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Abstract

We study the problem of merging sequential or independent e-values into one
e-value or e-process. We describe a class of e-value merging functions via mar-
tingales and show that it dominates all merging methods for sequential e-values.
All admissible methods for constructing e-processes can also be obtained in this
way. In the case of merging independent e-values, the situation becomes much
more complicated, and we provide a general class of such merging functions
based on martingales applied to reordered data.

Keywords: Anytime validity, betting scores, e-processes, admissibility, merg-
ing functions
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1 Introduction

E-values, as an alternative to the standard statistical notion of p-values, have
received increasing attention in recent years; see, e.g., Shafer [10], Vovk and
Wang [14], Grünwald et al. [1], and Wang and Ramdas [18]. E-values are often
obtained through nonnegative martingales or, more generally, e-processes; see
Shafer et al. [12] and Ramdas et al. [9]. The defining feature of e-processes is
that they produce valid e-values under optional stopping, and therefore they
are widely applicable in testing with sequential observations. This feature of
e-processes and martingales is fundamental in the construction of time-uniform
confidence sequences; see Wasserman et al. [19] and Howard et al. [3].

A standard approach to constructing an e-value or an e-process from sequen-
tially arriving data is first to compute an e-value from each observation or each
batch of observations, and then to combine the resulting e-values into a single
e-value or an e-process. A simple example is the likelihood ratio process, which
is the product process of many individual e-values (which are likelihood ratios
based on each observation). For more sophisticated examples of e-values and
e-processes constructed from individual e-values, see Grünwald et al. [1], Henzi
and Ziegel [2] and Wang et al. [16] in different contexts.

This paper is dedicated to a thorough study of combining independent or
sequential e-values. This problem gives rise to substantial mathematical chal-
lenges and our results lead to practical guidelines for handling multiple e-values
in statistical testing. Our main finding is that there exists a class of explicit
methods which includes all admissible merging methods for sequential e-values;
for independent e-values, the picture is much more complicated.

We define e-variables (whose realizations are e-values) and discuss their
merging problems in Section 2. A merging function which transforms indepen-
dent e-values into one e-value is called an ie-merging function, and one which
transforms sequential e-values into one e-value is called an se-merging function.
An example illustrating the differences between sequential and independent e-
variables in a simple testing problem is described in Section 3.

We start our theoretical treatment from a class of se-merging functions in
Section 4. We show that the class of martingale merging functions includes all
admissible se-merging functions (Theorem 1). The class of martingale merg-
ing functions is formulated using the game-theoretic version of martingales as
defined in [11]. Although this version is different from martingales defined in
measure-theoretic probability theory, the two versions are closely related and
reflect the same basic principle. The notion of a martingale was introduced by
Jean Ville [13] as extension (and correction) of von Mises’s [8] notion of a gam-
bling system. Kolmogorov [5] came up with another extension of von Mises’s
notion (later but independently a similar extension was proposed by Loveland
[6, 7]).

In Section 5 we define e-processes and connect them to martingale merging
functions. We show that, in a natural sense, for a process obtained from sequen-
tial e-values, anytime validity (the defining property of e-processes) is equivalent
to being generated from a martingale merging function (Theorem 2).
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In Section 6 we focus on independent e-values. We combine Ville’s and
Kolmogorov’s extensions of von Mises’s gambling systems to obtain a class of ie-
merging functions (Theorem 3) called generalized martingale merging functions,
allowing for a reordering of the independent e-variables. This class, although
being a natural generalization of martingale merging functions, turns out to be
a strict subset of the set of all admissible ie-merging functions (Example 4). A
full description of the set of all admissible ie-merging functions remains unclear.
With this open question and several others, we conclude the paper in Section 7.

2 E-variables

A (statistical) hypothesis H is a collection of probability measures on a measur-
able space (the underlying sample space). A p-variable P for a hypothesis H is
a random variable that satisfies Q(P ≤ α) ≤ α for all α ∈ (0, 1) and all Q ∈ H.
In other words, a p-variable is stochastically larger than the uniform distribu-
tion U[0, 1]. P-variables are often truncated at 1 and assumed to take values in
[0, 1]. An e-variable E for a hypothesis H is a [0,∞]-valued random variable
satisfying EQ[E] ≤ 1 for all Q ∈ H. We will use e-values for the realization of
e-variables, and sometimes we use terms such as “independent e-values”, which
of course means realized values of independent e-variables. We fix a positive
integer K and set [K] := {1, . . . ,K}.

As shown in [14], for admissibility results on merging functions, it is harmless
to consider the case of a singleton H = {P} for an atomless probability measure
P. We will assume this throughout the paper. The underlying probability space
(Ω,F ,P) is implicit and should be clear from the context. The notation E is
used for the expectation with respect to P. Without loss of generality we only
consider e-variables E taking values in [0,∞) (since E < ∞ a.s.).

We also use standard terminology in probability theory. A filtration in
(Ω,F ,P) is an increasing sequence F1 ⊆ · · · ⊆ FK of sub-σ-algebras of F ;
we also set F0 := {∅,Ω}. A process (Xk)k∈{0,...,K} adapted to (Fk)k∈{0,...,K}
(i.e., with each Xk being Fk-measurable) is a martingale on (Ω,F ,P) if E[Xk |
Fk−1] = Xk−1 for all k ∈ [K], and the process is a supermartingale if
E[Xk | Fk−1] ≤ Xk−1, where X1, . . . , XK are assumed integrable; all rela-
tions (such as equalities and inequalities) involving conditional expectations are
understood in the a.s. sense. By a test martingale we mean a nonnegative
martingale with initial value 1, X0 = 1.

