
Dynamic Multi-Server Updatable Encryption

Jodie Knapp1,2[0000-0002-5929-2015] and Elizabeth A. Quaglia2

[0000-0002-4010-773X]

1 University of Surrey
2 Information Security Group, Royal Holloway, University of London,

j.knapp@surrey.ac.uk, elizabeth.quaglia@rhul.ac.uk

Abstract. In this paper, we propose the Dynamic Multi-Server Updat-
able Encryption (DMUE) primitive as an extension of standard public-
key updatable encryption. Traditional UE aims to have efficient cipher-
text updates performed by an untrusted server such that the compro-
mise of several cryptographic keys and update tokens does not reduce
the standard security of encryption. The update token supports out-
sourced ciphertext updates without requiring the server to decrypt and
re-encrypt the ciphertext and it is typically derived from old and new
keys. To mitigate the risk of a single point of failure in single-server UE
and thus improve the resilience of the scheme, we formalise a multi-server
variant of UE to treat the issue of token leakage. We can achieve a dis-
tributed update process by providing each server with an update token
and requiring a threshold of servers to engage honestly. However, servers
may act dishonestly or need to be replaced over time, so our primitive
must cater to dynamic committee changes in the servers participating
across epochs. Inspired by the work of Benhamouda et al. (TCC’20) on
dynamic proactive secret sharing, we propose a generic DMUE scheme
built from public-key UE and dynamic proactive secret sharing primi-
tives and prove the ciphertext unlinkability of freshly encrypted versus
updated ciphertexts.

Keywords: Public-Key Updatable Encryption, Dynamic Committees,
Threshold Secret Sharing, Trust Management, and Security.

1 Introduction

Outsourcing encrypted data is a common practice for individuals and organisa-
tions wanting to store their information in a secure manner over long periods.
Yet the server storing the information cannot always be trusted and there is
greater opportunity for an adversary to corrupt the cryptographic key used for
encryption. One solution to managing security in this setting is the updatable
encryption (UE) primitive [6, 14, 22], which is utilised for privacy preservation
in multiple applications such as cloud storage; online medical information and
blockchain technology. Informally, UE allows a data owner to outsource the stor-
age and key rotation of ciphertexts, from one epoch to the next, to an untrusted
server. The server updates the ciphertext using an update token derived from

old and new cryptographic keys, which evolve with every epoch, such that they
do not learn anything about the underlying information in the update process.
Updatable encryption is traditionally viewed as a symmetric primitive, however,
more recently it has been defined in the public-key setting (PKUE) [20] which
has allowed research to explore outsourced ciphertext updates whereby the users
can receive messages from multiple senders directly in the cloud environment [1,
16, 26]. We focus on the PKUE primitive in this work.3

The core purpose of (PK)UE is to reduce the impact of key exposure and, in turn,
token exposure, preserving standard encryption security such as confidentiality
and the updatable notion of unlinkability [19]. Despite efforts to increase security
in any UE setting, there remain risks with respect to security and resilience. The
most prevalent risk is a single point of failure if the server is corrupted by an
external adversary. In this scenario, a data owner’s encrypted data will remain
encrypted under the same key, defeating the purpose of UE as an adversary has
more time in which to corrupt the cryptographic key and learn the underlying
message. A second possible scenario occurs when the server acts dishonestly in
the sense of failure to update ciphertexts correctly, if at all. If the ciphertext
is updated incorrectly then the data owner may be misled upon decrypting the
ciphertext. To illustrate, if the encrypted data is regarding a personal financial
account and the update is incorrect then the data owner may be misinformed
about the amount of money in their account.

A natural solution to this issue is to distribute the token, used to update cipher-
texts, across multiple servers such that some pre-defined threshold of servers
can ensure the ciphertext is updated in each epoch. This solution works, but a
static set of servers does not reflect the real world because servers often change
over long periods or possibly need to be removed from a scheme due to dishon-
est behaviour. To illustrate, suppose we wish to store a secret on a public-key
blockchain such that nodes of the blockchain structure are considered to be the
servers in a multi-server UE scheme. The authors of [3] demonstrated that node
churning needs to be taken into consideration when designing a scheme for this
application. This led us to propose a multi-server PKUE primitive supporting a
dynamic committee of servers from one epoch to the next. We call this primitive
dynamic multi-server updatable encryption (DMUE) such that the ciphertext
update process is designed to be deterministic and ciphertext-independent. We
note that the approach of having an evolving committee of servers is similar to
previous works such as [2, 21, 23, 28].

More concretely, DMUE captures servers in specific epochs each possessing an
update token, whereby their tokens are utilised in the process of updating a
ciphertext. Moreover, the committee of servers in consecutive epochs may differ
and so a redistribution protocol is required to provide new servers with their

3 The authors of [11, 12] established definitions for updatable public-key encryption
(UPKE) using an alternative update procedure. One can view UPKE as a distinct
primitive to PKUE [20] since the token mechanism used in a UPKE scheme only
updates the public key. By contrast, PKUE updates public and secret key pairs as
well as the ciphertext.

2

corresponding tokens. Defining the security of a DMUE primitive proves to be
challenging and nuanced due to the bi-directional nature of key updates [18, 24]
in the design of a PKUE scheme. Moreover, the inference of keys from tokens
is further complicated in the multi-server setting since an adversary can only
succeed in their attack if they corrupt a threshold of server tokens in any given
time period, with the servers and threshold potentially evolving with each epoch.
Note, the adversary modelled is assumed to bemobile [28], which means they can
dynamically and actively corrupt servers at any given time in a DMUE scheme,
provided their corruption capabilities are bounded.

Contributions Our contributions are threefold: we formalise a dynamic multi-
server updatable primitive called DMUE in Section 2, used to mitigate the
problem of a single point of failure in standard PKUE schemes. In Section 3
we present a new notion of security against update unlinkable chosen cipher-
text attacks (MUE-IND-CCA), which captures a mobile adversary attempting to
corrupt a threshold or more of secret update tokens. It is crucial to maintain con-
fidentiality through the ciphertext update unlinkability notion as it guarantees
a ciphertext generated by the update algorithm is unlinkable from a ciphertext
generated by fresh encryption, even when the adversary sees many updated ci-
phertexts of chosen messages. We highlight that the focus of our paper is to
capture a notion of confidentiality in the threshold multi-server PKUE setting.
However, we also note that extending the security framework to capture cipher-
text integrity is possible, thus preventing adversarial ciphertext forgeries, and is
included in a full version of this work for completeness. In Section 4 we present
a generic construction of DMUE built from a single-server public-key UE prim-
itive and a dynamic threshold secret sharing scheme. The crux of our generic
construction is that the data owner acts as the dealer and distributes a vector of
n update tokens shares per epoch to the corresponding servers. Then at least a
threshold of t servers can reconstruct the complete (master) token and proceed
to update the ciphertext to encryption in epoch (e + 1). This is achieved using
standard PKUE and secret-sharing techniques. We then consider the practicali-
ties of applying DMUE by providing an overview of a concrete scheme built from
dynamic proactive secret sharing, in which an old server committee participates
in a redistribution process to refresh and securely distribute update tokens to
the new epoch server committee. We conclude our work by proving that our
generic DMUE scheme satisfies the ciphertext unlinkability security notion we
propose.

