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Abstract

The field of delay-based cryptography arose from the notion of encrypting a message “to the

future”, as first proposed by May in 1993, in a post on the Cypherpunks mailing list [120].

In this post, May discussed applications including sending money into the future to avoid

taxation, or sending a message ‘in the event of death’. However, May’s idea of how to achieve

this was based on trusted agents, which is now considered impractical. Fortunately, since

the publication of this post, the cited applications and the methods suggested to achieve this

have been extensively augmented and modernised. Additionally, the concept of encrypting a

message for a set length of time has become relevant across many areas of cryptography and

often acts as a tool to enable stronger notions of security and privacy.

The first formal treatment of this subject, which utilises a computational delay, was

provided in 1996 by Rivest, Shamir and Wagner in their seminal work “Time lock puzzles

and timed-release Crypto” [136]. In this work, the authors suggested encrypting a message

in such a way that decrypting the message requires computing an iterated sequential function.

The underlying cryptographic concept is that this computation must take at least a certain

amount of real-world clock time to compute. This assumption is based upon the fact that

each iteration of the function requires the input of the previous step, and hence one cannot

run all of the steps in parallel, arbitrarily speeding up the computation. This seemingly

simple idea birthed the rich subject of delay-based cryptography, which has found use in

many different areas of cryptography. In the modern day, a cryptographic delay is regularly

applied to messages, symmetric keys, asymmetric keys, signatures, commitments, and simply



a random string.

In this thesis, we first study delay-based cryptography at a high level, providing an

exposition of the definitions and applications of various cryptographic primitives, and their

applications.

We then delve into three topics and their associated applications, in each case dedicating

a chapter to a primitive and a construction, for which we provide game-based security

definitions and security proofs.

The first subject of our attention is that of sealed-bid auctions, where we use the primitive

of timed-release encryption. In this chapter we use classical, well-known cryptographic

primitives as building blocks to produce a novel TRE scheme. Our approach utilises number

theoretic properties to ensure that the outcome of computing the delay allows a solver to

factor an RSA modulus, and hence decrypt all messages which have been encrypted to it.

We next turn our attention to further applications of TRE, and in particular the application

of whistleblowing. We argue that some the properties inherent to timed-release encryption

could be valuable in the hands of a vulnerable party such as a whistleblower, but in its current

form it is not suitable for such a sensitive use case. For this reason we introduce timed-release

encryption with implicit authentication, which offers a novel approach to using public-key

encryption, namely that the encryption key which is traditionally made public is instead kept

private, in order to be able to achieve practical, implementable delay-based encryption, whilst

offering additional privacy properties that may aid at-risk individuals such as whistleblowers.

Finally, we discuss cryptographic randomness, and its use and applications within cryp-

tography. In this section we utilise a primitive known as verifiable delay function, and in

particular an extension known as a continuous verifiable delay function. One of the main

themes of this chapter is the trade-off between trust and efficiency in protocols which of-
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ten find application in the decentralised setting. We leverage a stronger than usual trust

assumption in order to maximise the efficiency of our construction.

We conclude this thesis by looking forward to potential future research in this field,

discussing ways that the work in this thesis can be built upon, highlighting gaps in the

knowledge of current literature, and posing relevant open questions.
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Chapter 1

Introduction

Contents

1.1 An Introduction to Computational Delay . . . . . . . . . . . . . . . . 1

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

In this chapter we introduce the concept of delay-based cryptography, which helps to

provide the motivation and context for this thesis. We then outline the structure of this thesis.

1.1 An Introduction to Computational Delay

In this thesis, we discuss the design and applications of a branch of cryptography referred

to as delay-based cryptography. At its core, delay-based cryptography broadly refers to the

practice of using a computational delay to mimic real world time. Our goal is to associate

‘clock-time’, which is to say time as we experience it in the real world, with a computational

1



1.1 An Introduction to Computational Delay

delay. In other words, we want to be able to run a program, and state with confidence that

this computation will take a certain length of real world time to execute. Generally speaking,

this is a difficult thing to do. This is because in computing, one can generally add more

computational power to a program, with the result that it will run more quickly. If one

is to think about this statement a little more deeply, one can observe that applying more

computational power can be done in one of two ways: either faster computation, or more

computation.

The former involves using faster, more modern hardware, and is something that we as

computer scientists can do nothing about: we cannot change the fact that the underlying

hardware that various machines use in practice have different levels of power, and as such

will compute identical computations at different speed. However, we can assume that there is

a limit to how fast such computations can be.

Therefore, what we aim for is something a little more nuanced, but that is more realistic:

We wish to state that a computational task will take no less than a given length of time to

compute.

By choosing our computation carefully, we can limit the effect of increasing the quantity

of computational power, by using a computation that cannot be parallelised. The key to

negating the effect of additional computation is therefore to limit the number of useful things

a program can do at once. In an ideal world, we would like to run a program which cannot be

parallelised at all. The way we achieve this is by utilising an iterated sequential computation,

that is to say a computation that comprises of multiple sequential steps, where each step

takes as input the output of the previous step.

By requiring a recipient to compute an iterated sequential computation, a sender can

ensure that such a computation finishes at some point in the future, a concept first introduced

by Rivest, Shamir and Wagner in their seminal paper in 1996 [136]. In modern times,

this idea of iterated sequential computation is used across multiple areas of cryptography,

2



1.2 Thesis Structure

encompassing primitives including time-lock puzzles [136], timed-release encryption [53],

timed commitments [35] and verifiable delay functions [32]. These primitives have suggested

the output of the delay be a message (such as a vote/bid) [118], an encryption key [53], a

signature [150], or simply a proof that a delay has occurred [32].

1.2 Thesis Structure

In this thesis, we begin in Chapter 2 by presenting a systematisation of knowledge of delay-

based primitives [121], discussing the existing literature for delay-based cryptography. We

discuss the proposed approaches to constructing a delay, the primitives that use these delays,

and the applications that such primitives are suited for. We discuss the advantages and

disadvantages of various techniques, including topics such as efficiency, trust and practicality.

After introducing some preliminary material in Chapter 3, we present three constructions,

each of which is centred around a different delay-based primitive.

In Chapter 4 we present TIDE (TIme-Delayed Encryption) [110], a timed-release encryp-

tion scheme. TIDE combines the traditional public-key encryption techniques of RSA with

the sequential properties of the Blum Blum Shub random number generator. This allows

parties to encrypt messages to the RSA public-key, and spend a predictable length of time

decrypting the private key, which in turn allows all messages to be decrypted. Such a scheme

is particularly useful in the context of sealed-bid auctions.

In Chapter 5, we present "Applications of Timed-release Encryption with Implicit Authen-

tication" [112]. In this work, we alter the standard framework of timed-release encryption;

making the encryption key private rather than public, and introducing a new security property

known as implicit authentication. We introduce this notion in order to apply the concepts

3



1.3 Publications

of timed-release encryption scheme to sensitive topics such as whistleblowing, where the

control of information is critical.

In Chapter 6, we analyse the continuous verifiable delay function (cVDF) primitive,

discussing its definitions, and its key application of randomness. We propose new, generic

definitions, which are in keeping with the literature, and we show that under our definition

any such cVDF yields a randomness beacon. We then present a cVDF construction, where

we introduce a precomputation phase, which computes various states at which verification

can occur. These states can then be computed by means of an iterated sequential computation,

which we show can be publicly verified extremely efficiently.

1.3 Publications

The contents of this thesis contains adaptations of the following three publications:

1. Chapter 2 is based upon the paper SoK:Delay-Based Cryptography, which is a joint

work with Angelique Loe and Elizabeth A. Quaglia. This paper was presented at the

36th IEEE Computer Security Foundations Symposium in 2023.

2. Chapter 4 is based upon the paper TIDE: A novel approach to constructing timed-

release encryption, which is a joint work with Angelique Loe, Christian O’Connell and

Elizabeth A. Quaglia. This paper was presented at the 27th Australasian Conference

on Information Security and Privacy in 2022.

3. Chapter 5 is based upon the paper Timed-Release Encryption with Implicit Authentica-

tion, which is a joint work with Angelique Loe, Christian O’Connell and Elizabeth

A. Quaglia. This paper was presented at AFRICACRYPT 2023: 14th International

Conference on Cryptology in 2023.

4



1.3 Publications

My research was supported by the EPSRC and the UK government as part of the Cen-

tre for Doctoral Training in Cyber Security at Royal Holloway, University of London

(EP/P009301/1).
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Foundations of Delay-Based

Cryptography

Contents
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2.1.1 Why a Delay is Useful . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Techniques to Achieve a Delay . . . . . . . . . . . . . . . . . . . 10

2.1.3 Trustless Generation of an RSA Modulus . . . . . . . . . . . . . 15

2.2 Delay-Based Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Time-lock Puzzles and Time-lock Encryption . . . . . . . . . . . 18

2.2.2 Homomorphic Time-lock Puzzles . . . . . . . . . . . . . . . . . 20
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2.2.4 Delay Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.5 Timed Commitments and Timed Signatures . . . . . . . . . . . . 23

2.2.6 Proofs of Sequential Work . . . . . . . . . . . . . . . . . . . . . 25

2.2.7 Verifiable Delay Functions . . . . . . . . . . . . . . . . . . . . . 26

6



2.1 Fundamentals of a Cryptographic Delay

2.2.8 Miscellaneous Primitives with a Delay Component . . . . . . . . 28

2.2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Universal Composability . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Whistleblowing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 VDF-based Randomness Beacons . . . . . . . . . . . . . . . . . 35

The work in this chapter appears in [121], for which I was the lead author. In this

chapter, we provide a systematisation of knowledge of delay-based cryptography, in order to

provide the reader with an understanding of the modern and historical context of delay-based

cryptography. We start by considering the role of time within cryptography, explaining

broadly what a delay aimed to achieve at its inception and now, in the modern age. We then

move on to describing the underlying assumptions used to achieve these goals, analysing

topics including trust and decentralisation, along with concrete methods to implement a

delay. We then survey existing primitives, discussing their security properties, instantiations

and applications. We finish this section by discussing which of these primitives will feature

in the later chapters of this thesis, and highlighting their applications.

2.1 Fundamentals of a Cryptographic Delay

In this section, we introduce the concept of a cryptographic delay, explaining why such a

delay is useful, and highlighting some of the challenges associated with implementing such a

delay.
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2.1 Fundamentals of a Cryptographic Delay

2.1.1 Why a Delay is Useful

Increasing Fairness and Reducing trust Fairness in multi-party protocols is an important

concept. In auctions, it is important that no party sees the bid of another party before they bid.

Similarly, in voting it is important that parties do not learn the current tally during the vote

phase. Knowing a vote tally during the voting phase can allow someone to alter their vote to

‘vote tactically’ in an election [88]. In a coin-flipping protocol where multiple parties each

contribute some input it is vital that no party learns the other outputs before they commit to

their own.

In each of the above examples the use of a trusted third party would provide a simple

solution to the fairness problem. The use of a trusted third party is common in cryptography,

and is often used as a security standard to compare the security of a protocol against. If all

parties give the trusted party their inputs and the trusted party then computes the output and

sends it to all parties then a fair solution is trivially achieved. However, giving a trusted party

all inputs is a strong assumption, which leads to the natural question of who should be trusted

to perform this role, and how to ensure they remain trustworthy of handling sensitive data.

By using a delay, it becomes possible to reduce the role of the trusted party (typically to

generate the public parameters) or remove it altogether from such scenarios. Intuitively, this

can be seen as all parties submitting their input before some deadline, with the consequence

that parties can only recompute other parties’ inputs after the deadline, hence achieving

fairness. Indeed, a theme that we shall see throughout this thesis is the desire to the remove

trust from delay-based primitives, and the repercussions this has on the efficiency of the

resulting schemes.

Enabling new applications The use of delay-based primitives has allowed the order

of actions in cryptographic protocols to be altered. These ordering alterations have lead

to novel approaches to solving problems. This has resulted in new cryptographic security

8



2.1 Fundamentals of a Cryptographic Delay

properties and furthermore, various impossibility results have been overcome. We provide

two illustrative examples of this next.

- Overcoming an impossibility result. In 1986, Cleve [54] proved that fair coin flipping

was impossible in the standard model. It was shown that for any k round protocol one of the

parties can achieve a bias of at least 1/k. The fundamental problem with designing a fair

coin flipping protocol between two parties is that one party would always learn the output

first and could therefore abort if they did not favour the outcome. In 2000, Boneh and Naor

[35] showed that this impossibility result could be circumvented using timed commitments,

a primitive we will discuss in Section 2.2.5. Both parties use a timed-commitment to commit

themselves to a hidden value, under the understanding that the combination of the two

hidden values will be the randomness. In contrast to a standard commitment, using a timed-

commitment means that if one party aborts rather than revealing their hidden value, then the

remaining party could compute a sequential computation in order to obtain the output, and

learn the coin-flip anyway.

- A modern approach to building randomness beacons. A randomness beacon was first

proposed by Rabin in 1983 [132] to remove the need for trusted intermediary parties in

protocols such as contract signing. In modern times, interest in randomness beacons has

recently seen a sharp rise in interest, largely due to the advent of blockchain technology. In

recent years there have been many novel approaches to constructing such a beacon to be

used in applications like the generation of cryptographic parameters and designing consensus

protocols in blockchain technology. In Chapter 6 we will provide an exposition into such

approaches, with a focus on the approach pertinent to this work: randomness beacons based

upon a cryptographic delay. These rely upon a primitive known as a verifiable delay function

(VDF), which we shall see in Section 2.2.7. By utilising an iterated sequential function,

VDF-based randomness beacons dispense of the need for a synchronous network, or for

multiple parties to interact to compute the beacon output, which are common downsides
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2.1 Fundamentals of a Cryptographic Delay

of alternative randomness beacons [133] Additionally, a VDF-based randomness beacon

ensures that the property of timeliness is satisfied, i.e., each pulse of randomness will come

at a regular interval. Both of these properties are desired in an ideal randomness beacon,

but not achieved by the majority of current techniques [134]. We will discuss randomness

beacons built from VDFs further in Section 2.4, and propose a novel VDF-based randomness

beacon in Chapter 6.

Computationally efficient proof of work A topical example of the use of delay is in

the decentralised space. It is well-documented that the rise in popularity of blockchain

technology has come with a huge computational expense. This computational burden has a

negative environmental impact [74, 151], and is viewed as unsustainable. By using techniques

from delay cryptography, a proof of sequential work is possible as an alternative to ‘classical’

proof of work in the style of bitcoin [126]. When using a classical proof of work, the more

computational power that is used, the faster the computation will be finished. In contrast,

by using an iterated sequential function, each step requires the output of the previous step,

and hence the benefit of parallelisation is limited to its application to each individual step.

In modern delay functions, these steps are as small as a single hash, or a single square-

and-reduction, meaning that parallelisation has little effect. This removes the incentive to

spend vast amounts of computing power on a proof of work, and lays the foundation for a

sustainable alternative. An example of this is in computational timestamping [6, 101, 115].

2.1.2 Techniques to Achieve a Delay

In order to achieve a delay, one must somehow relate real-world ‘clock’ time to computational

time. The way this is done in practice is by assuming that there exists some computational step

that takes a minimum amount of time to compute, regardless of the amount of computation

10



2.1 Fundamentals of a Cryptographic Delay

power, and then sequentially iterating this step. Sequentiality is therefore at the heart of

delay-based cryptography.

Definitions of Sequentiality There are various approaches to defining what it means for

a function to be sequential. The intuition of such a definition should capture that no party is

able to compute t iterations of the function in less than a given amount of ‘real-world time’,

for some time-parameter t. In order to formalise this intuition, however, one must choose a

computation model. The two most common such models are to consider time as either an

arithmetic circuit of depth t, without a bound on the breadth of the circuit; or as t steps of

a parallel Turing machine. For the remainder of this section, we do not make explicit any

model of computation in order to keep our discussion generic. However, in later chapters

of this thesis, we will be using the latter model. In practice, primitives are often modelled

assuming the adversary has an additional computational advantage to account for potentially

faster machinery. However, this intuition does not translate easily into all cryptographic

frameworks.

In particular, in the universal composability (UC) model introduced by Canetti [42], this

concept is difficult to capture. As such, a notion of time is instead obtained by providing

parties with access to a global clock, which partitions time into rounds. In each round, parties

can do various computations, before sending a message to the global clock indicating that

they are ready for the next round. We will discuss the UC framework in Section 2.3, and for

now restrict our attention to the standard model, which we shall describe as follows:

We say that a computation of an output y from an input x is sequential if it can be

computed in t steps with overwhelming probability, and yet any adversary A bounded by at

most t−1 sequential steps, utilising polynomially many parallel machines, cannot compute

y from x with more than negligible probability.

To build any such construction that satisfies this, we need an iterated sequential function

(ISF); that is a function with the same domain and codomain, which takes some minimal
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time to compute, that it is iterated t times. We shall illustrate the current methods of building

such iterated sequential functions next.

Approaches to building an iterated sequential function Consider a cryptographic hash

function H, which maps elements from a set S into the same set S. By sampling an input

x ∈ S, we can achieve an ISF trivially by computing t hashes: y = H(H(H(· · ·H(x)))). This

follows on from standard properties of a cryptographic hash function [93]: By the second

pre-image resistance and the collision resistance of H, the only way to verify the output y is

to spend another t time on the same computation.

For an ISF to be practical there is a requirement to be able to verify the computation

is correct in time significantly faster than t. Therefore, it is desirable to introduce some

structure to enable an alternative method for computing or verifying the solution. Having

this property facilitates a computational asymmetry in the amount of time taken to iteratively

calculate the solution and to efficiently verify the solution. In this chapter, we will refer to

this property as inversion, noting that a function with fast inversion will have more efficient

decryption/verification.

We now explore the existing methods in the literature for computing a delay.

- Repeated squaring. The original and most prevalent method of computing a delay is

using repeated squaring in an RSA group, as first proposed by Rivest, Shamir and Wagner

in [136]. This requires a trusted party generating an RSA modulus N = pq, where p and q

are primes, and sampling a random input x from Z∗N . The delay is achieved by repeatedly

squaring x and reducing modulo N.

The current state of theory is that this leads to the most practical applications of many

primitives, however there is always a discussion on how the modulus N is generated. First,

note that if a party knows the factorisation of the modulus, then they know φ(N) = (p−

1)(q−1). This allows them to dramatically speed up the computation x2t
as follows: they
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first compute e = 2t mod φ(N), and then compute xe mod N. This is significantly faster than

simply squaring and reducing modulo N [136].

Therefore in an untrusted setting, it is desirable that no party learns the factorisation of N.

This has led to extensive research into multi-party computation protocols for the trustless

generation of an RSA modulus. We discuss the current state of research in Section 2.1.3.

As an alternative approach to solving this problem, it was proposed in [155] to use class

groups of an imaginary quadratic field instead of an RSA modulus, as this does not require a

trusted third party. However, this is a non-standard security assumption, lacking the rigorous

cryptanalysis of the RSA assumption.

- Hash-based techniques An interesting alternative approach to computing a delay was

proposed by Mahmoody et al. in [114], which relies on a series of hash and xor functions.

The main drawback of this technique is that to verify the computation is correct requires

the same number or hash and xor functions, making it inefficient. On the other hand, the

minimal assumptions required by this scheme (e.g., no setup) make this a useful scheme for

proving theoretical results, as seen in [9].

Another interesting hash-based technique for computing a delay is using a directed

acyclic graph, a technique proposed by Mahmoody et al. in [115]. The idea here is to

compute multiple chains of hash functions, to create a graph. Upon publication of this graph,

parties can run a verification protocol to verify that a certain amount of time was spent

computing the graph. A construction with such public verification is known as a proof of

sequential work; we shall discuss this primitive in Section 2.2.6.

- Randomised encodings In [24], Bitansky et al. introduce the notion of non-parallelising

languages, which are languages which require at least t time to evaluate. They then go on

to show that if one assumes the existence of such languages, then one can build a time-lock

puzzle based upon randomised encodings. This paper provides a fascinating study as a novel

approach to building a delay, but is unfortunately theoretical rather than practical in nature.
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We note that in this thesis, we shall be using the repeated squaring assumption in an RSA

group.

Considerations on assumptions and the state of the art We have seen that there are

many approaches to building a sequential function, however many of them rely on heavy

cryptographic primitives such as indistinguishability obfuscation, which makes them effec-

tively unusable 1 We now aim to distill the current state of those delay-based assumptions

which are most practical.

Accuracy of these assumptions In each of the identified techniques the underlying as-

sumption is that the overall computation cannot be sped up by parallelism. However, it

is possible each sequential step may be parallelised to some extent, and it is also the case

that a faster machine will compute each step faster than a slower machine. This means

in practice an adversary is generally assumed to have a high level of parallelism, and an

additional computational advantage to account for potentially faster machinery. Due to a

lack of benchmarking, such advantages seem to be chosen arbitrarily, and hence when we

discuss the future work in the conclusion of this thesis (Section 7.3), we call for rigorous

benchmarking to provide the community a better understanding of how much of a speed-up

can be achieved with dedicated hardware.

Community trust Although hard to measure empirically, it seems that exponentiation in

a finite group is the most trusted delay technique used in practice. This is possibly due to

its reliance on traditional cryptographic building blocks such as RSA, and the longstanding

RSW assumption [136]. A recent work by Katz et al. analysed the security of time-lock

puzzles in the strong algebraic group model, showing that speeding up a time-lock puzzle is

at least as hard as factoring N [94]. Alternative methods such as replacing the RSA group

1IO is well known to be impractical at the current time, due to issues such as long evaluation time, heavy
memory requirements, and nonstandard assumptions [13, 89].
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with a class group lack the same level of community trust, and require significantly more

research until it can be considered trusted.

The area of isogeny-based cryptography is significantly younger than RSA, and hence

suffers from a similar lack of community trust. Indeed, this lack of trust seems like it may be

warranted in this case: An important key exchange protocol known as SIDH (Supersingular

Isogeny Diffie-Hellman), which had recently advanced to the fourth round of NIST’s ongoing

Post-Quantum Cryptography standardization process, was broken in a recent paper by

Castryck et al [47]. This result has damaged the reputation of isogeny-based cryptography.

Therefore, it is with good reason that sequential squaring in an RSA group is the de facto

method of computing a delay. However, there is always a question in such schemes of who

should generate the RSA modulus. The advent of blockchain technologies has elevated the

interest in trustless primitives, which has in turn led to various research into generating an

RSA modulus without a trusted party, which we discuss next.

2.1.3 Trustless Generation of an RSA Modulus

For any delay-based construction that is based upon the RSW time-lock assumption, a group

must be generated in order for the repeated squaring and reduction to take place. It is

necessary that the party computing the delay does not know any trapdoor which will speed

up the computation.

The most common approach is to use an RSA group. The trapdoor in an RSA group is

the Euler phi function φ(N) = (p−1)(q−1), where N = pq. When an RSA group is used,

N can be generated in one of two ways: In a trusted setting, a trusted party will generate an

RSA modulus N, and pass it to solving parties, who will compute the delay [53, 111, 136].

The alternative is to trust a group of random, potentially anonymous parties to run the

setup. In this case, one settles for an efficiency/trust trade-off. To ensure a certain standard of
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efficiency, the group will need to be relatively small, but if they all collaborate they can break

the security guarantees of the construction.

For this approach, an expensive multi-party computation (MPC) ceremony is required.

Research into MPC has recently developed with significant performance improvements.

In 2018, Frederiksen et al. [69] provided an implementation for the malicious two-party

setting. Using server grade hardware connected via a 40.0 Gbps network link, they were

able to achieve average runtimes of 35 seconds - this was not practically efficient, and only

supports the 2-party case. Also in 2018, Hazay et al. [85] introduced a method to compute an

RSA modulus using a threshold encryption scheme in the two-party setting, and they prove

security against malicious attacks. They offer multiple optimisations, and in the best possible

case, the average CPU time required to compute an RSA composite is 15 minutes.

In 2020, Chen et al. [49] introduced a new multi-party protocol for the distributed

generation of biprime RSA moduli, which improved upon the models of Frederiksen et al.

and Hazay et al. by removing security issues (such as information leakage) found in the

former, and eliminated some significant security assumptions (such as the use of additive

homomorphic encryption) in the latter.

In 2021, Chen et al. [50] extended this work, to produce Diogenes: the first implementa-

tion of a multi-party generation of an RSA modulus supported by thousands of parties. The

per-party communication cost of Diogenes grows logarithmically in the number of parties,

and their security model allows for a malicious adversary to corrupt all but one of the parties.

Further, they implemented this with as many as 4000 parties. An example timing that the

authors give is to generate a 2048-bit modulus among 1,000 parties, their passive protocol

executed in under 6 minutes and their active variant ran in under 25 minutes. These are

realistic timings, making this multi-party generation of an RSA modulus a practical approach.

We view this as the state-of-the-art construction.
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The downside of this construction, and indeed of approaches requiring active participants

[54], is the ease with which an adversary can perform a denial-of-service attack on the

generation. Denial of service can be achieved by corrupting only a single party. Whilst

cheaters can be removed and the protocol re-started, an adversary corrupting a large number

of parties can repeatedly perform this attack and greatly delay the generation of N. Therefore,

the practicality of its use can be concretely impacted upon.

To conclude, whilst this approach has been made feasible in recent years, significant

implementation challenges still exist in practice.

2.2 Delay-Based Primitives

The idea of associating clock time to computational time is the basis of many delay-based

primitives.

We shall categorise such primitives into two classes: those which allow for the recom-

putation of an input, which include time-lock puzzles, timed-release encryption, and timed

signatures; and those that do not, such as proofs of sequential work and verifiable delay

functions. We shall expand upon this in the Conclusion of this thesis, explicitly in Section

7.2, we illustrate the various relationships between each class of primitive in Fig. 7.1, and

suggest some potential relations between other primitives for future work.

In the following sections, we provide intuitions of the major delay-based primitives. Note

that while we do not provide formal definitions here, in the subsequent chapters we will

formally define the primitives we use, namely timed-release encryption and verifiable delay

functions.
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2.2.1 Time-lock Puzzles and Time-lock Encryption

The natural starting point of delay-based cryptography is time-lock puzzles (TLPs), which

were introduced by Rivest et al. in 1996 [136], in what is credited as the first work to

formally discuss the idea of a cryptographic delay. In a TLP, an encryptor takes as input a

string s and a time parameter t, and outputs a puzzle Z. The decryptor then spends t time

running a sequential computation on the puzzle Z to re-construct the string s. In the original

construction of Rivest et al., the method for obtaining a time-delay is repeated squaring

in an RSA group. Explicitly, the encryptor samples an RSA modulus N = pq, where p

and q are large primes, and chooses a string s, which they suggested could be a key to a

symmetric encryption scheme. The encryptor then randomly samples r and computes the

puzzle Z = s+ r2t
mod N. The solver is then given Z and r, allowing for the computation

of r2t
in t sequential steps, and hence the solver can learn the string s. Note that using the

trapdoor φ(N), the encryptor can construct the puzzle significantly faster than the solver can

recompute it.

Whilst this is not the only method of constructing a cryptographic delay, it is certainly

the most popular, and it is this construction that gave rise to many of the primitives that

we shall see later in this section. Other notable methods for computing TLPs include the

encoding-based construction of Bitansky et al. [24], as discussed in Section 2.1.2, and the

UC-based construction of Baum et al. [16], as we shall discuss in Section 2.3. However, the

construction of Rivest et al. remains the most relevant.

Whilst advances in constructions have been limited in recent years, the theory of TLPs has

continued to advance. Some of the most important recent work has included the introduction

of non-malleable TLPs [70], TLPs which protect against tampering attacks, by ensuring that

a TLP cannot be ‘mauled’ into another, related message. This has strong applications to

auctions and fair coin-flipping, by removing the need for a setup.
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As discussed in Section 2.1.2, a recent work by Katz et al. [94] analysed the security of

time-lock puzzles, showing that in the strong algebraic group model, speeding up a time-lock

puzzle is at least as hard as factoring N.

A fundamental requirement for a TLP is that the generation of the puzzle should be

significantly faster than solving the puzzle. This time-gap between generation and solving

puzzles makes constructions far more practical, but rules out simpler constructions. If one

can accept a linear time difference, then a relaxation of TLPs is time-lock encryption (TLE).

There is a lack of consistency in the definitions of TLE and TLPs, within the literature,

with some sources claiming they are interchangeable [53]. We do not agree with this, and

posit the following:

A timed-release encryption scheme need only be correct, secure and sequential, whilst a

time-lock puzzle must additionally have the property that the time spent on puzzle generation

is significantly faster than the time spent on solving the puzzle. What this means in practice

is that every TLP is also a TLE, but the inverse is not true.

A pertinent example of a TLE scheme is that of Mahmoody et al., which relies on iterating

a hash and xor function [114]. In this work, the authors set out to build time-lock puzzles in

the random-oracle model. They in fact provide an impossibility result showing that such a

time-lock puzzle is impossible due to the required time gap between puzzle generation and

puzzle solving. They instead build a scheme using a repeated hash-and-xor technique, which

does not qualify as a time-lock puzzle, due to the slow puzzle generation. The way to verify

this puzzle is to repeatedly hash and xor t times to go from the solution to the input. Note

that this is not a TLP due to the linear gap in solving and generating a puzzle.

Initially this may seem like a weaker construction than that of Rivest et al. due to the

longer generation of puzzles. However, this construction does not require an RSA group to

be generated, which leads to fewer assumptions, as discussed in Section 2.1.2. This is useful

in proving theoretical results, especially in the decentralised setting [9].
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2.2.2 Homomorphic Time-lock Puzzles

Malavolta et al. posit that the main drawback of using time-lock puzzles in applications

such as auctions or voting is the need to solve many puzzles before being able to compute

a function over the time-encrypted messages [118]. They propose homomorphic time-lock

puzzles to reduce the number of puzzles that require solving to just one (for example the

highest bid in an auction). A homomorphic time-lock puzzle consists of a set of puzzles with

an underlying property allowing for any party to compute a function on the set of puzzles

without learning any of the underlying messages. This means that only the relevant puzzle

needs to be decrypted rather than all of the puzzles.

Homomorphic time-lock puzzles can be either linearly, multiplicatively, or fully homo-

morphic. Moving from left to right across these three types of homomorphism, the puzzles

gain more functionality, but become harder to construct in an efficient manner.

The RSW time-lock assumption is the basis of the Malavolta et al. construction and

it is augmented with techniques from homomorphic encryption to construct both linearly

and multiplicatively homomorphic TLPs. They additionally show that fully homomorphic

time-lock puzzles can be built using indistinguishability obfuscation, which is unfortunately

impractical at the current time. A follow up work by Brakerski et al. in 2019 built fully

homomorphic TLPs from standard assumptions [36], representing significant progress. In

2022, Liu et al. built a scheme which significantly improved the practicality of linearly and

multiplicatively homomorphic TLPs [109]. Explicitly, they built a multiplicatively HTLP

scheme which computes solutions over Z∗N , and implemented linearly homomorphic TLP

schemes, showing that they run efficiently in practice, and have low storage. What this means

in practice is that certain classes of functions can be computed over the set of TLPs efficiently,

and others are of theoretical interest but are currently lacking an efficient construction. This

is well-illustrated by the observation that voting requires linearly homomorphic TLPs, and
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so can be instantiated in practice, whereas auctions rely on fully homomorphic encryption,

which is not practically efficient at the current time.

