pres_scores.append(pres)

recall_scores.append(recall)

f1_scores.append(f1)

acc_scores.append(acc)

cms . append (cm.tolist())

pd.DataFrame(cm) .to_csv(newh_SVClin+str(i)+’ _cm.csv’,header=0, index=False)

i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_SVClin+str(11)+’ _cm.csv’,header=0, index=False)
pd.DataFrame ([f1_scores,pres_scores,recall_scores,acc_scores]) .to_csv(newh_SVClin+str (12)+’_report.
print (np.mean(fl_scores) ,np.std(f1_scores,ddof=1))
print (’SVClin cross validate completed. Time

used:’,time.time()-start_SVClin, [f1_scores,pres_scores,recall_scores,acc_scores])

#3SVM SVC with rbf Ov0---—---—---"-"""—""—————— :
newh_SVCrbf =
’C:/Zhaoyi_Fan/Dataset/Combo/training/ks_classifier’+str(n)+’/SVCrbf/’

if not os.path.exists(newh_SVCrbf):
os.makedirs (newh_SVCrbf)

cross_val = StratifiedKFold(n_splits=10)

f1_scores 1

acc_scores = []

pres_scores= []

recall_scores = []

cms = []

i=1

start_SVCrbf = time.time()

print (’SVCrbf cross validate starts’)

for train_index, test_index in cross_val.split(X,Y):
X_train, X_test = X[train_index], X[test_index]
Y_train, Y_test = Y[train_index], Y[test_index]

x_train,x_test,y_train,y_test=[1,[]1,[],[]

for d,name in zip(X_train,Y_train):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:

177

durations = []

DD = []
uu = []
DU = []
UD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int (d[i+j] [2])-int (d[i+j]1[1]))
caps.append (tobi(d[i+j]1[-1]1))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [11)-int (d[c[0]+i] [1]1))
UU.append (int (d[c[1]+i] [2])-int(d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD.append(int (d[c[1]+i] [1]1)-int (d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
x_train.append(my_feature)
#x.append ([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_train.append (name)
temp2=my_feature[:]
temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)

#print (’Training Data extraction completed’,len(y_train),’samples
involved’)

unwanted=[]

#x = np.delete(x,unwanted,axis=1)

#print (np.unique(y))

#labelencod = preprocessing.LabelEncoder().fit(y_train)

#y = labelencod.transform(y)
#x_train = np.delete(x_train,unwanted,axis=1)
#y_train = labelencod.transform(y_train)

for d,name in zip(X_test,Y_test):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):

178

boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = []
DU = []
uD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int (d[i+j][2])-int(d[i+j][1]))
caps.append(tobi(d[i+j][-11))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int(d[c[0]+i] [11))
UU.append(int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]+i] [1])-int(d[c[0]+i][2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]

x_test.append (my_feature)

#x.append ([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_test.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)

#print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

unwanted=[]
x_train = np.array(x_train).astype(float)
y_train = np.array(y_train)

x_test = np.array(x_test).astype(float)
y_test = np.array(y_test)

179

x_train = preprocessing.StandardScaler().fit_transform(x_train)

x_test = preprocessing.StandardScaler().fit_transform(x_test)

#y_test = labelencod.transform(y_test)

#clf_linear =
XGBClassifier(eval_metric=’mlogloss’,tree_method=’gpu_hist’,use_label_encoder=False)

clf_SVCrbf = SVC(kernel=’rbf’)

clf_SVCrbf.fit(x_train,y_train)

y_pred = clf_SVCrbf.predict(x_test)

f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)

acc = accuracy_score(y_test,y_pred)

cm = confusion_matrix(y_test,y_pred)

pres =
precision_score(y_test,y_pred,average=’macro’,zero_division=0)

recall =
recall_score(y_test,y_pred,average=’macro’,zero_division=0)

pres_scores.append (pres)

recall_scores.append(recall)

f1_scores.append(f1)
acc_scores.append(acc)
cms . append(cm.tolist())

pd.DataFrame(cm) .to_csv(newh_SVCrbf+str(i)+’ _cm.csv’,header=0, index=False)

i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_SVCrbf+str(11)+’ _cm.csv’,header=0,index=False)
pd.DataFrame ([f1_scores,pres_scores,recall_scores,acc_scores]) .to_csv(newh_SVCrbf+str(12)+’_report.
print (np.mean(f1_scores) ,np.std(f1_scores,ddof=1))
print (’SVCrbf cross validate completed. Time

used:’,time.time()-start_SVCrbf, [f1_scores,pres_scores,recall_scores,acc_scores])

def hyper_parameters(n=4):
train_path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’

users = os.listdir(train_path)

#frequently used keys: k_keys

f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZ’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,
’KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]

x=[]

y=[]

X=[]

¥=[1

for user in users[:]:

180

file = train_path+user+’/’+user+’_keystroke_train.csv’
name = user.split(’.csv’)[0]

with open(file,’r’,encoding="UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist()
out = []
temp=[]
the_data= []
for i in datal[1:]:

if len(temp) ==
temp.append (i)
#print (0,i[3])

else:
d=i[3]
if int(i[2])-int(i[1]1)<10000 and int(i[2])-int(i[1])>0 and

d!=’’ and d!=’ArrowRight’ and d!=’ArrowLeft’ and
d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and
’Volume’ not in d:

if int(i[1])-int(temp[-1]1[1]1)<1000:
#if int(i[1])-int(temp[-1][1])<1000 and d in f_keys:

temp.append (i)

#print (’<1000°,i[3])
else:

out.append (temp)

X.append (temp)

Y.append (name)

temp=[]

temp.append (i)

print (len(X),len(Y))

labelencod=preprocessing.LabelEncoder () .fit (Y)
Y = labelencod.transform(Y)

= np.array(X,dtype=object)

params =[]
#0.2 600,4,3,
for learning_rate in [0.1,0.2,0.3]:

for n_estimators in [400,500,600]:
for max_depth in [3,4,5,6]:
for min_child_weight in [3,4,5,6]:
cv_params = {

’learning_rate’: learning_rate,
‘n_estimators’: n_estimators,
’max_depth’: max_depth,
’min_child_weight’: min_child_weight,
’objective’: ’multi:softprob’,

181

’use_label_encoder’: False,

’eval_metric’: ’mlogloss’,
’tree_method’: ’gpu_hist’,
}

params . append (cv_params)
final_report=[]

for cv_parmas in params:
try:
subpath =
str(cv_parmas[’learning_rate’]*10)+’_’+str(cv_parmas[’n_estimators’])+’_’+str(cv_parmas[’:
except:
print (cv_parmas)

newh_xgb =
’C:/Zhaoyi_Fan/Dataset/Combo/training/ks_hyper_parameters_’+str(n)+’/XGB/GridSearchCV/’ +subp
if not os.path.exists(newh_xgb):
os.makedirs (newh_xgb)

cross_val = StratifiedKFold(n_splits=10)

f1_scores = []
acc_scores = []
cms = []

i=1

start_xgb = time.time()
print (’Xgb cross validate starts’)
for train_index, test_index in cross_val.split(X,Y):

X_train, X_test = X[train_index], X[test_index]
Y_train, Y_test = Y[train_index], Y[test_index]
#print (train_index)
#print (test_index)

x_train,x_test,y_train,y_test=[1,[1,0,0

for d,name in zip(X_train,Y_train):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False

if boolean:

durations = []
DD = []
uu = []
DU = []

182

uD = []

caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j] [2])-int(d[i+j]1[1]))
caps.append (tobi(d[i+j][-1]))
shifts.append(tobi(d[i+j][-2]1))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int(d[c[0]+i] [11))
UU.append(int (d[c[1]1+i] [2])-int (d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]+i] [1])-int(d[c[0]+i][2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
x_train.append (my_feature)
y_train.append (name)

for d,name in zip(X_test,Y_test):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:

durations = []
DD = []
uu = (1
DU = []
uD = [1]
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j] [2])-int(d[i+j]1[1]))
caps.append (tobi(d[i+j] [-1]))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

183

DD.append (int(d[c[1]+i] [1]1)-int (d[c[0]+i] [1]))
UU. append (int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]1+i] [1])-int(d[c[0]+i][2]))

c = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
x_test.append(my_feature)
y_test.append(name)

unwanted=[]

x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)

clf_xgb = XGBClassifier (**cv_parmas)

#clf_xgb = RandomForestClassifier()
clf_xgb.fit(x_train,y_train)

y_pred = clf_xgb.predict(x_test)

f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)
acc = accuracy_score(y_test,y_pred)

cm = confusion_matrix(y_test,y_pred)

f1_scores.append(f1)
acc_scores.append(acc)
cms . append(cm.tolist())

pd.DataFrame(cm) .to_csv(newh_xgb+str(i)+’_cm.csv’,header=0,index=False)
i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_xgb+str(11)+’_cm.csv’,header=0,index=False)
pd.DataFrame ([f1_scores,acc_scores]) .to_csv(newh_xgb+str(12)+’ _report.csv’,header=0, index=False)
f1_mean = np.mean(fl_scores)
f1_std = np.std(fl_scores,ddof=1)
print (np.mean(fl_scores),np.std(fl_scores,ddof=1))
print (’Xgb cross validate completed. Time
used:’ ,np.round(time.time () -start_xgb,2),’ [learning rate:’,cv_parmas[’learning_rate’],’]
[n_estimators:’,cv_parmas[’n_estimators’],’]
[max_depth:’,cv_parmas[’max_depth’],’]
[min_child_weight:’,cv_parmas[’min_child_weight’],’]’)

final_report.append([cv_parmas[’learning rate’],cv_parmas[’n_estimators’],cv_parmas[’max_depth’]
col =
[’learning_rate’,’n_estimators’,’max_depth’,’min_child_weight’,’fl—macro—mean’,’fl—macro—std’]
pd.DataFrame(final_report,columns=col) .to_csv(’C:/Zhaoyi_Fan/Dataset/Combo/training/ks_hyper_parame

184

def train_n_testvesion(n=4):
path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’
feat_path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/features/’
dest =
’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Keystroke/’+str(n)+’_graphs/XGB/’
if not os.path.exists(dest):
os.makedirs(dest)
print (dest,’created’)
newh = dest
users = os.listdir(feat_path)

#frequently used keys: k_keys
f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZ’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,
’KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]
x=[]
y=0[
X=01
Y=[1
for user in users[:]:
file = path+user+’/’+user+’_keystroke_train.csv’
name = user.split(’_’)[0]
with open(file,’r’,encoding=’UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist()
out = []
temp=[]
the_data= []
for i in datal1l:]:
if len(temp) ==
temp.append (i)
#print (0,i[3])

else:
d=i[3]
if int(i[2]1)-int(i[1]1)<10000 and int(i[2])-int(i[1])>0 and

d!=’’ and d!=’ArrowRight’ and d!=’ArrowLeft’ and
d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and
’Volume’ not in d:

if int(i[1])-int(temp[-1]1[1]1)<1000:
#if int(i[1])-int(temp[-1][1])<1000 and d in f_keys:

temp.append (i)

#print (’<1000’,i[3])
else:

out .append (temp)

185

X.append (temp)
Y. append (name)
temp=[]

temp.append (i)

print (len(X),len(Y))

X_train,X_test,Y_train,Y_test =
train_test_split(X,Y,test_size=0.2,stratify=Y,random_state=1)

x_train=[]
x_test=[]
y_train=[]
y_test=[]

#for sample_set in
[[X_train,Y_train,x_train,y_train], [X_test,Y_test,x_test,y_test]l]:
for d,name in zip(X_train,Y_train):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = []
DU = []
U = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j][2])-int(d[i+j][1]1))
caps.append(tobi(d[i+j]1[-11))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [11))
UU.append(int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

186

my_feature=c[:]
Xx_train.append (my_feature)
#x.append([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_train.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)

print (’Training Data extraction completed’,len(y_train),’samples
involved’)

unwanted=[]

#x = np.delete(x,unwanted,axis=1)

#print (np.unique(y))

labelencod = preprocessing.LabelEncoder().fit(y_train)

#y = labelencod.transform(y)
x_train = np.delete(x_train,unwanted,axis=1)
y_train = labelencod.transform(y_train)

for d,name in zip(X_test,Y_test):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:

durations = []
DD = []
uu =[]
DU = []
UD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j] [2])-int(d[i+j]1[1]))
caps.append (tobi(d[i+j][-1]))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int(d[c[1]+i] [1]1)-int (d[c[0]+i] [1]))
UU. append (int (d[c[1]+i] [2])-int(d[c[0]+i] [2]))

187

DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD.append (int (d[c[1]+i] [1]1)-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]

x_test.append(my_feature)

#x.append ([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_test.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)
print (’Testing Data extraction completed’,len(y_test),’samples

involved’)
unwanted=[]

x_test = np.delete(x_test,unwanted,axis=1)
y_test = labelencod.transform(y_test)

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:

print (’XGB fitting started’)

#cross_val = StratifiedKFold(n_splits=cvs)

clf =

XGBClassifier(objective=’multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=600,
max_depth = 5,min_child_weight=5,

)
#clf = 1gb.LGBMClassifier()
features_impts = []

myweights,mychanges = myweight(y_train)
print (myweights,mychanges)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf . fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)

188

pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()

pred_prob = np.array(pre_temp)

labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)

except Exception as e:
print (e)
#print (folder)
return ’bad’

myweights_total,mychanges=myweight (y)
theweights.append (myweights_total)

head = np.array(theweights[0].keys())

print (head)

#theads = labelencod.inverse_transform(head) .tolist ()
heads = names.tolist()

weights=pd.DataFrame (theweights)

weights = np.array(weights).tolist()
weights.insert(0,heads)

weights=pd.DataFrame (weights)

dic = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))
for i in list(labelset):
dic[il=[]
#dic2[i1=[]
for i in range(len(y_test)):
dic[y_test[i]].append(pred_prob[il])
pred_probtemp = []
y_testtemp = []
for i in dic:
#ypred=[]
#ytrue=[]
for j in dic[i]:
pred_probtemp.append(j)
y_testtemp.append(i)
#ypred.append(j.tolist().index(j.max()))
#ytrue.append (i)
#dic2[names[i]]=[ypred,ytruel

#everyone=[]

pred_prob = pred_probtempl[:]

189

y_test = y_testtempl[:]

probs =

pd.concat ([pd.DataFrame (pred_prob) ,pd.DataFrame(y_test)],axis=1)
probs.to_csv(dest+’ks_probabilities.Csv’,header=0,index=False)

outs = []
f1_micro=[]
f1_macro=[]

precision_micro=[]
precision_macro=[]

recall_micro=[]
recall_macro=[]
times = []

accuracy = []
rpt = []
fis = []

for i in range(1,32,1):

y_pred = []
y_true = []

for j in range(len(y_test)-i+1):
if y_test[jl==y_test[j+i-1]:
#y_pred_byprob=sum(np.array(pred_prob[j:j+il) ,axis=0)
y_pred_byprob=sum(np.array(pred_prob[j:j+il) ,axis=0)
y_pred.append(y_pred_byprob.tolist() .index(y_pred_byprob.max()))

y_true.append(y_test[jl)

#y_true = labelencod.inverse_transform(y_true)
#y_pred = labelencod.inverse_transform(y_pred)

outs.append ([

#°%.2£%(f1_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’%(f1_score(y_true,y_pred,average=’macro’,zero_division=0))),
float(’%.3f°%(f1_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P

>

#°%.2f % (precision_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’% (precision_score(y_true,y_pred,average="macro’,zero_division=0))),
float(’%.3f % (precision_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

#°%.2f% (recall_score(y_true,y_pred,average="micro’)*100),
float (’%.3f’%(recall_score(y_true,y_pred,average=’"macro’,zero_division=0))),
float(’%.3f’%(recall_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

float(’%.3f’%(accuracy_score(y_true,y_pred))),

D

f1s.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0))

190

f1_micro.append(f1_score(y_true,y_pred,average=’'micro’,zero_division=0)*100)

f1_macro.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)

precision_micro.append(precision_score(y_true,y_pred,average=’micro’,zero_division=0)*100)

precision_macro.append(precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)

recall_micro.append(recall_score(y_true,y_pred,average=’micro’,zero_division=0)*100)

recall_macro.append(recall_score(y_true,y_pred,average='macro’,zero_division=0)*100)

accuracy.append (accuracy_score(y_true,y_pred)*100)

times.append (i)

#newh = ’C:/Workspace/Python/mouse
sets/Bogazici/browsing/combined_Train_Legallnternal/final_results_cv/3_timesIQR/0+/’+catat’/

if i==1:
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
rpt = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (rpt) .T.to_csv(newh+str(i)+’/’+str(i)+’ks_classification_report.csv’,header=0, inde
print (classification_report(y_true,y_pred))
print (labelencod.inverse_transform(clf.classes_))

if (i+4)/5==int((i+4)/5):
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
cm_old = confusion_matrix(y_true, y_pred)
cm = np.array(pd.DataFrame(cm_old)) .tolist()
cm_=[]
for k in cm:
temp=[]
for j in k:
temp.append (float(’%.1£°%(100*j/sum(k))))
cm_.append (temp)
cm =mat (cm_.copy())

report = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+str(i)+’/’+str(i)+’ks_classification_report.csv’,header=0,:

plt.figure(l,figsize=(10.24,8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues,include_values=False,ax=axl)
plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm.png’)

plt.clf()

plt.figure(3,figsize=(10.24,8))

ax3 = plt.axes()

disp3 =
ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=heads)

disp3.plot (cmap=plt.cm.Blues,include_values=True,ax=ax3)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm_newnew.png’)

191

plt.clf()

plt.figure(4,figsize=(10.24,8))

ax4 = plt.axes()

disp4 =
ConfusionMatrixDisplay(confusion_matrix=cm_old,display_labels=heads)

disp4.plot(cmap=plt.cm.Blues,include_values=True,ax=ax4)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm_newnewnew.png’)

plt.clfO)

#np.set_printoptions(precision=2)

cm_normalized = confusion_matrix(y_true,
y_pred,normalize=’true’)

cm_n = mat(np.round(cm_normalized,3))

plt.figure(5,figsize=(10.24,8))

axb = plt.axes()

dispb =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

dispb.plot(cmap=plt.cm.Blues,include_values=True,ax=ax5)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm_newnewnew2.png’)

plt.clf ()

#np.set_printoptions(precision=2)

cm_normalized2 = confusion_matrix(y_true,
y_pred,normalize=’pred’)

cm_n = mat(np.round(cm_normalized?2,3))

plt.figure(6,figsize=(10.24,8))

ax6 = plt.axes()

disp6 =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

disp6.plot (cmap=plt.cm.Blues,include_values=True,ax=ax6)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm_newnewnew3.png’)

plt.clf()

print (pd.DataFrame(outs))

plt.figure(33,figsize=(10.24,8))

ax2 = plt.axes()
plot_importance(clf,ax=ax2,importance_type=’gain’)
plt.savefig(newh+’ks_FI.png’)

plt.clf()

print (featurescore)

plt.show()

plt.figure(34,figsize=(10.24,8))
#print (f1_macro,np.min(f1_macro))
#print

192

(int (np.min([np.min(f1_macro) ,np.min(precision_macro) ,np.min(recall_macro) ,np.min(accuracy)])))
myyticks = [i for i in range(0,100,5)]
myxticks = [i for i in range(1,31,1)]
plt.yticks(myyticks)
#plt.xticks (myxticks)
plt.plot(times,fl_macro,label=’f1_macro’)
#plt.plot(times,f1_micro,label="f1_micro’)
plt.plot(times,precision_macro,label=’precision_macro’)
#plt.plot(times,precision_micro,label=’precision_micro’)
plt.plot(times,recall_macro,label=’recall_macro’)
#plt.plot(times,recall_micro,label="recall_micro’)
plt.plot(times,accuracy,label=’accuracy’)
plt.legend()
plt.grid()

pd.DataFrame (outs) . to_csv(newh+’ks_30times.csv’ ,header=0,index=False)

#return fls
plt.savefig(newh+’ks_overall.png’)
plt.clfO

print (type(rpt).__name__)
#plot_importance(clf)

#plt.show()

return [fls,pd.DataFrame(outs) ,probs]

def testingset_basedon_features(n=4):
train_path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/features/’
test_path = ’C:/Zhaoyi_Fan/Dataset/Combo/testing/features/’
dest =
’C:/Zhaoyi_Fan/Dataset/Combo/testing/results/’+str(n)+’ _graphs/XGB/’
if not os.path.exists(dest):
os.makedirs(dest)
print (dest,’created’)

newh = dest
users = os.listdir(train_path)

#frequently used keys: k_keys

f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZ’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,
’KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]

x_train=[]

x_test=[]

y_train=[]

y_test=[]

193

unwanted=[]
for user in users[:]:
#training set:
file = train_path+user+’/’+user+’_keystroke_train_features.csv’
with open(file,’r’,encoding=’"UTF-8’) as f:
df = np.array(pd.DataFrame(csv.reader(f)).iloc[:,:-1])
data = np.array(df,dtype=np.float64)
for i in data:
x_train.append(i)
y_train.append(user)

#testing set:
file = test_patht+user+’/’+user+’_keystroke_test_features.csv’
with open(file,’r’,encoding=’"UTF-8’) as f:
df = np.array(pd.DataFrame(csv.reader(f)).iloc[:,:-1])
data = np.array(df,dtype=np.float64)
for i in data:
x_test.append (i)
y_test.append(user)

print (’Training Data extraction completed’,len(y_train),’samples
involved’)

print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

labelencod = preprocessing.LabelEncoder().fit(y_train)

x_train = np.delete(x_train,unwanted,axis=1)

x_test = np.delete(x_test,unwanted,axis=1)

y_train = labelencod.transform(y_train)
y_test = labelencod.transform(y_test)

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:

print (’XGB fitting started’)

#cross_val = StratifiedKFold(n_splits=cvs)

clf =

XGBClassifier(objective=’multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=600,
max_depth = 5,min_child_weight=5,

)
#clf = 1gb.LGBMClassifier()
features_impts = []

194

myweights,mychanges = myweight (y_train)
print (myweights,mychanges)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf . fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()

pred_prob = np.array(pre_temp)

labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)

except Exception as e:
print (e)
#print (folder)
return ’bad’

myweights_total,mychanges=myweight (y)

theweights.append(myweights_total)

head = np.array(theweights[0].keys())

print (head)

#heads = labelencod.inverse_transform(head).tolist()
heads = names.tolist()

weights=pd.DataFrame(theweights)

weights = np.array(weights).tolist()

weights.insert(0,heads)

weights=pd.DataFrame(weights)

dic = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))
for i in list(labelset):
dic[il=[]
#dic2[i1=[]
for i in range(len(y_test)):
dic[y_test[i]l].append(pred_prob[il)
pred_probtemp = []
y_testtemp = []
for i in dic:
#ypred=[]
#ytrue=[]
for j in dicl[il:
pred_probtemp.append(j)

195

y_testtemp.append(i)

#ypred.append(j.tolist().index(j.max()))

#ytrue.append (i)
#dic2[names[i]]=[ypred,ytruel

#everyone=[]

pred_prob = pred_probtempl[:]
y_test = y_testtempl[:]

probs =
pd.concat ([pd.DataFrame (pred_prob) ,pd.DataFrame(y_test)],axis=1)
probs.to_csv(dest+’ks_test_probabilities_S.csv’,header=0,index=False)

outs = []
f1_micro=[]
f1_macro=[]

precision_micro=[]
precision_macro=[]

recall_micro=[]
recall_macro=[]
times = []

accuracy = []
rpt = []
fis = []

for i in range(1,32,1):

y_pred = []

y_true = []

for j in range(len(y_test)-i+1):

if y_test[jl==y_test[j+i-1]:

#y_pred_byprob=sum(np.array(pred_prob[j:j+i]) ,axis=0)
y_pred_byprob=sum(np.array(pred_prob[j:j+i]) ,axis=0)
y_pred.append(y_pred_byprob.tolist() .index(y_pred_byprob.max()))
y_true.append(y_test[j])