Related Work To the best of our knowledge, there has been no discussion
within the UE literature that considers the insecurity of a UE scheme following
a single-point-of-failure (SPOF) with respect to the server performing cipher-
text updates. We believe it is a natural step to explore the resilience of a UE
scheme to further support the strong security guarantees desired in this area of
research. Not only is our solution of a multi-server UE primitive a novel design,
but it also enables us to consider dynamic changes in servers over time which is
essential if a server becomes corrupt or can no longer provide a service. The most
closely aligned primitive to DMUE is threshold proxy re-encryption (PRE) [7, 31]

3

whereby schemes distribute the process of ciphertext re-encryption and decryp-
tion delegation using secret sharing and standard PRE as building blocks. More
recently, the authors of [27] proposed the first proactive threshold PRE primitive,
labelled PB-TPRE, which extends the work of [7, 31] by addressing the issue of
long-term secret shares as well a change in the proxies possessing shares. Con-
sequently, the authors of [27] propose similar techniques to our generic DMUE
construction. However, it is notable that the work on PB-TPRE demonstrates
provable security of a concrete scheme that achieves the weaker confidentiality
notion of chosen plaintext security as opposed to our work which is proven to
satisfy security against chosen ciphertext attacks. Furthermore, we highlight that
the fundamental differences between DMUE and PB-TPRE primitives stem from
the distinctions between the standard PKUE and PRE primitives. In particular,
proxy re-encryption (PRE) was first introduced by [5] as a primitive in which a
proxy server re-encrypts a ciphertext under a sender’s secret key and delegates
decryption under a recipient’s secret key. In contrast, UE uses the technique of
key rotation for time updates from one epoch to the next. Further differences
between the two primitives have been explored extensively in [10, 19, 22]. Besides
the PRE primitive, the recent work of [15] uses a similar approach to our own
ideas. The authors propose the first policy-based single-sign-on (SSO) system to
prevent service providers from tracking users’ behaviour. To achieve this, their
primitive distributes tokens, conditioned on users’ attributes, to multiple service
providers in order to shield attributes and access patterns from individual en-
tities. Whilst access control is not a focus of UE research, we observe that the
methods used in [15] to mitigate SPOF are akin to our own core ideas.

2 Dynamic Multi-Server Updatable Encryption

In this Section, we introduce the notation used in this paper, followed by a formal
definition of a DMUE scheme and the corresponding definition of correctness.

Notation A traditional updatable encryption scheme is defined by epochs of
time ei from the range of time i = {0, . . . ,max}. We denote the current epoch e
or use the subscript notation ei for i ∈ N if we define multiple epochs at once.
Further, (ei, ei+1) are two consecutive epochs for any i ∈ N, the token is denoted
∆ei+1

to update a ciphertext to epoch ei+1, and ẽ represents the challenge epoch
in security games. In the dynamic multi-server setting, we define for epoch ei a
set of servers Sei = {Sj}j∈[n] where Sei+1

may not be the same set, and update
token ∆j

ei+1
pertains to the token server Sj possesses. We use (MSP, CSP) to

respectively denote the message space and ciphertext space of our scheme.

Extending the PKUE primitive to the dynamic multi-server setting (DMUE),
a data owner must distribute tokens to every qualified server in the commit-
tee for that epoch, who respectively work together to update the ciphertext.
The dynamic aspect of this primitive enables different sets of servers, cho-
sen by the data owner at the time of token creation, to perform the cipher-
text update in successive epochs. Formally, a DMUE primitive is defined as
ΠDMUE = (Setup,KG,TG,Enc,Dec,Upd) whereby algorithms (KG,Enc,Dec) are

4

formalised as in standard PKUE [20] and the data owner runs all algorithms
asides from Upd, the latter of which is run by the servers in a given epoch.4

Definition 1 (DMUE). Given a set of servers S of size n ∈ N and a threshold
t ≤ n, a dynamic multi-server updatable encryption scheme is defined by a tuple
of six PPT algorithms ΠDMUE = (Setup,KG,TG,Enc,Dec,Upd) as follows.

1. Setup(1λ)
$→ pp : the setup algorithm is run by the data owner, who uses

security parameter 1λ as input and randomly outputs the public parameters
pp.

2. KG(pp, ei)
$→ kei := (pkei , skei) : given public parameters, the data owner

runs the probabilistic key generation algorithm and outputs the public and
private key pair (pkei , skei) for epoch {ei}i∈[0,max].

3. TG(pp, skei , kei+1
, Sei+1

)→ {∆j
ei+1
}j∈[n] : the token generation algorithm is

run by the data owner, who uses the following inputs: public parameters,
the old epoch secret key skei , the new epoch public and private key-pair
kei+1

:= (pkei+1
, skei+1

) generated by the key generation algorithm, and the
new set of servers Sei+1

= {Sj}j∈[n]. The deterministically computed output
is n update tokens {∆j

ei+1
}j∈[n], which are securely sent to the chosen servers

Sj ∈ Sei+1
.5

4. Enc(pp, pkei ,m)
$→ Cei : given public parameters and the epoch public key

pkei , the data owner runs the probabilistic encryption algorithm on message
m ∈MSP and outputs the ciphertext Cei .

5. Dec(pp, skei , Cei) → {m,⊥} : given public parameters and the epoch secret
key, the data owner is able to run the deterministic decryption algorithm in
order to output message m or abort (⊥).

6. Upd(pp, {∆k
ei+1
}k∈N, Cei) → Cei+1

: for some k ≥ t, the subset S′ ∈ Sei+1

of servers, such that |S′| = k, can deterministically update ciphertext Cei

using their tokens ∆k
ei+1

to output an updated ciphertext Cei+1 .

Correctness Intuitively, defining the correctness of the DMUE primitive fol-
lows from the definition of correctness for the single server PKUE primitive.
Specifically, the correctness property ensures that fresh encryptions and updated
ciphertexts should decrypt to the underlying plaintext, given the appropriate
epoch key. However, the multi-server setting additionally has to encapsulate the
concept of ciphertext updates from a threshold number of tokens. The formal
definition of correctness follows.

Definition 2 (Correctness). Given security parameter λ and threshold t ≤
k ≤ n, dynamic multi-server updatable encryption scheme (ΠDMUE) for n servers,

4 We note that in the multi-server setting, the update process is interactive and is
therefore a protocol. However, we chose to use the term algorithm to stay in keeping
with the single-server PKUE terminology as ΠDMUE can reduce to the single-server
setting when n = t = 1.

5 Note in the definition of DMUE that the data owner chooses the committee of servers
{Sei+1}∀i∈N.

5

as formalised in Definition 1, is correct if for any message m ∈ MSP, for any
l ∈ {0, . . . ,max − 1} such that max denotes the final epoch of the scheme, and
i = (l + 1), there exists a negligible function negl such that the following holds
with overwhelming probability.