E-variables E1, . . . , EK are sequential if E[Ek | E1, . . . , Ek−1] ≤ 1 for k ∈
[K]. For a function F : [0,∞)K → [0,∞) (we assume all functions to be Borel),

1. F is an se-merging (sequential e-merging) function if, for any sequential
e-variables E1, . . . , EK , F (E1, . . . , EK) is an e-variable;

2. F is an ie-merging (independent e-merging) function if, for any indepen-
dent e-variables E1, . . . , EK , F (E1, . . . , EK) is an e-variable.

We say that an e-variable E is precise if E[E] = 1, and an se-merging
function F is precise if E[F (E1, . . . , EK)] = 1 for all precise sequential e-
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variables E1, . . . , EK . This property is satisfied by all examples of merging
functions in [14]. Note that for precise sequential e-variables, it holds that
E[Ek | E1, . . . , Ek−1] = 1 for k ∈ [K].

Since independent e-variables are also sequential e-variables, the class of ie-
merging functions contains that of se-merging functions. We will see later in
this paper that these two classes are not identical. An example of se-merging
function is the product function

(e1, . . . , eK) 7→
K∏

k=1

ek,

which is shown to be optimal in a weak sense among all ie-merging functions in
[14, Proposition 4.2]. Moreover, if E1, . . . , EK are sequential e-variables, then
(
∏t

k=1 Ek)t∈[K] is a supermartingale.
There is a small difference between our definitions and the ones in [14];

namely, we do not require ie-merging and se-merging functions to be increasing
(in the non-strict sense) in all arguments. This relaxation is quite natural under
the betting interpretation (see Section 4): if we gain evidence in an early round
of betting, then we may reduce our bet in the next round (as in, e.g., the “exceed-
and-stop” strategy in Example 1 below), which leads to non-monotonicity of the
resulting merging function.

The next result shows that it suffices to consider bi-valued e-variables in
search for ie-merging functions.

Proposition 1. A function F : [0,∞)K → [0,∞) is an ie-merging function if
and only if F (E1, . . . , EK) ≤ 1 for all independent e-variables E1, . . . , EK each
taking at most two values.

Proof. The “only if” statement is straightforward. Below we show the “if”
statement. Let E1, . . . , EK be independent e-variables; their means are at most
1. Denote by µk the distribution of Ek for k ∈ [K]. Note that any distribution
with a finite mean can be written as a mixture of bi-atomic distributions with
the same mean (see [17, Lemma 2.7], which also shows that the bi-atomic distri-
butions can be chosen indexed by (0, 1)). Therefore, for each k ∈ [K], we have
a decomposition µk =

∫
R µk,tνk(dt), where each µk,t is a bi-atomic distribution

with mean at most 1, and νk is a Borel probability measure on R. If F merges
all bi-valued independent e-variables into an e-variable, then∫

RK

F (e1, . . . , eK)

K∏
k=1

µk,tk(dek) ≤ 1

for all t1, . . . , tK ∈ R. It follows that

E[F (E1, . . . , EK)] =

∫
RK

(∫
RK

F (e1, . . . , eK)

K∏
k=1

µk,tk(dek)

)
K∏

k=1

νk(dtk)

≤
∫
RK

K∏
k=1

νk(dtk) = 1.
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This proves the desired “if” statement.

If F is increasing, then in the “if” statement of Proposition 1, it suffices to
consider bi-valued e-variables with mean 1.

Merging p-values and e-values

It may be interesting to note that the situations with merging p-values and
e-values appear to be opposite. Merging independent p-values is in some sense
trivial: for any measurable increasing function F : [0, 1]K → R (intuitively, a
test statistic), the function

G(p1, . . . , pK) := λ({(q1, . . . , qK) ∈ [0, 1]K | F (q1, . . . , qK) ≥ F (p1, . . . , pK)}),

where λ is the Lebesgue measure on [0, 1]K , is an ip-merging function (an in-
creasing function transforming independent p-values into a p-value), and any
ip-merging function can be obtained in this way.1 On the other hand, merging
arbitrarily dependent p-values is difficult, in the sense that the structure of the
class of all p-merging functions is very complicated (see, e.g., [15], which in-
cludes a review of previous results). In the case of e-values, merging arbitrarily
dependent e-values is trivial, at least in the case of symmetric merging func-
tions: according to [14, Proposition 3.1], arithmetic mean essentially dominates
any symmetric e-merging function (and [14, Theorem 3.2] gives a full descrip-
tion of the class of all symmetric e-merging functions). Merging sequential and,
especially, independent e-values is difficult and is the topic of this paper.

3 Sequential and independent e-values

Before presenting our theoretical results, we describe a simple example illustrat-
ing the difference between independent and sequential e-variables.

Suppose that a scientist is interested in a parameter θtr ∈ Θ, and iid obser-
vations X1, . . . , XK from θtr are available and sequentially revealed to her. She
tests H0 : θtr = 0 against H1 : θtr ∈ Θ1 where 0 /∈ Θ1 ⊆ Θ. (It does not hurt to
think about testing the Gaussian family N(θ, 1).) Let ℓ be the likelihood ratio
function given by

ℓ(x; θ) =
dQθ

dQ0
(x), (1)

where Qθ is the probability measure for one observation that corresponds to
θ ∈ Θ. It is clear that ℓ(Xk; θ) for any θ ∈ Θ and k ∈ [K] is an e-variable
for H0. The scientist may choose one of two strategies (the second being more
general):

(a) Fix θ1, . . . , θK ∈ Θ1, and define the e-variables Ek := ℓ(Xk; θk) for k ∈
[K]. One may simply choose all θk to be the same.