#y_true = labelencod.inverse_transform(y_true)

#y_pred = labelencod.inverse_transform(y_pred)

outs.append ([
#°%.2f%(f1_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’%(f1_score(y_true,y_pred,average=’macro’,zero_division=0))),

float(’%.3f’%(f1_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P

#°%.2f % (precision_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’% (precision_score(y_true,y_pred,average="macro’,zero_division=0))),

196

float (’%.3f % (precision_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

#°%.2f % (recall_score(y_true,y_pred,average="micro’)*100),
float (’%.3f’%(recall_score(y_true,y_pred,average="macro’,zero_division=0))),
float(’%.3f’%(recall_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P

>

float (’%.3f’%(accuracy_score(y_true,y_pred))),

ID)
f1s.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
f1_micro.append(f1_score(y_true,y_pred,average=’'micro’,zero_division=0)*100)
f1_macro.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
precision_micro.append(precision_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
precision_macro.append(precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
recall_micro.append(recall_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
recall_macro.append(recall_score(y_true,y_pred,average='macro’,zero_division=0)*100)
accuracy.append (accuracy_score(y_true,y_pred)*100)
times.append (i)

if i==1:
if not os.path.exists(newh+str(i)+’/’):
os.makedirs(newh+str(i)+’/’)
rpt = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (rpt) .T.to_csv(newh+str(i)+’/’+str(i)+’ks_test_classification_report.csv’,header=(
print (classification_report(y_true,y_pred))
print (labelencod.inverse_transform(clf.classes_))

if (i+4)/5==int((i+4)/5):
if not os.path.exists(newh+str(i)+’/’):
os.makedirs(newh+str(i)+’/’)
cm_old = confusion_matrix(y_true, y_pred)
cm = np.array(pd.DataFrame(cm_old)) .tolist()

cm_=[]
for k in cm:
temp=[]

for j in k:
temp.append(float (’%.1f°%(100%j/sum(k))))
cm_. append (temp)
cm =mat (cm_.copy())

report = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+str(i)+’/’+str(i)+’ks_test__classification_report.csv’ heac

plt.figure(1,figsize=(10.24,8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues,include_values=False,ax=axl)
plt.savefig(newh+str(i)+’/’+str(i)+’ks_test__cm.png’)
plt.clfQ)

197

plt.figure(3,figsize=(10.24,8))

ax3 = plt.axes()

disp3 =
ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=heads)

disp3.plot(cmap=plt.cm.Blues,include_values=True,ax=ax3)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_test__cm_newnew.png’)

plt.clf ()

plt.figure(4,figsize=(10.24,8))

ax4 = plt.axes()

disp4 =
ConfusionMatrixDisplay(confusion_matrix=cm_old,display_labels=heads)

disp4.plot(cmap=plt.cm.Blues,include_values=True,ax=ax4)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_test__cm_newnewnew.png’)

plt.clf()

#np.set_printoptions(precision=2)

cm_normalized = confusion_matrix(y_true,
y_pred,normalize=’true’)

cm_n = mat(np.round(cm_normalized,3))

plt.figure(5,figsize=(10.24,8))

axb = plt.axes()

dispb =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

disp5.plot (cmap=plt.cm.Blues,include_values=True,ax=ax5)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_test__cm_newnewnew2.png’)

plt.clf()

#np.set_printoptions(precision=2)

cm_normalized2 = confusion_matrix(y_true,
y_pred,normalize=’pred’)

cm_n = mat(np.round(cm_normalized2,3))

plt.figure(6,figsize=(10.24,8))

ax6 = plt.axes()

disp6 =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

disp6.plot (cmap=plt.cm.Blues,include_values=True,ax=ax6)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_test__cm_newnewnew3.png’)

plt.clf()

print (pd.DataFrame(outs))

plt.figure(33,figsize=(10.24,8))

ax2 = plt.axes()
plot_importance(clf,ax=ax2,importance_type=’gain’)
plt.savefig(newh+’ks_test_FI.png’)

plt.clf()

198

print (featurescore)
plt.show()

plt.figure(34,figsize=(10.24,8))
#print (f1_macro,np.min(f1_macro))
#print

(int (np.min([np.min(f1_macro) ,np.min(precision_macro) ,np.min(recall_macro) ,np.min(accuracy)])))
myyticks = [i for i in range(0,100,5)]
myxticks = [1i for i in range(1,31,1)]
plt.yticks(myyticks)
#plt.xticks (myxticks)
plt.plot(times,f1_macro,label="f1_macro’)
#plt.plot(times,f1_micro,label="f1_micro’)
plt.plot(times,precision_macro,label=’precision_macro’)
#plt.plot(times,precision_micro,label=’precision_micro’)
plt.plot(times,recall_macro,1abel=’recall_macro’)
#plt.plot(times,recall_micro,label="recall_micro’)
plt.plot(times,accuracy,label=’accuracy’)
plt.legend()
plt.grid()

pd.DataFrame (outs) .to_csv(newh+’ks_test_30times.csv’,header=0, index=False)

#return fls
plt.savefig(newh+’ks_test_overall.png’)
plt.clf()

def n_graph_1to30(n=4):

for n_graphs in range(2,16,1):
f1_scores = train_n_testvesion(n_graphs) [0]
#
pd.DataFrame (f1_scores) .to_csv(’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Keystroke/’+str (n)

pd.DataFrame (f1_scores).to_csv(’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Keystroke/n_graphs

path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Keystroke/’
plt.figure(figsize=(10,6))
for i in range(2,16,1):

file = path+str(i)+’_graphs/XGB/ks_30times.csv’
with open(file,’r’,encoding=’"UTF-8’) as f:
df =
np.array(pd.DataFrame(csv.reader(£f)).iloc[:,1],dtype=np.float64) .tolist ()
plt.plot(np.arange(1,32,1),df,label=str(i)+’_graphs’)

plt.xlabel(’Samples number’)
plt.ylabel(’Fl-score’)

199

plt.title(’Performance on various n-graphs and samples sizes’)
plt.legend()

plt.grid(True)
plt.savefig(figure_pathl+’n_graphs_comparison.png’)
plt.savefig(figure_path2+’n_graphs_comparison.png’)

plt.show()

def get_testingset_size():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/testing/samples/’
users = os.listdir(path)
total =0
for user in users:
with
open(path+user+’/’+user+’ _keystroke_test.csv’,’r’,encoding=’UTF-8’)
as f:
data = np.array(pd.DataFrame(csv.reader(£f)))
print (user,len(data))
total += len(data)
print (’total’,total)

def extractfeatures_keystroke_example():
path = ’C:/Zhaoyi_Fan/Dataset/’
dest = path
if not os.path.exists(dest):
os.makedirs(dest)
print (dest,’created’)

file = path+’keystroke_example.csv’
name = ’keystroke_example’

#frequently used keys: k_keys

f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZz’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,
’KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]

x=[]

y=0[

X=0]

Y=[]

with open(file,’r’,encoding=’"UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist()[1:]
out = []
temp=[]
the_data= []
for i in datal1:]:

200

if len(temp) ==
temp.append (i)
else:
d=i[3]
if int(i[2])-int(i[1])<10000 and int(i[2])-int(i[1])>0 and
d!=’’ and d!=’ArrowRight’ and d!=’ArrowLeft’ and
d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and
’Volume’ not in 4d:

if int(i[1])-int(temp[-1][1])<1000:
temp.append (i)
else:
out .append (temp)
X.append (temp)
Y.append (name)
temp=[]
temp.append (i)
n=4
for d,name in zip(X,Y):
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = []
DU = (]
U = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j][2])-int(d[i+j][1]1))
caps.append(tobi(d[i+j]1[-11))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))

for ¢ in combo:
DD.append (int(d[c[1]+i] [1]1)-int (d[c[0]+i] [1]))
UU. append (int (d[c[1]+i] [2])-int(d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD.append(int (d[c[1]+i] [1])-int (d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]

201

if

the_data.append (my_feature+[name])
pd.DataFrame (the_data) .to_csv(dest+’keystroke_example_features.csv’,header=0, index=False)

print (’data extraction completed’,len(the_data),’samples involved’)

__name__==’__main__":

#extractfeatures_keystroke_example() #extract keystroke features from
raw data

testingset_basedon_features() #get the classicication result on
testing set

#extractfeatures_keystroke()

#keystroke_raw_size()

#type_of _keycode ()
#Occurrence_of_frequently_used_keys_for_each_user()
#ngraphs_check(i)

#segments ()

#tclassifier_select ()

#hyper_parameters() #[0.3,600,5,5] as the best parameters
#train_n_testvesion()

#n_graph_1t030()
#get_testingset_size()

202

D.3.2 Python scripts for analysing mouse dynamics

List D.3.2 lists the Python scripts for mouse dynamics analysis used in Chapter

7.

import numpy
import sys
import csv

import

import math
from numpy import *

from time import time

import datetime

import matplotlib.pyplot as plt

from
from
from
from
from
from
from
from
from
from
from
from
from

sklearn
sklearn

sklearn.
sklearn.
sklearn.

sklearn

sklearn
sklearn

as np

pandas as pd

import preprocessing

import svm

datasets import load_iris
model_selection import train_test_split
multiclass import OneVsOneClassifier

.multiclass import OneVsRestClassifier
sklearn.
sklearn.
sklearn.

svm import LinearSVC
svm import SVC
ensemble import RandomForestClassifier

.model_selection import GridSearchCV

.model_selection import cross_val_score
sklearn.
sklearn.

neural_network import MLPClassifier
neighbors import KNeighborsClassifier

import random
import time
import sklearn

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

sklearn.
sklearn.

sklearn
sklearn

sklearn.
sklearn.
sklearn.

sklearn

sklearn
xgboost
xgboost

sklearn.
sklearn.
sklearn.

sklearn

preprocessing import OneHotEncoder
model_selection import KFold,StratifiedKFold

.metrics import make_scorer

import linear_model

metrics import r2_score

ensemble import BaggingRegressor
ensemble import RandomForestRegressor

.ensemble import AdaBoostRegressor
sklearn.
sklearn.

metrics import f1_score,precision_score,recall_score
metrics import accuracy_score

import tree

import XGBClassifier,plot_importance,DMatrix,cv
import XGBRegressor

ensemble import VotingClassifier

pipeline import Pipeline

model_selection import cross_val_predict

.metrics import confusion_matrix,ConfusionMatrixDisplay
sklearn.

metrics import classification_report

collections import Counter
import os

203

import string
from sklearn.utils import class_weight
from itertools import combinations

figure_pathl = ’C:/Zhaoyi_Fan/Figures/’
figure_path2 = ’C:/Zhaoyi_Fan/Latex/Figures/’

pd.set_option(’display.max_rows’,500)
pd.set_option(’display.max_columns’,500)
pd.set_option(’display.width’,1000)
pd.set_option(’max_colwidth’,1000)
np.set_printoptions (suppress=True)

f_names = [’points’,’gap’,’scurlpp’,’backward’,
’time’,’timepp’,’s/strai’,’widthmax_’,’width_min’,
’width-mean’,’width-std’,’vstrai’,’vcurl’,
’acc_mean’,’acc_std’,’angle_mean’,’angle_std’,
’squ/strai’, ’squ/scurl’,’durantion’,’distance’,
’scurl’,’sstrai’,’acc_max’,’acc_min’,
’angle_min’,’angle_max’,
’acc_ep_mean’,’acc_ep_std’,’acc_ep_min’,’acc_ep_max’,
’v_c_ep_mean’,’v_c_ep_std’,’v_c_ep_min’,’v_c_ep_max’,
’ac_c_ep_mean’,’ac_c_ep_std’,’ac_c_ep_min’,’ac_c_ep_max’,
’v_seg_mean’,’v_seg_std’,’v_seg_min’,’v_seg_max’,
’width/sstrai’,’width/scurl’,’width/time’,
’b_relative’,’b_both’,
’sin’,’cos’]

def myweight (y=arange(19)):
myweights = {}
for j in np.unique(y):
myweights[jl=len(y)/(y.tolist().count(j)*len(np.unique(y)))
try:
for i in mychanges:
myweights[i[0]]=myweights[i[0]]*i[1]
except:
mychanges=[]
return myweights,mychanges

class Mouse():
def __init__(self, file):
def re(data):

templ = []

temp2 = []

for i in data:
a =

(int (i [1] [1])**2+int (i [1] [2]) **2) **0.5-(int (i [0] [1]) **2+int (i [0] [2]) **2) *x0.
b = int(i[1] [3])-int(i[0] [3])

204

if

me

a<1l and b<2000:
templ.append (i)

temp2.append (int (i[1] [-1])-int (i [0] [-11))
#print (temp2)

me = np.mean(temp2)
if len(temp2)!=0:

= np.mean(temp2)

std = np.std(temp2,ddof=1)
if len(temp2)==0:

me = 0
std = 0
for i in templ:

if int(i[1][-11)-int (i [0] [-1])-me>3*std:

templ.remove (i)

return templ

try:

with open(file,’r’) as f:

data = np.array(pd.DataFrame(csv.reader(£f)))

except:

data = file

content

leftclic
rightcli
cmove=[]
cleft=[]
cright=[
cmiddle=
cscroll=
splt = [
stemp =

lctemp =
rctemp=[
countl =
count3 =

for line

=[]
K =

[
ck = [

]

]
0]
(]
]
0]

0]
]

0 #number of ’1’--left click down

0

in data:

if line[0]=="TYPE’:
continue

line =

m

ove

stemp.append(line)
lctemp.append(line)
line[0]==1: #click down

if

lctemp=[]
lctemp.append(line)
countl=counti+1

[int(j) for j in line]
if 1ine[0]==0 or line[0]==1 or line[0]==2:

205

#click down up,

if 1ine[0]==2: #click up

if countl==1:
leftclick.append(lctemp)
splt.append(stemp)
stemp=[]
lctemp=[]
count1=0

else:
stemp=[]
lctemp=[]
count1=0

if line[0] != 8:
content.append(line)
if line[0]==0:
cmove. append (line)

if 1line[0]==0 or 1line[0]==3 or line[0]==4:
rctemp.append(line)
if 1ine[0]==3:
rctemp=[]
rctemp.append(line)
count3=count3+1
if 1line[0]==4:
if count3==1:
rightclick.append(rctemp)
rctemp=[]
count3=0
else:
rctemp=[]
count3=0

if line[0]==1 or line[0]==2:
if len(cleft)!=0 and line[0]==cleft[-1][0]:
cleft.pop()
cleft.append(line)
else:
cleft.append(line)
if line[0]==3 or line[0]==4:
if len(cright)!=0 and line[0]==cright[-1][0]:
cright.pop()
cright.append(line)
else:
cright.append(line)
if line[0]==5 or line[0]==6:
if len(cmiddle)!=0 and line[0]==cmiddle[-1][0]:
cmiddle.pop()
cmiddle.append(line)
else:
cmiddle.append(line)

206

if line[0]==7:
cscroll.append(line)
self.splt=splt
self.leftclick = leftclick
self.rightclick = rightclick

L=[]

for i in range(0,len(cleft)-1,2):
temp = [cleft[i],cleft[i+1]]
L.append (temp)

self.left = re(L)

R=[]

for i in range(0,len(cright)-1,2):
temp = [cright[i],cright[i+1]]
R.append(temp)

self.right = re(R)

M=[]

for i in range(0,len(cmiddle)-1,2):
temp = [cmiddle[i],cmiddle[i+1]]
M. append (temp)

self.middle = M

self.rawdata = content

self .move = cmove

#self.left = cleft

#self.right = cright

#self .middle = cmiddle

self.scroll = cscroll

def fst(self):
self.tem = self.rawdata[0]
print (self.rawdata[:1000],self.tem)
a = self.tem
return a

def get_onemove_data_vl(da,ratio):
datago=[]
samples= []
labels = []
databyperson =[]
p = da
samplesbyperson = []
labelsbyperson = []
testlist=[]

features = [] #features between neiboughs [interval,distance]
spl = pl0].splt([:]
co=0

for point in spl:

207

duration = 0
distance = 0

i = point.copy()
x=[]

y=0

i.reverse()

leftclick = []
data_sub = []
itemp = i[:]
itemp_ = itempl[:]
for j in itemp:
if itemp[0] [3]-3[3]1>3000:
itemp_ = itemp[:itemp.index(j)]
break
itemp = itemp_[:]

for j in itemp:
if j[0]==1:
leftclick = itemp[:itemp.index(j)+1]
i = itemp[itemp.index(j)+1:]
break

if len(i)==0:
continue

i_ = [i[0]]

j=1
while j<len(i):
dis = (G_[-11[11-1[j1 (1) #*2+(A_[-1] [2]-1i [T [2]) **2
if dis ==
for k in range(j,len(i),1):
dis2 = (A_[-11[1]1-1i[k] [11)**2+(i_[-1] [2]-1i[k] [2])**2
if dis2!=0:
i_[-11 =
[i_[-11[0],i_[-11[11,i_[-11[2], (Ai_[-11[3]1+i[k-11[31)/2]
j=k
#print (j)
break
elif k == len(i)-1:
i_[-11 =
[i_[-1100],i_[-1101],i_[-11[2],(Ai_[-11[3]1+i[k][3])/2]
=1
break
else:
i_.append(i[j])
j=1

208

i.reverse()

if len(i)<6:
continue

moveth=[]
tempi=il[:]
for j in range(len(tempi)-1):
moveth.append (tempi[j+1] [-1]-tempi[j] [-1])
try:
Q3 = np.percentile(moveth,75)
Q1 = np.percentile(moveth,25)
up = 2.5%Q3-1.5%Q1
down = 2.5*%Q1-1.5%Q3
except Exception as e:
print (e,tempi)
break
i.reverse()
itemp=i[:]
for j in range(len(itemp)-1):
if ratio<3:
if itemp[j][3]-itemp[j+1] [3]>up*ratio or
itemp[j][3]-itemp[j+1] [3]<0:
i = itemp[:j+1]
break
elif itemp[0] [3]-itempl[j] [3]1>2000:
i = itemp[:j]
break
elif ratio>=3:
if up<100:
if itempl[j] [3]-itemp[j+1] [3]>up*ratio or
itemp[j][3]-itemp[j+1] [3]<0:
i = itemp[:j+1]
break
elif itemp[0] [3]-itempl[j] [3]1>2000:
i = itemp[:j]
break
elif up>=100:
if itemp[j][3]-itemp[j+1] [3]>up*2 or
itemp[j][3]-itemp[j+1] [3]<0:
i = itempl[:j+1]
break
elif itemp[0] [3]-itemp[j][3]1>2000:
i = itempl[:j]
break

for j in range(len(i)-1):
dis = ((1[j1[11-1[3+1] [1D)**2+(i[j] [2]-1[j+1] [2])**2)**0.5

209

testlist.append([i[j][3]1-i[j+1][3],dis])

try:
if leftclick[0] [0]==2 and leftclick[-1][0]==1:
duration = leftclick[0] [3]-1leftclick[-1][3]
distance = ((leftclick[0] [1]-leftclick[-1][1])**2 +
(leftclick[0] [2]-leftclick[-1] [2])**2)**0.5
except:
continue

if duration>400:
continue

if len(i)<6:
continue

itemp = i[:]
distemp=[]

for j in range(len(itemp)):
distemp.append(((itemp[j] [1]-itemp[0] [1])**2+(itemp[j] [2]-itemp[0] [2])**2)**0.5)

maxdist = distemp.index(np.max(distemp))
i = i[0:maxdist+1]

if len(i)<6:
continue

i.reverse()

x=i[-1]1[1]1-i[0] [1] #x from start to end
y=i[-1]1[2]-i[0] [2] #y from start to end

try:
sin_coordinate = round(x/((x**2+y**2)*x0.5),8)
cos_coordinate = round(y/((x**2+y**2)**0.5),8)
except Exception as e:
sin_coordinate = 0
cos_coordinate = 0

print (e)
continue
#get square, width, speed,
squ = 0
vcurl = 0
vstrai = 0
s=0
v_=0
v0=0

sstrai = 0

210

scurl = 0

dlist = []

width = 0

time = 0

acc = []

angles=[]

angle_=0
v_each_seg= 1
acc_eachpoint=[]
backward_relative = 0
backward_both = 0
backward_count = 0
isForward = True

if (((i[0][1]1-i[-11[1])=**2+(i[0] [2] -i[-1][2])**2)**0.5)==0:
continue

for a in range(len(i)):

L_=0
d_=0
t_=0
maxd = 0
mind = 0
L=0
Xs=i[0] [1]
Ys=1i[0] [2]
X0=1i[a] [1]
Y0=i[a] [2]
X_=0
Y_=0
Xe=i[-1][1]
Ye=1i[-1] [2]
t0=1[a] [3]
try:

do =

abs (((X0-Xs)*(Ys-Ye) - (Xs-Xe) *(Y0-Ys)) / (((Xs—-Xe) **x2+(Ys-Ye) **x2) **x0.5))

except:

print (i)
do =

abs (((X0-Xs) *(Ys-Ye) - (Xs-Xe) *(YO-Ys)) / (((Xs-Xe) **x2+ (Ys-Ye) **2) *x0.5))
LO = (abs((Xs-X0)**2 + (Ys-YO0)**2 — d0**2))**0.5
if (Xs-X0)**x2 + (Ys-YO)**2 >= dO**2:
LO = ((Xs-X0)*x2 + (Ys-YO)**2 — dO**2)**0.5
elif (Xs-X0)**2 + (Ys-YO)**2 < dO**2:
LO = -((abs((Xs-X0)**2 + (Ys-Y0)**2 — d0*%*2))**0.5)

if a==0:

211

[o PN

o O O

0
L = LO-L_

_=0

v0=0

t_=0

s0=0

do0=0

sq = (d_+d0)*L/2
acc=[]
dlist.append(d0)

=

<

else:
X_ = il[a-1][1]
Y_ = ila-1][2]
t_ = ila-1]1[3]
d_ =

abs (((X_-Xs)*(¥Ys-Ye)-(Xs-Xe) *(Y_-Ys))/(((Xs-Xe) **2+(Ys-Ye) **2) **(0.5))
L_ = (abs((Xs=-X_)**2 + (Ys-Y_)**2 — d_**2)**x0.5)
if ((Xs-X_)**2 + (¥Ys-Y_)**2) >= d_**2:
L_ = ((Xs-X_)*%2 + (Ys-Y_)**2 - d_**2)*x0.5
elif ((Xs-X_)**2 + (Ys-Y_)**2)< d_x**2:
L_ = -((abs((Xs-X_)**2 + (Ys-Y_)**x2 — d_**2)**0.5))

try:
v0 = (((X0-X_)**2 + (YO-Y_)#*%2)*%0.5)/(t0-t_)
v_each_seg.append (v0)
except:
print (i)
print (p[1])
acc_=(v0-v_)/(t0-t_)
acc.append(acc_)
v_=v0

s0 = ((XO-X_)**2 + (YO-Y_)**2)**0.5

s = s+s0

if (type(L_).__name__==’complex’):
print (L_,LO)
continue

sq = abs((d_+d0)*L/2)
dlist.append (((X0-Xs)*(Ys-Ye)-(Xs-Xe)*(Y0-Ys))/ (((Xs-Xe)*x2+(Ys-Ye) **2) *x0.5))

#angles
if a<len(i)-1:

X_N
Y_N

ila+1][1]
ila+1][2]