Pr

pp
$← Setup(1λ);

kei = (pkei , skei)
$← KG(pp, ei);

{∆j
ei}j∈[n] ← TG(pp, skei−1

, kei , Sei);

Cel
$← Enc(pp, pkel ,m);

{Cei ← Upd(pp, {∆k
ei}k∈N, Cei−1

) :

i ∈ {l + 1, · · · ,max} ∧ |k| ≥ t};
Dec(pp, skemax , Cemax) = m

≥ 1− negl(1λ).

Remark 1. The multi-server aspect of Definition 1 affects the TG and Upd algo-
rithm definitions compared to standard PKUE algorithms. Note, we have omit-
ted the formal definition of traditional PKUE [20] due to lack of space, however,
we emphasise that Definition 1 satisfies the PKUE definition when t = n = 1.

3 Security Modelling

In this Section, we define a notion of security satisfying the highest level of
confidentiality achievable in deterministic PKUE schemes. More specifically, the
experiment models dynamic multi-server PKUE security against update unlink-
able chosen ciphertext attacks (MUE-IND-CCA security). Crucially, unlinkability
needs modelling to ensure that a ciphertext generated by the update algorithm is
indistinguishable from a ciphertext generated by fresh encryption. Note, captur-
ing the full capabilities of an adversary attacking a DMUE scheme is inherently
challenging due to the bi-directional nature of ciphertext updates [18, 24, 30].
Consequently, it is necessary to record inferable information obtained from cor-
rupted keys, tokens, and ciphertexts.

We start by detailing the lists recorded and oracles necessary to model the se-
curity of a DMUE scheme. For clarity, we will separate descriptions of oracles
specific to the DMUE setting versus standard PKUE oracles, that is, the remain-
ing oracles required in security modelling that are unchanged from the security
framework of single-server PKUE [20]. The lists and oracles play a vital role
in preventing trivial wins and guaranteeing security by capturing, in the lists a
challenger maintains, the information an adversary can infer. Further, lists are
checked after oracle queries as well and they’re incorporated into the winning
conditions of the security experiment.

We observe that our security model defines an adversary A := {AI ,AII}, repre-
senting a malicious outside adversary (AI) and dishonest server (AII). Typically,

6

only adversary AI is considered in single server PKUE, as the literature assumes
the lone server is honest. Conversely, the main motivation in our work is tack-
ling the issue of a single point of failure regarding server updates. Thus, we have
to consider adversary AII to capture the threat of dishonesty or collusion of a
threshold or more servers. To be succinct, our security experiment and defini-
tion uses the notation A, however, we capture both types simultaneously. That
is, an outside adversary is modelled in the usual manner of UE, through lists
recording corrupted and inferable information. Specific to a corrupt server, the
token corruption oracle is crucial in recording any epoch in which a threshold or
more tokens have been corrupted.

– L = {(e′, Ce′)e′∈[e]} : the list containing the epoch and corresponding cipher-
text in which the adversary learns (through queries to the update oracle OUpd)
an updated version of an honestly generated ciphertext.

– K = {e′ ∈ [e]} : the list of epoch(s) in which the adversary has obtained an
epoch secret key through calls to OCorrupt-Key(e

′).
– T = {e′ ∈ [e]} : the list of epoch(s) in which the adversary has obtained at

least a threshold number of update tokens through calls to OCorrupt-Token(e
′).

– C = {(e′, Ce′)e′∈[e]} : the list containing the epoch and corresponding cipher-
text in which the adversary learns (through queries to the update oracle OUpd)
an updated version of the challenge ciphertext.

– C∗ ← {e′ ∈ {0, . . . , emax}|challenge-equal(e′) = true} : the list of challenge-
equal ciphertexts, defined by a recursive predicate challenge-equal, such that
true ← challenge-equal(e′) iff : (e′ ∈ C) ∨ (challenge-equal(e′ − 1) ∧ e′ ∈ T) ∨
(challenge-equal(e′ + 1) ∧ (e′ + 1) ∈ T).

Fig. 1. The set of lists L := {L,K, T , C∗} the challenger maintains in the global state
(GS) as a record of during security games.

Lists We provide Figure 1 as a descriptive summary of the lists maintained by
the challenger (as part of the global state GS) in the ensuing security experiment.
We note that the main deviation in the list description compared to the single
server PKUE setting [20] is found in list T . Here, the challenger maintains a count
of how many server tokens have been corrupted per epoch (see Figure 2), and
only records the epochs in which a threshold number token have been corrupted.
List C∗, which is an extension of list C, is also modified to the multi-server
setting. This list contains the epoch and corresponding ciphertext in which the
adversary learns (through queries to the update oracle OUpd) an updated version
of the challenge ciphertext. In greater detail, a CCA-secure DMUE scheme with
deterministic re-encryption requires a challenger to record all updates of honestly
generated ciphertexts and maintain a list of challenge-equal epochs (C∗) in which
a version of the challenge ciphertext can be inferred. That is, list C∗ incorporates

7

a challenge-equal predicate presented in Figure 1 which encapsulate all of the
challenge-equal epochs in which the adversary knows a version of the challenge
ciphertext, either from calls to the update oracle or through computation. To
illustrate, if {e, e+1} ∈ C∗, it is possible for an adversary to perform the update
computation of the ciphertext since the adversary can infer information using
corrupted ciphertexts and tokens from epochs {e, e + 1} ∈ (C, T). Thus, if an
adversary knows a ciphertext C̃e from challenge epoch e and the update token
∆e+1, then the adversary can compute the updated ciphertext to the epoch
(e+ 1) and realise challenge ciphertext C̃e+1.

3.1 Oracles

First, we present an important predicate in updatable encryption security mod-
elling as it will be utilised in the running of decryption and update oracles in our
security experiment.6 Crucially, the isChallenge predicate defined by [19] is used
to prevent the decryption of an updated challenge ciphertext, irrespective of
whether the updatable encryption scheme is designed for probabilistic or deter-
ministic ciphertext updates. Informally, the isChallenge(kei , C) predicate detects
any queries to the decryption and update oracles on challenge ciphertexts (C̃),
or versions (i.e., updates) of the challenge ciphertext.

Definition 3 (isChallenge Predicate). Given challenge epoch ẽ and challenge
ciphertext C̃, the isChallenge predicate, on inputs of the current epoch key kei
and queried ciphertext Cei , responds in one of three ways:

1. If (ei = ẽ) ∧ (Cei = C̃), return true;
2. If (ei > ẽ) ∧ (C̃ ̸= ⊥), return true if C̃ei = Cei in which C̃ei is computed

iteratively by running Upd(pp,∆el+1
, C̃el) for el = {ẽ, . . . , ei};

3. Otherwise, return false.

Now we describe the five oraclesO = {ODec,ONext,OUpd,OCorrupt-Token,OCorrupt-Key}
at a high level before providing detail of how they run.

