
1

Reconfigurable Quaternion LMS
Alin Tisan, Member, IEEE, and Clive Cheong Took, Senior Member, IEEE

Abstract—The quaternion based least mean square (QLMS)
algorithm has found more and more applications since its design
in 2009. However, its deployment on edge devices still does not
meet the real-time constraints nor the complex design methodol-
ogy requirements (e.g. parallel computations). We address these
issues by proposing a reconfigurable hardware architecture that
can be rapid FPGA implemented. For rigour, general formulae
to determine the required number of hardware resources prior
to implementation are derived. Analyses of the factors affecting
the performance of QLMS are provided. Simulations and FPGA
implementation reports of the proposed QLMS algorithm applied
to real-world quaternion based 3-D orientation data confirm the
superiority of our approach over the original QLMS.

Index Terms—Quaternion, Least Mean Square algorithm,
FPGA, 3-D orientation.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) offer us,
perhaps, the most straightforward means to translate from

an engineering innovation to an industrial implementation.
This is due to the advantages brought by its reconfigurability,
massive parallel data computation, or real-time processing
suitability. As such, these advantages have been leveraged
in industrial informatics areas such as machine learning [1],
control engineering [2], or signal processing [3].

The least mean square (LMS) algorithm has been widely
exploited in these informatics areas. The LMS algorithm,
however, cannot cope with data that are multi-dimensional.
To this end, the Quaternion LMS (QLMS) algorithm was
proposed to cater for 3D and 4D processes [4]. The simplicity
of QLMS (as shown in Algorithm 1) means it has been used
in various applications such as in audio [5], gait analysis [6],
renewable energy [7], and biomedicine [8], [9], to name a few.

Despite its successful adoption by the research community,
the QLMS algorithm has one major weakness: its computa-
tional cost - which is a major problem to its wider adoption. To
this end, there have been attempts to reduce its computational
cost by more than 50% [10], [11]. Yet, these computationally
cheaper versions of QLMS are not suitable for deployment
on an industrial scale due to the following factors: 1) their
computational costs are still not comparable to that of four
single channel LMS algorithms; 2) they have been designed
to operate on central processing units (CPUs) rather than on
specialised hardware such as FPGAs [12]; and 3) they cannot
offer massively parallel data computation - which is a trend
in industrial informatics.

For the deployment of QLMS algorithm on industrial infor-
matics applications, we therefore propose the reconfigurable

Both authors are with the Department of Electronic Engineering, Royal Hol-
loway University of London, Egham, TW20 0EX, UK, E-mails: {alin.tisan,
clive.cheongtook}@rhul.ac.uk.

FPGA based QLMS (fQLMS) that takes into account the
constraints and advantages of FPGAs into its design. As such,
this work investigates the trade offs between accuracy, data
parallellisation, and parameters of the QLMS algorithm (e.g.
filter length of the adaptive filter). More specifically, the rest of
the paper describes the quaternions and the QLMS algorithms
in Section II, the proposed overall fQLMS architecture and its
block constituents in Section III, the results of the hardware
implementation in Section IV, and the main conclusions.

II. QUATERNIONS AND QLMS

Quaternions are extensions of complex numbers to four
dimensions, and a quaternion variable can be described as (1)

q = ℜ[q] + ℑ[q] = q1 + q2i+ q3j+ q4k (1)

The scalar (real) part is denoted by q1 = ℜ[q], and the vector
(imaginary) part (also known as pure quaternion) ℑ[q] = q2i+
q3j+q4k comprises of three imaginary components. Thus, the
quaternion conjugate is given by (2)

q∗ = ℜ[q]−ℑ[q] = q1 − q2i− q3j− q4k (2)

The quaternion product between two variables x and y is
noncommutative (i.e. xy ̸= yx) and is given by (3)

xy = (x1y1 − x2y2 − x3y3 − x4y4)

+ (x1y2 + x2y1 + x3y4 − x4y3)i

+ (x1y3 − x2y4 + x3y1 + x4y2)j

+ (x1y4 + x2y3 − x3y2 + x4y1)k

(3)