212

al [X_-X0,Y_-YO0]
a2 = [X0-X_N,YO-Y_N]
angle_ = math.acos((al[0]*a2[0]+al[1]*a2[1]) /
(((a1[0]**2+al [1]**2)* (a2 [0] **2+a2[1] **2)) *x*0.5))
if angle_/np.pi>0.5:
backward_relative=backward_relative+1
angles.append(angle_)

bl [X_N-X0,Y_N-YO]

b2 [i[-1]1[11-i[0][1],i[-1][2]-i[0][2]1]

angle2 = math.acos((b1[0]*b2[0]+b1[1]*b2[1]) /
(((b1[0]**2+b1 [1]**2) * (b2[0] **2+b2[1] **2)) **0.5))

if isForward:
if angle2/np.pi>0.5:
backward_count=backward_count+1
if angle_/np.pi >0.5:
backward_both = backward_both+1
isForward = False
elif not isForward:
if angle2/np.pi<0.5:
backward_count=backward_count+1
if angle_/np.pi>0.5:
backward_both = backward_both+1
isForward = True

squ = squ + sq

max(dlist)
min(dlist)

maxd
mind

if mind<O0:

width = maxd-mind
else:

width=maxd

width_sum = np.sum(dlist)

time = i[-1][3]-i[0][3]

scurl = s

vcurl = s/time

sstrai = ((A[-11[11-i[0] [11)**2+(i[-1]1[2]1-i[0] [2])**2)**0.5

if sstrai==0: #if the path is a closed circle,delete this data
continue

acc_eachpoint=np.diff (np.array(v_each_seg)).tolist()
vchaos_eachpoint = []

accchaos_eachpoint = []
for j in range(len(acc_eachpoint)):

213

an = angles[j]
ac = acc_eachpoint[j]
ac2 = acc[j+1]-acc[j]

temp = 0
if an>0 and ac>0:

temp = (ant+l)*ac + (ac+l)*an
elif an>0 and ac<0:

temp = (an+l)*ac + (ac-1)*an
elif an<0 and ac>0:

temp = (an-1)*ac + (ac+l)*an
elif an<0 and ac<0:

temp = (an-1)*ac + (ac-1)*an
elif an==0 and ac!=0:

temp = ac
elif an!=0 and ac==0:

temp = an
vchaos_eachpoint.append (temp)

temp2=0
if an>0 and ac2>0:

temp2 = (an+1)*ac2 + (ac2+1)*an
elif an>0 and ac2<0:

temp2 = (an+l)*ac2 + (ac2-1)*an
elif an<0 and ac2>0:

temp2 = (an-1)*ac2 + (ac2+1)*an
elif an<0 and ac2<0:

temp2 = (an-1)*ac2 + (ac2-1)*an
elif an==0 and ac2!=0:

temp2 = ac2
elif an!=0 and ac2==0:

temp2 = an
accchaos_eachpoint.append (temp2)

vstrai = sstrai/time
acc_mean = np.mean(acc)
acc_std = np.std(acc,ddof=1)
acc_min = np.min(acc)
acc_max = np.max(acc)

angle_mean = np.mean(angles)
angle_std = np.std(angles,ddof=1)
angle_min = np.min(angles)
angles_max = np.max(angles)

acc_eachpoint_mean = np.mean(acc_eachpoint)
acc_eachpoint_std = np.std(acc_eachpoint,ddof=1)
acc_eachpoint_min = np.min(acc_eachpoint)
acc_eachpoint_max = np.max(acc_eachpoint)

214

vchaos_eachpoint_mean = np.mean(vchaos_eachpoint)
vchaos_eachpoint_std = np.std(vchaos_eachpoint,ddof=1)
vchaos_eachpoint_min = np.min(vchaos_eachpoint)
vchaos_eachpoint_max = np.max(vchaos_eachpoint)

accchaos
accchaos
accchaos
accchaos

_eachpoint_mean = np.mean(accchaos_eachpoint)
_eachpoint_std = np.std(accchaos_eachpoint,ddof=1)
_eachpoint_min = np.min(accchaos_eachpoint)
_eachpoint_max = np.max(accchaos_eachpoint)

v_seg_mean = np.mean(v_each_seg)
v_seg_std = np.std(v_each_seg)
v_seg_max = np.max(v_each_seg)
v_seg_min = np.min(v_each_seg)

width_mean = np.mean(dlist)
width_std = np.std(dlist,ddof=1)
click_move_gap = (leftclick[-1][3]1-i[-1][3])

#data_sub.append(zone)

data_sub
data_sub
data_sub
data_sub

.append(len(i))
.append(click_move_gap)
.append (scurl/(len(i)-1))
.append (backward_count)

#data_sub.append(backward_count/(len(i)-1))

data_sub

data_sub

data_sub

.append (time)
.append (time/(len(i)-1))

.append(s/sstrai) #scurl/sstraight

#data_sub.append(width) #max width

data_sub

data_sub.
data_sub.
data_sub.

data_sub.
data_sub.
data_sub.
data_sub.

data_sub.

data_sub

.append (maxd)
append (mind)
append (width_mean)
append (width_std)

append(vstrai) #speed of straight away
append(vcurl) #speed of actual move
append (acc_mean)

append (acc_std)

append (angle_mean)
.append (angle_std)

#data_sub.append (max(angles))

data_sub

data_sub.
data_sub.
data_sub.
data_sub.

data_sub

.append(squ/sstrai)

append (squ/scurl)
append(duration) #mosue click
append(distance) #mosue click
append (scurl)

.append(sstrai)

215

data_sub.
data_sub.
data_sub.
data_sub.

data_sub.
data_sub.
data_sub.
data_sub.

data_sub.
data_sub.
data_sub.
data_sub.

data_sub.
data_sub.
data_sub.
data_sub.

data_sub.
data_sub.
data_sub.
.append (v_seg_max)

data_sub

data_sub.
data_sub.
data_sub.

data_sub

data_sub.
data_sub.

append (acc_max)
append (acc_min)
append (angle_min)
append (angles_max)

append (acc_eachpoint_mean)
append (acc_eachpoint_std)
append (acc_eachpoint_min)
append (acc_eachpoint_max)

append (vchaos_eachpoint_mean)
append (vchaos_eachpoint_std)
append (vchaos_eachpoint_min)
append (vchaos_eachpoint_max)

append (accchaos_eachpoint_mean)
append (accchaos_eachpoint_std)
append (accchaos_eachpoint_min)
append (accchaos_eachpoint_max)

append (v_seg_mean)
append (v_seg_std)
append (v_seg_min)

append(width/sstrai)
append (width/scurl)
append (width/time)

.append (backward_relative)
data_sub.

append (backward_both)

append(sin_coordinate)
append (cos_coordinate)

#data_sub.append(angles_max - angle_min)

cot+=1

features.

append (data_sub)

username = p[1].split(’.’)[0]

for i in features:
samples.append (i)
labels.append (username)

return [samples,labels]

def extractfeatures_mouse():

216

path = ’C:/Zhaoyi_Fan/Dataset/Combo/’
groups = [’training’,’testing’]
count=0
for group in groups:
newpath = path+group+’/’
for IQR in range(1,6,1):
if IQR!=3:
continue
finalpath = newpath
users = os.listdir(finalpath+’samples/’)
for user in users:
newhome = newpath+’features/’+user+’/’
isExists=os.path.exists(newhome)
if not isExists:
os.makedirs (newhome)
print (newhome,’ created’)
files = os.listdir(finalpath+’samples/’+user+’/’)
for £ in files:
label = f.split(’.csv’)[0]
if label.split(’_’) [1]=="keystroke’:
continue
file = [Mouse(finalpath+’samples/’+user+’/’+f),label]
data = get_onemove_data_vi1(file,IQR)

r=
pd.concat([pd.DataFrame(data[0]),pd.DataFrame(datal1])],axis=1)
r.to_csv(newhome+label+’ _features.csv’,header=0,index=False)

print (f,’files
completed>>>>>>>>>555555555555555555>>>>5>))

def my_check(unwanted=[],cata=’no_’,cata2=’nochange’,src=’’,results=’’):
folder = src
files = os.listdir(folder)
x=[]
y=[]
for f in files[:]:
user=f
file = folder+user+’/’+user+’ _mouse_train_features.csv’
if £ == ’userl18.csv’:
continue
with open(file,’r’,encoding="UTF-8’) as thefile:
d = csv.reader(thefile)
d = np.array(pd.DataFrame(d)) [:]

try:
ss1 = float(d[0][0])
ss2 = float(d[0][1])
except:
continue

for i in d:

217

temp = []
if float(i[1])<1500 and float(il[3])/(float(i[0])-2)<0.2 and
float(i[6])<2 and float(i[22])<2000 and float(i[20])<10
and float(i[-5])/(float(i[0])-2)<0.2: # and
float (i[3]1)/(float (i[0])-2)<0.3333:
for j in i[:-1]:
temp. append (float(j))
x.append (temp)
y.append(f.split(’_’)[0])
print (’Data extraction completed’,len(y),’samples involved’)
try:
x = np.delete(x,unwanted,axis=1)
labelencod = preprocessing.LabelEncoder().fit(y)
y = labelencod.transform(np.array(y))
x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.2,stratify=y,random_state=1)

except Exception as e:
print (e)

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:

print (’XGB fitting started’)

#cross_val = StratifiedKFold(n_splits=cvs)

clf =

XGBClassifier(objective="multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=600,
max_depth = 5,min_child_weight=3,
)

features_impts = []

myweights,mychanges = myweight (y_train)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf .fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()

pred_prob = np.array(pre_temp)

218

labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)

except Exception as e:
print (e)
print (folder)
return ’bad’

myweights_total,mychanges=myweight (y)
theweights.append (myweights_total)
head = np.array(theweights[0].keys())
print (head)

heads = names.tolist()
weights=pd.DataFrame (theweights)
weights = np.array(weights) .tolist()
weights.insert (0,heads)
weights=pd.DataFrame (weights)

dic = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
for i in list(labelset):
dic[i]=[]
for i in range(len(y_test)):
dic[y_test[i]].append(pred_prob[i])
pred_probtemp = []
y_testtemp = []
for i in dic:
for j in dic[i]:
pred_probtemp.append(j)
y_testtemp.append(i)
pred_prob = pred_probtemp[:]
y_test = y_testtempl[:]

outs = []
f1_micro=[]
f1_macro=[]

precision_micro=[]
precision_macro=[]

recall_micro=[]
recall_macro=[]

times = []

accuracy = []

rpt = []

for i in range(1,32,1):
y_pred = []
y_true = []

for j in range(len(y_test)-i+1):

219

if y_test[jl==y_test[j+i-1]:
#y_pred_byprob=sum(np.array(pred_prob[j:j+i]),axis=0)
y_pred_byprob=sum(np.array(pred_prob[j:j+i]) ,axis=0)
y_pred.append(y_pred_byprob.tolist() .index(y_pred_byprob.max()))
y_true.append(y_test[j])
y_true = labelencod.inverse_transform(y_true)
y_pred = labelencod.inverse_transform(y_pred)

outs.append ([
#°%.2f 7% (f1_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’%(f1_score(y_true,y_pred,average=’macro’,zero_division=0))),
float(’%.3f’%(f1_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

#°%.2f % (precision_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f % (precision_score(y_true,y_pred,average=’"macro’,zero_division=0))),
float(’%.3f’% (precision_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

#°%.2f % (recall_score(y_true,y_pred,average="micro’)*100),
float(’%.3f’%(recall_score(y_true,y_pred,average=’macro’,zero_division=0))),
float(’%.3f’%(recall_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P

>

float (’%.3f’%(accuracy_score(y_true,y_pred))),
ID)

f1_micro.append(f1_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
f1_macro.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
precision_micro.append(precision_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
precision_macro.append(precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
recall_micro.append(recall_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
recall_macro.append(recall_score(y_true,y_pred,average='macro’,zero_division=0)*100)
accuracy . append (accuracy_score(y_true,y_pred)*100)

times.append (i)

newh = results+cata+’/’+cata2+’/’

if i==1:
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
rpt = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (rpt) .T.to_csv(newh+str(i)+’/’+str(i)+’mouse_classification_report.csv’,header=0,:
print (classification_report(y_true,y_pred))

if (i+4)/5==int((i+4)/5):
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
cm_old = confusion_matrix(y_true, y_pred)

pd.DataFrame(cm_old) .to_csv(newh+str(i)+’/’+str(i)+’mouse_cm.csv’ ,header=heads,index=True)

cm = np.array(pd.DataFrame(cm_old)).tolist()
cm_=[]

220

for k in cm:
temp=[]
for j in k:
temp.append (float(’%.1£°%(100%*j/sum(k))))
cm_.append (temp)
cm =mat (cm_.copy())

report = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+str(i)+’/’+str(i)+’mouse_classification_report.csv’,headers:

plt.figure(1,figsize=(10.24,8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues,include_values=False,ax=ax1l)
plt.savefig(newh+str(i)+’/’+str(i)+’ mouse_cm.png’)
plt.clf ()

plt.figure(3,figsize=(10.24,8))

ax3 = plt.axes()

disp3 =
ConfusionMatriXDisplay(confusion_matrix=cm,display_labels=heads)

disp3.plot(cmap=plt.cm.Blues,include_values=True,ax=ax3)

plt.savefig(newh+str(i)+’/’+str(i)+’mouse_cm_newnew.png’)

plt.clf()

plt.figure(4,figsize=(10.24,8))

ax4 = plt.axes()

disp4 =
ConfusionMatrixDisplay(confusion_matrix=cm_old,display_labels=heads)

disp4.plot(cmap=plt.cm.Blues,include_values=True,ax=ax4)

plt.savefig(newh+str(i)+’/’+str(i)+’ mouse_cm_newnewnew.png’)

plt.clf()

#np.set_printoptions(precision=2)

cm_normalized = confusion_matrix(y_true,
y_pred,normalize=’true’)

cm_n = mat(np.round(cm_normalized,3))

plt.figure(5,figsize=(10.24,8))

ax5 = plt.axes()

dispb =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

disp5.plot (cmap=plt.cm.Blues,include_values=True,ax=ax5)

plt.savefig(newh+str(i)+’/’+str(i)+’mouse_cm_newnewnew2.png’)

plt.clf()

#np.set_printoptions(precision=2)

cm_normalized2 = confusion_matrix(y_true,
y_pred,normalize=’pred’)

221

cm_n = mat(np.round(cm_normalized2,3))

plt.figure(6,figsize=(10.24,8))

ax6 = plt.axes()

disp6 =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

disp6.plot (cmap=plt.cm.Blues,include_values=True,ax=ax6)

plt.savefig(newh+str(i)+’/’+str(i)+’mouse_cm_newnewnew3.png’)

plt.clf ()

print (pd.DataFrame(outs))

out2 = []

for i,j in enumerate(outs):
out2.append([’&’,j[01,&’,j[3],°&’,j[6],°&,3[9],°\\\\’1)

print (pd.DataFrame(out2,index=np.arange(1,32,1)))

plt.figure(2,figsize=(10.24,8))

ax2 = plt.axes()
plot_importance(clf,ax=ax2,importance_type=’gain’)
plt.savefig(newh+’mouse_FI.png’)

plt.clf()

print (featurescore)
plt.show()

plt.figure(3,figsize=(10.24,8))

myyticks = [i for i in range(0,100,5)]

myxticks = [1i for i in range(1,31,1)]

plt.yticks(myyticks)

plt.plot(times,fl_macro,label=’f1_macro’)

plt.plot(times,precision_macro,label=’precision_macro’)

plt.plot(times,recall_macro,1abel=’recall_macro’)

plt.plot(times,accuracy,label=’accuracy’)

plt.legend()

plt.grid()

plt.savefig(newh+’ mouse_overall.png’)

plt.clf()

return
[rpt,outs,pred_prob,y_test,featurescore,np.delete(f_names,unwanted) ,weights]

def my_train(unwanted=[],src=’’,results=’’):
myweights,mychanges = myweight ()
cata2=’nochange’
if len(mychanges)>0:
cata2=""’
for i in mychanges:
temp = 7’

222

for j in i:
temp = temp+str(j)+’_’
cata2 = cata2+temp+’_’

cata=’no_’
try:
if len(unwanted)==0:
cata = ’allfeatures’
else:

for i in unwanted:
cata = catat+str(i)+’_’°

finalpath = src
users = os.listdir(finalpath)

resultpath = results+cata+’/’+cata2+’/’
if not os.path.exists(resultpath):

os.makedirs(resultpath)

print (resultpath,’created’)
r = my_check(unwanted,cata,cata2,src,results)
if r=="bad’:

print (’baaaaaaaaaaaaaaaad’)

return
pd.DataFrame(r[0]).T.to_csv(resultpath+’classification_report.csv’,header=0,index=True)
pd.DataFrame(r[1]) .to_csv(resultpath+’30times.csv’,header=0, index=False)
probs = pd.concat([pd.DataFrame(r[2]),pd.DataFrame(r[3])],axis=1)
probs.to_csv(resultpath+’probabilities.csv’,header=0, index=False)
r[6].to_csv(resultpath+’sample_weight.csv’,header=True,index=False)

fscores=r[4][:]

sorted_number = np.argsort(fscores)

fnames]

scores [1

for i in sorted_number:
fnames.append (r[5] [i]+’ _’+str(i))
scores.append (fscores[i])

plt.figure(4,figsize=(10.24,8))
plt.barh(fnames,scores)
plt.grid()
plt.savefig(resultpath+’myfeatures_importance.png’)
plt.clf()

except Exception as e:
print (’error occur in selecting best features’)
print (e)

def go(unwanted=[],src=’’,results=’’):

if not os.path.exists(results):
os.makedirs (results)

223

print (results,’created’)
my_train(unwanted,src,results)

def extractfeatures_mouse_nIQR():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/’
groups = [’training’,’testing’]
count=0
for group in groups:
if group!=’testing’:
continue
newpath = path+group+’/’
for IQR in range(1,6,1):
if IQR!=3:
continue
finalpath = newpath
users = os.listdir(finalpath+’samples/’)
for user in users:
newhome = newpath+’features2/’+str(IQR)+’_IQR/’
isExists=os.path.exists(newhome)
if not isExists:
os.makedirs (newhome)
print (newhome,’ created’)
files = os.listdir(finalpath+’samples/’+user+’/’)
for £ in files:
label = f.split(’.csv’)[0]
if label.split(’_’) [1]=="keystroke’:
continue
file = [Mouse(finalpath+’samples/’+user+’/’+f),label]
data = get_onemove_data_vi(file,IQR)
r =

pd.concat ([pd.DataFrame(data[0]),pd.DataFrame(datal[1])],axis=1)
r.to_csv(newhome+label+’ _’+str(IQR)+’ _features.csv’,header=0,index=False)

print (f,’files
completed>>>>>>>>>555555555555555555>5>>>>))

def get_actions_percent():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/testing/samples/’
users = os.listdir(path)
output = []
col = [’user’,’orginal segements’,’1IQR’,’2IQR’,’3IQ3’,’4IQR’,’5IQR’]
for user in users:
file = path+user+’/’+user+’_mouse_test.csv’
mouse = Mouse(file)
origin = len(mouse.splt)
out = [user,origin]
for i in range(5):
#print (user,len(mouse.splt))
with

224

open(’C:/Zhaoyi_Fan/Dataset/Combo/testing/features2/’+str(i+1)+’_IQR/’+user+’ _mouse_test_
as f:
the_len = len(np.array(pd.DataFrame(csv.reader(£))))
out.append(the_len)
output .append (out)
resultpath = ’C:/Zhaoyi_Fan/Dataset/Combo/testing/’
if not os.path.exists(resultpath):
os.makedirs(resultpath)
print (resultpath,’created’)
pd.DataFrame (output) .to_csv(resultpath+str(i+1)+’ _IQR_mouse_action_percent_revisedl_testing2_.csv’,

def get_segments_figure2():
file =
’C:/Zhaoyi_Fan/Dataset/Combo/training/5_IQR_mouse_action_percent_revisedl_testing_.csv’
with open(file,’r’) as f:
data = np.array(pd.DataFrame(csv.reader(f)))[1:]

plt.figure(figsize=(10,6))
print (len(data))
for i in range(len(data)):
plt.subplot(5,4,i+1)
plt.ylabel (’Number of segments’)
user = i
plt.title(’user’+str(user))
total = int(datal[i][1])
extractedl = int(datal[i] [2])
extracted2 = int(datal[i] [3])
extracted3 = int(datal[i] [4])
extracted4 = int(datal[i] [5])
extracted5 = int(datal[i] [6])
y = [total,extractedl,extracted2,extracted3,extracted4,extracteds]
x = [’total’,’1 time’,’2 times’,’3 times’,’4 times’,’5times’]
for j,z in zip([2,3,4,5,6],y[1:]1):
plt.text(j-0.2,z+100,%.0f % (100*z/y[0]1)+°%")
plt.bar([1,2,3,4,5,6],y,width=0.3,tick_label=x)
#plt.legend ()
plt.show()

def get_segments_figure():
file =
’C:/Zhaoyi_Fan/Dataset/Combo/training/5_IQR_mouse_action_percent_revisedl_testing_.csv’
with open(file,’r’) as f:
df = pd.DataFrame(csv.reader(f))
users = np.array(df.iloc[1:,0])
total = np.array(df.iloc[1:,1],dtype = np.float64)
extracted = np.array(df.iloc[1:,4],dtype = np.float64)
abandoned = total - extracted

plt.figure(figsize=(10,6))

225

X = users
y_ex = extracted
y_ab = abandoned
sums = total

sorted_indices = np.argsort(sums) [::-1]

users_sorted = np.array(users) [sorted_indices]

y_ex_sorted = np.array(extracted) [sorted_indices]

y_ab_sorted = np.array(abandoned) [sorted_indices]

plt.barh(users_sorted, y_ex_sorted, label=’Extracted segments’,
tick_label=users_sorted)

plt.barh(users_sorted, y_ab_sorted, left=y_ex_sorted,
label=’Abandoned segments’)

plt.xlabel(’Number of segments’)
plt.ylabel(’User’)
for user, ex, ab in zip(users_sorted, y_ex_sorted, y_ab_sorted):

if ab != 0:

percent = (ex/ab)*100
else:

percent = 0

plt.text(ex+ab, user, f"{int(percent)}’%", va=’center’, ha=’left’)
plt.tight_layout ()
plt.legend()
plt.savefig(figure_pathi+’Number_of_segments.png’)
plt.savefig(figure_path2+’Number_of_segments.png’)
plt.show()
ex = np.sum(y_ex)
ab = np.sum(y_ab)
total = ex+ab
print (len(x),total,ex,ex/total)

def classifier_select():

folder = ’C:/Zhaoyi_Fan/Dataset/Combo/training/features/’

newh_xgb=’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Mouse/XGB/’

newh_rf =
’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Mouse/RandomForest/’

newh_linearSVC =
’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Mouse/linearSVC/’

newh_SVClin =
’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Mouse/SVClin/’

newh_SVCrbf =
’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Mouse/SVCrbf/’

if not os.path.exists(newh_xgb):
os.makedirs (newh_xgb)

if not os.path.exists(newh_rf):
os.makedirs (newh_rf)

if not os.path.exists(newh_linearSVC):
os.makedirs(newh_linearSVC)

226

if not os.path.exists(newh_SVClin):
os.makedirs(newh_SVClin)

if not os.path.exists(newh_SVCrbf):
os.makedirs (newh_SVCrbf)

files = os.listdir(folder)
x=[]
y=0[
for f in files[:3]:
the_file = folder+f+’/’+f+’_mouse_train_features.csv’
with open(the_file,’r’,encoding=’UTF-8’) as thefile:
d = csv.reader(thefile)
d = np.array(pd.DataFrame(d)) [:100]

try:
ssl = float(d[0][0])
ss2 = float(d[0][1])
except:
continue

#d = np.delete(d,unwanted,axis=1)
for i in d[:]:
temp = []
if float(i[1])<1500 and float(i[3])/(float(i[0])-2)<0.2 and
float(i[6]1)<2 and float(i[22])<2000 and float(i[20])<10
and float(i[-5])/(float(i[0])-2)<0.2: # and
float(i[3])/(float(i[0])-2)<0.3333:
for j in i[:-1]:
temp. append (float(j))
x.append (temp)
y.append(i[-1].split(’_’) [0])
print (’Data extraction completed’,len(y),’samples involved’)
try:
x = np.array(x)

labelencod = preprocessing.LabelEncoder().fit(y)
y = labelencod.transform(np.array(y))

