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Abstract—In 2023, there are various WiFi technologies and
algorithms for an indoor positioning system. However, each
technology and algorithm comes with their own strengths and
weaknesses that may not universally benefit all building locations.
Therefore, we propose a novel algorithm to dynamically switch
to the most optimal positioning model at any given location,
by utilising a Machine Learning based weighted model selection
algorithm, with WiFi RSS and RTT signal measures as the input
features. We evaluated our algorithm in three real-world indoor
scenarios to demonstrate an improvement of up to 1.8 metres,
compared to standard WiFi fingerprinting algorithm.

Index Terms—WiFi fingerprinting, model switching, feature
selection.

I. INTRODUCTION

WiFi fingerprinting has been one of the most popular
methods for infrastructure-free indoor positioning, due to its
ability to capture all the nuances of the WiFi signal attenuation
at every location in the building. Currently, the most prevalent
WiFi signal measures for indoor positioning are the Received
Signal Strength (RSS), Channel State Information (CSI) and
Round-Trip Time (RTT). However, each signal measure has
its own strengths and weaknesses. For example, RTT mea-
sures excel when there is a clear line-of-sight, whereas RSS
measures perform best overall in severely attenuated non-line-
of-sight condition [1].

To this end, we propose an algorithm to switch to the
most optimal indoor positioning model for each location. Our
algorithm employs a novel weighted model selection tech-
nique that dynamically assigns different weights based on the
signal characteristics of the location. For implementation on
heterogeneous devices, especially smartphones, we specifically
focus on the WiFi RSS and RTT signal measures as the input
(because CSI is not yet readily available on commercial Access
Points and smartphones). We implemented the most popular
fingerprinting approaches, including RSS fingerprinting, RTT
fingerprinting, a hybrid RSS-RTT fingerprinting, as well as
RTT trilateration for comparison. For evaluation, we con-
ducted a comprehensive comparison with three state-of-the-art
Machine Learning and Deep Learning stacking algorithms, on
three real-world datasets collected in different scenarios and
with different WiFi conditions (i.e., LoS, NLoS and mixed
LoS-NLoS).

We summarise our contributions as follows:

• We propose a novel algorithm to dynamically select and
switch to the best positioning model for each location in
real-time.

• We evaluate our algorithm’s performance in real-world
environments.

• We publicly release three indoor positioning datasets
collected from different indoor scenarios containing both
RSS and RTT signal measures.

The rest of the paper is organised as follows. Section II
introduces the related work in WiFi-based indoor positioning.
In Section III, the theoretical framework is outlined. Then the
proposed weighted model selection algorithm is described in
Section IV. Section V provides the experimental setup and
the results of the empirical evaluation. Finally, Section VI
concludes the paper.

II. RELATED WORK

To enhance the performance of indoor positioning systems,
approaches combining multiple technologies were previously
explored in the literature. In [2], a feature based ensemble
learning method was proposed to improve the WiFi RSS based
systems. A Kalman filter was used by [3] to accelerometer,
gyroscope, magnetometer and WiFi RSS trilateration. UWB,
GPS and magnetic, angular, gravity and gravity were fused in
[4] by a weighted fusion algorithm. The system proposed by
[5] used an error state extended Kalman filter to combine a 5G
network CSI and Magnetometer based back propagation neural
network, and a visual inertial odometry for indoor localisation.

Ensemble learning, leveraging multiple base models, was
proposed to achieve more robust indoor positioning perfor-
mance. The system in [6], [7] adopted a gradient boosting
decision tree (GBDT) to make WiFi RSS fingerprinting based
on crowdsourcing radio map. The authors in [8] proposed
a weighted ensemble classifier based on Dempster–Shafer
belief theory to enhance WiFi RSS positioning. The method
proposed by [9] combined DNN features and GBDT features
for more accurate WiFi fingerprinting.

Stacking is a specific technique within ensemble learning
that leverages the positioning predictions from different pri-
mary learners as the input to train a secondary learner for
final estimation. In [10], a Tree-based localisation method was
used as a secondary learner to make predictions for WiFi
RSS indoor positioning. To maintain accuracy, [11] proposed a



WiFi-based stacking framework that leveraged the predictions
from AdaBoost, Random Forest, and Kernel Ridge to train
a secondary learner for stack model predictions. The system
proposed by [12] used CNN, SVM, ELM, and XGBoost as
the primary learner and stacked an XGBoost as the secondary
learner for WiFi fingerprinting.