2.2.3 Timed-Release Encryption

Timed-release encryption was first mentioned by May in 1993 [120], with the idea of sending

a message and a release time to a trusted agent, who would transfer the message at this release

time. Various constructions were proposed using such a trusted agent [48, 119], and in 2008,

Cheon et al. [51] proved that the security of this concept is equivalent to that of identity-based

encryption. In [129], an interesting generalisation of TRE known as time-specific encryption

(TSE) was introduced by Paterson et al. In TSE, a time-server is used to enable decryption of

a message within a specified time interval [t0, t1], broadening the scope of applications.

In current times however, the use of a trusted agent is generally seen as something to

be avoided. Timed-release encryption is now often seen as a combination of public-key

encryption with a delay [53, 111]. On a high level, this works by making the encryption key

public, and encoding the decryption key as the solution to a sequential computation.

As such, in more recent times there have been some attempts to build such timed-release

encryption schemes that do not rely on a trusted server. An interesting line of research has

been to use the bitcoin protocol [126] with witness encryption, where one must show the

solution to a hard problem in order to decrypt a message [107, 108]. These schemes use

bitcoin as the hard problem, on the basis that after a certain amount of time, the correct

number of blocks will have been mined, and importantly also made public. This means that

any party can then obtain a decryption key for example, without having to do a lot of work

themselves. As is often the case, the main issue of such schemes is their reliance on heavy

cryptographic primitives such as witness encryption that are unworkable in practice.
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At ESORICS 2021, Chvojka et al. introduced the idea of taking a TLP and using its

solution in the key generation of a public-key encryption (PKE) scheme [53]. They use this

to define a timed-release encryption (TRE) scheme where multiple parties encrypt a message

to the public key of the PKE scheme. Then upon solving the puzzle they can reconstruct

the secret key and decrypt all of the messages. The authors explain how to achieve this

generically using standard TLP and PKE primitives.

In Chapter 4, we shall give the formal definitions of a TRE following Chvojka et al. [53],

before presenting a concrete construction of a TRE scheme, using the RSA cryptosystem

and the RSW time-lock assumption as our building blocks. Then, in Chapter 5, we introduce

a new variant on TRE which we term TRE with implicit authentication, providing security

definitions and a construction of this primitive.

2.2.4 Delay Encryption

Delay Encryption, introduced by Burdges et al. in 2021 [39], is a primitive which offers

a delay-based analogue to identity-based encryption. In identity-based encryption, there

exists a master public and private key pair, which are used to authenticate identities and

generate each parties’ private key [34]. In delay encryption, there is a session ID, and a

session key instead of this key pair. The session key is encoded as the solution to a sequential

computation, allowing any party who runs the sequential computation to decrypt all messages

posted to the session ID.

Unfortunately, the construction of DE presented in [39], which is currently the only

published construction 2, comes with two significant challenges for implementation: (i) The

storage requirements needed to compute the decryption key is huge - a delay of one hour

2There is also an unpublished construction by Loe et al. [110] which is shown to run efficiently, but relies
upon a trusted setup.
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requires 12 TiB of storage; (ii) The time taken to run setup grows proportionally to the delay,

which is very expensive.

Therefore, a more practical construction of delay encryption would be an interesting

research problem.

2.2.5 Timed Commitments and Timed Signatures

In 2000, Boneh and Naor introduced the notion of a timed commitment [35], a commitment

scheme in which the message can be ‘forced’ open by completing a sequential calculation

taking a prescribed length of time t. They additionally introduced the analogous timed

signature, a commitment to a signature which can also be forced open through similar

sequential calculation. A key application of timed commitments is fair contract signing:

using timed signatures allows multiple distrusting parties to commit to a signature, with

a guarantee that if any party quits the protocol, the relevant signature can be forced open.

Whilst timed commitments work well in the two party case for such applications, they do not

scale well, as the number of sequential computations grows with the number of parties.

Early literature which also focused on the timed-release of signatures and other time-

sensitive information worked on the basis that there was a slow and partial release of the

information. That is, the signature would be released in small portions a bit at a time

[27, 60, 67]. Furthermore, early delay-based signature literature ensured that standard digital

signature schemes could be leveraged into the constructions [75] [76]. This was to ensure

backward compatibility and interoperability with well-known digital signatures schemes

such as RSA and DSA.

Modern delay-based signature schemes also provide a property known as well-formedness

[76, 150]. Well-formedness gives the party solving the time-lock puzzle a guarantee that

the secret information will indeed be released when the puzzle is solved. This provides
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assurance to the party solving the puzzle that they will not commit a large amount of work

without a guarantee that the secret information will be released. The theory of verifiable

timed signatures (VTS) was formalised in 2020 by Thyagarajan et al. [150], as a practical

improvement upon a timed signature. VTS schemes are built from a delay perspective

on homomorphic time-lock puzzles [118]. They also rely on digital signature schemes

[92], non-interactive zero-knowledge proofs [138], and threshold secret sharing [144]. The

homomorphic time-lock puzzles are used to aggregate the challenges of each aborting party

into a single puzzle, which allows solvers to only solve one puzzle rather than many. The

VTS constructions are compatible with standard BLS, Schnorr, and ECDSA digital signature

schemes.

Timed-commitments and timed-release digital signatures have applications in pseudony-

mous secure computation [92] and non-malleable commitments which can mitigate concur-

rent person-in-the-middle attacks [106]. Furthermore, verifiable timed signatures also have

specific applications in payment channel networks used in cryptocurrencies [117], multi-

signature transactions which are used so that multiple signatures are required to authenticate

transactions [32], and also in fair multi-party computation so that fairness in blockchains can

be achieved by financially penalising parties which abort protocol execution [99].

We now move on to the second class of primitives, which contains proofs of sequential

work and verifiable delay functions. These primitives are fundamentally different to those

we have discussed so far: Rather than use the output of the delay to encode a message, the

following primitives simply prove that a delay has occurred.
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2.2.6 Proofs of Sequential Work

In 2013, Mahmoody et al. introduced ‘publicly verifiable proofs of sequential work’ [115].

The motivation for this work was to provide a computational timestamping technique for a

document. They defined a non-interactive timestamping scheme based upon a ‘hashgraph’,

a directed acyclic graph of repeated hashes. This technique is also used in other areas of

cryptography, notably including in decentralised consensus protocols [12, 122, 145]. Their

scheme was based upon creating a hashgraph for which it is slow for an adversary to compute

any feasible alternative solution, whilst also being efficiently verifiable by a member of the

public. These properties capture the essence of a PoSW: a computation which takes at least a

set length of time t to compute, and which can be publicly verified significantly faster than

t. The drawback of this construction, and indeed of the definition of the primitive, is that

solutions are not unique, meaning that it is possible for a legitimate solution to be ‘mangled’

into another solution that verifies as correct.

In 2018, Cohen and Pietrzak introduced an alternative, similar construction [55], which

has less requirements on the structure of the graph, and is more efficient than Mahmoody’s

construction. However, currently it seems that this construction has little bearing on the

status of theory since the introduction of verifiable delay functions, which as we shall see in

Section 7.2 are themselves proofs of sequential work.

In 2017, Lenstra and Wesolowski introduced a slow-timed hash function, which they

named Sloth [104]. Sloth makes use of some number theoretic properties, where an evaluator

is required to solve a chain of the following puzzles: Sample an input x from a group Zp,

which is chosen such that p≡ 3 mod 4. The evaluator is challenged to compute
√

x≡ x
p+1

4 .

This downside to such a construction is that the output is a t-bit number (for hardness

parameter t), and hence verifying this output is time-consuming. However, this novel paper
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advanced the theory of proofs of sequential work, and can be seen as a precursor to verifiable

delay functions (VDFs), which we explain next.

2.2.7 Verifiable Delay Functions

The most prominent primitive introduced in recent years in the context of delay is the

verifiable delay function (VDF). They were first introduced by Boneh et al. in 2018 [32], in

what is now considered a seminal paper. A VDF is characterised by a delay in the form of an

iterated sequential function, such that each input has a unique output that can be efficiently

and publicly verified.

Upon comparison with the previous section, one can view a VDF as a unique proof

of sequential work. A good illustration of the importance of uniqueness can be seen in

a randomness beacon. Building a VDF-based randomness beacon critically relies on the

uniqueness (or function) property of VDFs. Recall that a PoSW is not unique, and hence

can have multiple outputs. This means that if one is to instead use a PoSW, then a malicious

prover can compute multiple outputs, and select the PoSW output that yields the best beacon.

This is a very important application, which we shall discuss at length in Section 2.4.3.

In [32], along with defining and motivating the primitive, Boneh et al. introduced

various candidate approaches to constructing a VDF, such as using incrementally verifiable

computation and injective rational maps, along with the drawbacks of each approach.

Shortly after the publication of this work, three VDF candidates were proposed: Wesolowski

[155] and Pietrzak [130] each proposed an RSW-based VDF, and De Feo et al. [68] proposed

a VDF based upon pairings over supersingular isogenies over elliptic curves. We briefly

discuss each of these constructions.

Wesoloski’s and Pietrzak’s VDFs were designed concurrently, and are similar in nature:

Both of these constructions are based upon repeated squaring and reduction in an RSA group
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modulo N (as an interesting aside, this can be seen as contributing to the research into the

multi-party generation of an RSA modulus, as discussed in Section 2.1.3). The solver then

engages in an interactive protocol to prove to a verifier that they computed the correct solution.

Where the two constructions differ however, is their verification procedures. Each uses a

different succinct public-coin argument in order to verify the output. Wesolowski’s protocol

has a stronger security assumption (if it is secure then so is Pietrzak’s VDF), smaller proof

storage and faster verification. On the other hand, Pietrzak’s VDF constructs the proof in

significantly fewer operations. We refer the interested reader to [33] for a detailed discussion

and comparison of the two constructions. De Feo et al.’s VDF on the other hand takes a

different approach to computing the delay and verifying the VDF, utilising techniques from

post-quantum cryptography. Their approach to computing a delay is to use BLS signatures

together with isogeny graphs over supersingular elliptic curves in order to produce a slow

function, that can quickly be verified. Unfortunately this construction suffers from a trusted

setup, and implementation challenges such as very large storage requirements [68].

The importance of the VDF primitive is underlined by how quickly the subject has

advanced in a short time, with multiple papers discussing VDF variants [64, 66, 122], and

VDF-based applications [101, 102, 141]. In 2019, Ephraim et al. introduced the notion of a

continuous VDF (cVDF) [66]. The cVDF model presented by Ephraim et al. introduces the

notion of a state, which is an intermediate point within the computation that can be verified.

In contrast, with a standard VDF verification is only possible at the end of the computation.

These states enable two key applications that a standard VDF is lacking. Firstly, at any state

the solving party can pass the computation on to another party, who can efficiently verify the

state and take over the computation. Secondly, by running the verification procedure at each

state, trusted public randomness can be extracted at regular intervals, creating an efficient

randomness beacon from one input. We shall discuss randomness beacons further in Section

2.4.3.
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There exists an interesting impossibility result by Mahmoody et al. [116], where the

authors look into whether one can take a black box hash function, and use it to build a VDF.

In this work it is proven that no perfectly unique VDF (i.e., a VDF with only one solution

that will verify as correct for each input) can be constructed in the random oracle model.

In Section In Chapter 6, we build a novel continuous VDF, and resulting randomness

beacon, leveraging a trusted setup in order to improve upon the efficiency of Ephraim et al.,

and hence improving upon the efficiency of the randomness beacon.

2.2.8 Miscellaneous Primitives with a Delay Component

There exist primitives for which a delay constitutes an essential component in terms of

enabling functionality. We mention these for completeness.

For instance, in break-glass encryption [139] a user encrypts their data to the cloud,

and in case of an emergency, such data can be detectably recovered without the use of any

cryptographic secret. To trigger this one-time request, the user is contacted by the cloud

on an alert address, and if after a prescribed delay there is no answer, this is interpreted

as permission to “break the glass" and access the data. The delay in this setting is simply

wall-clock time, i.e., it is not determined by some computation.

Time plays a key role also in a posteriori openable public-key encryption (APOPKE)

[38], a primitive designed to provide a key to “open" encrypted messages that fall within a

specific time window, the main application being lawful interception of encrypted messages

under investigation. While seemingly close to the TRE and TSE lines of work, APOPKE

addresses a specific scenario and comes with its own security definitions. Its realisation

involves neither a time-server nor some computational delay, but is instead based on algebraic

techniques and standard cryptographic building blocks.
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Fig. 2.1 Identified and conjectured relations between delay-based primitives.

2.2.9 Conclusion

We conclude this section by presenting Fig. 7.1, which provides a visual guide to the major

primitives discussed, along with how they link together.

In the cases where there is no established link between primitives in the literature, we

conjecture potential links. In Chapter 7, we discuss these links in detail, and use these to

offer directions for future work.

2.3 Universal Composability

In [42], Canetti introduced the universal composability framework, to prove cryptographic

protocols secure in a modular fashion. In this framework, any protocol Π will consist of

n parties P = {P1, · · ·Pn}, and an adversary A. All parties, as well as the adversary are run

by interactive Turing machines (ITMs). The adversary has the power to corrupt a subset

I ∈ P of parties. The UC framework also takes into account an additional ITM known as the
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environment, which accounts for any leakage of information, such as through side-channels,

that will occur in complex protocols with multiple sessions running simultaneously.

The concept of this framework is to define an ideal functionality, which captures which

properties a given primitive (for example a time-lock puzzle) should achieve. Parties exchange

messages via these ideal functionalities, which securely compute all computation before

passing it back to the party. A protocol for instantiating such primitives is then defined as

secure in the following way: The ideal functionality is said to live in the ‘ideal world’, and the

protocol is said to live in the ‘real world’. In the real world, there is an adversary who is given

the power to corrupt parties, intercept messages etc. in keeping with traditional cryptographic

models. In the ideal world, there is instead a simulator who acts as the adversary, with the

power to corrupt parties. Additionally, in both worlds there exists the ‘environment’. The

environment represents information leaked through side channels, such as the number of

messages sent across a channel. A protocol is said to be secure, if the environment cannot

distinguish between the real world adversary attacking the protocol, and the ideal world

simulator attacking the functionality.

This model allows one to substitute the protocols for their functionalities when proving

the security of a more complex primitive.

What is highly interesting, is that the standard notions of time discussed in Section 2.1

do not apply to this setting.

Time in UC Recently, there have been efforts to model time-based primitives such as

TLPs and TLEs in the universal composability model [9, 17, 16]. In contrast to what we have

seen in previous sections, Baum et al. prove that in order to build UC-secure TLPs, one must

use the random oracle model [16].

Baum et al. introduce TLPs via a ticker functionality in TARDIS [16], which works by

splitting time into units known as clock ticks. The global clock advances a tick only when all
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honest parties have submitted a command which indicates that they have been activated in

the current tick. During each tick, a party may interact with any number of functionalities to

send messages.

In [9], Arapinis et al. introduce a UC TLE scheme named Astrolabous, which relies on a

global clock [6] rather than the TARDIS model. This global clock introduces a synchronised

notion of time for all parties, who may ‘read’ the time from the global clock at any stage.

Where the models of TARDIS and Astrolabous diverge, is how the clock is managed:

In the TARDIS model, the ‘ticker’ provides ticks to each functionality on behalf of the

environment, which means that parties do not need to observe the time elapsed by the ticker.

They instead see events that are triggered by elapsed time. On the other hand, in Astrolabous,

parties explicitly read the time of the global clock to see what round it is.

The key difference between these models can be seen as follows: In the ticker model

of TARDIS [17, 16] time is not synchronised but progresses identically for all entities.

In Astrolabous [9], the model relies on the stronger assumption that time is synchronised

among all entities, and uses an existing approach to using a global clock. The former

assumption appears to be weaker, as strict synchronisation is a hard task. On the other hand,

the Astrolabous model allows for the generic group model to be avoided, which allows the

construction to be applied more widely.

In recent years, the first time-based primitives in the UC framework have been published,

allowing for various techniques to be moved to a composably secure setting [6, 8]. This

provides stronger security guarantees in complex protocols, and it is our hope that more

time-based primitives are constructed in the UC framework.
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2.4 Applications

In each of the following three chapters of this thesis, we will introduce a new construction.

In this section we discuss the applications which motivate these constructions. Explicitly, we

will explore the use of delay in auctions, whistleblowing and randomness beacons.

In Chapters 4 and 6, we show that one can leverage a trusted setup in order to build novel,

efficient constructions, which can be applied to auctions and randomness beacons.

In Chapter 5, we instead introduce a new setting of delay-based cryptography, in which

we use the same trusted setting to provide fine-grained control of the release of data, using

whistleblowing as a use case.

2.4.1 Auctions

Sealed-bid auctions allow bidders to secretly submit a bid for some goods without learning

the bids of any other party involved until the end of the auction. The challenge of building a

fair, efficient, and cryptographically secure auction has been of interest to the cryptographic

community for decades [25, 37, 39, 73, 90]. It is a common motivating example for delay-

based primitives, and was mentioned as an application for time-lock puzzles by Rivest et al.

in 1996 [136].

A common approach to constructing sealed-bid auctions is to implement a commit-

and-reveal solution using an append-only bulletin board, such as a blockchain [73]. Such

solutions consist of two phases: a bidding phase, where parties commit to a bid and post

their commitment on the bulletin board; and an opening phase where parties reveal their bids.

However, the main drawback of this approach is that parties are not obliged to open their bids,

which is particularly problematic in certain auction variants where it is necessary to learn the

second highest bid as well as the first [11, 28, 153]. For an auction to be transparent and fair
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it is desirable that each party must open their commitments to the bid once the bidding phase

has ended.

One can replace the commitments in the above approach with time-lock puzzles, by

requiring that each party encrypts their bid as the solution to a time-lock puzzle, placing the

puzzle on the bulletin board rather than the commitment. This means that in the opening

phase if a party does not reveal their bid it can instead be opened by computing the solution

to the relevant puzzle. There exist multiple various constructions that fit this approach to

auctions, and we view the non-malleable TLP construction of Freitag et al. [70] as the state

of the art, as it requires no setup. However, this method does not scale well because it leads

to many different time-lock puzzles being solved, which is computationally expensive. In

recent years, various primitives that we discussed in Section 2.2 have been applied to solve

this problem more efficiently. We will now outline these approaches.

In 2019 [118], Malavolta et al. used homomorphic time-lock puzzles (see Section 2.2.2)

to improve upon this concept. Their insight is that the tallier then uses techniques from

homomorphic encryption to evaluate a computation over the set of puzzles to determine

the winning bidder. This leads to only the relevant puzzle being solved rather than the

entire set of puzzles. Whilst this is a very elegant solution, the application relies on fully

homomorphic TLP constructions, but all current constructions of homomorphic TLPs are

based on indistinguishability obfuscation (IO) [39, 118]. IO aims to obfuscate programs to

make them unintelligible whilst retaining their original functionality [14]. However, IO is

known to be impractical with no construction efficiently implementable at the time of writing

[89].

In 2021, Burdges et al. described auctions as a key motivating example for their Delay

Encryption primitive [39] (see Section 2.2.4).Where time-lock puzzles require each bidder

to encrypt their bid against a unique time-lock puzzle, Delay Encryption instead requires

bidders to encrypt their bid to the public session ID. Bidders can then run the sequential
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computation to extract the session key. Once the session key has been extracted all bids can

be decrypted, thus replacing the opening phase described in the commit-and-reveal paradigm.

This works well in the context of auctions as in the opening phase, after only one slow

computation, all bids can be decrypted. When compared to HTLPs, this is an improvement

as rather than performing a computation to learn the one relevant puzzle, and then decrypting

it, in DE the computation can be computed directly and then used to open every encryption.

This seems like an ideal approach on the primitive level, but as described in Section 2.2.4,

there are instantiation challenges with the only one candidate construction to date.

The goal of the approaches outlined above is to utilise a time-delay to solve the auction

problem in a scalable, and trustless manner. This improves upon the efficiency of Rivest’s

solution by ensuring that only one sequential computation (namely the puzzles containing

the highest bid in [118], and the delay computed in [39]) needs to be run, rather than one for

each bid. However, the HTLP approach is limited in the scope of its application, and DE is

impractical.

If one is willing to compromise on the decentralisation and utilise a trusted setup, TRE

can be used instead. In 2021, Chvojka et al. suggest using TRE (see Section 2.2.3) to provide

a more efficient decryption method, in a similar vein to the described application of DE. By

using straightforward public key decryption to decrypt all of the bids, this is a very efficient

approach. In Chapter 4, we construct and implement such a TRE scheme, showing it runs

efficiently on consumer-grade hardware.

To conclude, there have been various modern improvements over the original approach

of Rivest et al. However, we still lack an optimal solution, that is, one that does not rely on a

trusted setup, and yet shares an efficient decryption method for all messages. For an auction

in which only the highest bid is required, then Malavolta’s HTLP approach is the current

state of the art for a decentralised auction. On the other hand, if one is content with a trusted

setup, then TRE is the most efficient primitive.
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2.4.2 Whistleblowing

A novel extension of TRE which we shall introduce in Chapter 5 is the primitive TRE with

implicit authentication, which allows an encryptor to fine-tune the release of information,

whilst providing the recipient with guarantees regarding the legitimacy of the material. We

demonstrate that this can be used to introduce safety mechanisms for vulnerable people,

using whistleblowers as an illustrative use-case.

A whistleblower is a person who leaks sensitive information on a prominent individual or

organisation. Obtaining and sharing the sensitive information associated with whistleblowing

can carry great risk to the individual or party revealing the data. In Chapter 5, we explore

the idea of incorporating a time delay in the context of whistleblowing, with the goal of

providing a cryptographic solution that can improve upon and be used in conjunction with

current tools. Explicitly, we introduce a primitive known as TRE with implicit authentication,

which ensures that an adversary cannot encrypt a ciphertext of a chosen message, and claim

it was from a whistleblower. Additionally, it allows the whistleblower to separate the actions

of distributing ciphertexts and distributing the ‘challenge’, from which the decryption key is

derived.

It is our hope that our work in this topic this will lead to further research and, eventually,

some publicly-accessible technology which will allow whistleblowing to be practiced in a

safer manner.

2.4.3 VDF-based Randomness Beacons

A high-entropy source of public randomness is a necessary component of many cryptographic

protocols, including secret sharing and key distribution [29, 58]. Since 2011 NIST have been

running a competition to build a trusted randomness beacon, with the objective of promoting

the availability of trusted public randomness as a public utility. A randomness beacon allows
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a group of parties to use some shared randomness in a protocol, each with the guarantee

that none of the other parties has any prior-knowledge of the output. Common applications

include running a lottery and random sampling. Random sampling can be used for selecting

patients in clinical trials or selecting officials in audits, for instance.

A modern approach to building a randomness beacon utilises verifiable delay functions

(VDFs), discussed in Section 2.2.7. Whilst VDFs can also be used to construct consensus

protocols and in timestamping, their flagship application is indeed to provide a publicly

verifiable randomness beacon [56, 101].

On a high level, a VDF samples a pseudo-random input, and uses the output of the delay

function to extract randomness.We use the canonical example from [32] to illustrate this:

Say we take the value of a stock price at the end of a trading session as input: the value of a

given stock is assumed to be difficult to predict, and hold some entropy. However, a powerful

adversary may be able to alter the value this stock finishes at, by making some large trades.

One can employ a verifiable delay function with a time parameter high enough that by the

time it has been evaluated on any candidate values, trading has finished for the day. This

ensures that no party can compute the effect of altering the input whilst trading is still live,

and hence the output of the delay function will remain indistinguishable from random. We

next describe the most relevant protocols which build upon a VDF to build an RB.

In 2018, Drake et al. [65] proposed a smart contract which uses a VDF to produce random

values. This approach requires multiple parties, known as beacon chain proposers to each

contribute some local randomness. Drake assumes that there exists a global clock and splits

up time into regular epochs of 1024 seconds. Each of these epochs is split into 8-second

blocks, each of which is ran by a beacon chain proposer. These proposers each commit

to some local entropy and reveal it at the end of their block, where it is then broadcast as

randomness. This randomness is then used to sample a later beacon proposer. This idea was
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presented as a post on Ethereum research forum, and is currently lacking a rigorous security

analysis.

In 2020, Schindler et al. proposed randrunner [141], an interactive RB construction in

which all participants are given a unique trapdoor in setup. Then consecutive rounds of

randomness are evaluated where in each round an input is sampled and also one leader is

chosen, whose trapdoor allows them to evaluate the VDF faster than any other party. The

output of the VDF evaluated in each round is hashed to obtain a pulse of randomness which

is the beacon output, then another input and leader are chosen for the subsequent round.

All parties are encouraged to try to solve the VDF, even if they do not have the trapdoor,

which leads to a large amount of computational expenditure, particularly as the number of

participants grow. Additionally, this construction suffers from various attacks, such as the

adversary being able to corrupt the round leaders, and withhold output, whilst working on

subsequent rounds.

In 2022, Lee et al. proposed HeadStart [102], with the novel idea of having multiple

parties computing VDFs simultaneously in a contribution phase. During the contribution

phase each party in the protocol contributes some randomness before a third party known as

the organiser uses these inputs to provide a verifiably random result.

An alternative approach to improve efficiency is to use a continuous VDF, as discussed

in Section 2.2.7. Ephraim et al. [66] build a randomness beacon from a continuous VDF by

extracting randomness at regular intervals. Recall from Section 2.2.7 that a cVDF consists of

multiple states where verification can occur.

In the construction of [66], an initial state state0 is generated during the setup procedure.

Then two algorithms are ran in parallel on every state: algorithm Tick takes a state statei,

and outputs the next state statei+1. Algorithm Tock takes the state statei and outputs a pulse

of randomness. In practice the randomness is obtained with a cryptographically secure hash

function. Verification can be performed on both the computation of Tick and of Tock, to
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show that the state was computed correctly, and to show that the randomness was correctly

computed from the state.

Ephraim et al. presented a construction based upon their cVDF in [66], however the

concrete RB resulting from this approach has a verification time which grows in O(log t),

and hence scales badly as the time parameter increases.

In Chapter 6, we demonstrate that one can leverage a trusted setup to build a cVDF which

scales more efficiently, hence leading to a more effient randomness beacon.
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In this chapter, we introduce some important cryptographic and number theoretic prelim-

inaries that will be used in the subsequent chapters.
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3.1 Cryptography

We have discussed the cryptographic ideas most relevant to this thesis in the previous chapter,

and so here we restrict our attention to the building blocks that we require for the subsequent

chapters, rather than giving a broad cryptographic overview.

3.1.1 The RSW time-lock assumption

As discussed in Chapter 2, the RSW time-lock assumption [136] is core to a number of notable

constructions using a cryptographic delay in the latest literature [32, 66, 70, 118, 130, 155].

In this thesis, we rely upon the security of this assumption in each of our constructions.

Here, we provide an explicit definition of the RSW time-lock assumption, and the square and

multiply algorithms in the RSA setting. We shall use these in each of the subsequent three

chapters.

Algorithm 3.1.1: Square and Multiply [57]
input :(a,b,N), // a,b,N ∈ N, ab mod N

1 d := 1
2 B := bin(b) // b in binary
3 for j ∈ B do
4 d := d2 mod N
5 if j = 1 then
6 d := da mod N
7 end
8 end

output :d

Definition 3.1.1 RSW Time-Lock Assumption: Let N = pq where p and q are distinct odd

primes. Uniformly select x ∈ Z∗N , where Z∗N = {x |x ∈ (0,N)∧ gcd(x,N) = 1}. Then set

the seed term as x0 := x2 mod N. If a probabilistic polynomial time (PPT) adversary A

does not know the factorisation of N or group order φ(N) then calculating xt ≡ x2t

0 mod N
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is a non-parallelizable calculation that will require t sequential modular exponentiations

calculated with the Algorithm 3.1.1 Square and Multiply [136].

3.1.2 Provable Security

Throughout this thesis, whenever we present definitions and proofs, we will do so within a

provable security framework. Provable security refers to the practice of modelling a cryp-

tographic system with an adversary, commonly denoted by A. Proofs in provable security

aim to show that an adversary cannot break a given security property without solving an

underlying problem, which is assumed to be hard [18, 62, 148]. From a formal perspective,

this is a significant improvement over the alternative (which is providing intuitive arguments,

and showing that known attacks do not work), as one gets a guarantee that a protocol is

secure according to a rigorous definition. However, if the definition is inaccurate, or the

hardness assumption is wrong, then insecure protocols can be ‘proved secure’. This has

led to criticism of the use of provable security, notably including [96, 97], where Koblitz

and Menezes criticise various aspects of provable security, claiming that in many cases the

security assurances it provides are false. However, this proved to be highly controversial,

with many leading cryptographers writing to the editor of the journal that published these

claims, in order to strongly disagree with the criticism [1]. We believe that provable security,

whilst not flawless, is the most pragmatic approach to assessing the security of protocols. We

do not think it should be a replacement for practical testing and analysis by the community,

but is a very useful addition to this.

Security models Provable security generally models definitions as either game-based,

or simulation-based. In this thesis, we shall present game-based definitions, which define

formally when the adversary obtains inputs, and the outputs they must provide at each step.
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The security of each protocol is measured by the probability of the adversary winning the

relevant game.

The alternative is to use simulation-based definitions, where one compares the security

in the ‘real world’ to that of an ‘ideal world’, where a protocol is secure by definition. The

goal in simulation-based security is to show that security in the real world is no worse than

in the ideal world. An important framework within the simulation model is the universal

composability framework of Canetti [42], which we described in Section 2.3. We refer the

interested reader to this section for a brief delay-oriented introduction, and to the following

works for various proposed frameworks [42, 87, 100].

3.1.3 The Random Oracle Model

A random oracle is a theoretical object in cryptography which takes as input a query, and

provides a random number as output. In modern cryptography, the random oracle model

typically refers to using this model in order to obtain rigorous security proofs of protocols,

and then later implementing the oracle using a hash function. It has now been 30 years since

the use of random oracles was first suggested for use in cryptography [20], and this is now

widely considered a standard technique.

The downside of the random oracle model lies in the disparity between an ideal random

oracle, and any real life implementation using a hash function. It is clear that this powerful

tool introduces a strong assumption, which has indeed shown not to hold in certain cases [43].

However, it should be noted that circumstances in which security does hold in the random

oracle model, but does not in an implementation with a hash function tend to be artificial

and unrealistic. Additionally, attempts to avoid the use of this model in proofs of existing

protocols has led to security weaknesses not present in the original protocols as proved under
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the random oracle model [98]. Despite the criticism, we view this model as an important

method for bridging theory and practice in cryptography.

3.1.4 Cryptographic Primitives

Throughout the remainder of this thesis, we shall be using some tools from public-key

cryptography. Here, we shall define a public-key encryption scheme, and security against

chosen-plaintext attacks, which will be important for the security proofs that appear in

Chapters 4 and 5. We additionally define a cryptographic hash function, which shall be used

throughout the thesis, and a pseudo-random number generator, which is important for the

randomness beacon construction of Chapter 6.

Definition 3.1.2 A public-key encryption (PKE) scheme is a triple of PPT algorithms (Gen,

Encpk, Decsk) such that:

1. Gen takes as input security parameter 1λ , and outputs a key pair consisting of a

public-key pk and a secret key sk.

2. Encpk takes as input the public-key pk, and a message m and outputs a ciphertext c.

3. Decsk takes as input the secret key sk, and a ciphertext c and outputs either a message

m, or the symbol ⊥, denoting failure.