#x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.33,stratify=y,random_state=1)

except Exception as e:
print (e)

cross_val = StratifiedKFold(n_splits=5)

f1_scores = []
acc_scores = []
cms = []

i=1

227

start_xgb = time.time()
print (’Xgb cross validate starts’)
for train_index, test_index in cross_val.split(x,y):
x_train, x_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]
clf_xgb =
XGBClassifier(objective="multi:softprob’,use_label_encoder=False,
eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=600,
max_depth = 5,min_child_weight=3,
)
clf_xgb.fit(x_train,y_train)
y_pred = clf_xgb.predict(x_test)
f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)
acc = accuracy_score(y_test,y_pred)
cm = confusion_matrix(y_test,y_pred)

f1_scores.append(f1)
acc_scores.append (acc)
cms . append (cm.tolist())

pd.DataFrame(cm) . to_csv(newh_xgb+str(i)+’ _cm.csv’ ,header=0,index=False)
i=i+l
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_xgb+str(11)+’ _cm.csv’,header=0,index=False)
pd.DataFrame ([f1_scores,acc_scores]).to_csv(newh_xgb+str(12)+’ _report.csv’,header=0, index=False)
print (’Xgb cross validate completed. Time
used:’,time.time()-start_xgb,np.mean(f1_scores))

#random forest----------------————————————— o :

cross_val = StratifiedKFold(n_splits=5)

f1_scores = []
acc_scores = []
cms = []

i=1

start_rf = time.time()

print (’Random forest cross validate starts’)

for train_index, test_index in cross_val.split(x,y):
X_train, x_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]
clf_rf = RandomForestClassifier()
clf_rf.fit(x_train,y_train)
y_pred = clf_rf.predict(x_test)
f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)
acc = accuracy_score(y_test,y_pred)
cm = confusion_matrix(y_test,y_pred)

f1_scores.append(£f1)
acc_scores.append(acc)

228

cms.append(cm.tolist())

pd.DataFrame(cm) .to_csv(newh_rf+str(i)+’_cm.csv’ ,header=0,index=False)
i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_rf+str(11)+’_cm.csv’ ,header=0,index=False)
pd.DataFrame ([f1_scores,acc_scores]).to_csv(newh_rf+str(12)+’_report.csv’,header=0,index=False)
print (’Random forest cross validate completed. Time
used:’,time.time()-start_rf,np.mean(f1_scores))

#print (cm)

scaler = preprocessing.StandardScaler().fit(x)
x = scaler.transform(x)
#SVM linearSVC OvR------——--------—---—-—————————— :

cross_val = StratifiedKFold(n_splits=5)

f1_scores = []

acc_scores = []

cms = []

i=1

start_linearSVC = time.time()

print (’linearSVC cross validate starts’)

for train_index, test_index in cross_val.split(x,y):
X_train, x_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]
#clf _linearSVC =

XGBClassifier(eval_metric:’mlogloss’,tree_method=’gpu_hist’,use_label_encoder:False)

clf_linearSVC = LinearSVC()
clf_linearSVC.fit(x_train,y_train)
y_pred = clf_linearSVC.predict(x_test)
f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)
acc = accuracy_score(y_test,y_pred)
cm = confusion_matrix(y_test,y_pred)

f1_scores.append(f1)
acc_scores.append (acc)
cms. append (cm.tolist())

pd.DataFrame (cm) .to_csv(newh_linearSVC+str(i)+’_cm.csv’ ,header=0, index=False)
i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_linearSVC+str(11)+’ _cm.csv’,header=0,index=False)
pd.DataFrame ([f1_scores,acc_scores]).to_csv(newh_linearSVC+str(12)+’_report.csv’,header=0,index=Fal
print (’LinearSVC cross validate completed. Time
used:’,time.time()-start_linearSVC,np.mean(f1_scores))

#SVM SVC with linear Ov0---—---—--—=—-—————————m——mo— :

cross_val = StratifiedKFold(n_splits=5)

229

f1_scores = []

acc_scores = []
cms = []
i=1

start_SVClin = time.time()

print (’SVClin cross validate starts’)

for train_index, test_index in cross_val.split(x,y):
x_train, x_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]
#clf_linear =

XGBClassifier(eval_metric=’mlogloss’,tree_method=’gpu_hist’,use_label_encoder=False)

clf_SVClin = SVC(kernel=’linear’)
clf_SVClin.fit(x_train,y_train)
y_pred = clf_SVClin.predict(x_test)
f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)
acc = accuracy_score(y_test,y_pred)
cm = confusion_matrix(y_test,y_pred)

f1_scores.append(£f1)
acc_scores.append(acc)
cms . append(cm.tolist())

pd.DataFrame (cm) .to_csv(newh_SVClin+str(i)+’ _cm.csv’ ,header=0,index=False)
i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_SVClin+str(11)+’ _cm.csv’,header=0,index=False)
pd.DataFrame ([f1_scores,acc_scores]).to_csv(newh_SVClin+str(12)+’ _report.csv’,header=0, index=False)
print (°SVClin cross validate completed. Time
used:’,time.time()-start_SVClin,np.mean(f1_scores))

#SVM SVC with rbf OvO0-—--------"--""""————— :

cross_val = StratifiedKFold(n_splits=5)

f1_scores = []
acc_scores = []
cms = []

i=1

start_SVCrbf = time.time()

print (’SVCrbf cross validate starts’)

for train_index, test_index in cross_val.split(x,y):
x_train, x_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]
#clf_linear =

XGBClassifier(eval_metric=’mlogloss’,tree_method=’gpu_hist’,use_label_encoder=False)

clf_SVCrbf = SVC(kernel=’rbf’)
clf_SVCrbf.fit(x_train,y_train)
y_pred = clf_SVCrbf.predict(x_test)
f1 = f1_score(y_test,y_pred,average=’macro’,zero_division=0)
acc = accuracy_score(y_test,y_pred)
cm = confusion_matrix(y_test,y_pred)

230

f1_scores.append(£f1)
acc_scores.append(acc)
cms. append(cm.tolist())

pd.DataFrame (cm) .to_csv(newh_SVCrbf+str(i)+’ _cm.csv’,header=0, index=False)
i=i+1
result = np.sum(cms,axis=0)
pd.DataFrame (result) .to_csv(newh_SVCrbf+str(11)+’ _cm.csv’,header=0,index=False)
pd.DataFrame ([f1_scores,acc_scores]).to_csv(newh_SVCrbf+str(12)+’ _report.csv’,header=0,index=False)
print (’SVCrbf cross validate completed. Time
used:’,time.time()-start_SVCrbf,np.mean(fl_scores))

def XGB_check_test(unwanted=[],cata=’no_’,cata2=’nochange’):
#°C:/Zhaoyi_Fan/Dataset/Combo/training/features/’
folder = ’C:/Zhaoyi_Fan/Dataset/Combo/training/features/’
files = os.listdir(folder)
x=[]
y=0[
for f in files[:]:
#d = csv.reader(open(folder+f,’r’))
the_file = folder+f+’/’+f+’_mouse_train_features.csv’
if £ == ’userl18.csv’:
continue
with open(the_file,’r’,encoding=’UTF-8’) as thefile:

d = csv.reader(thefile)
d = np.array(pd.DataFrame(d))
try:

ssl = float(d[0][0])

ss2 = float(d[0][1])
except:

continue

#d = np.delete(d,unwanted,axis=1)
for i in d:
temp = []
if float(i[1])<1500 and float(i[3])/(float(i[0])-2)<0.2 and
float(i[6]1)<2 and float(i[22])<2000 and float(i[20])<10
and float(i[-5])/(float(i[0])-2)<0.2: # and
float(i[3])/(float(i[0])-2)<0.3333:
for j in i[:-1]:
temp.append (float(j))
x.append (temp)
y.append(i[-1].split(’_’) [0])
print (’Training data extraction completed’,len(y),’samples involved’)
try:
x = np.delete(x,unwanted,axis=1)

labelencod = preprocessing.LabelEncoder().fit(y)

231

y = labelencod.transform(np.array(y))

#x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.33,stratify=y,random_state=1)

X_train = x

y_train =y

except Exception as e:
print (e)

folder = ’C:/Zhaoyi_Fan/Dataset/Combo/testing/features/’
files = os.listdir(folder)
x=[]
y=0[
for f in files[:]:
the_file = folder+f+’/’+f+’_mouse_test_features.csv’
with open(the_file,’r’) as thefile:
d = csv.reader(thefile)
d = np.array(pd.DataFrame(d))

try:
ss1 = float(d[0][0])
ss2 = float(d[0][1])
except:
continue

#d = np.delete(d,unwanted,axis=1)
for i in d:
temp = []
if float(i[1])<1500 and float(i[3])/(float(i[0])-2)<0.2 and
float(i[6]1)<2 and float(i[22])<2000 and float(i[20])<10
and float(i[-5])/(float(i[0])-2)<0.2: # and
float(i[3])/(float(i[0])-2)<0.3333:
for j in i[:-1]:
temp.append (float(j))
x.append (temp)
y.append(i[-1].split(’_’) [0])
print (’Testing Data extraction completed’,len(y),’samples involved’)
try:
x = np.delete(x,unwanted,axis=1)

#labelencod = preprocessing.LabelEncoder().fit(y)

y = labelencod.transform(np.array(y))

#x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.33,stratify=y,random_state=1)

x_test = x

y_test =y

except Exception as e:
print (e)

232

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:

print (’XGB fitting started’)

#cross_val = StratifiedKFold(n_splits=cvs)

clf =

XGBClassifier(objective="multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=600,
max_depth = 5,min_child_weight=3,
)

features_impts = []

myweights,mychanges = myweight (y_train)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf.fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()

pred_prob = np.array(pre_temp)

labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)

except Exception as e:
print (e)
print (folder)
return ’bad’

myweights_total,mychanges=myweight (y)
theweights.append (myweights_total)

head = np.array(theweights[0] .keys())

print (head)

#heads = labelencod.inverse_transform(head) .tolist ()
heads = names.tolist()

weights=pd.DataFrame (theweights)

weights = np.array(weights).tolist()

weights.insert (0,heads)

233

weights=pd.DataFrame (weights)

dic = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))
for i in list(labelset):
dic[i]=[]
#dic2[i]=[]
for i in range(len(y_test)):
dic[y_test[i]].append(pred_prob[il])
pred_probtemp = []
y_testtemp = []
for i in dic:
#ypred=[]
#ytrue=[]
for j in dic[i]:
pred_probtemp.append(j)
y_testtemp.append(i)
#ypred.append(j.tolist().index(j.max()))
#ytrue.append (i)
#dic2[names[i]]=[ypred,ytruel

#everyone=[]

pred_prob = pred_probtempl[:]
y_test = y_testtempl[:]

outs = []
f1_micro=[]
f1_macro=[]

precision_micro=[]
precision_macro=[]

recall_micro=[]
recall_macro=[]

times = []

accuracy = []

rpt = []

for i in range(1,32,1):
y_pred = []
y_true = []

for j in range(len(y_test)-i+1):
if y_test[jl==y_test[j+i-1]:
#y_pred_byprob=sum(np.array(pred_prob[j:j+i]),axis=0)
y_pred_byprob=sum(np.array(pred_prob[j:j+il) ,axis=0)
y_pred.append(y_pred_byprob.tolist() .index(y_pred_byprob.max()))

234

y_true.append(y_test[j])
y_true = labelencod.inverse_transform(y_true)
y_pred = labelencod.inverse_transform(y_pred)

outs.append ([
#°%.2f°%(f1_score(y_true,y_pred,average=’micro’)*100),
float (’%.3f’%(f1_score(y_true,y_pred,average=’macro’,zero_division=0))),
float(’%.3f’%(f1_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P

#°%.2f % (precision_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’ % (precision_score(y_true,y_pred,average="macro’,zero_division=0))),
float(’%.3f % (precision_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

#°%.2f % (recall_score(y_true,y_pred,average="micro’)*100),
float (’%.3f’%(recall_score(y_true,y_pred,average=’"macro’,zero_division=0))),
float(’%.3f’%(recall_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

float(’%.3f’%(accuracy_score(y_true,y_pred))),
D

f1_micro.append(f1_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
f1_macro.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
precision_micro.append(precision_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
precision_macro.append(precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
recall_micro.append(recall_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
recall_macro.append(recall_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
accuracy.append (accuracy_score(y_true,y_pred)*100)
times.append (i)
newh =

’C:/Zhaoyi_Fan/Dataset/Combo/testing/results/Mouse/own/XGB/’+cata+’/’+cata2+’/’

if i==1:
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
rpt = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (rpt) .T.to_csv(newh+str(i)+’/’+str(i)+’mouse_classification_report.csv’,header=0,:
print (classification_report(y_true,y_pred))

if (i+4)/5==int((i+4)/5):
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
cm_old = confusion_matrix(y_true, y_pred)

pd.DataFrame(cm_old) .to_csv(newh+str(i)+’/’+str(i)+’mouse_cm.csv’ ,header=heads,index=True)
cm = np.array(pd.DataFrame(cm_old)).tolist()

cm_=[]
for k in cm:
temp=[]

for j in k:

235

temp.append (float(’%.1£°%(100%*j/sum(k))))
cm_.append (temp)
cm =mat (cm_.copy())

report = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+str(i)+’/’+str(i)+’mouse_classification_report.csv’,headers:

plt.figure(1,figsize=(10.24,8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues,include_values=False,ax=axl)
plt.savefig(newh+str(i)+’/’+str(i)+’ mouse_cm.png’)
plt.clf()

plt.figure(3,figsize=(10.24,8))

ax3 = plt.axes()

disp3 =
ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=heads)

disp3.plot(cmap=plt.cm.Blues,include_values=True,ax=ax3)

plt.savefig(newh+str(i)+’/’+str(i)+’mouse_cm_newnew.png’)

plt.clf()

plt.figure(4,figsize=(10.24,8))

ax4 = plt.axes()

disp4 =
ConfusionMatrixDisplay(confusion_matrix=cm_old,display_labels=heads)

disp4.plot(cmap=plt.cm.Blues,include_values=True,ax=ax4)

plt.savefig(newh+str(i)+’/’+str(i)+’mouse_cm_newnewnew.png’)

plt.clf ()

np.set_printoptions(precision=2)

cm_normalized = confusion_matrix(y_true,
y_pred,normalize=’true’)

cm_n = mat(np.round(cm_normalized,3))

plt.figure(5,figsize=(10.24,8))

ax5 = plt.axes()

dispb =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

dispb5.plot (cmap=plt.cm.Blues,include_values=True,ax=ax5)

plt.savefig(newh+str(i)+’/’+str(i)+’mouse_cm_newnewnew2.png’)

plt.clf ()

print (pd.DataFrame(outs))

out2 = []

for i,j in enumerate(outs):
out2.append([’&’,j[0],°&’,j[3],°&’,j[6],°&’,j[9],”\\\\"1)

print (pd.DataFrame(out2,index=np.arange(1,32,1)))

236

plt.figure(2,figsize=(10.24,8))

ax2 = plt.axes()
plot_importance(clf,ax=ax2,importance_type=’gain’)
plt.savefig(newh+’ mouse_FI.png’)

plt.clfO

print (featurescore)
plt.show()

plt.figure(3,figsize=(10.24,8))
#print (f1_macro,np.min(f1_macro))
#print
(int (np.min([np.min(f1_macro) ,np.min(precision_macro) ,np.min(recall_macro) ,np.min(accuracy)])))
myyticks = [i for i in range(0,100,5)]
myxticks = [i for i in range(1,31,1)]
plt.yticks(myyticks)
#plt.xticks(myxticks)
plt.plot(times,fl_macro,label="f1_macro’)
#plt.plot(times,fl_micro,label="f1_micro’)
plt.plot(times,precision_macro,label=’precision_macro’)
#plt.plot(times,precision_micro,label=’precision_micro’)
plt.plot(times,recall_macro,label=’recall_macro’)
#plt.plot(times,recall_micro,label="recall_micro’)
plt.plot(times,accuracy,label=’accuracy’)
plt.legend()
plt.grid()
plt.savefig(newh+’mouse_overall.png’)
plt.clfO
print (type(rpt).__name__)
#plot_importance (clf)
#plt.show()
return
[rpt,outs,pred_prob,y_test,featurescore,np.delete(f_names,unwanted) ,weights]

def XGB_test(unwanted=[]):
myweights,mychanges = myweight ()
cata2=’nochange’
if len(mychanges)>0:
cata2=""’
for i in mychanges:
temp = 7’
for j in i:
temp = temp+str(j)+’_’
cata2 = cata2+temp+’_’

cata=’no_’

try:

237

if len(unwanted)==0:
cata = ’allfeatures’
else:
for i in unwanted:
cata = cata+str(i)+’_’

finalpath =
’C:/Workspace/Python/mouse_and_ks/forpapers/mouse/testing/’
users = os.listdir(finalpath)

resultpath =
’C:/Zhaoyi_Fan/Dataset/Combo/testing/results/Mouse/own/XGB/’+cata+’/’+cata2+’/’
if not os.path.exists(resultpath):
os.makedirs(resultpath)
print (resultpath,’created’)
#r =
checkontrain_cv(finalpath,n, [3,4,8,16,17,19,21,24] ,group,cvs,s)
#r = checkontrain_cv(finalpath,n, [3,16,17,24] ,group,cvs,s)
r = XGB_check_test (unwanted,cata,cata2)
if r==’bad’:
print (’baaaaaaaaaaaaaaaad’)
return
pd.DataFrame (r[0]) .T.to_csv(resultpath+’mouse_classification_report.csv’,header=0,index=True)
pd.DataFrame(r[1]) .to_csv(resultpath+’mouse_30times.csv’,header=0,index=False)
probs = pd.concat([pd.DataFrame(r[2]),pd.DataFrame(r[3])],axis=1)
probs.to_csv(resultpath+’mouse_probabilities.csv’,header=0,index=False)
r[6].to_csv(resultpath+’mouse_sample_weight.csv’ ,header=True,index=False)

fscores=r[4][:]

sorted_number = np.argsort(fscores)

fnames = []

scores = []

for i in sorted_number:
fnames.append(r[6] [1]+’ _’+str(i))
scores.append(fscores[i])

plt.figure(4,figsize=(10.24,8))
plt.barh(fnames,scores)
plt.grid()
plt.savefig(resultpath+’myfeatures_importance.png’)
plt.clf()

except Exception as e:
print (’error occur in selecting best features’)
print (e)

if __name__==’__main__’:
XGB_test([2,5]) #get classification result on testing set.

238

#textractfeatures_mouse() #extract mouse features from raw data

#extractfeatures_mouse_nIQR()

#get_actions_percent ()

#get_segments_figure2()

#get_segments_figure()

#tclassifier_select()
#go([2,5],°C:/Zhaoyi_Fan/Dataset/Combo/training/features/’,’C:/Zhaoyi_Fan/Dataset/Combo/training/re

239

D.3.3 Python scripts for combining keystroke and mouse
dynamics

List D.3.3 lists the Python scripts for combining keystroke and mouse dynamics
analysis used in Chapter 8.

import numpy
import sys
import csv

import

import math
from numpy import *

from time import time

import datetime

import matplotlib.pyplot as plt
matplotlib import cm

from
from
from
from
from
from
from
from
from
from
from
from
from
from

sklearn
sklearn
sklearn

sklearn

sklearn

as np

pandas as pd

import preprocessing
import svm

.datasets import load_iris
sklearn.
sklearn.
sklearn.
sklearn.

model_selection import train_test_split
multiclass import OneVsOneClassifier
multiclass import OneVsRestClassifier
svm import LinearSVC

.svm import SVC
sklearn.
sklearn.
sklearn.

ensemble import RandomForestClassifier
model_selection import GridSearchCV
model_selection import cross_val_score

.neural_network import MLPClassifier
sklearn.

neighbors import KNeighborsClassifier

import random
import sklearn

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

sklearn.
.model_selection import KFold
sklearn.

sklearn

sklearn

sklearn.

sklearn
sklearn

sklearn
xgboost
xgboost

sklearn.

sklearn
sklearn

preprocessing import OneHotEncoder

metrics import make_scorer
import linear_model
metrics import r2_score

.ensemble import BaggingRegressor

.ensemble import RandomForestRegressor
sklearn.
sklearn.
sklearn.

ensemble import AdaBoostRegressor

metrics import fl1_score,precision_score,recall_score
metrics import accuracy_score

import tree

import XGBClassifier,plot_importance,DMatrix,cv
import XGBRegressor

ensemble import VotingClassifier

.pipeline import Pipeline

.model_selection import cross_val_predict
sklearn.
sklearn.

metrics import confusion_matrix,ConfusionMatrixDisplay
metrics import classification_report

collections import Counter

240

import os

import string

from scipy.interpolate import griddata
from sklearn.utils import class_weight
from itertools import combinations

figure_pathl = ’C:/Zhaoyi_Fan/Figures/’
figure_path2 = ’C:/Zhaoyi_Fan/Latex/Figures/’

pd.set_option(’display.max_rows’,500)
pd.set_option(’display.max_columns’,500)
pd.set_option(’display.width’,1000)
pd.set_option(’max_colwidth’,1000)
np.set_printoptions (suppress=True)

Mouse

f_names = [’points’,’gap’,’scurlpp’,’backward’,
’time’,’timepp’,’s/strai’,’widthmax_’,’width_min’,
’width-mean’, ’width-std’,’vstrai’,’vcurl’,
’acc_mean’,’acc_std’,’angle_mean’,’angle_std’,
’squ/strai’, ’squ/scurl’,’durantion’,’distance’,
’scurl’,’sstrai’,’acc_max’,’acc_min’,
’angle_min’,’angle_max’,
’acc_ep_mean’,’acc_ep_std’,’acc_ep_min’,’acc_ep_max’,
’v_c_ep_mean’,’v_c_ep_std’,’v_c_ep_min’,’v_c_ep_max’,
’ac_c_ep_mean’,’ac_c_ep_std’,’ac_c_ep_min’,’ac_c_ep_max’,
’v_seg_mean’,’v_seg_std’,’v_seg_min’,’v_seg_max’,
’width/sstrai’,’width/scurl’,’width/time’,
’b_relative’,’b_both’,
’sin’,’cos’]

def myweight (y=arange(19)):
myweights = {}
for j in np.unique(y):
myweights[jl=len(y)/(y.tolist().count(j)*len(np.unique(y)))
try:

for i in mychanges:
myweights[i[0]]=myweights[i[0]]*i[1]
except:
mychanges=[]

return myweights,mychanges

class Mouse():
def __init__(self, file):
def re(data):
templ = []
temp2 [1

241

for i in data:
a=
(int (i [1] [1])**2+int (i [1] [2]) **2) *x0.5-(int (i [0] [1])**2+int (i [0] [2])**2)**0.5
b = int(i[1] [3])-int (i [0] [3])
if a<1 and b<2000:
templ.append(i)
temp2.append (int (i [1] [-1])-int (i [0] [-11))
#print (temp2)
me = np.mean(temp2)
if len(temp2)!=0:
#print (O !111?)
me = np.mean(temp2)
std = np.std(temp2,ddof=1)
if len(temp2)==0:

me = 0
std = 0

for i in templ:
if int(i[1][-11)-int(i[0] [-1])-me>3*std:
templ.remove (i)
return templ
try:
with open(file,’r’) as f:
data = np.array(pd.DataFrame(csv.reader(£f)))
except:
data = file

content = []
leftclick = []
rightclick = []
cmove=[]
cleft=[]
cright=[]
cmiddle=[]
cscroll=[]

splt = []

stemp = []
lctemp = []
rctemp=[]
countl = 0 #number of ’1’--left click down
count3 = 0

for line in data:
if line[0]==’TYPE’:

continue
line = [int(j) for j in line]
if line[0]==0 or line[0]==1 or line[0]==2: #click down up,
move

stemp.append (line)

