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We present an undirected version of the recently introduced flow-augmentation technique: Given an undirected
multigraph𝐺 with distinguished vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) and an integer 𝑘 , one can in randomized 𝑘O(1) · ( |𝑉 (𝐺) | +
|𝐸 (𝐺) |) time sample a set 𝐴 ⊆

(𝑉 (𝐺 )
2

)
such that the following holds: for every inclusion-wise minimal 𝑠𝑡-cut

𝑍 in 𝐺 of cardinality at most 𝑘 , 𝑍 becomes a minimum-cardinality cut between 𝑠 and 𝑡 in 𝐺 +𝐴 (i.e., in the
multigraph 𝐺 with all edges of 𝐴 added) with probability 2−O(𝑘 log𝑘 ) .

Compared to the version for directed graphs [STOC 2022], the version presented here has improved success
probability (2−O(𝑘 log𝑘 ) instead of 2−O(𝑘4 log𝑘 ) ), linear dependency on the graph size in the running time
bound, and an arguably simpler proof.

An immediate corollary is that the Bi-objective 𝑠𝑡-Cut problem can be solved in randomized FPT time
2O(𝑘 log𝑘 ) ( |𝑉 (𝐺) | + |𝐸 (𝐺) |) on undirected graphs.
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1 INTRODUCTION
Fixed-parameter tractable algorithms for graph separation problems has been an important topic
in parameterized complexity, and after more than a decade of intense study it would seem that
we should by now know of all the major techniques necessary for the design of such algorithms.
Certainly, there is an impressive toolbox, leading to the resolution of central problems such as FPT
algorithms for Multicut [1, 13] and Minimum Bisection [5].
Yet despite this progress, several open problems remained until very recently. Many of these

relate to directed graph cuts, such as the existence of FPT algorithms for the notorious ℓ-Chain SAT
problem identified by Chitnis et al. [3], weighted variants of classic problems such as Directed
Feedback Vertex Set, or the deceptively simple-looking problem of Bi-objective (𝑠, 𝑡)-cut [12].
In the last problem, the input is a digraph 𝐷 = (𝑉 ,𝐴) with arc weights 𝑤 and 𝑠, 𝑡 ∈ 𝑉 , and two
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budgets 𝑘,𝑊 . The task is to find an (𝑠, 𝑡)-cut 𝑍 ⊆ 𝐴 such that |𝑍 | ≤ 𝑘 and𝑤 (𝑍 ) ≤𝑊 . Despite the
simplicity of the problem, the existence of an FPT algorithm was open for a long time.
This paper is the second one in a series that introduces a new algorithmic technique called

flow-augmentation and explores its applications. The first part [7, 9] introduced the technique in full
generality in directed graphs and applied it to show fixed-parameter tractability of ℓ-Chain SAT and
weighted Directed Feedback Vertex Set. The third one [10, 11] uses the technique to show two
new tractability isles in the area of parameterized algorithms for Constraint Satisfaction Problems,
parameterized by the number of unsatisfied clauses, and completes a complexity dichotomy in the
Boolean domain. The main goal of the present second part is to show a counterpart in undirected
graphs that is simpler and has improved guarantees as compared to the (more general) directed
version of part one [7, 9].

To state formally the main result, we provide some notation. Consider an undirected graph
𝐺 = (𝑉 , 𝐸) with two vertices 𝑠, 𝑡 ∈ 𝑉 , and an unknown (𝑠, 𝑡)-cut 𝑍 ⊆ 𝐸. Furthermore, let 𝑍𝑠,𝑡 ⊆ 𝑍
be those edges with one endpoint reachable from 𝑠 and the other reachable from 𝑡 in𝐺 −𝑍 . We say
that 𝑍 is a proper (𝑠, 𝑡)-cut if 𝑍𝑠,𝑡 is an (𝑠, 𝑡)-cut, and eligible for (𝑠, 𝑡) if additionally every edge of
𝑍 has its endpoints in different connected components of 𝐺 − 𝑍 . In particular, any minimal, not
necessarily minimum (𝑠, 𝑡)-cut is eligible for (𝑠, 𝑡). Let 𝑘 = |𝑍 |, _∗ = |𝑍𝑠,𝑡 |, and let _𝐺 (𝑠, 𝑡) ≤ _∗
be the value of an (𝑠, 𝑡)-max flow in 𝐺 . (See Figure 1 for an illustration.) We show the following
(reformulated slightly from the more formal version in Section 3).

Theorem 1.1. There is a randomized algorithm that, given an undirected graph 𝐺 = (𝑉 , 𝐸) with
𝑠, 𝑡 ∈ 𝑉 and two integers 𝑘 ≥ _∗ ≥ _𝐺 (𝑠, 𝑡), in time 𝑘O(1) ( |𝑉 | + |𝐸 |) outputs an edge multiset 𝐴 with

_𝐺+𝐴 (𝑠, 𝑡) ≥ _∗ and a flow P̂ in𝐺 +𝐴 of cardinality _∗, such that for any (𝑠, 𝑡)-cut 𝑍 in𝐺 eligible for

(𝑠, 𝑡) with |𝑍 | = 𝑘 and |𝑍𝑠,𝑡 | = _∗, with probability 2−O(𝑘 log𝑘 )
, the following holds: for every 𝑢𝑣 ∈ 𝐴,

𝑢 and 𝑣 are connected in 𝐺 − 𝑍 ; and for every path 𝑃 ∈ P̂, |𝐸 (𝑃) ∩ 𝑍 | = 1.

In particular, in any successful run, in 𝐺 +𝐴 the paths P̂ will be an (𝑠, 𝑡) max-flow, and 𝑍𝑠,𝑡 will
be an (𝑠, 𝑡)-min cut.

A quick comparison of Theorem 1.1 with the directed version of [7] is in order.
• There is a better success probability bound: 2−O(𝑘 log𝑘 ) instead of 2−O(𝑘4 log𝑘 ) .
• There is an explicit linear dependency on the graph size in the running time bound, instead
of just a polynomial of unspeficied degree of [7].
• The notion of an eligible cut is a bit more general than the natural casting of the notion of
star 𝑠𝑡-cut of [7] to undirected graphs (it allows some part of 𝑍 \ 𝑍𝑠,𝑡 to separate a bunch of
vertices from 𝑡 , even though these vertices are already separated from 𝑠 by 𝑍𝑠,𝑡 ).
• The algorithm and the proof is arguably simpler than the one of [7] (albeit it involves a good
amount of tedious calculations in the probability analysis to reach the 2−O(𝑘 log𝑘 ) bound).
• While in directed graphs we provided a deterministic counterpart with the expected 2O(𝑘4 log𝑘 )

parametric factor in the running time bound, we do not present an analogous result here.
All random steps in the presented algorithm can be replaced by with branching or standard
derandomization tools for color-coding, so obtaining some deterministic counterpart is
definitely possible. However, to achieve 2−O(𝑘 log𝑘 ) success probability we needed to carefully
optimise probability distributions in a few places and it is not clear to us that the standard
derandomization would match the desired 2O(𝑘 log𝑘 ) parametric factor in the running time
bound. Furthermore, the derandomization tools for color-coding steps will introduce a number
of O(log𝑛) factors in the running time analysis, turning the linear dependency on the
graph size into a near-linear one ( |𝑉 | + |𝐸 |)1+𝑜 (1) . We remark also that for any complexity
classification results (such those in [10, 11]), the deterministic version of the more general
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Fig. 1. Examples of (𝑠, 𝑡)-cuts, from left to right: a minimum (𝑠, 𝑡)-cut, a minimal (𝑠, 𝑡)-cut that is not minimum,
a proper (𝑠, 𝑡)-cut that is not minimal nor eligible (𝑣 is reachable from 𝑠 after the cut), an eligible (𝑠, 𝑡)-cut
that is not minimal, and an (𝑠, 𝑡)-cut that is not proper (the component of 𝑣 after the cut is not reachable
neither from 𝑠 nor from 𝑡 ).

directed case of [7] is sufficient. Finally, presenting the deterministic counterpart along the
randomized proof would significantly cloud the picture.

Recall the Bi-objective (𝑠, 𝑡)-Cut problem. Papadimitriou and Yannakakis showed that this is
strongly NP-hard, even for undirected graphs, and also showed partial approximation hardness [14].
The directed version, with ℓ ≥ 2 distinct budgets, was recently considered from a parameterized
perspective by Kratsch et al. [12], who showed that the problem is FPT if all budgets are included in
the parameter, but W[1]-hard if at least two budgets 𝑘𝑖 are not included in the parameter. The case
of a single budget not being included in the parameter, which includes the Bi-objective (𝑠, 𝑡)-Cut
problem parameterized by 𝑘 , has been open prior to our work (in directed graphs).
If 𝑘 equals the minimum cardinality of an (𝑠, 𝑡)-cut, the problem can be easily solved via any

polynomial-time minimum cut algorithm: set the capacity of every edge to be a large number (much
larger than any weight of an edge) plus the weight of an edge and ask for a minimum capacity cut.
Hence, flow-augmentation yields a simple randomized FPT algorithm: We prepend the step above
with flow augmentation (Theorem 1.1 in undirected graphs and the version of [7, 9] in directed
graphs), with newly added edges assigned prohibitively large weights. For undirected graphs, this
gives the following corollary.

Corollary 1.2. Bi-objective (𝑠, 𝑡)-Cut in undirected graphs can be solved in randomized FPT

time 2O(𝑘 log𝑘 ) · ( |𝑉 (𝐺) | + |𝐸 (𝐺) |).

We remark that although it is a quite standard exercise to provide an FPT algorithm for Bi-
objective (𝑠, 𝑡)-Cut in undirected graphs within the framework of randomized contractions [2],
and recent improvements would also give 2O(𝑘 log𝑘 ) parametric factor [4], these techniques do
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not give any explicit bound on the polynomial factor in the running time bound, not to mention
guaranteeing a linear one.

2 PRELIMINARIES
In this work we consider only (finite) undirected multi-graphs without loops. In particular, dif-
ferent edges connecting the same pair of vertices are considered to be identifiable and non-
interchangeable.1 Formally, a multi-graph could be captured as 𝐺 = (𝑉 , 𝐸, 𝜋) where 𝑉 and 𝐸
are finite sets and 𝜋 : 𝐸 →

(
𝑉
2
)
assigns each edge in 𝐸 an unordered pair of endpoints. To keep

notation within reason, we will treat multi-graphs as pairs 𝐺 = (𝑉 , 𝐸) where 𝑉 is a finite set and 𝐸
is a multi-subset of

(
𝑉
2
)
but understanding that cuts 𝑋 (to be defined in a moment) could involve

deleting particular (identifiable) copies of virtually the same edge 𝑢𝑣 . For a multi-graph 𝐺 and 𝐴 a
multi-set of edges on 𝑉 , the graphs 𝐺 +𝐴 and 𝐺 −𝐴 are accordingly understood as starting from
𝐺 and, respectively, adding all edges in 𝐴 that are not yet in 𝐺 or removing from 𝐺 all edges that
are also in 𝐴; again, note that this may include different edges with the same two endpoints. For a
vertex set 𝑆 , we denote by 𝛿 (𝑆) the multi-set of edges that have precisely one endpoint in 𝑆 , and
by 𝜕(𝑆) the set of vertices in 𝑆 that are incident with at least one edge in 𝛿 (𝑆). By a connected

component we mean a maximal set 𝑆 ⊆ 𝑉 that induces a connected subgraph of 𝐺 . In all other
aspects we follow standard graph notation as set out by Diestel [6].
Throughout this paragraph let 𝐺 = (𝑉 , 𝐸) be an arbitrary multi-graph, let 𝑆,𝑇 ⊆ 𝑉 , and let

𝑋 ⊆ 𝐸. Define 𝑅𝑆 (𝑋 ) as the set of vertices that are reachable from any vertex in 𝑆 in 𝐺 − 𝑋 . The
set 𝑋 is an (𝑆,𝑇 )-cut if 𝑅𝑆 (𝑋 ) ∩ 𝑅𝑇 (𝑋 ) = ∅; note that no such cut exists if 𝑆 ∩𝑇 ≠ ∅. A minimum

(𝑆,𝑇 )-cut is any (𝑆,𝑇 )-cut of minimum possible cardinality; whereas 𝑋 is a minimal (𝑆,𝑇 )-cut if
no proper subset of 𝑋 is an (𝑆,𝑇 )-cut. (We will crucially need both minimum and minimal cuts.) By
the well-known duality of cuts and flows in graphs (Menger’s theorem suffices here) we get that
the cardinality of any minimum (𝑆,𝑇 )-cut is equal to the maximum number of edge-disjoint paths
from 𝑆 to𝑇 in𝐺 or, equivalently, to the maximum unit-capacity (𝑆,𝑇 )-flow. By _𝐺 (𝑆,𝑇 ) we denote
the maximum flow from 𝑆 to 𝑇 or, equivalently, the minimum size of an (𝑆,𝑇 )-cut in 𝐺 ; we omit
the subscript 𝐺 when it is clear from context. We mostly apply these notions for the special cases
of 𝑆 = {𝑠} and 𝑇 = {𝑡} and then write, e.g., (𝑠, 𝑡)-cut rather than ({𝑠}, {𝑡})-cut for succinctness.
In particular, we write _𝐺 (𝑠, 𝑡) rather than _𝐺 ({𝑠}, {𝑡}) and, when 𝐺 , 𝑠 , and 𝑡 are understood, we
usually abbreviate this to _. We say that an (𝑆,𝑇 )-cut 𝑋 is closest to 𝑆 if for every other (𝑆,𝑇 )-cut
𝑋 ′ with 𝑅𝑆 (𝑋 ′) ⊆ 𝑅𝑆 (𝑋 ) we have |𝑋 ′ | > |𝑋 |. Clearly, if 𝑋 is an (𝑆,𝑇 )-cut closest to 𝑆 then 𝑋 must
in particular be minimal.

Let us recall two useful facts about edge cuts in graphs.

Proposition 2.1. Let 𝑋 be a minimal (𝑆,𝑇 )-cut. Then 𝑋 = 𝛿 (𝑅𝑆 (𝑋 )) = 𝛿 (𝑅𝑇 (𝑋 )).

Proof. By definition of 𝑅𝑆 (𝑋 ) we must have 𝛿 (𝑅𝑆 (𝑋 )) ⊆ 𝑋 . As 𝑋 is an (𝑆,𝑇 )-cut, we have
𝑇 ∩ 𝑅𝑆 (𝑋 ) = ∅ and, thus, 𝛿 (𝑅𝑆 (𝑋 )) is also an (𝑆,𝑇 )-cut. Minimality of 𝑋 now implies that 𝑋 =

𝛿 (𝑅𝑆 (𝑋 )); the other equation works symmetrically. □

Proposition 2.2. There is a unique minimum (𝑆,𝑇 )-cut that is closest to 𝑆 .

Proof. We use the well-known fact that the cut function 𝑓 : 2𝑉 → N : 𝑍 ↦→ |𝛿 (𝑍 ) | is submodular.
Suppose that there are two different minimum (𝑆,𝑇 )-cuts 𝑋 and 𝑌 that are both closest to 𝑆 . We

1This generality seems necessary to cover a largest set of applications. Multiple copies of the same edge in𝐺 might arise
in the reduction of some problem to an appropriate cut problem. The different copies may have wildly different behavior
regarding contribution to solution cost. Our goal will be to ensure that all solutions of a certain cardinality in terms of cut
size have a good probability of being preserved, thereby remaining oblivious to many unnecessary details of the application.
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must have 𝑅𝑆 (𝑋 ) ≠ 𝑅𝑆 (𝑌 ) or else 𝑋 = 𝛿 (𝑅𝑆 (𝑋 )) = 𝛿 (𝑅𝑆 (𝑌 )) = 𝑌 by Proposition 2.1 as 𝑋 and 𝑌
must be minimal (𝑆,𝑇 )-cuts. Using submodularity of 𝑓 for the sets 𝑅𝑆 (𝑋 ) and 𝑅𝑆 (𝑌 ) we get

|𝛿 (𝑅𝑆 (𝑋 )) | + |𝛿 (𝑅𝑆 (𝑌 )) | ≥ |𝛿 (𝑅𝑆 (𝑋 ) ∩ 𝑅𝑆 (𝑌 )) | + |𝛿 (𝑅𝑆 (𝑋 ) ∪ 𝑅𝑆 (𝑌 )) |. (1)
Clearly, both 𝛿 (𝑅𝑆 (𝑋 ) ∩𝑅𝑆 (𝑌 )) and 𝛿 (𝑅𝑆 (𝑋 ) ∪𝑅𝑆 (𝑌 )) are (𝑆,𝑇 )-cuts and by (1) they must both be
minimum (𝑆,𝑇 )-cuts. Now, however, because𝑅𝑆 (𝑋 ) ≠ 𝑅𝑆 (𝑌 ) wemust have𝑅𝑆 (𝑋 )∩𝑅𝑆 (𝑌 ) ⊊ 𝑅𝑆 (𝑋 )
or 𝑅𝑆 (𝑋 ) ∩ 𝑅𝑆 (𝑌 ) ⊊ 𝑅𝑆 (𝑌 ) contradicting the assumption that 𝑋 and 𝑌 are both closest to 𝑆 . □

The simple argument used in the proof of Proposition 2.2 is called the uncrossing of mini-

mum cuts: From the minimum cuts 𝑋 = 𝛿 (𝑅𝑆 (𝑋 )) and 𝑌 = 𝛿 (𝑅𝑆 (𝑌 )) we obtain minimum cuts
𝛿 (𝑅𝑆 (𝑋 ) ∩𝑅𝑆 (𝑌 )) and 𝛿 (𝑅𝑆 (𝑋 ) ∪𝑅𝑆 (𝑌 )). While the reachable sets 𝑅𝑆 (𝑋 ) and 𝑅𝑆 (𝑌 ) are in general
incomparable, it is clear that 𝑅𝑆 (𝑋 ) ∩ 𝑅𝑆 (𝑌 ) ⊆ 𝑅𝑆 (𝑋 ) ∪ 𝑅𝑆 (𝑌 ), and equality can only hold if
𝛿 (𝑅𝑆 (𝑋 )) = 𝛿 (𝑅𝑆 (𝑌 )).