– ODec : to prevent an adversary from trivially winning by querying the de-
cryption of a queried challenge ciphertext, the following condition must be
satisfied. The predicate isChallenge (Definition 3) must return false. In this
case, the decryption of a valid ciphertext under the current epoch secret key
is returned. Else, the failure symbol ⊥ is returned.

– OUpd : the update oracle only accepts and responds to calls regarding honestly
generated ciphertexts or derivations of the challenge ciphertext, by checking
lists {L, C∗} respectively. If this is the case, the output is an update of the
queried ciphertext to the current epoch. Next, the updated ciphertext and
current epoch are added to the list L. Moreover, if the isChallenge predicate
returns true on the input of the queried key and ciphertext, then the current
epoch is added to the challenge-equal epoch list C∗.

6 A predicate is a statement or mathematical assertion that contains variables. The
outcome of the predicate may be true or false depending on the input values.

8

– ONext : queries to the next oracle in challenge epoch e result in an up-
date of the global state to the epoch (e + 1). This is achieved by run-
ning key and token generation algorithms to output the epoch key pair
ke+1 = (pke+1, ske+1) and tokens ∆j

e+1,∀j ∈ [n], respectively. If the query is
in an epoch such that the adversary has corrupted the epoch key or the epoch
belongs to list L, then the current challenge ciphertext must be updated to
the next epoch using a threshold or more of the generated update tokens
and the new ciphertext is added to the list of honestly updated ciphertexts
(L).

– OCorrupt-Token,OCorrupt-Key : queries to these oracles allow the corruption of a
threshold number of tokens and epoch secret key respectively. The restric-
tion for both oracles is that the adversary’s query must be from an epoch
preceding the challenge-epoch e. Additionally, if an adversary queries the
corrupt-token oracle for server Sj , not in the queried epoch server commit-
tee Se′ then the corrupt-token oracle returns a failure symbol ⊥.

Security Experiment After the initialisation which outputs a global state (Fig-
ure 3) and with a challenge public key pke, the adversary proceeds to query the
oracles in Figures 2 and 3. They output a challenge message m′ and ciphertext
C ′ in the queried epoch e. Before proceeding, the challenger must check that the
given message and ciphertext are valid (belongs to MSP, CSP respectively).
Otherwise, the challenger aborts the game and returns ⊥. Moving forward, the
challenger randomly chooses bit b ∈ {0, 1} which dictates whether the DMUE
encryption algorithm or a version of the update algorithm is run on the respec-
tive challenge inputs {m′, C ′}. The resulting output is a challenge ciphertext
C(b) such that for b = 0 the ciphertext is from fresh encryption and for b = 1
the ciphertext is generated by the update algorithm UpdateCh.7 The global state
must be updated by the challenger, especially the set of lists L. Equipped with a
challenge output C(b) and public parameters, the adversary can query the oracles
again before outputting a guess bit b′ ∈ {0, 1}. The adversary succeeds in the
security experiment if they satisfy certain winning conditions and successfully
guess the correct bit (b′ = b).

Definition 4 (MUE-IND-CCA-Security). Definition 1 of a dynamic multi-
server updatable encryption scheme (ΠDMUE) is MUE-IND-CCA secure against
update unlinkable chosen ciphertext attacks following Figure 4 if for any PPT
adversary A the following advantage is negligible over security parameter λ:

AdvMUE-IND-CCA,b
ΠDMUE,A (1λ) :=|Pr[ExpMUE-IND-CCA,0

ΠDMUE,A (1λ) = 1]−

Pr[ExpMUE-IND-CCA,1
ΠDMUE,A (1λ) = 1]| ≤ negl(1λ),

for some polynomial time function negl(·).
Preventing Trivial Wins and Ciphertext Updates We demonstrate the
importance of the challenger recording lists T in the corrupt-token oracle, and

7 Algorithm UpdateCh is used as compact notation, following the notation of [8], to
denote the process of repeated application of the update algorithm from epoch {e+
1, . . . , ẽ}.

9

OUpd(Cei)

if ((ei, Cei) ̸∈ L) ∨ (ei /∈ C∗) then
return ⊥

else
for el = {ei+1, . . . , e} do

Cel←Upd(pp, {∆k
el}t≤k≤n, Cei)

Ce ← Cel

return Ce

L ← L ∪ {(e, Ce)}
if isChallenge(kei , Cei) = true then
C∗ ← C∗ ∪ {e}

ONext(e)

ke+1 := (pke+1, ske+1)
$← KG(pp, e+ 1)

{∆j
e+1}j∈[n] ← TG(pp, ske, ke+1, Se+1)

Update GS
(pp, ke+1, Te+1,L, e+ 1)
if (e ∈ K) ∨ (C, e) ∈ L then

(C′, e+ 1)←Upd(pp, {∆k
e+1}|k|≥t, C)

L ← L ∪ {(C′, e+ 1)}
OCorrupt-Token(e

′, j)

if (e′ ≥ e) ∨ (Sj ̸∈ Se′) then
return ⊥

else
return ∆j

e′ some j ∈ [n]
Store tokens in a list Te′

if |Te′ | ≥ t tokens have been corrupted in epoch e′ then
T ← T ∪ {e′}

Fig. 2. Details of oracles an adversary A has access to during the security experiment
of Definition 4 that is specific to the multi-server setting.

list C∗ in the update oracle. Without the restrictions imposed on the corrupt-
token oracle, the following can occur. If an adversary A corrupts t or more tokens
{∆k

e+1}k≥t from the corresponding server committee Se+1, in an epoch proceed-
ing the challenge epoch ẽ, then A is capable of trivially updating the ciphertext
into the next epoch (e + 1), using a computed token, following Definition 1.
Consequently, we place restrictions on calls to OCorrupt-Token and impose the win-
ning condition in Figure 4. This condition states that the intersection of lists K
and C∗ must be empty. Thus, the challenge epoch cannot belong to the set of
epochs in which a threshold of update tokens have been obtained/inferred, and
there doesn’t exist a single epoch where the adversary knows both the epoch key
(public and secret key components) and the (updated) challenge-ciphertext [22].
The distinction of DMUE security modelling from single-server PKUE is that

10

Init(1λ)

pp
$← Setup(1λ)

k0 := (pk0, sk0)
$← KG(pp, 0);

∆0 ← ⊥
T0 ← TG(pp, k0, S0) such that

T0 := {∆1
0, . . . ,∆

n
0 }

e← 0
L ∈ ∅
return GS
GS := (pp, k0, T0,L, 0)

ODec(Ce)

if isChallenge(kei , Cei) = true then
return ⊥

else
m← Dec(pp, ske, C)
return m

OCorrupt-Key(e
′)

if (e′ ≥ e) then
return ⊥

else
return ske′

K ← K ∪ {e′}

Fig. 3. The oracles an adversary has access to for the experiment capturing Definition
4 that remain unchanged from the single-server setting of a PKUE scheme.

list T ∈ C∗ does not record epochs in which token corruption occurred when the
number of tokens corrupted is less than some threshold. That is, DMUE security
modelling tolerates a certain level (below the threshold) of token corruption in
any given epoch as less than the threshold of corrupted tokens does not provide
the adversary with meaningful information.