1For merging p-values, it suffices to consider those uniformly distributed on [0, 1], and for
such p-values, being sequential and being independent are equivalent. Therefore, we do not
discuss sequential p-values.
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(b) Choose θ1, . . . , θK adaptively, where θk is estimated from (X1, . . . , Xk−1)
for each k. This can be obtained, e.g., as a point estimate of θ or by a
Bayesian update rule for some prior on Θ1 (for a Bayesian update, the
mixture may well be outside the model, in which case the numerator of
(1) would have to be replaced by a mixture of Qθ over θ ∈ Θ1). Define
the e-variables Ek := ℓ(Xk; θk) for k ∈ [K].

The scientist then combines the e-variables Ek, k ∈ [K], to form a final e-variable∏K
k=1 Ek (e.g., for using e-values as weights in multiple testing; see [4]). Both

methods produce a valid final e-variable. Indeed, we can verify that, in (a),
E1, . . . , EK are independent e-variables, and in (b), E1, . . . , EK are sequential
e-variables.

We illustrate the two supermartingales obtained from (a) and (b) in a simple
example. Suppose that an iid sample (X1, . . . , XK) from N(θtr, 1) is available.
The null hypothesis is θtr = 0, and the alternative is θtr > 0. We set θtr := 0.3.
We consider five different ways of constructing Ek := ℓ(Xk; θk) for k ∈ [K]: (i)
choose θk := θtr = 0.3 (knowing the true alternative), which is growth-optimal
(see, e.g., [10, 1]); (ii) choose θk := θ0 := 0.1, which is a misspecified alternative;
(iii) choose iid θk following the uniform distribution on [0, 0.5]; (iv) choose θk
by the Bayesian update with prior θ ∼ N(θ0, 0.2

2); (v) choose θk with θ1 := θ0
and θk the maximum likelihood estimate of θ based on X1, . . . , Xk−1. The
resulting supermartingales (on the logarithmic scale) are plotted in Figure 1
with K = 500. We note that methods (i), (ii), and (iii) are based on combining
independent e-values with the product merging function, and (iv) and (v) are
based on combining sequential e-values with the same merging function. For
sufficiently large sample sizes, the methods (iv) and (v) based on sequential
e-values are more powerful than (ii) and (iii) based on misspecified or random
alternatives, because the latter are not adaptive.

From this example, we can see that sequential e-variables could be more
powerful (at least in this simple setting), whereas independent e-variables are
more restrictive, but they allow for more merging methods, as we will see later
in Section 6.

4 Merging sequential e-values

We fix some notation throughout the theoretical development of the paper. If
A is a measurable space, we let A<K stand for the measurable space

⋃K−1
k=0 Ak,

where A0 := {□}, with □ denoting the empty sequence. For e = (e1, . . . , eK) ∈
[0,∞)K and k ∈ [K], we use e(k) := (e1, . . . , ek) to represent the vector of the
first k components of e, with e(0) := □, and similarly for other vectors. Let
E be the class of all e-variables, i.e., nonnegative random variables E on the
underlying probability space satisfying E[E] ≤ 1.

We first define the notions of a gambling system and a game martingale.
They will form a basis for se-merging functions. A gambling system is a mea-
surable function s : [0,∞)<K → [0, 1]. The game martingale associated with
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Figure 1: A few ways of constructing supermartingales from likelihood ratio.
Left: one run. Right: the average of 1000 runs (with average taken on the log
values).

the gambling system s and initial capital c ∈ [0, 1] is the sequence of functions
Sk : [0,∞)K → [0,∞), k = 0, . . . ,K, which is defined recursively by S0 := c
and

Sk+1(e) := Sk(e)
(
s(e(k))ek+1 + 1− s(e(k))

)
, k = 0, . . . ,K − 1. (2)

(This is a martingale in the generalized sense of [11], which is slightly different
from the same notion in measure-theoretic probability theory.) The intuition is
that we observe e1, . . . , eK sequentially, start with capital at most 1, and at the
end of step k invest a fraction s(e(k)) of our current capital in ek+1, leaving the
remaining capital aside. We will also say that we gamble the fraction s of our
capital and refer to s as our bet. Then Sk(e), which depends on e only via e(k),
is our resulting capital at time k.

Lemma 1. A convex combination of game martingales is a game martingale.

Proof. The statement of the lemma follows from the following equivalent (and
often useful) definition: a game martingale is a sequence of nonnegative func-
tions Sk : [0,∞)K → [0,∞), k = 0, . . . ,K, such that S0 ≤ 1 and, for some
measurable function t : [0,∞)<K → [0,∞), we have

Sk+1(e) = Sk(e) + t(e(k))(ek+1 − 1) (3)

for all k = 0, . . . ,K − 1 and all e ∈ [0,∞)K .

A martingale merging function is a function F : [0,∞)K → [0,∞) that can
be represented in the form F = SK for some game martingale Sk, k = 0, . . . ,K.
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An equivalent formulation is

SK(e) = S0

K∏
k=1

(1 + s(e(k−1))(ek − 1)), (4)

where s is a gambling system. The following two results show that martingale
merging functions are se-merging functions and that any se-merging function is
dominated by a martingale merging function.

Lemma 2. Any martingale merging function is an se-merging function.

Proof. Let E1, . . . , EK be sequential e-variables. Then (Sk(E1, . . . , EK),Fk),
k = 0, . . . ,K, where Sk is defined by (2) and Fk is the σ-algebra gen-
erated by E1, . . . , Ek, is a supermartingale. This immediately implies
E[SK(E1, . . . , EK)] ≤ 1.

Theorem 1. Any se-merging function is dominated by a martingale merging
function.