However, most methods in the literature so far only fo-
cused on fusing different technologies or using multiple base
models to make the final prediction. This process involved
a considerable computational demand and highly relied on
multiple pre-installed signal transmitters. To this end, we
propose a dynamic model switching algorithm for WiFi indoor
positioning that only requires existing commercial APs.

III. PROBLEM FORMULATION

For indoor fingerprinting, the environment is divided
into a total number of N reference points (RPs). A
number of scans of WiFi RSS and RTT measurements is
collected at each RP Pi, (i = 1, 2, . . . , N), to observe
the propagation characteristics of the WiFi signals
received from each AP. The fingerprinting database
containing the WiFi RSS and RTT measurements from
J number of APs in the environment is defined as X =
{RSSi1, RSSi2, . . . , RSSiJ , RTTi1, RTTi2, . . . , RTTiJ}Ni=1.

For preliminary indoor positioning models, the label indicat-
ing the ground truth location of each RP is defined as a vector
Yloc = {yi}Ni=1, where yi contains the real-world coordinates
of the ith RP. The positioning estimation from these models
is defined as Yloc test = {yi1, yi2, . . . , yiM}Ni=1, where M is
the total number of preliminary indoor positioning models.

Next, the best positioning model bi for each reference point
Pi is derived by comparing Yloc test to Yloc. Then, the original
WiFi RSS and RTT signal measure X and the preliminary
positioning results Yloc test are used as inputs to the weighted
model selection algorithm. The hidden correlations between
X and Yloc test, and Bpriori are learned by a random forest
classifier (RFC) in the weighted model selection algorithm,
where Bpriori = {bi}Ni=1, bi ∈ {1, ...,M}.

Given a new WiFi sample Xtest =
{RSStest1, . . . , RSStestJ , RTTtest1, . . . , RTTtestJ}, the
weighted model selection algorithm removes the features with
the least importance and predicts the best positioning model
btest for the test location. Finally, the positioning estimation
is made by the selected model btest.

IV. PRELIMINARY POSITIONING AND WEIGHTED MODEL
SELECTION ALGORITHM

This section introduces the preliminary positioning models
and explains the proposed weighted model selection algorithm.

A. System architecture

Our algorithm consists of 4 steps, as follows (see Figure 1).
• Step 1: We preprocess the raw WiFi signal data by

replacing the missing WiFi RTT and RSS measurements
with the default values of -200 dBm for RSS and 100

m for RTT to indicate that the corresponding AP is not
visible in the current location.

• Step 2: Several popular indoor positioning models are
leveraged for preliminary positioning estimation.

• Step 3: The outputs from the previous step are fed into
the weighted model selection algorithm. This algorithm
identifies the best possible positioning model for each
training indoor location.

• Step 4: Given a new WiFi sample, our model automati-
cally selects and switches to the best positioning model,
and the final location estimation is generated.

B. Preliminary WiFi-based positioning

After preprocessing the input WiFi signal measures and
replacing the missing values, four WiFi-based indoor posi-
tioning models are used to generate the preliminary position
estimations. They are RSS fingerprinting, RTT fingerprinting,
RSS-RTT fingerprinting and RTT trilateration.

1) RSS and RTT Fingerprinting: As one of the most pop-
ular approaches for WiFi indoor positioning, fingerprinting’s
principle is capturing the signal attenuation at every location
in the building for future reference.

The process consists of an offline phase and an online phase.
In the offline phase, the WiFi signals of all locations are
collected and stored in a training database. In the online phase,
when the user reports a WiFi sample at an unknown location,
the system compares this sample to all training samples in the
database and makes the location estimation.

We implement three popular preliminary fingerprinting
models, namely RSS fingerprinting model, RTT fingerprinting
model, and a hybrid RSS-RTT fingerprinting model. Due to
space limit, interested readers may refer to other work that
describe the underlying signal properties of each model [13]–
[15].

2) RTT Trilateration: Trilateration is a geometric posi-
tioning method that locates the user based on the distances
between them and at least three known WiFi APs in 2-
dimesional space, as follows.

(x–x1)
2 + (y–y1)

2 = r21 (1)

(x–x2)
2 + (y–y2)

2 = r22 (2)

(x–x3)
2 + (y–y3)

2 = r23 (3)

where x and y are the location coordinates of the user, (x1, y1),
(x2, y2), (x3, y3) are the known APs’ coordinates, and r1, r2,
r3 are the estimated distances between the user and the APs,
reported by the WiFi RTT measures.