Further, it is required that Decsk(Encpk(m)) = m with overwhelming probability.

Chosen Plaintext Attack A standard security property in public-key cryptography is the

notion of security against chosen plaintext attacks (CPA security). We say that a PKE scheme

is CPA secure if any PPT adversary cannot win the following experiment: The adversary

chooses two equal length messages and passes them to the challenger. The challenger returns

the ciphertext of one of these messages, and challenges the adversary to distinguish which
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message was encrypted. We make this formal in the CPA security game. This game-based

definition will be the standard format for the formal security definitions that we use in this

thesis.

CPA Security Game
1 C runs pk,sk← Gen(1λ ), to generate a public-key pair, and passes pk to A.
2 A chooses two messages m0,m1 of the same length, and passes these to C.
3 C chooses a bit b←{0,1} uniformly at random. C runs c← Encpk(mb), and passes

this to A.
4 A outputs a bit b′.
5 A wins if b = b′.

A PKE scheme is CPA secure if A wins with probability at most 1/2+negl(λ ).

Cryptographic Hash Functions Throughout this thesis we assume the existence of secure

cryptographic hash functions, which we implement in later chapters using the very common

algorithms SHA-2 and SHA-3. We define a hash function assuming the property collision

resistance as follows.

Definition 3.1.3 A cryptographic hash function H, with output length l, is a pair of PPT

algorithms (Gen, H):

1. Gen takes as input security parameter 1λ , and outputs a key s.

2. H takes as input the key s and a string x∈{0,1}∗, and outputs a string Hs(x)∈{0,1}l(n)

We additionally assume that the hash functions are collision resistant, which states that

given a message m such that H(m) = z, a PPT adversary can’t find a second message m′ such

that H(m′) = z with more than negligible probability. We make this explicit in the collision

resistance game.

Pseudorandom Number Generators The final cryptographic object we shall introduce here

is a pseudo-random generator (PNRG). A PRNG takes a small amount of true randomness,

and uses this to generate a large amount of pseudorandomness.
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Collision Resistance Game
1 C runs s← Gen(1λ ), and samples a uniformly random x ∈ {0,1}∗, and passes these

to A.
2 A runs a PPT algorithm on s and x, and outputs a value x′.
3 A wins if x′ ̸= x and Hs(x) = Hs(x′).

H is collision resistant if A wins with probability at most negl(λ ).

Definition 3.1.4 A pseudo-random generator (PNRG) t is a deterministic algorithm G with

the following properties:

1. Expansion For a polynomial l, and an input s ∈ {0,1}n, the output of G has length

l(n), where l(n)> n.

2. Pseudorandomness: For any PPT algorithm D, there exists a negligible function negl

such that the following holds for uniformly chosen r ∈ {0,1}l(n), and uniformly chosen

s ∈ {0,1}n:

|Pr[D(r) = 1]−Pr[D(G(s)) = 1]|< negl(n)

We next describe the PNRG that we will use to instantiate the constructions in the

following chapters of this thesis.

Blum Blum Shub The Blum Blum Shub pseudo random number generator (BBS

CSPRNG) [26], is a PNRG based upon the repeated squaring function that we have discussed

in Chapter 2, and in Section 3.1.1. It begins by generating an RSA modulus N, and selecting

x ∈ Z∗N . Then the seed value x0 ≡ x2 mod N is sampled. To produce a string of t bits, the

least significant bit is extracted from each term xi ≡ x2
i−1 mod N for i ∈ (1, . . . , t).
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3.1.5 Classical vs Quantum Cryptography

The setting of this thesis is classical cryptography, which is to say that we do not consider

security in the presence of a quantum computer. A quantum computer is a machine that

utilises techniques from quantum mechanics to allow many computations to be carried out

simultaneously [63]. If a large, efficient quantum computer is ever built, then many classical

cryptographic schemes would be broken, including notably the RSA algorithm used in this

thesis. However, despite a large amount of effort by both industry and academia, the current

state of the art is largely experimental and impractical [156].

In this thesis, we look at delay-based cryptography with the intention of improving the

practicality and efficiency of current tools. Whilst work on delay-based cryptography which

is quantum-secure has recently begun [113], the techniques are not yet developed enough to

improve upon the efficiency of classical techniques. We hence view it as outside the scope of

this thesis, but hope that this subject receives further attention in the future.

3.2 Number Theory

In this section we review the number theory required for the constructions we provide in

Chapters 4, 5 and 6.

3.2.1 The Chinese Remainder Theorem

A well known result which we use in our constructions is the Chinese Remainder Theorem

(CRT) [146]. The CRT is a number theoretic result regarding finding a unique solution to a

system of linear congruences with specific properties. It also provides an explicit formula

for finding the unique solution which can be calculated in polynomial time. It is defined as

follows:
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Theorem 3.2.1 Let the following be a system of linear congruences:

y≡ α1 mod n1

y≡ α2 mod n2

...

y≡ αk mod nk

Where y,ni ∈ Z+, αi ∈ Z, and αi are arbitrary integers and each ni is pairwise coprime

∀i ∈ {1, . . . ,k}. Then, this system of linear congruences is guaranteed to have a unique

solution mod N:

y =
k

∑
i=1

αiNiN−1
i mod N (3.1)

Where N =∏
k
i=1 ni, Ni =

N
ni

, and N−1
i is the multiplicative inverse of Ni mod ni, i.e. NiN−1

i ≡ 1

mod ni. We also recall that each N−1
i can be found in polynomial time using the Extended

Euclidean Algorithm.

Proof: Proof can be found in [93]. �

The CRT can also be thought of from a different perspective. That is, given y and the

moduli ni, find the solutions for each αi. When the CRT is considered in the latter manner an

equivalent statement known as the Chinese Remainder Theorem Isomorphism is used. In

this thesis, we are concerned in applying the results of the CRT in the RSA setting, namely

the case where N = pq, where p and q are distinct odd primes. Therefore, we now present

the CRT Isomorphism in this specific case.

Definition 3.2.1 The Chinese Remainder Theorem Isomorphism.

In the case of N = pq, where p and q are distinct odd primes, the Chinese Remainder
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Theorem Isomorphism is denoted by

Z∗N ≃ Z∗p×Z∗q (3.2)

Simply stated, each y ∈ Z∗N is equivalent (isomorphic) to a tuple ([y mod p], [y mod q]).

3.2.2 The Fermat-Euler Theorem

Next, we present the Fermat-Euler Theorem [154].

Theorem 3.2.2 Fermat-Euler Theorem. Let N be an odd prime, or let N = pq, where p and

q are distinct odd primes. If gcd(a,N) = 1, then aφ(N) ≡ 1 mod N, where φ(N) = N−1 if N

is prime or φ(N) = (p−1)(q−1) if N = pq.

Proof: Proof can be found in [78]. �

In the constructions which we will present in subsequent chapters, we will use φ(N) as a

trapdoor in Algorithm 3.1.1, in order to allow a trusted party to run a setup algorithm which

runs significantly faster than the sequential computation of a solver who does not know φ(N).

We prove this in the following corollary.

Corollary 3.2.1 Let x0 ∈ Z∗N . If the group order φ(N) is known, then calculating xt such

that xt ≡ x2t

0 mod N can be done in log2 N binary operations.

Proof: Let xt ≡ x2t

0 mod N. If the exponent 2t is reduced mod φ(N) we have 2t =

αφ(N)+β , where β is the remainder of 2t after the φ(N) modular reduction. Then, by

Theorem 3.2.2 we have xt ≡ x2t

0 ≡ x2t mod φ(N)
0 ≡ xαφ(N)+β

0 ≡ xφ(N)
0

α

xβ

0 ≡ 1αxβ

0 ≡ xβ

0 mod N.

The number of bits in β is O(logN), and β is input into line 2 of Algorithm 3.1.1. �
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3.2.3 Quadratic Residues and the Jacobi Symbol

Our constructions in the following chapters each have an RSA modulus N that can be factored.

In order to prove that this is possible, we use quadratic residues, and the Jacobi symbol. As

such, we now define each of these.

Definition 3.2.2 Quadratic Residues in Z∗N are numbers r that satisfy congruences of the

form:

x2 ≡ r mod N (3.3)

If an integer x exists such that the preceding congruence is satisfied, we say that r is a

quadratic residue of N. If no such x exists we say that r is a quadratic non-residue of N.

The Jacobi symbol, denoted JN(r), is a function which defines the quadratic character of

r in Equation 3.3. The Jacobi Symbol can be calculated in polynomial time using Euler’s

Criterion.

Theorem 3.2.3 Euler’s Criterion can be used to calculate the Jacobi Symbol of the number

r in Equation 3.3 for a prime modulus p. If gcd(r, p) = 1, then:

Jp(r) = r
p−1

2 =


+1, if r ∈QRp

−1, if r ∈QNRp

(3.4)

Where r ∈QRp indicates that r is a quadratic residue of p and r ∈QNRp indicates that r

is a quadratic non-residue of p.

Proof: Proof can be found in [93]. �

When the modulus is a prime number, if the Jacobi symbol evaluates to +1 then r is

always a quadratic residue and if the Jacobi symbol evaluates to −1 then r is always a
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quadratic non-residue. The Jacobi symbol is more complex when the modulus is a composite

number N = pq.

Corollary 3.2.2 (Of Theorem 3.2.3). Euler’s Criterion can be used to calculate the Jacobi

Symbol of the number r in Equation 3.3 for a composite modulus N if the factorisation of N

is known.

Proof: Proof can be found in [93]. �

Algorithm 3.2.1 shows how to determine the quadratic character of r for composite N

using Theorem 3.2.3 and Corollary 3.2.2. When N is composite the quadratic character of

r can take three formats. If the Jacobi symbol evaluates to −1 then r is always a quadratic

non-residue, denoted QNR−1
N . However, if the Jacobi symbol evaluates to +1 then r can

either be a quadratic residue, denoted QRN or a quadratic non-residue denoted QNR+1
N .

Algorithm 3.2.1: Calculating JN(r) for composite N.
input :(r, p,q)

1 Jp(r) := r
p−1

2 mod p

2 Jq(r) := r
q−1

2 mod q
3 if Jp(r) = 1∧Jq(r) = 1 then
4 x :=QRN
5 else if Jp(r) =−1∧Jq(r) =−1 then
6 x :=QNR+1

N
7 else
8 x :=QNR−1

N
9 end

output :x

Quadratic residues and quadratic non-residues for composite N have a distinct distribution

in Z∗N , which can be described as follows.
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Theorem 3.2.4 The cardinality of QRN , QNR+1
N , and QNR−1

N for composite N = pq,

where p and q are distinct primes is as follows:

∣∣QRN
∣∣= ∣∣Z∗N∣∣

4
=

φ(N)

4
.∣∣QNR+1

N

∣∣= ∣∣Z∗N∣∣
4

=
φ(N)

4
.∣∣QNR−1

N

∣∣= ∣∣Z∗N∣∣
2

=
φ(N)

2
.

(3.5)

Where,
∣∣Z∗N∣∣= φ(N) = (p−1)(q−1), and φ(N) is Euler’s totient function.

Proof: Proof can be found in [93]. �

Next, we discuss how to calculate preceding terms of the seed term x0 ∈ QRN in an

RSW time-lock sequence. To calculate the subsequent term of x0 in the sequence evaluate

x1 ≡ x21

0 mod N by inputting (x0,21,N) into Algorithm 3.1.1.

If the factorisation of N is known Theorem 3.2.3 can be used in conjunction with the

Chinese Remainder Theorem (CRT) to calculate the term x−1 in polynomial time.

We first note that in each of our constructions, we will specify a particular type of

RSA modulus, known as a Blum integer [26]. A Blum integer N = pq, is the product of

two Gaussian primes. A Gaussian prime has the property p ≡ 3 mod 4. Using a Blum

integer allows us to utilise some number theoretic properties to factor the modulus N after a

sequential computation in each of these constructions.

Theorem 3.2.5 Let p be a Gaussian prime. For any r ∈ Z∗p, if Jp(r) = +1, then finding α

such that α ≡
√

r mod p can be found by calculating α ≡ r
p+1

4 mod p.
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Proof: Let α = r
p+1

4 mod p. Then α2 ≡ (r
p+1

4 )2 ≡ r
2p+2

4 ≡ r
p+1

2 mod p. Next, let p+1
2 =

1 + p−1
2 . Therefore, by Euler’s Criterion (Theorem 3.2.3) α2 ≡ r1r

p−1
2 ≡ r mod p. In

subsequent chapters, we will refer to α as the principal square root of r mod p. �

Example 3.2.1 Let N = 67 ·139 = pq = 9313. Given the seed x0 = 776 ∈QRN , the square

root of x0 mod N, denoted by x−1 =
√

x0, can be found as follows:

• calculate α ≡ x
p+1

4
0 ≡ x17

0 ≡ 21 mod p

• calculate β ≡ x
q+1

4
0 ≡ x35

0 ≡ 9 mod q

• calculate x−1 = αq(q−1 mod p)+β p(p−1 mod q) = 128862

Then α and β are calculated using Theorem 3.2.5 and x−1 is calculated using the CRT. Note

that (q−1 mod p) and (p−1 mod q) are calculated using Euclid’s Extended Algorithm. To

verify correctness, note that 1288622 ≡ 776≡ x0 mod N. We provide formal analysis of this

in Section 4.4.

If r ∈QRN then the CRT implies that there are four distinct solutions to Equation 3.3.

Theorem 3.2.6 For all N = pq, where p and q are distinct odd primes, each r ∈QRN has

four distinct solutions.

Proof: Proof can be found in [93]. �

If N is a Blum integer, then the four square roots of each r ∈QRN has specific properties.

That is, two of the square roots of r are quadratic non-residues with Jacobi symbol −1,

one square root is a quadratic non-residue with Jacobi symbol +1, and one square root is a

quadratic residue. We prove this next.
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Theorem 3.2.7 Let N be a Blum integer. Then for all r ∈ QRN , if x2 ≡ x′2 ≡ r mod N,

where x ̸= ±x′, then without loss of generality JN(±x) = −1, and JN(±x′) = +1. That

is ±x ∈ QNR−1
N , x′ ∈ QRN and −x′ ∈ QNR+1

N . We refer to x′ ∈ QRN as the principal

square root of r mod N.

Proof: If N is a Blum integer, then N ≡ 1 mod 4. By Theorem 3.2.6 every x0 ∈QRN has

four distinct square roots ±x and ±x′. As N ≡ 1 mod 4, by the law of quadratic reciprocity

JN(x) = JN(−x) and JN(x′) = JN(−x′). It must be the case that x2 ≡ x′2 mod N, which

implies (x− x′)(x+ x′) ≡ 0 mod N, which implies (x− x′) | N and (x+ x′) | N. That is,

without loss of generality (x− x′) = k · p and (x+ x′) = ℓ · q, where k, ℓ ∈ N. Therefore,

Jp(x) = Jp(x′) and Jq(x) = Jq(−x′). As p ≡ 3 mod 4, the law of quadratic reciprocity

tells us Jp(−1) = −1, we have Jq(x) · Jp(−1) = Jq(−x′) · Jp(−1). This implies that

JN(−x) = JN(x′) or written another way JN(x) ̸= JN(x′).

Without loss of generality, eliminate the two roots with JN equal to −1, say JN(x) =

JN(−x) =−1. This leaves JN(x′) = JN(−x′) = +1. It is the case that only one of −x′ or x′

has Jp = Jq = 1 as p≡ 3 mod 4. Therefore, without loss of generality, it is only x′ that has

the property JN(x′) = +1 and x′ ∈QRN [26]. �

53



Chapter 4
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4.1 Definitions of Timed-Release Encryption

The work in this chapter appears in [111], which was a joint work with Angelique Faye

Loe, Christian O’Connell, and Elizabeth A. Quaglia. In this chapter, we analyse the definition

of timed-release encryption according to [53], and propose an alternative, more flexible

definition. We then construct a timed-release encryption scheme using the cryptographic

building blocks of the RSA-OAEP encryption scheme, and the Blum-Blum-Shub random

number generator. We prove this scheme cryptographically secure, before providing an

implementation in python, and an accompanying efficiency analysis of this implementation.

My contributions to this work include the analysis of the definitions, the security modelling,

the framing of the construction as a TRE scheme, and the applications.

In this chapter, we design a novel construction of a timed-release encryption scheme,

which we name TIDE (TIme-Delayed Encryption). We build TIDE using the longstanding

cryptographic tools of the RSW time-lock assumption and RSA encryption, details of which

can be found in Sections 3.1.1 and 3.2 respectively. We shall begin with a discussion of the

definition of timed-release encryption.

4.1 Definitions of Timed-Release Encryption

In Chapter 2, we introduced the notion of timed-release encryption (TRE). In both this

chapter and in Chapter 5, we shall be working with the TRE primitive.

Recall from Section 2.2.3 that TRE has a ‘classical’ definition, which is reliant on a

trusted third party and a time-server, and a modern definition according to Chvojka et al.

[53]. For the remainder of this thesis, we shall be using the latter when we refer to TRE. The
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4.1 Definitions of Timed-Release Encryption

intuition behind this type of TRE scheme is to combine a delay with a public-key encryption

scheme, in order to enable encryption and, after a delay, decryption of multiple messages,

whilst requiring a single sequential computation. A TRE scheme consists of four algorithms:

Setup, Solve, Encrypt, Decrypt. Setup generates the public parameters, which comprise

of a public encryption key, and information allowing a solver to derive a decryption key

after a sequential computation. Solve uses the public parameters to evaluate a sequential

computation in order to recover the decryption key. Encrypt is used to encrypt a message m

under the public encryption key, and outputs a ciphertext c. Decrypt uses the decryption key

to decrypt a ciphertext c.

We begin this chapter by presenting the formal definition of TRE according to [53]. Note

that in [53] the authors offer a generalised version of this definition, to incorporate what

they term sequential timed-release encryption. We do not need sequential TRE for this

construction, and as such we simplify our definition to specify the “non-sequential" case.

4.1.1 Chvojka et al.’s Definition

We begin by presenting the definition of (sequential) TRE according to Chvojka et al., before

analysing this definition. This will help to motivate why we next provide slightly different

game-based security definitions, which we shall use for the remainder of this chapter and the

subsequent chapter. Our definitions offer more flexibility, and are in our opinion easier to

use. Additionally, our definitions are consistent with those we shall see in the later chapters

of this thesis.

Definition 4.1.1 A sequential timed-release encryption scheme with message spaceM is a

tuple of algorithms TRE = ( Setup, Enc, Solve, Dec) with the following syntax:

•
(
ppe,i,ppd,i

)
i∈[n] ← Setup

(
1λ ,(Ti)i∈[n]

)
is a probabilistic algorithm which takes as

input a security parameter 1λ and a set of time hardness parameters (Ti)i∈[n] with
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Ti < Ti+1 for all i ∈ [n−1], and outputs set of public encryption parameters and public

decryption parameters PP :=
(
ppe,i,ppd,i

)
i∈[n]. It is required that Setup runs in time

poly
(
(logTi)i∈[n] ,λ

)
.

• si← Solve
(
ppd,i,si−1

)
is a deterministic algorithm which takes as input public decryp-

tion parameters ppd,i and a solution from a previous iteration si−1, where s0 :=⊥, and

outputs a solution si. It is required that Solve runs in time at most (Ti−Ti−1) ·poly(λ ).

• c← Enc
(
ppe,i,m

)
is a probabilistic algorithm that takes as input public encryption

parameters ppe,i and message m ∈M, and outputs a ciphertext c.

• m/ ⊥← Dec(Ti,si,c) is a deterministic algorithm which takes as input a hardness

parameter Ti, a solution si and a ciphertext c, and outputs m ∈M or ⊥.

A sequential timed-release encryption scheme is also required to be correct and secure.

Intuitively, a TRE scheme is correct if any encrypted message can be decrypted using the

corresponding decryption key with overwhelming probability; security guarantees that any

adversary cannot distinguish between two different ciphetexts, when bounded by t sequential

steps. This can be viewed as a delay-based analogue of the notion of ciphertext security seen

in Chapter 3.

We now introduce the definitions given in [53], noting that by design the following

definitions are not consistent with others in this thesis: this is in order to draw a contrast

between the original definitions and the game-based definitions we provide in the next

section.

Correctness A sequential timed-release encryption scheme is correct if for all λ ,n ∈ N,

for all sets of hardness parameters
(
Tj
)

j∈[n] such that ∀ j ∈ [n−1] : Tj < Tj+1, for all i ∈ [n]
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and for all messages m ∈M it holds:

Pr

m = m′ :
PP← Setup

(
1λ ,

(
Tj
)

j∈[n]

)
,si← Solve

(
ppd,i,si−1

)
m′← Dec

(
Ti,si,Enc

(
ppe,i,mi

))
= 1.

Security A sequential timed-release encryption scheme is secure with gap 0 < ε < 1 if

for all polynomials n in λ there exists a polynomial T̃ (·) such that for all sets of polynomials(
Tj
)

j∈[n] such that ∀ j ∈ [n] : Tj(·)≥ T̃ (·), for all i ∈ [n] and every polynomial-size adversary

A=
{(
A1,λ ,A2,λ

)}
λ∈N there exists a negligible function negl(·) such that for all λ ∈ N it

holds

AdvTRE
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr(b = b′) :



PP← Setup
(

1λ ,(Tj) j∈[n]

)
(i,m0,m1,st)←A1,λ (PP)

b s←{0,1};c← Encrypt
(
ppe,i,mb

)
b′←A2,λ (c,st)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ ).

It is required that |m0| = |m1| and that the adversary Aλ =
(
A1,λ ,A2,λ

)
consists of two

circuits with total depth at most tε(λ ) (i. e., the total depth is the sum of the depth of A1,λ

and A2,,λ
)
.

4.1.2 Our Game-Based Definition

We now give our definition, which separates the public decryption parameter of Definition

4.1.1 into a decryption key and a challenge. This nuance introduces a finer grained control

of information, which we will show in Chapter 5 leads to interesting new applications.

Additionally, we provide definitions which are easy to work with, and consistent with the
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rest of this thesis. In Section 4.1.3, we discuss at length the differences between the two

definitions.

In what follows, we will refer to algorithms ‘taking t time to compute’, and ‘bounding

computation time by t’. In both cases, we are referring to evaluating a polynomial sized

arithmetic circuit of depth at most t, an approach we discussed in Chapter 2.

Definition 4.1.2 (TRE) A sequential timed-release encryption scheme with message space

M is a tuple of algorithms TRE = ( Setup, Enc, Solve, Dec) with the following syntax.

• (pk,sk,P)← Setup
(

1λ , t
)

is a probabilistic algorithm which takes as input a secu-

rity parameter 1λ and a time hardness parameter t, and outputs a public encryption

parameter pk, a secret key sk, and a puzzle P. Setup must run in time poly (log t,λ ).

• sk←Solve(pk,P, t) is a deterministic algorithm which takes as input a public key pk, a

puzzle P, and a time parameter t, and which outputs a secret key sk. Solve must run in

time at most t ·poly(λ ).

• c← Encrypt(pk,m) is a probabilistic algorithm that takes as input public encryption

parameter pk and message m ∈M, and outputs a ciphertext c.

• m/⊥← Decrypt(sk,c) is a deterministic algorithm which takes as input a secret key

sk and a ciphertext c, and outputs m ∈M or ⊥.

We now provide game-based security definitions of correctness and security. In the

security games that follow, E is the encryptor, D is the decryptor, and A is the (PPT)

adversary.

Correctness We model our correctness game as an interaction between the encryptor and

the decryptor, where the encryptor runs Setup and then Encrypt on a message m, obtaining a

ciphertext c. The decryptor then runs Decrypt on the ciphertext c. A TRE is correct if the

decryptor obtains the message m with overwhelming probability.
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Correctness Game
1 E outputs the public key, secret key and puzzle: (pk,sk,P)← Setup

(
1λ , t

)
.

2 E computes the ciphertext on message m: c← Encrypt(pk,m).
3 E passes the public parameters, challenge, time parameter and ciphertext to D.
4 D recovers the secret key: sk←Solve(pk,P, t).
5 D decrypts the ciphertext: m′← Decrypt(sk,c).

A TRE scheme is correct if m = m′ with probability at least 1−negl(λ ).

Security In our TRE game, security is defined as an indistinguishability game as follows:

Suppose an adversary A chooses two messages of the same length, m0 and m1, and sends

them to the encryptor E . E chooses one of these messages at random, which it encrypts and

sends to A. The adversary then gets polynomial time to preprocess upon this ciphertext

before receiving the challenge C. Upon receiving the challenge, the adversary must then

make a guess before t sequential steps are computed. A TRE scheme is secure if no PPT

adversary A can gain an advantage in guessing which message was chosen by E . This is

made precise in the Security game.

Security Game

1 E outputs the public key, secret key and puzzle: (pk,sk,P)← Setup
(

1λ , t
)

.

2 A chooses two messages of the same length (m0,m1), and passes them to E .
3 E selects b ∈ {0,1} uniformly at random, and encrypts mb as c←R Encrypt(pk,mb).
4 A runs a preprocessing algorithm A0 on the public parameter and the ciphertext, and

stores st←A0(pp,c).
5 E sends t and C to A.
6 A runs a PPT algorithm A1 which outputs b′←A1(st,C, t), where A1 must run in

fewer than t sequential steps.
A wins the game if b = b′. A TRE-IA scheme is secure if A wins the game with
probability no greater than 1

2 +negl(λ ).

4.1.3 Discussion

In this section we discuss the differences in the two definitions, and the motivation for our

construction.
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Comparison of definitions The first thing to discuss about Definition 4.1.1 is that it

defines a generalisation of TRE known as ‘sequential’ TRE, in which a set of puzzles are

defined in the setup, each with their own public encryption key, and each allowing for the

decryption functionality at a different time. Each such puzzle takes as input the solution of

the previous puzzle (represented by si−1), and the time taken to solve each individual puzzle

i is the difference in the two time parameters Ti−Ti−1.

Chvojka et al. note that the above definition also defines "non-sequential" TRE, by setting

n = 1. In that case the value Ti is not needed as an input for Dec algorithm, in contrast to

sequential TRE. Therefore, the first way in which we deviate from the original definition is

by removing all of the parameters that relate to sequential TRE, as we will be working with

non-sequential TRE. Additionally, we deviate slightly from the definition of [53] by including

a puzzle P and a secret key in the output of the Setup algorithm, rather than combining these

two elements into a single public decryption parameter. We do this in order to emphasise the

fact that in our construction, one can separate the release of the public key, which enables

encryption; and the release of the puzzle, which starts the sequential computation and hence

the delay. In our definition, these do not have to happen simultaneously, as is the case in [53].

This allows for a finer control over the release of information. Whilst in certain scenarios,

e.g. auctions, this is not necessary, we will show in Chapter 5 how this can be used to

enable novel applications such as whistleblowing. As such, we provide a definition which

we can build directly upon in the next chapter. We would like to note that this difference in

the two definitions is largely semantic, and has little bearing on the security of the scheme.

Indeed, by amalgamating the puzzle and the secret key into the tuple (P,sk), and calling this

the decryption parameter, we reach the standard definition of [53]. The one difference that

occurs as a result of this separation is that an adversary may obtain ciphertexts before they

receive the challenge, and spend this time trying to decrypt such ciphertexts. We model this

in the security game by providing the adversary with a preprocessing step once the adversary
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receives the ciphertext, but before they receive the message, in a style reminiscent of VDFs

[32].

Finally, we note that the computation model used by Chvojka et al. includes a gap

parameter of ε to represent a hardware advantage that the adversary may have over an honest

solving party. Whilst we acknowledge that such a gap is likely to exist, we follow works

such as [32, 68, 130, 155] in leaving this implicit rather than explicit. We have discussed the

underling assumptions of various approaches to computing a delay, along with the potential

gap due to a speed-up in hardware in Chapter 2.

TIDE In the field of timed-release encryption, there is no concrete construction of the

modern style of TRE, which is practically efficient and implementable. In this chapter, we

build TIDE from the standard, well-trusted building blocks of RSA-OAEP and repeated

squaring in an RSA group. We use interesting number theoretic techniques to allow a

solver to factor the RSA modulus N, and hence derive the RSA-OAEP decryption key. This

approach to delay-based encryption may be of independent interest, and we demonstrate in

the following chapters that it can be used in other scenarios. TIDE is particularly useful in the

application of sealed-bid auctions, where the various alternative approaches each come with

drawbacks, as we discussed in Section 2.4.1. Furthermore, our construction and definitions

lay the groundwork for an extension to the TRE primitive known as TRE with implicit

authentication, which enables novel applications. This shall be the subject of Chapter 5.

4.2 Technical Overview

In this section, we provide an intuition of our construction, before introducing all of the

cryptographic and number-theoretic building blocks that we use to implement this. We

endeavour to provide references to the earlier sections within this thesis in which we discuss

each of the relevant underlying cryptographic and number theoretic techniques.
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TIDE relies on the RSW time-lock assumption, which states that it is hard to compute

x2t
mod N in fewer than t sequential steps [136], for an RSA modulus N. This assumption

was first introduced in 1996 by Rivest et al. [136], and has been used to build a variety of

cryptographic constructions [32, 70, 118, 130, 155]. TIDE deviates from previous litera-

ture by using number theoretic techniques to utilise the output x2t
mod N in a novel way.

Explicitly, TIDE provides exactly the information required to factor the RSA modulus N.

TIDE achieves this by incorporating a theorem of Fermat and Rabin, which states that if

x and x′ are known such that x2 ≡ x′2 mod N, where x ̸≡ ±x′ mod N, then the non-trivial

factors of N can be recovered in polynomial time [131]. By carefully setting up the system

we provide the user with value x and ensure that the output of the delay (implemented with

sequential squaring) reveals x′. Therefore knowledge of x and x′ can be used to factor N in

polynomial time. Then we combine this with a standard RSA encryption scheme using N

and an encryption exponent as the public key. Once a solving party computes the delay they

can derive the secret key and hence can decrypt all messages. Therefore, our construction can

be seen as a natural integration of an RSW-based time-lock puzzle and the RSA encryption

scheme. We formalise this in terms of syntax in Section 4.3 and give security proofs in

Section 4.4. We now highlight the key technical details.

The key insight of TIDE is contained in the generation of the public key and puzzle,

as this allows us to use the relevant theorem of Rabin [131]. N is chosen to be a particu-

lar class of RSA modulus known as a Blum integer N = pq, which has the property that

p≡ q≡ 3 mod 4 . The puzzle consists of three different elements, P = (x,x0,x−t). First, an

element x is efficiently sampled such that JN(x) =−1, where JN(x) is the Jacobi symbol, as

defined in Section 3.2. Next, the seed x0 is calculated as x0 ≡ x2 mod N. Crucial to TIDE is

the term x−t , where x2t

−t ≡ x0 mod N. Now, any party wishing to solve the puzzle sequentially

calculates the term x−1 := x′ ≡ √x0 by repeated squaring. The term x′ has the property

JN (x′) = +1. This is crucial, as in Setup x was chosen such that JN(x) =−1. Therefore,
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the solving party obtains the term x2 ≡ x′2 ≡ x0 mod N, where x ̸= x′ mod N. Thus, the party

obtains all four square roots of x0. Therefore, Solve can recover the non-trivial factors of N

in polynomial time using the result from Rabin [131].

4.2.1 Implementation details

We use OAEP, the Optimal Asymmetric Encryption Padding [21] with RSA, to ensure that

all encryptions achieve IND-CPA security (Section 3.1.4). On a high level, OAEP processes

each plaintext using two random oracles in order to ensure that inspection of the resulting

ciphertexts offers no method of distinguishing the underlying plaintext used for encryption.