Proof. Let F be an se-merging function; our goal is to construct a dominating
martingale merging function. First we consider e-variables taking values in the
set 2−nN, where N := {0, 1, . . . }; let En be the set of such e-variables. Extend
F to shorter sequences of e-values by

Fn,K(e1, . . . , eK) := F (e1, . . . , eK),

Fn,k(e1, . . . , ek) := sup
E∈En

E[Fn,k+1(e1, . . . , ek, E)] (5)

for all e1, . . . , eK ∈ 2−nN and k = K − 1, . . . , 0. It is clear that F0 ≤ 1. By
the duality theorem of linear programming, for any k ∈ {0, . . . ,K − 1} and any
e1, . . . , eK ∈ 2−nN, there exists s ∈ [0, 1] such that

∀e ∈ 2−nN : Fn,k+1(e1, . . . , ek, e) ≤ Fn,k(e1, . . . , ek)(se+ 1− s). (6)

Let us check carefully the application of the duality theorem. Let c1, . . . , cN
be the first N elements of the set 2−nN (namely, ci := (i− 1)2−n, i ∈ [N ]); we
are interested in the case N → ∞. Restricting E in (5) to take values c1, . . . , cN
with any probabilities p1, . . . , pN , instead of Fn,k(e1, . . . , ek) we will obtain the
solution Fn,k,N to the linear programming problem

c1p1 + · · ·+ cNpN ≤ 1 (7)

p1 + · · ·+ pN = 1 (8)

f1p1 + · · ·+ fNpN → max, (9)

where pi are nonnegative variables and fi := Fn,k+1(e1, . . . , ek, ci), i = 1, . . . , N .
It is clear that the sequence Fn,k,N is increasing in N and tends to
Fn,k(e1, . . . , ek) as N → ∞. Let us assume Fn,k,N > 0 (the simple case
where Fn,k,N > 0 for all N should be considered separately). The dual problem
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to (7)–(9) is y1 + y2 → min subject to y1 ≥ 0 and ciy1 + y2 ≥ fi for all i ∈ [N ].
Then we will have the analogue

∀e ∈ 2−n{0, . . . , N − 1} : Fn,k+1(e1, . . . , ek, e) ≤ Fn,k,N (se+ 1− s) (10)

of (6) when y1 + y2 = Fn,k,N (which is the case for the optimal (y1, y2)) and
y1 = sFn,k,N (which is the definition of s). It is clear from (10) that s ≤ 1, as
e = 0 is allowed. Let sN be an s satisfying (10). Then any limit point of the
sequence sN will satisfy (6).

We have proved the statement of the theorem for e-values in 2−nN; now we
drop this assumption. Let (e1, . . . , eK) ∈ [0,∞)K . For each n, let en,k be the
largest number in 2−nN that does not exceed ek. Set

Fk(e1, . . . , ek) := lim
n→∞

Fn,k(en,1, . . . , en,k).

Then Fk is a game martingale, and the fraction s to gamble after observing
e1, . . . , ek can be chosen as the smallest s ∈ [0, 1] satisfying

∀e ∈ [0,∞) : Fk+1(e1, . . . , ek, e) ≤ Fk(e1, . . . , ek)(se+ 1− s). (11)

The set of such s is obviously closed; let us check that it is non-empty. Let s = sn
be a number in [0, 1] satisfying (6) with en,1, . . . , en,k in place of e1, . . . , ek,
respectively. Then any limit point of sn will satisfy (11).

Theorem 1 gives a characterization of admissible se-merging functions, i.e.,
those that are not dominated by any other se-merging functions.

Corollary 1. The class of all admissible se-merging functions coincides with
the class of all martingale merging functions.

As we mentioned in Section 2, a martingale merging function is not nec-
essarily increasing in all arguments. This is because s(ek−1)(ek − 1) in (4)
is generally not increasing or decreasing in e(k). Although monotonicity does
not hold, any martingale merging function F satisfies a notion of sequential
monotonicity : for fixed k ∈ [K] and (e1, . . . , ek−1) ∈ [0,∞)k−1, the function
ek 7→ F (e1, . . . , ek−1, ek, 1, . . . , 1) is increasing.

Example 1. The non-monotonicity of SK appears naturally in an “exceed-
and-stop” betting strategy: for a fixed α ∈ (0, 1) and for each k ∈ [K], if
Sk(e) ≥ 1/α, then we choose s(e(k)) = 0 (which implies s(e(j)) = 0 for all
j ≥ k); otherwise we choose s(e(k)) > 0. It is clear from (4) that SK is not
increasing since s(e(k−1))(ek − 1) is unbounded from above if s(e(k−1)) > 0.

Examples of martingale merging functions

The simplest non-trivial gambling system is s := 1; the corresponding game
martingale with initial capital 1 is the product

Sk(e1, . . . , eK) = e1 . . . ek, k ∈ [K],
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and the corresponding martingale merging function is the product

PK(e1, . . . , eK) := e1 . . . eK . (12)

This is the most standard se-merging function.
Another martingale merging function is the arithmetic mean

F (e1, . . . , eK) :=
e1 + · · ·+ eK

K
.

This is in fact an e-merging function (the most important symmetric one, as
explained in [14]). The corresponding game martingale is the mean

Sk(e1, . . . , eK) :=
e1 + · · ·+ ek +K − k

K
.

(This is easiest to see using the equivalent definition (3).)
A more general class of martingale merging functions, introduced in [14],

includes the U-statistics

Un(e1, . . . , eK) :=
1(
K
n

) ∑
A⊆[K],|A|=n

(∏
k∈A

ek

)
, n ∈ {0, 1, . . . ,K}. (13)

This is a martingale merging function because each addend in (13) is, and a
convex combination of game martingales is a game martingale (Lemma 1).