3 UNDIRECTED FLOW-AUGMENTATION
Proper cuts, eligible cuts, compatibility, and flow augmentation. Let 𝐺 = (𝑉 , 𝐸) be a connected,

undirected multi-graph, and let vertices 𝑠, 𝑡 ∈ 𝑉 . For 𝑍 ⊆ 𝐸, let 𝑍𝑠,𝑡 ⊆ 𝑍 be the set of edges with
one endpoint in 𝑅𝑠 (𝑍 ) and one endpoint in 𝑅𝑡 (𝑍 ).

The following notions are crucial for this section.

Definition 3.1 (proper cut). We say that an (𝑠, 𝑡)-cut 𝑍 is proper if 𝑍𝑠,𝑡 is an (𝑠, 𝑡)-cut. That is, the
set of edges 𝑍𝑠,𝑡 ⊆ 𝑍 with one endpoint in 𝑅𝑠 (𝑍 ) and one endpoint in 𝑅𝑡 (𝑍 ) is also an (𝑠, 𝑡)-cut.

Note that proper (𝑠, 𝑡)-cuts generalize minimal (𝑠, 𝑡)-cuts.
In this section, we focus on solutions that are proper (𝑠, 𝑡)-cuts with additional technical proper-

ties.

Definition 3.2 (eligible cut). We say that an (𝑠, 𝑡)-cut 𝑍 is eligible for (𝑠, 𝑡) if
(1) 𝑍 is proper,
(2) each edge of 𝑍 has its endpoints in different connected components of 𝐺 − 𝑍 , and
(3) 𝑍 contains no edge incident with 𝑠 or 𝑡 .

For an integer _∗, we say that an (𝑠, 𝑡)-cut 𝑍 is _∗-eligible if 𝑍 is eligible and additionally |𝑍𝑠,𝑡 | = _∗.

We remark that the last property of an eligible cut is only for convenience and is not really a
restriction. It can be easily achieved by adding an extra terminal 𝑠′ connected with 𝑠 with 𝑘 + 1
edges, adding an extra terminal 𝑡 ′ connected with 𝑡 with 𝑘 + 1 edges, and asking for (𝑠′, 𝑡 ′)-cuts
instead.
The next two definitions formalize two properties we want from a set of edges that we add to

the graph: (i) it does not break the solution, and (ii) it increases the flow from 𝑠 to 𝑡 .

Definition 3.3 (compatible set). A multi-subset 𝐴 of
(
𝑉
2
)
is compatible with a set 𝑍 ⊆ 𝐸 if for every

𝑢𝑣 ∈ 𝐴, 𝑢 and 𝑣 are connected in 𝐺 − 𝑍 .

Definition 3.4 (flow-augmenting set). For an integer _∗ ≥ _𝐺 (𝑠, 𝑡), a multi-subset 𝐴 of
(
𝑉
2
)
is

_∗-flow-augmenting if _𝐺+𝐴 (𝑠, 𝑡) ≥ _∗.

Intuitively, the role of 𝑍 will be played by an unknown solution to the cut problem in question
and compatibility of 𝐴 with 𝑍 means that 𝐴 cannot add connectivity that was removed by 𝑍 (or
that was not present in the first place). The challenge is to find a flow-augmenting set that with
good probability is consistent with at least one solution 𝑍 , without knowing 𝑍 beforehand.
It will be convenient to take edges in 𝐴 as being undeletable or, equivalently, as unbounded (or

infinite) capacity. Clearly, if 𝐴 is flow-augmenting and compatible with an (eligible) set 𝑍 then 𝐴
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remains flow-augmenting and compatible with 𝑍 after adding an arbitrary number of copies of
any edges in 𝐴. In particular, having a total of 𝑘 + 1 copies of every edge in 𝐴 will make those
edges effectively undeletable for sets 𝑍 of size 𝑘 , that is, the endpoints of any edge in 𝐴 cannot be
separated by 𝑍 . Note that for applications, since edges in 𝐴 are in addition to the original input,
one will usually not be interested in deleting edges of 𝐴 anyway (and costs may not be defined),
and they only help to increase the flow to match an (unknown) solution. For the purpose of flow
and path packings, edges in 𝐴 may, accordingly, be shared by any number of (flow) paths, fully
equivalent to simply having 𝑘 + 1 copies of each edge.

Witnessing flow. Similarly as in the directed case, in addition to returning a flow-augmenting set,
we will also attempt to return an (𝑠, 𝑡)-max flow in the augmented graph which intersects 𝑍𝑠,𝑡 in a
particularly structured way.
In the following, let 𝐺 be a connected graph with 𝑠, 𝑡 ∈ 𝑉 (𝐺), and let 𝑍 be an (𝑠, 𝑡)-cut in 𝐺

which contains an (𝑠, 𝑡)-min cut. A witnessing (𝑠, 𝑡)-flow for 𝑍 in 𝐺 is an (𝑠, 𝑡)-max flow P̂ in 𝐺
such that every edge of 𝑍𝑠,𝑡 occurs on a path of P̂, and every path of P̂ intersects 𝑍 in precisely
one edge.
We make a few observations. First, since 𝑍 is an (𝑠, 𝑡)-cut, every (𝑠, 𝑡)-path in 𝐺 intersects 𝑍

in at least one edge. Second, if additionally _𝐺 (𝑠, 𝑡) = |𝑍𝑠,𝑡 |, then every (𝑠, 𝑡)-max flow in 𝐺 is
witnessing for 𝑍𝑠,𝑡 . Hence, if 𝑍 is a minimum (𝑠, 𝑡)-cut, then finding a witnessing flow is no harder
than finding a flow-augmenting set. However, if 𝑍 is a proper and only 𝑍𝑠,𝑡 is a minimum (𝑠, 𝑡)-cut,
then a witnessing flow is a more restrictive notion; see Figure 2 for an illustration.

s t

v

Fig. 2. An example that a witnessing flow is a more restrictive notion than a maximum flow. The red crosses
denote an eligible (𝑠, 𝑡)-cut with the three edges not incident with 𝑣 being 𝑍𝑠,𝑡 , which is an (𝑠, 𝑡)-mincut.
However, every (𝑠, 𝑡)-flow of size 3 needs to use the two edges of𝑍 incident with 𝑣 , and is thus not a witnessing
flow for 𝑍 . To obtain a witnessing flow, one needs to augment the graph, for example with the edge denoted
by a dashed blue arc.

We now observe that for every proper (𝑠, 𝑡)-cut 𝑍 , one can augment 𝐺 with a set compatible
with 𝑍 such that 𝑍𝑠,𝑡 becomes a (𝑠, 𝑡)-min cut and 𝐺 +𝐴 admits a witnessing flow for 𝐺 .

Lemma 3.5. Let𝐺 = (𝑉 , 𝐸) be a multi-graph, let 𝑠, 𝑡 ∈ 𝑉 with 𝑠 ≠ 𝑡 , let 𝑍 ⊆ 𝐸 be a proper (𝑠, 𝑡)-cut
of size 𝑘 , and let _∗ = |𝑍𝑠,𝑡 |. Then there exists a _∗-flow-augmenting set 𝐴 compatible with 𝑍 and a

witnessing flow P̂ for 𝑍 in 𝐺 +𝐴.

Proof. For each pair 𝑢 and 𝑣 of vertices in the same connected component of 𝐺 − 𝑍 , add to 𝐴
a set of 𝑘 + 1 copies of the edge 𝑢𝑣 . Clearly, 𝐴 is compatible with 𝑍 . For every 𝑒 = 𝑢𝑣 ∈ 𝑍𝑠,𝑡 with
𝑢 ∈ 𝑅𝑠 (𝑍 ) and 𝑣 ∈ 𝑅𝑡 (𝑍 ), let 𝑃𝑒 be a path in 𝐺 + 𝐴 consisting of the edges 𝑠𝑢 ∈ 𝐴, 𝑢𝑣 ∈ 𝑍𝑠,𝑡 , and
𝑣𝑡 ∈ 𝐴. Then, P̂ := {𝑃𝑒 | 𝑒 ∈ 𝑍𝑠,𝑡 } is a witnessing flow for 𝑍 in 𝐺 +𝐴 of cardinality _∗. Hence, 𝐴 is
_∗-flow-augmenting. □
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A few remarks are in place. The proof of Lemma 3.5 shows that a set 𝑍 ⊆ 𝐸 admits a _∗-flow-
augmenting set𝐴 if and only if 𝑍 does not contain an (𝑠, 𝑡)-cut of cardinality less than _∗. Indeed, in
one direction such a cut 𝐶 ⊆ 𝑍 remains an (𝑠, 𝑡)-cut in 𝐺 +𝐴, preventing the flow from increasing
above |𝐶 |, and in the other direction the set 𝐴 constructed in the proof of Lemma 3.5 is in some
sense “maximum possible” and all (𝑠, 𝑡)-cuts of cardinality at most 𝑘 in 𝐺 +𝐴 are contained in 𝑍 .
Furthermore, even if 𝑍 is a proper (𝑠, 𝑡)-cut where 𝑍𝑠,𝑡 is an (𝑠, 𝑡)-min cut (so no flow increase is
possible), while 𝑍 may not admit a witnessing flow in 𝐺 , it is possible to augment 𝐺 with a set of
edges compatible with 𝑍 so that a witnessing flow exists.
Lemma 3.5 motivates the following extension of the definition of compatibility.
Definition 3.6 (compatible pair). A pair (𝐴, P̂) is compatible with a proper (𝑠, 𝑡)-cut 𝑍 if 𝐴 is a

_∗-flow-augmenting set compatible with 𝑍 for _∗ = |𝑍𝑠,𝑡 | and P̂ is a witnessing flow for 𝑍 in𝐺 +𝐴.
Problem formulation. The proof of Lemma 3.5 shows that the task of finding a compatible flow-

augmenting set and a witnessing flow would be trivial if only we knew 𝑍 in advance. Not knowing
𝑍 , we will have to place additional edges more sparingly than in the proof of Lemma 3.5 to arrive
at a sufficient success probability. Let us formally define our goal, taking into account that the set
𝑍 is not known.

In the flow-augmentation sampling problem we are given an instance (𝐺, 𝑠, 𝑡, 𝑘, _∗) consisting
of an undirected connected multi-graph 𝐺 = (𝑉 , 𝐸), vertices 𝑠, 𝑡 ∈ 𝑉 , and integers 𝑘 and _∗ such
that 𝑘 ≥ _∗ ≥ _ := _𝐺 (𝑠, 𝑡). The goal is to find (in probabilistic polynomial-time) a multi-set 𝐴 of(
𝑉
2
)
and an (𝑠, 𝑡)-flow P̂ in 𝐺 +𝐴 such that the following holds:
• _𝐺+𝐴 (𝑠, 𝑡) ≥ _∗, |P̂ | = _∗, and
• for each _∗-eligible (𝑠, 𝑡)-cut 𝑍 of size exactly 𝑘 , the output (𝐴, P̂) is compatible with 𝑍 with
probability at least 𝑝 .

The function 𝑝 (that may depend on 𝑘 or _) is called the success probability.
In order to relax some corner cases, we allow for the event that _𝐺+𝐴 (𝑠, 𝑡) > _∗, and note that if

𝑍 is an eligible (𝑠, 𝑡)-cut with |𝑍𝑠,𝑡 | = _∗ then for any such output (𝐴, P̂) such that 𝐴 is compatible
with 𝑍 we must have _𝐺+𝐴 (𝑠, 𝑡) = _∗.

Results. We can now formulate the main result of this section.
Theorem 3.7. There is a randomized polynomial-time algorithm that, given a flow-augmentation

sampling instance (𝐺, 𝑠, 𝑡, 𝑘, _∗) with _𝐺 (𝑠, 𝑡) ≤ _∗ ≤ 𝑘 , outputs a set 𝐴 with _𝐺+𝐴 (𝑠, 𝑡) ≥ _∗ and a
flow P̂ in 𝐺 +𝐴 of cardinality _∗, such that the following holds: for each set 𝑍 ⊆ 𝐸 of size 𝑘 that is

_∗-eligible for (𝐺, 𝑠, 𝑡, 𝑘), the output 𝐴 is compatible with 𝑍 and P̂ is a witnessing flow for 𝑍 in𝐺 +𝐴
with success probability 2−O(𝑘 log𝑘 )

. The algorithm can be implemented to run in time 𝑘O(1)O(𝑚).
The rest of the section is devoted to proving Theorem 3.7. For clarity, we will only argume

polynomial-time running time bound through the proof, and only discuss how to reach 𝑘O(1)O(𝑚)
bound in the end.
We begin by introducing an appropriate decomposition of (the vertex set of) 𝐺 into what we

call bundles, which in turn consist of what is called blocks. We then present our recursive flow-
augmentation algorithm, splitting the presentation into an “outer loop” and an “inner loop.” Note
that in flow-augmentation sampling we assume that the input multi-graph 𝐺 is connected as
this somewhat simplifies presentation, but we will circumvent this assumption in applications. (As
a side remark, observe that if 𝐺 is disconnected then the task of Theorem 3.7 is trivial if 𝑠 and 𝑡
are in different connected components, and if 𝑠 and 𝑡 are in the same connected component, one
can focus only on the said component. Thus we do not lose anything interesting by restricting to
connected inputs.)
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3.1 Blocks and bundles
Given an instance (𝐺, 𝑠, 𝑡, 𝑘, _∗) of flow-augmentation sampling, it should come as no surprise
that the minimum (𝑠, 𝑡)-cuts of 𝐺 will be crucial for flow augmentation. Recall, however, that
even structurally simple graphs may exhibit an exponential number of possibly crossing minimum
(𝑠, 𝑡)-cuts. We will use the notion of closest cuts (and implicitly the well-known uncrossing of
minimum (𝑠, 𝑡)-cuts as used in Proposition 2.2) to identify a sequence of non-crossing minimum
(𝑠, 𝑡)-cuts. The parts between consecutive cuts will be called blocks; we will also define a partition
of blocks into consecutive groups called bundles. The decomposition of 𝐺 into bundles will guide
the choice of edges for the flow-augmenting set 𝐴 in our algorithm and will be used to capture
parts of 𝐺 to recurse on.
For convenience, let us fix an instance (𝐺, 𝑠, 𝑡, 𝑘, _∗) and let _ := _𝐺 (𝑠, 𝑡) ≤ 𝑘 for use in this

subsection. Accordingly, in 𝐺 there is a packing of _ edge-disjoint (𝑠, 𝑡)-paths 𝑃1, . . . , 𝑃_ (and no
larger packing exists). Clearly, every minimum (𝑠, 𝑡)-cut in 𝐺 contains exactly one edge from each
path 𝑃 𝑗 and no further edges. As noted earlier, we assume for now that 𝐺 is connected.

Blocks. We first define a sequence 𝐶0, . . . ,𝐶𝑝 of non-crossing minimum (𝑠, 𝑡)-cuts; recall that
minimum (𝑠, 𝑡)-cuts in 𝐺 all have cardinality _. To start, let 𝐶0 be the unique minimum (𝑠, 𝑡)-cut
that is closest to 𝑠 . Inductively, for 𝑖 ≥ 1, let 𝐶𝑖 be the minimum (𝑠, 𝑡)-cut closest to 𝑠 among all
cuts that fulfil 𝑁 [𝑅𝑠 (𝐶𝑖−1)] ⊆ 𝑅𝑠 (𝐶𝑖 ). The cut 𝐶𝑖 is well-defined (i.e., unique) by an easy variant
of Proposition 2.2: Minimum cuts 𝑋 fulfilling the requirement that 𝑁 [𝑅𝑠 (𝐶𝑖−1)] ⊆ 𝑅𝑠 (𝑋 ) uncross
into minimum cuts fulfilling the same requirement. Intuitively, the construction is equivalent to
asking that each 𝐶𝑖 is closest to 𝑠 among minimum (𝑠, 𝑡)-cuts that do not intersect 𝐶0 ∪ . . . ∪𝐶𝑖−1
but this would need a formal proof and we do not require it.