It has been shown that RSA-OAEP is secure under the RSA assumption [72], although this

proof takes place in the random oracle model. As we discuss in Section 3.1.3, this model

relies on the assumption that existing hash functions can securely instantiate a true random

oracle. As we discussed in the relevant section, we believe that whilst it would be better to

avoid using this model, it has stood the test of time in practice, and is extremely useful for

obtaining rigorous security proofs.

We note that in this following construction, we shall fix the RSA exponent to be e :=

216 +1 = 65537. This is in order to make the construction concrete, allowing us to provide

accurate runtimes in the implementation analysis given in Section 4.5. e = 65537 was chosen

as it conforms to many existing hardware and software specifications, and is widely seen

as a compromise between being small enough to run efficiently, and large enough to offer

security advantages over lower values of e such as 3 [31, 86]. It if of course possible to use

other values of e, and 65537 should be seen as an example, used to provide realistic timings

for the implementation study.
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4.3 Our Construction

TIDE consists of the following four algorithms.

• (sk,pk,P)← Setup(1λ , t) takes as input a security parameter 1λ and time parameter t

and ouputs a secret key sk, public key pk, and a puzzle P. The secret key consists of

the factors of sk := (p,q) and the public key consists of an RSA modulus N and fixed

encryption exponent e := 216+1 = 65537. The puzzle is set to P := (x,x0,x−t), where

x2 ≡ x0 mod N, JN(x) =−1, and where x2t

−t ≡ x0 mod N.

• sk← Solve(pk,P, t) takes as input the public key pk, puzzle P, and time parameter t

and outputs the secret key sk := (p,q), where N = pq.

• c← Encrypt(pk,m) takes as input a public key pk := (N,e) and a message m and

outputs a ciphertext c.

• {m,⊥}← Decrypt(sk,c) takes as input the secret key sk := (p,q) and a ciphertext c

as input and outputs a message m or error ⊥.

We now provide the four algorithms, along with the details of each.

Setup E runs (sk,pk,P)←R Setup(1λ , t) to generate the secret key, public key, and puzzle

as seen on Algorithm 4.3.1 Setup. The function prime( j) on lines 3 and 4 is the Miller-Rabin

Monte Carlo algorithm [125] which generates j bit Gaussian primes. That is, p←R prime( j).

This guarantees that N, which is calculated on line 6, is a Blum integer. Additionally, the

second condition of the while loop on line 2 ensures that e does not divide (p−1)(q−1),

to ensure the pair (N,e) is not lossy. The nuances of this are explained in Section 4.4.

Setup then enters a while loop. The purpose of the while loop is to find an x such that

x ∈ QNR−1
N . The logic statement on line 8 condenses the conditional statements in lines

3,5 and 7 of Algorithm 3.2.1 using De Morgan’s laws [80]. Once a suitable x is found, x0 is
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set to x2 mod N. Once x is sampled and x0 is computed, the term x−t is calculated, where

x2t

−t ≡ x0 mod N. To calculate x−t in polynomial time, Euler’s Criterion, the Fermat-Euler

Theorem and the Chinese Remainder Theorem (CRT) must be applied (all of which are

described in Section 3.2: Number Theory).

Next, αt is calculated, where αt is the tth square root of x0 mod p. To complete the

calculation of the term x−t , the CRT is used on line 16, where the terms (q−1 mod p) and

(p−1 mod q) are calculated using Euclid’s Extended Algorithm (EEA). Theorem 3.2.5 tells

us that α ≡ √x0 ≡ xω
0 mod p, where ω = p+1

4 . Let αt be the tth square root of x0 mod p.

For example, if t = 2, then α2 ≡
√√

x0 ≡ (xω
0 )

ω ≡ xω2

0 . Therefore, αt ≡ xωt

0 mod p. Note

that the exponent ω t , for large t will make calculating xωt

0 mod p computationally infeasible.

Therefore, the Fermat-Euler Theorem is used so the exponent ω t can be reduced mod (p−1).

Next, βt is calculated, where βt is the tth square root of x0 mod q. βt is calculated in a similar

fashion as αt , except ω is set to q+1
4 .

The puzzle P is set to the tuple (x,x0,x−t) and then E passes (pk,P, t) to D.

SolveD runs sk← Solve(pk,P, t) to solve the challenge, as seen on Algorithm 4.3.2 Solve.

First Solve calculates the term x′ in t−1 sequential steps by evaluating x2t−1

−t mod N. This is

where the sequential calculation takes place using Algorithm 3.1.1 with inputs (x−t ,2t−1,N).

The term x′ is guaranteed to be in QRN by Definition 3.2.2. D now has x ∈ QNR−1
N and

x′ ∈QRN . Therefore, x must be distinct from x′, and we have x2 ≡ x′2 ≡ x0 mod N. Finally,

using the result from Theorem 4.4.4, Solve calculates gcd(x− x′,N) to recover one factor p′

of N using Euclid’s Extended Algorithm. Next, N
gcd(x−x′,N) is calculated to recover the other

factor q′.

Encrypt E runs c← Encrypt(pk,m) as seen in Algorithm 4.3.3 Encrypt. Encrypt takes

as input the public key pk := (N,e) and encrypts a message m using RSA-OEAP encryption

and outputs the ciphertext c. Using RSA-OAEP, parties can encrypt messages to the modulus

N and encryption exponent e. This means that messages can be decrypted using the Decrypt
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Algorithm 4.3.1: Setup run on security parameter 1λ and time parameter t to create
the secret key sk, public key pk and puzzle P.

input :1λ , t,e := 65537
1 p,q := 2
2 while p = q ∧e - (p−1)(q−1) do
3 p := prime(λ

2 )

4 q := prime(λ

2 )

5 end
6 N := pq
7 Jp(x),Jq(x) := 1
8 while ¬(Jp(x) = 1∧Jq(x) ̸= 1)∧¬(Jp(x) ̸= 1∧Jq(x) = 1) do
9 x := U(2,N)

10 Jp(x) := x
p−1

2 mod p

11 Jq(x) := x
q−1

2 mod q
12 end
13 x0 := x2 mod N

14 αt := x
p+1

4
t

mod p−1
0 mod p

15 βt := x
q+1

4
t

mod q−1
0 mod q

16 x−t := αtq(q−1 mod p)+βt p(p−1 mod q) mod N
17 P := (x,x0,x−t)

output :(sk,pk,P, t)

Algorithm 4.3.2: Solve runs on the public key, puzzle, and time parameter pk,P, t
to recover the secret key sk.

input : pk := (N,e),P = (x,x0,x−t), t
1 x′ := x2t−1

−t mod N
2 p′ := gcd(x− x′,N)

3 q′ := N
p′

4 sk := (p′,q′)
output :sk
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algorithm only after Solve has recovered the secret key sk. Note that the Solve and Encrypt

algorithms are not sequential. The Encrypt algorithm can be run by any solver using pk prior

to the Solve algorithm recovering the sk.

Algorithm 4.3.3: Encrypt runs on a message public key pk and message m, to
produce ciphertext c.

input : pk := (N,e),m
1 k0,k1,G,H← params(1λ ) // OAEP parameters
2 m′ := m || 0k1 // Zero pad to n− k0 bits
3 r := rand(k0) // Generate a random k0 bit number
4 X := m′⊕Gn−k0(r) // Hash r to length n− k0
5 Y := r⊕Hk0(X) // Hash X to length k0
6 m′′ := X || Y // Create message object
7 c := m′′e mod N // RSA encrypt

output :c

Decrypt D runs {m,⊥}← Decrypt(sk,c) as seen in Algorithm 4.3.4 Decrypt. Decrypt

takes as input the secret key sk := (p,q) and decrypts ciphertext c using RSA-OEAP de-

cryption, and either outputs the message m or an error ⊥. First, Decrypt recovers the

decryption exponent d on lines 2,3,4, where Euclids Extended Algorithm is used. Finally,

the RSA-OEAP decryption algorithm removes the padding and randomness added during

the encryption to recover the message m.

4.4 Security

In order to prove the security of TIDE, we must first define a new hardness assumption.

Informally, this states that the terms x,x0 and x−t provide a negligible advantage to factoring

a Blum integer N when the computational time is bounded by t.

Definition 4.4.1 (BBS Shortcut Assumption) Let the RSA Assumption be that for any

N← RGen
(

1λ

)
and e = 65537, it is hard for any probabilistic polynomial-time algorithm

to find the e-th root modulo N of a random y←R Z∗N [135].
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Algorithm 4.3.4: Decrypt runs on secret key sk and ciphertext c, to produce
message m.

input : sk := (p′,q′),c
1 k0,k1,G,H← params(1λ ) // OAEP parameters
2 N := p′q′

3 φ(N) := (p′−1)(q′−1)
4 d := e−1 mod φ(N) // recover d using EEA
5 m′′ := cd mod N
6 X :=

⌊
c′′ ·2−k0

⌋
// Extract X

7 Y := m′′ mod 2k0 // Extract Y
8 r := Y ⊕Hk0(X) // Recover r
9 m′ := X⊕Gn−k0(r) // Recover padded message

10 m := m′ ·2−k1 // Remove padding
output :m

The BBS Shortcut Assumption states that given (N′,e) and terms (x,x0,x−t), where

N′← RGen
(

1λ

)
is a randomly sampled Blum integer, e = 65537, x is a randomly sampled

integer such that x ∈QNR−1
N , x0 := x2 mod N, and x−t is the term t +1 steps before x0 in

a BBS_CSPRNG sequence, it is no easier to find the e-th root of a random y′←R Z∗N′ than

to find the e-th root modulo N of a random y←R Z∗N in a standard RSA instance, without

learning the factors N′ = pq.

We now analyse this security assumption, in order to relate it to the RSA assumption that

RSA with OAEP relies on [72].

Recall that P= (x,x0,x−t) consists of a randomly sampled integer x, and two terms x0,x−t

which by construction are part of the BBS-CSPRNG sequence, and hence are pseudorandom.

As we will see in Lemma 4.4.1, the relation between these integers exactly relates to the

evaluation of the BBS-CSPRNG sequence, which allows N′ to be factored, and cannot be

evaluated in time less than t, for some t ∈ N. The crux of the assumption is that x−t is only

related to the terms x and x0 by the repeated squaring property, which allows the Blum integer

N′ to be factored. Therefore, we assume that these values cannot be used together to break
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the RSA assumption using an alternative method to repeated squaring.

The key insight of TIDE is the technique we use to factor the RSA modulus N. We use

Fermat’s factorisation method, a technique to factor an odd composite number N = pq in

exponential time [59]. The method requires finding x and x′ such that x2−x′2 = N is satisfied.

Then the left-hand side can be expressed as a difference of squares (x− x′)(x+ x′) = N.

Fermat’s method can be extended to finding x and x′ to satisfy the following weaker

congruence of squares condition x2 ≡ x′2 mod N, where x ̸≡ ±x′. This congruence can be

expressed as (x− x′)(x+ x′)≡ 0 mod N. Finding a congruence of squares forms the basis

for several sub-exponential sieving-based factorisation algorithms [59]. However, if x and x′

in a congruence of squares are known, then factoring N can be done in polynomial time, as

we shall see.

We now prove TIDE is a timed-release encryption scheme satisfying correctness and

security, beginning with the correctness of TIDE.

Theorem 4.4.1 TIDE is correct.

First, suppose Algorithm 4.3.1 Setup has been run, such that the following parameters

have been generated: a public key N, puzzle P = (x,x0,x−t) and time parameter t, and a

secret key sk = (p,q). Next, let a ciphertext c be computed on a message m following the

correctness game, Game 5. Then, consider the following statement:

For any message m ∈ {0,1}∗, Decrypt
(
Encrypt

(
N,m

)
,(p,q)

)
outputs m, where Encrypt

and Decrypt are described in Algorithms 4.3.3 Encrypt and 4.3.4 Decrypt respectively. This

corresponds to the statement that the RSA cryptosystem with OAEP is correct, which is

known to be true [72].

What remains is to prove that Solve outputs sk = (p,q). We structure this proof as a

sequence of arguments based on the preliminaries given in Section 3.2.
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First we must prove that Algorithm 4.3.1 Setup correctly selects the term x such that

x ∈QNR−1
N .

Corollary 4.4.1 (Of Theorem 3.2.4). The while loop on lines 8-12 of Algorithm 4.3.1 Gen

selects x ∈QNR−1
N with overwhelming probability.

Proof: The while loop on lines 8-12 of Algorithm 4.3.1 Gen selects a quadratic non-residue

with Jacobi Symbol equal to −1 by running a series of Bernoulli trials with probability

P
(
x =QNR−1

N
)
= 1

2 . This forms a geometric distribution G ∼ Geo(1
2). Therefore, we

can expect to find x ∈ QNR−1
N in E{G} = 2 trials. As the number of trials increases, the

probability of repeatedly failing to sample an x ∈QNR−1
N tends to 0. �

Second, we recall from Theorem 3.2.5 that α ≡
√

r mod p can be found by calculating

α ≡ r
p+1

4 mod p. We use this in conjunction with the CRT to prove that Algorithm 4.3.1

Setup correctly calculates the term x−t , which is the tth principal square root of x0.

Theorem 4.4.2 The Algorithm 4.3.1 Setup correctly calculates the tth principal square root

x−t of the seed x0.

Proof: Let ω = p+1
4 . If Algorithm 4.3.1 Setup provides the seed term x0 ∈ QRN , then,

by Theorem 3.2.5, the tth principal square root of x0 mod p is αt := xωt

0 mod p and the tth

principal square root of x0 mod q is βt := xωt

0 mod q. Then, the Chinese Remainder Theorem

(Chapter 3 Theorem 3.2.1) is used to calculate:

x−t := [αtq(q−1 mod p)+βt p(p−1 mod q)] mod N. �

Third, we prove that Algorithm 4.3.2 Solve correctly calculates the term x′ ∈QRN using

Algorithm 3.1.1. To see this, we first show in Theorem 4.4.3 that Algorithm 3.1.1 Square

and Multiply correctly calculates the term xi, where xi ≡ x2i

0 mod N, and then we show in

Theorem 4.4.4 that Algorithm 4.3.2 Solve calculates gcd(x′− x,N) to recover a non-trivial

factor of N [131].
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Theorem 4.4.3 Algorithm 3.1.1 Square and Multiply correctly calculates the term xi, where

xi ≡ x2i

0 mod N.

Proof: The input to calculate the term xi in Algorithm 3.1.1 Square and Multiply is

(x0,2i,N), where x0 ∈ QRN is the seed term, and N = pq, where p and q are distinct odd

primes. By Definition 3.2.2, selecting x0 ∈QRN can be done by uniformly selecting x ∈ Z∗N

and setting x0 ≡ x2 mod N. Consider the base case when i := 1. The algorithm proceeds as

follows: d is set to 1 and the exponent b := 21 is set to the binary string B = 10. Next, the

algorithm enters the for loop on the first iteration. On the first iteration j is the first digit of B,

which is 1. Next d := 1 is squared to output 1. Then the first conditional if statement is met

as j = 1, therefore d := 1 · x0 = x0 mod N, and the first iteration of the loop is done. On the

second iteration j is the second digit of B, which is 0. Next, as d was set to x0 on the first

iteration d is now set to x2
0 mod N on the second iteration. The first conditional if statement

is not met, and the loop terminates as the final digit of B was processed. The algorithm

then returns d := x1 ≡ x2
0 ≡ x21

0 mod N, as required. Therefore, the base case is true. By

the inductive hypothesis we claim that for any i := k, the loop invariant of Algorithm 3.1.1

returns the term x2k

0 mod N after k iterations. Therefore after k iterations, where b was set to

2k+1, Algorithm 3.1.1 will have d := x2k

0 mod N, and j will be the final digit of B := 10 . . .0.

For any k, the variable B will be a binary string starting with the digit 1 followed by a trail of

k digits equal to 0. Therefore, after the first iteration of the for loop all remaining j ∈ B will

be 0. Thus, at the k+1 iteration of the for loop d will be set to x2
k mod N, and by definition

x2
k ≡ xk+1 ≡ x2k+1

0 mod N. Finally, Algorithm 3.1.1 will terminate at the k+1 iteration as the

final digit of B was processed, and the algorithm will return d := x2k+1

0 mod N. �
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Theorem 4.4.4 Let N be a Blum integer. If x and x′ are known such that x2 ≡ x′2 mod N,

where x ̸≡ ±x′ mod N, then the non-trivial factors of N can be recovered in polynomial time.

Proof: (Theorem 4.4.4.) As x and x′ are distinct we have x2 ≡ x′2 mod N. This implies

that pq | x2− x′2. As p and q are both prime this indicates that p | (x− x′)(x+ x′) and

q | (x−x′)(x+x′). Also, because p is prime it must be the case that p | (x−x′) or p | (x+x′).

Similarly, it must be the case that q | (x−x′) or q | (x+x′). Without loss of generality, assume

that p | (x− x′) is true and that q | (x− x′) is true. This implies that pq | (x− x′), which

indicates that x ≡ x′ mod N. This is a contradiction because x and x′ are distinct. Then it

must be the case that p | (x− x′) and q - (x− x′). Therefore, one of the factors of N can be

recovered by calculating p′ := gcd(x− x′,N) using Euclid’s Extended Algorithm, and the

other factor of N can be recovered by calculating q′ := N
gcd(x−x′,N) =

N
p′ . �

We now prove that Solve outputs sk = (p,q), and hence Theorem 4.4.1: the correctness

of TIDE.

Proof: (Theorem 4.4.1) For any pk, sk, and puzzle P generated by Setup, we show that

sk can be recovered by Solve. More precisely, let N = pq,P := (x,x0,x−t), t be output by

Setup, before being input into Algorithm 4.3.2 Solve. Algorithm 4.3.2 Solve will calculate

the term x′ by entering the following parameters (x−t ,2t−1,N) into Algorithm 3.1.1, which

will output x′ := x2t−1

−t mod N. The term x′ is guaranteed to be correct by Theorem 4.4.3 and

is guaranteed to be in QRN by Definition 3.2.2, and hence we have that x ∈ QNR−1
N and

x′ ∈QRN .
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This guarantees that x must be distinct from x′. Therefore, by Theorem 4.4.4, calculating

p′ = gcd(x− x′,N) will recover one factor of N using Euclid’s Extended Algorithm, and the

other factor can be recovered by calculating q′ = N
gcd(x−x′,N) .

�

Theorem 4.4.5 TIDE is a secure TRE scheme under the RSW, RSA and BBS-shortcut as-

sumptions.

Proof: In order to prove TIDE secure, we show that no adversary can win the security

game in Section 4.1.2 with more than negligible probability. That is to say, we show that two

messages encrypted using public key (N,e) are indistinguishable under a chosen plaintext

attack, when the adversary is bounded by t computation time.

We first prove the following statement.

Lemma 4.4.1 Given any (N,P, t) output by Algorithm 4.3.1 Setup, the RSA modulus N

cannot be factored in time less than t, with more than negligible probability.

Proof: Let N be a random Blum integer and P be a puzzle output by Algorithm 4.3.1 Setup.

Note from Algorithm 4.3.1 that P = (x,x0,x−t), where x ∈ QNR−1
N , x0 ≡ x2 mod N, and

x−t is the tth square root of x0. To factor N in time less than t, a pair of integers (p∗,q∗) must

be computed, such that p∗ ̸= 1,q∗ ̸= 1, and p∗q∗ = N, in less than t sequential steps.

We split the proof into two parts: i) Attempts to compute an x′, where x′ ≡√x0 mod N

and x′ ∈QRN , and ii) Attempts to recover the non-trivial factors of N using a method that

does not use x′.

We start by proving part (i): that computing x′ in time less than t reduces to the RSW

time-lock assumption. If Solve is honestly run, then x′ := x2t−1

0 mod N is calculated using

Algorithm 3.1.1 with the input (x−t ,2t−1,N). By the RSW time-lock assumption calculating

x′ using Algorithm 3.1.1 requires t− 1 sequential steps. Finding a PPT algorithm E<t to
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evaluate x′ in less than t− 1 sequential steps contradicts the RSW time-lock assumption.

Therefore, it is not possible to compute an x′ in fewer than t−1 steps with non-negligible

probability.

Next, we prove part (ii): With overwhelming probability, an adversary can’t recover the

non-trivial factors of N in less than t time without computing x′. We show that factoring

N faster than sequential squaring (i.e, in fewer than t sequential steps) reduces to an open

problem. First note that N is a Blum integer, which is an RSA modulus that is the product of

Gaussian primes. Therefore, we assume N cannot be factored by any PPT algorithm with

more than negligible probability.

Giving A either (N,x,x0, t) or (N,x−t , t) also reduces to a standard factoring assumption,

as seen in Section 4 of Rabin [131]. What remains is to show that giving an adversary all

of the puzzle P does not allow them to factorise N. To see this, note that x0 can be trivially

obtained from x, and that by construction x−t and x0 are terms in a BBS_CSPRNG sequence

[26]. Knowledge of these terms does not allow factorisation of N faster than sequential

squaring unless x2λ (λ (N))

−t mod N is calculated efficiently. This is an open problem given by

Theorem 9 of Blum et al. [26, 71, 81].

Therefore, the only way a PPT algorithm could factorise N given (pk,P, t) with non-

negligible probability is to sequentially evaluate x′ and subsequently recover the factors by

calculating p′ := gcd(x− x′,N) and q′ = N
p′ . �

Now that we have shown that factoring can’t be done with non-negligible probability

without spending at least t computational time, we can obtain a proof by contradiction using

various security assumptions.

Assume that there exists an adversary A = (A0,A1) who can gain a non-negligible

advantage in the AdvTRE
A game defined in Definition 6. For this to hold, it must be the

case that an algorithm D exists such that both of the following occur with non-negligible

probability: a) D can decrypt, and b) D runs in time less than t.
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Lemma 4.4.1 tells us that if the adversaryA factors a Blum integer N output by Algorithm

4.3.1 in time less than t with more than negligible probability, then the RSW time-lock

assumption is broken, and hence we have a contradiction. Now suppose that A gains a

non-negligible advantage in the TRE security game without factoring. As the underlying

encryption scheme is IND-CPA secure, for an adversary to gain a non-negligible advantage

in distinguishing between the messages m and m′ without using the additional information

contained in P would break the IND-CPA security of RSA-OAEP, and hence contradict the

RSA assumption. Finally, if an adversary manages to gain a non-negligible advantage using

the information contained in P then this contradicts the BBS shortcut assumption presented

in Definition 4.4.1. Therefore, no such algorithm D can exist, and hence it is not possible for

an adversary to win the security game with more than negligible probability.

�

A note on lossiness

We end this security section with a short discussion on lossiness in TIDE. Lossiness refers

to the loss of information that occurs when using a function for which the image is smaller

than the domain, as we illustrate in the following example. In RSA, a ‘lossy key’ refers to a

pair (N,e) such that e|φ(N). There is information loss when using a lossy key rather than a

‘standard key’ (i.e. one where e does not divide φ(N)), as the map e→ ex becomes e-to-one

on Z∗N , rather than one-to-one [147].

This is particularly relevant when using a fixed value of e, as we do in our implementation,

as using a fixed value of e (and explicitly e = 65537) as part of a lossy key has been shown

to weaken the security of RSA-based signature schemes such as FDH signatures [91], and

more importantly to repeated squaring when using a Blum integer [143]. There exists

significant work in the literature on the difficulty of distinguishing between the cases when

gcd(e,φ(N)) = 1 and when e|φ(N) in the case when e < N1/4, which is known as the φ -
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hiding assumption [41, 143]. This is particularly relevant in the case where N is generated

through a distributed setup, as we discussed in Section 2.1.3. However, due to the trusted

setup of TIDE, we are able to include a check that e does not divide (p− 1)(q− 1) in

Algorithm 4.3.1, and hence ensure a lossy key is not chosen.

4.5 Implementation

In this section we describe the implementation and performance analysis of our TIDE

construction. The software implementation is written in Python 3 and the code is publicly

available at https://github.com/wsAJMYbR/tide.git.

Our testing platform consisted of two different hardware environments: a Raspberry Pi

cluster, and a desktop PC. The Pi cluster consisted of four Raspberry Pi 3 Model B computers

networked together. Each Pi node utilises a quad-core 1.2 GHz CPU, with 1 GB of available

memory. This enabled us to run experiments on four different modulus sizes in parallel. The

use of Raspberry Pi devices provides an affordable and ubiquitously available device with a

consistent configuration. This facilitates the replication of our experiments and comparison

with other delay-based schemes. Furthermore, as Raspberry Pi devices are lower power, they

represent a lower bound for hardware that may reasonably be expected to be used in practice

outside of embedded applications.

We also executed performance tests on a consumer grade desktop PC. The machine

used a quad-core 3.2 GHz Intel i5 processor, with 16 GB of available memory. We wished

to confirm that the statistical properties remained constant over different hardware types.

Additionally, this dataset provides a more pragmatic view of performance on commercial

hardware.

Figure 4.1 demonstrates our first experiment, which shows how the run time of Setup,

Solve, Encrypt and Decrypt is impacted by the time parameter t for a 2048 bit modulus
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Fig. 4.2 The spread of setup time across
modulus sizes and machines. Setup time
increases in response to an increase in
modulus size. The dispersion of run times
is similar across different devices.

when run on a desktop PC. The figure shows that as t increases, the run time for Solve also

increases in a predictable linear manner. The linear variance in run time of Algorithm 4.3.2

Solve as t varies supports the RSW time-lock assumption in Definition 3.1.1. Furthermore,

we see that Algorithm 4.3.1 Setup and Algorithms Encrypt and Decrypt remain consistently

low, regardless of the size of t. This is expected as both algorithms reduce the parameter t

by the group order using the Fermat-Euler Theorem 3.2.2. We also observe that Setup has

minor variations in the run time when compared to Solve and Encrypt and Decrypt. This is

a result of the randomised nature of Setup in comparison to the deterministic behaviour of

Solve, Encrypt, and Decrypt. This experiment confirms that in practice, increasing the time

parameter leads to a linear increase in the time of Solve, and has a negligible effect upon the

other algorithms, which is exactly what is desired for a TRE construction.

For our next experiments we select t = 5× 106 to provide a total run time appro-

priate for repeat testing. We performed experimentation over four modulus sizes m ∈

{2048,3072,4096,8192} bit, selected to cover common modulus sizes in use. For each mod-

ulus size, we run 70 experiments, which allows us to estimate values with a 90% confidence
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interval with a 10% margin for error. The 8192 bit modulus is included as an edge case to

demonstrate performance at the upper bound present in real world applications.

In Figure 4.2, we plot the spread of run times for the Setup algorithm. The primary

metric of interest is the spread of the stochastic algorithm. For both the Pi and PC datasets,

an increase in the modulus size increases the median run time. However, there is some

overlap between modulus sizes, particularly between m = 3072 bit and m = 4096 bit. This

discrepancy can be attributed to more efficient computation afforded when log2 m ∈ N. In

particular, the Miller-Rabin primality implementation can use a fast Fourier transform which

is most efficient when dealing with powers of two [127]. The dispersion of the data points

follows a similar pattern across both data sets, with an offset in median speed afforded by the

relative difference in processor speed.

In Figure 4.3 we plot the run times of the Solve and Encrypt and Decrypt algorithms for

both datasets against the modulus size. We use the run time means as a metric to eliminate

variations caused by other processes on the machine, which we assume to be Gaussian. This

leaves us with a more accurate indication of the run time of the deterministic algorithms. As

with the Setup algorithm, we see similar increases in run time as a function of modulus size

for both Solve and Encrypt and Decrypt. However, we note the large difference between

the run times of Encrypt and Decrypt and Solve. Above each bar we plot the ratio of the

run time of Encrypt and Decrypt to the run time of Solve. We see that, while there is a

small increase in the ratio as the modulus size increases, the difference between the two

remains marked. Even at the edge case, when Solve runs in excess of four hours on the

Pi when m = 8192 bit, Encrypt and Decrypt don’t exceed 30 s. For most practical cases,

Encrypt and Decrypt often results in sub-second evaluations, demonstrating practicality even

in constrained environments. As Solve factors N, our TIDE construction is single-use for

each setup. However, as we have seen in our experiments, this property is not an obstacle

for practical use in applications such as auctions. Even in more computationally constrained
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environments such as the Raspberry Pi, the Solve and Encrypt and Decrypt algorithms do

not require an impractical time cost. We would recommend for a standard use case to use

m≤ 4096 to keep the setup run time within an appropriate bound. This leaves the value for t

as the primary parameter dictating the length of the delay. As we saw in Figure 4.1, the value

for t can be set with reasonable accuracy to introduce a desired delay for the target hardware.
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4.6 Application to Auctions

In this section, we summarise how TIDE can be used in practice for the application of

auctions, and the benefits this has when compared to other approaches to auctions. We

will first discuss the main alternative to delay-based auctions, and the trade-offs that arise

when compared to delay-based auctions, before briefly discussing how TIDE fits into the

delay-based literature of auctions.

One common approach to designing auction protocols is to use secure multi-party com-

putation techniques to compute an auction where all parties submit an input, and together

compute a shared output. This is demonstrated in a well-known paper ‘Secure Multiparty

Computation Goes Live’ [30], where such techniques from multi-party computation were

used to implement a nation wide double auction in Denmark. In a double auction, sellers

indicate how much of an item they are willing to sell at certain price points, whilst buyers

indicate how much of the same item they are willing to buy at each price point. Using this

information, the market clearing price, i.e., the price per unit of this item that parties agree

upon is computed, allowing transactions to be be made at this price point.

This approach allows advanced functions such as the market clearing price to be computed

upon inputs, whilst providing a higher level of privacy than that of TIDE, due to the inputs

of each party remaining secret. However, this MPC approach utilises a different framework

to that of TIDE, which comes with different assumptions: explicitly, it is required that all

parties are online at the same time when carrying out the protocol, and often a significant

computational burden is placed upon participating parties. As such, whilst linked by the

application of auctions, we view such work as tangential.

We will instead restrict our attention to sealed-bid auctions, giving a brief summary here,

and referring the reader to the exposition in Chapter 2. Sealed-bid auctions allow bidders to

secretly submit a bid for some goods without learning the bids of any other party involved
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until the end of the auction. Importantly, this setting circumvents the requirement for all

bidders to be online at the same time. Time-lock puzzles (Section 2.2.1), can be used to

submit bids without requiring a setup to be performed, however such bids must be decrypted

individually, leading to scaling issues. Homomorphic time-lock puzzles (Section 2.2.2)

and delay encryption (Section 2.2.4) offer solutions which address this scaling issue, but a

practical construction that can be used for auctions has yet to be built.

In this chapter, we demonstrated that TIDE is a timed-release encryption scheme that

improves upon these scaling issue at the cost of a trusted setup. TIDE provides a solution

which is based upon well known, trusted cryptographic building blocks, using number-

theoretic results in order to derive the secret decryption key. TIDE runs efficiently in practice:

We demonstrated in Section 4.5 that TIDE has a setup that takes on average 1 to 2 seconds

on a consumer-grade desktop PC for a 2048-bit RSA modulus, and negligible time taken for

encryption and decryption. Importantly, only one delay is required regardless of the number

of bids placed in the auction. By releasing the encryption key in the public parameters, all

interested parties can bid in the auction using Algorithm 4.3.3. Algorithm 4.3.2 will then

provide the relevant decryption key, which can be used to recover all bids efficiently.