The quaternion product in (3) incurs a high computational
cost, i.e. 16 multiplications and 12 additions. Thus, its com-
putation represents the main stumbling block to the use of
quaternions in industrial applications. To alleviate or circum-
vent the high computational cost of quaternion product, there
have been various propositions to address the computation of
quaternions [13]–[15]. To this end, we exploit the quaternion
product algorithm proposed in [13] as well as take advantage
of hardware architecture of FPGA to reduce the computational
cost of the QLMS algorithm. QLMS listed in Algorithm 1,
shown in (4 - 6), maps the quaternion input x(n) onto the
estimated quaternion output y(n) via the quaternion weights
w(n). The update of these weights (or filter taps) are governed
by the stepsize µ and steered by the quaternion error e(n),
which measures the difference between the desired quaternion
output d(n) and the estimated quaternion output y(n). To
illustrate the computational advantage of our proposed method,
Table I compares all variants of QLMS algorithm. Note that
the QLMS algorithm proposed in this paper incurs only a third
of the computational costs of the original QLMS [4] (when
comparing the costlier multiplication operation), and is thus
suitable for industrial applications.



2

Algorithm 1 : Quaternion LMS for 3D and 4D Processes [4]

Initialisation
w(0) = 0
For all n ≥ 1
Outpu t : y(n) = wH(n)x(n) (4)

=

L∑
ℓ=1

w∗
ℓ (n)x(n− ℓ+ 1)

E r r o r : e(n) = d(n)− y(n) (5)

Update w e i g h t s :

w(n+ 1) = w(n) + µx(n)e∗(n) (6)

where L, n and ℓ, (·)H denote respectively the number of
weight coefficients (or filter taps), the time index, the ℓth filter
tap, and the conjugate transpose operator.

TABLE I: Computational complexities of Quaternion LMS
algorithms. Additions and subtractions are considered the
same.

Algorithms Multiplications Additions
Original QLMS [4] 48L 56L
QLMS by Neto and Nascimento [10] 32L+ 4 32L
QLMS by Xiang et al. [11] 20L+ 4 64L
Proposed fQLMS 16L+4 84L+ 8

The computational cost of our proposed fQLMS is twice
the cost of four single-channel LMS, but half the cost of the
multichannel LMS [10]. In contrast to other methods [4], [10],
[11], fQLMS does not use the Matlab quaternion toolbox [12]
and its computational cost can be further reduced through the
exploitation of the hardware implementation, as described in
the next sections.

III. THE HARDWARE DESIGN OF THE QUATERNION LMS

The nature of the QLMS algorithm [such as Equation (4)]
provides a high degree of parallelism which is successfully
exploited and deployed when implemented on the FPGA
architecture. In this section, the design of an architecture with
a quaternion component parallelism level is firstly explained,
followed by its implementation results and discussions in Sec-
tion IV. The proposed architecture was developed in Xilinx’s
Model Composer Add-on for MATLAB, a tool that enables
low level model design within the MathWorks Simulink [16].

Fig. 1 shows the overall architecture1 of QLMS on our
FPGA design. The main computational blocks are described
as follows: the DATA IN and DATA OUT blocks are used
as hardware interfaces for defining the QLMS input – output
ports size and data representation, and the TAPn, ΣTAPn and
ERROR blocks implement the equations (4)-(6) described in
Section II. The Goto block (white) sends the data calculated
in the ERROR block (CONJ ERROR) to the TAPn blocks.

1The blocks in Fig. 1 have the hardware constraints (data representation and
synchronization) accurately defined to automatically comply with the fQLMS
filter length and the data magnitude.

Fig. 1: Overall hardware architecture of the n-TAP fQLMS

Fig. 2: The Control Block architecture

More details on the main constituent blocks are provided in
the following subsections.

A. The Control Block
The CONTROL BLOCK shown in Fig. 2 calculates for a

given QLMS length (L): (i) the T W time (10) to update
the filter with the newly calculated weights (block W TAP in
Fig.3) triggered by EN W, (ii) the T X time (9) to load into
the filter new input samples (block X TAP in Fig.3) triggered
by EN X, and (iii) pipelines the quaternion multiplication
by selecting the quaternion product inputs via SEL PROD
(Fig.3), and the multiplication inputs via SEL MULT (Fig.5).

The Counter’s current value is compared with Delay L (7)
to generate the EN X and EN W signals (shown in Fig.2 and
Fig.3). It also provides the address for the pre-loaded values of
the signals SEL PROD and SEL MULT stored in the memory
ROM1 (11) and ROM2 (12).