We can now define the blocks 𝑉0, . . . ,𝑉𝑝+1 ⊆ 𝑉 , which will be seen to form a partition of𝑉 . Block
𝑉0 is simply set to 𝑅𝑠 (𝐶0). For 𝑖 ∈ {1, . . . , 𝑝}, we define block 𝑉𝑖 as the set of vertices reachable
from 𝑠 in 𝐺 −𝐶𝑖 but not in 𝐺 −𝐶𝑖−1, i.e., 𝑉𝑖 := 𝑅𝑠 (𝐶𝑖 ) \ 𝑅𝑠 (𝐶𝑖−1). Finally, 𝑉𝑝+1 contains all vertices
reachable from 𝑠 in 𝐺 but not in 𝐺 −𝐶𝑝 which, since 𝐺 is connected, equates to 𝑉𝑝+1 = 𝑉 \ 𝑅𝑠 (𝐶𝑝 ).
By construction of the cuts 𝐶𝑖 we clearly have 𝑠 ∈ 𝑅𝑠 (𝐶0) ⊊ 𝑅𝑠 (𝐶1) ⊊ . . . ⊊ 𝑅𝑠 (𝐶𝑝 ) ⊆ 𝑉 \ {𝑡}, so
the blocks 𝑉𝑖 are all nonempty and clearly form a partition of 𝑉 ; see Figure 3.
Let us point out that blocks 𝑉𝑖 do not need to be connected even though𝐺 is connected. It will

be useful to note, however, that blocks 𝑉0 and 𝑉𝑝+1 both are connected: The graph 𝐺 is connected
and each minimum (𝑠, 𝑡)-cut 𝐶𝑖 will therefore separate it into exactly two connected components
𝑅𝑠 (𝐶𝑖 ) and 𝑅𝑡 (𝐶𝑖 ). Blocks 𝑉0 = 𝑅𝑠 (𝐶0) and 𝑉𝑝+1 = 𝑉 \ 𝑅𝑠 (𝐶𝑝 ) = 𝑅𝑡 (𝐶𝑝 ) are therefore connected.
Moreover, each block is at least somewhat connected through subpaths of the flow paths 𝑃1, . . . , 𝑃_
that are contained therein. We establish a bit more structure via the following two propositions.

Proposition 3.8. For each (𝑠, 𝑡)-flow path 𝑃 𝑗 ∈ {𝑃1, . . . , 𝑃_}, seen as being directed from 𝑠 to 𝑡 , the

edges of the minimum (𝑠, 𝑡)-cuts 𝐶0, . . . ,𝐶𝑝 appear in order of the cuts. These edges define a partition

of the flow path 𝑃 𝑗 into 𝑃
0
𝑗 , . . . , 𝑃

𝑝+1
𝑗

so that 𝑃𝑖𝑗 is contained in block 𝑉𝑖 for 𝑖 ∈ {0, . . . , 𝑝 + 1}.

Proof. Fix an (𝑠, 𝑡)-flow path 𝑃 𝑗 and let 𝑒𝑖 denote the unique edge of 𝑃 𝑗 that is contained in the
minimum (𝑠, 𝑡)-cut 𝐶𝑖 , for all 𝑖 ∈ {0, . . . , 𝑝}. Moreover, let 𝑢𝑖 and 𝑣𝑖 be the endpoints of 𝑒𝑖 in order
of appearance on 𝑃 𝑗 ; note that 𝑣𝑖 = 𝑢𝑖+1 is possible. (We tacitly assume that the flow paths are cycle
free.)
Clearly, the vertices of the subpath 𝑃0𝑗 of 𝑃 𝑗 from 𝑠 to 𝑢0 are contained in 𝑅𝑠 (𝐶0) because

no further edge of 𝑃 𝑗 is in 𝐶0. Thus, all vertices of 𝑃 𝑗 up to and including 𝑣0 are contained in
𝑁 [𝑅𝑠 (𝐶0)] ⊆ 𝑅𝑠 (𝐶1). Accordingly, the edge 𝑒1 ∈ 𝐶1 on 𝑃 𝑗 must be part of the subpath from 𝑣0
to 𝑡 or else, combined with 𝑣0 ∈ 𝑁 [𝑅𝑠 (𝐶0)] ⊆ 𝑅𝑠 (𝐶1) there would be a path from 𝑠 to 𝑡 . Thus, 𝑒1
appears after 𝑒0 on 𝑃 𝑗 , when seeing 𝑃 𝑗 as directed from 𝑠 to 𝑡 . Observe that 𝑒0 and 𝑒1 together define
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Fig. 3. A schematic picture of nine blocks (yellow) partitioned into five bundles (gray). The extremal blocks
and bundles, containing 𝑠 and 𝑡 , are not depicted. The 𝑠 − 𝑡 flow of value 5 is depicted using blue flow paths,
with purple edges being the edges of the consecutive cuts 𝐶𝑖 . The bundle𝑊3 is a connected bundle.

a subpath 𝑃1𝑗 from 𝑣0 to 𝑢1 on 𝑃 𝑗 that is contained in 𝑅𝑠 (𝐶1) \ 𝑅𝑠 (𝐶0) = 𝑉1. Iterating this argument
for increasing 𝑖 completes the proof. (Note that the final subpath of 𝑃 𝑗 , denoted 𝑃𝑝+1𝑗

starts with 𝑣𝑝
and ends in 𝑡 . Clearly, it is contained in 𝑉 \ 𝑅𝑠 (𝐶𝑝 ).) □

Using the fact that, for each (𝑠, 𝑡)-flow path 𝑃 𝑗 , the blocks 𝑉𝑖 contain consecutive subpaths of 𝑃 𝑗 ,
we can prove that each block has at most _ connected components. Moreover, each such component
in a block 𝑉𝑖 , with 𝑖 ∈ {1, . . . , 𝑝} is incident with some number of edges of 𝐶𝑖−1 and the same
number of edges in 𝐶𝑖 .

Proposition 3.9. Each block 𝑉𝑖 has at most _ connected components. Moreover, each connected

component in a block 𝑉𝑖 , with 𝑖 ∈ {1, . . . , 𝑝}, is incident with 𝑐 ≥ 1 edges in 𝐶𝑖−1 and with exactly 𝑐

edges in 𝐶𝑖 . (Clearly, 𝑉0 is incident with all _ edges of 𝐶0, and 𝑉𝑝+1 is incident with all _ edges of 𝐶𝑝 .)

Proof. We already know that 𝑉0 and 𝑉𝑝+1 are connected. Consider now a block 𝑉𝑖 with 𝑖 ∈
{1, . . . , 𝑝}. Clearly, 𝑅𝑠 (𝐶𝑖 ) is connected in 𝐺 −𝐶𝑖 because all of its vertices are reachable from 𝑠 .
At the same time, the vertices in 𝑉𝑖 ⊆ 𝑅𝑠 (𝐶𝑖 ) are not reachable from 𝑠 in 𝐺 −𝐶𝑖−1 by definition of
𝑉𝑖 = 𝑅𝑠 (𝐶𝑖 ) \𝑅𝑠 (𝐶𝑖−1), so paths from 𝑠 to𝑉𝑖 must use at least one edge in𝐶𝑖−1. Thus, each connected
component 𝐾 of 𝑉𝑖 must be incident with at least one edge of 𝐶𝑖−1; let 𝑐 ≥ 1 be the number of such
edges. Now, recall that the edges in 𝐶𝑖−1 together with those in 𝐶𝑖 define the subpaths of 𝑃1, . . . , 𝑃_
that are in block 𝑉𝑖 . This implies that the 𝑐 edges of 𝐶𝑖−1 that are incident with component 𝐾 in
block 𝑉𝑖 correspond to exactly 𝑐 subpaths of paths 𝑃 𝑗 ∈ {𝑃1, . . . , 𝑃_} that are part of component
𝐾 . This of course implies that 𝐾 must be incident by the 𝑐 edges of 𝐶𝑖 that define those paths.
Since connected components of 𝑉𝑖 do not share vertices and edges of 𝐶𝑖−1 and 𝐶𝑖 have exactly one
endpoint in 𝑉𝑖 each, no two connected components of block 𝑉𝑖 can share their incident edges in
𝐶𝑖−1 or 𝐶𝑖 . Thus, there are at most _ connected components in each block 𝑉𝑖 . This completes the
proof. □

It can be easily verified that the decomposition into blocks can be computed in polynomial time.
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Proposition 3.10. Given a multi-graph 𝐺 = (𝑉 , 𝐸) and vertices 𝑠, 𝑡 ∈ 𝑉 , the unique sequence of
cuts 𝐶0, . . . ,𝐶𝑝 and decomposition of blocks 𝑉0, . . . ,𝑉𝑝+1 can be computed in polynomial time.

Proof. This comes down to computing a polynomial number of closest minimum cuts. A closest
minimum (𝑆,𝑇 )-cut 𝐶 can be computed by a standard maximum (unit capacity) flow algorithm
based on maintaining a residual graph: When the maximum (𝑆,𝑇 )-flow is reached, let 𝑅 ⊇ 𝑆 be the
set of vertices that are reachable from 𝑆 in the residual graph. Clearly, when viewing packed paths
as being directed from 𝑆 to 𝑇 , there is no path edge entering 𝑅 from𝑉 \ 𝑅 because that would yield
an edge leaving 𝑅 in the residual graph. As the flow is maximum, 𝑇 may not be reachable in the
residual graph, so 𝑅 ∩𝑇 = ∅. Consequently, each path in the packing leaves 𝑅 exactly once and
does not return. Thus, the cardinality of 𝐶 is equal to the number of paths in the packing, say _,
making it a minimum (𝑆,𝑇 )-cut.
To see that 𝐶 is closest to 𝑆 , assume that there was a minimum (𝑆,𝑇 )-cut 𝐶′ ≠ 𝐶 with 𝑅𝑆 (𝐶′) ⊆

𝑅𝑆 (𝐶). Since both 𝐶 and 𝐶′ are also minimal cuts, 𝑅𝑆 (𝐶′) = 𝑅𝑆 (𝐶) would imply 𝐶′ = 𝐶 by
Proposition 2.1, so assume that 𝑅𝑆 (𝐶′) ⊊ 𝑅𝑆 (𝐶) and let 𝑣 ∈ 𝑅𝑆 (𝐶) \ 𝑅𝑆 (𝐶′). Since the cardinality of
𝐶′ is equal to the size of the path packing, all of its edges are used by (𝑆,𝑇 )-paths leaving 𝑅𝑆 (𝐶′).
Thus, in the residual graph, there is no edge leaving 𝑅𝑆 (𝐶′) and hence no path from 𝑆 ⊆ 𝑅𝑆 (𝐶′) to
𝑣 ∉ 𝑅𝑆 (𝐶′); a contradiction. □

Bundles. We will now inductively define a decomposition of 𝑉 into bundles𝑊0, . . . ,𝑊𝑞+1; see
also Figure 3. The first bundle𝑊0 is simply equal to the (connected) block 𝑉0, which contains 𝑠 . For
𝑖 ≥ 1, supposing that blocks 𝑉0, . . . ,𝑉𝑗−1 are already parts of previous bundles,
• let𝑊𝑖 := 𝑉𝑗 if 𝑉𝑗 is connected (i.e., if 𝐺 [𝑉𝑗 ] is connected) and call it a connected bundle
• otherwise, let𝑊𝑖 := 𝑉𝑗 ∪ . . . ∪𝑉𝑗 ′ be the union of contiguous blocks, where 𝑗 ′ is maximal
such that 𝐺 [𝑉𝑗 ∪ . . . ∪𝑉𝑗 ′ ] is not connected and call it a disconnected bundle.

Observe that the final bundle is𝑊𝑞+1 = 𝑉𝑝+1 because 𝑉𝑝+1 is connected and, due to the included
subpaths of (𝑠, 𝑡)-flow paths (cf. Proposition 3.9), any union 𝑉𝑗 ∪ . . . ∪𝑉𝑝+1 induces a connected
graph (see also Proposition 3.11). We use B(𝑊𝑖 ) to denote the set of blocks whose union is equal to
𝑊𝑖 , i.e., B(𝑊𝑖 ) = {𝑉𝑗 } and B(𝑊𝑖 ) = {𝑉𝑗 , . . . ,𝑉𝑗 ′ } respectively in the two cases above. We say that
two bundles𝑊𝑖 and𝑊𝑖′ are consecutive if |𝑖 − 𝑖′ | = 1.
Intuitively, bundles are defined as maximal sequences of blocks that permit a good argument

to apply recursion in our algorithm. In case of a single block, if we augment the edges incident
with the block, then in the recursive step the cardinality of the maximum flow _𝐺 (𝑠, 𝑡) increases.
In case of a union of contiguous blocks that does not induce a connected subgraph, if we recurse
into every connected component independently, we split the budget 𝑘 in a nontrivial way, as every
connected component contains the appropriate part of at least one flow path of P.
Clearly, the bundles𝑊0, . . . ,𝑊𝑞+1 are well defined and they form a partition of the vertex set

𝑉 of 𝐺 . We emphasize that𝑊0 = 𝑉0 ∋ 𝑠 and𝑊𝑞+1 = 𝑉𝑝+1 ∋ 𝑡 and that they are both connected
bundles. We note without proof that the bundles inherit the connectivity properties of blocks
because the cuts between blocks combined into a bundle connect their subpaths of (𝑠, 𝑡)-flow paths
𝑃1, . . . , 𝑃_ into longer subpaths, whereas the incidence to the preceding and succeeding cuts stays
the same (see Proposition 3.11). For ease of reference, let us denote by 𝐶′0, . . . ,𝐶′𝑞 those cuts among
𝐶0, . . . ,𝐶𝑝 that have endpoints in two different (hence consecutive) bundles, concretely, with 𝐶′𝑖
having endpoints in both𝑊𝑖 and𝑊𝑖+1; note that 𝐶′0 = 𝐶0 as𝑊0 = 𝑉0 and 𝐶′𝑞 = 𝐶𝑝 as𝑊𝑞+1 = 𝑉𝑝+1.

Proposition 3.11. Each bundle𝑊𝑖 has at most _ connected components. Moreover, each connected

component in a bundle𝑊𝑖 , with 𝑖 ∈ {1, . . . , 𝑞}, is incident with 𝑐 ≥ 1 edges in 𝐶′𝑖−1 and with 𝑐 edges
in 𝐶′𝑖 . (Clearly,𝑊0 = 𝑉0 is incident with all _ edges of 𝐶′0 = 𝐶0, and𝑊𝑞+1 = 𝑉𝑝+1 is incident with all _

edges of 𝐶′𝑞 = 𝐶𝑝 .)
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Let us introduce some more notation for bundles: For 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑞 + 1 let𝑊𝑎,𝑏 :=
⋃𝑏

𝑖=𝑎𝑊𝑖 .
Let𝑊≤𝑎 :=𝑊0,𝑎 and𝑊≥𝑎 :=𝑊𝑎,𝑞+1. For any (union of consecutive bundles)𝑊𝑎,𝑏 we define the left
interface left(𝑊𝑎,𝑏) as 𝜕(𝑊≥𝑎) ∩𝑊≥𝑎 when 𝑎 ≥ 1 and as {𝑠} when 𝑎 = 0. (I.e., when 𝑎 ≥ 1 then
left(𝑊𝑎,𝑏) are those vertices of𝑊𝑎,𝑏 that are incident with the cut 𝐶′𝑎−1 that precedes bundle𝑊𝑎).
Similarly, we define the right interface right(𝑊𝑎,𝑏) as 𝜕(𝑊≤𝑏) ∩𝑊≤𝑏 when 𝑏 ≤ 𝑞 and as {𝑡} when
𝑏 = 𝑞 + 1. (I.e., when 𝑏 ≤ 𝑞 then right(𝑊𝑎,𝑏) are those vertices of𝑊𝑎,𝑏 that are incident with the cut
𝐶′
𝑏
that succeeds bundle𝑊𝑏 .) For single bundles𝑊𝑖 the same notation applies using𝑊𝑖 =𝑊𝑖,𝑖 . A

consecutive subsequence of bundles is called a stretch of bundles, or simply a stretch.
While a union of consecutive blocks may be disconnected, this is not true for bundles where, as

can be easily checked, any two consecutive bundles together induce a connected subgraph of 𝐺 .

Proposition 3.12. For any two consecutive bundles 𝑊𝑖 and 𝑊𝑖+1 the graph 𝐺 [𝑊𝑖 ∪𝑊𝑖+1] is
connected.

Proof. If𝑊𝑖 is a connected bundle then, using Proposition 3.11, we immediately get that𝐺 [𝑊𝑖 ∪
𝑊𝑖+1] is connected. If𝑊𝑖 is a disconnected bundle then 𝐺 [𝑊𝑖 ∪ 𝑉𝑗 ′+1] is connected, where𝑊𝑖 =

𝑉𝑗 ∪ . . . ∪𝑉𝑗 ′ and 𝑉𝑗 ′+1 is the first block of𝑊𝑖+1. Using Propositions 3.9 and 3.11 we again directly
get that adding the remaining blocks of𝑊𝑖+1 to 𝐺 [𝑊𝑖 ∪𝑉𝑗 ′+1] does not break connectivity. □

Clearly, the decomposition into bundles can be efficiently computed from the one into blocks.

Proposition 3.13. Given a multi-graph 𝐺 = (𝑉 , 𝐸) and vertices 𝑠, 𝑡 ∈ 𝑉 , the unique sequence of
cuts 𝐶′0, . . . ,𝐶

′
𝑞 and decomposition of bundles𝑊0, . . . ,𝑊𝑞+1 can be computed in polynomial time.