This efficiency, combined with the publicly available code, makes this tool a practical

choice in the context of delay-based auctions.

4.7 Conclusion

In this chapter we presented TIDE, a novel, efficient and easily implementable approach to

building a TRE scheme.

TIDE integrates RSA encryption into an RSW-based TLP using powerful results from

number theory. On top of being a concrete construction, the novelty of TIDE lies in its ap-
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proach to deriving the secret key. We have shown that TIDE is demonstrably implementable,

and practically efficient in the case where a trusted setup is tenable.

Future work The definitions which we introduced in Section 4.1.2 contain a nuance

in the Setup algorithm, which can be used to enable further potential applications, which

have yet to be explored in the context of delay-based encryption. We develop this idea in the

next chapter, in which we present a follow-up work where we introduce the notion of TRE

with implicit authentication. We will show that this new variant of timed-release encryption

allows for finer grained control of data, and we will demonstrate that this enables delay-based

cryptography to be applied to applications such as whistleblowing.

Additionally, the technique of using BBS with RSA-OAEP in order to factor an RSA

modulus after a delay may be of use in further delay-based constructions. One can use this

technique to allow the party who runs the delay to receive a reward, in order to incentivise

the solver to run the computation. We will use this technique again in each of the following

chapters, demonstrating that it is applicable in various scenarios.
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In this chapter, we build upon the work of the previous chapter by expanding the definition

of TRE, introducing a novel security notion which we term implicit authentication. This

allows us to construct a scheme which offers the encryptor greater flexibility over the release
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of information, which we propose as a method for improving the safety of vulnerable parties

such as whistleblowers. The work in this chapter appears in [112], which was a joint work

with Angelique Loe, Christian O’Connell, and Elizabeth Quaglia.

5.1 Introduction

In 2013, Edward Snowden leaked highly classified information from the National Security

Agency [140, 152], at great personal risk. Other recent cases of whistleblowing include

the Panama papers [128], the Paradise papers [22], and the Pandora papers [105]. Leaking

information subjected the whistleblowers to personal danger due to the power and influence of

the organisations whose data was leaked. In the case of the Panama papers, the whistleblower

claimed their ‘life was in danger’ [77].

In this chapter, we construct a cryptographic tool based on timed-release encryption [53],

which can augment existing tools for whistleblowers, such as SecureDrop [3]. Our goal

is to introduce techniques from delay-based cryptography into the the release of sensitive

information, which we believe has potential to make the practice of whistleblowing safer.

We model our solution on the Edward Snowden case, in which all classified material was

destroyed before arriving in Russia, in order “To protect himself from Russian leverage" [2].

We propose a construction which offers the concept of delay-based encryption for whistle-

blowers, to allow them to rely on cryptographic assurances rather than the trust of a journalist

or ombudsman. The technique we introduce allows sensitive information to be encrypted in

such a way that a) there is a predictable delay between the receipt of the ciphertext encap-

sulating the leaked information and the release of the information, and b) there is no way

an adversary can forge a chosen document to insert alongside the genuine documents. The

motivation behind using a delay in this context is to afford the whistleblower time to destroy

all classified material after encapsulating the material, and hence ensure their safety. In the
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Snowden case, the delay would have allowed the passage to a safe harbour country without

the sensitive information being decrypted until a specified time.

The core idea of our approach is to have two separate keys, an encryption key and

decryption key, the latter being encoded as the solution to a challenge. This challenge will

be similar to the puzzle used in Chapter 4, and has the property that the delay starts once

the challenge is distributed. The whistleblower generates a public key pair and keeps the

encryption key secret, encapsulating its corresponding decryption key with a time-delay,

such that it takes at least t time to recover. We provide the whistleblower with the ability to

encrypt and distribute ciphertexts under the encryption key, without ‘starting the clock’ on

the time-delay. At a time of their choosing, the whistleblower can distribute the challenge,

upon which a sequential computation taking time t will output the decryption key for the

ciphertexts. Due to the asymmetric nature of the encryption key and decryption key, once the

decryption key is recovered, the whistleblower will still hold the exclusive ability to encrypt

more data at a later date.

We formalise this through the introduction of a security property which we term implicit

authentication, in order to provide the journalist receiving the leaked information with

assurance that an adversarial party cannot encrypt a document of their choosing under the

encryption key.

Chapter Layout In the remainder of this section we detail our methodology in approaching

this problem, outlining the security goals we desire and providing an overview of our

construction, before discussing relevant related work. In Section 5.2 we formally define

the primitive TRE with implicit authentication (TRE-IA), giving game-based definitions of

the required security properties. In Section 5.3 we present our construction for a TRE-IA

scheme, which is based upon the BBS-random number generator and RSA-OAEP encryption.

In Section 5.4 we prove our construction is secure under the definitions given in Section 5.2.
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In Section 5.5, we conclude this chapter by discussing our ideas for how this work can be

further developed in the future, in order to be used and trusted in practice.

5.1.1 Technical Overview

The goal of this chapter is to explore how a time-delay can be used by vulnerable parties

such as whistleblowers in order to make the distribution of sensitive material safer. In order

to do so, we introduce a novel construction based upon a clear set of properties, which we

can implement in practice and which may augment existing whistleblower tools. Therefore,

we define the following security goals that we believe may be helpful to a whistleblower

based on the real life cases of the Panama papers leak [77] and the Edward Snowden leak

[140, 152].

1. An adjustable time delay: this will allow the whistleblower to destroy all materials

that can be used against them. It also allows the whistleblower to have a configurable

amount of time to reach a place of safety.

2. Maximum flexibility: this will allow the whistleblower to determine a) when they can

encrypt and distribute messages and b) when they can ‘start the clock’ for evaluating

the delay. This is achieved through the separation of the ciphertexts and the challenge.

When the challenge is distributed this starts the clock.

3. Implicit authentication: this ensures that no other entity can generate a document of

their choice to insert into the leak.

Property 1 can be useful for a whistleblower to protect themselves from the dangers

associated with carrying sensitive material. Property 2 allows a whistleblower to gather

various different pieces of evidence over time and encrypt and distribute this evidence

to journalists. The whistleblower can also ensure that the journalists cannot yet leak the

87



5.1 Introduction

material until a time delay has passed, thus mitigating risks to the personal safety of the

whistleblower. We believe it is crucial that the whistleblower remains in control of all aspects

of the system, and by giving the whistleblower the freedom to distribute ciphertexts without

‘starting the clock’ on the time delay, we minimise the trust placed in journalists, and provide

the whistleblower with fine-grained control of when the documents are leaked.

Property 3 ensures that once the decryption key has been derived, it cannot be used

by third parties to obtain the encryption key to encrypt their own messages. Without this

property, it is possible for a third party to choose and encrypt their own fake material, and

claim it is from the whistleblower.

We now describe the methodology of how we designed our construction.

Building our construction. Our base property, 1, can be achieved using various primitives

that we discussed in Chapter 2, most notably time-lock puzzles (TLPs) and timed-release

encryption (TRE). We will start our discussion with TLPs.

Recall that a time-lock puzzle [136] encrypts a message to the future, in such a way that

once a solver spends a predictable amount of time evaluating the encrypted message, they

obtain the plaintext message.

One could think of using the naive approach of simply encrypting each message as a TLP

and passing it to a journalist. This achieves property 1, however it limits the whistleblower

to the condition that they encrypt all materials at once, and allows adversarial parties to

impersonate the whistleblower. As we wish for the whistleblower to have a finer control

of the encryption process we see that the latter method has limitations. For example,

the whistleblower may wish for multiple messages to be encrypted. This is a reasonable

assumption as the Panama papers exposed over eleven million leaked documents [128] and

the Paradise papers exposed over thirteen million leaked documents [22]. Using only a TLP

results in the loss of property 2, that is, the whistleblower loses the element of maximum

flexibility. It is more appropriate to follow the TRE approach of Section 2.2.3 and Chapter 4,
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using a symmetric key as the solution to a TLP, and then distribute ciphertexts separately.

This gives us a solution which is close to ideal, as ciphertexts can be distributed to journalists,

with guarantees both time delay and flexibility as to when the whistleblower starts the clock.

In other words, we can achieve properties 1 and 2 using this approach, however we are

missing the implicit authentication property described in 3.

Our approach to fixing this problem is to require that the encryption key and decryption

key are different, and more importantly, that one cannot derive the encryption key from the

decryption key. If this is the case, a whistleblower can encapsulate the decryption key of a

public-key encryption scheme, whilst keeping the encryption key secret.

As a starting point, we use the TRE definitions given in Section 4.1.2. However, we

note that our definitions, and indeed those of Chvojka et al. [53], do not give us the desired

property of a secret encryption key, nor do they necessarily imply that it is impossible to

derive the encryption key from the decryption key.

Therefore, to achieve these goals simultaneously we propose a variant of timed-release

encryption, which we term TRE with implicit authentication (TRE-IA) and instantiate this

with a construction based upon the BBS-CSPRNG random number generator [26], and the

RSA-OAEP encryption scheme [21].

5.1.2 Related Work

Delay-Based Primitives We have discussed at length in Chapter 2 the various delay-based

primitives that exist in the literature. In this section we will briefly discuss how these

primitives relate to TRE-IA, and to our proposed applications. We have already discussed

in the previous section the downsides associated with using TLPs both individually, and

augmented with a symmetric key encryption scheme: In essence, TRE-IA improves upon

this by using distinct (asymmetric) keys for encryption and decryption, as opposed to one
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symmetric key. In both primitives decryption keys are recovered after the delay, in order to

decrypt the ciphertext. But in TRE-IA only the decryption key is recovered. This leads to a

different functionality: the whistleblower has control over what information is leaked (i.e.,

encrypted) as the sole holder of the encryption key.

We also note that the main difference between TRE and TRE-IA is that the former

requires encryption to be public rather than only a prerogative of the whistleblower: In

TRE-IA it is specified that the encryption key cannot be derived by the solver even when

the decryption key is recovered. In a TRE-IA scheme assurance is provided through the

property of implicit authentication that only the whistleblower can encrypt to the classic

notion of a public key in a standard PKE scheme. In the following section, we will introduce

the definitions of TRE-IA, and provide a more detailed comparison with the TRE definitions

given in Chapter 4.

DE (Section 2.2.4) is distinct from TRE-IA for a similar reason: DE allows anyone to

encrypt to the session ID, compared to just the whistleblower being in control of encryption

in TRE-IA. Finally, the remaining delay-based primitives, i.e. PoSW and VDFs do not

generate a ciphertext, or indeed have any method for encrypting data, and so are clearly

distinct from TRE-IA.

Signcryption A cryptographic primitive offering a similar property to implicit authenti-

cation (IA) is Signcryption [157–159]. IA provides the receiving party with assurance that

the encrypted documents were sent by the whistleblower. The IA property states that only the

holder of the private encryption key can generate a legitimate ciphertext that can be correctly

decrypted to a chosen message. In a similar fashion the concept of Signcryption was intro-

duced to provide a single computation that would simultaneously provide the authenticity

from a digital signature scheme (DSS), and the confidentiality from a public-key encryption

(PKE) scheme. However, Signcryption does not consider the property of delay which is

crucial to our TRE-IA scheme.
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Tools for whistleblowers There exists a variety of tools which can provide protection to

whistleblowers. The Tor [5] browser can be used to navigate the Internet anonymously, PGP

[160] keys and encrypted email services can support the secure communication between a

whistleblower and the investigative journalist, as well as end-to-end encrypted messaging

services such as Signal [4]. Closely aligned to our intended end-goal is the SecureDrop [3]

submission system, which enables whistleblowers to securely deliver documents containing

leaked information. The novelty of our proposed solution in this space is the introduction of

a delay, which provides, when combined with encryption, a time ‘bubble’ within which the

whistleblower can reach safety. Indeed, we see TRE-IA as an addition to a whistleblower’s

toolbox featuring the property of a time-lock delay. In this context, we recognise that no tool

is perfect and solutions which guarantee the safety of the whistleblower should be grounded

in reality. Our proposed scheme represents a first, technological step towards introducing

delay as a form of protection to whistleblowers.

We conclude this section by noting that the whistleblower use case is an illustrative

example of how and why TRE-IA could be useful. We envisage TRE-IA being useful

in further applications where a delay and the ability to control the release of sensitive

information could help users in at risk situations.

5.2 Defining TRE-IA

We now provide the definition and properties of TRE-IA, which can be seen as an extension

of the TRE primitive, and in particular of the definitions that we gave in 4.1.2. We deviate

from the standard security model of TRE (see [53] and 4.1.2) in the following way: (i) to fit

in with our model of the encryptor alone knowing the encryption key, we require that the

encryptor runs setup. (ii) we separate the Setup algorithm into Setup and Gen to allow the

encryptor more flexibility on when they choose the time parameter. (iii) we introduce the
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new notion of implicit authentication. We provide an intuition of this security property, along

with a detailed description of the game in the following section.

We follow the notation of Chapter 4, using E to denote the encryptor, D for the decryptor,

and A for the PPT adversary. ←R represents a probabilistic algorithm, and← represents a

deterministic algorithm.

Definition 5.2.1 A timed-release encryption scheme with implicit authentication is a tuple

of algorithms TRE = ( Setup, Enc, Solve, Dec) with the following syntax.

(IA.Setup, IA.Gen, IA.Enc, IA.Solve, IA.Dec), defined as follows.

• pp, td ←R IA.Setup(1λ ). IA.Setup is an algorithm run by E that takes as input the

security parameter 1λ and outputs the public parameter pp and trapdoor td. E must

keep td private. IA.Setup runs in time poly(λ ).

• e,d,C, t ←R IA.Gen(pp, td, t). IA.Gen is an algorithm run by E that takes as input

pp, td, t and outputs an encryption key e, decryption key d, and a public challenge C.

IA.Gen runs in time poly(λ ).

• c←R IA.Enc(m,e, pp). IA.Enc is an algorithm run by E that takes as input a message

m, encryption key e, and public parameter pp and outputs ciphertext c. IA.Enc runs in

time poly(λ ).

• d ← IA.Solve(pp,C, t). IA.Solve is an algorithm run by D that takes as input the

parameters pp,C, t and outputs the decryption key d. IA.Solve requires t sequential

steps to recover d with a run time of (t)poly(λ ).

• {m′,⊥}← IA.Dec(c,d, pp). IA.Dec is an algorithm run by D that takes the ciphertext

c, decryption key d, and public parameter pp and outputs plaintext m′ or error ⊥.

IA.Dec runs in time poly(λ ).
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A TRE-IA scheme must satisfy the properties of correctness, security, and implicit au-

thentication.

Correctness As with a TRE scheme, a TRE-IA scheme is correct if any encrypted

message can be decrypted using the corresponding decryption key with overwhelming

probability. Namely, in the context of TRE-IA, using the decryption key with a legitimate

ciphertext in IA.Dec will recover the original message input into IA.Enc. This is made precise

in the Correctness game.

Correctness Game
1 E outputs the public parameter and trapdoor: pp, td ←R IA.Setup(1λ ).
2 E outputs an encryption key, decryption key, challenge, and time parameter:

e,d,C, t ←R IA.Gen(pp, td, t).
3 E computes the ciphertext on message m: c←R IA.Enc(m,e, pp).
4 D recovers the decryption key: d← IA.Solve(pp,C, t).
5 D decrypts the ciphertext: m′← IA.Dec(c,d, pp).

A TRE-IA scheme is correct if m = m′ with probability 1−negl(λ ).

Security In TRE-IA, security is defined as an indistinguishability game, as follows:

Suppose an adversaryA chooses two messages of the same length m0 and m1 and sends them

to the encryptor E . E chooses one of these messages at random, which it encrypts and sends

to A. The adversary then gets polynomial time to preprocess upon this ciphertext before

receiving the challenge C. The adversary must then make a guess before t sequential steps

are computed. A TRE-IA scheme is secure if no PPT adversary A can gain an advantage

in guessing which message was chosen by E . The key difference between this game when

compared to the standard TRE security game given in the previous chapter is that the

adversary is given polynomial time to preprocess on the two ciphertexts before gaining

access to the challenge. This is made precise in the Security game.

Implicit authentication is the new property we introduce in TRE, and it captures an

adversary being unable to forge a ciphertext for a message of their choice, hence providing an
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Security Game
1 E outputs the public parameter and trapdoor pp, td ←R IA.Setup(1λ ).
2 E outputs an encryption key, decryption key, challenge, and time parameter:

e,d,C, t ←R IA.Gen(pp, td, t).
3 A selects two messages of the same length (m0,m1) for E .
4 E uniformly selects b ∈ {0,1}, and encrypts mb as c←R IA.Enc(mb,e, pp).
5 A runs a preprocessing algorithm A0 on the public parameter and the ciphertext, and

stores st←A0(pp,c).
6 E sends t and C to A.
7 A runs a PPT algorithm A1 which outputs b′←A1(st,C, t), where A1 must run in

fewer than t sequential steps.
A TRE-IA scheme is secure if b = b′ with probability 1

2 +negl(λ ).

implicit guarantee that ciphertexts are authentic. In the context of our motivating application,

this property ensures that a malicious party cannot insert a document of their choice into the

leak provided by a genuine whistleblower.

The idea of modelling security against a ciphertext forgery is inspired by the notions

of plaintext integrity and ciphertext integrity [19, 23] in the symmetric encryption setting.

More specifically, plaintext integrity states that it should be infeasible to produce a ciphertext

decrypting to any message which the sender has not encrypted, and ciphertext integrity

requires that it be infeasible to produce a ciphertext not previously produced by the sender,

regardless of whether or not the underlying plaintext is ‘new’ [19].

However, these existing notions do not directly map to the asymmetric-key setting

primitives such as TRE, since the adversary gains access to the secret decryption key after

time t. This represents a challenge because it allows the adversary to select elements from

the ciphertext space with non-negligible probability, and decrypt them to obtain a plaintext,

and present this as a forgery. Whilst any message obtained this way will be not necessarily

be ‘meaningful’, this approach makes a simple analogue of either ciphertext authenticity or

plaintext authenticity difficult.
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To overcome this, we took the approach of modelling our implicit authentication game as

an encryption analogue of selective forgery [103, 124], a property used in digital signature

schemes where an adversary first commits to a target message m∗ and is later challenged to

forge a signature for this target message. The key difference in our implicit authentication

game is that the adversary is instead asked to output an encryption of the target message,

rather than a signature.

We model the implicit authentication game as follows: We first ask the adversary to

output a message m∗ that they wish to encrypt. The adversary is then given the decryption

key, and access to an encryption oracle. Finally, the adversary is asked to output a ciphertext

c to the challenger. The adversary wins the game if c decrypts to the message m∗.

We make this precise in the Implicit Authentication game.

Implicit Authentication Game
1 E outputs a key pair e,d, the public parameters pp, a trapdoor td, and a challenge C:

pp, td ←R IA.Setup(1λ ), e,d,C, t ←R IA.Gen(pp, td, t).
2 E sends the public parameter pp to the adversary A.
3 A returns a target message m∗ to E .
4 E sends A the challenge C, time parameter t, and the decryption key d.
5 A is also given access to the encryption oracle OEnc, which takes as input a message

m′ ̸= m∗, and returns c′← IA.Enc(m′,e, pp) if the message is valid, and ⊥
otherwise.

6 A returns a ciphertext c to E .
7 A wins the game if m∗← IA.Dec(c,d, pp).

A TRE-IA scheme has implicit authentication if A wins the game with probability no
greater than negl(λ ).

5.3 Construction of a TRE-IA scheme

In this section we provide a concrete construction of a TRE with implicit authentication. As

in our TIDE construction in Chapter 4, the delay element of our TRE-IA is derived from the

construction of the Blum Blum Shub CSPRNG [26], and the encryption component comes
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from the RSA-OAEP PKE scheme. For the sake of brevity, we shall refer to our construction

as the BBS-TRE.

Recall that implicit authentication states that without access to the encryption key an

adversary should not be able to forge a ciphertext for a message of their choice. When RSA

is used in practice it is standard procedure to use e = 65537 as the encryption key [15]. This

does not allow for implicit authentication, as an adversary can guess this. Using any ‘standard’

fixed encryption key, or a key from a fixed small set will allow an adversary to guess this key,

and hence encrypt a message as a ciphertext with more than negligible probability. As such, in

contrast to our TRE construction presented in Chapter 4, we design our TRE-IA construction

to choose e at random, to ensure that we obtain the implicit authentication property whilst

still conforming to the NIST SP-800-56B standard for random public exponent key pair

generation [15], Section 6.3.2. Using the BBS-CSPRNG provides an elegant solution to

integrating random keys in a TRE-IA setup.

Next, we provide the notation required for the exposition of our BBS-TRE. In the pseudo

code of our algorithms := indicates assignment, = indicates equality, ̸= indicates inequality,

() indicates a tuple, and // denotes a comment. The function prime( j) outputs a random

j-bit Gaussian prime. The function U(a,b) uniformly selects of an integer that is between

a,b ∈ Z, where a < b and a,b are inclusive. Also, the symbol ∧ indicates logical conjunction

(and).
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Our BBS-TRE is summarised as follows:

pp := (N,k0,k1,G,H), td := φ(N) ←R IA.Setup(1λ )

e := d−1 mod φ(N),d := x2t−1 mod φ(N)
0 mod N,

C := (x0,xt), t ←R IA.Gen(pp, td, t)

c ←R IA.Enc(m,e, pp)

d :=
√

xt ← IA.Solve(pp,C, t)

{m,⊥} ← IA.Dec(c,d, pp)

In our BBS-TRE IA.Setup outputs the public parameters N,k0,k1,G,H. The first param-

eter is the RSA modulus N which is a Blum integer. A Blum integer is the product of two

Gaussian primes i.e. N = pq, where p ≡ q ≡ 3 mod 4 [26]. The modulus being a Blum

integer is a key requirement for the correctness of our scheme. The parameters k0,k1,G,H

are the RSA-OAEP parameters which can be seen in detail in Algorithm 5.3.3. IA.Setup also

outputs the trapdoor φ(N) := (p−1)(q−1) and keeps this parameter private.

Next, the IA.Gen algorithm outputs the encryption and decryption keys, the challenge

(x0,xt) and the time parameter t. The term x0 is a randomly sampled quadratic residue of N,

denoted x0 ∈QRN . The decryption key d is calculated with the trapdoor using Algorithm

3.1.1 with the parameters (x0,2t−1 mod φ(N),N). If gcd(d,φ(N)) = 1, then xt is set to

d2 mod N and the encryption key e is set to d−1 mod φ(N). Next the IA.Enc algorithm takes

as inputs a message m and the encryption key e and the public encryption parameters pp,

and computes the ciphertext c using the RSA-OEAP PKE scheme. The BBS-TRE deviates

from a traditional RSA-OAEP PKE scheme as the encryption key e remains private to ensure

the property of implicit authentication.

Next, the IA.Solve algorithm sequentially calculates the decryption key d using Algorithm

3.1.1 with the parameters (x0,2t−1,N). The RSW time-lock assumption tells us that finding

the term d will require t−1 sequential modular exponentiations to calculate if the trapdoor
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φ(N) is not known. Finally, the IA.Dec algorithm takes as inputs the ciphertext c and the

decryption key d and the public parameters pp, and outputs either the message m or an error

⊥ using the RSA-OEAP PKE scheme. We now provide the full details of our BBS-TRE

algorithms.

Setup E runs pp, td ←R IA.Setup(1λ ) to generate the public parameter and trapdoor,

as seen in Algorithm 5.3.1. The function prime( j) on lines 4 and 5 randomly generates

j bit primes p ≡ q ≡ 3 mod 4. We represent this with the notation p←R prime( j). This

guarantees that N, which is calculated on line 7, is a Blum integer. The trapdoor is set to

φ(N) := (p−1)(q−1). Next it runs the function params(1k) which outputs the parameters

for the RSA-OAEP PKE scheme. The parameters k0,k1 are integers fixed by RSA-OEAP, and

the parameters G,H are cryptographically secure hashing functions. The public parameter

is set to pp := (N,k0,k1,G,H). The public parameter can be released to D after IA.Setup is

run, but the trapdoor must remain private.

Gen E runs e,d,C, t ←R IA.Gen(pp, td, t) to generate the encryption and decryption

keys and the challenge, as seen in Algorithm 5.3.2. The attentive reader may note that this

algorithm is similar to the Setup algorithm in our construction TIDE, presented in Chapter

4. However, there are some nuances between the constructions, most importantly that in

our TRE-IA construction we first compute the decryption key d at random, and then use

this to derive a random exponent e. This is highly important for the property of implicit

authentication, as we discussed in Section 5.2. We now describe in detail the steps of

this algorithm. First, IA.Gen sets the variable gcd to 0. Next, IA.Gen enters a while loop

to generate an appropriate encryption and decryption exponent e,d for RSA-OAEP. This

is done by first uniformly selecting x ∈ Z∗N and computing x0 ≡ x2 mod N. Then IA.Gen

evaluates d ≡ x2t−1 mod φ(N)
0 mod N. The decryption key d is calculated using Algorithm

3.1.1 with the parameters (x0,2t−1 mod φ(N),N). Note that E is able to reduce the exponent
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2t−1 mod φ(N) using the trapdoor. The while loop runs until the decryption key d computed

on line 6 is coprime to φ(N). That is, until gcd := gcd(d,φ(N)) = 1. Once this is found

the while loop exits and the term xt := d2 mod N is calculated and the encryption key e is

calculated using the extended Euclidean Algorithm. In Theorem 5.4.1 we prove that the while

loop will terminate. Furthermore, we prove that in expectation the number of iterations the

while loop will require to generate a challenge such that gcd := gcd(d,φ(N)) = 1 is π2

3 ≈ 3.3.

Finally, the challenge C is set to the tuple (x0,xt). IA.Gen then outputs the encryption and

decryption keys e,d the challenge C, and the time parameter t. The challenge that D must

solve to recover the decryption key is: for seed x0, find d such that d ≡ √xt mod N. The

encryption key e must remain private, and C and t must only be released to D once E would

like the decryption key d to be extracted under the RSW time-lock assumption by using the

IA.Solve algorithm.

Algorithm 5.3.1: E runs IA.Setup on security parameter 1λ to output public
parameter pp and trapdoor td.

input :1λ

1 p := 0
2 q := 0
3 while p ̸= q do
4 p := prime(λ

2 )

5 q := prime(λ

2 )

6 end
7 N := pq
8 φ(N) := (p−1)(q−1)
9 k0,k1,G,H← params(1λ )

output : pp := (N,k0,k1,G,H), td := φ(N)

Encrypt E runs c←R IA.Enc(m,e, pp) on a message m, in order to generate a ciphertext

c, as seen in Algorithm 5.3.3. IA.Enc is the encryption algorithm of the RSA-OAEP PKE

scheme. We provide comments to explain each step of this well-known algorithm. One of
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the key properties of a TRE-IA scheme is that the ciphertexts can be released to the decryptor

independently of the challenge and time parameter output by IA.Gen.

Algorithm 5.3.2: E runs IA.Gen on public parameter, trapdoor, and time parame-
ter pp, td, t to create the encryption and decryption exponents and the challenge
e,d,C, t.

input : pp,φ(N), t // t ∈ N
1 gcd := 0
2 while gcd ̸= 1 do
3 x←R Z∗N
4 x0 := x2 mod N

5 d := x2t−1 mod φ(N)
0 mod N

6 gcd := gcd(d,φ(N))

7 end
8 xt := d2 mod N
9 e := d−1 mod φ(N) // EEA

10 C := (x0,xt)
output :e,d,C, t

Solve D runs d← IA.Solve(pp,C, t) to evaluate the challenge and output the decryption

key as seen in Algorithm 5.3.4. First IA.Solve calculates the term
√

xt by entering the

parameters (x0,2t−1,N) into Algorithm 3.1.1. By the RSW time-lock assumption it will take

t−1 sequential steps to calculate d because the trapdoor is not known by the decryptor D.
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Next, IA.Solve checks if
√

xt
2 mod N = xt is true. If the condition is true, then d is set to

√
xt and output and the algorithm terminates.

Algorithm 5.3.3: E runs IA.Enc on (m,e, pp) to output ciphertext c.
input :m,e, pp

// pp := (N,k0,k1,G,H)

1 m′ := m || 0k1 // Zero pad to n− k0 bits

2 r := rand(k0) // Random k0 bit number

3 X := m′⊕Gn−k0(r) // Hash r to length n− k0

4 Y := r⊕Hk0(X) // Hash X to length k0

5 m′′ := X || Y // Create message object

6 c := m′′e mod N // RSA encrypt

output :c

Algorithm 5.3.4: D runs IA.Solve to evaluate pp,C, t and output the decryption
key d.

input : pp,C, t
// pp := (N,k0,k1,G,H), C := (x0,xt)

1
√

xt := x2t−1

0 mod N
2 if√xt

2 mod N = xt then
3 d :=

√
xt

4 end
output :d

Decrypt D runs {m,⊥}← IA.Dec(c,d, pp) to output the plaintext message m or ⊥, as

seen in Algorithm 5.3.5. IA.Dec is the decryption algorithm of the RSA-OEAP PKE scheme.

As with IA.Enc, each step of the algorithm is described on the comments of each line. By the

correctness of the RSA-OAEP PKE scheme, if the parameter d extracted by IA.Solve under

the RSW time-lock assumption has the property ed ≡ 1 mod φ(N) (line 9 of IA.Gen), then

the message m will be recovered. Else, IA.Dec will output ⊥.
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Algorithm 5.3.5: D runs IA.Dec on (c,d, pp) to recover message m or output ⊥.
input :c,d, pp
// pp := (N,k0,k1,G,H)

1 m′′ := cd mod N
2 X :=

⌊
m′′2−k0

⌋
// Extract X

3 Y := m′′ mod 2k0 // Extract Y
4 r := Y ⊕Hk0(X) // Recover r
5 m′ := X⊕Gn−k0(r) // Recover padded message
6 m := m′2−k1 // Remove padding

output :{m,⊥}

We have presented a concrete construction for a TRE-IA based on a RSW TLP and the

RSA-OAEP PKE scheme. We have done this by setting up an RSA modulus which is a Blum

integer, generating a TLP challenge and a PKE key-pair, then time-locking the decryption

key using the TLP. We then integrated our encryption and decryption exponents (the PKE

key pair) into the RSA-OAEP scheme for the encryption of a message and the decryption of

the ciphertext respectively. In the next section we provide a formal security analysis of our

scheme.

5.4 Security Analysis

In this section we provide the security analysis of the BBS-TRE scheme presented in Section

5.3. This comprises of proving correctness, security and implicit authentication.

We first provide proof of the correctness of our scheme. The outline of our proof will

be as follows: first we will prove that IA.Gen will terminate and hence generate a suitable

decryption key d as the solution to the challenge D with overwhelming probability. Second

we will prove that IA.Solve will correctly output the decryption key d, third we will prove

that the decryption key d is unique because N is a Blum integer, and finally we will prove

that the decryption key will correctly return the original message m when it is used to decrypt

a ciphertext c generated with the encryption exponent e.
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For the first element of our correctness proof we must prove that the while loop in IA.Gen

will terminate and generate a suitable challenge and decryption key d. We note that this step

is something that was not necessary in the correctness proof of TIDE, and is required due to

computing the key pair d and e at random, rather than fixing e.

Theorem 5.4.1 The while loop in IA.Gen will in expectation take π2

3 trials to generate a

suitable challenge and decryption key d.