Our final martingale merging function has an increasing sequence of numbers
1 ≤ K1 < · · · < Km < K as its parameter and is defined as

F (e1, . . . , eK) :=

m∏
i=0

eKi+1 + · · ·+ eKi+1

Ki+1 −Ki
,

where K0 is understood to be 0 and Km+1 is understood to be K. The corre-
sponding game martingale is

Sk(e1, . . . , eK) :=

∑K1

j=1 ej

K1
. . .

∑Ki

j=Ki−1+1 ej

Ki −Ki−1

∑k
j=Ki+1 ej +Ki+1 −Ki − k

Ki+1 −Ki
,

where i is the largest number such that Ki ≤ k.

The product se-merging function

We pay special attention to the product function PK in (12). This function is
optimal in a weak sense [14, Proposition 4.2] among all ie-merging functions. In
what follows, we show that, when applied to independent precise e-variables, the
product function has the largest variance among precise se-merging functions.
This is an undesirable property of the product function, and it is one of the
motivations that led us to search for alternative se-merging functions.

We first present a simple lemma which is useful in the proof of the next
result.
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Lemma 3. For any ie-merging function F : [0,∞)K → [0,∞) and a ≥ 1, the
function G : (e1, . . . , eK) 7→ F (ae1, e2, . . . , eK)/a is an ie-merging function.

Proof. Take an event A with P(A) = 1/a. For any independent e-variables
E′

1, . . . , E
′
K , we can take independent e-variables E1, . . . , EK independent of

A such that (E1, . . . , EK) is distributed identically to (E′
1, . . . , E

′
K), since the

probability space is atomless. Therefore, it suffices to show E[G(E1, . . . , EK)] ≤
1 for independent e-variables E1, . . . , EK independent of A. Let E′

1 := aE11A;
this is an e-variable. We can compute

E[G(E1, . . . , EK)] =
1

a
E[F (aE1, E2, . . . , EK)] ≤ E[F (E′

1, E2, . . . , EK)] ≤ 1

(the first inequality following from F ≥ 0). Hence, G is an ie-merging function.

Now we can compare the product function and other se-merging functions
with respect to the variance and second moment of the resulting e-variable.

Proposition 2. For any se-merging function F : [0,∞)K → [0,∞) and inde-
pendent nonnegative random variables X1, . . . , XK with E[Xk] ≥ 1, k ∈ [K], we
have

E
[
F (X1, . . . , XK)2

]
≤

K∏
k=1

E[X2
k ] = E

[
PK(X1, . . . , XK)2

]
. (14)

Moreover, if E1, . . . , EK are independent precise e-variables and F is a precise
se-merging function, then

Var(F (E1, . . . , EK)) ≤ Var(PK(E1, . . . , EK)). (15)

Proof. First, we argue that it suffices to show (14) for all se-merging functions
F and X1, . . . , XK being precise e-variables. Suppose that this condition holds
true. For independent nonnegative X1, . . . , XK with mean larger than or equal
to 1, set ak := E[Xk] ≥ 1, Ek := Xk/ak for k ∈ [K], and a :=

∏K
k=1 ak. Let

G : (e1, . . . , eK) 7→ F (a1e1, . . . , aKeK)/a. Clearly, E1, . . . , EK are independent
precise e-variables. Using Lemma 3 repeatedly, we deduce that G is an se-
merging function. If (14) holds for all precise e-variables, then

E
[
F (X1, . . . , XK)2

]
= a2E

[(
F (a1E1, . . . , aKEK)

a

)2
]

= a2E
[
G(E1, . . . , EK)2

]
≤ a2E

[
PK(E1, . . . , EK)2

]
= E

[
PK(X1, . . . , XK)2

]
.

Therefore, the general case of (14) follows from the case of precise e-variables.
Let E1, . . . , EK be independent precise e-variables; we will show

E
[
F (E1, . . . , EK)2

]
≤

K∏
k=1

E[E2
k]. (16)

10



Using Theorem 1, F is dominated by a martingale merging function. Hence, it
suffices to show the proposition for a martingale merging function F . Denote
the gambling system of F by s and the associated game martingale by S. We
show the proposition by induction. The inequality (16) holds for K = 1 since

Var(1− λ+ λE1) = λ2Var(E1) ≤ Var(E1)

for all λ ∈ [0, 1]. To argue by induction, suppose that

E[G(E1, . . . , EK−1)
2] ≤

K−1∏
k=1

E[E2
k] (17)

for every se-merging function G : [0,∞)K−1 → [0,∞). Let us write Y :=
(E1, . . . , EK−1), W := SK−1(Y), and s := s(Y). Since E[E2

K ] ≥ (E[EK ])2 = 1,
we have

E[F (E1, . . . , EK)2 | Y] = E[W 2(sEK + 1− s)2 | Y]

= W 2
(
s2E[E2

K ] + (1− s)2 + 2s(1− s)E[EK ]
)

≤ W 2
(
s2 + (1− s)2 + 2s(1− s)

)
E[E2

K ]

= W 2E[E2
K ].

As a consequence,

E[F (E1, . . . , EK)2] ≤ E[SK−1(Y)2]E[E2
K ] ≤

K∏
k=1

E[E2
k],

where the last inequality follows by the inductive assumption (17) and the fact
that SK−1 is an se-merging function. Therefore, we obtain (14). If F is a
precise se-merging function, we obtain (15) from (16) since E[F (E1, . . . , EK)] =
E[PK(E1, . . . , EK)] = 1.

Proposition 2 says that using the product function PK results in a large
variance under the null hypothesis of e-variables. This does not imply that the
same holds under the alternative hypothesis, which can be arbitrary. Neverthe-
less, we see from (14) in Proposition 2 that, if the e-variables have means larger
than 1 and are independent under the alternative hypothesis, then the second
moment of PK(E1, . . . , EK) is larger than F (E1, . . . , EK) for any se-merging
function F . This suggests that one could anticipate that PK(E1, . . . , EK) likely
has a large variance also in this case.