Delay L = FixedDelay + ceil(log2(L)) (7)
COUNT = Delay L+ 2 (8)

T X = Delay L+ 2 (9)
T W = Delay L+ 1 (10)

ROM1 = [zeros(1, T X), ones(1, T X)] (11)
ROM2 = [0, 1, 1, zeros(1, T W ),

0, 1, 1, zeros(1, T W )] (12)

where FixedDelay = 16 (value determined according to the
data path and QLMS block delays), COUNT represents the
upper counting limit value stored in the COUNTER, and ceil
rounds up to the nearest integer.

B. The TAPn processing unit
The architecture of the TAPn processing unit implements in

hardware the main QLMS calculation tasks. Its main blocks,



3

Fig. 3: The block architecture of the TAPn processing unit

shown in Fig. 3, calculates the w∗
ℓ (n− 1)x(n− ℓ+ 1) terms

in (4) and the updated quaternion weights w(n) in (6).
The input signal X IN and the QLMS weights NEW W IN

are stored respectively in the X TAP block (blue) and
W TAP block (cyan), and then updated when triggered by
the EN X and EN W. Next, the weights are conjugated
in the QUART CONJ block and multiplied with the input
signal in the quaternion multiplier QUART PRODUCT block
(described in Section III-C). The W X and X E blocks act as
multiplexers controlled by SEL PROD, selecting the signals to
be multiplied by the QUART PRODUCT block: CONJ W×X
or X×CONJ ERROR as required in w∗x (4) and xe∗ (6).

The result is then passed to the ΣTAPn block (described in
Section III-D) to calculate the predicted output value. After the
conjugated error is calculated in the ERROR block (described
in Section III-E), its quaternion product with the input signal is
multiplied with the learning rate in the MIU PROD block. The
result is summed with the current weight in QUART SUM
block to obtain the updated weight NEW W IN (6).

C. The quaternion multiplier QUART PRODUCT block

The algorithm to compute the quaternion product adopted in
this paper follows Equations (13)-(14) proposed in [13]. The
advantage lies in the lower number of multiplications required
than the default quaternion product definition given in (3).
However, the reduction (8 from 16) comes at the expense of
increasing the additions from 12 to 40. The implications are
discussed in Section IV.

xy = (+2T1 − (T5 + T6 + T7 + T8)/4)

+ (−2T2 + (T5 + T6 − T7 − T8)/4)i

+ (−2T3 + (T5 − T6 + T7 − T8)/4)j

+ (−2T4 + (T5 − T6 − T7 + T8)/4)k

(13)

where

T1 = x1y1; T2 = x4y3; T3 = x2y4; T4 = x3y2;

T5 = (x1 + x2 + x3 + x4)(y1 + y2 + y3 + y4)

T6 = (x1 + x2 − x3 − x4)(y1 + y2 − y3 − y4)

T7 = (x1 − x2 + x3 − x4)(y1 − y2 + y3 − y4)

T8 = (x1 − x2 − x3 + x4)(y1 − y2 − y3 + y4)

(14)

Equations (13) and (14) can be rearranged to : (i) improve
the data accuracy, by dividing the values before multiplication
(the division by 4 is moved from (13) to (16) such that both
factors are divided by 2 before the multiplication) and (ii)
form recursive addition/subtraction patterns, by rearranging the
terms in (14). The result of these algorithmic considerations
are described in (16).

xyproposed = (+2T1 − ((T5 + T6) + (T7 + T8)))

+ (−2T2 + ((T5 + T6)− (T7 + T8)))i

+ (−2T3 + ((T5 − T6) + (T7 − T8)))j

+ (−2T4 + ((T5 − T6)− (T7 − T8)))k

(15)

where
T1 = x1y1; T2 = x4y3; T3 = x2y4; T4 = x3y2;

T5 =
(x1 + x2) + (x3 + x4)

2

(y1 + y2) + (y3 + y4)

2

T6 =
(x1 + x2)− (x3 + x4)

2

(y1 + y2)− (y3 + y4)

2

T7 =
(x1 − x2) + (x3 − x4)

2

(y1 − y2) + (y3 − y4)

2

T8 =
(x1 − x2)− (x3 − x4)

2

(y1 − y2)− (y3 − y4)

2

(16)