Proof: The probability of two randomly selected integers being coprime is 6
π2 [84], Theo-

rem 33. The Blum integer N = pq generated with IA.Setup is randomly selected using the

Miller Rabin Monte Carlo algorithm [125]. Next, the φ(N) is calculated as (p−1)(q−1).

Therefore, φ(N) is always even.

Each iteration of the while loop in IA.Gen is a Bernoulli trial. In our Bernoulli trial N

and hence φ(N) are randomly selected and the integer d on line 5 of IA.Gen is also randomly

selected. We model d as a random integer as it is an output of the BBS CSPRNG. In each

trial, if gcd(d,φ(N)) = 1 the outcome is a success, otherwise if gcd(d,φ(N)) ̸= 1 then the

outcome is a failure. Therefore, in each trial, the probability of selecting two random integers

which are coprime when one integer is even is 6
2π2 =

3
π2 .

Finally, the probability distribution of the number of Bernoulli trials required until one

success is achieved forms a Geometric distribution G ∼ Geo( 3
π2 ). Therefore, in expectation,

the number of Bernoulli trials required until a suitable challenge and decryption key d is

selected such that gcd(d,φ(N)) = 1 is E(G) = π2

3 ≈ 3.3 trials. Therefore it is clear that this

while loop will terminate in polynomial time with overwhelming probability.

�

The second part of proving the correctness of our BBS-TRE construction is to prove that

the IA.Solve algorithm correctly calculates the decryption key d.
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Lemma 5.4.1 The IA.Solve algorithm in the BBS-TRE correctly outputs the decryption key

d := xt−1.

Proof: Suppose encryptor E honestly generates a random public parameter, challenge and

time parameter pp := (N,k0,k1,G,H),(C := (x0,xt), t) and presents these to an honest D.

Next, suppose D selects the legitimate evaluation algorithm IA.Solve to evaluate (C, t). The

IA.Solve algorithm will calculate the decryption key d by entering the following parameters

(x0,2t−1,N) into Algorithm 3.1.1, which will output d := x0
2t−1

= xt−1 mod N. IA.Solve will

correctly output the BBS term xt−1 with overwhelming probability due to the correctness

of Algorithm 3.1.1 noted in Theorem 4.4.3. Therefore, the IA.Solve algorithm will correctly

output d := xt−1. �

Next we must prove that the decryption key d := xt−1 =
√

xt mod N output by IA.Solve is

unique. First we must recall that d by definition of being a term in a BBS CSPRNG sequence

is a quadratic residue of the modulus N.

Therefore, we must prove that the solution d to the following equation is unique:

d :=
√

xt mod N (5.1)

This challenge arises because the Chinese Remainder Theorem isomorphism indicates

that when N = pq, where p,q are distinct odd primes, that Equation 5.1 has four distinct

solutions [93]. That is, ±a≡±b≡√xt mod N, where a ̸= b.

Theorem 5.4.2 If N = pq is a Blum integer, then the decryption key d output by IA.Solve is

unique.

Proof: If N = pq is a Blum integer with p ≡ q ≡ 3 mod 4, then N ≡ 1 mod 4. By the

Chinese Remainder Theorem isomorphism every r ∈QRN has four distinct square roots ±a

104



5.4 Security Analysis

and ±b. As N is a Blum integer, by the law of quadratic reciprocity JN(a) = JN(−a) and

JN(b) = JN(−b), where JN is the Jacobi symbol. It must be the case that a2 ≡ b2 mod N,

which implies (a− b)(a+ b) ≡ 0 mod N, which implies (a− b) | N and (a+ b) | N. That

is, without loss of generality (a− b) = kp and (a+ b) = ℓq, where k, ℓ ∈ N. Therefore,

Jp(a) = Jp(b) and Jq(a) = Jq(−b). As p≡ 3 mod 4, the law of quadratic reciprocity tells

us Jp(−1) = −1, we have Jq(a)Jp(−1) = Jq(−b)Jp(−1). This implies that JN(−a) =

JN(b) or written another way JN(a) ̸= JN(b).

Without loss of generality, eliminate the two roots with JN equal to −1, say JN(b) =

JN(−b) = −1. This leaves JN(a) = JN(−a) = 1. It is the case that only one of −a or a

has Jp = Jq = 1 as p≡ 3 mod 4. Therefore, it is this one that is the only quadratic residue

modulo N [26].

Returning to our BBS-TRE, by Lemma 5.4.1 the term d := xt−1 =
√

xt mod N is correctly

calculated by IA.Solve and by definition it is a term in a BBS sequence. Therefore, d is a

quadratic residue of the modulus N. Therefore, d is the only one of the four distinct square

roots of xt that is a quadratic residue of N. �

For the final element of the correctness proof of our BBS-TRE construction we must

prove that the decryption key d will correctly recover the message in an RSA-OAEP scheme.

Corollary 5.4.1 The BBS-TRE is correct.

Proof: By Theorem 5.4.1 we know that IA.Gen will terminate and output a suitable RSW

TLP challenge (C, t). By Theorem 4.4.3 and Lemma 5.4.1 we know that the decryption key d

will be recovered by IA.Solve. By Theorem 5.4.2 we know that the decryption key d against

the modulus N is unique. From the Fermat-Euler Theorem [78] we know that the decryption

key d calculated on line 5 of IA.Gen is the same as the decryption key recovered by IA.Solve

on line 1. From the correctness of the Extended Euclidean Algorithm [93] we know that e

calculated on line 9 of IA.Gen is the multiplicative inverse of d. Finally, from the correctness
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of the RSA-OEAP scheme [21] we know that IA.Dec will correctly recover the message m

using decryption key d from the ciphertext c output by IA.Enc using encryption key e with

overwhelming probability. �

Next we prove that our scheme satisfies the security property. We begin by showing

that the adversary is unable to compute d with non negligible probability in fewer than t−1

steps. We then go on to show that an adversary who wins the TRE-IA security game without

computing d can also break the standard IND-CPA game for RSA-OAEP, which is known to

be secure.

Theorem 5.4.3 Our BBS-TRE requires t−1 sequential steps to recover the decryption key

d.

Proof: Suppose we run the security game using our TRE-IA scheme as follows: E honestly

generates a random public parameter pp and generates the encryption key, decryption key,

challenge, and time parameter e,d,C, t. Next A selects two messages of the same length,

m0 and m1, for E to encrypt. E uniformly selects b ∈ {0,1} and encrypts mb, and sends the

resulting ciphtertext c, along with the public parameter pp to A. A runs a PPT algorithm A0

which pre-processes on pp and c, storing any output in a state st←A0(pp,c). E sends the

challenge and time parameter to A. Finally, A runs a PPT algorithm A1 which runs in fewer

than t−1 sequential steps, and outputs a bit b′←A1(st,C, t).

First, we prove that computing d without using the challenge and time parameter is

infeasible with overwhelming probability. We recall from Rabin that finding d =
√

xt mod N

(i.e. taking square roots mod N) without the challenge and time parameter C, t is equivalent

to factoring N [131]. Therefore, as N is an RSA modulus, it cannot be factored by any PPT

algorithm with more than negligible probability. Therefore, we have that any PPT algorithm
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that does not use C, t cannot recover the unique decryption key d with more than negligible

probability.

We next show that giving A the challenge and time parameter C := (x0,xt), t does not

allow them to take square roots modulo N faster than sequential squaring. To see this, note

that by construction x0 and xt are the seed term and tth term in a BBS CSPRNG sequence

[26]. Under the Generalised BBS assumption [35], knowledge of these terms does not allow

finding d =
√

xt faster than sequential squaring unless x2λ (λ (N))

0 mod N is calculated efficiently,

where λ (N) is the Carmichael function [44]. Finding x2λ (λ (N))

0 efficiently is an open problem

given by Theorem 9 of Blum et al. [26, 71, 81].

Finally, we have that computing d in fewer than t−1 sequential steps breaks the RSW

time-lock assumption: To see this, recall from Lemma 5.4.1 that IA.Solve correctly outputs

the decryption key d in t− 1 sequential steps, and we know from Theorem 5.4.2 that the

decryption key d is unique. Therefore, the existence of an algorithm that computes d in less

than t−1 sequential steps with non-negligible probability contradicts the RSW time-lock

assumption given in Definition 3.1.1.

�

Theorem 5.4.3 proves that the adversary cannot recover d in less than t sequential steps

to win the Security game. Therefore, to conclude our security proof we must demonstrate

that the adversary cannot guess b in less than t sequential steps without knowledge of the

decryption key.

Theorem 5.4.4 Our BBS-TRE scheme is secure.

Proof: We first assume for a contradiction that a PPT adversary A can win the Security

game with a non-negligible advantage.

Let IND-CPARSA be the standard IND-CPA game for RSA-OAEP [21]. We now recall

the well-known result that RSA with OAEP padding is IND-CPA secure under the RSA
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assumption [72]. We will show that any adversary who can break the Security game can also

win the IND-CPARSA game.

When choosing the two messages in the Security game, the adversary A has the same

available information as they do in the IND-CPARSA game: the public parameters. Similarly,

any preprocessing that can be done in the TRE-IA security game can also be done in the

standard RSA-OAEP setting. Therefore, any non-negligible advantage obtained by the

adversary in the TRE-IA game prior to receiving (C, t) could also be used to obtain the same

advantage in the IND-CPARSA game, which is known to be secure. Therefore, it is impossible

for an adversary to gain a non-negligible advantage prior to receiving the challenge and time

parameter.

We have shown in Theorem 5.4.3 that an adversary bounded by t−1 sequential steps

cannot obtain the decryption key d with more than negligible probability. However, if an

adversary runs an algorithm which provides a non-negligible advantage without knowledge of

the decryption key d, then they are able to distinguish between two RSA-OAEP ciphertexts,

which were chosen independently of the challenge. Hence the adversary would also break the

underlying IND-CPARSA game with the same algorithm, which is known to be impossible.

�

We now prove that our scheme has the property of implicit authentication.

Theorem 5.4.5 Our TRE scheme provides the implicit authentication property.

Proof: Suppose that the encryptor runs the IA.Setup and IA.Gen algorithms. Let A receive

the RSA modulus N and the OAEP parameters (k0,k1,G,H), and let m∗ be the target message

it outputs.

Now let A receive the challenge C, the time parameter t, the decryption key d and have

access to the encryption oracle Oenc.
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In our construction d is chosen at random on lines 3 - 5 of IA.Gen. As we are working

in Z∗N there is only one multiplicative inverse of d, which is the encryption key e calculated

on line 9 of IA.Gen. To derive e from d requires knowledge of φ(N), as e := d−1 mod φ(N).

In order to learn φ(N), the adversary would need to factor the RSA modulus N, which

is a well-known hard problem [131, 135]. Therefore, unless the adversary can factor N,

they cannot guess e with more than negligible probability. Therefore with overwhelming

probability the adversary will not learn the trapdoor φ(N), and hence will not be able to

derive e from d.

Using the encryption oracle Oenc A can obtain polynomially many ciphertexts. Recall

from [21] that RSA-OAEP has ciphertext indistinguishability under chosen-plaintext attack,

which guarantees indistinguishability between encryptions of messages. This property

guarantees in particular that the adversary has no advantage in identifying a ciphertext that

will allow them to win the IA game.

The adversary can choose random elements from the ciphertext space, and decrypt them

using the decryption key d. However, without knowledge of the encryption key, any such

ciphertext will decrypt to a random element of the message space.

As the size of the ciphertext space is exponential (explicitly it is the magnitude of Z∗N),

and the adversary runs a PPT algorithm, there is a negligible chance of correctly guessing a

ciphertext which decrypts to the target message m∗. Therefore the adversary will not win the

implicit authentication game with greater than negligible probability.

�

5.5 Conclusion

In this chapter we introduced a variant of TRE, which we call timed-release encryption

with implicit authentication (TRE-IA). Implicit authentication is formally introduced with a
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game-based definition, and we provide a concrete implementation with this property. Our

implementation of a TRE-IA uses the BBS CSPRNG and RSA-OAEP PKE as the building

blocks, as in the construction TIDE seen in Chapter 4.

We have discussed the additional applications that this work may be applied to, using

the setting of whistleblowing to motivate our work. We believe that this direction of using

delay-based crypto in the setting of vulnerable parties has the potential be useful in practice.

It is our hope that this work is expanded upon in the future, in order to make the lives of such

individuals safer.

Future work As our suggested application of whistleblowing is a sensitive topic, and

the use of delay in this context is new, we believe that there is a lot of scope for follow-up

work, from both a technical and non-technical perspective.

From a non-technical perspective, we believe that a social-science based review into

whistleblowers and other vulnerable people would be of great benefit. We envisage such a

review involving interviews which discuss how and why such a tool could be useful, and

what features they would like to be included.

From a technical point of view, as well as making any changes which are identified by a

review as mentioned above, we also believe that it is of great importance that any such tool

should be easy to use and trusted by potential users, with no required technical knowledge.

Therefore we believe that a tool with a clear, easy-to-use interface would be highly useful,

along with external cryptanalysis of both this work, and any work that builds upon this

concept.
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In this chapter, we discuss the modern state of cryptographic randomness, and the role

delay-based cryptography plays. This leads us to examine the primitive of verifiable delay

functions, and an extension known as continuous verifiable delay functions. We discuss the

definitions and applications of this primitive, arguing that the original definitions provided in

[66] are non-standard, and that their heavy parameterisation make this powerful primitive

difficult to use. We therefore offer definitions that are in keeping with the rest of the literature,

and hence easier to use and understand. We then provide a construction following these
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definitions, using a trusted setup to achieve a highly efficient construction. We then extend

this to a randomness beacon, and discuss the efficiency of various approaches to building a

randomness beacon, and how our construction fits into the literature.

6.1 Introduction

Often a group of parties wish to use shared common randomness in a protocol, each with the

guarantee that none of the other parties has any prior knowledge of the output.

Common examples within cryptography include secret sharing and key distribution [29,

58], and examples outside of cryptography include running a lottery and random sampling,

such as patients in clinical trials and officials in audits [32, 137].

In cryptography, a randomness beacon (RB) [132] is the primitive used to regularly

output values that can be used for such applications. One of the fundamental properties of

such a primitive is that it should not be biased, i.e., the parties running it should not have

influence over the final outcome. One natural approach to generating shared randomness

between parties is to agree to use a hash function on a source of entropy, such as a particular

stock index. However, this approach is not free from bias, as the price of the stock could

be biased by a powerful trader. An influential trader could compute the hash values of the

current price, a slightly higher price and a slightly lower price, with the goal of biasing the

price towards the most favourable outcome.

To address this issue, in CRYPTO 2018, Boneh et al. introduced the concept of a

Verifiable Delay Function (VDF) [32]. VDFs ensure that rather than directly computing

the hashed price of the stock, one can instead evaluate a sequential function that takes a

prescribed amount of time to compute. The idea is that no party can bias the output of the

random beacon because they cannot calculate the result in the given time window. In our

example, this enables us to guarantee that by the time the trader has evaluated the sequential
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function on the proposed values of the stock, the market will have closed, and so they will

not know the effect of altering the stock price.

Critically, for any practical application it is also necessary that parties wanting to use

this randomness are able to quickly verify that a given amount of time has elapsed, without

re-computing the entire function. Therefore a VDF must have the property that a party can

publicly verify that a delay has happened significantly faster than the time taken to compute

the delay.

One downside of a VDF is that for each delay computed, only one pulse of randomness

can be extracted. In EUROCRYPT 2020, Ephraim et al. [66] introduced the concept of a

continuous VDF (cVDF), in order to address this. A cVDF can be used to verify intermediate

states of the computation, rather than only the final output of the sequential computation,

allowing for randomness to be extracted at each interval.

The definitions given in [66] are non-standard, built upon a chain of nested definitions,

which are heavily parameterised. This makes the definitions reliant on a certain computational

model, which in turn makes them somewhat difficult to use. For example it is not trivial

for one to an extend a VDF to a cVDF, as the syntax is materially different. The authors

instantiate this primitive using an iterated extension of a VDF protocol introduced by Pietrzak

at ITCS19 [130]. However, this construction has some drawbacks in terms of efficiency. For

example, a significant amount of time is required for an evaluator without many parallel cores

to compute the proof. Additionally, the storage of the proof and the time spent computing

the verification protocol grow large as the length of delay increases.

In this work, we provide new definitions in keeping with the VDF literature, and we use

these to introduce a new approach to build a cVDF, and resulting randomness beacon. In this

construction, we leverage a precomputation phase to significantly improve the storage and

verification costs.
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6.1.1 Related Work

As a result of the rapid development of blockchain technology in recent years, many RBs

have been proposed in recent years, based on primitives such as Publicly Verifiable Secret

Sharing (PVSS) schemes [45, 46, 95, 142, 149], Threshold Crypto-Systems [40, 52, 83],

Verifiable Random Functions (VRF) [61, 79], as well as the approach used in this paper,

Verifiable Delay Functions (VDFs) [32, 65, 66, 82, 141]. We shall now give a brief discussion

of some recent works.

Interactive RBs Perhaps the most common approach to building an RB is to build an

interactive RB. Typically, these RBs are used in blockchain technologies, including notably

DFINITY [83], Algorand [79], and Ouroboros Praos [61]. We will briefly discuss some of

the most relevant literature around interactive RBs.

Collaborative RBs The majority of the works cited in this section – with the notable

exception of the VDF-based RBs – can be classified as collaborative RBs, i.e., those in

which participants work together to generate randomness. In such RBs, the goal is generally

to minimise the computational and communication complexity of each participant. Many

of the current protocols offer different trade-offs: One approach is to relay all messages

through a single node in order to reduce the communication cost, including for instance the

DFINITY protocol [83] and Randhound [149]. This reduces the communication cost to one

broadcast, i.e., O(n), where n is the number of participants. Alternatively, some protocols

aim to maximise decentralisation, by avoiding a central node. Examples of such protocols

include Ouroboros [95] and SCRAPE [45], and whilst such protocols are more decentralised,

this comes at a significantly higher communication cost of O(n3) [134].

Competitive RBs An alternative approach is to use competitive proof of work as a basis

for a randomness beacon [82, 133]. The idea is for parties to compete to find solutions to
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cryptographic puzzles, in the well-known proof of work style used in Bitcoin [126], using

these puzzles as randomness. Using proof of work allows the beacon to achieve both scal-

ability, meaning a large number of participants can join, as well as achieving the fairness

property, meaning the influence of each participant is roughly equal. However, such a beacon

is computationally intensive. The effect of such proof of work schemes on the environment

is well-documented [74, 151], and widely viewed as unsustainable. Additionally, it is always

the case that a powerful miner or group of miners can influence the outcome of the beacon by

not publishing a solution they view as undesirable. A recent systematisation of knowledge

paper by Raikwar et al. [134] discusses in greater detail the approaches we mention here to

building an interactive RB.

We now discuss VDF-based RBs, the subject of this chapter. We begin by highlighting

the advantages of using this primitive, before discussing concrete details. The key property

a VDF-based randomness beacon gives, when compared to alternative approaches, is the

timeliness property, which states that each pulse of randomness will come at a regular interval,

which is desirable in most applications. This property is listed by NIST in their project on

interoperable randomness beacons [137] as a property a randomness beacon should have.

Another advantage of a VDF-based RB is that there is no need for multiple parties to

reach an agreement on what the output is, which is a requirement of the interactive RBs

discussed earlier. Furthermore, there is no requirement for a synchronous network, which

can be unrealistic in practice, but required by many schemes [133].

Finally, VDF-based RBs have a strong bias-resistance property as the randomness cannot

be altered once the input has been chosen, unlike the collaborative and competitive ap-

proaches discussed previously, where parties can choose not to publish undesirable solutions

[82].
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VDF-based RBs A modern approach to building a randomness beacon utilises verifiable

delay functions (VDFs), first introduced at CRYPTO 2018 by Boneh et al [32]. A VDF is a

tool used to provide a delay in a decentralised setting. Whilst VDFs can be used to construct

consensus protocols and in timestamping, their flagship application is to provide a publicly

verifiable randomness beacon [56, 101]. A VDF requires a solver to compute an iterated

sequential function on an input, where any interested entity can efficiently verify that the

output is correct, and hence the prescribed amount of time was spent on the computation. In

recent years various VDF schemes have been proposed [66, 68, 130, 155]. Most relevant to

this chapter is Pietrzak’s VDF [130], where a solver uses repeated squaring to calculate a

delay and additionally calculate a proof. The solver then engages in an interactive protocol

to prove to a verifier that they computed the correct solution.

We next describe some of the most relevant protocols which use a VDF to build an RB.

In 2018, Drake et al. [65] proposed a smart contract which uses a VDF to produce random

values. This approach is a collaborative RB, as discussed earlier - it requires multiple parties,

known as beacon chain proposers, each contributing some local randomness. Drake assumes

that there exists a global clock, and splits up time into regular epochs of 1024 seconds. Each

of these epochs is split into 8-second blocks, each of which is ran by a beacon chain proposer.

These proposers each commit to some local entropy, and reveal it at the end of their block,

where it is then broadcast as randomness. This randomness is then used to sample a later

beacon proposer. This idea was presented as a post on Ethereum research forum and lacks a

rigorous security analysis.

In 2020, Schindler et al. proposed randrunner [141], a competitive RB construction in

which all participants are given a unique trapdoor in setup. Then consecutive rounds of

randomness are evaluated, where in each round an input is sampled and also one leader is

chosen, whose trapdoor allows them to evaluate the VDF faster than any other party.
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The output of the VDF evaluated in each round is hashed to obtain a pulse of randomness,

which is the beacon output, before another input and leader are chosen for the subsequent

round. All parties are encouraged to try to solve the VDF, even if they do not have the

trapdoor, which leads to a large amount of computational expenditure, particularly as the

number of participants grow. Additionally, this construction suffers from various attacks,

such as the adversary being able to corrupt the round leaders, and withhold output, whilst

working on subsequent rounds. An alternative approach is to use a continuous VDF.

Continuous VDFs In EUROCRYPT 2019, Ephraim et al. introduced the notion of a

continuous VDF (cVDF) [66]. The cVDF model presented by Ephraim et al. introduces

the notion of a state, which is an intermediate point within the computation that can be

verified. In contrast, when using a standard VDF verification is only possible at the end of

the computation. These states enable two key applications that a standard VDF is lacking.

Firstly, at any state the solving party can pass the computation on to another party, who

can efficiently verify the state and take over the computation. Secondly, by running the

verification procedure at each state, trusted public randomness can be extracted at regular

intervals, creating an efficient randomness beacon from one input. This is very well-suited

for the notion of an RB in which a pulse of randomness is output at regular intervals.

Crucially, Ephraim et al. show that if you have a secure cVDF, i.e., one that is adaptively

sound, sequential, and correct, you can build a secure randomness beacon from this primitive.

Ephraim et al. build their randomness beacon using the Tick/Tock paradigm, shown in Figure

6.1. In such a beacon, an initial state state0 is generated during the setup procedure (The

reader will see in the diagram that Ephraim et al. call the relevant algorithm init, which takes

input x0). Then, two algorithms are ran in parallel on every state: algorithm Tick takes a state

statei, and outputs the next state statei+1. Algorithm Tock takes the state statei and outputs

a pulse of randomness (denoted in the diagram as xi). Verification can then be performed on
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Fig. 6.1 The Tick/Tock paradigm as illustrated by Ephraim et al. in [66], where each xi
represent a pulse of randomness.

both the computation of Tick and of Tock, to show that the state was computed correctly, and

that the randomness was correctly computed from the state. This is a simple and effective

approach to building a randomness beacon.

The downside of this approach is that the definitions given in [66] utilise a very specific

computational model, namely one that uses many non-standard parameters and invokes

multiple nested definitions. This is a departure from the rest of the delay-based literature, and

we believe that this makes the definitions more difficult to use, as one must first familiarise

themself with this model. As such, we provide more generic definitions, in keeping with the

literature, broadly following the original VDF definition provided in [32].

Additionally, the cVDF construction in [66], along with the associated RB, has a verifica-

tion time which grows in O(log t), and hence scales badly as the time parameter increases.

In this chapter, we introduce a precomputation phase in order to build a significantly

more efficient cVDF, and resulting public randomness beacon, at the cost of a trusted setup.

6.1.2 Contributions of this Chapter

We begin in 6.2 by analysing the definition of a cVDF, in a similar manner to the TRE

discussion in Chapter 4. We then propose a new game-based definition that is in keeping
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with current literature, and we show that our definition of a cVDF is a generalisation of a

standard VDF. We construct a continuous VDF (Section 6.4), providing an efficiency analysis

and an implementation study (Section 6.5) showing that it has concrete advantages over the

existing constructions. We argue that avoiding some trust when setting up a VDF based

randomness beacon is impractical at the current time, and that trusting a small group of

anonymous parties is not necessarily better than trusting an entity such as NIST. Under the

assumption that this trusted third party runs the setup procedure, we build and implement

a randomness beacon which is both efficient to run in terms of storage and computation

costs, and additionally extremely fast for external parties to verify. We show that under

our definition, any secure cVDF also yields a randomness beacon (Section 6.7) in the style

of Ephraim et al. We then implement this, showing that whilst the setup is trusted, our

randomness beacon runs significantly more efficiently than that of Ephraim et al., and indeed

all current cVDF-based randomness beacons. We provide rigorous game-based security

definitions for a cVDF (Section 6.2.3), and Finally, in Section 6.6 we prove our scheme

secure under the definitions given in 6.2.

6.2 Definitions

In this section, we begin by recalling the definitions given by Ephraim et al. in [66], and

discussing why we think that these definitions could be made more practical. We will then

provide the definition of a standard VDF following Boneh et al. in [32], before extending

this definition to capture a continuous verifiable delay function.

6.2.1 Ephraim’s definitions

We structure the definitions in the same manner as Chapter 4, which is to say we begin

by giving the cVDF definitions provided by Ephraim, in the original style, rather than
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one consistent with the rest of this thesis. We do this to highlight the differences in these

definitions, and how our definitions are advantageous.

Definition 6.2.1 (Continuous Verifiable Delay Function) A continuous verifiable delay func-

tion is a tuple (Setup, Gen, Eval, Verify) such that (Setup, Gen, Eval) is a (1,B, l,ε)-

iteratively sequential function, (Setup, Eval, Verify) is a B-sound function, and is correct

from an honest start.

This definition relies on the following:

Definition 6.2.2 (Correctness from an Honest Start) For every λ ∈ N, pp in the support

of Setup
(

1λ

)
,v0 in the support of Gen (pp), and T ∈ N, it holds that

Verify
(
pp,(v0,T ) ,Eval(T ) (pp,v0)

)
= 1 .

Definition 6.2.3 (Iteratively Sequential Function) Let D,B, l : N→N be functions and let

ε ∈ (0,1). A tuple of algorithms (Setup,Gen,Eval) is a (D,B, l,ε)-iteratively sequential

function if Setup and Gen are PPT, Eval is deterministic, and the following properties hold.

• i) Iteratively sequential. The tuple (Setup,Gen,Eval (·)) is a (D,B, l,ε)-sequential

function.

• ii) Length Bounded. There exists a polynomial m such that for every λ ∈ N and

x ∈ {0,1}∗, it holds that |Eval(pp,x)| ≤m(λ ). We define Eval(·) to be the function that

takes as input pp, and (x, t) and represents the t-wise composition given by

Eval(T )(pp,x) := Eval(pp, ·)◦ · · · ◦Eval(pp, ·)(x)

Which requires us to recall the following definitions:
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Definition 6.2.4 (B-Soundness) For every non-uniform algorithm A = {Aλ}λ∈N such that

size (Aλ ) ∈ poly(B(λ )) for all λ ∈ N, there exists a negligible function negl such that for

every λ ∈ N an adversary A cannot win the soundness game with more than negligible

probability.

1 pp← Gen
(

1λ

)
V generates public parameters;

2 (x,y)← Aλ (pp) A runs an algorithm before outputting a pair (x,y);
A wins if Verify outputs accept and Eval(pp,x) ̸= y.

Game 6.2.1: Soundness Game

Definition 6.2.5 (Sequential Function) Let D,B, ℓ : N→N and let ε ∈ (0,1). A (D,B, ℓ,ε)

-sequential function is a tuple (Setup, Gen, Eval) where Setup and Gen are PPT, Eval is

deterministic, and the following properties hold:

• i) Honest Evaluation. There exists a uniform circuit family
{

Cλ ,t
}

λ ,t∈N such that Cλ ,t

computes Eval
(

1λ , ·,(·, t)
)

, and for all sufficiently large λ ∈ N and D(λ )≤ t ≤ B(λ ),

it holds that depth
(
Cλ ,t

)
= t · ℓ(λ ) and width

(
Cλ ,t

)
∈ poly(λ )

• ii) Sequentiality. For all non-uniform algorithmsA0 =
{
A0,λ

}
λ∈N such that size

(
A0,λ

)
∈

poly(B(λ )) for all λ ∈ N, there exists a negligible function negl such that for every

λ ∈ N, the adversary cannot win the Sequentiality Game with more than negligible

probability.

1 pp← Setup
(

1λ

)
generates public parameters;

2 Eval(pp,(x, t)) = y runs an algorithm before outputting a pair (x,y);
3 A1←A0,λ (pp)∧depth(A1)≤ (1− ε) · t · ℓ(λ );
4 x← Gen

(
1λ ,pp

)
;

A wins if (t,y)←A1(x)∧ t ≥ D(λ ).
Game 6.2.2: Sequentiality Game
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As the reader can see from the various nested definitions and the number of parameters,

this is a rather complex approach to defining a cVDF. Our goal when redefining a cVDF is to

make the definitions as generic and as close to the standard VDF definitions as possible. We

therefore avoid nested definitions, and reduce the number of parameters in order to become

syntactically consistent with the rest of the VDF literature. Before this however, we shall

introduce the original definition of a verifiable delay function [32] as a point of reference.

6.2.2 Verifiable Delay Functions

We now provide the definition and properties of a generic VDF [32, 130].

We follow Boneh et al. [32] in defining a VDF as the following tuple of algorithms:

(Setup, Eval, Verify).

Definition 6.2.6 (VDF Definition) A VDF is the following tuple of algorithms (Setup, Eval,

Verify):

• pp←R Setup(1λ ). Setup takes as input security parameter 1λ and outputs the public

parameter pp. Setup runs in time poly(λ ).

• y← Eval(pp,x, t). Eval takes as input the public parameter pp, and a challenge x, and

evaluates a solution y in t sequential steps. To qualify as a VDF, the solution y must be

unique.

• {accept, reject} ← Verify(pp,x, t,y). Verify takes as input the public parameter pp, a

solution y, the seed x, and time parameter t. Verify runs in time polylog(t) and poly(λ ).

Additionally, a VDF must be correct, sound, and sequential, [32, 130].

• A VDF is correct if a solution output by Eval is accepted by Verify with overwhelming

probability. This is made precise in the VDF correctness game.
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VDF Correctness Game
1 V generates random public parameter, challenge, and chooses the time parameter:

x, t,pp←R Setup(1λ ).
2 P runs the legitimate algorithm Eval to generate solution: y← Eval(pp,x, t).
3 V verifies the solution: {accept, reject}← Verify(pp,x, t,y).
P wins if Verify outputs accept.
A VDF is correct if P wins with probability 1−negl(λ ).

• A VDF is sound if any solution y′ output by any algorithm E , where y′ ̸= y← Eval,

has a negligible probability of being accepted by Verify. This is made precise in the

VDF soundness game.