C. Weighted model selection algorithm

The positioning estimations using the preliminary posi-
tioning models in the previous step are fed into our pro-
posed weighted model selection algorithm to identify the best
model for each RP. As shown in Figure 1 and Algorithm 1,
the weighted model selection algorithm consists of weights
initiation, weighted feature set generation, importance-based
weights updater and best positioning model selection.
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Fig. 1. Detailed step-by-step of our proposed algorithm.

Algorithm 1 Weighted Model selection algorithm.
Input: X: input WiFi RSS, RTT measure, Xtest: testing samples

Yloc: ground truth coords label,Models: positioning models,
MDI: mean decrease in impurity, P I: permutation importance,
MAE: Mean Absolute Error, RFC: Random Forest Classifier.

Output: Bbest test: best positioning model for each testing RP
1: M ← |PreliminaryPositioningModels|
2: for m = 1, 2, . . . , M do
3: model← mth model in Models
4: Y

(m)
loc test ← model(X,Yloc)

5: E(m) ← Length(Yloc)/(|Y (m)
loc test − Yloc|)

6: end for
7: for m = 1, 2, . . . , M do
8: w(m) ← E(m)/

∑M
m=1 E

(m)

9: end for
10: W ←

∑M
m=1 w

(m)

11: Xweighted ←WeightedFeature(X,Yloc test,W )

12: Bpriori ← argmin[MAE({Y (m)
loc test}

M
m=1, Yloc)]

▷ Bpriori contains the best model m for each RP
13: for m = 1, 2, . . . , M do
14: w

(m)
perm ← PI(Bpriori, Xweigted)

15: w
(m)
MDI ←MDI(Bpriori, Xweigted)

16: w(m) ←WeightUpdate(w(m), w
(m)
perm, w

(m)
MDI)

17: end for
18: W ←

∑M
m=1 w

(m)

19: Bbest train ← RFC(Xweighted,W )
20: Bbest test ← RFC(Bbest train,W )
21: return Bbest test

When integrating the preliminary positioning results and the
preprocessed WiFi signal measures into the weighted model
selection algorithm, the initial weights are generated for each
input feature to represent their importance in determining the
user’s location. In this weights initiation process, the mean
absolute error (MAE) is utilised to evaluate the performance
of the preliminary models from the previous step. The smaller
the MAE is, the more accurate the model is. The weight w(m)

of the mth (m ∈ {1, 2, . . . ,M}) model is defined as:

w(m) =
E(m)∑M
i=1 E

(i)
(4)

E(m) =
n

|Y (m)
loc test − Yloc|

(5)

where n indicates the length of the ground truth coordinates of
each RP Yloc, M is the total number of positioning methods,

Y
(m)
loc test and w(m) are the positioning performance and the

weight of the features adopted by the mth model, respectively.
After the weights initiation process, each feature is assigned

with a weight, indicating how strong its correlation to the
ground truth label is. Then a new feature set, containing the
preliminary positioning estimations, preprocessed WiFi RSS
and RTT signal measures and their corresponding weights,
is generated for the importance-based weights updater. The
weighted model selection algorithm’s ultimate goal is deter-
mining the best positioning model for a newly reported WiFi
sample. Therefore, in the importance-based weights updater,
each feature’s importance in predicting the best positioning
model is evaluated by Permutation Importance (PI) and Mean
Decrease in Impurity (MDI), as follows.

Permutation Importance: Permutation Importance eval-
uates the importance of each feature by randomly shuffling
each feature from the original input feature set. The idea of
permutation importance is that the meaningful information of
an input feature will be removed when randomly shuffled. The
prediction accuracy of the classifier will decrease when a more
important feature is shuffled. Thus, after a total number of
R iterations of random shuffling, the mean decrease in the
accuracy of each feature is calculated. In every iteration, the
feature importance w

(m)
perm in the mth model is defined as:

w(m)
perm = Accorig–Accperm (6)

Accorig = model(X ,Y) (7)
Accperm = model(Xperm,Y) (8)

where model is the classifier trained for the best positioning
model selection, X and Y indicate the original input feature
and label to the classifier, Xperm is the randomly shuffled
input feature set, and Accorig and Accperm are the accuracy
of the original and shuffled input feature set. Figure 2 gives
an example of the permutation importance of the input feature
set to the best positioning model prediction. Only features that
would increase the prediction accuracy are given higher and
positive importances, and selected by the proposed algorithm.
The bigger the positive importance is, the more important the
feature is to the weighted model selection algorithm.