4 Our Construction

In this Section, we use Definition 1 as a basis for formalising a generic DMUE
construction. We achieve this using dynamic proactive secret sharing (DPSS)
[2, 21, 23] and single server PKUE primitives as building blocks. Before going
into detail about our construction, we present the formal definition of a DPSS
protocol, as well as defining DPSS correctness and secrecy properties.

4.1 Construction Preliminaries

Dynamic proactive secret sharing (DPSS) [23] is an extension of traditional secret
sharing [4, 29] such that shares belonging to a committee of parties are refreshed
after some time has passed. A standard threshold secret sharing scheme (SS)
[29, 4] has a dealer D distribute some secret s among a set of shareholders P =
{P 1, P 2, . . . , Pn} of n parties, according to an efficiently samplable distribution
of the set of secrets labelled S = {Sλ}λ∈N, with security parameter λ. The aim
of threshold SS is that no subset t′ < t of parties in P can learn the secret s,
including an adversary controlling t′ parties. Conversely, every subset t′ ≥ t of
parties in P is capable of reconstructing s. Proactive secret sharing schemes [17,

11

ExpMUE-IND-CCA,b
ΠDMUE,A (1λ)

GS
$← Init(1λ); GS := (pp, k0, T0,L, 0) such that L := {L,K, T , C∗}

ke−1
$← KG(pp, e− 1); ke

$← KG(pp, e) such that

ke−1 := (pke−1, ske−1), ke := (pke, ske)
{∆j

e}j∈[n] ← TG(pp, ske−1, ke, Se)

(m′, C′)
$← AO(pp, pke)

if (m′ ̸∈ MSP) ∨ (C′ ̸∈ CSP) then
return ⊥

else
b

$← {0, 1}
C(0) $← Enc(pp, pke,m

′) and

C(1) ← UpdCh(pp, {∆k
e}|k|≥t, C

′)
C∗ ← C∗ ∪ {e}; ẽ← {e}

b′
$← AO(pp, C(b))

if (K ∩ C∗ = ∅) then
return b′

Else abort.

Fig. 4. The security experiment for MUE-IND-CCA-security of a DMUE scheme. Let
O = {ODec,OCorrupt-Key,ONext,OUpd,OCorrupt-Token} denote the set of oracles that adversary
A calls during the experiment, where the latter three oracles capture the multi-server
aspect of a DMUE scheme.

25] (PSS) are designed for applications in which the long-term confidentiality
of a secret matter, is achieved by a refresh of shares and consequently enable a
reset of corrupted parties to uncorrupted. Observe that the secret itself remains
constant, it is only the shares that are refreshed. Dynamic PSS (DPSS) [2,
21, 23] is a primitive with the same benefits as PSS plus an additional feature
allowing the group of parties participating to change periodically. The following
is a formal definition of DPSS protocol ΠDPSS=(Share, Redistribute, Recon) [2].

Definition 5 (DPSS Protocol). Given a dealer D, a secret s ∈ Sλ for security
parameter λ, L ∈ N periods, and a set of {n(i)}i∈[L] authorised parties P i =
{P i

1, . . . , P
i
n}, a (t, n) dynamic proactive secret sharing scheme is a tuple of four

PPT algorithms ΠDPSS = (Setup,Share,Redistribute,Recon) defined as follows:

- Share Phase: D takes as input the secret s and performs the following steps
non-interactively:

1. Setup(1λ)
$→ pp : a probabilistic algorithm that takes as input security

parameter 1λ and outputs public parameters pp, which are broadcast to
all parties in P .

2. Share(pp, s, i)
$→ {si1, . . . , sin} : a probabilistic algorithm that takes as

input the secret s ∈ Sλ and period i, outputting n secret shares {sij}j∈[n],
one for each party in P .

12

3. Distribute sij to party P i
j ∈ P i for every i ∈ [L] over a secret, authenti-

cated channel.

- Redistribution Phase: the algorithm Redistribute takes as input consec-
utive periods (i, i + 1) ≤ L, the set of parties (P i, P i+1) and the vector of
secrets {sij}j∈[n] belonging to P i, such that P i need to refresh and commu-
nicate their vector of secret shares to the potentially different set of parties
P i+1. The output is a vector of secrets {si+1

j′ }j′∈[n].

- Reconstruction Phase: In period i, any party in P i = {P i
1, . . . , P

i
n}i∈[L]

can participate in the following steps.

1. Communication:

(a) Each party P i
j , j ∈ [n] sends their share sij over a secure broadcast

channel to all other parties in P i.
(b) P i parties independently check that they have received (t − 1) or

more shares. If so, they proceed to the processing phase.

2. Processing: Once P i
j has a set of t′ shares labelled S′, they independently

do the following:

(a) Recon(pp, S′, i) → {s,⊥} : a deterministic algorithm that takes as
input the set S′ of t′ shares and outputs the secret s for period
i ∈ [L] if t′ ≥ t or outputs abort ⊥ otherwise.

The following two definitions are regarding the correctness and secrecy of a
dynamic proactive secret sharing schemeΠDPSS. We assume these properties hold
when proving the correctness and security of a proposed construction presented
in Chapter 5.

Definition 6 (DPSS Correctness). ΠDPSS is correct if ∀λ ∈ N and for all

possible sets of {n(i)}i∈[L] authorised parties P i, given Setup(1λ)
$→ pp; for all se-

crets s ∈ Sλ and any subset of t′ ≥ t shares S′ from Share(pp, s, i)
$→ {si1, . . . , sin}

communicated by parties in P i, there exists a negligible function negl(·) such that

Pr[Recon(pp, S′, i) ̸= s] ≤ negl(1λ).

Definition 7 (DPSS Secrecy). ΠDPSS is secret if ∀λ ∈ N and for all possible

sets of {n(i)}i∈[L] authorised parties P i, given Setup(1λ)
$→ pp; for all secrets

s ∈ Sλ and any subset of t′ < t shares S′ from Share(pp, s, i)
$→ {si1, . . . , sin}

communicated by parties in P , there exists a negligible function negl(·) such that

Pr[Recon(pp, S′, i) ̸= ⊥] ≤ negl(1λ).

Remark 2. In this work we focus on building our DMUE scheme from dynamic
threshold secret sharing, however, observe that we can easily extend the con-
struction of DMUE to be built from an alternative multi-party functionality,
namely, a version of multi-party computation (MPC) [9, 13].

13

4.2 Building DMUE

Recall, a DMUE primitive is designed for the distribution of tokens, to multiple
untrusted servers, which are used in the ciphertext update process. A threshold
of servers can reconstruct the whole update token (∆e) for a given epoch (e),
using the corresponding server tokens. By design, the threshold is necessary to
correctly update the ciphertext into a new epoch. Moreover, the set of servers
in any given epoch is fluid to allow for the removal of corrupted servers and
support the realistic nature of long-term secret storage in which servers may
need to change. Intuitively, DPSS is an ideal building block candidate since the
techniques used cater to changes in the shareholders, achieved via a redistribu-
tion process from one epoch to the next. Additionally, it is required in a DPSS
scheme (see Definition 5) that the secret is re-shared in every period in such
a way that the shares from different windows of time cannot be combined to
recover the secret. The only way to recover the secret is to obtain enough shares
from the same period, a task which the literature [17] assumes is beyond the
adversary’s grasp and the redundancy of sharing allows robustness in the periods
of the scheme. We incorporate the aforementioned techniques into the design of
our DMUE construction.