5 E-processes and anytime validity

In this section, we connect the martingale merging functions to e-processes. All
supermartingales, martingales, and stopping times are defined with respect to
the filtration (Fk) generated by E = (E1, . . . , EK). Formally, a random variable

11



τ taking values in {0, 1, . . . ,K} is a stopping time if, for each k ∈ {0, 1, . . . ,K},
the set {τ ≤ k} is Fk-measurable.

In scientific discovery, experiments are often conducted sequentially in time,
and a discovery may be reported at the time when enough evidence is gathered.
Therefore, with a vectorE of sequential e-values, it is desirable to require validity
of a test not only at the fixed time K, but also at a stopping time τ . This leads
to the definition of e-processes: an e-process (Ek)k∈{0,...,K} is a nonnegative
stochastic process adapted to (Fk) such that E[Eτ ] ≤ 1 for any stopping time
τ . The property E[Eτ ] ≤ 1 will be called anytime validity. Anytime validity
is automatically achieved by using a game martingale: since (Sk(E))k=1,...,K is
then a martingale, Sτ (E) is an e-variable for any stopping time τ . Therefore,
such a process k 7→ Sk(E) is an e-process.

Conversely, if a sequence of functions Fk : [0,∞)K → [0,∞), k = 0, 1, . . . ,K,
satisfies

(a) (Fk(E))k=1,...,K is adapted to the natural filtration of E;

(b) anytime validity : Fτ (E) is an e-variable for any vector E of sequential
e-values and any stopping time τ ;

(c) precision: Fk(E) is precise for all k ∈ [K] and E.

then we can show that it is a game martingale.

Theorem 2. For a sequence of functions F = (Fk)k=1,...,K , the following are
equivalent:

(i) F is a game martingale with initial value 1;

(ii) F (E) is a martingale with initial value 1 for any vector E of precise and
sequential e-variables;

(iii) F is adapted, anytime valid, and precise, i.e., satisfies (a)–(c).

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are straightforward. Below
we show (iii) ⇒ (i).

Take any precise and sequential e-variables E1, . . . , EK , and let F =
(Fk)k=1,...,K be the natural filtration of E = (E1, . . . , EK).

Let τ be any (F-)stopping time. First, we claim that E[Fτ (E)] = 1 holds.
To show this claim, for j = 1, . . . ,K − 1 define

τj :=

{
j if τ > j

j + 1 if τ ≤ j.

Clearly, τj is a stopping time for each j. Moreover, the realization of
(τ, τ1, . . . , τK−1) is always a permutation of (1, . . . ,K). Hence, using (c),
we have

E

Fτ (E) +

K−1∑
j=1

Fτj (E)

 = E

[
K∑

k=1

Fk(E)

]
= K.

12



Using (b), E[Fτj (E)] ≤ 1 for each j. This implies E[Fτ (E)] ≥ 1. Therefore,
E[Fτ (E)] = 1 for any stopping time τ .

If for some k = 1, . . . ,K− 1, the event A := {E[Fk+1(E) | Fk] > Fk(E)} has
a positive probability, then η := k1A+K1Ac and η′ := (k+1)1A+K1Ac , which
are stopping times by (a), satisfy E[Fη(E)] < E[Fη′(E)], violating the property
that E[Fτ (E)] = 1 for any stopping time τ . Hence, P(A) = 0. Similarly,
P(E[Fk+1(E) | Fk] < Fk(E)) = 0. Therefore, E[Fk+1(E) | Fk] = Fk(E) almost
surely, and (Fk(E))k=1,...,K is an F-martingale.

Note that FK is an se-merging function. By Theorem 1, we have FK(E) ≤
SK(E) for some game martingale (Sk)k=1,...,K . Since E[FK(E)] = E[SK(E)], we
have FK(E) = SK(E) almost surely. Using the fact that both (Fk(E))k=1,...,K

and (Sk(E))k=1,...,K are martingales, we have, for k = 1, . . . ,K, almost surely

Fk(E) = E[FK(E) | Fk] = E[SK(E) | Fk] = Sk(E).

Since E is arbitrary, we have FK = SK .

Theorem 2 implies that, in order to get an anytime-valid and precise method
for merging sequential e-values (i.e., to get a “precise e-process”), the only tool
one could rely on is the class of game martingales. Another statement of this
kind is established in [9]: the class of e-processes coincides with the class of
nonnegative processes dominated by test martingales.

6 Merging independent e-values

In this section, we will study the more delicate situation of merging independent
e-values. Since independent e-variables are sequential e-variables, the martingale
merging methods of Section 4 are valid in this situation. An interesting question
is whether many more merging functions are allowed for independent e-values.

We first explain the intuition and then give formal definitions. An important
observation is that, in the case where the e-values to be merged are independent,
one may process them in any arbitrary order, instead of the fixed order for
sequential e-values. Let us imagine that the K e-values are written on cards
which initially are lying face down so that their values are not shown. The
statistician reveals these cards one by one and bets on each card right before
revealing it. In the case of sequential e-values, the order of revealing these cards
is fixed (from card 1 to card K), and the relative bet on card k + 1 (which has
value ek+1 on it) is s(e(k)) in (2).