VDF Soundness Game
1 V generates random public parameter, challenge, and chooses the time parameter:

x, t,pp←R Setup(1λ ).
2 A selects a PPT algorithm E , to generate solution: y′←E(pp,x, t), where

y′ ̸= y← Eval(pp,x, t).
3 V verifies the solution: {accept, reject}← Verify(pp,x, t,y′).
A wins if Verify outputs accept.
A VDF is sound if A wins with probability negl(λ ).

• A VDF is sequential if the following is true. Suppose A is provided with a public

parameter pp and is given polynomially bounded time to precompute on this public

parameter, prior to being provided with a random challenge x. The property of

sequentiality follows if A is unable to compute an output y′ by an algorithm E<t which

takes less that t sequential steps to calculate, such that y′ = y← Eval(pp,x, t). This is

made precise in the VDF sequentiality game.

The value x is often called the seed, or simply the input [32, 130, 155]. We use the word

challenge, as this is the most consistent with this thesis. In the original definition provided

by Boneh et al., it is not specified how the challenge x is sampled. Other definitions such as

[130] include an additional algorithm Gen which makes this sampling explicit. We believe

both approaches are valid, and we choose to follow Boneh et al. in leaving it implicit. In
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VDF Sequentiality Game
1 V generates random public parameter: pp←R Setup(1λ ).
2 A selects a PPT algorithm Ep to pre-process L← Ep(pp, t), where Ep runs in time

O(poly(t,λ )).
3 V generates random challenge x.
4 A selects a PPT algorithm E<t , where E<t runs in less than t sequential steps to

generate solution: y′←E<t(L,pp,x, t).
A wins if y′ = y← Eval(pp,x, t).
A VDF is sequential if A wins with probability negl(λ ).

the correctness and soundness games in both our VDF games and our cVDF games, we will

output the challenge x and initial state on the same line as the public parameters for ease

of notation, but note that generally speaking they are sampled independently of the setup

algorithm.

6.2.3 A New cVDF Definition

We now provide our game-based definitions for a cVDF, where we utilise the syntax of

standard VDFs, aiming to keep our definitions consistent with those presented in Section

6.2.2. After this, we will discuss the difference between the two definitions.

Definition 6.2.7 (cVDF Definition) For any k ∈ Z, a k−continuous VDF is the following

tuple of algorithms:

• pp ←R cVDF.Setup(1λ , t,k). cVDF.Setup takes as input a security parameter 1λ , a

time parameter t, and a continuity parameter k; and outputs the public parameter pp.

cVDF.Setup runs in time poly(λ ).

• statei+1← cVDF.Eval(pp,statei). cVDF.Eval takes as input the public parameter pp

and a state statei and evaluates the next state statei+1 in a set number of sequential

steps k.
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• accept, reject← cVDF.Verify(pp,state). cVDF.Verify takes as input a state and the

public parameter, and outputs either accept or reject. cVDF.Verify must run in time at

most polylog(t) and poly(λ ).

Additionally, a cVDF needs to satisfy the following three properties.

• Correctness: Any statei+1 output by running cVDF.Eval on a state statei is accepted

with overwhelming probability.

• Soundness: An adversarial party cannot compute a state state′i+1 ̸= statei+1 that is

accepted by cVDF.Verify with more than negligible probability. In other words, each

state is computationally unique.

• Sequentiality: Given an honestly sampled state0, adversarial parties cannot compute

any state statei in time i · k, where k is the number of iterative steps between states.

We formalise these properties in the following security games.

Algorithm 6.2.6: cVDF Correctness Game
1 V chooses the time parameter t and continuity parameter k, and generates the public

parameters and an initial state: state0,pp←R cVDF.Setup(1λ , t,k).
2 A chooses a state i.
3 P runs i iterations of cVDF.Eval to generate solution:

statei← cVDF.Eval(i)(pp,state0, t).
4 V verifies the solution: {accept, reject}← cVDF.Verify(pp,state0,statei, t).
P wins if cVDF.Verify outputs accept.
A VDF is correct if P wins with probability 1−negl(λ ).

6.2.4 cVDF Implies a VDF

We now show that in our definitions, a cVDF with k = t is also a VDF according to definition

6.2.6.
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Algorithm 6.2.7: cVDF Soundness Game
1 V chooses the time parameter t and continuity parameter k, and generates the public

parameters and an initial state: state0,pp←R cVDF.Setup(1λ , t,k).
2 A selects a PPT algorithm E ≠ Eval, to choose a state statei and generates solution:

state′i+1←E(pp,statei, t), where state′i+1 ̸= statei+1← cVDF.Eval(pp,statei, t).
3 V verifies the solution: {accept, reject}← cVDF.Verify(pp,statei, t,state′i+1).
A wins if cVDF.Verify outputs accept.
A VDF is sound if A wins with probability at most negl(λ ).

Algorithm 6.2.8: cVDF Sequentiality Game
1 V chooses the time parameter t and continuity parameter k, and generates the public

parameter. pp←R cVDF.Setup(1λ , t,k).
2 A selects a PPT algorithm Ep to pre-process L← Ep(pp, t,k), where Ep runs in time

O(poly(t,λ )).
3 V generates a random initial state state0.
4 A chooses a state i, and selects a PPT algorithm E<i·k, where E<i·k runs in fewer than

i · k sequential steps to generate state: state′i←E<i·k(pp,state0, t).
A wins if y′ = y← cVDF.Eval(pp,x, t).
A VDF is sequential if A wins with probability at most negl(λ ).

Lemma 6.2.1 A cVDF satisfying Definition 6.2.7, with k = t is also a VDF according to

Definition 6.2.6.

Proof: When k = t, the only states that exist are the initial state state0, and the final state

state1. This is equivalent to x and y in the standard VDF definitions. We therefore build a

VDF using the same algorithms as a cVDF with k = t.

Correctness in the cVDF setting states that state1 is verified with overwhelming probabil-

ity, which implies correctness of the VDF.

cVDF soundness implies that for any state, an adversary cannot generate a false state that

will be accepted by Verify. Clearly the case where there is only one state that can be verified

is a special case of this, and hence VDF soundness is implied by cVDF soundness.

Similarly to the soundness property, cVDF Sequentiality guarantees that that no state i

can be computed by the adversary in fewer than i · k sequential steps. By setting k to t, we
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immediately have the VDF sequentiality property, and so we have that a cVDF with k = t is

also a standard VDF. �

Note that due to the lack of a continuity parameter k, this result is not possible when

using the definition of [66].

6.2.5 Discussion

Upon comparison of the cVDF definitions given in Section 6.2.1 and Section 6.2.3, the first

thing to note is that the latter definition is a single definition, which a candidate construction

can be easily shown to satisfy using standard delay-based notions. Juxtaposed with this is the

former definition, within which a construction must be shown to satisfy various non-standard

notions such as B-Soundness. Additionally, the definitions given in Section 6.2.1 are heavily

parameterised, which has the drawback of restricting the user to a specific compuational

model. We believe that a definition for a primitive should be as generic as possible, in order

to allow users who work within various computational models (discussed in 2.1.2) to be

able to use these definitions. Our definitions have fewer parameters, and are significantly

closer to the generic VDF definitions presented in Section 6.2.2. Indeed, we demonstrate

in Lemma 6.2.1 that our definitions are an extension of a standard VDF. Note that the extra

additional security parameters D,B, l,ε are generally not used in delay-based primitives

[32, 39, 118, 136], and hence we view the definitions of [66] as over-parameterised.

We note that Ephraim et al.’s definition requires a cVDF to be verifiable after every

evaluation of the iterated function used in cVDF.Eval, however we generalise this to allow

for a smaller number of states. One can see this as each state being k iterations of the

underlying iterated sequential function, where k is represented by the continuity parameter.

This allows one to obtain a trade-off between the efficiency of the setup, and the number of
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pulses of randomness that are output, and hence build a more practical randomness beacon.

We demonstrate this in Section 6.5.

6.3 Technical Overview of our Construction

A VDF is a sequential function which takes a predictable amount of time to evaluate and has

an output which is very fast to verify. As discussed in Section 6.1, a cVDF is an extension of

this which introduces the notion of a state. A state is an intermediate point in the computation

which can be verified, as discussed in Section 6.1.1. In the model of [66], there is a state at

every step of the underlying iterated function. However, this seems inefficient in practice,

due to the requirements of applications such as a randomness beacon: NIST suggest a pulse

of randomness once a minute [137]. Verifying multiple states every second is therefore

something that reduces efficiency, which may be unnecessary. Indeed, we will see in Section

6.7.4 that 225 iterations of repeated squaring and reducing runs in a matter of minutes on

consumer-grade hardware.

We now give an overview of our candidate cVDF and how we extend it to build a

randomness beacon. In our construction we follow the outline of the NIST project on

interoperable randomness beacons [137] and assume the existence of a trusted third party,

who runs the precomputation phase in the algorithm Setup.

We instantiate our cVDF by generating an RSA modulus N, and an input x ∈ ZN to be

uniformly selected by the trusted third party. The trusted third party will know the factors

pq = N and will also specify a cryptographic hash functionH0.

Recall that a cVDF introduces multiple states which can all be verified efficiently. During

this setup, we require that this trusted party computes each of these states, which can be

computed in time polylog(λ , t). Each of these states is then hashed withH0, and placed in

an array hash0.
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For a solving party to evaluate the cVDF, they start with the input x, and repeatedly run a

square and reduce modulo N algorithm until they reach each state. They then publish the

state, which can be easily publicly verified, as an external party need only hash the state and

compare it against the array hash0.

To extend this to a randomness beacon, we introduce a second hash functionH1.

In the evaluation stage, when the solving party reaches a state,H0 is used to verify the

state as before, and H1 is used to extract the randomness from the state, with the pulse

H1(statei) being the beacon output.

Now, for any external party to publicly verify a state, they need only hash it with

H0(statei) and compare it against value hash0[i] in the array, to ensure that the state was

correctly computed, and then hash it with H1(statei) to extract the pulse of randomness.

The simplest approach to selectingH1 is to require the trusted party to chooseH1 as part

of the Setup algorithm. The alternative is for a group of external parties to selectH1 using

multi-party computation, in order to reduce trust in the trusted third party (we discuss this

further in Section 6.7.1).

In our construction, we implement a solution where the evaluator stores all of the

intermediate states, in order for all previous states to be verified. This is in order to fulfill

the NIST requirement that any past pulse is publicly accessible [137]. Note that it would be

trivial to store previous states instead on, for instance, a public append-only ledger, which

would remove any storage requirements from the evaluator. However, given that the memory

requirements are very low (storing 100000 pulses comes to 25.6MB), we let the evaluator

store these pulses, simplifying our construction.

Finally, we note that we use a setup based upon the BBS-CSPRNG, as seen in Chapters 4

and 5. This allows us the additional option of factoring the RSA modulus at the end of the

computation, which is advantageous as it allows an evaluator to be rewarded, and makes it

easy to perform regular, public verification of the setup procedure.
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6.4 cVDF Design and Implementation

There is currently only one concrete cVDF construction in the literature, which was proposed

in [66]. This construction has a significant efficiency loss as the time parameter increases,

as we shall see in Section 6.5. As such, in this section we will build an alternative cVDF

construction, where we shall lean on a trusted setup to build a highly efficient cVDF, at the

price of a more centralised setup.

We build a cVDF using the BBS setup and repeated squaring that has been a theme of

this thesis, having also been used in Chapters 4 and 5. We will explore the use of a trusted

setup and precomputation phase, which allows us to optimise the efficiency of the cVDF,

giving us a very fast verification. We will then provide a discussion of the trust vs efficiency

trade-off obtained when compared with the existing cVDF constructions.

We then provide the full detail of our cVDF construction. The Python code for our

construction can be found in https://github.com/acnsrandom/randombeacon.

6.4.1 cVDF Overview

A summary of the inputs and outputs for the cVDF.Setup, cVDF.Verify, and cVDF.Eval

algorithms of our cVDF construction are as follows:

pp := [N, t,k,C,cp,hash0],

state := [x−t ] ←R cVDF.Setup(1λ , t,k)

state := [x−t ,xi, . . .] ← cVDF.Eval(pp,state,k)

V := {Accept,Reject} ← cVDF.Verify(pp,state)

cVDF.Setup computes the public parameter pp and the initial state. Note that due to the

inclusion of a precomputation phase in the setup, we include the generation of the initial state

in the Setup algorithm. The public parameter pp contains the modulus N, the time parameter
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t, the continuity parameter k, the challenge C := (x,x0), where x ∈ Z∗N is uniformly selected

and x0 ≡ x2 mod N, an array of checkpoint values cp which contains k+1 elements, and a

hash table hash0 which also contains k+1 elements. As an example, let t = 100 and k = 5,

then cp= [100,80,60,40,20,0] and (x−100)
2100

= x0 mod N. Next, the initial state= [x−100]

is set. Finally, letH0 be a hash function, then:

hash0 = [H0(x−100),H0(x−80), . . . ,H0(x−20),H0(x0)].

We have additionally included as a separate output the initial state, which consists of an array

with the single term x−t , where x2t

−t ≡ x0 mod N is calculated using the Chinese Remainder

Theorem. In order to remain precisely within definition 6.2.7, we could consider including

the initial state within the public parameter pp. However, we have separated it out for

clarity. Note that generating the initial state during setup makes the pre-processing step in

the sequentiality game obsolete in our case, as there will likely be no separation between the

release of the public parameter and the initial state in practice.

cVDF.Verify takes the public parameter pp and validates the soundness of the current

state. If the current state is sound, cVDF.Verify outputs Accept, else it outputs Reject.

cVDF.Eval takes the public parameter pp and uses cVDF.Verify to validate the soundness

of the current state. If the current state is sound cVDF.Eval proceeds to calculate the next

state in t
k sequential steps. If the current state is not sound, cVDF.Eval will not calculate the

next state.

6.4.2 cVDF Construction

In this section we provide the full details of the algorithms in our cVDF, namely cVDF.Setup,

cVDF.Verify, and cVDF.Eval.
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Algorithm 6.4.1: cVDF.Setup
input :(1λ , t,k)

1 cp := GenCheckPoints(t,k)
2 N, p,q := GenModulus(1λ )
3 C := GenChallenge(N, p,q)
4 preimage := GenPreImage(N, p,q,C,cp)
5 hash0 := GenHashTable(preimage)

output :pp := [N, t,k,C,cp,hash0],state := [preimage[0]]

First cVDF.Setup generates the checkpoint array cp using the time and continuity param-

eters t and k in the algorithm GenCheckPoints.

Algorithm 6.4.2: GenCheckPoints
input :(t,k)

1 if t mod k = 0 then
2 x := t

k
3 cp := [] // empty array
4 y := k
5 while |cp|< k+1 do
6 cp||(x · y)
7 y := y−1
8 end
9 end

output :cp

GenCheckPoints first checks if t mod k = 0. Next, variable x is set to t
k . In a toy example,

if t := 100 and k := 5, then x := 100
5 = 20. Then the empty array cp is created. Next, the

variable y is initially set to k, that is y := 5. Next, while the size of the array cp is less than

k+1 then generate the checkpoint values and append them to cp. Initially the size of the

cp array is 0 which is less than 5+1. Then, the array cp is appended with the element x · y,

which in our example is initially 20 ·5 = 100. Next, y is decremented by 1. In our example

y is then set to 4. On the second iteration the array cp has a length of 1 which is less than

5+1, therefore cp is appended with 20 ·4 = 80 and the variable y is decremented to 3. This

continues until cp := [100,80,60,40,20,0] and the array is output.
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Algorithm 6.4.3: GenModulus
input :(1λ )

1 x := 0
2 while x < 1 do
3 p := φ(1λ )

4 q := φ(1λ )
5 if p ̸= q then
6 N := p ·q
7 x := x+1
8 end

output :N, p,q

Next, cVDF.Setup generates the modulus N from the primes p and q using the algorithm

GenModulus. GenModulus takes as input the security parameter 1λ . It first sets variable x to

0, then enters a while loop which runs until x is equal to 1.

In the while loop the primes p and q are generated using the function φ(1λ ). This function

uses the Miller-Rabin primality test to generate the relevant primes and ensures that p and q

are congruent to 1 mod 4 [125]. This ensures that N is a Blum integer which is needed to

prove the sequentiality of our construction. If p ̸= q then N is set to p ·q and x is incremented

by 1 thus exiting the while loop. GenModulus then outputs N, p,q.

Algorithm 6.4.4: GenChallenge
input :N, p,q

1 Jp(x),Jq(x) := 1
2 while ¬(Jp(x) = 1∧Jq(x) ̸= 1)∧¬(Jp(x) ̸= 1∧Jq(x) = 1) do
3 x := U(2,N)

4 Jp(x) := x
p−1

2 mod p

5 Jq(x) := x
q−1

2 mod q
6 end
7 x0 := x2 mod N
8 C := [x,x0]

output :C

Next, cVDF.Setup runs the GenChallenge algorithm with inputs N, p,q to generate the

challenge C. First, GenChallenge sets the Jacobi symbol for Jp(x) and Jq(x) to 1. Next,
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GenChallenge enters a while loop. The while loop will find an x such that x ∈QNR−1
N using

the logic statement on line 2. A suitable x is found by uniformly selecting x in the range

2 through N (both not inclusive) such that Jp(x) = 1 and Jq(x) = −1 or Jp(x) = 1 and

Jq(x) =−1. When a suitable x is found x0 is set to x2 mod N and the challenge C is set to

the array [x,x0] and output.

Algorithm 6.4.5: GenPreImage
input :N, p,q,C,cp

1 preimage := []
2 for each i ∈ cp do

3 αi := x
p+1

4
i

mod p−1
0 mod p

4 βi := x
q+1

4
i

mod q−1
0 mod q

5 x−i := αiq(q−1 mod p)+βi p(p−1 mod q) mod N
6 preimage||x−i

7 end
output :preimage

Next, cVDF.Setup runs the GenPreImage algorithm with inputs N, p,q,C,cp to generate

the preimage array. First, the empty array preimage is created. Next, a for loop is run which

iterates through each item in the checkpoints array cp. Returning to the toy example, let

cp := [100,80,60,40,20,0]. On the first iteration of the for loop i := 100. The term x−100

is calculated, where (x−100)
2t ≡ x0 mod N. To calculate x−100 in polynomial time, Euler’s

Criterion, the Fermat-Euler Theorem and the Chinese Remainder Theorem are applied.

Euler’s Criterion and the Fermat-Euler Theorem are used on lines 3 and 4 to calculate the

100th square root of x0 mod p and x0 mod q respectively. Next, these terms are used to

calculate x−100 using the Chinese Remainder Theorem on line 5, and x−100 is added to the

array preimage. The same is repeated for the terms x−80,x−60, . . . ,x−20 until x0 is reached and

added to the preimage array. Once x0 is added to the preimage array the for loop terminates

and GenPreImage outputs this array.
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Algorithm 6.4.6: GenHashTable
input :preimage

1 hash0 := []
2 for each j ∈ preimage do
3 h :=H0( j)
4 hash0||h
5 end

output :hash0

Next, cVDF.Setup runs the GenHashTable algorithm with the preimage array as input

to generate the hash0 array. GenHashTable first creates an empty array hash0. Next, the

algorithm iterates through each element in the preimage array and hashes them with the

algorithmH0. Each hashed element is then added to the hash0 array. When the final term x0

is hashed and added to the array the GenHashTable algorithm outputs hash0.

Finally, cVDF.Setup sets the public parameter pp to the array [N, t,k,C,cp,hash0] and

sets the initial state by populating it with the first term in the preimage array. In the toy

example, the initial state would be an array with the term x−100.

Algorithm 6.4.7: cVDF.Eval
input :pp,state,k

1 seed := state[−1]
2 V := cVDF.Verify(pp,state)
3 if |state|< k+1∧V = ‘Accept′ then

4 statei := seed2
t
k mod N

5 state||statei

6 end
output :state

The cVDF.Eval algorithm takes as input the public parameter pp and the current state and

outputs the next state. First cVDF.Eval sets the seed term as the last element in the state array.

Next it runs cVDF.Verify. If the length of the state array is less than k+1 and cVDF.Verify

validates that the last term in the current state array is sound then cVDF.Eval performs

the sequential calculation. The term statei is set to seed2
t
k mod N. This is calculated in t

k
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sequential steps using the Square and Multiply binary exponentiation algorithm, noted in

Algorithm 3.1.1. Once statei is calculated it is added to the state array and output.

Algorithm 6.4.8: cVDF.Verify
input :pp,state

1 V := ‘Reject′

2 if state≤ k+1 then
3 h :=H0(state[−1])
4 if h = hash0[|state|−1] then
5 V := ‘Accept′

6 end
7 end

output :V

The cVDF.Verify algorithm takes as input the public parameter pp and the current state

and outputs V := {Accept, Reject}. The algorithm first sets V to Reject. Next, if the state is

less than k+1 then h is set to the hash of the latest hash in the state array by running the

function H0(state[−1]). If h is equal to the hash at the correct position in the hash0 array,

then V is set to Accept.

In our example, the initial state output by cVDF.Setup contains the element x−100.

After cVDF.Eval is first run, the state array will be populated with the terms [x−100,x−80].

Therefore,H0(state[−1]) will hash the term x−80. Next, recall that:

hash0 := [H0(x−100),H0(x−80), . . . ,H0(x−20),H0(x0)]. Therefore, hash0[|state|−1] will be

the element at index 1 in the array, which is the termH0(x−80). Hence, h = hash0[|state|−1]

will evaluate to True and V will be set to Accept.

6.5 Efficiency

In this section we compare our construction against other cVDF constructions. There are

currently two published cVDF schemes, both of which are extensions of existing VDF

schemes [17, 66]. The former is a generic extension, and the latter an explicit extension.
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Therefore, we believe that the most relevant comparison is against the underlying VDF

candidates, and hence we give a detailed comparison against the current VDF proposals, and

then discuss the cVDF extensions.

6.5.1 Comparison Against VDF Constructions

In this section we compare the efficiency of the cVDF.Setup, cVDF.Eval and cVDF.Verify

algorithms of our cVDF against the other RSW-based VDF candidates and the isogeny-based

VDF. We also compare the size of the solution and optional proof parameter output by

cVDF.Eval of our cVDF against the other VDF candidates.

Currently, there are two classes of VDF, the RSW-based and the isogeny-based. The

RSW-based VDFs consist of schemes defined by Wesolowski [155] and Pietrzak [130].

These VDFs are both based upon exponentiation in a group of unknown order. We refer to

the framework introduced by De Feo et al. in [68] as the isogeny-based VDF candidate. This

VDF is based on supersingular isogenies and pairings in elliptic curve cryptography. We will

use the parameter λ to refer to the number of bits of security we expect from each protocol,

and we follow [68] in assuming t is super-polynomial in λ . This allows for a meaningful

comparison between the VDF candidates, where minimising t is the priority.

Setup As we mentioned in Section 6.2.2, some works include an additional algorithm Gen,

whilst others do not. To provide a meaningful comparison we normalise the constructions

by unifying the Gen algorithm into the discussion of the cVDF.Setup algorithm. The first

step of cVDF.Setup in our cVDF is to generate an RSA modulus N which must be a Blum

integer (Section 3.2). The RSW-based VDFs share a similar setup. Indeed, they all require

the generation of an RSA modulus. For ease of comparison, we will assume a trusted setup

in this phase1. In Pietrzak’s construction, the primes are required to be safe primes. That is,

1We note, however, that the other RSW-based VDFs have an additional option of using a multi-party setup
as discussed in Section 6.7.2.
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a prime p such that (p−1)/2 is also prime [130]. Our cVDF also requires the generation

of the checkPoints array, as seen in Algorithm 6.4.2, which has complexity O(λ log(t/k)).

Therefore, the RSW-based VDFs have a smaller asymptotic complexity of Setup than our

cVDF. This is in contrast to the isogeny-based VDF which has a longer setup of O(tλ 3) [68].

That is, a notable gap in efficiency is present between the isogeny-based VDF and our cVDF.

The main constraint of our cVDF is that cVDF.Setup must be run for each new challenge.

However, our cVDF can be verified continuously, meaning that each challenge can be verified

at multiple different points without the need to generate a new seed.

Eval The definition of a VDF indicates that the time complexity of computing cVDF.Eval

should be t regardless of the amount of computational power used [32]. Note that the same

is true for our cVDF, but with parameter t/k, and hence we assume k = 1 here for a direct

comparison. If a proof is included in cVDF.Eval the run time is increased.

Our cVDF and the isogeny-based VDF have empty proofs, and hence require t sequential

steps for honest evaluation. Contrastingly, the other RSW-based VDFs require a proof in

their construction. It takes O(
√

t) group operations to construct Pietrzak’s proof, and O(t)

operations to construct Wesolowski’s proof [33].

In an implementation study by Attias et al. [10], the time spent generating the proof

was similar to the evaluation time for both constructions. Both VDFs address this limitation

by indicating that the computation of the proofs can be parallelised to reduce the run time.

However, the run time overhead of proof computation in cVDF.Eval is an additional constraint

when compared to a VDF with an empty proof.

Verify Our cVDF runs cVDF.Verify in O(1)≪ polylog(t). This is much more efficient

than the O(λ 4) used by the isogeny VDF and Wesolowski’s VDF, and the log(t) used in

Pietrzak’s VDF [68].

Storage requirements. The RSW-based VDFs require the storage of an RSA modulus,

and the challenge parameters. Whilst our cVDF has an empty proof, the RSW-based VDFs
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have an additional proof to store. Wesolowski’s proof has the size of one group element,

whereas Pietrzak’s proof has size log2(t) elements [33].

The isogeny-based VDF has an empty proof, but still requires the evaluator to use large

amounts of storage due to the public parameters. In the case where the evaluator runs the VDF

in optimal time, O(t) storage is required. This can be improved upon using a time-memory

trade off, meaning O(t/n) storage is required instead, at the cost of increasing evaluation

time to O(t logn). The authors used the parameter n = 1244 when benchmarking this scheme

[68].

In our scheme, storage can be set to be constant, i.e. the length of one element of the

RSA group, by keeping the array of pulses on a public ledger, rather than being stored by the

evaluator. We summarise our analysis in Table 6.1.

Table 6.1 Theoretical efficiency comparison of our cVDF against alternative VDF candidates.

VDF Setup Sequential Eval Parallel Eval Verify

Wesolowski O(λ 3) O((1+ 2
log(t))t) O((1+ 2

s log(t))t) O(λ 4)

Pietrzak O(λ 3) O((1+ 2√
t )t) O((1+ 2

s
√

t )t) O(log(t))
Isogeny O(t log(λ )) O(t) O(t) O(λ 4)

Our cVDF O(λ 3 log(t)) O(t) O(t) O(1)

6.5.2 Discussion

Table 6.1 illustrates that the main advantages of our cVDF is its lack of proof and the

efficiency of cVDF.Verify. The isogeny-based VDF shares the benefit of having an empty

proof. However, it has a Setup algorithm which grows linearly with t, which is very

impractical.

Our cVDF and the isogeny-based VDF have the most efficient evaluation due to their lack

of proofs. However, both of these candidates have less efficient setups when compared to the

RSW-based VDFs: the isogeny-based VDF has a setup of order O(t), making it impractical
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for long-running VDFs. Our cVDF has a setup of O(λ 3 log(t)), longer than the RSW-based

VDFs, but significantly shorter than that of the isogeny-based VDFs, and an additional

limitation that it is single-use. The other RSW-based VDFs have the additional strength

that challenges with different time parameters can be generated for each setup, which is not

possible with our cVDF and the isogeny-based VDF.

However, in the implementation study of Attias et al. [10], the proving time of both

RSW-based VDFs was similar to the evaluation time, which is undesirable. By contrast, our

cVDF and the isogeny-based VDF excel where fast verification is desired. Both have very

efficient verification procedures which are non-interactive.

Ephraim et al.’s cVDF [66] is a generalisation of Pietrzak’s protocol, where the length

of proof computation and storage grows as more states are added. Asymptotically, the proof

size and verification time of this construction both grow in time O(log(t)), as compared to

our cVDF where they are constant. The authors state that the proof size is (z−1)2(logz(t))
2)

elements, and that verifying a proof requires computing O(n ·ρ) squares, where n is the

number of elements in the proof, and ρ is a parameter which can be varied leading to various

time-memory trade-offs. In [66], they suggest setting ρ to be equal to the security parameter.

In comparison, our construction has a constant verification time, and hence is overall

much more efficient.

Baum et al.’s cVDF In [17], Baum et al. give a construction of a randomness beacon by

generically building a cVDF from a VDF. As such, the efficiency of this approach clearly

relies upon that of the underlying VDF, which perform worse than our approach, as we can

be seen in Table 6.1 and in greater detail in Section 6.5.1.

To conclude, whilst our setup procedure takes longer than in the other RSW-based

constructions, it is still significantly faster than that of the isogeny-based VDFs. However,

our setup benefits from the property that it only needs to be ran once to extract many pulses

141



6.6 Security

of randomness. To compensate for our setup, we have the fastest verification to date, the

smallest storage cost for the evaluator (when storing states publicly), and the smallest amount

of computation due to the proof being empty. In the randomness beacon application such

fast verification is extremely useful, particularly when used by devices without the capability

for parallelising computation.

6.6 Security

In this section we prove the correctness, soundness and sequentiality properties of the cVDF.

6.6.1 Correctness

The correctness proof must show that Algorithm 6.4.8 cVDF.Verify accepts any state i

computed by i iterations of algorithm 6.4.7 cVDF.Eval, upon the initial state.

Theorem 6.6.1 Our cVDF construction is correct.

Proof: Suppose the trusted third party T runs Algorithm 6.4.1 cVDF.Setup, and that the

adversary A chooses a target state i.

In Algorithm 6.4.1 Setup, statei is defined as xi ≡ x2i·k
0 mod N. The prover P runs i iter-

ations of Algorithm 6.4.7 cVDF.Eval, to compute statei← cVDF.Eval(i)(pp,state0, t), and

then publishes statei. Recall from Theorem 4.4.3 that Algorithm 3.1.1 Square and Multiply

correctly calculates the term xi, where xi ≡ x2i

0 mod N for any t ∈ Z. As cVDF.Eval calls

the Square and Multiply Algorithm, we have that cVDF.Eval(i)(pp,state0, t) will compute

Statei ≡ x2i·k
0 mod N, and hence Statei is equal to the preimage of cp[i]. The Verifier V runs

Algorithm 6.4.8, which computes H0(statei), and outputs accept if H0(statei) = cp[i]. As

hash functions are deterministic, we have that H0(statei) = cp[i], and hence our cVDF is

correct. �
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6.6.2 Soundness

Theorem 6.6.2 Our cVDF construction is sound.

Proof: Our construction is sound ifA can’t win the soundness game presented in Algorithm

6.2.7 with more than negligible probability.

Assume an adversary chooses a target state i, and computes a value state′i ̸= statei

which verifies as correct at state i, with greater than negligible probability. cVDF.Verify will

accept the value state′i if and only if H(state′i) = A[t]. If the adversary first computes statei,

then finding a second state′i which is accepted by cVDF.Verify with more than negligible

probability using statei would break the collision resistance property described in Definition

3.1.3. Otherwise, for the adversary to find a value which would be accepted by cVDF.Verify

with more than negligible probability would break the pre-image resistance of the hash

function, as described in Definition 3.1.3.