Affected and unaffected bundles. We will later need to reason about the interaction of a proper
(𝑠, 𝑡)-cut 𝑍 ⊆ 𝐸 and 𝐺 = (𝑉 , 𝐸) and, hence, about the interaction with the bundles of 𝐺 . We say
that a bundle𝑊 is unaffected by 𝑍 if 𝑁 [𝑊 ] is contained in a single connected component of
𝐺 − 𝑍 ; otherwise we say that𝑊 is affected by 𝑍 . As an example, the cut 𝑍 = 𝐶′𝑖 affects both𝑊𝑖

and𝑊𝑖+1 but no other bundles. Similarly, a cut 𝑍 entirely confined to 𝐺 [𝑊𝑖 ] affects only𝑊𝑖 , since
𝑊≤𝑖−1 and𝑊≥𝑖+1 are both connected and do not contain an endpoint of an edge of 𝑍 . The more
interesting/difficult cuts 𝑍 affect several bundles in a non-trivial way.
The following observation limits the number and arrangement of affected bundles. It will be

important for reducing the general case (probabilistically) to the case where 𝐺 decomposes into a
bounded number of bundles. Concretely, this is the purpose of the outer-loop part of our algorithm,
which is presented in the following section.

Lemma 3.14. Let 𝑍 ⊆ 𝐸 be an (𝑠, 𝑡)-cut of size at most 𝑘 . Let 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑞 + 1 and let ℓ be the
number of indices 𝑎 ≤ 𝑖 ≤ 𝑏 such that the bundle𝑊𝑖 is affected. Then,

ℓ ≤ 2
��𝐸 (𝐺 [𝑊𝑎−1,𝑏+1]) ∩ 𝑍

�� .
In particular, at most 2𝑘 bundles are affected by 𝑍 .

Proof. We argue that a bundle𝑊𝑖 ∈ W is unaffected if 𝑍 contains no edge from𝐶′𝑖 and no edge
with both endpoints in𝑊𝑖−1∪𝑊𝑖 (Condition★). First of all, we have𝐺 [𝑊𝑖−1∪𝑊𝑖 ]−𝑍 = 𝐺 [𝑊𝑖−1∪𝑊𝑖 ]
in this case, which is connected by Proposition 3.12 and all vertices of𝑊𝑖−1 ∪𝑊𝑖 are in the same
component of 𝐺 − 𝑍 . As 𝑍 is furthermore disjoint from the min-cut 𝐶′𝑖 succeeding𝑊𝑖 , all vertices
of 𝑁 [𝑊𝑖 ] are in the same connected component. Thus,𝑊𝑖 is not affected. A symmetric argument
holds for𝑊𝑖 if 𝑍 contains no edge of𝐶′𝑖−1 and no edge with both endpoints in𝑊𝑖 ∪𝑊𝑖+1 (Condition
†).
To bound the number of affected bundles, first note that𝑊0 and𝑊𝑞+1 are affected only if 𝑍

contains an edge of 𝐺 [𝑊0] or 𝐶0, respectively of 𝐺 [𝑊𝑞+1] or 𝐶′𝑞 . For any remaining bundle𝑊𝑖 , say
that𝑊𝑖 is potentially affected if neither of the conditions (★) and (†) in the previous paragraph
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applies. A bundle𝑊𝑖 , 𝑖 ∈ [𝑞] is thus potentially affected if (1) 𝑍 contains an edge of 𝐺 [𝑊𝑖 ] or
intersects𝐶′𝑖−1 ∪𝐶′𝑖 , or (2) 𝑍 contains both an edge of𝐺 [𝑊𝑖−1] and of𝐺 [𝑊𝑖+1]. For each potentially
affected bundle𝑊𝑖 , let us charge some edge of 𝑍 as described by 1 point if the former case applies,
and otherwise charge one edge of 𝑍 in 𝐺 [𝑊𝑖−1] and in 𝐺 [𝑊𝑖+1] by 1/2 point each. Then the total
amount of allocated charge equals the number of potentially affected bundles, and it can be seen
that every edge is charged at most 2 points. The lemma follows. □

Lemma 3.15. Let 𝑍 ⊆ 𝐸 be an (𝑠, 𝑡)-cut. There is at most one maximal stretch𝑊𝑎,𝑏 of bundles such

that every bundle𝑊𝑖 , 𝑎 ≤ 𝑖 ≤ 𝑏 is affected by 𝑍 and such that𝑊𝑎,𝑏 contains both a vertex reachable

from 𝑠 and a vertex reachable from 𝑡 (in 𝐺 − 𝑍 ). Moreover, all vertices in the left interface of𝑊𝑎,𝑏 are

reachable from 𝑠 and all vertices in the right interface are reachable from 𝑡 . Finally, if 𝑍 is a proper

(𝑠, 𝑡)-cut then there must be such a stretch.

Proof. If there is no such stretch of bundles then the lemma holds vacuously. Else, let𝑊𝑖, 𝑗 be a
maximal stretch of consecutive affected bundles such that𝑊𝑖, 𝑗 contains a vertex 𝑝 that is reachable
from 𝑠 in 𝐺 − 𝑍 and a vertex 𝑞 that is reachable from 𝑡 in 𝐺 − 𝑍 . Because the left interface 𝑋 of
the stretch separates the stretch from 𝑠 , at least one vertex of 𝑋 must be reachable from 𝑠 in 𝐺 − 𝑍 .
The preceding bundle, namely𝑊𝑖−1, is unaffected (by choosing the stretch as maximal). Since
𝑁 [𝑊𝑖−1] ⊇ 𝑋 contains a vertex reachable from 𝑠 in 𝐺 − 𝑍 it follows that all vertices in 𝑁 [𝑊𝑖−1]
are reachable from 𝑠 in 𝐺 − 𝑍 . Since 𝑍 separates 𝑠 from 𝑡 , no vertex is reachable from both 𝑠 and 𝑡
in𝐺 − 𝑍 . In particular, this holds for all vertices in 𝑋 and, hence, for all bundles preceding𝑊𝑖 . By a
symmetric argument, all vertices in the right interface of the stretch, say 𝑌 , are reachable from 𝑡

but not from 𝑠 .
For the final part of the lemma, consider any flow path 𝑃 from 𝑠 to 𝑡 in 𝐺 . Since 𝑍𝑠,𝑡 ⊆ 𝑍 is also

an (𝑠, 𝑡)-cut, the path 𝑃 must contain some edge 𝑒 ∈ 𝑍𝑠,𝑡 . By definition of 𝑍𝑠,𝑡 , 𝑒 has one endpoint
reachable from 𝑠 in𝐺 −𝑍 and one reachable from 𝑡 in𝐺 −𝑍 . Clearly, there is a bundle𝑊 with both
endpoints of 𝑒 in 𝑁 [𝑊 ] (as the bundles are a partition of the vertex set, some bundle𝑊 contains
an endpoint of 𝑒 and, hence, 𝑁 [𝑊 ] must contain both endpoints). This bundle𝑊 is affected and
contains a vertex reachable from 𝑠 and one reachable from 𝑡 in 𝐺 − 𝑍 , namely the endpoints of 𝑒 .
By definition of stretch,𝑊 is contained in precisely one maximal stretch of affected bundles, and
this stretch meets the conditions of the lemma. □

The previous lemma says that each proper (𝑠, 𝑡)-cut 𝑍 yields exactly one maximal stretch of
affected bundles in which it separates 𝑠 from 𝑡 (and possibly creates further connected components).
We say that 𝑍 strongly affects that stretch. For all other maximal affected stretches of bundles we
say that they are weakly affected by 𝑍 . Note that a non-proper cut such as𝐶′𝑖 ∪𝐶′𝑗 for 𝑗 ≥ 𝑖 + 3 may
contain no strongly affected stretch.

Let us make some useful observations about bundles not in the strongly affected stretch.

Proposition 3.16. Let 𝑍 be a proper (𝑠, 𝑡)-cut and let𝑊𝑎,𝑏 be the unique strongly affected stretch.

Then the following hold.

(1) For every 𝑖 < 𝑎, if𝑊𝑖 is an unaffected bundle then𝑊𝑖 ⊆ 𝑅𝑠 (𝑍 ).
(2) For every 𝑖 > 𝑏, if𝑊𝑖 is an unaffected bundle then𝑊𝑖 ⊆ 𝑅𝑡 (𝑍 ).
(3) If𝑊𝑖, 𝑗 is a (maximal) weakly affected stretch with 𝑗 < 𝑎, then

left(𝑊𝑖 ) ∪ right(𝑊𝑗 ) ⊆ 𝑅𝑠 (𝑍 ) and ( 𝑗 − 𝑖 + 1) ≤ 2|𝑍 ∩ 𝐸 (𝐺 [𝑊𝑖, 𝑗 ]) |.

(4) If𝑊𝑖, 𝑗 is a (maximal) weakly affected stretch with 𝑖 > 𝑏, then

left(𝑊𝑖 ) ∪ right(𝑊𝑗 ) ⊆ 𝑅𝑡 (𝑍 ) and ( 𝑗 − 𝑖 + 1) ≤ 2|𝑍 ∩ 𝐸 (𝐺 [𝑊𝑖, 𝑗 ]) |.
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3.2 The outer loop of the algorithm
Our algorithm Sample consists of an outer loop (to be explained in this section), which is applied
first to an input instance (𝐺, 𝑠, 𝑡, 𝑘, _∗) and also to certain instances in recursive calls, and an inner
loop, which is applied only to short sequences of bundles. The outer loop part uses a color-coding
approach to guess weakly and strongly affected stretches of bundles in 𝐺 , and calls the inner-loop
subroutine called Short-separation on the latter. This subroutine (to be described in detail in
the following section) then seeks to recursively find an output (𝐴, P̂), using the assumption that
whenever it is called on a stretch𝑊𝑎,𝑏 , then either 𝑍 is disjoint from the stretch𝑊𝑎,𝑏 or𝑊𝑎,𝑏 is
precisely the unique strongly affected stretch in 𝐺 .
Each call to our algorithm will return a pair (𝐴, P̂) for the instance in question, where (𝐴, P̂)

may or may not be compatible for an arbitrary (unknown) (𝑠, 𝑡)-cut 𝑍 . A crucial observation for the
correctness of our algorithm is that any flow-augmentation set guessed for an unaffected stretch of
bundles will always be compatible with 𝑍 . This allows us to focus our attention in the analysis
on the guesses made while processing affected bundles. This is essential in bounding the success
probability purely in terms of 𝑘 .

We will argue that for some sufficiently large constants 𝑐1 ≫ 𝑐2 ≫ 0, Sample(𝐺, 𝑠, 𝑡, 𝑘, _∗) returns
an output (𝐴, P̂) which is, with probability at least 𝑒−𝑔 (_𝐺 (𝑠,𝑡 ),𝑘 ) , compatible with an (unknown)
eligible (𝑠, 𝑡)-cut 𝑍 , where 𝑔(_, 𝑘) = (𝑐1𝑘 − 𝑐2) (1 + ln𝑘) + 𝑐2 max(0, 𝑘 − _).

The main (outer loop) algorithm is shown in Figure 4.

Interface of the inner loop algorithm. The inner-loop algorithm expects as input an instance
(𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _′) that has two additional properties and will return a pair (𝐴′, P̂′). A valid input

(𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _′) for the inner loop algorithm has the following properties:
(1) The graph 𝐺 ′ decomposes into bundles 𝑊 ′0 , . . . ,𝑊 ′𝑞+1, with 1 ≤ 𝑞 ≤ 2𝑘 ′, and such that

𝑊 ′0 = {𝑠′} and𝑊 ′𝑞+1 = {𝑡 ′}. If 𝑞 = 1, then we say that the instance is a single-bundle instance,
otherwise if 𝑞 > 1 it is a multiple-bundle instance.

(2) We have _𝐺 ′ (𝑠′, 𝑡 ′) < _′ ≤ 𝑘 ′, i.e., the maximum (𝑠′, 𝑡 ′)-flow in 𝐺 ′ is lower than the target
flow value _′ after augmentation.

Furthermore, let 𝑍 ′ be an (𝑠′, 𝑡 ′)-cut in 𝐺 ′. We say that 𝑍 ′ is a valid cut for (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _′) if the
following hold.
(1) 𝑍 ′ is an eligible (𝑠′, 𝑡 ′)-cut in 𝐺 ′ with |𝑍 ′ | = 𝑘 and |𝑍 ′𝑠,𝑡 | = _′;
(2) 𝑍 ′ affects precisely the bundles𝑊 ′1 , . . . ,𝑊 ′𝑞 in 𝐺 ′

In the following section we will describe a realization of this interface by two algorithms called
Short-separation-single and Short-separation with the following success guarantee:
• for a valid single-bundle instance (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _′), the algorithm Short-separation-single
returns a flow-augmenting set 𝐴′ with _𝐺 ′+𝐴′ (𝑠′, 𝑡 ′) ≥ _′ and an (𝑠, 𝑡)-flow P̂′ in 𝐺 + 𝐴 of
size _′ such that for every valid cut 𝑍 ′, (𝐴′, P̂′) is compatible with 𝑍 ′ with probability at
least 32 · 𝑒−𝑔 (_𝐺 ′ (𝑠′,𝑡 ′ ),𝑘 ′ ) ;
• for a valid multiple-bundle instance (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _′), the algorithm Short-separation re-
turns a flow-augmenting set 𝐴′ with _𝐺 ′+𝐴′ (𝑠′, 𝑡 ′) ≥ _′ and an (𝑠, 𝑡)-flow P̂′ in 𝐺 +𝐴 of size
_′ such that for every valid cut 𝑍 ′, (𝐴′, P̂′) is compatible with 𝑍 ′ with probability at least
32(𝑘 ′)3 · 𝑒−𝑔 (_𝐺 ′ (𝑠′,𝑡 ′ ),𝑘 ′ ) .

Correctness of the outer loop part. We are now ready to prove correctness of the outer loop
algorithm Sample assuming a correct realization of the inner loop algorithm according to the
interface stated above.
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Algorithm Sample(𝐺, 𝑠, 𝑡, 𝑘, _∗)
(1) If it does not hold that _𝐺 (𝑠, 𝑡) ≤ _∗ ≤ 𝑘 , then set 𝐴 to be max(𝑘 + 1, _∗) copies of {𝑠, 𝑡}, P̂ to be any

_∗ of these copies, and return (𝐴, P̂).
(2) Initialize 𝐴 = ∅ and P̂ to be a set of _∗ zero-length paths starting in 𝑠 .
(3) Compute the partition 𝑉 =𝑊0 ∪ . . . ∪𝑊𝑞+1 of 𝐺 into bundles.
(4) Go into single mode or multiple mode with probability 1/2 each.
• In single mode, set 𝑝blue = 𝑝red = 1/2.
• In multiple mode, set 𝑝blue = 1/𝑘 , 𝑝red = 1 − 1/𝑘 .

(5) Randomly color each bundle blue or red; blue with probability 𝑝blue and red with probability 𝑝red.
(6) Randomly sample an integer _∗ ≤ 𝑘′ ≤ 𝑘 as follows: set 𝑘′ = 𝑘 with probability 1/2 and with remaining

probability sample _∗ ≤ 𝑘′ < 𝑘 uniformly at random.
(7) For every maximal stretch𝑊𝑎,𝑏 of bundles colored with the same color, do the following in consecutive

order starting with 𝑎 = 0, and maintaining the property that at the begining of the loop P̂ is a family of
_∗ edge-disjoint paths in 𝐺 +𝐴 starting in 𝑠 and ending in left(𝑊𝑎):

(a) If 𝑎 > 0, then add to 𝐴 all edges 𝑢𝑣 for 𝑢, 𝑣 ∈ right(𝑊𝑎−1) ∪ left(𝑊𝑎); (We henceforth refer to the
edges added in this step as link edges.)

(b) If the stretch is colored red and consists of one bundle in single mode, or at least two and at most 2𝑘′
bundles in multiple mode, then perform the following:
(i) Let𝐺 ′ be the graph𝐺 [𝑁 [𝑊𝑎,𝑏 ]] with vertices of𝑊≤𝑎−1 contracted to a single vertex 𝑠′ and vertices

of𝑊≥𝑏+1 contracted to a single vertex 𝑡 ′. If 𝑎 = 0, and hence𝑊≤𝑎−1 = ∅, then instead add a new
vertex 𝑠′ and connect it to 𝑠 ∈𝑊𝑎 via _ parallel edges {𝑠, 𝑠′}. Similarly, if 𝑏 = 𝑞 + 1 then𝑊≥𝑏+1 = ∅
and we instead add a new vertex 𝑡 ′ and connect it to 𝑡 ∈𝑊𝑏 via _ parallel edges {𝑡, 𝑡 ′}. Observe
that deg(𝑠′) = deg(𝑡 ′) = _.

(ii) Do a recursive call:
• In single mode, let (𝐴′, P̂′) ← Short-separation-single(𝐺 ′, 𝑠′, 𝑡 ′, 𝑘′, _∗).
• In multiple mode, let (𝐴′, P̂′) ← Short-separation(𝐺 ′, 𝑠′, 𝑡 ′, 𝑘′, _∗).