If the e-values are independent, the statistician can decide the order of re-
vealing these e-values. Moreover, he can apply an adaptive strategy for turning
over the cards, that is, at each step, revealing a card based on what he has seen
on the previous cards (this picture goes back to Kolmogorov [5, Section 2]). As
in the case of constructing martingale merging functions, the statistician also
needs to decide the amount of bet at each step. Therefore, the strategy involves
two decision variables, which e-value to reveal next, denoted by πk+1, and how
much to bet on this e-value, denoted by s(eπ(k)), where e

π
(k) := (eπ1

, . . . , eπk
), and
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again eπ(0) := □. Although not explicitly reflected in the notation, one should

keep in mind that πk+1 is a function of eπ(k). We write eπ := (eπ1
, . . . , eπK

),
which is the vector of e-values reordered by π.

Certainly, an average of ie-merging functions obtained by this procedure
with different orders or different strategies is still an ie-merging function. This
corresponds to a randomized betting strategy for the statistician: at each step,
he can generate πk+1 and s(eπ(k)) using some distributions that depend on the
past observations and decisions.

We will make this procedure rigorous below. The order of revealing the e-
values is modelled by π = (πk)k∈[K], where πk : [0,∞)k−1 → [K] are measurable
functions, and for any e ∈ [0,∞)K , πk(e

π
(k−1)) ̸= πj(e

π
(j−1)) for distinct j, k ∈

[K], meaning that you can only read the same e-value once. Equivalently,
{πk(e

π
(k−1)) : k ∈ [K]} = [K]. Such π is called a reading strategy.

For a given gambling system s : [0,∞)<K → [0, 1], a reading strategy π =
(π1, . . . , πK), and c ∈ [0, 1], the corresponding reordered game martingale is the
sequence of measurable functions Ss,π

k : [0,∞)K → [0,∞), k = 0, . . . ,K, given
by Ss,π

0 := c and

Ss,π
k+1(e) := Ss,π

k (e)
(
s(eπ(k))eπk+1

+ 1− s(eπ(k))
)
, k = 0, . . . ,K − 1. (18)

where we omit the argument in πk+1 = πk+1(e
π
(k)). An equivalent way to write

(18) is
Ss,π
k (e) = Sk(e

π), k = 0, 1, . . . ,K,

where (Sk)k=0,1,...,K is the game martingale in (2) associated with s.
A generalized martingale merging function F is a mixture (average) of Ss,π

K

above, that is,

F (e) = Eµ[Ss,π
K (e)] =

∫
Ss,π
K (e)µ(ds,dπ) for e ∈ [0,∞)K , (19)

for some probability measure µ on the pairs (s, π). Note that s and π are not
independent in general.

The generalized martingale merging functions form a subclass of the ie-
merging functions, as the following theorem shows.

Theorem 3. Any generalized martingale merging function is an ie-merging
function.

Theorem 3 essentially follows from the following lemma. For a proof of
Theorem 3, we only need the first statement of the lemma.

Lemma 4. Let E1, . . . , EK be independent e-variables, and π be a reading strat-
egy. Recursively define Eπ

k = Eπk(Eπ
1 ,...,Eπ

k−1)
for k ∈ [K]. Then Eπ

1 , . . . , E
π
K are

sequential e-variables. If E1, . . . , EK are iid, then so are Eπ
1 , . . . , E

π
K .
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Proof. Set

Eπ
(k) = (Eπ

1 , . . . , E
π
k ) for k ∈ {0, 1, . . . ,K}

Aπ
k = [K] \ {π1(E

π
(0)), π2(E

π
(1)), . . . , πk(E

π
(k−1))} for k ∈ [K];

the latter is the set of all possible values that πk+1(E
π
(k)) can take. Let f : R → R

be a Borel function. For k = 1, . . . ,K − 1,

E
[
f(Eπ

k+1) | Eπ
(k)

]
=
∑
j∈[K]

E
[
f(Ej)1{j=πk+1(Eπ

(k)
)} | Eπ

(k)

]
=
∑
j∈Aπ

k

1{j=πk+1(Eπ
(k)

)}E
[
f(Ej) | Eπ

(k)

]
.

Using the independence between Ej and (Ek)k ̸=j , for any fixed j ∈ [K],

E
[
f(Ej) | Eπ

(k)

]
= 1{j∈Aπ

k}E [f(Ej)] + 1{j /∈Aπ
k}f(Ej).

Therefore,

E
[
f(Eπ

k+1) | Eπ
(k)

]
=
∑
j∈Aπ

k

1{j=πk+1(Eπ
(k)

)}E [f(Ej)] . (20)

Taking f as the identity in (20), we get

E
[
Eπ

k+1 | Eπ
(k)

]
≤
∑
j∈Aπ

k

1{j=πk+1(Eπ
(k)

)} = 1.

This shows that Eπ
1 , . . . , E

π
K are sequential e-variables.

If E1, . . . , EK are iid, then (20) yields E[f(Eπ
k+1) | Eπ

(k)] = E[f(E1)] and

hence E[f(Eπ
k+1)] = E[f(E1)] for any Borel f . This shows that Eπ

k+1 is inde-
pendent of Eπ

1 , . . . , E
π
k and identically distributed as E1. Hence, Eπ

1 , . . . , E
π
K

are iid.

In the first statement of Lemma 4, Eπ
1 , . . . , E

π
K are sequential e-variables

but not necessarily independent. For instance, consider a setting where E1 and
E2 are uniform on [0, 2] and E3 = 1. The strategy π is specified by π1 = 1,
π2(e) = 21{e<1} + 31{e≥1}. It is clear that E

π
1 and Eπ

2 are not independent.

Proof of Theorem 3. Let E = (E1, . . . , EK) be a vector of independent e-
variables. It suffices to consider Ss,π

K (E) in (18) for a deterministic pair (s, π),
because a generalized martingale merging function is a mixture of Ss,π

K , and tak-
ing a mixture of e-variables yields an e-variable. Note that Ss,π

K (E) = SK(Eπ),
where Eπ = (Eπ

1 , . . . , E
π
K) in Lemma 4. Hence, E[Ss,π

K (E)] ≤ 1 follows from
Lemmas 2 and 4.