High-Level Idea The key idea of our construction is that we leverage a single-
server PKUE scheme and share the update token using a threshold secret sharing
protocol. Intuitively, the update token in our construction will be formed from
the current and preceding epoch keys, such that the data owner (D), taking
the position of the dealer in the DPSS scheme, distributes a vector of token
shares {∆j

ei}j∈[n] to the set of n servers Sei := {S1
ei , . . . , S

n
ei} for current epoch

ei,∀i ∈ N. Token share generation will take place after TG is run by D and this
will occur for every epoch up to the final epoch (emax). The algorithm Upd will
also be adapted to the multi-server setting in line with Definition 1, such that a
threshold of t or more servers in set Sei+1 are required to reconstruct the update
token ∆ei+1

and then independently perform the update process in the classical
PKUE sense. Observe a key point clarified after the construction (Remark 3) is
that the set of servers in consecutive epochs may overlap, and so they should not
be able to learn the shares of the old or new epochs even though they participate
in the redistribution process.

For ease of defining a generic construction, we design the scheme such that
the dynamic feature is achieved in a trivial way, and does not use the DPSS
techniques to evolve server committees. In other words, we do not trust the
servers and assume the server committees for each epoch are selected by data
owner D in some way. However, after presenting our construction in Definition 8
we will make practical considerations which allow for the servers in a given epoch
to participate in the redistribution process of token shares in order to reduce the
data owners’ computational cost. More formally, we construct a DMUE scheme
as follows.

Definition 8 (DMUE Generic Construction). Given a (t,n) dynamic secret
sharing scheme ΠSS = (SS.Setup,Share,Redistribute,Recon) from Definition 5

14

(Definition 5) and a standard public-key UE scheme ΠPKUE = (UE.Setup,UE.KG,
UE.TG,UE.Enc,UE.Dec,UE.Upd), a DMUE scheme is defined by a tuple of six
PPT algorithms ΠDMUE = (Setup,KG,TG,Enc,Dec,Upd) as follows.

1. Setup(1λ)
$→ pp : run SS.Setup and UE.Setup on input security parameter 1λ

to randomly output the public parameters pp := (ppSS, ppUE) respectively.

2. KG(pp, ei)
$→ kei := (pkei , skei) : given public parameters pp, run the prob-

abilistic key generation algorithm UE.KG to output the public and private
key pair kei = (pkei , skei) for epoch ei, i ∈ N, i ≤ (max− 1).

3. TG(pp, skei , kei+1
, Sei+1

) → {∆j
ei+1
}j∈[n] : the data owner runs UE.TG to

compute token ∆ei+1 , followed by Share(ppSS, Sei+1 , ∆ei+1) → {∆j
ei+1
}j∈[n].

Next, the data owner securely distributes ∆j
ei+1

to server Sj ∈ Sei+1
, where

Sei+1 is the committee of servers for new epoch ei+1.

4. Enc(pp, pkei ,m)
$→ Cei : given public parameters and the epoch public key

pkei , the data owner runs the probabilistic encryption algorithm UE.Enc on
message m ∈MSP and outputs the ciphertext Cei .

5. Dec(pp, skei , Cei) → {m,⊥} : given public parameters and the epoch secret
key, the owner is able to run the deterministic decryption algorithm UE.Dec
in order to output message m or abort (⊥).

6. Upd(pp, {∆k
ei+1
}k∈N,|k|≥t, Cei)→ Cei+1 : given any valid subset S′ ⊆ Sei+1 of

the epoch ei+1 committee of servers, such that |S′| ≥ t, shareholders in S′ can
reconstruct the update token by running Recon(ppSS, {∆k

ei+1
}k≥t)→ ∆ei+1

:
Individually they can then update the ciphertext using the update algorithm
UE.Upd(ppUE, ∆ei+1 , Cei)→ Cei+1 .

Correctness We show below our construction ΠDMUE, presented in Definition
8, satisfies correctness (Definition 2). Observe that by definition, the secret re-
construction algorithm Recon from ΠDPSS, used in step 6 of the update process,
satisfies correctness following Definition 6 formalised at the start of this Section.

Theorem 1 (Correctness of Construction). ΠDMUE is correct assuming
the underlying public-key UE scheme ΠPKUE and the underlying secret sharing
scheme ΠSS satisfy their respective definitions of correctness.

Proof. Following Definition 2,ΠDMUE is correct if Dec(pp, skemax , Cemax) outputsm
with overwhelming probability, whereby Cemax has been generated iteratively by
the update algorithm Upd. In fact, this means the decryption algorithm UE.Dec
is run and outputs m on the same honestly generated inputs. Note, one of the
inputs is an update of the ciphertext to the final epoch (Cemax). Therefore, we
assume this ciphertext has been generated correctly by entering a reconstruction
phase of the SS scheme, that is, Recon(ppSS, {∆k

ei+1}k≥t) is run to output token
∆ei+1. In turn, the resulting token is input into UE.Upd(ppUE, ∆ei+1, Cei) such
that Cemax is output. Let us assume instead that Recon and/or UE.Upd output
⊥, contradicting both correctness assumptions, resulting in UE.Dec outputting
⊥. In turn, the DMUE decryption algorithm Dec will also output ⊥ instead of

15

m, which violates correctness in Definition 2. However, the assumptions that
the failure symbol ⊥ is output by the reconstruction phase or PKUE update
algorithm contradict our assumption that the SS and PKUE schemes satisfy
correctness. Thus, using proof by contradiction we can conclude that the DMUE
scheme ΠDMUE also satisfies correctness. ⊓⊔

Practical Considerations: In Definition 8 of a generic DMUE scheme, the
selection of epoch committees and generation of their respective update tokens
arise from the data owner (D). The advent of every epoch calls for D to generate
token shares for the newly selected server committee. However, in Definition
8 we can also consider the involvement of the epoch server committee as a
more elegant and practical solution to sharing the computational cost of token
generation. That is, we can introduce a redistribution phase (following Definition
5) amongst the server committee during the running of token generation (TG) to
exchange secret shares from one server committee to the next. Importantly, the
redistribution techniques from DPSS literature support the refresh of the shares
as an additional layer of security, such that these new shares still reconstruct the
same secret. In the following, we redefine the running of token generation (Step
3 of Definition 8) to support server committee involvement in the redistribution
phase.