(iii) Update 𝐴 as follows:
• Add to 𝐴 all edges of 𝐴′ that are not incident with 𝑠′ or 𝑡 ′.
• For every edge 𝑠′𝑣 ∈ 𝐴′, add to 𝐴 a separate edge 𝑢𝑣 for each vertex 𝑢 ∈ right(𝑊≤𝑎−1). If 𝑎 = 0
then ignore edges 𝑠′𝑠 ∈ 𝐴′ and for each edge 𝑠′𝑣 ∈ 𝐴′ add 𝑠𝑣 to 𝐴;
• Analogously, for every edge 𝑣𝑡 ′ ∈ 𝐴′, add to𝐴 a separate edge 𝑣𝑤 for each vertex𝑤 ∈ left(𝑊𝑏+1).
If 𝑏 = 𝑞 + 1 then ignore edges 𝑡𝑡 ′ ∈ 𝐴′ and for each edge 𝑣𝑡 ′ ∈ 𝐴′ add 𝑣𝑡 to 𝐴.

(iv) Update P̂ as follows: For every path 𝑃 ′ ∈ P̂′, if the first or last edge of 𝑃 ′ belongs to 𝐴′, replace it
with one of its corresponding edges in 𝐴, and then pick a distinct path 𝑃 ∈ P̂ and append 𝑃 ′ at the
end of 𝑃 , using a link edge to connect the endpoints of 𝑃 and 𝑃 ′ if necessary.

(c) Otherwise:
(i) Add to 𝐴, with multiplicity 𝑘 + 1, all edges {𝑢,𝑤} with 𝑢 ∈ right(𝑊𝑎−1), taking 𝑢 = 𝑠 if 𝑎 = 0, and
𝑤 ∈ left(𝑊𝑏+1), taking𝑤 = 𝑡 if 𝑏 = 𝑞 + 1.

(ii) Prolong every path 𝑃 ∈ P̂ with a link edge (if 𝑎 > 0) and an edge of 𝐴, so that 𝑃 ends in left(𝑊𝑏+1),
or in 𝑡 if 𝑏 = 𝑞 + 1.

Fig. 4. The outer loop algorithm

It is straightforward to verify the invariant stated in the loop: at every step, P̂ is a family of _∗
edge-disjoint paths in𝐺 +𝐴, starting in 𝑠 and ending in left(𝑊𝑎). It is also straightforward to verify
the feasibility of the updates of P̂. Furthermore, observe that after the last iteration of the loop, all
paths of P̂ end in 𝑡 . Thus, at the end of the algorithm P̂ is indeed a family of _∗ edge-disjoint paths
from 𝑠 to 𝑡 in 𝐺 +𝐴.
We now prove that, in a well-defined sense, most edges in the returned set 𝐴 are compatible

with most minimal (𝑠, 𝑡)-cuts 𝑍 .
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Lemma 3.17. Let𝑊𝑎,𝑏 be a stretch processed by Sample such that every bundle of the stretch is

unaffected by 𝑍 . Then every edge added to 𝐴 while processing𝑊𝑎,𝑏 is compatible with 𝑍 .

Proof. Note that every vertex of 𝑁 [𝑊𝑎,𝑏] is in the same connected component of 𝐺 − 𝑍 . Hence
it suffices to observe that every edge added to 𝐴 in this phase has both endpoints in 𝑁 [𝑊𝑎,𝑏]. □

Now we are set to prove correctness of the outer loop algorithm assuming a correct realization
of the inner-loop interface.
Lemma 3.18. Assume that an algorithm Short-separation correctly realizes the above interface

such that for every valid single-bundle (multiple-bundle) instance (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _′) with 𝑘 ′ ≤ 𝑘 , the
returned pair (𝐴′, P̂′) is compatible with a fixed valid cut 𝑍 ′ with probability 32𝑒−𝑔 (_𝐺 ′ (𝑠′,𝑡 ′ ),𝑘 ′ )
(32(𝑘 ′)3𝑒−𝑔 (_𝐺 ′ (𝑠′,𝑡 ′ ),𝑘 ′ ) ). Then for any (𝐺, 𝑠, 𝑡, 𝑘, _∗), Sample returns an (𝑠, 𝑡)-flow-augmenting set

𝐴 such that _𝐺+𝐴 (𝑠, 𝑡) ≥ _∗ and for any eligible (𝑠, 𝑡)-cut 𝑍 in 𝐺 of size 𝑘 and with |𝑍𝑠,𝑡 | = _∗, the
returned pair (𝐴, P̂) is compatible with 𝑍 with probability at least 𝑒−𝑔 (_𝐺 (𝑠,𝑡 ),𝑘 ) .

Proof. The lemma holds essentially vacuously if Sample(𝐺, 𝑠, 𝑡, 𝑘, _∗) stops at step 1. Hence we
assume _ ≤ _∗ ≤ 𝑘 . Since 𝐺 is connected, _ ≥ 1, hence 𝑘 ≥ 1.
We first prove that all calls to Short-separation or Short-separation-single are made for

valid instances (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘, _∗). Let (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘, _∗) be an instance on which Short-separation or
Short-separation-single is called and let𝑊𝑎,𝑏 be the stretch that the call corresponds to. It can be
verified that𝐺 ′, relative to minimum (𝑠′, 𝑡 ′)-cuts, decomposes into bundles {𝑠′},𝑊𝑎, . . . ,𝑊𝑏, {𝑡 ′}.
A key point here is that 𝑠′ and 𝑡 ′ are both incident with precisely _ edges in𝐺 ′, and _𝐺 ′ (𝑠′, 𝑡 ′) = _.
This makes 𝛿 (𝑠′) the unique closest minimum (𝑠′, 𝑡 ′)-cut. From this point on, the sequence of
closest minimum (𝑠′, 𝑡 ′)-cuts that define blocks and bundles is identical to ones between the blocks
that form bundles𝑊𝑎, . . . ,𝑊𝑏 in 𝐺 . Clearly, 𝐺 ′ [𝑊𝑎 ∪ . . .𝑊𝑏] � 𝐺 [𝑊𝑎 ∪ . . . ∪𝑊𝑏] (canonically)
so we arrive at the same decomposition into bundles. At the end, 𝛿 (𝑡 ′) can be seen to be final
closest minimum (𝑠′, 𝑡 ′)-cut that arises when computing blocks and bundles for (𝐺 ′, 𝑠′, 𝑡 ′), using a
symmetric argument to the one for 𝛿 (𝑠′).
Now, we show the compatibility property. Let 𝑍 be any _∗-eligible (𝑠, 𝑡)-cut of size 𝑘 . By

Lemma 3.15, there is a unique strongly affected stretch𝑊𝑎,𝑏 , and by Lemma 3.14 at most 2|𝑍 |
bundles are affected in total. Let ℓ = 𝑏 −𝑎 +1 be the number of bundles in𝑊𝑎,𝑏 and let 𝑍 ′ = 𝑍 ∩𝑊𝑎,𝑏 .
We have ℓ ≤ 2|𝑍 ′ | and _∗ ≤ |𝑍 ′ | ≤ 𝑘 .
We are interested in the following success of the random choices made by the algorithm: the

algorithm goes into mode single if 𝑎 = 𝑏 and into mode multiple otherwise, 𝑘 ′ = |𝑍 ′ |, and the
coloring of bundles in the loop is such that every bundle of𝑊𝑎,𝑏 is red, while𝑊𝑎−1,𝑊𝑏+1, and every
other affected bundle is blue. Since there are at most 2(𝑘 − |𝑍 ∩𝑊𝑎,𝑏 |) affected bundles that are not
in𝑊𝑎,𝑏 , the above success happens with probability at least
• if 𝑎 = 𝑏 and 𝑘 = |𝑍 ′ |: 2−5;
• if 𝑎 = 𝑏 and 𝑘 > |𝑍 ′ |:

2−5 (𝑘 − _∗)−12−2(𝑘−|𝑍 ′ | ) ≥ 2−5𝑘−12−2(𝑘−|𝑍 ′ | ) ;
• if 𝑎 < 𝑏:

(𝑘 − _∗ + 1)−1 · 𝑘−2−2(𝑘−|𝑍 ′ | ) · (1 − 1/𝑘)ℓ

≥ 𝑘−3−2(𝑘−|𝑍 ′ | ) · (1 − 1/𝑘)2𝑘 ≥ 2−4𝑘−3−2(𝑘−|𝑍 ′ | ) .
Henceforth we assume that the above success indeed happens.

If this is the case, then for every two consecutive bundles𝑊𝑖 and𝑊𝑖+1 of different colors, either
𝑊𝑖 or𝑊𝑖+1 is unaffected. In particular, all endpoints of the edges of 𝐸 (𝑊𝑖 ,𝑊𝑖+1) are in the same
connected component of 𝐺 − 𝑍 . Thus, all link edges added to 𝐴 are compatible with 𝑍 .
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Let us now consider the processing of some maximal monochromatic stretch𝑊𝑐,𝑑 other than
𝑊𝑎,𝑏 . If𝑊𝑐,𝑑 is red, then by assumption on the coloring it is a stretch of unaffected bundles, and any
edges added are compatible with 𝑍 by Lemma 3.17. Furthermore, any flow P̂′ does not intersect 𝑍 ,
so the edges appended in the paths of P̂ are disjoint with 𝑍 .
Otherwise, if𝑊𝑐,𝑑 is blue, then we claim that left(𝑊𝑐 ) ∪ right(𝑊𝑑 ) are contained in the same

connected component in 𝐺 − 𝑍 . Indeed, by assumption on the coloring, any affected bundle in
𝑊𝑐,𝑑 is contained in some weakly affected stretch𝑊𝑐′,𝑑 ′ where the stretch is contained in𝑊𝑐,𝑑 in
its entirety. By Prop. 3.16 the endpoints of such a stretch are contained in the same component of
𝐺 − 𝑍 , as are the endpoints of any stretch of unaffected bundles. The claim follows. Thus the edges
added by Sample for𝑊𝑐,𝑑 are compatible with 𝑍 . Furthermore, in this case all edges appended to
the paths of P̂ are from 𝐴.
Now consider the strongly affected stretch𝑊𝑎,𝑏 . Observe that Sample will make a recursive

call to Short-separation or Short-separation-single for this stretch; let the resulting instance
be (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _∗). Note that 𝑍 ′ are the edges of 𝑍 contained in 𝐺 ′ and that 𝑍 ′ is a valid cut for
(𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _∗). Furthermore, _ = _𝐺 (𝑠, 𝑡) = _𝐺 ′ (𝑠′, 𝑡 ′). Indeed, by Lemma 3.15 left(𝑊𝑎) ⊆ 𝑅𝑠 (𝑍 )
and right(𝑊𝑏) ⊆ 𝑅𝑡 (𝑍 ), and since𝑊𝑎−1 (if any) and𝑊𝑏+1 (if any) are unaffected, these are entirely
contained in 𝑅𝑠 (𝑍 ) respectively 𝑅𝑡 (𝑍 ) as well. Hence 𝑍 ′ is an eligible (𝑠′, 𝑡 ′)-cut in 𝐺 ′. Finally,
|𝑍 ′ | = 𝑘 ′ and |𝑍 ′

𝑠′,𝑡 ′ | = |𝑍𝑠,𝑡 | = _∗, and by assumption 𝑍 ′ affects every bundle𝑊𝑖 , 1 ≤ 𝑖 ≤ 𝑞, of 𝐺 ′.
Thus, since Short-separation and Short-separation-single implement the inner-loop inter-

face, with probability at least 32(𝑘 ′)3𝑒−𝑔 (_,𝑘 ′ ) in case of Short-separation and 32𝑒−𝑔 (_,𝑘 ′ ) in case
of Short-separation-single, it returns a pair (𝐴′, P̂′) that is compatible with 𝑍 ′ in 𝐺 ′.
We verify that the edges added to 𝐴 for 𝐴′ are compatible with 𝑍 . The connected components

of 𝐺 [𝑊𝑎−1,𝑏+1] − 𝑍 are the same as those of 𝐺 ′ − 𝑍 ′ except that the component of 𝑠′ has𝑊𝑎−1 in
place of 𝑠′, and the component of 𝑡 ′ contains𝑊𝑏+1 instead of 𝑡 ′ (respectively, are identical but are
missing 𝑠′ and 𝑡 ′ if 𝑎 = 0 and/or 𝑏 = 𝑞 + 1). Thus, the only edges in 𝐴 that could, in principle, be
incompatible with 𝑍 are those that were added in place of edges in 𝐴′ that are incident with 𝑠′ or 𝑡 ′.
But in all cases, the endpoint replacing 𝑠′ respectively 𝑡 ′ is contained in 𝑅𝑠 (𝑍 ) respectively 𝑅𝑡 (𝑍 ),
implying that they are compatible with 𝑍 in 𝐺 if they are compatible with 𝑍 ′ in 𝐺 ′.

For the family of paths P̂, note that if (𝐴′, P̂′) is compatible with 𝑍 ′, then for every 𝑃 ′ ∈ P̂′, the
path 𝑃 ′ intersects 𝑍 ′ in precisely one edge and that edge belongs to 𝑍 ′𝑠,𝑡 = 𝑍𝑠,𝑡 . Hence, by appending
𝑃 ′ to a path 𝑃 ∈ P̂ we add one intersection of 𝑃 with 𝑍 and that intersection belongs to 𝑍𝑠,𝑡 . Since
there is only one strongly affected stretch and in all other cases the edges appended to the paths of
P̂ are disjoint with 𝑍 , P̂ is a witnessing flow for 𝑍 in 𝐺 +𝐴 as desired.
Furthermore, the existence of P̂ implies that _𝐺+𝐴 (𝑠, 𝑡) ≥ |P̂ | = _∗.
In summary, Sample produces a pair (𝐴, P̂) that is compatible with 𝑍 with probability at least

(assuming 𝑐1 ≥ 5):

• if 𝑎 = 𝑏 and 𝑘 = |𝑍 ′ |:

2−5 · 32 · 𝑒−𝑔 (_,𝑘 ) = 𝑒−𝑔 (_,𝑘 ) ;

• if 𝑎 = 𝑏 and 𝑘 > |𝑍 ′ |:

2−5𝑘−12−2(𝑘−𝑘 ′ )𝑒−𝑔 (_,𝑘 ′ ) ≥ 𝑒−5−ln𝑘−2(𝑘−𝑘 ′ )𝑒𝑐2 (𝑘−𝑘 ′ ) (1+ln𝑘 )𝑒−𝑔 (_,𝑘 ′ ) ≥ 𝑒−𝑔 (_,𝑘 ′ ) ;
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• if 𝑎 < 𝑏:
1
16𝑘

−3−2(𝑘−𝑘 ′ ) · 16(𝑘 ′)3𝑒−𝑔 (_,𝑘 ′ )

≥ 𝑒−𝑔 (_,𝑘 ) · 𝑘𝑐1 (𝑘−𝑘 ′ ) · (𝑘 ′)3 · 𝑘−3−2(𝑘−𝑘 ′ )

≥ 𝑒−𝑔 (_,𝑘 ) · 𝑘 (𝑐1−2) (𝑘−𝑘 ′ ) · (𝑘 ′/𝑘)3

≥ 𝑒−𝑔 (_,𝑘 ) .
This finishes the proof of the lemma. □

3.3 Cut splits and the inner loop

Algorithm Short-separation-single(𝐺, 𝑠, 𝑡, 𝑘, _∗)
(1) If (𝐺, 𝑠, 𝑡, 𝑘, _∗) is not a valid input, or it does not hold that _𝐺 (𝑠, 𝑡) ≤ _∗ ≤ 𝑘 , then set 𝐴 to be

max(𝑘 + 1, _∗) copies of {𝑠, 𝑡}, P̂ to be any _∗ of these copies, and return (𝐴, P̂).
(2) Let 𝑉 =𝑊0 ∪𝑊1 ∪𝑊2 be the partition of 𝐺 into bundles.
(3) If𝑊1 is a connected bundle:
(a) Let 𝐴0 = 𝛿 (𝑠) ∪ 𝛿 (𝑡).
(b) Compute (𝐴, P̂) ←Sample(𝐺 +𝐴0, 𝑠, 𝑡, 𝑘, _∗).
(c) Return (𝐴0 ∪𝐴, P̂).

(4) Otherwise:
(a) Let𝑊1 = 𝑊

(1)
1 ∪ . . . ∪𝑊 (𝑐 )1 be the partition of 𝐺 [𝑊1] into connected components, and for each

𝑖 ∈ [𝑐] let _𝑖 be the amount of (𝑠, 𝑡)-flow routed through𝑊 (𝑐 )1 ; i.e., _ = _1 + . . . + _𝑐 where _𝑖 > 0 for
each 𝑖 ∈ [𝑐]

(b) Randomly sample partitions _∗ = _∗1 + . . . + _
∗
𝑐 and 𝑘 = 𝑘1 + . . . 𝑘𝑐 such that _𝑖 ≤ _∗𝑖 ≤ 𝑘𝑖 for each

𝑖 ∈ [𝑐].
(c) For every 𝑖 ∈ [𝑐], let 𝐺 (𝑖 ) = 𝐺 [𝑊 (𝑖 )1 ∪ {𝑠, 𝑡}] and compute (𝐴𝑖 , P̂𝑖 ) ←Sample(𝐺 (𝑖 ) , 𝑠, 𝑡, 𝑘𝑖 , _∗𝑖 ).
(d) Return (𝐴 :=

⋃𝑐
𝑖=1𝐴𝑖 , P̂ :=

⋃𝑐
𝑖=1 P̂𝑖 ).