242

lctemp.append(line)
if 1ine[0]==1: #click down
lctemp=[]
lctemp.append(line)
countl=countil+1
if 1ine[0]==2: #click up
if countl==1:
leftclick.append(lctemp)
splt.append(stemp)
stemp=[]
lctemp=[]
count1=0
else:
stemp=[]
lctemp=[]
count1=0

if 1ine[0] !'= 8:
content .append(line)

if 1ine[0]==0:
cmove . append (line)

if 1ine[0]==0 or line[0]==3 or line[0]==4:
rctemp.append(line)
if line[0]==3:
rctemp=[]
rctemp.append(line)
count3=count3+1
if line[0]==4:
if count3==1:
rightclick.append(rctemp)
rctemp=[]
count3=0
else:
rctemp=[]
count3=0

if 1ine[0]==1 or line[0]==2:
if len(cleft)!=0 and line[0]==cleft[-1][0]:
cleft.pop()
cleft.append(line)
else:
cleft.append(line)
if 1ine[0]==3 or line[0]==4:
if len(cright)!=0 and line[0]==cright[-1] [0]:
cright.pop()
cright.append(line)
else:
cright.append(line)
if 1ine[0]==5 or line[0]==6:

243

if len(cmiddle)!=0 and line[0]==cmiddle[-1][0]:
cmiddle.pop()
cmiddle.append(line)
else:
cmiddle.append(line)
if line[0]==7:
cscroll.append(line)
self.splt=splt
self.leftclick = leftclick
self.rightclick = rightclick

L=[]

for i in range(0,len(cleft)-1,2):
temp = [cleft[i],cleft[i+1]]
L.append (temp)

self.left = re(L)

R=[]

for i in range(0,len(cright)-1,2):
temp = [cright[i],cright[i+1]]
R.append (temp)

self.right = re(R)

M=[]

for i in range(0,len(cmiddle)-1,2):
temp = [cmiddle[i],cmiddle([i+1]]
M.append (temp)

self.middle = M

self.rawdata = content

self .move = cmove

#self.left = cleft

#self .right = cright

#self .middle = cmiddle

self.scroll = cscroll

def fst(self):
self.tem = self.rawdatal[0]
print (self.rawdata[:1000],self.tem)
a = self.tem
return a

def get_onemove_data_vl(da,ratio):
datago=[]
samples= []
labels = []
databyperson =[]
p = da
#print (p[1],’extraction started’)
samplesbyperson = []
labelsbyperson = []

244

testlist=[]

features = [] #features between neiboughs [interval,distance]
spl = p[0].splt[:]

#print (len(spl))

co=0

for point in spl:
duration = 0
distance = 0
i = point.copy()
x=[]
y=[]

i.reverse()

leftclick = []

data_sub = []

#get left click data

#itp = i.copy()

itemp = i[:]

itemp_ = itempl[:]

for j in itemp:

if itemp[0] [3]-3[3]1>3000:

itemp_ = itemp[:itemp.index(j)]
break

itemp = itemp_[:]

for j in itemp:
if j[0]==1:
leftclick = itemp[:itemp.index(j)+1]
i = itemp[itemp.index(j)+1:]
break

if len(i)==0:

continue
#i = itp
i_ = [i[0]]
j=1

while j<len(i):
#dis = i_[-1]1[0]-i[j][0]
dis = (A_[-11[11-4i (31 (11D #*2+(i_[-11 [2]1-i[j] [2]) **2
if dis ==
for k in range(j,len(i),1):
dis2 = (i_[-11[11-1[k] [11)#*2+(i_[-1] [2]-i [k] [2]) *=2
if dis2!=0:
i_[-1] =
(i_[-11[0],i_[-11[1],i_[-11[2],(i_[-1][3]+i[k-1][3])/2]

245

j=k
#print (j)
break
elif == len(i)-1:
i_[-1] =
[i_[-11[0],i_[-11[1]1,i_[-11[2],(i_[-1]1[3]1+i[k][3]1)/2]
j+=1
break
else:
i_.append(i[j1)
j+=1

i.reverse()

if len(i)<6:
continue

moveth=[]

tempi=il[:]

for j in range(len(tempi)-1):
moveth.append (tempi[j+1] [-1]-tempi[j] [-1])

try:
Q3 = np.percentile(moveth,75)
Q1 = np.percentile(moveth,25)
up = 2.5%Q3-1.5%Q1

down = 2.5%Q1-1.5%Q3
except Exception as e:
print (e,tempi)
break
#print (p[1],°’Q1l Q3:’,up,down)
i.reverse()
itemp=il[:]
for j in range(len(itemp)-1):
if ratio<3:
if itemp[j][3]-itemp[j+1] [3]>up*ratio or
itemp[j] [3]1-itemp[j+1][3]1<0:
i = itemp[:j+1]
break
elif itemp[0] [3]-itemp[j][3]1>2000:
i = itemp[:j]
break
elif ratio>=3:
if up<100:
if itemp[j][3]-itemp[j+1] [3]>up*ratio or
itemp[j] [3]1-itemp[j+1][3]1<0:
i = itempl[:j+1]
break
elif itemp[0] [3]-itemp[j][3]1>2000:

246

i = itempl[:j]
break
elif up>=100:
if itemp[j][3]-itemp[j+1] [3]>up*2 or
itemp[j] [3]-itemp[j+1][3]<0:

i = itemp[:j+1]
break

elif itemp[0][3]-itempl[j][31>2000:
i = itemp[:j]
break

#set total moving time
i=i2.copy()
#print (id(i),’Person:’,datalist.index(p),len(i))

for j in range(len(i)-1):
dis = ((L[j101]-1[j+1] [1])#*2+(i[j] [2]-1[j+1] [2])**2)*x0.5
testlist.append([i[j][3]-i[j+1]1[3],dis])

try:
if leftclick[0][0]==2 and leftclick[-1][0]==1:
duration = leftclick[0] [3]-1leftclick[-1][3]
distance = ((leftclick[0][1]-leftclick[-1][1])**2 +
(leftclick[0] [2]-1leftclick[-1][2])**2)**0.5
except:
continue

if duration>400:
continue

if distance>b:
continue

if len(i)<6:
continue

itemp = i[:]
distemp=[]

for j in range(len(itemp)):
distemp.append(((itemp[j] [1]-itemp[0] [1])**2+(itemp[j] [2]-itemp[0] [2])**2)**0.5)

maxdist = distemp.index(np.max(distemp))
i = i[0:maxdist+1]

if len(i)<6:
continue

247

i.reverse()

x=i[-11[1]-1[0] [1] #x from start to end
y=i[-1]1[2]-i[0][2] #y from start to end

try:
sin_coordinate = round(x/((x**2+y*x2)*x0.5),8)
cos_coordinate = round(y/((x**2+y**2)*x0.5),8)
except Exception as e:
sin_coordinate = 0O
cos_coordinate = 0
print (e)
continue
#get square, width, speed,
squ = 0
vcurl = 0
vstrai = 0

s=0
v_=0
v0=0

sstrai = 0
scurl = 0

dlist = []
width = 0
time = 0
acc = []
angles=[]
angle_=0

v_each_seg= []
acc_eachpoint=[]
backward_relative = 0
backward_both = 0
backward_count = 0
isForward = True

if (((A[0]1[11-i[-11[1]) **2+(i[01[2] -i[-1][2])**2)**0.5)==0:
continue

for a in range(len(i)):

L_=0
d_=0
t_=0
maxd = 0
mind = 0
L=0

248

Xs=1[0] [1]
Ys=1i[0] [2]
X0=i[a] [1]
YO0=i[a] [2]
X_=0
Y_=0
Xe=i[-1][1]
Ye=i[-1] [2]
t0=1i[a] [3]
try:

do =

abs (((X0-Xs)*(Ys-Ye)-(Xs-Xe) *(Y0-Ys))/ (((Xs-Xe) **2+(Ys-Ye) **2) **0.5))

except:

print (i)
do =

abs (((X0-Xs)*(Ys-Ye) - (Xs-Xe) *(Y0-Ys)) / (((Xs-Xe) **x2+(Ys-Ye) **2) **0.5))

LO = (abs((Xs-X0)**2 + (Ys-YO0)**2 — d0**2))**0.5
if (Xs-X0)**2 + (Ys-YO)**2 >= dO**2:

LO = ((Xs-X0)**2 + (Ys-YO)**2 — dO**2)**0.5
elif (Xs-X0)**2 + (Ys-Y0)**2 < dO**2:

LO = -((abs((Xs-X0)**2 + (Ys-YO0)**x2 — d0*%*2))**0.5)

if a==0:

d0=0

sq = (d_+d0)*L/2
acc=[]
dlist.append(d0)
#v_each.append (v0)
#print (L,LO,L_,sq,v)

else:
X_ = il[a-1][1]
Y_ = ila-1][2]
t_ = i[a-1]1[3]
da_ =

abs (((X_-Xs)*(Ys-Ye)-(Xs-Xe) *(Y_-Ys))/ (((Xs-Xe) **2+(Ys-Ye) **2) **0.5))
L_ = (abs((Xs-X_)**2 + (Ys-Y_)**2 — d_**2)**x0.5)
if ((Xs=X_)**2 + (¥Ys-Y_)**2) >= d_**2:
L_ = ((Xs-X_)**2 + (Ys-Y_)**2 - d_**2)*x0.5
elif ((Xs-X_)**2 + (Ys-Y_)**2)< d_x**2:
L_ = -((abs((Xs-X_)**2 + (Ys-Y_)*x2 — d_*x2)**0.5))

249

v0 = (((X0-X_)**2 + (YO-Y_)#*%2)*%0.5)/(t0-t_)
v_each_seg.append (v0)
except:
print (i)
print (p[1])
acc_=(v0-v_)/(t0-t_)
acc.append(acc_)
v_=v0

s0 = ((XO-X_)**2 + (YO-Y_)*x2)**0.5

s = s+s0

if (type(L_).__name__==’complex’):
print (L_,LO)
continue

sq = abs((d_+d0)*L/2)

if (type(sq).__name__==’complex’):

dlist.append (((X0-Xs)*(Ys-Ye)-(Xs-Xe)*(Y0-Ys))/(((Xs-Xe) **2+(Ys-Ye) #*2) #*0.5))
#print (L,LO,L_,sq,v)

#angles
if a<len(i)-1:
PO, P_, P_N

X0,Y0 X_ Y_ X_NY.N

X_N = ifa+1][1]

Y_N = i[a+1][2]

al = [X_-X0,Y_-YO0]

a2 = [X0-X_N,Y0-Y_N]

angle_ = math.acos((al[0]*a2[0]+al[1]*a2[1]) /

(((a1[0]**2+a1[1]**2)* (a2 [0] **2+a2[1]**2)) *x*0.5))

if angle_/np.pi>0.5:
backward_relative=backward_relative+1l

angles.append(angle_)

bl [X_N-X0,Y_N-YO]

b2 = [i[-1]1[1]-i[0][1],i[-1][2]-i[0][2]]

angle2 = math.acos((b1[0]*b2[0]+b1[1]*b2[1]) /
(((b1[0]**2+b1 [1]**2) * (b2[0] **2+b2 [1] **2)) **0.5))

if isForward:
if angle2/np.pi>0.5:
backward_count=backward_count+1
if angle_/np.pi >0.5:
backward_both = backward_both+1
isForward = False
elif not isForward:
if angle2/np.pi<0.5:
backward_count=backward_count+1

250

if angle_/np.pi>0.5:
backward_both = backward_both+1
isForward = True

squ = squ + sq

max(dlist)
min(dlist)

maxd
mind

if mind<O0:

width = maxd-mind
else:

width=maxd

width_sum = np.sum(dlist)

time = i[-1][3]-1[0] [3]

scurl = s

vcurl = s/time

sstrai = ((A[-11[11-i[0]1 [1]1)**2+(i[-1]1[2]-i[0] [2])**2)**0.5

if sstrai==0: #if the path is a closed circle,delete this data
continue

acc_eachpoint=np.diff (np.array(v_each_seg)).tolist()

vchaos_eachpoint = []
accchaos_eachpoint = []
for j in range(len(acc_eachpoint)):
an = angles[j]
ac = acc_eachpoint[j]
ac2 = acc[j+1]-acc[j]

temp = 0
if an>0 and ac>0:

temp = (an+l)*ac + (ac+l)*an
elif an>0 and ac<O0:

temp = (an+l)*ac + (ac-1)*an
elif an<0 and ac>0:

temp = (an-1)*ac + (ac+l)*an
elif an<0 and ac<0:

temp = (an-1)*ac + (ac-1)*an
elif an==0 and ac!=0:

temp = ac
elif an!=0 and ac==0:

temp = an
vchaos_eachpoint.append (temp)

temp2=0
if an>0 and ac2>0:

251

temp2 = (an+l)*ac2 + (ac2+1)*an
elif an>0 and ac2<0:

temp2 = (an+1l)*ac2 + (ac2-1)*an
elif an<0 and ac2>0:

temp2 = (an-1)*ac2 + (ac2+1)*an
elif an<0 and ac2<0:

temp2 = (an-1)*ac2 + (ac2-1)*an
elif an==0 and ac2!=0:

temp2 = ac2
elif an!=0 and ac2==0:

temp2 = an
accchaos_eachpoint.append (temp2)

vstrai = sstrai/time
acc_mean = np.mean(acc)
acc_std = np.std(acc,ddof=1)
acc_min = np.min(acc)
acc_max = np.max(acc)

angle_mean = np.mean(angles)
angle_std = np.std(angles,ddof=1)
angle_min = np.min(angles)
angles_max = np.max(angles)

acc_eachpoint_mean = np.mean(acc_eachpoint)
acc_eachpoint_std = np.std(acc_eachpoint,ddof=1)
acc_eachpoint_min = np.min(acc_eachpoint)
acc_eachpoint_max = np.max(acc_eachpoint)

vchaos_eachpoint_mean = np.mean(vchaos_eachpoint)
vchaos_eachpoint_std = np.std(vchaos_eachpoint,ddof=1)
vchaos_eachpoint_min = np.min(vchaos_eachpoint)
vchaos_eachpoint_max = np.max(vchaos_eachpoint)

accchaos_eachpoint_mean = np.mean(accchaos_eachpoint)
accchaos_eachpoint_std = np.std(accchaos_eachpoint,ddof=1)
accchaos_eachpoint_min = np.min(accchaos_eachpoint)
accchaos_eachpoint_max = np.max(accchaos_eachpoint)

v_seg_mean = np.mean(v_each_seg)
v_seg_std = np.std(v_each_seg)
v_seg_max = np.max(v_each_seg)
v_seg_min = np.min(v_each_seg)

width_mean = np.mean(dlist)
width_std = np.std(dlist,ddof=1)

252

click_move_gap = (leftclick[-1][3]-i[-1][3])

#data_sub.append(zone)
data_sub.append(len(i))
data_sub.append(click_move_gap)
data_sub.append(scurl/(len(i)-1))
data_sub.append (backward_count)
#data_sub.append (backward_count/(len(i)-1))
data_sub.append (time)

data_sub.append(time/(len(i)-1))

data_sub.append(s/sstrai) #scurl/sstraight
#data_sub.append(width) #max width
data_sub.append (maxd)

data_sub.append (mind)

data_sub.append (width_mean)
data_sub.append (width_std)

data_sub.append(vstrai) #speed of straight away
data_sub.append(vcurl) #speed of actual move
data_sub.append(acc_mean)
data_sub.append(acc_std)

data_sub.append(angle_mean)
data_sub.append(angle_std)
#data_sub.append(max(angles))
data_sub.append(squ/sstrai)
data_sub.append(squ/scurl)
data_sub.append(duration) #mosue click
data_sub.append(distance) #mosue click
data_sub.append(scurl)
data_sub.append(sstrai)
data_sub.append(acc_max)
data_sub.append(acc_min)
data_sub.append(angle_min)
data_sub.append(angles_max)

data_sub.append(acc_eachpoint_mean)
data_sub.append(acc_eachpoint_std)
data_sub.append(acc_eachpoint_min)
data_sub.append(acc_eachpoint_max)

data_sub.append(vchaos_eachpoint_mean)
data_sub.append(vchaos_eachpoint_std)
data_sub.append(vchaos_eachpoint_min)
data_sub.append(vchaos_eachpoint_max)

data_sub.append(accchaos_eachpoint_mean)
data_sub.append(accchaos_eachpoint_std)

253

data_sub.append(accchaos_eachpoint_min)
data_sub.append(accchaos_eachpoint_max)

data_sub.append(v_seg_mean)
data_sub.append(v_seg_std)
data_sub.append(v_seg_min)
data_sub.append(v_seg_max)

data_sub.append(width/sstrai)
data_sub.append(width/scurl)
data_sub.append (width/time)

data_sub.append(backward_relative)
data_sub.append (backward_both)

data_sub.append(sin_coordinate)
data_sub.append(cos_coordinate)

#data_sub.append(angles_max - angle_min)

co+=1

features.append(data_sub)

username = p[1].split(’.’)[0]

for i in features:
samples.append (i)
labels.append(username)

return [samples,labels]

def extractfeatures_mouse():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/’
groups = [’training’,’testing’]
count=0
for group in groups:
newpath = path+group+’/’
for IQR in range(1,6,1):
if IQR!=3:
continue
finalpath = newpath
users = os.listdir(finalpath+’samples/’)
for user in users:
newhome = newpath+’features/’+user+’/’
isExists=os.path.exists (newhome)

254

if not isExists:
os.makedirs (newhome)
print (newhome,’ created’)
files = os.listdir(finalpath+’samples/’+user+’/’)
for £ in files:
label = f.split(’.csv’) [0]
if label.split(’_’) [1]=="keystroke’:
continue
file [Mouse (finalpath+’samples/’+user+’/’+f) ,label]
data = get_onemove_data_v1(file,IQR)

r =

pd.concat ([pd.DataFrame(data[0]),pd.DataFrame(datal[1])],axis=1)
r.to_csv(newhome+label+’_features.csv’,header=0,index=False)

print (f,’files
completed>>>>>>>>>>>>5>55>555555>5>55>55>5>5>>>7)

def my_check(unwanted=[],cata=’no_’,cata2=’nochange’,src=’’,results=’’):
folder = src
files = os.listdir(folder)
x=[]
y=0[
for f in files[:]:
with open(folder+f,’r’) as thefile:
d = csv.reader(thefile)
d = np.array(pd.DataFrame(d)) [:]

try:
ss1 = float(d[0] [0])
ss2 = float(d[0][1])
except:
continue

#d = np.delete(d,unwanted,axis=1)
for i in d:
temp = []
if float(i[1])<1500 and float(il[3])/(float(i[0])-2)<0.2 and
float (i[6])<2 and float(i[22])<2000 and float(i[20])<10
and float(i[-5]1)/(float(i[0]1)-2)<0.2: # and
float (i[3]1)/(float(i[0])-2)<0.3333:
for j in i[:-1]:
temp.append(float(j))
x.append (temp)
#y.append(i[-1].split(’.csv’) [0])
y.append(f.split(’_’)[0])
print (’Data extraction completed’,len(y),’samples involved’)
try:
x = np.delete(x,unwanted,axis=1)

labelencod = preprocessing.LabelEncoder().fit(y)

255

y = labelencod.transform(np.array(y))

x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.2,stratify=y,random_state=1)

except Exception as e:
print (e)

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:

print (’XGB fitting started’)

#cross_val = StratifiedKFold(n_splits=cvs)

clf =

XGBClassifier(objective=’multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=500,
max_depth = 4,min_child_weight=3,
)

features_impts = []

myweights,mychanges = myweight(y_train)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf .fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()

pred_prob = np.array(pre_temp)

labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)

except Exception as e:
print (e)
print (folder)
return ’bad’

myweights_total,mychanges=myweight (y)
theweights.append (myweights_total)

256

head = np.array(theweights[0].keys())

print (head)

#heads = labelencod.inverse_transform(head).tolist()
heads = names.tolist()

weights=pd.DataFrame (theweights)

weights = np.array(weights).tolist()
weights.insert(0,heads)

weights=pd.DataFrame (weights)

dic = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))
for i in list(labelset):
dic[il=[]
#dic2[i1=[]
for i in range(len(y_test)):
dic[y_test[i]].append(pred_prob[il])
pred_probtemp = []
y_testtemp = []
for i in dic:
#ypred=[]
#ytrue=[]
for j in dic[i]:
pred_probtemp.append(j)
y_testtemp.append (i)
#ypred.append(j.tolist().index(j.max()))
#ytrue.append (i)
#dic2[names[i]]=[ypred,ytruel

#everyone=[]

pred_prob = pred_probtempl[:]
y_test = y_testtempl[:]

outs = []
f1_micro=[]
f1_macro=[]

precision_micro=[]
precision_macro=[]

recall_micro=[]
recall_macro=[]
times = []

accuracy = []

rpt = []
for i in range(1,32,1):

257

y_pred = []

y_true [1

for j in range(len(y_test)-i+1):

if y_test[jl==y_test[j+i-1]:

#y_pred_byprob=sum(np.array(pred_prob[j:j+i]),axis=0)
y_pred_byprob=sum(np.array(pred_prob[j:j+i]) ,axis=0)
y_pred.append(y_pred_byprob.tolist() .index(y_pred_byprob.max()))
y_true.append(y_test[j])

y_true = labelencod.inverse_transform(y_true)

y_pred = labelencod.inverse_transform(y_pred)

outs.append ([
#°%.2f 7% (f1_score(y_true,y_pred,average=’micro’)*100),
float(’%.2f’%(£f1_score(y_true,y_pred,average=’macro’,zero_division=0)#*100)),
float (’%.2f’%(f1_score(y_true,y_pred,average=’weighted’,zero_division=0)*100)),

P
>

#°%.2f % (precision_score(y_true,y_pred,average=’micro’)*100),
float(’%.2f % (precision_score(y_true,y_pred,average=’"macro’,zero_division=0)#*100)),
float (’%.2f% (precision_score(y_true,y_pred,average=’weighted’,zero_division=0)*100)),

P
s

#%.2f % (recall_score(y_true,y_pred,average="micro’)*100),
float(’%.2f°%(recall_score(y_true,y_pred,average=’macro’,zero_division=0)*100)),
float(’%.2f’%(recall_score(y_true,y_pred,average=’weighted’,zero_division=0)*100)),

P

>

float (’%.2f% (accuracy_score(y_true,y_pred)*100)),
ID)

f1_micro.append(f1_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
f1_macro.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
precision_micro.append(precision_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
precision_macro.append(precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
recall_micro.append(recall_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
recall_macro.append(recall_score(y_true,y_pred,average='macro’,zero_division=0)*100)
accuracy . append(accuracy_score(y_true,y_pred)*100)

times.append (i)

newh = results+catat+’/’+cata2+’/’

if i==1:
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/?)
rpt = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (rpt) .T.to_csv(newh+str(i)+’/’+str(i)+’_classification_report.csv’,header=0, index:
print (classification_report(y_true,y_pred))

if (i+4)/5==int((i+4)/5):
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
cm_old = confusion_matrix(y_true, y_pred)