Therefore, an adversary cannot win the soundness game with more than negligible

probability. �

6.6.3 Sequentiality

Recall that the Setup of our construction is based upon the BBS setup used in chapters 4 and

5, and hence we can utilise the security proofs given earlier in this thesis. We recall Lemma

4.4.1 states the following:

Given any (N,P, t) output by Algorithm Gen, the RSA modulus N cannot be factored in

time less than t, with more than negligible probability.

In Chapter 4, N is a blum integer, P = (x,x0,x−t), where x ∈ QNR−1
N , x0 ≡ x2 mod N,

and x−t is the tth square root of x0. One can see that this is equivalent to the pair (C,state0),

in the cVDF construction.
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In the proof of Lemma 4.4.1, we proved the following two statements: i) Attempts to

compute an x′, where x′ ≡√x0 mod N and x′ ∈QRN , in less than t sequential steps reduce

to breaking the RSW time-lock assumption. ii) Attempts to recover the non-trivial factors of

N using a method that does not use x′ reduces to an open problem given by Theorem 9 of

Blum et al. in 1986 [26].

We use these results in the proof of the following theorem.

Theorem 6.6.3 Our cVDF construction is sequential.

Proof: Suppose T honestly generates a random public parameter pp, and initial state state0,

and presents this to a PPT adversary A.

The adversary additionally chooses a state i and a PPT algorithm E<i·λ , which runs in

less than i ·λ sequential steps, outputting a state.

By the cVDF sequentiality game described in Algorithm 6.2.8, we see that the adversary

wins if cVDF.Verify accepts the output of E<i·λ (pp,state0).

We now show that if the adversary wins the game with greater than negligible probability,

then they are breaking either the RSW-time lock assumption, BBS-shortcut assumption, or

the pre-image property of a hash function.

Assume that the adversary runs an algorithm E<i·λ which provides a non-negligible

advantage in the cVDF sequentiality game.

As N is a Blum integer, it cannot be factored by any PPT algorithm in time less than

t with more than negligible probability, as a result of Lemma 4.4.1, by the BBS shortcut

assumption given in Definition 4.4.1. Therefore the adversary cannot learn the trapdoor φ(N),

and speed up the computation. If the adversary calculates the correct value statei without

knowledge of the trapdoor, then as E<i·λ runs in fewer than i ·λ steps, this contradicts the

RSW time-lock assumption.
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On the other hand, if the adversary is able to find a solution that verifies as correct without

computing statei, then this contradicts the pre-image resistance property of the hash function

as described in Definition 3.1.3. �

6.7 Randomness Beacon

Probably the most important application of VDFs and cVDFs is a randomness beacon, as

we described in the introduction of this chapter. In this section, we explain how our cVDF

definitions and construction extend to a randomness beacon.

In [66], any secure cVDF is shown to yield a randomness beacon under the Tick/Tock

paradigm, as discussed in Section 6.1.1. In this section we adapt the randomness beacon

definition of [66] in line with our new cVDF definitions, and provide a construction. We

show that any secure cVDF under our definitions yields an RB, and hence our construction is

secure.

We begin by defining a randomness beacon, broadly following the definition of [66].

Note that we omit the Honest Evaluation property, which states that computing each step

must take no more than the allocated number of sequential steps. We instead make explicit

in Algorithm Tick that this algorithm takes exactly k sequential steps to compute.

Definition 6.7.1 (Randomness Beacon) A public randomness beacon consists of four algo-

rithms RB.Setup, RB.Tick, RB.Tock, and RB.Verify:

• pp,G ←R RB.Setup(1λ , t,k). RB.Setup is an algorithm that takes as input security

parameter 1λ , a time parameter t, and a continuity parameter k and outputs the public

parameter pp and a PRG G. RB.Setup runs in time poly(λ ).

• state← RB.Tick(pp,state,k). RB.Tick is an algorithm that takes as input the public

parameter pp and the current state and evaluates the next state in k sequential steps.
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• pulse← RB.Tock(pp, state, G). RB.Tock is an algorithm that takes as input the public

parameter pp, the current state, and the PRG G, and outputs a pulse of randomness.

• V := {Accept,Reject} ← RB.Verify (pp,pulse,state,G). RB.Verify is an algorithm

that takes as input the public parameters, a pulse and a state, before outputting either

accept or reject. RB.Verify runs in time polylog(t) and poly(λ ).

Additionally, a randomness beacon needs to satisfy the following three properties:

• Correctness: For each i, pulsei can be verified as the pulse of statei in time polylog(i ·k).

• Soundness: An adversary cannot compute a pulse′i ̸= pulsei that is accepted by ver-

ify with more than negligible probability. This property states that each pulse is

computationally unique.

• Indistinguishability Each pulse of randomness extracted at state i should be indis-

tinguishable from random for an adversary bounded by time i · k after being given

state0.

We formalise these properties in the following security games.

Algorithm 6.7.1: RB Correctness Game
1 V chooses the time parameter t and continuity parameter k, and generates the public

parameters, pseudo-random generator and an initial state:
state0,pp,G←R RB.Setup(1λ , t,k).

2 A chooses a state i.
3 P runs i iterations of tick to generate solution: statei← RB.Tick(i)(pp,state0, t).
4 P runs pulse←R RB.Tock(statei).
5 V verifies the solution: {accept, reject}← RB.Verify(pp,pulse,statei,G).
P wins if RB.Verify outputs accept.
A VDF is correct if P wins with probability 1−negl(λ ).
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Algorithm 6.7.2: RB Soundness Game
1 V chooses the time parameter t and continuity parameter k, and generates the public

parameters, pseudo-random generator and an initial state:
state0,pp,G←R RB.Setup(1λ , t,k).

2 A selects a PPT algorithm E ≠ Eval, to choose a target statei and pulsei, and generate
a candidate alternative pair (state,pulse)′←E(pp,statei, t), where
(state,pulse)′ ̸= (state,pulse) output by algorithms tick and tock respectively.

3 V verifies the solution: {accept, reject}← RB.Verify(pp,statei, t,pulse′i).
A wins if RB.Verify outputs accept.
A VDF is sound if A wins with probability at most negl(λ ).

Algorithm 6.7.3: RB Indistinguishablity Game
1 V chooses the time parameter t and continuity parameter k, and generates the public

parameters, pseudo-random generator and an initial state:
state0,pp,G←R RB.Setup(1λ , t,k).

2 A selects a PPT algorithm Ep to pre-process L← Ep(pp, t,k,G), where Ep runs in
time O(poly(t,λ )).

3 A chooses a state i.
4 V generates a random initial state state0

5 P runs i iterations of tick to generate solution: statei← RB.Tick(i)(pp,state0, t), and
then computes pulsei← RB.Tock(pp,statei, t).

6 V chooses b←R {0,1} at random. If b = 0, V passes pulsei to A, if b = 1, V samples
a random string of the same length, and passes that to A.

7 A runs algorithm A1, which is bounded by i · t sequential steps, to output a bit
b′←R A1(pp, state0,G).
A wins if b′ = b.
An RB is indistinguishable if A wins with probability at most 1/2+negl(λ ).
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6.7.1 Randomness Beacon from a cVDF

In this section we apply the algorithms of a generic cVDF in order to construct a Randomness

Beacon. We follow Ephraim et al. [66] in assuming the existence of a pseudo-random

generator (PRG), which we instantiate with a hash function in our implementation.

From the above definition, we see that the RB.Setup algorithm is equivalent to cVDF.Setup,

and is used to provide public parameters pp and an initial state. The algorithm RB.Tick is

equivalent to Eval, and is used on the current state to compute the next state of the cVDF.

RB.Tock is the only additional algorithm that defines the randomness beacon; taking the

state output by RB.Tick, and outputting the pulse of randomness. Note that RB.Tick and

RB.Tock can be run in parallel, as illustrated in Figure 6.1. Similar to cVDF.Verify, RB.Verify

checks the soundness of the current state output by RB.Tick, and additionally checks the

soundness of RB.Tock, and outputs Accept or Reject accordingly.

We will provide black-box algorithms which can be used with any cVDF, and then show

that using these algorithms with a secure cVDF yields a secure randomness beacon according

to Definition 6.7.1. In the next section we will discuss the intricacies of our construction, and

our implementation choices.

Algorithm 6.7.4: RB.Setup
input :1λ , t,k

1 pp,state := cVDF.Setup(1λ , t,k)
2 H1← chooseG

output :pp,state,H1

RB.Setup takes as input 1λ , t,k and outputs the public parameter pp and state by calling

the cVDF.Setup algorithm. It then selects a pseudo-random generatorH1 using the chooseG

algorithm.

RB.Tick takes as input pp and the current state and outputs the next state by calling the

cVDF.Eval algorithm.
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Algorithm 6.7.5: RB.Tick
input :pp,state,k

1 state := cVDF.Eval(pp,state,k)
output :state

Algorithm 6.7.6: RB.Tock
input :pp,state,H1

1 pulse :=H1(state)
output :pulse

RB.Tock takes as input pp and the current state output by RB.Tick and outputs random-

ness beacon pulse.

Algorithm 6.7.7: RB.Verify
input :pp,pulse,state,H1

1 V := cVDF.Verify(pp,state)
2 if V = ‘Accept’ then
3 if pulse ̸=H1(State) then
4 V = ‘Reject’
5 end
6 end

output :V

RB.Verify takes as input pp, the current state and pulse output by RB.Tick and RB.Tock

respectively, and outputs V. RB.Verify calls the algorithm cVDF.Verify. If the current state

and pulse are both sound, then V is set to Accept, else it is set to Reject.

6.7.2 Trust

In this work, we set out to make the cVDF primitive more usable, and to build a randomness

beacon with the fastest verification possible. To do this we use a trusted setup with a

precomputation phase, which is stronger than the trust assumptions typically used for VDFs

and cVDFs, where there are options to use a (typically expensive) multi-party computation

in order to run the setup.
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We think this requirement provides an acceptable trade-off, particularly on devices

without much computation power, as current VDF constructions all require a certain level of

parallelism (see [10]) or storage (see [68]) to run efficiently.

We believe that in practice trusting a third party such as NIST is a reasonable approach,

used in much of current cryptography. The alternative is to trust a group of often pseudony-

mous parties. In this case, one is trusting that they are not working together, as if so they can

break all the cryptographic guarantees that the RBs give. Additionally, this approach is less

stable, with the current state-of-the art constructions [49, 50, 69, 85] vulnerable to malicious

parties being able to carry out denial-of-service attacks on the setup procedure. We refer the

reader to Section 2.1.3 for a discussion of this.

If one accepts this trade-off, the construction we propose achieves the most efficient

verification procedure to date.

6.7.3 Discussion

The randomness beacon obtained from the cVDF given in Section 6.4 is very efficient, as we

shall demonstrate in Section 6.5, but due to the trusted setup of our construction, this comes

at the cost of a strong trust assumption. The precomputation phase makes it possible for the

trusted party to know the states in advance, but if G is chosen by a different party after the

setup procedure, the trusted party will not know the pulses in advance, which is important.

We shall now discuss the various approaches to computing the PRG G.

Choosing the PRG

In this section we discuss the potential approaches to choosing the PRG G, which in our

construction is instantiated using the hash functionH1. In our implementation, this will be

implemented using hash function SHA3-512. However in practice this PRG will need to be

chosen by some entity. The simplest approach is to require the trusted third party (TTP) (e.g.
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NIST) to specify this in cVDF.Setup. The drawback is that the TTP is able to precompute all

random values ahead of time, and if they know what they will be used for, they may be able

to bias the outcome.

We can reduce the amount of trust placed in them, by requiring another entity to choose

the PRG after cVDF.Setup has been run. This means that whilst the TTP will be able to

compute the random values ahead of time, they will not be able to bias them anymore. Note

that these valuse can also be computed ahead of time in the more common case when a TTP

only generates the RSA modulus N, in the alternative RSW-based VDFs [66, 130, 155], as a

TTP in this case can use φ(N) := (p−1)(q−1) as a shortcut to compute the VDF output.

In our implementation, we useH0 as SHA2-256 to output hash0 in the public parameter

pp in the RB.Setup algorithm and H1 as SHA3-512 to output the pulse in the RB.Tock

algorithm. However, in practice there are various approaches to choosing the second hash

function, which lead to slightly different trust models. For example, it is simple to enumerate

various different hash functions, and have a group of entities run a simple MPC computation

in order to choose a hash function between them.

We note that neither of these approaches are perfect, and an untrusted construction would

be preferable. However, our trusted setup is what allows us such an efficient construction.

BBS Setup Recall that the trusted setup of our construction is based upon the BBS-

CSPRNG, as in the preceding chapters, which allows an evaluator (or indeed any external

party) to factor the RSA modulus N.

This property is beneficial in the context of cVDFs and randomness beacons as it allows

for regular public audits of the setup, as any party knowing the factors of N can check

that Setup was performed correctly. Additionally, it introduces the option of encapsulating

a reward for the evaluator, by encrypting e.g. the key to a bitcoin wallet under the RSA

modulus N, as described in [111].
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6.7.4 Practical Performance

The theoretical efficiency of our randomness beacon is directly derived from the efficiency of

the cVDF, which we discussed in Section 6.5. In this section, we focus instead on the practical

performance of our construction, and how this compares with the earlier theoretical efficiency

discussion. We are able to draw some comparisons against the other RSW constructions due

to an implementation study of Pietrzak’s and Wesolowski’s VDF protocols in [10], however

this is not possible with the isogeny-based VDF, as to the best of our knowledge there is no

publicly available implementation.

In order to demonstrate that our construction runs very efficiently on consumer-grade

hardware, we benchmark our randomness beacon in Python, using a 2018 MacBook Pro 14.

The specifications of the hardware are an Intel core i5 processor, a 2.3 GHz processor, and

8GB of RAM. We ran three experiments, each with 100 iterations of each algorithm.

In all experiments, we set the security parameter to λ = 2048.

The values for the first experiment were chosen to compare our results against the

implementation study of Attias et al. [10] who implemented the schemes of Pietrzak’s VDF

and Wesolowski’s VDF with values of t = 225. We match this, ensuring that each execution

of Tick also requires 225 exponentiations. However, given that Attias et al. do not detail the

hardware used in this implementation, this comparison should be seen as a heuristic rather

than a precise comparison.

We then increased the value of k and the value of t independently, in order to illustrate

how changing these parameters impacts the resulting algorithms. Our results are shown in

Table 6.2.

We see that increasing k leads to a small increase in Setup time, but does nothing to

increase Tock or Verify, which is the desired functionality. Increasing t only affected the value

of Tick noticeably, indicating that the time between pulses of randomness scales predictably
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Table 6.2 Timings in seconds for each of our RB algorithms

Experiment Setup Tick Tock Verify
t = 225,k = 5 1.830 359.888 0.0002 0.0001

t = 225,k = 25 2.041 73.263 0.0002 0.0001
t = 226,k = 25 1.973 715.419 0.0001 0.0001

well as t grows. Explicitly, this shows that the asymptotic values given in Table 6.1 are not

hiding any large constants.

In contrast, the protocols of Wesolowski and Pietrzak lose more time in practice than

the asymptotic values indicated in Table 6.1 might suggest. Both evaluation and verification

times were significantly longer than the theoretical optimum, as shown in the VDF implemen-

tation of Attias et al. [10]. In this implementation the time taken for the evaluator to compute

the proof was shown to be similar to the amount of time spent on the sequential computation.

Extending Piertzak’s scheme to Ephraim et al.’s cVDF further reduces the efficiency, increas-

ing the time spent on both the proof evaluation and verification time significantly. This is

a significant drop in efficiency compared to our implementation, in which no time is spent

computing the proof (as it is empty), and the verification procedure is a negligible constant.

Therefore, our implementation demonstrates that our construction is the most efficient

VDF-based RB for use in consumer grade hardware.

6.7.5 RB Security

By design of the tick-tock paradigm, the security of the randomness beacon follows naturally

from the underlying cVDF. We give a generic result for any cVDF using the algorithms

provided in Section 6.7.1.

Theorem 6.7.1 Algorithms 6.7.4 - 6.7.7 yield a secure randomness beacon when instantiated

with a secure cVDF, and a secure PRG.
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Proof: Correctness Correctness follows immediately from the correctness of the underly-

ing cVDF.

Soundness We show that any algorithm E which can win the RB soundness game

presented in Algorithm 6.7.2 can also be used to break the cVDF soundness game presented

in 6.2.7.

Consider an algorithm E which gains a non-negligible advantage in the RB soundness

game. Recall from the RB soundness game that E outputs a tuple (state, pulse)′, which is not

equal to the tuple (state, pulse) for any state.

We first look at the case when statei = RB.Tick(statei−1), and then the case where

statei ̸= RB.Tick(statei−1).

If statei = RB.Tick(statei−1), then we must have that pulse ̸= RB.Tock(State), as other-

wise (state, pulse)′ =(state, pulse). In this case, we have that RB.Verify will be set to reject

on line 4. Therefore we must have that statei ̸= RB.Tick(statei−1). However, for such an

algorithm to be accepted by RB.Verify with non-negligible probability, it must be the case

that cVDF.Verify accepts an incorrect state with non-negligible probability. Therefore we can

use this algorithm to break the soundness of the underlying cVDF.

Indistinguishability Inspecting the first 5 lines of the RB.Indistinguishability game, we see

that this is identical to the cVDF sequentiality game, with the inclusion of sampling a PRG.

If the challenger is able to use an algorithmA1 bounded by i ·t sequential steps to learn the

output of Statei with more than negligible probability, then they can use this same algorithm

to break the sequentiality of the underlying cVDF. Therefore this is not possible. This

means the adversary is unable to compute G(Statei) with more than negligible probability.

Therefore, an adversary able to win Game 6.7.3 with more than negligible probability would
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also be able to distinguish between the output of the PRG and a random string with more

than negligible probability, contradicting Definition 3.1.4.

�

Corollary 6.7.1 Algorithms 6.7.4 - 6.7.7 yield a secure randomness beacon when instanti-

ated with the cVDF Algorithms 6.4.1, 6.4.8 and 6.4.7.

6.8 Conclusion

We discussed the cVDF definitions proposed by [66], and provided new definitions that we

believe to be easier to use, and more flexible due to the continuity parameter.

We then built a novel cVDF, which offers a materially different alternative to the con-

struction of Ephram et al: Our cVDF enjoys extremely fast public verification, small storage

requirements and an empty proof, however this comes with the clear drawback of the trusted

setup. From this we built a randomness beacon following Ephraim et al.’s framework, and

concretely instantiate it, providing a cVDF-based RB, with the fastest public verification to

date, and an option to factor the RSA modulus at the end of the computation.

Future work We believe that the cVDF primitive is ideal for use in randomness beacons.

It is our hope that our new cVDF definitions and RB extension will make it easier for

researchers to build new cVDFs, with resulting randomness beacons.

There is currently a lack of consensus when determining what properties are essential and

desirable for a randomness beacon. The strongest approach from a trust perspective seems

to be combining various beacons together, so that the output is unbiased as long as at least

one of the underlying beacons is unbiased. However, this approach comes with the natural

drawback of being no faster than the least efficient beacon. We believe that our construction

will work well in combination with another VDF-based beacon, which has a distributed setup,
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as discussed in Section 2.1.3. The additional verification cost of our cVDF-based beacon

would add an insignificant overhead when combined with other VDF-based beacons (see the

analysis in Section 6.5), but ensuring that the output is unbiased provided the trusted party

does not collude with those running the distributed setup.

We believe that a valuable contribution would be a framework which defines a randomness

beacon, including the various properties that are either necessary or desirable in order for the

beacon to function well.

We additionally think that further work needs to be done in developing and maintaining a

public randomness beacon, with the end goal a publicly accessible, efficient and trustworthy

beacon. This work has shown that a beacon with a highly efficient verification is possible, and

a natural follow-up question is whether such speeds can be achieved without a precomputation

phase. Indeed, an interesting line of theoretical research would be to explore the optimal

efficiency that can be achieved under certain assumptions. For example, establishing a bound

on the fastest possible beacon with a completely distributed setup would give the research

community a concrete goal to aim for when proposing constructions.
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In this chapter, we summarise the work in this thesis, before discussing potential directions

for future work. We make explicit the relationships between the various primitives discussed

throughout this thesis, identifying a hierarchy based upon existing results, and highlighting

the theoretical gaps that exist.

7.1 Summary of this thesis

In this thesis, we began in Chapter 2 by presenting the first systematisation of knowledge of

delay-based primitives and constructions. Chapter 2 can serve as a starting point to explore

delay-based cryptography, and is designed to help researchers or practitioners pick the correct

primitive and construction for their application. We provided a comprehensive review of the

trust assumptions and setup procedures used in delay-based cryptography, and highlighted
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the nuances that separate each of the delay-based primitives. In this chapter, we reviewed

the underlying techniques that exist in the literature to construct a delay, and discussed their

practicality, and the level of community trust in each technique. We additionally discussed

some of the key applications of delay-based cryptography, along with the state-of the art

constructions.

In Section 7.2, we analyse how the primitives discussed in Chapter 2 are linked to each

other theoretically, identifying relations and highlighting gaps in the theoretical knowledge

we have so far. In Section 7.3 we propose promising research directions for the future design

of delay-based cryptographic techniques and protocols. It is our hope that this inspires and

aids in exciting new research in this field.

In Chapter 3, we provide the preliminary material including number theory and crypto-

graphic primitives that we then used in the subsequent chapters.

In Chapter 4, we discuss timed-release encryption, a method of incorporating public-key

encryption into delay-based cryptography. We discuss the recent definition given in [53],

and introduce an alternative definition with a nuance which improves the flexibility of the

primitive. We propose a new construction TIDE, which takes a novel approach to utilising a

cryptographic delay, by ensuring that the output of the computation allows for the factori-

sation of an RSA modulus. Combined with standard RSA-OAEP encryption, we obtain a

practical, efficient construction, which we show fits the application of sealed-bid auctions.

In Chapter 5, we exploit the abovementioned nuance in the definition of timed-release

encryption, in order to build an extension which we term timed-release encryption with

implicit authentication. This new primitive offers an atypical approach to the use of public

key encryption, where the encryption key is kept secret, and the decryption key is encrypted
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with a delay. When combined with a new privacy property named implicit authentication,

we demonstrate that primitive offers an encryptor fine-grained control over the release of

information, allowing the encryptor to separate the actions of distributing ciphertexts, and

computing a delay that provides the decryption key. We frame this primitive in the context of

whistleblowers, using the Edward Snowden case as a key motivating example.

We switch our focus in Chapter 6 away from encryption, instead looking at the primitive

of verifiable delay functions, which allow a solver to compute a delay such that a member

of the public may efficiently verify that the delay occurred. This primitive is particularly

useful in the setting of public randomness, which we discuss at length. In particular, we

focus on an extension known as a continuous verifiable delay function, which allows for

public verification at intermediary points within the computation. We provide new definitions

consistent with the style of standard delay-based primitives, and constructed a cVDF and

resulting randomness beacon. We take the approach of requiring a trusted party to precompute

the states in advance, in order to obtain a large speed-up in public verification, arguing that

the advantage the trusted party gets is similar to that in the more standard approach of having

the trusted party compute the public parameters.

7.2 Relating Delay-Based Primitives

One of the goals of this thesis is to provide the reader with an overview and understanding of

how delay-based primitives are related. The reader will note that the primitives which we

studied in depth, TRE and VDFs, are fundamentally different: the former contains a notion

of encryption, allowing for the incorporation of techniques from public-key cryptography,

whilst the latter simply proves that a delay has indeed been computed. In this section, we shall

clarify this difference, making explicit the known relations between each of the delay-based
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primitive that we discussed and classified in Section 2.2. Furthermore, we will highlight as

research questions some gaps in the literature between other primitives.

In our study of this field, we have identified that the core of modern delay-based primitives

is an iterated sequential function, as we discussed in Section 2.1.2.

An iteratively sequential function is defined as a function which maps from a given group

into itself. Additionally, it must satisfy sequentiality: For a time parameter t, the following

hold: i) an adversary with polynomially many processors cannot compute a valid solution in

less than t sequential steps with more than negligible probability. ii) any party can compute a

valid solution in t steps with overwhelming probability.

From an iterated sequential function, we can branch into the two classes of primitives

identified in Section 2.2: those which allow for the recomputation of an input, which include

time-lock puzzles, timed-release encryption, and timed signatures; and those that do not,

such as proofs of sequential work and verifiable delay functions. We provide a mapping of

the relation between these primitives in Fig. 7.1. Recall that the separation between the two

classes comes from a result by Mahmoody et al. in [114], and is based on the assumption

that one is using the random oracle model. Interestingly, it is claimed that DE implies a weak

form of TLPs [39], which suggests that it may be possible to circumvent this separation result

of Mahmoody et al. outside the random oracle model. We believe this question warrants

further study.

We shall start by discussing the lower branch in the diagram. In order to build a proof of

sequential work from an iterated sequential function, it is required that there is a method for

another party to publicly verify that the computation is correct, which must be significantly

faster than the time taken to compute the iterated sequential function [115]. Boneh et al. [32]

show that if one takes a proof of sequential work and imposes the condition that the iterated

sequential function is unique, this satisfies the requirement of a VDF.
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Fig. 7.1 Identified and conjectured relations between delay-based primitives.

Delay encryption is described as the identity-based analogue to time-lock encryption

[39], and in Section 2.1 of [39], various relationships between DE and other primitives are

discussed. Explicitly, they state that DE implies PoSW, and that DE with the extraction

soundness property implies a VDF. Extraction soundness can be seen as a uniqueness property

of the session key (used for decryption) of a DE scheme, which intuitively provides the

uniqueness to build a VDF rather than a PoSW.

These relations are not formally proven, and, in particular, it is not shown how to build

DE from specific cryptographic primitives. Furthermore, from a functionality standpoint,

we conjecture that given an identity-based encryption scheme and a time-lock encryption

scheme, it could be possible to construct a delay encryption scheme. These relations would

have interesting implications, and necessitate further formal investigations.

We now turn our attention to the upper branch of the diagram. In what follows, we

assume that there is a party who generates the puzzle, and another party who solves the

puzzle. A time-lock encryption scheme requires that the generating party inputs a value s
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whilst generating the puzzle, and that this value s is output upon solving the puzzle. As

discussed in 2.2.1, in order to build a time-lock puzzle from a time-lock encryption scheme,

there is an additional requirement that generating the puzzle is much faster than solving the

puzzle.

We now reach another branching point in our diagram.

In the diagram we refer to the modern perspective of timed-release encryption (TRE),

which incorporates public-key cryptography into time-lock puzzles without using a trusted

agent [53, 111]. It is shown by Chvojka et al. [53] that if one has a CPA-secure public-key

encryption scheme and a time-lock puzzle, one can build a TRE scheme in the following

way. Recall that a public-key encryption scheme has a key generation algorithm which takes

some randomness as input. Chvojka et al. build their black-box TRE scheme by using the

input value s of the time-lock puzzle as the randomness of the key generation algorithm, and

publishing the resulting public key. This allows all parties to encrypt to the public key, and

upon solving the TLP, they can run key generation using the puzzle output s to obtain the

secret key, and hence decrypt all the messages.

We now move to the purple box of the diagram, that represents our posited relationships

between the outstanding primitives.

As we discussed in Section 2.2.5, many standard signature schemes [75, 76] have been

adapted to construct timed-signatures. However, as far as the authors are aware, it is yet to be

proven that a time-lock puzzle and a generic digital signature scheme can be combined to

make a timed-signature scheme. Therefore we pose the following natural research question:

Can one build a generic timed-signature scheme from a time-lock puzzle and generic signature

scheme?

In [118], the authors show how to build homomorphic time-lock puzzles from cryp-

tographic primitives including puncturable pseudorandom functions, trapdoor encryption,

probabilistic obfuscation and indistinguishability obfuscation. These primitives are used
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variously to build linearly homomorphic, multiplicatively homomorphic, and fully homomor-

phic time-lock puzzles. Therefore we believe that there exists a strong relation between HE

and TLPs, and HTLPs. We pose an open question as to whether one can build a (linearly,

multiplicatively or fully homomorphic) HTLP by composing in some way a TLP and an HE

scheme.

To conclude, our analysis in this section shows how delay-based primitives fit together,

identifying a hierarchy among them as well as theoretical gaps that would be interesting to

address, given some of the implications they may have. We believe this is indeed a worthy

pursuit, as we discuss further in Section 7.3.

7.3 Research Questions and Directions for Future Work

In the conclusions of Chapters 4, 5 and 6, we discuss potential future work related to the

primitive and application of the respective section. In this section we supplement these with

research questions related to the wider field of delay-based cryptography, and that hence

have a broader scope.

Rigorous benchmarking for accurate parameterisation One thing that is lacking in

the field of delay-based cryptography is a publicly available, rigorous benchmarking of the

RSW time-lock assumption.

It should be mentioned that there is a limit to how useful such a procedure can be, due

to the the vast range of devices, and the constant improvement in both consumer-grade and

state-of-the-art computation power. However, the authors believe that without this, selecting

parameters for adversarial advantage will be at best vague, and at worst insecure.

We suggest that an ideal benchmarking procedure would include a range of devices,

including small IoT devices (e.g., Raspberry Pi), various consumer grade hardware, and
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specialist hardware such as an ASIC. Research into specialist hardware was proposed by

the VDF alliance, along with [7]. Additionally, an up-to-date online resource of the fastest

algorithms and specialist hardware currently available for computing the iterated sequential

functions would also be desirable. Early research into such hardware includes [123].

Alternative iterated sequential functions As we discussed in Section 2.1.2, if one

wishes to compute a delay, the alternative methods to RSW are limited, and largely im-

practical. A relevant question therefore, is to ask (not for the first time) how one can use

an alternative method to the RSW time-lock assumption, whilst still retaining a practically

efficient construction.

Currently, the most promising alternative seems to be based on isogeny-based cryptogra-

phy [39, 68]. A method for altering the underlying method of BLS signatures and isogeny

walks in order to circumvent or mitigate the computationally expensive trusted setup and

the high storage costs would be very beneficial for the area of delay-based cryptography.

Another interesting line of research would be to see if there is some way of altering a known

sequential computation to give the resulting output some mathematical properties which

allow for faster inversion of the computation.

Concrete constructions of primitives Many cryptographic protocols aim to balance

the conflicting goals of decentralisation and efficiency. A significant achievement would

be to construct a protocol which shares the efficiency of a public-key TRE scheme such

as [111], whilst maintaining the minimal trust assumptions of TLPs such as Astrolabous

[9]. In particular, it would be desirable to have an untrusted, yet practically implementable

method of decrypting n time-encrypted messages with significantly less than n sequential

computations, say log(n) decryptions.
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A related research question is to build schemes for the delay encryption and fully homo-

morphic TLP primitives, which can be implemented in an efficient manner.

Theoretical results To facilitate the design of optimally efficient constructions, it would

be beneficial to derive theoretical bounds on efficiency under various assumptions. Therefore

we believe a highly rewarding line of study would be into what the best efficiency one can

hope to achieve in various settings, an example of which could be an impossibility result to

demonstrate what the optimal decryption we can hope for in a setting without public-key

infrastructure.

The research questions we pose in Section 7.2 illustrate some gaps in the theoretical

knowledge of how the delay-based primitives fit together. Exploring whether or not the

relationships we suggest hold, and providing formal security reductions would be of benefit

to the community. Another avenue would be to further explore the various delay-related prim-

itives in the UC framework - for example it would be interesting to see which relationships in

Figure 7.1 can be translated into UC, and the effect that altering the underlying assumptions

such as global synchronicity has upon such primitives.
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