Fig. 5. Inner loop: Algorithm for a single bundle

3.3.1 Single-bundle case. We will now describe an algorithm Short-separation-single that
realizes the first half of the inner-loop interface from the previous section. Given a valid single-
bundle instance (𝐺, 𝑠, 𝑡, 𝑘, _∗) where 𝐺 decomposes into bundles𝑊0 ∪𝑊1 ∪𝑊2,𝑊0 = {𝑠} and
𝑊2 = {𝑡}, it will run in (probabilistic) polynomial time and always return a _∗-flow augmenting
set 𝐴. Moreover, for each (𝑠, 𝑡)-cut 𝑍 that is valid for (𝐺, 𝑠, 𝑡, 𝑘, _∗), the set 𝐴 is compatible with 𝑍
with probability at least 32𝑒−𝑔 (_𝐺 (𝑠,𝑡 ),𝑘 ) . We call𝑊0 = {𝑠} and𝑊2 = {𝑡} trivial bundles,𝑊1 is the
non-trivial bundle. The algorithm is given in Figure 5.
Let us start with an intuition. There is only one bundle to care about, namely𝑊1. If 𝐺 [𝑊1] is

connected, we observe that after duplicating all edges incident with 𝑠 or 𝑡 (which are assumed to
be disjoint with the sought cut 𝑍 ) the flow from 𝑠 to 𝑡 increases. This allows us to recompute the
flow and recurse. Otherwise, if 𝐺 [𝑊1] is disconnected, we want to independently consider each
connected component in a recursive call. To this end, we need to guess how many edges 𝑍 and 𝑍𝑠,𝑡
contains in each component of 𝐺 [𝑊1]. The probability of successful guess is charged to the fact
that the budget 𝑘 gets nontrivially split between the subinstances in the recursive calls.

Let us now proceed with the formal arguments. A few remarks are in place. First, if the algorithm
exists at Step 1, then no valid cut 𝑍 exists and we can deterministically output a trivially correct
answer. Second, sampling of values (_∗1, . . . , _∗𝑐 , 𝑘1, . . . , 𝑘𝑐 ) does not need to be uniform, but we
require that each valid output (_∗1, . . . , _∗𝑐 , 𝑘1, . . . , 𝑘𝑐 ) is sampled with probability at least 𝑘−2𝑐 . Note
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that there are at most 𝑘2𝑐 valid outputs. This can be achieved by, e.g., sampling each _∗𝑖 and 𝑘𝑖
uniformly at random from {1, 2, . . . , 𝑘} and, if the sampled values do not satisfy the requirements,
return one fixed partition instead.

Let us now analyse the case when𝑊1 is connected.

Lemma 3.19. Let (𝐺, 𝑠, 𝑡, 𝑘, _∗) and𝑊1 be as above, and let 𝑍
′
be a valid cut for (𝐺, 𝑠, 𝑡, 𝑘, _∗). If𝑊1

is a connected bundle, then 𝛿 (𝑠) ∪ 𝛿 (𝑡) is a (_𝐺 (𝑠, 𝑡) + 1)-flow-augmenting set compatible with 𝑍 ′.

Proof. Let 𝐴 = 𝛿 (𝑠) ∪ 𝛿 (𝑡). Since 𝑍 ′ is a valid cut, 𝑍 ∩ 𝐴 = ∅ and 𝐴 is compatible with
𝑍 ′. Furthermore, if𝑊1 is a connected bundle, then it consists of a single block. Assume for a
contradiction that𝐺 +𝐴 has an (𝑠, 𝑡)-cut𝐶 of size _𝐺 (𝑠, 𝑡). Then𝐶∩𝐴 = ∅, and𝐶 is an (𝑠, 𝑡)-min cut
in𝐺 disjoint from 𝛿 (𝑠)∪𝛿 (𝑡). This contradicts the assumption that𝑊1 a block. Thus every (𝑠, 𝑡)-min
cut in𝐺 intersects 𝛿 (𝑠) ∪ 𝛿 (𝑡) in at least one edge 𝑒 . Since 𝐴 contains a copy of 𝑒 ,𝐶 is no longer an
(𝑠, 𝑡)-cut in 𝐺 +𝐴. Hence 𝐺 +𝐴 has no (𝑠, 𝑡)-cuts of size _𝐺 (𝑠, 𝑡), and _𝐺+𝐴 (𝑠, 𝑡) > _𝐺 (𝑠, 𝑡). □

Lemma 3.20. Assume 𝑐2 > ln 32, i.e., 𝑒𝑐2 > 32. Furthremore, assume that Sample is correct for all

inputs (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _′) where either 𝑘 ′ < 𝑘 or 𝑘 ′ = 𝑘 but _𝐺 ′ (𝑠′, 𝑡 ′) > _𝐺 (𝑠, 𝑡), with a success probabil-
ity of at least 𝑒−𝑔 (_𝐺 ′ (𝑠

′,𝑡 ′ ),𝑘 ′ )
for any eligible (𝑠, 𝑡)-cut 𝑍 . Then Short-separation-single(𝐺, 𝑠, 𝑡, 𝑘, _∗)

is correct, with a success probability of at least 32𝑒−𝑔 (_𝐺 (𝑠,𝑡 ),𝑘 ) .

Proof. Assume that (𝐺, 𝑠, 𝑡, 𝑘, _∗) is a valid input. As discussed, we can assume _𝐺 (𝑠, 𝑡) ≤ _∗ ≤ 𝑘 .
Let 𝑍 be a valid cut. If𝑊1 is a connected bundle, then 𝐴 = 𝛿 (𝑠) ∪ 𝛿 (𝑡) is flow-augmenting and
compatible with 𝑍 by Lemma 3.19. For the success probability bound, the statement is trivial if
_𝐺+𝐴 (𝑠, 𝑡) > _∗ (there is no such 𝑍 in this case). Otherwise note that _𝐺+𝐴 (𝑠, 𝑡) > _𝐺 (𝑠, 𝑡) so

𝑔(_𝐺 (𝑠, 𝑡), 𝑘) > 𝑔(_𝐺+𝐴 (𝑠, 𝑡), 𝑘) + 𝑐2.

Hence, the probability bound follows as we assumed 𝑒𝑐2 > 32.
If𝑊1 is a disconnected bundle, let𝑊1 =𝑊

(1)
1 ∪ . . . ∪𝑊 (𝑐 )

1 be as in the algorithm. For 𝑖 ∈ [𝑐], let
_∗𝑖 = |𝑍𝑠,𝑡 ∩ 𝐸 (𝑊 (𝑖 )

1 ) | and 𝑘𝑖 = |𝑍 ∩ 𝐸 (𝑊
(𝑖 )
1 ) |; then by assumption _∗ = _∗1 + . . . + _∗𝑐 , 𝑘 = 𝑘1 + . . . 𝑘𝑐 ,

and _𝑖 ≤ _∗𝑖 ≤ 𝑘𝑖 . We note that the algorithm guesses the correct values of 𝑘𝑖 and _∗𝑖 with probability
at least 𝑘−2𝑐 .
Consider some 𝑖 ∈ [𝑐] and let 𝐺 (𝑖 ) = 𝐺 [𝑊 (𝑖 )

1 ∪ {𝑠, 𝑡}]. Let 𝑍 (𝑖 ) = 𝑍 ∩ 𝐸 (𝐺 (𝑖 ) ), and note that
𝑍 (𝑖 ) is an (𝑠, 𝑡)-cut in 𝐺 (𝑖 ) , with endpoints in different connected components of 𝐺 (𝑖 ) − 𝑍 (𝑖 ) , and
with 𝑍 (𝑖 ) ∩ (𝛿 (𝑠) ∪ 𝛿 (𝑡)) = ∅. Thus 𝑍 (𝑖 ) is eligible for𝐺 (𝑖 ) . Furthermore by assumption |𝑍 (𝑖 )𝑠,𝑡 | = _∗𝑖
and |𝑍 (𝑖 ) | = 𝑘𝑖 < 𝑘 . Thus each call to Sample (𝐺 ′, 𝑠, 𝑡, 𝑘𝑖 , _∗𝑖 ) will by assumption return a set 𝐴𝑖

such that _𝐺+𝐴𝑖
(𝑠, 𝑡) ≥ _∗𝑖 ; since 𝐸 (𝐺) are partitioned across the instances 𝐺 (𝑖 ) , it follows that

𝐴 = 𝐴1 ∪ . . . ∪ 𝐴𝑐 is a flow-augmenting set with _𝐺+𝐴 (𝑠, 𝑡) ≥ _∗. Furthermore, for every 𝑖 ∈ [𝑐],
with probability at least 𝑒−𝑔 (_𝑖 ,𝑘𝑖 ) the set 𝐴𝑖 is compatible with 𝑍 (𝑖 ) . Now (𝐴, P̂) is compatible with
𝑍 if every pair (𝐴𝑖 , P̂𝑖 ) is compatible with the respective set 𝑍 (𝑖 ) . Hence, the success probability is
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lower bounded by:

𝑘−2𝑐 ·
𝑐∏
𝑖=1

𝑒−𝑔 (_𝑖 ,𝑘𝑖 ) = exp
(
−2𝑐 ln𝑘 −

𝑐∑︁
𝑖=1
(𝑐1 (2𝑘𝑖 − _𝑖 ) − 𝑐2) (1 + ln𝑘𝑖 )

)
≥ exp

(
−2𝑐 ln𝑘 − (1 + ln𝑘)

𝑐∑︁
𝑖=1

𝑐1 (2𝑘𝑖 − _𝑖 ) − 𝑐2

)
= exp (−2𝑐 ln𝑘 + (1 + ln𝑘) (𝑐1 (2𝑘 − _) − 𝑐2) + (1 + ln𝑘) (𝑐 − 1)𝑐2)
≥ 32𝑒−𝑔 (_,𝑘 ) · exp (((𝑐 − 1)𝑐2 − 2𝑐) ln𝑘 + ((𝑐 − 1)𝑐2 − ln 32))
≥ 32𝑒−𝑔 (_,𝑘 ) .

In the above we have used that 𝑐1 > 𝑐2 and, in the last inequality, that 𝑐 ≥ 2, 𝑐2 ≥ 4 > ln 32. This
finishes the proof of the lemma. □

3.3.2 Multiple-bundle case. We will now describe an algorithm Short-separation that realizes
the second inner-loop interface from the previous section. Given a valid multiple-bundle instance
(𝐺, 𝑠, 𝑡, 𝑘, _∗) where𝐺 decomposes into bundles𝑊0∪ . . .∪𝑊𝑞+1, with 2 ≤ 𝑞 ≤ 2𝑘 , and𝑊0 = {𝑠} and
𝑊𝑞+1 = {𝑡}, and with _ := _𝐺 (𝑠, 𝑡) < _∗ it will run in (probabilistic) polynomial time and always
return an (𝑠, 𝑡)-flow augmenting set 𝐴. Moreover, for each (𝑠, 𝑡)-cut 𝑍 that is valid for (𝐺, 𝑠, 𝑡, 𝑘, _∗),
the set 𝐴 is compatible with 𝑍 with probability at least 32𝑘3𝑒−𝑔 (_𝐺 (𝑠,𝑡 ),𝑘 ) . We call𝑊0 = {𝑠} and
𝑊𝑞+1 = {𝑡} trivial bundles; all others are called non-trivial bundles.

We start with some intuition. We focus on the cut 𝐶 between𝑊1 and𝑊2 and want to guess, for
each edge 𝑒 ∈ 𝐶 and each endpoint 𝑣 ∈ 𝑒 , the type of 𝑣 : whether 𝑣 lies in the connected component
of 𝐺 − 𝑍 that contains 𝑠 (type 𝑠), that contains 𝑡 (type 𝑡 ), or some other component of 𝐺 − 𝑍 (type
⊥). The type of an edge 𝑒 ∈ 𝐶 is the pair of the types of its endpoints. Having guessed the types,
we are able to construct instances for the recursive call for𝑊1 and𝑊2,𝑞 separately. The assumption
that all bundles are affected ensures not all edges of𝐶 are of type (𝑠, 𝑠) and not all edges of𝐶 are of
type (𝑡, 𝑡), which implies that both instances in the recursion are nontrivial and of strictly smaller
budget 𝑘 . However, to obtain the promised success probability, we need to be careful with the
distribution from which we sample types of endpoints of edges of 𝐶 .
We now proceed to the formal arguments.
The algorithm is shown in Figure 6, but to discuss it we need a few results. Recall that in the

inner loop we will be interested only in valid cuts, and a valid cut affects every non-trivial bundle
𝑊1, . . . ,𝑊𝑞 of 𝐺 .

Let𝐶 be the min-cut between𝑊1 and𝑊2. We define a cut labelling 𝜑𝑍 : 𝑉 (𝐶) → {𝑠, 𝑡,⊥} of𝐶 by
𝑍 as

𝜑𝑍 (𝑣) =


𝑠 𝑣 ∈ 𝑅𝑠 (𝑍 )
𝑡 𝑣 ∈ 𝑅𝑡 (𝑍 )
⊥ otherwise.

For every edge 𝑢𝑣 ∈ 𝐶 with 𝑢 ∈ 𝑉 (𝑊1) and 𝑣 ∈ 𝑉 (𝑊2), the type of the edge 𝑢𝑣 is the pair
𝜑𝑍 (𝑢𝑣) := (𝜑𝑍 (𝑢), 𝜑𝑍 (𝑣)). Let Γ = {𝑠, 𝑡,⊥} × {𝑠, 𝑡,⊥} be the set of types. For a type 𝛾 ∈ Γ, let
_𝛾 be the number of edges 𝑒 ∈ 𝐶 with 𝜑𝑍 (𝑒) = 𝛾 . Within the set of types Γ we distinguish four
sets: Γ= = {(𝛼, 𝛽) ∈ Γ | 𝛼 = 𝛽} = {(𝑠, 𝑠), (𝑡, 𝑡), (⊥,⊥)}, Γ≠ = {(𝛼, 𝛽) ∈ Γ | 𝛼 ≠ 𝛽} = Γ \ Γ=,
Γ← = {𝑡,⊥}× {𝑠, 𝑡,⊥}, and Γ→ = {𝑠, 𝑡,⊥}× {𝑠,⊥}. We denote _= =

∑
𝛾 ∈Γ= _𝛾 and similarly we define

_≠, _←, and _→.
Let 𝑍1 = 𝑍 ∩ 𝐸 (𝑊1), 𝑍2 = 𝑍 ∩ 𝐸 (𝑊2,𝑞) and 𝑍𝐶 = 𝑍 ∩𝐶 . Note that 𝑍 = 𝑍1 ∪𝑍2 ∪𝑍𝐶 is a partition

of 𝑍 . We make some simple observations.
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Algorithm Short-separation(𝐺, 𝑠, 𝑡, 𝑘, _∗)
(1) If (𝐺, 𝑠, 𝑡, 𝑘, _∗) is not a valid multiple-bundle input, then return 𝑘 + 1 copies of the edge {𝑠, 𝑡} and stop.
(2) Let 𝑉 =𝑊0 ∪ . . . ∪𝑊𝑞+1 be the partition of 𝐺 into bundles. Let 𝐶 be the min-cut between𝑊1 and𝑊2.
(3) Randomly sample values 0 ≤ _𝛾 ≤ _ for 𝛾 ∈ Γ such that

∑
𝛾 ∈Γ _𝛾 = _ = |𝐶 |. Denote _0 =

∑
𝛾 ∈Γ0 _𝛾 .

(4) For every edge 𝑢𝑣 ∈ 𝐶 with 𝑢 ∈ 𝑉 (𝑊1) and 𝑣 ∈ 𝑉 (𝑊2), guess a label 𝜑 (𝑢𝑣) ∈ Γ with the probability of
𝜑 (𝑢𝑣) = 𝛾 being _𝛾/_.

(a) Define 𝜑 (𝑢) and 𝜑 (𝑣) such that (𝜑 (𝑢), 𝜑 (𝑣)) = 𝜑 (𝑢𝑣). If a vertex 𝑥 obtains two distinct values 𝜑 (𝑥)
in this process, return 𝐴 being 𝑘 + 1 edges 𝑠𝑡 and stop.

(b) Let _∗
𝐶
be the number of edges 𝑒 ∈ 𝐶 such that 𝜑 (𝑒) ∈ {(𝑠, 𝑡), (𝑡, 𝑠)}.

(5) Let 𝐴𝑠𝑡 contain 𝑘 + 1 copies of each edge {𝑢, 𝑣} with 𝑢, 𝑣 ∈ {𝑠} ∪ 𝜑−1 (𝑠) or with 𝑢, 𝑣 ∈ {𝑡} ∪ 𝜑−1 (𝑡)
(6) Compute a set P̂𝐶 of size _∗

𝐶
as follows: for every 𝑒 ∈ 𝐶 such that 𝜑 (𝑒) ∈ {(𝑠, 𝑡), (𝑡, 𝑠)}, let 𝑒 = 𝑢𝑣 be

such that 𝜑 (𝑢) = 𝑠 and 𝜑 (𝑣) = 𝑡 , and add to P̂𝐶 a three-edge path 𝑃𝑒 consisting of the edges 𝑠𝑢 ∈ 𝐴𝑠𝑡 ,
𝑒 , and 𝑡𝑣 ∈ 𝐴𝑠𝑡 .