258

pd.DataFrame(cm_old) .to_csv(newh+str(i)+’/’+str(i)+’ _cm.csv’ ,header=heads, index=True)
cm = np.array(pd.DataFrame(cm_old)).tolist()
cm_=[]
for k in cm:

temp=[]

for j in k:

temp.append (float(’%.1£°%(100%*j/sum(k))))

cm_.append (temp)

cm =mat (cm_.copy())

report = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+str(i)+’/’+str(i)+’ _classification_report.csv’,header=0,inc

plt.figure(1,figsize=(10.24,8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues,include_values=False,ax=axl)
plt.savefig(newh+str(i)+’/’+str(i)+’_cm.png’)

plt.clf()

plt.figure(3,figsize=(10.24,8))

ax3 = plt.axes()

disp3 =
ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=heads)

disp3.plot(cmap=plt.cm.Blues, include_values=True,ax=ax3)

plt.savefig(newh+str(i)+’/’+str(i)+’ _cm_newnew.png’)

plt.clf()

plt.figure(4,figsize=(10.24,8))

ax4 = plt.axes()

disp4 =
ConfusionMatrixDisplay(confusion_matrix=cm_old,display_labels=heads)

disp4.plot(cmap=plt.cm.Blues,include_values=True,ax=ax4)

plt.savefig(newh+str(i)+’/’+str(i)+’_cm_newnewnew.png’)

plt.clf ()

#np.set_printoptions(precision=2)

cm_normalized = confusion_matrix(y_true,
y_pred,normalize=’true’)

cm_n = mat(np.round(cm_normalized,3))

plt.figure(5,figsize=(10.24,8))

ax5 = plt.axes()

dispb =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

dispb5.plot(cmap=plt.cm.Blues,include_values=True,ax=ax5)

plt.savefig(newh+str(i)+’/’+str(i)+’_cm_newnewnew2.png’)

plt.clf()

#np.set_printoptions(precision=2)

259

cm_normalized2 = confusion_matrix(y_true,
y_pred,normalize=’pred’)
cm_n = mat(np.round(cm_normalized2,3))
plt.figure(6,figsize=(10.24,8))
ax6 = plt.axes()
disp6 =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)
disp6.plot (cmap=plt.cm.Blues,include_values=True,ax=ax6)
plt.savefig(newh+str(i)+’/’+str(i)+’ _cm_newnewnew3.png’)
plt.clf()

print (pd.DataFrame(outs))

plt.figure(2,figsize=(10.24,8))

ax2 = plt.axes()
plot_importance(clf,ax=ax2,importance_type=’gain’)
plt.savefig(newh+’/FI.png’)

plt.clfO

print (featurescore)
plt.show()

plt.figure(3,figsize=(10.24,8))
#print (f1_macro,np.min(f1_macro))
#print

(int (np.min([np.min(f1_macro) ,np.min(precision_macro) ,np.min(recall_macro) ,np.min(accuracy)])))
myyticks = [i for i in range(0,100,5)]
myxticks [i for i in range(1,31,1)]
plt.yticks(myyticks)
#plt.xticks (myxticks)
plt.plot(times,f1_macro,label="f1_macro’)
#plt.plot(times,fl_micro,label="f1_micro’)
plt.plot(times,precision_macro,label=’precision_macro’)
#plt.plot(times,precision_micro,label=’precision_micro’)
plt.plot(times,recall_macro,1abel=’recall_macro’)
#plt.plot(times,recall_micro,label="recall_micro’)
plt.plot(times,accuracy,label=’accuracy’)
plt.legend()
plt.grid()
plt.savefig(newh+’overall.png’)
plt.clf()
print (type(rpt).__name__)
#plot_importance(clf)
#plt.show()
return

[rpt,outs,pred_prob,y_test,featurescore,np.delete(f_names,unwanted) ,weights]
def my_train(unwanted=[],src=’’,results=’’):

myweights,mychanges = myweight ()
cata2=’nochange’

260

if len(mychanges)>0:
cata2=""’
for i in mychanges:
temp = 7’
for j imn i:
temp = temp+str(j)+’_’
cata2 = cata2+temp+’_’

cata=’no_’
try:
if len(unwanted)==0:
cata = ’allfeatures’
else:

for i in unwanted:
cata = cata+str(i)+’_’

finalpath = src
users = os.listdir(finalpath)

resultpath = results+catat+’/’+cata2+’/’
if not os.path.exists(resultpath):

os.makedirs(resultpath)

print (resultpath,’created’)
#r =

checkontrain_cv(finalpath,n, [3,4,8,16,17,19,21,24] ,group,cvs,s)

#r = checkontrain_cv(finalpath,n, [3,16,17,24],group,cvs,s)
r = my_check(unwanted,cata,cata2,src,results)
if r==’bad’:

print (’baaaaaaaaaaaaaaaad’)

return
pd.DataFrame(r[0]) .T.to_csv(resultpath+’classification_report.csv’,header=0,index=True)
pd.DataFrame(r[1]) .to_csv(resultpath+’30times.csv’ ,header=0,index=False)
probs = pd.concat([pd.DataFrame(r[2]),pd.DataFrame(r[3])],axis=1)
probs.to_csv(resultpath+’probabilities.csv’ ,header=0,index=False)
r[6].to_csv(resultpath+’sample_weight.csv’,header=True,index=False)

fscores=r[4][:]

sorted_number = np.argsort(fscores)

fnames = []

scores = []

for i in sorted_number:
fnames.append(r[5] [1]+’_’+str(i))
scores.append(fscores[i])

plt.figure(4,figsize=(10.24,8))
plt.barh(fnames,scores)

plt.grid()
plt.savefig(resultpath+’myfeatures_importance.png’)
plt.clfQ)

261

except Exception as e:
print (’error occur in selecting best features’)
print (e)

def go(unwanted=[],src=’’,results=’’):
if not os.path.exists(results):
os.makedirs(results)
print (results,’created’)
my_train(unwanted,src,results)

#Keystroke

def tobi(strr):
if strr==’true’:
return 1
else:
return O

def iskeyX(d):
if d!="":
if d[-1].isupper() and len(d)==4:
return True

def switch(d):
if 4!="":
if d[-1].isupper() and len(d)==4:
return d[-1]
elif d==’Backspace’:
return ’Back’
else:
return d
else:
return d

def is_bp(k):
bad = [’Backspace’,’Arrow’,’keycode’,’Volume’]
for b in bad:
if b in k[3]:
return True
return False

def train_n_testvesion(n=4):
path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/samples/’
feat_path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/features/’
dest =
’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Keystroke/’+str(n)+’ _graphs/XGB/’
if not os.path.exists(dest):

262

os.makedirs(dest)

print (dest,’created’)
newh = dest
users = os.listdir(feat_path)

#frequently used keys: k_keys
f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZ’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,
’KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]
x=[]
y=0[
X=[]
¥=[]
for user in users[:]:
file = path+user+’/’+user+’_keystroke_train.csv’
name = user.split(’_’)[0]
with open(file,’r’,encoding=’UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist()
out = []
temp=[]
the_data= []
for i in datall:]:
if len(temp) ==
temp.append (i)
#print (0,i[3])
else:
d=i[3]
if int(i[2])-int(i[1])<10000 and int(i[2])-int(i[1])>0 and
d!=’’ and d!=’ArrowRight’ and d!=’ArrowLeft’ and
d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and
’Volume’ not in d:

if int(i[1])-int(temp[-1][1]1)<1000:
#if int(i[1])-int(temp[-1][1])<1000 and d in f_keys:

temp.append (i)

#print (’<1000’,i[3])
else:

out .append (temp)

X.append (temp)

Y.append (name)

temp=[]

temp.append (i)

print (len(X),len(Y))

X_train,X_test,Y_train,Y_test =

263

train_test_split(X,Y,test_size=0.2,stratify=Y,random_state=1)

x_train=[]
x_test=[]
y_train=[]
y_test=[]

#for sample_set in
[[X_train,Y_train,x_train,y_train], [X_test,Y_test,x_test,y_test]]:
for d,name in zip(X_train,Y_train):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int (d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []
uD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int (d[i+j] [2])-int (d[i+j][1]))
caps.append (tobi(d[i+j]1[-1]1))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [1]))
UU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [11))
UD.append(int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

my_feature=c[:]
Xx_train.append(my_feature)
#x.append([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])
y_train.append(name)

temp2=my_featurel[:]

temp2.append(name)

the_data.append(temp2)

264

#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’ ,header=0,index=False)

print (’Training Data extraction completed’,len(y_train),’samples
involved’)

unwanted=[]

#x = np.delete(x,unwanted,axis=1)

#print (np.unique(y))

labelencod = preprocessing.LabelEncoder () .fit(y_train)

#y = labelencod.transform(y)
x_train = np.delete(x_train,unwanted,axis=1)
y_train = labelencod.transform(y_train)

for d,name in zip(X_test,Y_test):
#for d in out:
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []
UD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j][2])-int(d[i+j][1]))
caps.append(tobi(d[i+j]1[-11))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [1]))
UU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts
my_feature=c[:]

X_test.append (my_feature)
#x.append ([firstduration,secondduration,DDtime,UUtime,DUtime,UDtime])

265

y_test.append(name)
temp2=my_featurel[:]
temp2.append(name)

the_data.append(temp2)
#pd.DataFrame (the_data) .to_csv(feat_path+name+’trigraph.csv’,header=0,index=False)
print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

unwanted=[]

x_test = np.delete(x_test,unwanted,axis=1)
y_test labelencod.transform(y_test)

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:

print (’XGB fitting started’)

#cross_val = StratifiedKFold(n_splits=cvs)

clf =

XGBClassifier(objective=’multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=600,
max_depth = 5,min_child_weight=5,
)

#clf = 1gb.LGBMClassifier()

features_impts = []

myweights,mychanges = myweight (y_train)
print (myweights,mychanges)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf.fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()

pred_prob = np.array(pre_temp)

labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)

266

except Exception as e:
print (e)
#print (folder)
return ’bad’

myweights_total,mychanges=myweight (y)
theweights.append (myweights_total)

head = np.array(theweights[0] .keys())

print (head)

#heads = labelencod.inverse_transform(head).tolist()
heads = names.tolist()

weights=pd.DataFrame (theweights)

weights = np.array(weights) .tolist()

weights.insert (0,heads)

weights=pd.DataFrame (weights)

dic = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))
for i in list(labelset):
dic[il=[]
#dic2[i]=[]
for i in range(len(y_test)):
dic[y_test[i]].append(pred_prob[il])
pred_probtemp = []
y_testtemp = []
for i in dic:
#ypred=[]
#ytrue=[]
for j in dic[i]:
pred_probtemp.append(j)
y_testtemp.append (i)
#ypred.append(j.tolist().index(j.max()))
#ytrue.append (i)
#dic2[names[i]]=[ypred,ytruel

#everyone=[]

pred_prob = pred_probtempl[:]
y_test = y_testtempl[:]

probs =

pd.concat ([pd.DataFrame (pred_prob) ,pd.DataFrame(y_test)],axis=1)
probs.to_csv(dest+’ks_probabilities.csv’,header=0,index=False)

outs = []

267

f1_micro=[]
f1_macro=[]

precision_micro=[]
precision_macro=[]

recall_micro=[]
recall_macro=[]
times = []

accuracy = []
rpt = []
fis = []

for i in range(1,32,1):

y_pred = []

y_true = []

for j in range(len(y_test)-i+1):

if y_test[jl==y_test[j+i-1]:

#y_pred_byprob=sum(np.array(pred_prob[j:j+i]),axis=0)
y_pred_byprob=sum(np.array(pred_prob[j:j+i]) ,axis=0)
y_pred.append(y_pred_byprob.tolist () .index (y_pred_byprob.max()))
y_true.append(y_test[j])

#y_true = labelencod.inverse_transform(y_true)

#y_pred = labelencod.inverse_transform(y_pred)

outs.append ([
#°%.2f % (f1_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’%(f1_score(y_true,y_pred,average=’macro’,zero_division=0))),
float (’%.3f’%(f1_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

#°%.2f % (precision_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f % (precision_score(y_true,y_pred,average=’"macro’,zero_division=0))),

float(’%.3f’% (precision_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

#°%.2f % (recall_score(y_true,y_pred,average="micro’)*100),
float(’%.3f’%(recall_score(y_true,y_pred,average=’macro’,zero_division=0))),

float(’%.3f’%(recall_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P

>

float(’%.3f’%(accuracy_score(y_true,y_pred))),

ID)
f1s.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0))
f1_micro.append(f1_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
f1_macro.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)

precision_micro.append(precision_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
precision_macro.append(precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)

recall_micro.append(recall_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
recall_macro.append(recall_score(y_true,y_pred,average='macro’,zero_division=0)*100)
accuracy . append (accuracy_score(y_true,y_pred)*100)

times.append (i)

268

#newh = ’C:/Workspace/Python/mouse
sets/Bogazici/browsing/combined_Train_LegalInternal/final_results_cv/3_timesIQR/0+/’+cata+’/

if i==1:
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
rpt = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (rpt) .T.to_csv(newh+str(i)+’/’+str(i)+’ks_classification_report.csv’,header=0, inde
print (classification_report(y_true,y_pred))
print (labelencod.inverse_transform(clf.classes_))

if (i+4)/5==int((i+4)/5):
if not os.path.exists(newh+str(i)+’/’):
os.makedirs (newh+str(i)+’/’)
cm_old = confusion_matrix(y_true, y_pred)
cm = np.array(pd.DataFrame(cm_old)).tolist()

cm_=[]
for k in cm:
temp=[]

for j in k:
temp.append (float (’%.1£°%(100%j/sum(k))))
cm_. append (temp)
cm =mat (cm_.copy())

report = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+str(i)+’/’+str(i)+’ks_classification_report.csv’,header=0,:

plt.figure(1,figsize=(10.24,8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues,include_values=False,ax=axl)
plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm.png’)

plt.clf()

plt.figure(3,figsize=(10.24,8))

ax3 = plt.axes()

disp3 =
ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=heads)

disp3.plot(cmap=plt.cm.Blues,include_values=True,ax=ax3)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm_newnew.png’)

plt.clf()

plt.figure(4,figsize=(10.24,8))

ax4 = plt.axes()

disp4 =
ConfusionMatrixDisplay(confusion_matrix=cm_old,display_labels=heads)

disp4.plot(cmap=plt.cm.Blues,include_values=True,ax=ax4)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm_newnewnew.png’)

269

plt.clf()

#np.set_printoptions(precision=2)

cm_normalized = confusion_matrix(y_true,
y_pred,normalize=’true’)

cm_n = mat(np.round(cm_normalized,3))

plt.figure(5,figsize=(10.24,8))

axb = plt.axes()

dispb =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

disp5.plot (cmap=plt.cm.Blues,include_values=True,ax=ax5)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm_newnewnew2.png’)

plt.clf()

#np.set_printoptions(precision=2)

cm_normalized2 = confusion_matrix(y_true,
y_pred,normalize="pred’)

cm_n = mat(np.round(cm_normalized2,3))

plt.figure(6,figsize=(10.24,8))

ax6 = plt.axes()

disp6 =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)

disp6.plot (cmap=plt.cm.Blues,include_values=True,ax=ax6)

plt.savefig(newh+str(i)+’/’+str(i)+’ks_cm_newnewnew3.png’)

plt.clf(Q)

print (pd.DataFrame(outs))

plt.figure(33,figsize=(10.24,8))

ax2 = plt.axes()
plot_importance(clf,ax=ax2,importance_type=’gain’)
plt.savefig(newh+’ks_FI.png’)

plt.clf()

print (featurescore)
plt.show()

plt.figure(34,figsize=(10.24,8))
#print (f1_macro,np.min(f1_macro))
#print

(int (np.min([np.min(f1_macro) ,np.min(precision_macro) ,np.min(recall_macro) ,np.min(accuracy)])))
myyticks = [i for i in range(0,100,5)]
myxticks = [i for i in range(1,31,1)]
plt.yticks(myyticks)
#plt.xticks (myxticks)
plt.plot(times,fl_macro,label="f1_macro’)
#plt.plot(times,fl_micro,label="f1_micro’)
plt.plot(times,precision_macro,label=’precision_macro’)

270

#plt.plot(times,precision_micro,label=’precision_micro’)
plt.plot(times,recall_macro,1abel=’recall_macro’)
#plt.plot(times,recall_micro,label="recall_micro’)
plt.plot(times,accuracy,label=’accuracy’)

plt.legend()

plt.grid()

pd.DataFrame (outs) .to_csv(newh+’ks_30times.csv’ ,header=0,index=False)

#return fls
plt.savefig(newh+’ks_overall.png’)
plt.clf()

print (type(xrpt).__
#plot_importance (clf)
#plt.show()

return [fls,pd.DataFrame(outs),probs]

name__)

def extractfeatures_keystroke():
path = ’C:/Zhaoyi_Fan/Dataset/’
dest = path
if not os.path.exists(dest):
os.makedirs(dest)
print (dest,’created’)

file = path+’keystroke_example.csv’
name ’keystroke_example’

#frequently used keys: k_keys

f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZ’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,
’KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]

x=[]

y=0[

X=[]

¥=[]

with open(file,’r’,encoding="UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist () [1:]
out = []
temp=[]
the_data= []
for i in data[l:]:

if len(temp) == 0:
temp.append (i)

271

else:

d=i[3]
if int(i[2]1)-int(i[1]1)<10000 and int(i[2])-int(i[1]1)>0 and
d!=’’ and d!=’ArrowRight’ and d!=’ArrowLeft’ and

d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and
’Volume’ not in d:

if int(i[1])-int(temp[-1][1])<1000:
temp.append (i)
else:
out . append (temp)
X.append (temp)
Y.append (name)
temp=[]
temp.append (i)
n=4
for d,name in zip(X,Y):
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []
uD = [1
caps=[]
shifts=[]

for j in range(n):
durations.append(int (d[i+j] [2])-int (d[i+j][1]))
caps.append (tobi(d[i+j]1[-1]1))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))

for ¢ in combo:
DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [1]))
UU.append(int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts
my_feature=c[:]

the_data.append (my_feature+[name])
pd.DataFrame (the_data) .to_csv(dest+’keystroke_example_features.csv’,header=0,index=False)

272

print (’data extraction completed’,len(the_data),’samples involved’)

def combo_trainingset():
path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/’

#tkeystroke### R HH A R

#frequently used keys: k_keys

f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
’KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZ’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,
’KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]

x=[]

y=[]

x=[]

Y=[]

n=4
dest = ’C:/Zhaoyi_Fan/Dataset/Combo/training/results’
if not os.path.exists(dest):

os.makedirs(dest)

print (dest,’created’)

path_ks = path+’samples/’
users = os.listdir(path_ks)
for user in users[:]:
file = path_ks+user+’/’+str(user)+’_keystroke_train.csv’
name = user.split(’_’)[0]
with open(file,’r’,encoding="UTF-8’) as f:
data = np.array(pd.DataFrame(csv.reader(f))).tolist()
out = []
temp=[]
the_data= []
for i in data[1l:]:

if len(temp) ==
temp.append (i)
#print (0,i[3])
else:
d=i[3]
if int(i[2]1)-int(i[1]1)<10000 and int(i[2])-int(i[1])>0 and
d!=’’ and d!=’ArrowRight’ and d!=’ArrowLeft’ and
d!=’ArrowDown’ and d!=’ArrowUp’ and d!=’keycode’ and
’Volume’ not in d:

if int(i[1])-int(temp[-1]1[1]1)<1000:

273

#if int(i[1])-int(temp[-1][1])<1000 and d in f_keys:

temp.append (i)

#print (°<1000’,i[3])
else:

out .append (temp)

X.append (temp)

Y. append (name)

temp=[]

temp.append (i)

X_train,X_test,Y_train,Y_test =
train_test_split(X,Y,test_size=0.2,stratify=Y,random_state=1)

x_train=[]
x_test=[]
y_train=[]
y_test=[]

for d,name in zip(X_train,Y_train):
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):

if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False

if boolean:

durations = []

DD = []
uu = []
DU = []
U = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j][2])-int(d[i+j][1]1))
caps.append(tobi(d[i+j]1[-11))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [11))
UU.append(int (d[c[1]+i] [2])-int (d[c[0]+i] [2]))
DU.append (int(d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts

274

my_feature=c[:]
Xx_train.append (my_feature)
y_train.append(name)

print (’Keystroke Training Data extraction
completed’,len(y_train),’samples involved’)

unwanted=[]

labelencod = preprocessing.LabelEncoder().fit(y_train)

x_train = np.delete(x_train,unwanted,axis=1)
y_train = labelencod.transform(y_train)

for d,name in zip(X_test,Y_test):
if len(d)>n-1:
for i in range(len(d)-n+1):
boolean = True
for boo in range(n-1):
if int(d[i+1+boo] [1])-int(d[i+boo] [1])<=0:
boolean=False
if boolean:
durations = []

DD = []
uu = [1
DU = []
UD = []
caps=[]
shifts=[]

for j in range(n):
durations.append(int(d[i+j][2])-int(d[i+j][1]))
caps.append(tobi(d[i+j]1[-11))
shifts.append(tobi(d[i+j][-2]))

combo = list(combinations(np.arange(n),2))
for ¢ in combo:

DD.append (int (d[c[1]+i] [1])-int (d[c[0]+i] [11))
UU.append(int (d[c[1]+i] [2])-int(d[c[0]+i] [2]))
DU.append (int (d[c[1]+i] [2])-int (d[c[0]+i] [1]))
UD. append(int(d[c[1]+i] [1])-int(d[c[0]+i] [2]))

¢ = durations+DD+UU+DU+UD+caps+shifts
my_feature=c[:]
X_test.append (my_feature)

y_test.append (name)

print (’Keystroke Testing Data extraction
completed’,len(y_test),’samples involved’)

275

unwanted=[]

x_test np.delete(x_test,unwanted,axis=1)
y_test = labelencod.transform(y_test)

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:

print (’XGB fitting started’)

#cross_val = StratifiedKFold(n_splits=cvs)

clf =

XGBClassifier(objective=’"multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.2,n_estimators=600,
max_depth = 4,min_child_weight=3,
)

#clf = 1gb.LGBMClassifier()

features_impts = []

myweights,mychanges = myweight (y_train)
#print (myweights,mychanges)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf .fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()
print (’ks:’,clf.classes_)

pred_prob = np.array(pre_temp)

labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)

except Exception as e:
print (e)
#print (folder)
return ’bad’

myweights_total,mychanges=myweight (y)

theweights.append (myweights_total)
head = np.array(theweights[0] .keys())

276

print (head)

#theads = labelencod.inverse_transform(head) .tolist ()
heads = names.tolist()

weights=pd.DataFrame (theweights)

weights = np.array(weights).tolist()
weights.insert(0,heads)

weights=pd.DataFrame (weights)

dic_ks = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))
labelset = sorted(list(labelset))
print (labelset)
for i in list(labelset):
dic_ks[i]=[]
#dic2[il=[]
for i in range(len(y_test)):
dic_ks[y_test[i]].append(pred_prob[i])
pred_probtemp = []
y_testtemp = []
for i in labelset:
for j in dic_ks[i]:
pred_probtemp.append(j)
y_testtemp.append(i)

pred_prob_ks = pred_probtemp[:]
y_test_ks = y_testtempl[:]

#Mouse
H#HHHH RS R R RGBSR H RS H R RS R R R R R R
path_mouse = path+’features/’
users = os.listdir(path_mouse)
x=[]
y=0[
for user in users[:]:
file
=’C:/Zhaoyi_Fan/Dataset/Combo/training/features/’+user+’/’+str(user)+’ _mouse_train_features.
name = user.split(’_’)[0]
try:
with open(file,’r’,encoding=’"UTF-8’) as f:
d = np.array(pd.DataFrame(csv.reader(f))).tolist()
except:
print (file)

with open(file,’r’,encoding="UTF-8’) as f:
d = np.array(pd.DataFrame(csv.reader(f))).tolist()

try:
ss1 = float(d[0][0])
ss2 = float(d[0][1])

277

except:
continue
#d = np.delete(d,unwanted,axis=1)
for i in d:
temp = []
if float(i[1])<1500 and float(i[3])/(float(i[0])-2)<0.2 and
float(i[6])<2 and float(i[22])<2000 and float(i[20])<10
and float(i[-5]1)/(float(i[0])-2)<0.2: # and
float (i[3])/(float (i[0])-2)<0.3333:
for j in i[:-1]:
temp.append(float(j))
x.append (temp)
y.append(i[-1].split(’_’) [0])
print (’Mouse Data extraction completed’,len(y),’samples involved’)

try:
x = np.delete(x,unwanted,axis=1)