The following is an example of a generalized martingale merging function
that is not an se-merging function.
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Example 2. The following function is taken from [14, Remark 4.3], where it is
shown that

F (e1, e2) :=
1

2

(
e1

1 + e1
+

e2
1 + e2

)
(1 + e1e2) (21)

is an ie-merging function. Let us check that F is also a generalized martingale
merging function. Notice that the symmetric expression (21) can be represented
as the arithmetic average of

e1
1 + e1

(1 + e1e2) = e1

(
1

1 + e1
+

e1
1 + e1

e2

)
and the analogous expression with e1 and e2 interchanged. The generalized
gambling strategy producing (21) starts from uncovering e1 or e2 with equal
probabilities and investing all the capital in the chosen e-variable. If e1 is
uncovered first, it then invests a fraction of e1/(1+e1) of its current capital into
e2. And if e2 is uncovered first, it invests a fraction of e2/(1 + e2) of its current
capital into e1.

Let us now check that F is not an se-merging function. By the symmetry of
F , we can assume, without loss of generality, that we first observe the e-variable
E1 producing e1 and then observe E2 producing e2. Had F been an se-merging
function,

G(e1) := sup
E2∈E

E[F (e1, E2)]

would have produced an e-variable when plugging in e1 = E1. Let E2 be given
by p−11A where P(A) = p for some p ∈ (0, 1]; later p will be chosen depending
on e1. We can compute

E[F (e1, E2)] = (1− p)
1

2

e1
1 + e1

+ p
1

2

(
e1

1 + e1
+

p−1

1 + p−1

)(
1 + e1p

−1
)

=
1

2

(
e1 +

p+ e1
p+ 1

)
.

Letting p ↓ 0 we have E[F (e1, E2)] → e1, and letting p := 1 we have
E[F (e1, E2)] = (3e1 + 1)/4. Therefore,

G(e1) = sup
E2∈E

E[F (e1, E2)] ≥ max

(
e1,

3e1 + 1

4

)
,

Note that if E[E1] = 1, then E[G(E1)] > 1 unless E1 = 1 with probability 1.
Hence, F is not an se-merging function.

Example 3. In the case K = 2, the reading strategy π is specified by π1,
which does not depend on any observed e-values. Hence, the bet s can be
chosen separately on the events {π1 = 1} and {π1 = 2}. Therefore, we can
write all generalized martingale merging functions in (19) as

(e1, e2) 7→ β(1 + a1ẽ1)(1 + g1(e1)ẽ2) + (1− β)(1 + a2ẽ2)(1 + g2(e2)ẽ1), (22)
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where ẽ1 = e1 − 1, ẽ2 = e2 − 1, β, a1, a2 ∈ [0, 1], and g1, g2 : [0,∞) → [0, 1] are
Borel functions. To interpret (22) as a randomized reordered game martingale,
β is the probability of π1 = 1, a1, a2 are the first-round bets, and g1, g2 are the
second-round bets.

In view of Theorem 1, one may wonder whether any ie-merging function
is dominated by a generalized martingale merging function. The answer is,
somewhat surprisingly, no, as the following counter-example shows.2

Example 4. Fix a constant c > 1 and define the function G : [0,∞)2 → R by

G(e) = 1[0,c)2(e) + (2c− 1)1[c,∞)2(e).

Take any two independent e-variables E1, E2, and set a := P(E1 ≥ c) and b :=
P(E2 ≥ c). Markov’s inequality gives a, b ≤ 1/c, which implies 1/a+ 1/b ≥ 2c,
and thus a+ b ≥ 2cab. We can verify

E[G(E1, E2)] = P(E1 < c)P(E2 < c) + (2c− 1)P(E1 ≥ c)P(E2 ≥ c)

= 1− a− b+ 2cab ≤ 1.

Hence, G is an ie-merging function. Let us show that G is not dominated by any
generalized martingale merging function F . Suppose otherwise. We can assume
that F has the form (22). Since F ≥ G, we know that F = 1 on [0, 1]2, which
implies that a1 = a2 = 0 (unless β ∈ {0, 1}, in which case assuming a1 = a2 = 0
does not lead to loss of generality). This gives F (c, c) ≤ βc + (1 − β)c = c.
However, G(c, c) = 2c− 1 whereas F (c, c) ≤ c < 2c− 1, a contradiction.

7 Conclusion

For sequential e-variables, full characterizations of admissible merging functions
and methods for constructing e-processes are obtained in this paper. For in-
dependent e-variables, we propose the class of generalized martingale merging
functions, but a full picture remains unclear.

Regarding the merging functions for independent or sequential e-values,
there are several open questions.

1. It is unclear in which practical settings, constructing independent e-values
performs better than constructing sequential but dependent e-values.
Since independent e-values are more restrictive to construct (cf. the exam-
ple of likelihood ratios in Section 3), it would only be valuable to construct
them if they carry more statistical power in some situations.

2. It would be interesting to find simple, and perhaps practically useful, ie-
merging functions that are not dominated by a generalized martingale
merging function.

2This counter-example is due to Zhenyuan Zhang, to whom we are grateful.
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3. It remains unclear whether any increasing ie-merging function is domi-
nated by a generalized martingale merging function; note that the function
G in Example 4 is not increasing.

4. We may further require an ie-merging function to be precise; that is, for
independent e-variables with mean 1, the function produces an e-variable
with mean 1. Is every ie-merging function with this requirement necessar-
ily a generalized martingale merging function?
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