TG(pp, skei , kei+1 , Sei+1)→ {∆j
ei+1
}j∈[n] :

1. TG(pp, ske0 , ke1 , Se1)→ {∆j
e1}j∈[n] : the DMUE token generation algorithm

is run in epoch e0, as detailed in step 3 of Definition 8.
2. Redistribution Phase: To proactively redistribute token shares to a new

epoch, the redistribution phase is run by data owner D and the committee
of servers (Sei) in epoch ei,∀i ∈ [1,max− 1]. Using information provided by
the data owner (this could be, for instance, a masking polynomial if Shamir’s
secret sharing [29] is being used), the servers in Sei proceed to refresh their
individual secret token shares {∆j

ei}j∈[n]. The new vector of token shares is

labelled {∆j′

ei+1
}j′∈[n], and they are securely distributed to the corresponding

server Sj′ ∈ Sei+1 .

To explain the second step in more detail, the refresh of token shares can be
achieved during the running of token share generation described above, using the
underlying redistribution phase of the chosen concrete DPSS scheme (ΠDPSS).
For instance, secret shares are refreshed in the Shamir-based [29] DPSS scheme
of [2] in such a way that shareholders from the current committee mask their
polynomial P with some polynomial Q, such that no party in this committee
learns shares for new polynomial P ′ := P + Q given to the next shareholder
committee, and vice versa. Thus, care needs to be taken in the choice of DPSS
scheme so as to preserve security, especially if there is a crossover between the
old and new server committees. In line with the proposed DPSS scheme from
the authors of [2], an overlap of one server possessing the same share in both
committees is not a security issue, since the threshold of the scheme is not

16

violated. However, we must make the following stipulation if the crossover of
servers is above the threshold to ensure the security (Definition 4, Section 3)
holds in Definition 8.

Remark 3. If a threshold t or more servers, Sj = Sj′ for Sj ∈ Sei and Sj′ ∈ Sei+1

respectively, overlap in two consecutive server committees then we necessitate
distinct token shares (∆j

ei ̸= ∆j′

ei+1
).

5 Security Analysis

In this Section, we present and prove the formal statements of security for our
DMUE generic construction ΠDMUE from Definition 8. The following statement
of security is for our ciphertext unlinkability notion defined in Section 3. At a
high level, we will separate our proof into two cases: when an adversary corrupts
less than the threshold number of token shares, versus an adversary that corrupts
a threshold or more token shares. In each case, we can rely on the security of
the underlying building blocks. Specifically, we assume the secrecy of the DPSS
scheme and the satisfaction of the corresponding single-server PKUE security
notion.

Theorem 2. Assume that ΠDPSS satisfies secrecy and suppose that ΠPKUE is
a public-key updatable encryption scheme satisfying MUE-IND-CCA security for
t = n = 1. Then ΠDMUE is a MUE-IND-CCA secure scheme.

Proof. Following Definition 4, we want to show that there exists some negligible
function negl under security parameter λ such that

AdvMUE-IND-CCA,b
ΠDMUE,A (1λ) ≤ negl(1λ). (1)

given the security experiment detailed in Section 3, Figure 4. To prove Equation
1, we must focus on two separate cases: first when an adversary A has corrupted
l < t token shares in the corresponding security game epoch ẽ and second when
A has corrupted l ≥ t token shares. Following the assumptions in Theorem 2, we
note that for either scenario we also assume the adversary’s challenge message
and ciphertext (m′, C ′) were created in some epoch e < ẽ before the current
epoch ẽ, otherwise, the security experiment will output ⊥.
Case (l < t) : Recall that secrecy is satisfied in the DPSS scheme ΠDPSS, the
formal definition of which is detailed in Section 4. Consequently, an adversary
has too few token shares from epoch ẽ to reconstruct the secret update token
∆ẽ. In the case that the challenger randomly chose bit b = 1 (for b = {0, 1}) A
cannot manually update their challenge ciphertext C ′ to ciphertext C ′

ẽ := C(1)

due to the secrecy property. Moreover, if A queries oracle OUpd(C
′) to update the

challenge ciphertext iteratively via epochs {e+1, . . . , ẽ}, as detailed in Figure 2,
A is still incapable of winning the experiment as the update oracle will add ẽ to
the list of challenge-equal epochs C∗ and winning conditions (K ∩ C∗) = ∅ mean
that ⊥ is output. Therefore, A is reduced to guessing bit b (in this case b = 1)
which results in the advantage

17

AdvMUE-IND-CCA,1
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,1

ΠDMUE,A (1λ) = 1]− 1
2 | ≤ negl(1λ).

If the challenger randomly chose bit b = 0, A would either have to query the
epoch secret key corruption oracle to obtain skẽ to manually decrypt the ci-
phertext C(0), or make calls to the decryption oracle. The assumed security of
ΠPKUE is essential in this instance to prevent trivial wins. We note that both
of the named oracles are detailed in Figure 3. The former scenario requires A
query oracle OCorrupt-Key(ẽ) which results in output ⊥ to prevent trivial wins.
The latter scenario means A calls oracle ODec(C

(0)) which will result in output
⊥ due to the decryption oracle conditions. Specifically, the first condition of
the isChallenge predicate (Definition 3, Section 3.1) is satisfied since C(0) is a
challenge ciphertext and ⊥ is output. Note that the output (⊥) does not inform
the adversary whether or not the ciphertext is derived from fresh encryption in
epoch ẽ or an update from a prior epoch. Therefore, A is reduced to guessing
bit b (in this case b = 0) which results in the advantage

AdvMUE-IND-CCA,0
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,0

ΠDMUE,A (1λ) = 1]− 1
2 | ≤ negl(1λ).

Consequently, Equation 1 holds when l < r.

Case (l ≥ t) : oracle OCorrupt-Token stipulates that the challenger needs to add the
challenge epoch ẽ to list T (Figure 1). Crucially, epochs in T are incorporated
into list C∗ which captures all challenge-equal epochs. Thus, epoch ẽ belongs to
C∗ and winning conditions in our security experiment prevent trivial wins. That
is, the intersection of sets (K∩ C∗) must be empty to prevent a trivial win from
occurring. See the end of Section 3 for more depth on trivial wins.

If t = n = 1 we can rely on the assumed security of ΠPKUE, namely, Definition 4
is satisfied. Therefore, in the case of (l ≥ r) and for either choice of b = {0, 1},
A is reduced to guessing bit b which results in the advantage

AdvMUE-IND-CCA,b
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,b

ΠDMUE,A (1λ) = 1]− 1
2 | ≤ negl(1λ).

Given the above, we can conclude that the Equation 1 is satisfied for any number
(l) of corrupted tokens. ⊓⊔

Closing Discussion In this paper, we formalised a DMUE primitive and de-
fined a generic construction, the latter of which was built from single-server
PKUE and dynamic threshold secret sharing (DPSS) primitives. As such, the
performance of our proposed DMUE scheme (from Definition 8) is directly re-
flected by the cost of adding a DPSS scheme to PKUE. In the future, we believe
it is of interest to develop concrete DMUE schemes to formally analyse the effi-
ciency, costs and security levels attained in the multi-server versus single-server
setting of PKUE.