#labelencod = preprocessing.LabelEncoder().fit(y)
y = labelencod.transform(np.array(y))

x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.2,stratify=y,random_state=1)

except Exception as e:
print (e)

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:
print (’XGB fitting started’)
#cross_val = StratifiedKFold(n_splits=cvs)
clf =

XGBClassifier(objective="multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=500,

max_depth = 4,min_child_weight=3,

)

features_impts = []
myweights,mychanges = myweight (y_train)
class_weights =

class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)

278

clf . fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)

print (’XGB predicting started’)

pre_temp = clf.predict_proba(x_test)

print (’XGB predicting completed’)

featurescore = clf.feature_importances_.tolist()

pred_prob = np.array(pre_temp)

#print (clf.classes_)

#return

labelset = np.unique(y_test)

names = labelencod.inverse_transform(labelset)

y_pred2 = np.argmax(pred_prob, axis=1)

y_pred2 = clf.classes_[y_pred2]

except Exception as e:
print (e)
print (folder)
return ’bad’

#return
myweights_total,mychanges=myweight (y)
theweights.append (myweights_total)
head = np.array(theweights[0].keys())
#print (head)

#heads = labelencod.inverse_transform(head) .tolist()
heads = names.tolist()
weights=pd.DataFrame (theweights)
weights = np.array(weights).tolist()
weights.insert(0,heads)
weights=pd.DataFrame (weights)

dic_mouse = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))

for i in list(labelset):
dic_mouse[i]=[]
#dic2[il=[]
for i in range(len(y_test)):
dic_mouse[y_test[i]] .append(pred_prob[i])
pred_probtemp = []
y_testtemp = []
for i in dic_mouse:
for j in dic_mouse[i]:
pred_probtemp.append(j)
y_testtemp.append (i)

279

pred_prob_mouse = pred_probtemp[:]
y_test_mouse = y_testtempl[:]

outs = []
f1_micro=[]
f1_macro=[]

precision_micro=[]
precision_macro=[]

recall_micro=[]
recall_macro=[]
times = []

accuracy = []

rpt = []

fis = []

print (clf.classes_)

print (len(y_test_mouse),len(y_test_ks))
ratio = len(y_test_ks)/len(y_test_mouse)

#return
for ks in range(1,30,1):
for mo in range(1,30,1):
y_pred,y_true = [1,[]
y_pr_k = []
y-prm = []
y_true_m = []
y_true_k = []
for cla in dic_mouse:
prob_mouse = dic_mouse[cla]
prob_ks = dic_ks[clal
ratio = len(prob_ks)/len(prob_mouse)

if ratio>=1:
for m in range(len(prob_mouse)-mo+1):
y_pred_byprob_mouse =
sum(np.array (prob_mouse [m:m+mo]) ,axis=0)
y_pr_m.append (y_pred_byprob_mouse.tolist().index (y_pred_byprob_mouse.max()))
y_true_m.append(cla)
for k in range(int(m*ratio),int(m*ratio+ratio),1):
if k+ks<len(prob_ks):
y_pred_byprob_ks =
sum(np.array (prob_ks [k:k+ks]) ,axis=0)
y_pr_k.append(y_pred_byprob_ks.tolist () .index(y_pred_byprob_ks.max()))
y_true_k.append(cla)
y_pred_byprob =
np.array(y_pred_byprob_ks)+np.array(y_pred_byprob_mouse)
y_pred.append(y_pred_byprob.tolist() .index(y_pred_byprob.max()))

280

y_true.append(cla)
else:
for k in range(len(prob_ks)-ks+1):
y_pred_byprob_ks = sum(np.array(prob_ks[k:k+ks]),axis=0)
y_pr_k.append(y_pred_byprob_ks.tolist () .index(y_pred_byprob_ks.max()))
y_true_k.append(cla)
for m in range(int(k*ratio),int (k*ratio+ratio),1):
if m+mo<len(prob_mouse) :
y_pred_byprob_mouse =
sum(np.array (prob_ks [m:m+mo]) ,axis=0)
y_pr_m.append (y_pred_byprob_mouse.tolist () .index(y_pred_byprob_mouse.max()))
y_true_m.append(cla)

y_pred_byprob =

np.array(y_pred_byprob_ks)+np.array(y_pred_byprob_mouse)
y_pred.append (y_pred_byprob.tolist () .index(y_pred_byprob.max()))
y_true.append(cla)

outs.append([ks,mo,
#°%.2f%(f1_score(y_true,y_pred,average=’micro’)*100),
float(’%.2f°%(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)),
float(’%.2f°%(f1_score(y_true,y_pred,average=’weighted’,zero_division=0)%*100)),

P

>

#°%.2f % (precision_score(y_true,y_pred,average=’micro’)*100),
float(’%.2f % (precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)),
float(’%.2f % (precision_score(y_true,y_pred,average=’weighted’ ,zero_division=0)*100)),

P
>

#°%.2f % (recall_score(y_true,y_pred,average="micro’)*100),
float (’%.2f’%(recall_score(y_true,y_pred,average="macro’,zero_division=0)*100)),
float(’%.2f°%(recall_score(y_true,y_pred,average=’weighted’,zero_division=0)%*100)),

P
>

float (’%.2f’%(accuracy_score(y_true,y_pred)*100)),

D
f1s.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0))
f1_micro.append(f1_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
f1_macro.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
precision_micro.append(precision_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
precision_macro.append(precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
recall_micro.append(recall_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
recall_macro.append(recall_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
accuracy.append (accuracy_score(y_true,y_pred)*100)
times.append([ks,mo])
#newh = ’C:/Workspace/Python/mouse

sets/Bogazici/browsing/combined_Train_Legallnternal/final_results_cv/3_timesIQR/0+/’+cata

newh = ’C:/Zhaoyi_Fan/Dataset/Combo/training/results/combo/’
if not os.path.exists(newh+str(ks)+’_’+str(mo)+’/’):
os.makedirs (newh+str(ks)+’_’+str(mo)+’/’)
if ks==mo==1:

if not os.path.exists(newh+str(ks)+’_’+str(mo)+’/’):

281

if

os.makedirs (newh+str(ks)+’_’+str(mo)+’/’)
rpt = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
#pd.DataFrame (rpt) .T.to_csv(newh+str(i)+’/’+str(i)+’_classification_report.csv’,header=0,in
print (’ks:’,ks,’mouse:’,mo)
print (classification_report(y_true,y_pred))
#print (labelencod.inverse_transform(clf.classes_))
#print (classification_report(y_true_k,y_pr_k))
#print (classification_report(y_true_m,y_pr_m))

(ks+2) /3==int ((ks+2)/3) or (mo+2)/3==int((mo+2)/3):

if not os.path.exists(newh+str(ks)+’_’+str(mo)+’/’):
os.makedirs (newh+str(ks)+’_’+str(mo)+’/’)

pd.DataFrame (outs) .to_csv(newh+str(ks)+’_’+str(mo)+’/’+str(ks)+’ _’+str(mo)+’combo_30times_x
cm_old = confusion_matrix(y_true, y_pred)
cm = np.array(pd.DataFrame(cm_o0ld)) .tolist()

cm_=[]
for k in cm:
temp=[]

for j in k:
temp.append(float (’%.1£°%(100*j/sum(k))))
cm_.append (temp)
cm =mat (cm_.copy())

report = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+str(ks)+’ _’+str(mo)+’/’+str(ks)+’_’+str(mo)+’_classifics

plt.figure(1,figsize=(10.24,8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues,include_values=False,ax=ax1)
plt.savefig(newh+str(ks)+’_’+str(mo)+’/’+str(ks)+’_’+str(mo)+’ _cm.png’)
plt.clf()

plt.figure(3,figsize=(10.24,8))
ax3 = plt.axes()
disp3 =

ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=heads)
disp3.plot(cmap=plt.cm.Blues,include_values=True,ax=ax3)
plt.savefig(newh+str(ks)+’_’+str(mo)+’/’+str(ks)+’_’+str(mo)+’ _cm_newnew.png’)
plt.clf()

plt.figure(4,figsize=(10.24,8))

ax4 = plt.axes()

disp4 =
ConfusionMatrixDisplay(confusion_matrix=cm_old,display_labels=heads)

disp4.plot(cmap=plt.cm.Blues,include_values=True,ax=ax4)

282

plt.savefig(newh+str(ks)+’_’+str(mo)+’/’+str(ks)+’_’+str(mo)+’_cm_newnewnew.png’)
plt.clf()

#np.set_printoptions(precision=2)
cm_normalized = confusion_matrix(y_true,
y_pred,normalize=’true’)
cm_n = mat(np.round(cm_normalized,3))
plt.figure(5,figsize=(10.24,8))
ax5 = plt.axes()
dispb =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)
disp5.plot(cmap=plt.cm.Blues,include_values=True,ax=ax5)
plt.savefig(newh+str(ks)+’ _’+str(mo)+’/’+str(ks)+’_’+str(mo)+’ _cm_newnewnew2.png’)
plt.clf()

#np.set_printoptions(precision=2)
cm_normalized2 = confusion_matrix(y_true,
y_pred,normalize=’pred’)
cm_n = mat(np.round(cm_normalized2,3))
plt.figure(6,figsize=(10.24,8))
ax6 = plt.axes()
disp6 =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)
disp6.plot (cmap=plt.cm.Blues,include_values=True,ax=ax6)
plt.savefig(newh+str(ks)+’ _’+str(mo)+’/’+str(ks)+’_’+str(mo)+’ _cm_newnewnew3.png’)
plt.clf()

print (pd.DataFrame(outs))
pd.DataFrame (outs) .to_csv(newh+’ combo_train_30times_report.csv’,index=False,header=False)
def combo_testing_set():
#keystroke###H#HHHHHHHHHHHHE R
#frequently used keys: k_keys
f_keys = [’Space’, ’Backspace’, ’KeyI’, ’KeyA’, ’KeyN’, ’KeyE’,
’Key0’, ’KeyU’, ’KeyH’, ’Enter’, ’KeyG’, ’KeyS’, ’KeyC’, ’KeyD’,
'KeyT’, ’KeyL’, ’KeyR’, ’KeyY’, ’KeyM’, ’ShiftLeft’, ’Digitl’,
’KeyB’, ’Digit0’, ’KeyZ’, ’Digit2’, ’KeyJ’, ’KeyW’, ’KeyX’,

'KeyP’, ’KeyF’, ’KeyV’, ’Digit3’, ’KeyK’, ’Period’, ’Digit9’,
’KeyQ’, ’Digit4’, ’Digit6’, ’Digit7’, ’Equal’, ’Comma’, ’Minus’]

x_train,y_train,x_test,y_test=[1,[],[],[]

n=4

283

newh = ’C:/Zhaoyi_Fan/Dataset/Combo/testing/results/combo/’
if not os.path.exists(newh):

os.makedirs (newh)

print (newh,’created’)

training_path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/features/’
testing_path = ’C:/Zhaoyi_Fan/Dataset/Combo/testing/features/’
test_path = testing_path
train_path = training_path
users = os.listdir(training_path)
for user in users:
file = training_path+user+’/’+user+’_keystroke_train_features.csv’
with open(file,’r’,encoding=’"UTF-8’) as f:
df = pd.DataFrame(csv.reader(f)).iloc[:,:-1]
data = np.array(df,dtype=np.float64)
for i in data:
x_train.append(i)
y_train.append (user)

file = testing_path+user+’/’+user+’_keystroke_test_features.csv’
with open(file,’r’,encoding=’UTF-8’) as f:

df = np.array(pd.DataFrame(csv.reader(f)).iloc[:,:-1])

data = np.array(df,dtype=np.float64)
for i in data:

x_test.append (i)

y_test.append(user)

unwanted=[]

print (’Training Data extraction completed’,len(y_train),’samples
involved’)

print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

labelencod = preprocessing.LabelEncoder().fit(y_train)

x_train = np.delete(x_train,unwanted,axis=1)

x_test = np.delete(x_test,unwanted,axis=1)

y_train = labelencod.transform(y_train)
y_test = labelencod.transform(y_test)
pred_prob=[]

featurescore=[]

mychanges = []
theweights = []

try:
print (’XGB fitting started’)

284

#cross_val = StratifiedKFold(n_splits=cvs)
clf =
XGBClassifier(objective=’multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=600,
max_depth = 5,min_child_weight=5,
)

#clf = 1gb.LGBMClassifier()

features_impts = []

myweights,mychanges = myweight (y_train)
#print (myweights,mychanges)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf .fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()
print (’ks:’,clf.classes_)

pred_prob = np.array(pre_temp)

labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)

except Exception as e:
print (e)
#print (folder)
return ’bad’

myweights_total,mychanges=myweight (y)
theweights.append(myweights_total)

head = np.array(theweights[0].keys())

print (head)

#heads = labelencod.inverse_transform(head).tolist()
heads = names.tolist()

weights=pd.DataFrame (theweights)

weights = np.array(weights).tolist()
weights.insert(0,heads)

weights=pd.DataFrame (weights)

dic_ks = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))

labelset = sorted(list(labelset))

print (labelset)

285

for i in list(labelset):
dic_ks[i]=[]
#dic2[i]=[]
for i in range(len(y_test)):
dic_ks[y_test[i]].append(pred_probl[il)
pred_probtemp = []
y_testtemp = []
for i in labelset:
for j in dic_ks[i]:
pred_probtemp.append(j)
y_testtemp.append (i)

pred_prob_ks = pred_probtempl[:]
y_test_ks = y_testtempl[:]

#Mouse
HESHH R

x=[]
y=[]
x_train,y_train,x_test,y_test=[1,[1,[1,0]

training_path = ’C:/Zhaoyi_Fan/Dataset/Combo/training/features/’
testing_path = ’C:/Zhaoyi_Fan/Dataset/Combo/testing/features/’
users = os.listdir(training_path)
for user in users:
file = training path+user+’/’+user+’ _mouse_train_features.csv’
with open(file,’r’,encoding=’"UTF-8’) as f:
df = pd.DataFrame(csv.reader(f)).iloc[:,:-1]
data = np.array(df,dtype=np.float64)
for i in data:
x_train.append(i)
y_train.append(user)

file = test_path+user+’/’+user+’_mouse_test_features.csv’
with open(file,’r’,encoding=’UTF-8’) as f:
df = np.array(pd.DataFrame(csv.reader(f)).iloc[:,:-1])
data = np.array(df,dtype=np.float64)
for i in data:
x_test.append (i)
y_test.append(user)

unwanted=[]

print (’Training Data extraction completed’,len(y_train),’samples
involved’)

print (’Testing Data extraction completed’,len(y_test),’samples
involved’)

labelencod = preprocessing.LabelEncoder().fit(y_train)

x_train = np.delete(x_train,unwanted,axis=1)

286

x_test = np.delete(x_test,unwanted,axis=1)

y_train = labelencod.transform(y_train)
y_test = labelencod.transform(y_test)

pred_prob=[]
featurescore=[]

mychanges = []
theweights = []

try:

print (’XGB fitting started’)

#cross_val = StratifiedKFold(n_splits=cvs)

clf =

XGBClassifier(objective=’"multi:softprob’,use_label_encoder=False,

eval_metric=’mlogloss’,tree_method=’gpu_hist’,
learning_rate=0.3,n_estimators=600,
max_depth = 5,min_child_weight=3,
)

features_impts = []

myweights,mychanges = myweight (y_train)
class_weights =
class_weight.compute_sample_weight (myweights,y_train)
print (’XGB fitting started’,len(y_train), ’samples involved’)
clf.fit(x_train,y_train,sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()

pred_prob = np.array(pre_temp)

#print (clf.classes_)

#return

labelset = np.unique(y_test)

names = labelencod.inverse_transform(labelset)

y_pred2 = np.argmax(pred_prob, axis=1)
y_pred2 = clf.classes_[y_pred2]
except Exception as e:
print (e)
print (folder)

return ’bad’

#return

287

myweights_total,mychanges=myweight (y)
theweights.append (myweights_total)

head = np.array(theweights[0].keys())

#print (head)

#theads = labelencod.inverse_transform(head) .tolist ()
heads = names.tolist()

weights=pd.DataFrame (theweights)

weights = np.array(weights).tolist()
weights.insert(0,heads)

weights=pd.DataFrame (weights)

dic_mouse = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
#print (list(labelset))

for i in list(labelset):
dic_mouse[i]=[]
#dic2[i]=[]
for i in range(len(y_test)):
dic_mouse[y_test[i]].append(pred_prob[i])
pred_probtemp = []
y_testtemp = []
for i in dic_mouse:
for j in dic_mouse[i]:
pred_probtemp.append(j)
y_testtemp.append (i)

pred_prob_mouse = pred_probtempl[:]
y_test_mouse = y_testtemp[:]

outs = []
f1_micro=[]
f1_macro=[]

precision_micro=[]
precision_macro=[]

recall_micro=[]
recall_macro=[]
times = []

accuracy = []

rpt = []

fis = []

print (clf.classes_)

print (len(y_test_mouse),len(y_test_ks))
ratio = len(y_test_ks)/len(y_test_mouse)

#return
for ks in range(1,30,1):

288

for mo in range(1,30,1):
y_pred,y_true = [1,[]
y_pr_k = []
y-prom = []
y_true_m = []
y_true_k []
for cla in dic_mouse:
prob_mouse = dic_mousel[cla]
prob_ks = dic_ks[cla]
ratio = len(prob_ks)/len(prob_mouse)

if ratio>=1:
for m in range(len(prob_mouse)-mo+1):
y_pred_byprob_mouse =
sum(np.array (prob_mouse [m:m+mo]) ,axis=0)
y_pr_m.append (y_pred_byprob_mouse.tolist () .index(y_pred_byprob_mouse.max()))
y_true_m.append(cla)
for k in range(int(m*ratio),int(m*ratio+ratio),1):
if k+ks<len(prob_ks):
y_pred_byprob_ks =
sum(np.array (prob_ks [k:k+ks]) ,axis=0)
y_pr_k.append(y_pred_byprob_ks.tolist () .index(y_pred_byprob_ks.max()))
y_true_k.append(cla)
y_pred_byprob =
np.array(y_pred_byprob_ks)+np.array(y_pred_byprob_mouse)
y_pred.append(y_pred_byprob.tolist() .index(y_pred_byprob.max()))
y_true.append(cla)
else:
for k in range(len(prob_ks)-ks+1):
y_pred_byprob_ks = sum(np.array(prob_ks[k:k+ks]),axis=0)
y_pr_k.append(y_pred_byprob_ks.tolist () .index(y_pred_byprob_ks.max()))
y_true_k.append(cla)
for m in range(int(k*ratio),int (k*ratio+ratio),1):
if m+mo<len(prob_mouse) :
y_pred_byprob_mouse =
sum(np.array (prob_ks [m:m+mo]) ,axis=0)
y_pr_m.append (y_pred_byprob_mouse.tolist () .index(y_pred_byprob_mouse.max()))
y_true_m.append(cla)

y_pred_byprob =

np.array(y_pred_byprob_ks)+np.array(y_pred_byprob_mouse)
y_pred.append(y_pred_byprob.tolist () .index(y_pred_byprob.max()))
y_true.append(cla)

outs.append([ks,mo,
#°%.2£°%(f1_score(y_true,y_pred,average=’micro’)*100),
float (’%.3f’%(f1_score(y_true,y_pred,average=’macro’,zero_division=0))),
float(’%.3f’%(f1_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

289

#°%.2f % (precision_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’%(precision_score(y_true,y_pred,average=’macro’,zero_division=0))),
float(’%.3f % (precision_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

#°%.2f % (recall_score(y_true,y_pred,average=’micro’)*100),
float(’%.3f’%(recall_score(y_true,y_pred,average=’macro’,zero_division=0))),
float (’%.3f’%(recall_score(y_true,y_pred,average=’weighted’,zero_division=0))),

P
>

float(’%.3f’%(accuracy_score(y_true,y_pred))),

D
f1s.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0))
f1_micro.append(f1_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
f1_macro.append(f1_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
precision_micro.append(precision_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
precision_macro.append(precision_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
recall_micro.append(recall_score(y_true,y_pred,average=’micro’,zero_division=0)*100)
recall_macro.append(recall_score(y_true,y_pred,average=’macro’,zero_division=0)*100)
accuracy.append (accuracy_score(y_true,y_pred)*100)
times.append([ks,mo])

if not os.path.exists(newh+str(ks)+’_’+str(mo)+’/’):

os.makedirs (newh+str(ks)+’_’+str(mo)+’/’)

if ks==mo==1:
if not os.path.exists(newh+str(ks)+’_’+str(mo)+’/’):

os.makedirs (newh+str(ks)+’_’+str(mo)+’/’)

rpt = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
#pd.DataFrame (rpt) .T.to_csv(newh+str(i)+’/’+str(i)+’_classification_report.csv’,header=0,in
print (’ks:’,ks,’mouse:’,mo)
print (classification_report(y_true,y_pred))
#print (labelencod.inverse_transform(clf.classes_))
#print (classification_report(y_true_k,y_pr_k))
#print (classification_report(y_true_m,y_pr_m))

if (ks+2)/3==int ((ks+2)/3) or (mo+2)/3==int ((mo+2)/3):

if not os.path.exists(newh+str(ks)+’_’+str(mo)+’/’):
os.makedirs (newh+str(ks)+’_’+str(mo)+’/’)

pd.DataFrame (outs) .to_csv(newh+str(ks)+’_’+str(mo)+’/’+str(ks)+’_’+str(mo)+’ combo_30times_x
cm_old = confusion_matrix(y_true, y_pred)
cm = np.array(pd.DataFrame(cm_o0ld)) .tolist()
cm_=[]
for k in cm:

temp=[]

for j in k:

temp.append(float (’%.1£°%(100*j/sum(k))))

cm_.append (temp)

cm =mat (cm_.copy())

290

report = classification_report(y_true,y_pred,output_dict=True)
#report=classification_report(y_true,y_pred,output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+str(ks)+’ _’+str(mo)+’/’+str(ks)+’_’+str(mo)+’combo_class

plt.figure(1,figsize=(10.24,8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues,include_values=False,ax=ax1l)
plt.savefig(newh+str(ks)+’_’+str(mo)+’/’+str(ks)+’_’+str(mo)+’combo_cm.png’)
plt.clf()

plt.figure(3,figsize=(10.24,8))
ax3 = plt.axes()
disp3 =

ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=heads)
disp3.plot(cmap=plt.cm.Blues,include_values=True,ax=ax3)
plt.savefig(newh+str(ks)+’_’+str(mo)+’/’+str(ks)+’_’+str(mo)+’combo_cm_newnew.png’)
plt.clf ()

plt.figure(4,figsize=(10.24,8))
ax4 = plt.axes()
dispd =

ConfusionMatrixDisplay(confusion_matrix=cm_old,display_labels=heads)
disp4.plot(cmap=plt.cm.Blues,include_values=True,ax=ax4)
plt.savefig(newh+str(ks)+’_’+str(mo)+’/’+str(ks)+’_’+str(mo)+’ combo_cm_newnewnew.png’)
plt.clf()

#np.set_printoptions(precision=2)
cm_normalized = confusion_matrix(y_true,
y_pred,normalize=’true’)
cm_n = mat(np.round(cm_normalized,3))
plt.figure(5,figsize=(10.24,8))
ax5 = plt.axes()
dispb =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)
disp5.plot(cmap=plt.cm.Blues,include_values=True,ax=ax5)
plt.savefig(newh+str(ks)+’ _’+str(mo)+’/’+str(ks)+’_’+str(mo)+’combo_cm_newnewnew2.png’)
plt.clfQ)

#np.set_printoptions(precision=2)
cm_normalized2 = confusion_matrix(y_true,
y_pred,normalize=’pred’)
cm_n = mat(np.round(cm_normalized2,3))
plt.figure(6,figsize=(10.24,8))
ax6 = plt.axes()
disp6 =
ConfusionMatrixDisplay(confusion_matrix=cm_n,display_labels=heads)
disp6.plot (cmap=plt.cm.Blues,include_values=True,ax=ax6)
plt.savefig(newh+str(ks)+’ _’+str(mo)+’/’+str(ks)+’_’+str(mo)+’combo_cm_newnewnew3.png’)
plt.cl£f()

291

print (pd.DataFrame(outs))
pd.DataFrame (outs) .to_csv(newh+’combo_test_30times_report.csv’,index=False,header=False)

def draw_combo_testing():

if

file =
’C:/Zhaoyi_Fan/Dataset/Combo/training/results/Combo/combo_train_30times_report.csv’

or:

file =
’C:/Zhaoyi_Fan/Dataset/Combo/testing/results/Combo/combo_test_30times_report.csv’

with open(file,’r’,encoding=’"UTF-8’) as f:

data = np.array(pd.DataFrame(csv.reader(f)))

x = datal[:,0].astype(float)

y = datal:,1].astype(float)

z = datal[:,-1].astype(float)
x_lin = np.linspace(min(x), max(x), len(np.unique(x)))
y_lin = np.linspace(min(y), max(y), len(np.unique(y)))
X, Y = np.meshgrid(x_lin, y_lin)
points = np.column_stack((x, y))
Z = griddata(points, z, (X, Y), method=’linear’)
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111, projection=’3d’)
norm = plt.Normalize(Z.min(), Z.max())
colors = cm.jet(norm(Z))
surf = ax.plot_surface(X, Y, Z, facecolors=colors, shade=False)
mappable = cm.ScalarMappable (norm=norm, cmap=cm.jet)
mappable.set_array(Z)
plt.colorbar(mappable, ax=ax, label=’Z’)
ax.set_xlabel (’Number of keystroke samples’)
ax.set_ylabel (’Number of mouse samples’)
ax.set_zlabel (’Fl-score’)
plt.savefig(figure_pathi+’combo_test.png’)
plt.savefig(figure_path2+’combo_test.png’)
plt.show()

_name__ == ’__main

).