(7) Randomly sample a partition _∗ = _∗1 + _
∗
𝐶
+ _∗2 subject to the following constraints:

(a) _∗1 ≥ _(𝑡,𝑠 ) + _(𝑡,𝑡 ) + _(𝑡,⊥) and _
∗
1 = 0 if _(𝑡,𝑠 ) = _(𝑡,𝑡 ) = _(𝑡,⊥) = 0.

(b) _∗2 ≥ _(𝑠,𝑠 ) + _(𝑡,𝑠 ) + _(⊥,𝑠 ) and _
∗
2 = 0 if _(𝑠,𝑠 ) = _(𝑡,𝑠 ) = _(⊥,𝑠 ) = 0.

(8) Randomly sample a partition 𝑘 = 𝑘1 + 𝑘𝐶 + 𝑘2 subject to the following constraints:
(a) _∗1 ≤ 𝑘1, _0 + _(𝑡,𝑡 ) ≤ 𝑘1 + 𝑘𝐶 , 1 ≤ 𝑘1, _← ≤ 𝑘1;
(b) _∗2 ≤ 𝑘2, _0 + _(𝑠,𝑠 ) ≤ 𝑘2 + 𝑘𝐶 , 1 ≤ 𝑘2, _→ ≤ 𝑘2;
(c)

∑
𝛾 ∈Γ0\{ (⊥,⊥)} _𝛾 ≤ 𝑘𝐶 ≤

∑
𝛾 ∈Γ0 _𝛾 .

(9) Construct a flow-augmenting set 𝐴1 and a flow in𝑊1:
(a) Let 𝐺1 = (𝐺 +𝐴𝑠𝑡 ) [𝑊1 ∪ {𝑠, 𝑡}];
(b) Compute (𝐴1, P̂1) ← Sample(𝐺1, 𝑠, 𝑡, 𝑘1, _∗1).

(10) Construct a flow-augmenting set 𝐴2 in𝑊2,𝑞 :
(a) Let 𝐺2 = (𝐺 +𝐴𝑠𝑡 ) [𝑊2,𝑞 ∪ {𝑠, 𝑡}].
(b) Compute (𝐴2, P̂2) ← Sample(𝐺2, 𝑠, 𝑡, 𝑘2, _∗2).

(11) Return (𝐴 = 𝐴𝑠𝑡 ∪𝐴1 ∪𝐴2, P̂ = P̂𝐶 ∪ P̂1 ∪ P̂2).

Fig. 6. The inner loop algorithm for multiple-bundle case.

Proposition 3.21. Assume that 𝑍 is a valid (𝑠, 𝑡)-cut in 𝐺 . Then, the following hold.
(1) 𝑍𝑠,𝑡 ∩𝐶 = {𝑒 ∈ 𝐶 | 𝜙𝑍 (𝑒) ∈ {(𝑠, 𝑡), (𝑡, 𝑠)}};
(2) If 𝑍𝑠,𝑡 ∩ 𝐸 (𝑊1) ≠ ∅, then there exists 𝑢 ∈ 𝑉 (𝑊1) ∩𝑉 (𝐶) with 𝜑𝑍 (𝑢) = 𝑡 ;
(3) If 𝑍𝑠,𝑡 ∩ 𝐸 (𝑊2,𝑞) ≠ ∅, then there exists 𝑣 ∈ 𝑉 (𝑊2) ∩𝑉 (𝐶) with 𝜑𝑍 (𝑣) = 𝑠 ;
(4) For every 𝑢𝑣 ∈ 𝐶 such that 𝜑𝑍 (𝑢) ≠ 𝜑𝑍 (𝑣), we have 𝑢𝑣 ∈ 𝑍𝐶 . Conversely, if 𝑢𝑣 ∈ 𝑍𝐶 , then

𝜑𝑍 (𝑢) ≠ 𝜑𝑍 (𝑣) or 𝜑𝑍 (𝑢) = 𝜑𝑍 (𝑣) = ⊥.
(5) 𝑍1 ∪ 𝑍𝐶 ≠ ∅ and 𝑍2 ∪ 𝑍𝐶 ≠ ∅.
(6) |𝑍1 ∪ 𝑍𝐶 | ≥ _≠ + _ (⊥,⊥) + _ (𝑡,𝑡 ) and |𝑍2 ∪ 𝑍𝐶 | ≥ _≠ + _ (⊥,⊥) + _ (𝑠,𝑠 ) .
(7) |𝑍1 | ≥ _← and |𝑍2 | ≥ _→.

Proof. 1. Holds by definition of 𝑍𝑠,𝑡 and 𝜑𝑍 .
2–3. These proofs are symmetric, so we show only the first. Let {𝑢, 𝑣} ∈ 𝑍𝑠,𝑡 ∩ 𝐸 (𝑊1) where

𝑣 ∈ 𝑅𝑡 (𝑍 ). Then there is a path 𝑃 from 𝑣 to 𝑡 in 𝐺 − 𝑍 . This path must pass through 𝐶 through a
vertex𝑤 with𝑤 ∈ 𝑅𝑡 (𝑍 ).

4. This is straightforward from the assumption that every edge of 𝑍 connects two distinct
connected components of 𝐺 − 𝑍 .

5. If this does not hold, then some non-trivial bundle of 𝐺 is unaffected.
6–7. Consider a maximum (𝑠, 𝑡)-flow (𝑃𝑒 )𝑒∈𝐶 where 𝑒 ∈ 𝐸 (𝑃𝑒 ) for 𝑒 = 𝑢1𝑢2 ∈ 𝐶 ,𝑢1 ∈𝑊1,𝑢2 ∈𝑊2.

The path 𝑃𝑒 first goes from 𝑠 via𝑊1 to 𝑒 and then continues via𝑊2,𝑞 to 𝑡 . If there no edge of
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𝐸 (𝑃𝑒 ) ∩𝑍 between 𝑠 and 𝑢1, then 𝜑𝑍 (𝑢1) = 𝑠 . IF additionally 𝑒 ∉ 𝑍 , then 𝜑𝑍 (𝑒) = (𝑠, 𝑠). This proves
the two inequalities of 6–7. concering 𝑍1. The argument for 𝑍2 is symmetric. □

We use this to show the correctness of the algorithm.

Lemma 3.22. Assume that Sample is correct for all inputs (𝐺 ′, 𝑠′, 𝑡 ′, 𝑘 ′, _′) where either 𝑘 ′ < 𝑘 or

𝑘 ′ = 𝑘 but (𝑘 ′ − _𝐺 ′ (𝑠′, 𝑡 ′)) < (𝑘 − _𝐺 (𝑠, 𝑡)), with a success probability of at least 𝑒−𝑔 (_𝐺 ′ (𝑠
′,𝑡 ′ ),𝑘 ′ )

.

Then Short-separation(𝐺, 𝑠, 𝑡, 𝑘, _∗) is correct, with a success probability of at least 32𝑘3𝑒−𝑔 (_𝐺 (𝑠,𝑡 ),𝑘 ) .

Proof. First observe that if a call (𝐺𝑖 , 𝑠, 𝑡, 𝑘𝑖 , _
∗
𝑖 ) is made to Sample, then 𝑠 and 𝑡 are connected

in 𝐺𝑖 . Indeed, 𝐺 [𝑊1 ∪ {𝑠}] is connected, and if 𝜑−1 (𝑡) ∩ 𝑉 (𝑊1) = ∅ then the algorithm always
guesses _∗1 = 0, hence no recursive call is made. Similarly, 𝐺 [𝑊2,𝑞 ∪ {𝑡}] is connected and if 𝑠 is
not adjacent to 𝑉 (𝑊2) in 𝐺 +𝐴𝑠𝑡 then no recursive call into 𝐺2 is made. Hence each recursive call
is only made to a connected graph 𝐺𝑖 and we can assume that P̂𝑖 is a flow of size _∗𝑖 in 𝐺𝑖 + 𝐴𝑖 .
We show that P̂ is a flow of size _∗ in 𝐺 +𝐴, which implies that _𝐺+𝐴 (𝑠, 𝑡) ≥ _∗. Indeed, the paths
of P̂1 ∪ P̂2 exist in 𝐺 +𝐴 and are pairwise edge-disjoint. Furthermore, for every edge 𝑒 ∈ 𝐶 with
𝜑 (𝑒) ∈ {(𝑠, 𝑡), (𝑡, 𝑠)}, the constructed path 𝑃𝑒 ∈ P̂𝐶 is a path from 𝑠 to 𝑡 disjoint from P̂1 ∪ P̂2. Since
|P̂𝐶 | = _∗𝐶 and _∗ = _∗1 + _∗𝐶 + _∗2 , P̂ is as desired.
Next, we consider the probability that (𝐴, P̂) is compatible with 𝑍 , where 𝑍 is a fixed valid
(𝑠, 𝑡)-cut. The algorithm correctly guesses (in every bullet, we condition on the previous guesses
being correct):
• values _𝛾 for 𝛾 ∈ Γ with probability at least (1 + _)−|Γ | ≥ 𝑘−9;
• 𝜑 = 𝜑𝑍 with probability∏

𝑒∈𝐶

_𝜑𝑍 (𝑒 )

_
=

∏
𝛾 ∈Γ

(
_𝛾

_

)_𝛾
= exp ©«−

∑︁
𝛾 ∈Γ

_𝛾 ln(_/_𝛾 )
ª®¬ .

• values _∗1 = |𝑍𝑠,𝑡 ∩ 𝐸 (𝑊1) | and _∗2 = |𝑍𝑠,𝑡 ∩ 𝐸 (𝑊2,𝑞) | with probability at least 𝑘−2;
• values 𝑘1 = |𝑍 ∩ 𝐸 (𝑊1) |, 𝑘2 = |𝑍 ∩ 𝐸 (𝑊2,𝑞) |, 𝑘𝐶 = |𝑍 ∩ 𝐶 | with probability at least 𝑘−2, as
there are at most 𝑘2 possible values of (𝑘1, 𝑘2).

Proposition 3.21 ensures that in all of the above guesses, the correct value of is among one of the
options with positive probability. Furthermore, _∗

𝐶
= |𝑍𝑠,𝑡 ∩𝐶 | is computed (deterministically) by

the algorithm.
It was argued above that each recursive call on a graph𝐺𝑖 , 𝑖 = 1, 2, is made only if𝐺𝑖 is connected.

We claim that furthermore 𝑍1 := 𝑍 ∩ 𝐸 (𝑊1) is an eligible (𝑠, 𝑡)-cut in 𝐺1. Indeed, 𝑍1 ∩ 𝛿 (𝑠) = ∅
by assumption, and 𝑍1 ∩ 𝛿 (𝑡) = ∅ since all edges of 𝛿 (𝑡) in 𝐺1 are from 𝐴𝑠𝑡 . Furthermore, by
assumption, for every vertex 𝑢 of 𝑁𝐺1 (𝑠) and every vertex 𝑣 of 𝑁𝐺1 (𝑡), we have 𝑢 ∈ 𝑅𝑠 (𝑍 ) and
𝑣 ∈ 𝑅𝑡 (𝑍 ). Hence 𝑍1 in particular cuts every path from 𝑢 to 𝑣 in 𝐺 [𝑊1], and by cutting all these
paths 𝑍1 must cut 𝑠 from 𝑡 in 𝐺1. Finally, no edge of 𝑍1 goes within a connected component of
𝐺1 − 𝑍1, since the only paths that are added to 𝐺 [𝑊1] go between vertices of the same component
(either 𝑅𝑠 (𝑍 ) or 𝑅𝑡 (𝑍 )) in 𝐺 − 𝑍 . Hence with probability at least 𝑒−𝑔 (_𝐺1 (𝑠,𝑡 ),𝑘1 ) (or 1 if _∗1 = 0) the
pair (𝐴1, P̂1) is compatible with 𝑍1. All these arguments can also be made symmetrically to argue
that with probability at least 𝑒−𝑔 (_𝐺2 (𝑠,𝑡 ),𝑘2 ) (or 1 if _∗2 = 0), (𝐴2, P̂2) is compatible with 𝑍2.

By assumption, 𝐴𝑠𝑡 is compatible with 𝑍 . Also, if 𝜑 = 𝜑𝑍 , then every path 𝑃 ∈ P̂𝐶 intersects 𝑍 in
exactly one edge and this edge belongs to 𝑍𝑠,𝑡 .
It remains to wrap up the proof of the bound the probability that (𝐴 = 𝐴𝑠𝑡 ∪ 𝐴1 ∪ 𝐴2, P̂ =

P̂1 ∪ P̂2 ∪ P̂𝐶 ) is compatible with 𝑍 . First, consider a corner case when _ (𝑠,𝑠 ) = _, that is, 𝜑𝑍 is
constant at (𝑠, 𝑠). Then 𝑘1 ≥ 1, 𝑘2 ≤ 𝑘 − 1, 𝑘𝐶 = 0, _𝐺2 (𝑠, 𝑡) ≥ _𝐺 (𝑠, 𝑡), and the recursive call on
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𝐺1 is not made. Furthermore, once _ (𝑠,𝑠 ) = _ is guessed, 𝜑 is defined deterministically. Hence, for
sufficiently large constant 𝑐1, (𝐴, P̂) is compatible with 𝑍 with probability at least

𝑘−13𝑒−𝑔 (_𝐺2 (𝑠,𝑡 ),𝑘2 ) ≥ 𝑘−13𝑒−𝑔 (_,𝑘−1) ≥ exp (−16 ln𝑘 − ln 16 + 𝑐2 (1 + ln 4)) 16𝑘3𝑒−𝑔 (_,𝑘 ) ≥ 𝑒−𝑔 (_,𝑘 ) .
A symmetric argument holds if _ (𝑡,𝑡 ) = _, that is, 𝜑𝑍 is constant at (𝑡, 𝑡).

For the general case, observe that even if the recursive call on𝐺𝑖 is not invoked due to _∗𝑖 = 0,
then 𝑘𝑖 ≥ 1 and _𝐺𝑖

(𝑠, 𝑡) ≤ 𝑘𝑖 so 𝑒−𝑔 (_𝐺𝑖
(𝑠,𝑡 ),𝑘𝑖 ) ≤ 1. Thus, we can use 𝑒−𝑔 (_𝐺𝑖

(𝑠,𝑡 ),𝑘𝑖 ) as a lower
bound on the success probability of the recursive call regardless of whether it was actually invoked.

By the above discussion, the probability that 𝐴 is compatible with 𝑍 is at least

𝑘−13 · exp ©«−
∑︁
𝛾 ∈Γ

_𝛾 ln(_/_𝛾 )
ª®¬ · 𝑒−𝑔 (_𝐺1 (𝑠,𝑡 ),𝑘1 )𝑒−𝑔 (_𝐺2 (𝑠,𝑡 ),𝑘2 ) . (2)

We start by analysing the second term of the above bound.
We will need the following standard entropy maximization result. Intuitively, it says that once we

know the values (_𝛾 )𝛾 ∈Γ , guessing each 𝜙𝑍 (𝑒) = 𝛾 with probability _𝛾/_ maximizes the probability
of a fully correct guess.

Lemma 3.23. Let 𝑛 ≥ 1 be an integer, 𝑠 > 0, 𝑎1, 𝑎2, . . . , 𝑎𝑛 ≥ 0 be reals with
∑𝑛

𝑖=1 𝑎𝑖 > 0, and for
reals 𝑥1, . . . , 𝑥𝑛 ≥ 0 with

∑𝑛
𝑖=1 𝑥𝑖 = 𝑠 define 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =

∑𝑛
𝑖=1 𝑎𝑖 ln𝑥𝑖 , with the convention that

0 · ln 0 = 0. Then, the value of 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) attains maximum (subject to

∑𝑛
𝑖=1 𝑥𝑖 = 𝑠) when the

values 𝑥𝑖 are proportional to the values 𝑎𝑖 , that is, when 𝑥𝑖 = 𝑠𝑎𝑖/
∑𝑛

𝑗=1 𝑎 𝑗 .

Proof. The case 𝑛 = 2 follows by standard calculus methods, e.g., analysing the derivative
of 𝑥 ↦→ 𝑎1 ln𝑥 + 𝑎2 ln(𝑠 − 𝑥). The general case follows from the 𝑛 = 2 case by straightforward
induction. □

The summands of (2) for 𝛾 ∈ Γ≠ will not cause much trouble, as if 𝜙𝑍 (𝑒) ∈ Γ≠ then 𝑒 ∈ 𝑍 , and
we will be able to charge the probability of guessing correctly 𝜙𝑍 (𝑒) to the decrease in the budget
𝑘 in the recursive calls. That is, the following simple estimate will suffice.

_= ln(_/_=) +
∑︁
𝛾 ∈Γ≠

_𝛾 ln(_/_𝛾 ) ≤ 5𝑘𝐶 ln𝑘. (3)

Indeed, note that (3) is trivial if _≠ = 0 or _ ≤ 1, while otherwise we have 𝑘𝐶 ≥ 1 and 𝑘 ≥ 2 and we
can estimate as follows.

_= ln(_/_=) +
∑︁
𝛾 ∈Γ≠

_𝛾 ln(_/_𝛾 ) by Lemma 3.23

≤ −_= ln(1 − 1/𝑘) −
∑︁
𝛾 ∈Γ≠

_𝛾 ln(1/(|Γ≠ |𝑘)) _= ≤ 𝑘, |Γ≠ | = 6

≤ −𝑘 ln(1 − 1/𝑘) − _≠ ln(1/(6𝑘)) 𝑘 ≥ 2, _≠ ≤ 𝑘𝐶
≤ −2 ln(1 − 1/2) − 𝑘𝐶 ln(1/(6𝑘)) 𝑘𝐶 ≥ 1, 𝑘 ≥ 2
≤ 5𝑘𝐶 ln𝑘.