Mean Decrease in Impurity: Mean decrease in impurity
evaluates the importance of the input feature by measuring
how much it helps to decrease Gini impurity (GI) in decision



Fig. 2. The permutation importance of an input feature set used to decide
the most optimal positioning model for the lecture theatre testbed. Negative
importance means that the feature may decrease the positioning accuracy.

Fig. 3. The MDI importance of an input feature set used to decide the most
optimal positioning model for lecture theatre testbed. Bigger value indicates
a more important feature.

tree-based algorithms. GI indicates the probability of misiden-
tification for a randomly chosen variable that is randomly
labelled according to the distribution of class labels in the
dataset. The mean decrease in Gini impurity (MDG) of feature
j for random forest is defined as:

MDGj,i =

ni∑
k=1

pk,i ·∆Gk,i(j) (9)

MDGj =
1

NT

NT∑
i=1

MDGIj,i (10)

where pk,i is the proportion of training data that reach node
k in tree i, ni is the number of nodes in i, ∆Gk,i(j) is the
decrease in GI caused by splitting on feature j at node k in
tree i, NT is the total number of trees in the Random Forest,
MDGj is the overall MDG of feature j in the forest. An
example of the MDI importance of the input feature set to the
best positioning model selection is shown in Figure 3.

In the importance-based weight updater, the permutation
and MDI importance of each input feature w

(m)
perm and w

(m)
MDI

are utilised to update the initial weight w(m) from the weights

Fig. 4. The layout of the long corridor testbed. This is an entirely NLoS
scenario. The orange points indicate the APs’ location. All WiFi measurements
were collected in the grey area.

Fig. 5. The layout of the lecture theatre scenario. This is an entirely
LoS scenario. The orange dots indicate the locations of the APs. All WiFi
measurements were collected in the grey area.

initiation. Only the features that gain higher positive impor-
tance in predicting the best positioning model for each RP
are given higher weights in the weights updater. Finally, an
updated feature set is selected for best model identification.
Based on the final feature set decided, the weighted model
selection process would select the best possible model for a
new sample in the testing data validation step.

V. EXPERIMENTAL SETUP AND EMPIRICAL
RESULTS

This section investigates the performance of our proposed
algorithm.

A. Testbeds

To evaluate the performance of our algorithm and validate
its generalisation and transferability, three datasets of complex
real-world scenarios were collected in a long corridor, a lecture
theatre, and an office room. The corridor testbed presents a
completely NLoS scenario of more than 35 × 6 m2, where no
RP had any LoS path to the 4 APs (see Figure 4). The lecture
theatre scenario was a totally LoS one of more than 15 × 14.5
m2, where all RP had LoS path to all 5 APs in the testbed
(see Figure 5). The office room consists of a 18 × 5.5 m2 area
with mixed LoS-NLoS conditions, where each RP would have
at least one LoS AP (see Figure 6). All three testbeds were
evenly divided into 0.6 × 0.6 m2 grids, while making sure the
training and testing RPs did not overlap.

An LG G8X ThinQ smartphone and 5 WiFi RTT-enabled
Google APs were used in the experiments. The ground-



Fig. 6. The layout of the office room scenario. This is a mixed LoS-
NLoS scenario, where each RP would have at least one LOS AP and some
NLoS APs. The orange dots indicate the locations of the APs. All WiFi
measurements were collected in the grey area.

TABLE I
SUMMARY OF OUR THREE REAL-WORLD DATASETS.

Data features Lecture Theatre Office Corridor
Test bed area 15 × 14.5 m2 18 × 5.5 m2 35 × 6 m2

Grid size 0.6 × 0.6 m2 0.6 × 0.6 m2 0.6 × 0.6 m2

Number of RPs 120 108 114
Samples per RP 60 60 60
All samples 7,200 6,480 6,840
Training samples 5,400 4,860 5,130
Testing samples 1,800 1,620 1,710
Signal measure RTT, RSS RTT, RSS RTT, RSS
WiFi condition LoS LoS/NLoS NLoS

TABLE II
THE NUMBER OF RPS IN WHICH THE POSITIONING MODEL PERFORMED

BEST. IT WAS INTERESTING TO OBSERVE THAT THERE WAS NO CLEAR
DOMINANT MODEL FOR ALL LOCATIONS.