References

1. N. Alamati, H. Montgomery, and S. Patranabis. Symmetric primitives with struc-
tured secrets. In Lecture Notes in Computer Science, volume 11692, pages 650–679.
Advances in Cryptology - CRYPTO 2019, Springer, 2019.

18

2. J. Baron, K. El Defrawy, J. Lampkins, and R. Ostrovsky. Communication-
optimal proactive secret sharing for dynamic groups. In T. Malkin, V. Kolesnikov,
A. Lewko, and M. Polychronakis, editors, Lecture Notes in Computer Science, vol-
ume 9092, pages 23–41. International Conference on Applied Cryptography and
Network Security, ACNS 2015, Springer, 2015.

3. F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Rabin,
and L. Reyzin. Can a blockchain keep a secret? IACR Cryptology ePrint Archive,
2020:464, 2020.

4. G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the AFIPS Na-
tional Computer Conference, NCC 1979, volume 48, pages 313–318. International
Workshop on Managing Requirements Knowledge (MARK), IEEE, 1979.

5. M. Blaze and M. Bleumer, G.and Strauss. Divertible protocols and atomic proxy
cryptography. In International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 127–144. Springer, 1998.

6. K. Boneh, D.and Lewi, H. Montgomery, and A. Raghunathan. Key homomor-
phic prfs and their applications. In R. Canetti and Garay J.A., editors, Lecture
Notes in Computer Science, volume 8042, pages 410–428. Advances in Cryptology,
CRYPTO 2013, Springer, 2013.

7. X. Chen, Y. Liu, Y. Li, and C. Lin. Threshold proxy re-encryption and its appli-
cation in blockchain. In X. Sun, Z. Pan, and E. Bertino, editors, Lecture Notes in
Computer Science, volume 11066, pages 16–25. Cloud Computing and Security -
ICCCS 2018, Springer, 2018.

8. V. Cini, S. Ramacher, D. Slamanig, C. Striecks, and E. Tairi. Updatable signa-
tures and message authentication codes. In J.A. Garay, editor, Lecture Notes in
Computer Science, volume 12710, pages 691–723. Public Key Cryptography, PKC
2021, Springer, 2021.

9. R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In B. Preneel, editor, Lecture Notes in
Computer Science, volume 1807, pages 316–334. Advances in Cryptology- EURO-
CRYPT 2000, Springer, 2000.

10. A. Davidson, A. Deo, E. Lee, and K. Martin. Strong post-compromise secure proxy
re-encryption. In Australasian Conference on Information Security and Privacy-
ACISP 2019, volume 11547, pages 58–77. Lecture Notes in Computer Science,
Springer, 2019.

11. Y. Dodis, H. Karthikeyan, and D. Wichs. Updatable public key encryption in
the standard model. In Lecture Notes in Computer Science, volume 13044, pages
254–285. Theory of Cryptography Conference - TCC 2021, Springer, 2021.

12. E. Eaton, D. Jao, C. Komlo, and Y. Mokrani. Towards post-quantum key-
updatable public-key encryption via supersingular isogenies. In Lecture Notes in
Computer Science, volume 13203, pages 461–482. Selected Areas in Cryptography:
28th International Conference - SAC 2022, Springer, 2022.

13. D. Evans, V. Kolesnikov, M. Rosulek, et al. A pragmatic introduction to secure
multi-party computation. Foundations and Trends® in Privacy and Security, 2(2-
3):70–246, 2018.

14. A. Everspaugh, K. Paterson, T. Ristenpart, and S. Scott. Key rotation for authen-
ticated encryption. In J. Katz and H. Shacham, editors, Lecture Note in Computer
Science, volume 10403, pages 98–129. Advances in Cryptology- CRYPTO 2017,
2017.

15. T.K. Frederiksen, J. Hesse, B. Poettering, and P. Towa. Attribute-based single
sign-on: Secure, private, and efficient. Cryptology ePrint Archive, Paper 2023/915,
2023. https://eprint.iacr.org/2023/915.

19

16. Y. J. Galteland and J. Pan. Backward-leak uni-directional updatable encryption
from (homomorphic) public key encryption. In Lecture Notes in Computer Science,
volume 13941, pages 399–428. Public-Key Cryptography - PKC 2023, Springer,
2023.

17. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. In Lecture Notes in Computer Science, volume
963, pages 339–352. Annual International Cryptology Conference, Springer, 1995.

18. Y Jiang. The direction of updatable encryption does not matter much. In Lecture
Notes in Computer Science, volume 12493, pages 529–558. Advances in Cryptology
- ASIACRYPT 2020, Springer, 2020.

19. M. Klooß, A. Lehmann, and A. Rupp. (r) cca secure updatable encryption with
integrity protection. In Y. Ishai and V. Rijmen, editors, Lecture Notes in Computer
Science, volume 11476, pages 68–99. Advances in Cryptology- EUROCRYPT 2019,
Springer, 2019.

20. J. Knapp and E. A. Quaglia. Epoch confidentiality in updatable encryption. In
Lecture Notes in Computer Science, volume 13600, pages 60–67. International Con-
ference on Provable Security - ProvSec 2022, Springer, 2022.

21. I. Komargodski and A. Paskin-Cherniavsky. Evolving secret sharing: dynamic
thresholds and robustness. In Y. Kalai and L. Reyzin, editors, Lecture Notes
in Computer Science, volume 10678, pages 379–393. Theory of Cryptography
Conference- TCC 2017, Springer, 2017.

22. A. Lehmann and B. Tackmann. Updatable encryption with post-compromise secu-
rity. In J. Nielsen and V. Rijmen, editors, Lecture Notes in Computer Science, vol-
ume 10822, pages 685–716. Advances in Cryptology, EUROCRYPT 2018, Springer,
2018.

23. S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. Song.
Churp: dynamic-committee proactive secret sharing. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pages
2369–2386. CCS 2019, Association for Computing Machinery, 2019.

24. R. Nishimaki. The direction of updatable encryption does matter. Cryptology
ePrint Archive, 2021.

25. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proceedings
of the tenth annual ACM symposium on Principles of distributed computing, pages
51–59. ACM, Association for Computing Machinery, 1991.

26. C. Qian, Y. J. Galteland, and G. T. Davies. Extending updatable encryption:
Public key, tighter security and signed ciphertexts. Cryptology ePrint Archive,
2023.

27. Raghav, N. Andola, K. Verma, S. Venkatesan, and S. Verma. Proactive threshold-
proxy re-encryption scheme for secure data sharing on cloud. The Journal of
Supercomputing, pages 1–29, 2023.

28. D. Schultz, B. Liskov, and M. Liskov. Mpss: Mobile proactive secret sharing. ACM
Trans. Inf. Syst. Secur., 13, 2010.

29. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

30. D. Slamanig and C. Striecks. Puncture’em all: Updatable encryption with no-
directional key updates and expiring ciphertexts. Cryptology ePrint Archive, 2021.

31. P. Yang, Z. Cao, and X. Dong. Threshold proxy re-signature. Journal of Systems
Science and Complexity, 24(4):816–824, 2011.

20