For the terms _ (𝑠,𝑠 ) , _ (𝑡,𝑡 ) , and _ (⊥,⊥) we need to be more careful. Thanks to Proposition 3.21(4.),
we have 𝑘1 ≥ _ (𝑡,𝑡 ) + _ (⊥,⊥) and 𝑘2 ≥ _ (𝑠,𝑠 ) + _ (⊥,⊥) . Recall 𝑘1 + 𝑘2 = 𝑘 − 𝑘𝐶 . Intuitively, we would
like to charge the probability of guessing 𝜙𝑍 (𝑒) correctly for 𝜙𝑍 (𝑒) ∈ Γ= to the fact that the budget
𝑘 − 𝑘𝐶 got split in the recursive calls.

To this end, denote 𝑥1 = 𝑘1 − _ (⊥,⊥) , 𝑥2 = 𝑘2 − _ (⊥,⊥) , 𝑥0 = _ (⊥,⊥) . Note that 𝑥1 ≥ _ (𝑡,𝑡 ) and
𝑥2 ≥ _ (𝑠,𝑠 ) . Furthermore, 𝑘 − 𝑘𝐶 = 𝑘1 + 𝑘2 = 𝑥1 + 𝑥2 + 2𝑥0.
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By Lemma 3.23,
_ (𝑠,𝑠 ) ln(_/_ (𝑠,𝑠 ) ) + _ (𝑡,𝑡 ) ln(_/_ (𝑡,𝑡 ) ) + _ (⊥,⊥) ln(_/_ (⊥,⊥) )

= −
(
_ (𝑠,𝑠 ) ln(_ (𝑠,𝑠 )/_=) + _ (𝑡,𝑡 ) ln(_ (𝑡,𝑡 )/_=) + _ (⊥,⊥) ln(_ (⊥,⊥)/_=)

)
+ _= ln(_/_=)

≤ −
(
_ (𝑠,𝑠 ) ln(𝑥2/𝑥) + _ (𝑡,𝑡 ) ln(𝑥1/𝑥) + _ (⊥,⊥) ln(2𝑥0/𝑥)

)
+ _= ln(_/_=).

As _ (𝑠,𝑠 ) ≤ 𝑥2, _ (𝑡,𝑡 ) ≤ 𝑥1, and _ (⊥,⊥) = 𝑥0, we have
_ (𝑠,𝑠 ) ln(_/_ (𝑠,𝑠 ) ) + _ (𝑡,𝑡 ) ln(_/_ (𝑡,𝑡 ) ) + _ (⊥,⊥) ln(_/_ (⊥,⊥) )
≤ 𝑥1 ln(𝑥/𝑥1) + 𝑥2 ln(𝑥/𝑥2) + 2𝑥0 ln(𝑥/(2𝑥0)) + _= ln(_/_=). (4)

We also need the following observation:

Claim 1. It holds that
𝑘1 − _𝐺1 (𝑠, 𝑡) + 𝑘2 − _𝐺2 (𝑠, 𝑡) ≤ 𝑘 − _𝐺 (𝑠, 𝑡) + _ (⊥,⊥) .

Proof. From Proposition 3.21(4.), we infer that
|𝐶 | − 𝑘𝐶 − _ (⊥,⊥) ≤ _ (𝑠,𝑠 ) + _ (𝑡,𝑡 ) .

Since in 𝐺1, an endpoint of every edge 𝑒 ∈ 𝐶 with 𝜑𝑍 (𝑒) = (𝑡, 𝑡) is connected to 𝑡 with 𝑘 + 1 edges,
we have

_𝐺1 (𝑠, 𝑡) ≥ _ (𝑡,𝑡 ) .
Symmetrically,

_𝐺2 (𝑠, 𝑡) ≥ _ (𝑠,𝑠 ) .
As 𝑘1 + 𝑘2 + 𝑘𝐶 = 𝑘 and _𝐺 (𝑠, 𝑡) = |𝐶 |, the claim follows. □

To wrap up the analysis, we need the following property of the 𝑧 ↦→ 𝑧 ln 𝑧 function (for com-
pleteness, we provide a proof in Appendix A):

Claim 2. Let 𝑓 (𝑧) = 𝑧 ln 𝑧 for 𝑧 > 0 and 𝑓 (0) = 0. For every constant𝐶1 > 0 there exists a constant
𝐶2 > 0 such that for every 𝑥1, 𝑥2, 𝑥0 ≥ 0 it holds that
𝐶2 𝑓 (𝑥1 +𝑥2 + 2𝑥0) + 𝑓 (𝑥1) + 𝑓 (𝑥2) + 𝑓 (2𝑥0) ≥ 𝑓 (𝑥1 +𝑥2 + 2𝑥0) +𝐶2 𝑓 (𝑥1 +𝑥0) +𝐶2 𝑓 (𝑥2 +𝑥0) +𝐶1𝑥0 .

Claim 2 for 𝐶1 = 𝑐2 implies an existence of 𝐶2 > 0 (depending on 𝑐2) such that
𝑥1 ln(𝑥/𝑥1) + 𝑥2 ln(𝑥/𝑥2) + 2𝑥0 ln(𝑥/(2𝑥0)) + 𝑐2𝑥0 ≤ 𝐶2 (𝑥 ln𝑥 − 𝑘1 ln𝑘1 − 𝑘2 ln𝑘2) . (5)

Using the definition of 𝑔(·, ·), the fact that _ (⊥,⊥) = 𝑥0 and Claim 1, we obtain that
𝑔(_𝐺 (𝑠, 𝑡), 𝑘) ≥ 𝑔(_𝐺1 (𝑠, 𝑡), 𝑘1) +𝑔(_𝐺2 (𝑠, 𝑡), 𝑘2) +𝑐1 (𝑘 ln𝑘 − 𝑘1 ln𝑘1 − 𝑘2 ln𝑘2) +𝑐2 (1+ ln𝑘) −𝑐2𝑥0 .

(6)
Thus, we bound the negated exponent of the probability bound of (2) as follows:

13 ln𝑘 +
∑︁
𝛾 ∈Γ

_𝛾 ln(_/_𝛾 ) + 𝑔(_𝐺1 (𝑠, 𝑡), 𝑘1) + 𝑔(_𝐺2 (𝑠, 𝑡), 𝑘2) by (3) and (4)

≤ 13 ln𝑘 + 𝑥1 ln(𝑥/𝑥1) + 𝑥2 ln(𝑥/𝑥2) + 2𝑥0 ln(𝑥/(2𝑥0)) + 5𝑘𝐶 ln𝑘 by (6)
+ 𝑔(_𝐺1 (𝑠, 𝑡), 𝑘1) + 𝑔(_𝐺2 (𝑠, 𝑡), 𝑘2)
≤ 13 ln𝑘 + 𝑥1 ln(𝑥/𝑥1) + 𝑥2 ln(𝑥/𝑥2) + 2𝑥0 ln(𝑥/(2𝑥0)) + 5𝑘𝐶 ln𝑘 by (5),
+ 𝑔(_𝐺 (𝑠, 𝑡), 𝑘) + 𝑐2𝑥0 − 𝑐2 (1 + ln𝑘) 𝑐2 ≥ 16, 𝑐1 ≥ 𝐶2 + 5,
+ 𝑐1 (𝑥1 + 𝑥0) ln(𝑥1 + 𝑥0) + 𝑐1 (𝑥2 + 𝑥0) ln(𝑥2 + 𝑥0) − 𝑐1𝑘 ln𝑘 𝑘 = 𝑥 + 𝑘𝐶
≤ 𝑔(_𝐺 (𝑠, 𝑡), 𝑘) − 3 ln𝑘 − ln 32

This finishes the proof of the lemma. □
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3.4 Efficient implementation and final proof
Finally, we show that the algorithms can be implemented to run in time 𝑘O(1)O(𝑚), i.e., linear time
up to factors of 𝑘 . We first show how to efficiently decompose 𝐺 into bundles.

Lemma 3.24. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, 𝑠, 𝑡 ∈ 𝑉 , and let _∗ ∈ Z be given. In time

O(_∗𝑚) we can either show that _𝐺 (𝑠, 𝑡) > _∗ or compute a max (𝑠, 𝑡)-flow, blocks, and bundles in 𝐺 .

Proof. Since all edge capacities are unit we can compute a packing P̂ of up to _∗ + 1 (𝑠, 𝑡)-paths
in time O(_∗𝑚) using Ford-Fulkerson, and if |P̂ | = _∗ + 1 then we are done. Otherwise, assume
that P̂ is a max-flow of value |P̂ | = _, and let 𝐺 ′ be the residual flow graph for P̂ on 𝐺 . We show
how to decompose 𝐺 into blocks and bundles. Let the mass of a vertex set 𝑆 be

∑
𝑣∈𝑆 𝑑 (𝑣), where

𝑑 (𝑣) is the degree of the vertex 𝑣 .
First, observe that the closest min-cut 𝐶0 can be found using a simple reachability query in the

residual flow graph. Specifically, the first block𝑉0 is precisely the set of vertices reachable from 𝑠 in
𝐺 ′. Hence 𝑉0 can be computed in time linear in its mass and 𝐶0 = 𝛿 (𝑉0). The sets 𝑉1, . . . , 𝑉𝑝+1 can
be computed as follows. Let 𝑖 ∈ [𝑝] and let𝑉 ′ = 𝑉0 ∪ . . . ∪𝑉𝑖−1. Assume that all sets𝑉𝑖′ , 𝑖′ < 𝑖 have
been computed, in total time linear in the mass of 𝑉 ′. Hence the cut 𝐶𝑖−1 = 𝛿 (𝑉 ′) is known as well.
Contract𝑉 ′ into a single vertex 𝑠′ and reorient the arcs of𝐶𝑖−1 out from 𝑠′. Then𝑉𝑖 is precisely the
set of vertices reachable from 𝑠′, and can be computed in time linear in its mass. Hence we can
decompose 𝐺 into blocks.
To further group the blocks into bundles, we only need to be able to test connectivity. Recall

that the first bundle is just𝑊0 = 𝑉0. Assume that we are computing the bundle starting with block
𝑉𝑎 . Label the flow-paths P̂ = {𝑃1, . . . , 𝑃_}, and initialize a partition 𝑄 of [_] corresponding to the
endpoints of 𝐶𝑎−1 in 𝑉𝑎 (i.e., for every vertex 𝑣 ∈ left(𝑊𝑎) there is a part 𝐵 ∈ 𝑄 where 𝑖 ∈ 𝐵 if and
only if the edge 𝐸 (𝑃𝑖 ) ∩𝐶𝑎−1 is incident with 𝑣). In time linear in the mass of 𝑉𝑎 , we can compute
the connected components of𝑉𝑎 , and the corresponding partition𝑄 ′ of right(𝑊𝑎). Then, as long as
the current sequence of blocks is not yet connected (i.e., as long as 𝑄 ′ ≠ {[_]}), repeat the process
for every block 𝑎′ ≥ 𝑎: Let 𝐻 = 𝐺 [𝑉𝑎′ ]; for every block 𝐵 ∈ 𝑄 , add a vertex 𝑠𝐵 to 𝐻 , connected to
the endpoints of 𝑃𝑖 in 𝑉𝑎′ for every 𝑖 ∈ 𝐵; and compute the connected components of 𝐻 and the
corresponding partition 𝑄 ′′ of right(𝑊𝑎′ ). Clearly this takes linear time and allows us to detect
the first block 𝑉𝑏+1 such that 𝑉𝑎 ∪ . . . ∪𝑉𝑏 is connected. Then the next bundle contains blocks 𝑉𝑎
through 𝑉𝑏−1. □

We can now prove Theorem 3.7. We refrain from optimizing the exponent of 𝑘 in the running
time, since every plausible application of the theorem will have an overhead of 2O(𝑘 log𝑘 ) separate
applications anyway.

Proof of Theorem 3.7. To bound the running time, we make two notes. First, in every call to
one of the algorithms Sample, Short-separation or Short-separation-single, recursive calls
are only made on disjoint vertex sets of the respective graph 𝐺 (excepting special vertices 𝑠 , 𝑡 ).
Furthermore, on each call into Sample we either have a decreased value of 𝑘 or an increased value
of _𝐺 (𝑠, 𝑡), and there are only 𝑂 (𝑘2) possible combined values of (𝑘, _). Thus every vertex of 𝐺
except 𝑠 , 𝑡 is processed in at most a polynomial number of process calls.
Second, we note that the density of the graph 𝐺 + 𝐴 does not increase too much beyond the

density of𝐺 . Specifically, it is easy to verify that for every vertex 𝑣 ∈ 𝑉 (𝐺), at most 𝑘O(1) new edges
are added incident with 𝑣 . Hence it suffices that the local work in each procedure is linear-time in
the size of the graph it is called on. For this, the only part that needs care is the computation of
bundles, Lemma 3.24. Every other step is immediate. Hence the running time is bounded by some
𝑘O(1)O(𝑚).
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The rest of the statement — namely, the fact that in the output (𝐴, P̂) we have _𝐺+𝐴 (𝑠, 𝑡) ≥ _∗, P̂
is an (𝑠, 𝑡)-flow of size _∗, and that with probability 2−O(𝑘 log𝑘 ) the pair (𝐴, P̂) is compatible with 𝑍 ,
for any eligible (𝑠, 𝑡)-cut 𝑍 of size at most 𝑘 — now follows via joined induction from Lemma 3.18,
Lemma 3.20 and Lemma 3.22. □
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A PROOF OF CLAIM 2
The following proof of the following lemma, being almost a restatement of Claim 2, is due to Piotr
Nayar. We thank Piotr for allowing us to include here the proof. (Note that in Claim 2 we allow 𝑥1,
𝑥2, or 𝑥0 to be equal to 0 with the convention 0 ln 0 = 0. Claim 2 follows from the lemma below as
lim𝑧→0+ 𝑧 ln 𝑧 = 0.)

Lemma A.1. For every 𝑐1 ≥ 0 there exist 𝑐2 ≥ 0 such that for all 𝑥1, 𝑥2, 𝑥0 > 0 we have
𝑐2 (𝑥1 + 𝑥2 + 2𝑥0) ln(𝑥1 + 𝑥2 + 2𝑥0) + 𝑥1 ln(𝑥1) + 𝑥2 ln(𝑥2) + 2𝑥0 ln(𝑥0)

≥ (𝑥1 + 𝑥2 + 2𝑥0) ln(𝑥1 + 𝑥2 + 2𝑥0) + 𝑐2 (𝑥1 + 𝑥0) ln(𝑥1 + 𝑥0) + 𝑐2 (𝑥2 + 𝑥0) ln(𝑥2 + 𝑥0) + 𝑐1𝑥0.

Proof. The inequality is homogeneous under (𝑥1, 𝑥2, 𝑥0) → (𝛼𝑥1, 𝛼𝑥2, 𝛼𝑥0). We can therefore
assume that 𝑥1 + 𝑥2 + 2𝑥0 = 1. We then introduce _ ∈ (0, 1) such that 𝑥1 + 𝑥0 = _ and 𝑥2 + 𝑥0 = 1− _.
The inequality is invariant under (𝑥1, 𝑥2) → (𝑥2, 𝑥1), so we can assume that _ ∈ (0, 1/2]. Our goal
is now to prove that

𝑥1 ln(𝑥1) + 𝑥2 ln(𝑥2) + 2𝑥0 ln(𝑥0) − 𝑐1𝑥0 ≥ +𝑐2 [_ ln _ + (1 − _) ln(1 − _)] .
The function 𝑧 ↦→ 𝑧 ln 𝑧 is decreasing on (1, 1/𝑒) and increasing on (1/𝑒, 1). We consider two cases.

Case 1. _ ∈ ((𝑒 − 1)/(2𝑒), 1/2]. In this case the left hand side if bounded from below by − 4
𝑒 ln 2 − 𝑐1

and _ log _+ (1−_) log(1−_) is bounded from above by some negative constant, so there is nothing
to prove.

Case 2. _ ≤ 𝑒−1
2𝑒 < 1

𝑒
. In this case if 0 < 𝑥 ≤ _, then 𝑥 log𝑥 ≥ _ log _ and thus 𝑥1 log(𝑥1) +

2𝑥0 log(𝑥0) ≥ 3_ log _. Moreover, 𝑥2 ≥ 1− 2_ and therefore 𝑥2 log(𝑥2) ≥ (1− 2_) log(1− 2_), since
1 − 2_ ≥ 1

𝑒
. After applying theses bounds we have to show that

3_ log _ + (1 − 2_) log(1 − 2_) − 𝑐1_ ≥ 𝑐2 [_ log _ + (1 − _) log(1 − _)] .
In other words, we want to show that there exists 𝑐2 such that

3_ log _ + (1 − 2_) log(1 − 2_) − 𝑐1_
_ log _ + (1 − _) log(1 − _) ≤ 𝑐2, 0 < _ ≤ 𝑒 − 12𝑒 .

This can be verified by checking that the limit _ → 0+ is finite and thus it is enough to take 𝑐2 to
be the supremum of the left hand side. □
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