Positioning model Lecture Theatre Office Corridor
(120 RPs) (108 RPs) (114 APs)

RTT trilateration 19 1 0
RSS fingerprinting 3 16 15
RTT fingerprinting 56 55 53
RSS-RTT fingerprinting 42 36 46

truth label and the LoS condition of each RP were manually
recorded and verified by two people. A summary of the three
datasets is shown in Table I. They are also publicly avail-
able at https://github.com/Fx386483710/Dataset for Model
Selection.

B. Empirical Results

As the WiFi signal measures are attenuated by complex
indoor interior, the most optimal indoor positioning models
may vary from location to location. To investigate the best
positioning estimator for each RP, we performed localisation
for every RP in all three datasets with the four underlying
models (i.e., RSS, RTT, and hybrid RSS-RTT fingerprinting
and RTT trilateration). To better evaluate the positioning error,
root mean square error (RMSE) was utilised in this section
to measure the average difference between the positioning
estimation and the ground truth coordinate. Note that the
testing RPs and training RPs did not overlap. The results of
the best positioning model for each RP are shown in Table II.

We observed that for all three testbeds, RTT fingerprinting
performed the best overall in almost 50% of the RPs (see

Fig. 7. The best positioning model for each RP in the lecture theatre testbed.
RTT fingerprinting excelled in 56 out of 120 RPs.

Fig. 8. The best positioning model for each RP in the office testbed. RTT
fingerprinting excelled in 55 out of 108 RPs.

Figures 7, 8 and 9). Surprisingly, although widely claimed
to deliver sub-metre-level accuracy, RTT trilateration strug-
gled with most RPs even in LoS condition. Interestingly,
in the mixed LoS-NLoS office and corridor testbeds, RSS
fingerprinting could outperform RTT fingerprinting in certain
RPs. This result strongly indicated there was no best overall
positioning model for all scenarios. Thus, the overall position-
ing estimation could be improved by dynamically switching
models.

To investigate the performance of our proposed algorithm,
we compared its performance with standard WiFi fingerprint-
ing (i.e., RSS fingerprinting, RTT fingerprinting, hybrid RSS-
RTT fingerprinting and RTT trilateration) and state-of-the-art
Machine Learning and Deep Learning ensemble methods JMT
[9] and RS-stacking [12] (see Table III and Figure 10).

It was observed that our algorithm achieved up to 32%
more accurate positioning estimation compared to the state-
of-the-art stacking algorithms, and up to 1.8 metres RMSE
improvement compared to standard WiFi RSS fingerprinting



Fig. 9. The best positioning model for each RP in the corridor testbed. RTT
fingerprinting excelled in 53 out of 114 RPs.

TABLE III
PERFORMANCE COMPARISON OF THE RMSE (M) OF DIFFERENT MODELS.

Model Name Lecture Theatre Office Corridor
RSS-RTT fingerprinting 0.612 0.729 0.612
RTT fingerprinting 0.559 0.718 0.704
RSS fingerprinting 2.356 1.423 1.315
Trilateration 1.176 1.073 412.257∗
RF stacking 0.640 0.851 0.755
JMT 0.716 0.857 0.705
RS-stacking 0.724 0.824 0.672
Proposed method 0.570 0.698 0.569
∗Note that RTT measures from unseen APs were replaced by 100 metres.

Fig. 10. CDF comparison of different WiFi indoor positioning models. Our
proposed framework achieved an accuracy of up to 0.8 m, 80% of the time.

method. The stacking approaches which focus on the indi-
vidual positioning model lacked the information hidden in
the original WiFi signal measures that our proposed method
incorporated.

Although our method’s performance was slightly behind
to RTT fingerprinting in the LoS lecture theatre testbed, it
performed better in the other two testbeds (NLoS and mixed
LoS-NLoS). As shown in Figure 10, our proposed algorithm
delivered an overall accuracy of up to 0.8 m, 80% of the time.

VI. CONCLUSIONS

In this paper, we have proposed a novel algorithm to
dynamically decide the most optimal positioning model for
each WiFi positioning sample. For a newly reported WiFi

sample, the algorithm would automatically switch to the best
model and make positioning estimation. The performance of
our proposed algorithm was evaluated on three real-world
indoor datasets, which were also made available for further
research. We demonstrate an improvement of up to 1.8 metres
using RMSE, compared to standard WiFi fingerprinting and
state-of-the-art stacking methods. For future work, we could
include machine vision and IMU based positioning methods
to further enhance the positioning performance.
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