#draw_combo_testing()
get the classicication result on testing set
it will cost a lot of time as it has 900 combination of keystroke

and mouse:
#combo_testing_set ()

#combo_trainingset ()

292

#extractfeatures_mouse ()
#extractfeatures_keystroke()
#extractfeatures()

293

D.3.4 Python scripts for analysing mobile dynamics

List D.3.4 lists the Python scripts for mobile behaviour analysis used in Chapter
9.

import sys

import numpy as np

import csv

import pandas as pd

import math

from numpy import *

import time

import datetime

import matplotlib.pyplot as plt

from sklearn import svm, linear_model, preprocessing

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier
from sklearn.svm import LinearSVC, SVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

import random

from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.metrics import make_scorer

from sklearn.metrics import r2_score

from sklearn.ensemble import BaggingRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import AdaBoostRegressor

from sklearn.metrics import fl_score, precision_score, recall_score
from sklearn.metrics import accuracy_score

from sklearn import tree

from xgboost import XGBClassifier, plot_importance, DMatrix, cv
from xgboost import XGBRegressor

from sklearn.ensemble import VotingClassifier

from sklearn.pipeline import Pipeline

from sklearn.model_selection import cross_val_predict

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from collections import Counter

from sklearn.metrics import classification_report

from sklearn.utils import class_weight

import shutil

import os

from itertools import combinations

import gc

import scikitplot as skplt

import lightgbm as 1lgb

import seaborn as sns

from functools import reduce

294

pd.set_option(’display.max_rows’, 500)
pd.set_option(’display.max_columns’, 500)
pd.set_option(’display.width’, 1000)
pd.set_option(’max_colwidth’, 1000)
np.set_printoptions (suppress=True)

#Sample weights
def myweight (y=arange(19)):
myweights = {}
for j in np.unique(y):
myweights[jl=len(y)/(y.tolist().count(j)*len(np.unique(y)))
try:
for i in mychanges:
myweights [i[0]]=myweights[i[0]]*i[1]
except:
mychanges=[]
return myweights, mychanges

#This function is for data pre-processing, main goal is to decode the
data, as the author did not provide detailed information for their
databet.

def decode_data():

p = ’C:/Zhaoyi_Fan/Dataset/mmc/’

dest = ’C:/Zhaoyi_Fan/Dataset/mmc_csv/’

if not os.path.exists(dest):
os.makedirs(dest)

#Data file confirmed:

d = np.load(p+ ’mmcl.npy’, allow_pickle=True)
print (len(d))

print (len(d[1]))

print (len(d[1][01))

if not os.path.exists(dest):
os.makedirs(dest)

files = os.listdir(p)

people = []

#Lable file confirmed:
for £ in files[4:]:
d = np.load(p+ f, allow_pickle=True).astype(float)
print (d)
for i in d:
people.append(i[0])
print (np.unique(d[0][:, 0]), np.unique(d[0][:, 11))
print (len(d[0]))
for i in range(len(d[0][0])):
print (i, len(np.unique(d[0][:, il)))

295

for i, j in zip(d[0][:, 01, d[0l[:, 0]1):
if i==j:
print (i)

#Lable file matching confirmed:
for £, 1 in zip(files[1:2], files[7:]):
d = np.load(p+ f, allow_pickle=True).astype(float)
label = np.load(p+ 1, allow_pickle=True).astype(int)
print (£, 1)
for the_d, the_label in zip(d, label):
d0 = the_d
labelO = the_label
temp=[]
for i in dO:
if np.unique(i) [0]!=0:
temp.append (i)
print (len(temp), labelO)

#Combine data with labels
def extract_mmc():
combo = [[1, 7], [2, 8], [3, 5], [4, 6]]
p = ’C:/Zhaoyi_Fan/Dataset/mmc/’
dest = ’C:/Zhaoyi_Fan/Dataset/mmc_csv/’
if not os.path.exists(dest):
os.makedirs(dest)
out=[]
for ¢ in combo:
data = np.load(p+ ’mmc’+ str(c[0])+ ’.npy’,
allow_pickle=True) .astype (float)
label = np.load(p+ ’mmc’+ str(c[1])+ ’.npy’,
allow_pickle=True) .astype(int)
print (Pmmc’+ str(c[0])+ ’.npy’, ’mmc’+ str(c[1])+ ’.npy’)

user_data = []
for the_d, the_label in zip(data, label):
d0 = the_d
labelO = the_label
#temp=[]
for i in dO:
if np.unique(i) [0]!=0:
temp=i[:].tolist()
temp.append (label0[0])
out .append (temp)
user_data.append (temp)
pd.DataFrame (user_data) .to_csv(dest+
‘mmc’+str(c[0])+str(c[1])+’.csv’, header=0, index=False)

pd.DataFrame (out) .to_csv(dest+ ’mmc_all.csv’, header=0, index=False)

296

#Hyper-parameter tuning:
def para_cv(unwanted=[]):
X, =01, 01
newh = ’C:/Zhaoyi_Fan/Dataset/mmc/results/testing/’
if len(unwanted)==0:
newh = newh
else:
t = 2
for i in unwanted:
t = t+ str(i)+ ’_°
newh = newh+ ’no’+ t+ ’/’
if not os.path.exists(newh):
os.makedirs (newh)

#train:
for i in [’17’, °287, ’35°]:
file = ’C:/Zhaoyi_Fan/Dataset/mmc_csv/mmc’+ i+ ’.csv’
with open(file, ’r’, encoding=’UTF-8’) as f:
data =

np.array(pd.DataFrame(csv.reader(f))) .astype(float).tolist()
for d in data:
X.append(d[:-1]1)
Y.append(d[-1])
print (’extract train completed’)
labelencod = preprocessing.LabelEncoder () .fit(Y)
Y = labelencod.transform(Y)
X = np.delete(X, unwanted, axis=1)
params =[]
#0.2 600, 4, 3,
for learning_rate in [0.1, 0.2, 0.3]:
for n_estimators in [400, 500, 600]:
for max_depth in [3, 4, 5, 6]:
for min_child_weight in [3, 4, 5]:
cv_params = {
’learning_rate’: learning_rate,
‘n_estimators’: n_estimators,
’max_depth’: max_depth,
’min_child_weight’: min_child_weight,

’objective’: ’multi:softprob’,
’use_label_encoder’: False,
’eval_metric’: ’mlogloss’,
’tree_method’: ’gpu_hist’,

}

params . append (cv_params)
final_report=[]
for cv_parmas in params:

try:
subpath = str(cv_parmas[’learning_rate’]*10)+ ’_’+
str(cv_parmas[’n_estimators’])+ ’_’+
str(cv_parmas[’max_depth’])+ ’_’+

str(cv_parmas[’min_child_weight’])+ ’/’

297

except:
print (cv_parmas)
newh = ’C:/Zhaoyi_Fan/Dataset/mmc/results/training/cv/xgb/’
newh_xgb = newh+ subpath
if not os.path.exists(newh_xgb):
os.makedirs (newh_xgb)
cross_val = StratifiedKFold(n_splits=5)

f1_scores = []
acc_scores = []
cms = []

i=1

start_xgb = time.time()
print (’Xgb cross validate starts’)
for train_index, test_index in cross_val.split(X, Y):
x_train, x_test = X[train_index], X[test_index]
y_train, y_test = Y[train_index], Y[test_index]
unwanted=[]
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
clf_xgb = XGBClassifier (¥*cv_parmas)
clf_xgb.fit(x_train, y_train)
y_pred = clf_xgb.predict(x_test)
f1 = f1_score(y_test, y_pred, average=’macro’, zero_division=0)
acc = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
f1_scores.append(£f1)
acc_scores.append(acc)
cms . append(cm.tolist())
pd.DataFrame(cm) . to_csv(newh_xgb+ str(i)+ ’_cm.csv’, header=0,
index=False)
i=i+ 1
result = np.sum(cms, axis=0)
pd.DataFrame (result) .to_csv(newh_xgb+ str(11)+ ’_cm.csv’,
header=0, index=False)
pd.DataFrame ([f1_scores, acc_scores]).to_csv(newh_xgb+ str(12)+
’_report.csv’, header=0, index=False)
f1_mean = np.mean(fl_scores)
f1_std = np.std(fl_scores, ddof=1)
print (np.mean(f1_scores), np.std(f1_scores, ddof=1))
print (’Xgb cross validate completed. Time used:’,
np.round(time.time()-start_xgb, 2), ’[learning_rate:’,
cv_parmas[’learning rate’], ’] [n_estimators:’,
cv_parmas[’n_estimators’], ’] [max_depth:’,
cv_parmas [’max_depth’], ’] [min_child_weight:’,
cv_parmas[’min_child_weight’], °]°)
print (O---—--—-——mmmm oo)
final_report.append([cv_parmas[’learning rate’],
cv_parmas[’n_estimators’], cv_parmas[’max_depth’],

298

cv_parmas[’min_child_weight’], f1_mean, f1_std])
col = [’learning_rate’, ’n_estimators’, ’max_depth’,
’min_child_weight’, ’fl-macro-mean’, ’fl-macro-std’]
if not os.path.exists(’C:/Zhaoyi_Fan/Dataset/mmc/’+
’results/training/cv/xgb/GridSearchCV/’):
os.makedirs(’C:/Zhaoyi_Fan/Dataset/mmc/results/’+
’training/cv/xgb/GridSearchCV/’)
pd.DataFrame(final_report, columns=col).to_csv(’C:/Workspace/’+
’Python/mmc/results/training/’+
’cv/xgb/GridSearchCV/final_report2.csv’, index=False)

#test on trained model:
def check_mmc_2(unwanted=[]):
x_train, y_train, x_test, y_test=[1, [1, [1, []
newh = ’C:/Zhaoyi_Fan/Dataset/mmc/results/testing/0.2_600_6_3/’
if len(unwanted)==0:
newh = newh
else:
t =)
for i in unwanted:
t = t+ str(i)+ ’_°
newh = newh+ ’no’+ t+ ’/’
if not os.path.exists(newh):
os.makedirs (newh)
dest = newh

#train:
for i in [’17’, ’28’, ’35°]:
file = ’C:/Zhaoyi_Fan/Dataset/mmc_csv/mmc’+ i+ ’.csv’
with open(file, ’r’, encoding=’UTF-8’) as f:
data =

np.array(pd.DataFrame(csv.reader(f))) .astype(float).tolist()
for d in data:

x_train.append(d[:-1])

y_train.append(d[-1])
print (’extract train completed’)
labelencod = preprocessing.LabelEncoder().fit(y_train)
y_train = labelencod.transform(y_train)
x_train = np.delete(x_train, unwanted, axis=1)

#test:46
for i in [’46°]:
file = ’C:/Zhaoyi_Fan/Dataset/mmc_csv/mmc’+ i+ ’.csv’
with open(file, ’r’, encoding=’UTF-8’) as f:
data =

np.array(pd.DataFrame(csv.reader(f))) .astype(float).tolist()
for d in data:
x_test.append(d[:-11)
y_test.append(d[-1])
y_test = labelencod.transform(y_test)
x_test np.delete(x_test, unwanted, axis=1)
pred_prob, featurescore, mychanges, theweights=[], [1, [1, []

299

try:
print (’XGB fitting started’)
clf = XGBClassifier(objective=’multi:softprob’,
use_label_encoder=False,
eval_metric=’mlogloss’, tree_method=’gpu_hist’,
learning_rate=0.2, n_estimators=600,
max_depth = 6, min_child_weight=3,
)
features_impts = []
myweights, mychanges = myweight(y_train)
class_weights = class_weight.compute_sample_weight (myweights,
y_train)
print (’XGB fitting started’, len(y_train), ’samples involved’)
clf .fit(x_train, y_train, sample_weight=class_weights)
print (’XGB fitting completed’)
print (’XGB predicting started’)
pre_temp = clf.predict_proba(x_test)
print (’XGB predicting completed’)
featurescore = clf.feature_importances_.tolist()
pred_prob = np.array(pre_temp)
labelset = np.unique(y_test)
names = labelencod.inverse_transform(labelset)
except Exception as e:
print (’eeor’, e)
return ’bad’
myweights_total, mychanges=myweight(y_train)
theweights.append (myweights_total)
heads = names.tolist()
weights=pd.DataFrame (theweights)
weights = np.array(weights) .tolist()
weights.insert(0, heads)
weights=pd.DataFrame (weights)
dic = {} #for computing the overall result
dic2 = {} #for computing each user’s performance
for i in list(labelset):
dic[i]=[]
for i in range(len(y_test)):
dic[y_test[i]].append(pred_probl[i])
pred_probtemp = []
y_testtemp = []
for i in dic:
for j in dic[il:
pred_probtemp.append(j)
y_testtemp.append (i)

pred_prob = pred_probtemp[:]
y_test = y_testtempl[:]

probs = pd.concat([pd.DataFrame(pred_prob), pd.DataFrame(y_test)],
axis=1)

300

probs.to_csv(dest+ ’probabilities_3.csv’, header=0, index=False)

outs, fl_micro, f1_macro = [1, [1, []
precision_micro, precision_macro, recall_micro, recall_macro=[], [],
1, 0

times, accuracy, rpt = [1, [1, []
for i in range(l, 32, 1):
y_pred = []
y_true = []
for j in range(len(y_test)-i+ 1):
if y_test[jl==y_test[j+ i-1]:
y_pred_byprob=sum(np.array(pred_prob[j:j+ i]), axis=0)
y_pred.append(y_pred_byprob.tolist() .index(y_pred_byprob.max()))
y_true.append(y_test[j])
outs.append ([
float(’%.2f’%(f1_score(y_true, y_pred, average=’macro’,
zero_division=0)*100)),
float(’%.2f°%(f1_score(y_true, y_pred, average=’weighted’,
zero_division=0)*100)),
float(’%.2f°% (precision_score(y_true, y_pred,
average=’macro’, zero_division=0)%*100)),
float(’%.2f’% (precision_score(y_true, y_pred,

average=’weighted’, zero_division=0)%*100)),

P

>

float(’%.2f’%(recall_score(y_true, y_pred, average=’macro’,
zero_division=0)*100)),

float (’%.2f’%(recall_score(y_true, y_pred,
average=’weighted’, zero_division=0)#%100)),

P
s

float (’%.2f % (accuracy_score(y_true, y_pred)*100)),
D
#f1s.append(f1_score(y_true, y_pred, average=’macro’,
zero_division=0))
f1_micro.append(fl_score(y_true, y_pred, average=’micro’,
zero_division=0)*100)
f1_macro.append(f1_score(y_true, y_pred, average=’macro’,
zero_division=0)*100)
precision_micro.append(precision_score(y_true, y_pred,
average=’micro’, zero_division=0)*100)
precision_macro.append(precision_score(y_true, y_pred,
average=’macro’, zero_division=0)*100)
recall_micro.append(recall_score(y_true, y_pred, average=’micro’,
zero_division=0)*100)
recall_macro.append(recall_score(y_true, y_pred, average=’macro’,
zero_division=0)*100)
accuracy . append (accuracy_score(y_true, y_pred)*100)
times.append (i)
if i==1:
if not os.path.exists(newh+ str(i)+ °/’):
os.makedirs (newh+ str(i)+ ’/’)

301

rpt = classification_report(y_true, y_pred, output_dict=True)

pd.DataFrame (rpt) .T.to_csv(newh+ str(i)+ ’/’+ str(i)+
’_classification_report.csv’, header=0, index=True)

print (classification_report(y_true, y_pred))

print (labelencod.inverse_transform(clf.classes_))

if (it+ 4)/5==int((i+ 4)/5):
if not os.path.exists(newh+ str(i)+ ’/’):
os.makedirs(newh+ str(i)+ °/’)
cm_old = confusion_matrix(y_true, y_pred)
cm = np.array(pd.DataFrame(cm_old)) .tolist()

cm_=[]
for k in cm:
temp=[]

for j in k:
temp.append (float (’%.1£°%(100%j/sum(k))))
cm_. append (temp)
cm =mat (cm_.copy())

report = classification_report(y_true, y_pred, output_dict=True)
pd.DataFrame (report) .T.to_csv(newh+ str(i)+ ’/’+ str(i)+
’_classification_report.csv’, header=0, index=True)

plt.figure(1, figsize=(10.24, 8))

axl = plt.axes()

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm)
disp2.plot(cmap=plt.cm.Blues, include_values=False, ax=axl)
plt.savefig(newh+ str(i)+ ’/’+ str(i)+ ’_cm.png’)

plt.clf()

#np.set_printoptions(precision=2)
cm_normalized2 = confusion_matrix(y_true, y_pred,
normalize=’pred’)
cm_n = mat(np.round(cm_normalized2, 3))
plt.figure(6, figsize=(10.24, 8))
ax6 = plt.axes()
disp6 = ConfusionMatrixDisplay(confusion_matrix=cm_n,
display_labels=heads)
disp6.plot(cmap=plt.cm.Blues, include_values=True, ax=ax6)
plt.savefig(newh+ str(i)+ ’/’+ str(i)+ ’_cm_newnewnew3.png’)
plt.clf()
print (pd.DataFrame(outs))
plt.figure(33, figsize=(10.24, 8))
ax2 = plt.axes()
plot_importance(clf, ax=ax2, importance_type=’gain’)
plt.savefig(newh+ ’/FI.png’)
plt.clf()
print (featurescore)
plt.figure(34, figsize=(10.24, 8))
myyticks = [i for i in range(0, 100, 5)]

302

myxticks = [i for i in range(1, 31, 1)]
plt.yticks(myyticks)

plt.plot(times, f1_macro, label=’fl1_macro’)
plt.plot(times, precision_macro, label=’precision_macro’)
plt.plot(times, recall_macro, label=’recall_macro’)
plt.plot(times, accuracy, label=’accuracy’)

plt.legend()

plt.grid()

pd.DataFrame (outs) .to_csv(newh+ ’30times.csv’, header=0, index=False)
plt.savefig(newh+ ’overall.png’)

plt.clf()

__name__==’__main__"’:
print (’let\’s go’)
extract_mmc ()

check_mmc_2()

#para_cv()

#tcheck_mmc_2()
#tdecode_data()
#extract_mmc ()

303

	Introduction
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the thesis

	Browser APIs
	Introduction
	Browser APIs
	Types of Browser API

	Examples of browser API attacks
	Attacks based on High-resolution Time API
	Attacks based on device APIs
	WebRTC IP address leakage

	Device fingerprint
	Other possible attacks
	Conclusion

	Machine learning
	Introduction
	Data collection
	Structured data
	Unstructured data
	Semi-structured data

	Data preparation
	Data cleaning
	Feature extraction
	Feature selection

	Types of machine learning techniques
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning

	Machine learning methods
	K-Nearest Neighbours
	Support Vector Machine
	Decision Tree
	Random Forest
	Extreme Gradient Boosting

	Model evaluation
	Cross-validation
	Hyper-parameter tuning
	Evaluating metrics

	Conclusion

	Behavioural biometrics
	Introduction
	Keystroke dynamics
	Experimental designs
	Data extraction
	Machine learning approaches

	Mouse dynamics
	Experimental designs
	Data extraction
	Machine learning approaches

	Behavioural biometrics based on combining mouse and dynamics
	Experimental designs
	Data extraction
	Machine learning approaches

	Behavioural biometrics based on mobile platform
	Experimental designs
	Data extraction
	Machine learning approaches

	Discussions and conclusions
	Discussions
	Conclusions

	Experimental platform
	Introduction
	Motivation
	Background
	Keyboard and mouse events
	Chrome extensions

	The experimental platform
	Development environment
	The Chrome extension
	The server

	Ethical issues
	User guidance
	Possible future work
	Conclusions

	Performing the keystroke dynamics experiments
	Introduction
	Data gathering
	Data processing
	Data segmentation
	Feature extraction
	Evaluating metrics
	Classification methods
	Feature selection
	Model evaluation
	Accumulative methods

	Experimental results
	Results on real testing set
	Results on fixed text dataset
	Comparisons

	Conclusions and possible future work
	Conclusions
	Possible future work

	Performing the mouse dynamics experiments
	Introduction
	Data gathering
	Data processing
	Data segmentation
	Feature extraction
	Evaluating metrics
	Classification methods
	Feature selection
	Model evaluation
	Accumulative methods

	Experimental results
	Results on testing set
	Results on Bogazici dataset
	Comparisons

	Conclusions and possible future work
	Conclusions
	Possible future work

	Combining keystroke and mouse dynamics
	Introduction
	Data processing
	Data processing
	Classifier configurations
	Accumulative methods

	Experimental results
	Results on training set
	Results on testing set
	Comparisons

	Conclusions and possible future work
	Conclusions
	Possible future work

	Study on mobile touch behaviour
	Introduction
	Experiments on Kim and Kang dateset
	Feature engineering
	Model tuning
	Experimental result
	Comparisons

	Data collection via mobile webpage
	Development environment
	Web page development
	Data collection

	Conclusions and possible future work
	Conclusions
	Possible future work

	Security and privacy recommendations
	Introduction
	Browser API functionality
	PC platforms
	Mobile platforms

	Possible attack scenarios
	Scenario One
	Scenario Two
	Consequences
	Discussions

	Recommendations
	Possible positive usage
	Conclusions

	Conclusions and possible future work
	Summary and conclusions
	Possible future work

	Bibliography
	Ethics review approval
	Consent form
	N-graph tables
	Digraph table
	3-graph table
	4-graph table
	5-graph table

	Source code
	Experimental platform code
	Mobile web page code
	Mobile test web page

	Python scripts for data analysis
	Python scripts for analysing keystroke dynamics
	Python scripts for analysing mouse dynamics
	Python scripts for combining keystroke and mouse dynamics
	Python scripts for analysing mobile dynamics