The computational model of (15)-(16) is shown in Fig. 4. It
can be observed that certain addition/subtraction and multipli-
ers blocks are grouped under the AddSub System (coloured
in purple) and Multiplier System (light green). Due to the
sequential processing through the computational blocks shown
Fig. 4, the number of multipliers can be further decreased
from 8 to 4 by reusing the hardware resources grouped in
the Multiplier System without additional clock cycles. The
Multiplier System inputs, are selected using 2 multiplexers
(light blue), Fig. 5. Here, SEL MULT (white) generates the
multiplier inputs selection signal defined in the CONTROL
BLOCK (as shown in Section III-A), X0.5 implements the 1
bit left shift operation (yellow) and X2 implements a 2 bit
right shift operation. Moreover, a further addition/subtraction
blocks reduction, from 28 to 12, can be achieved through an
additional reuse of the AddSub block (purple block, containing
8 addition/subtraction blocks). This incurs an increase of the
number of clock cycles by 8, due to the 4 extra clock cycles
delay2 for each of the two 4-element multiplications done in
a quaternion product: one multiplication to calculate the T1 to
T4 terms and second multiplication for calculating the T5 to
T8 terms, as shown in (16). Considering the number of addi-
tion/subtraction and multiplication blocks that are required to
implement the quaternion product, the increased availability of
the addition/subtraction blocks over the multiplication blocks
in the FPGA circuit used, and the addition of zero extra clock
cycles when pipelining the multiplication, in the rest of the
paper only the Multiplier System block will be reused. The
hardware implication is discussed in Section IV.

D. The ΣTAPn block
The ΣTAPn block calculates the weighted sum of the signal

sampled across the entire filter length (L) and provides the

2Two for AddSub and two for MUX blocks



4

Fig. 4: The quaternion multiplication algorithm shown as
recursive patterns grouped under the AddSub System (purple)
and Multiplier System (light green) blocks

Fig. 5: The block diagram of the quaternion multiplication
algorithm

predicted output value. It consists of Xilinx ADD blocks for
each quaternion component (the QUART SUM blocks) which
support only two inputs at the time. Therefor the sum of
all TAPn outputs is done in a number of sequential stages
equal to ceil(log2(L)) as shown in Fig. 6. For L ̸= 2n, the
missing abs(L - 2n) addition terms will be each replaced with
an 1 clock cycle delay block. The predicted output value,
SUM OUT, is made available for external interfacing through
the DATA OUT block shown in magenta in Fig.1.

E. The ERROR function block

The ERROR function block calculates target - estimated
difference (5), and its conjugate value (CONJ ERROR) is
further re-used as the CONJ ERROR input to the multiplexer
X/E (as shown in Fig. 3).

IV. THE FPGA IMPLEMENTATION OF THE QLMS.
RESULTS & DISCUSSIONS

The FPGA implementation of the QLMS requires a number
of hardware resources mainly determined by the length of

Fig. 6: The block diagram of ΣTAPn module showing the
addition of L = 8 TAPn elements done in ceil(log2(8)) = 3
stages

the QLMS and the bit resolution of the data representation
(the quantization error), both dictated by the application.
In this work, the QLMS algorithm implemented in FPGA
will be tested against two applications: the most well-known
application of quaternions i.e. 3D orientations in which the
algorithm is used to predict 3D positions and as Lowpass Filter
Orientation for data denoising.

A. 3D position prediction

In the first application considered, i.e. the 3D orientation
application, the tracking of 3D position was simulated to
demonstrate the usefulness of reconfigurable QLMS (fQLMS)
in a real-world setting. Indeed, the new 3D position p†(n) can
be obtained from an old 3D position p(n), following a 3D
rotation by q(n) as:

p†(n) = q(n)p(n)q∗(n) (17)

For rigour, fQLMS was used to track the new 3D position
p†(n + 10) in a 10 step-ahead prediction based on its input
which was comprised of the current and previous 3D rotations[
q(n), . . . , q(n − L + 1)

]
. To assess the robustness of our

fQLMS, white Gaussian noise was added to its input at a
signal-to-noise ratio of 20 dB.

The simulation results of the fQLMS predicting the p†(n+
10) position (blue) are compared with the actual 3D position
(red) in Fig. 7; these are shown on the unit sphere on the right
and on the three different axes on the left. The bottom left
plot of Fig. 7 shows the convergence of our proposed method,
where e(n) denotes the difference between the 10 steps



5

Fig. 7: 3D rotation simulation results

Fig. 8: The relative RMSE (rRMSE) value of the proposed
L = 8 fQLMS output function of n and p

ahead desired quaternion position and the predicted quaternion
position calculated from the full quaternion rotation.

The success of a hardware implementation depends on the
availability of the resources required on a given FPGA. As
their number vary with the QLMS characteristics, an in-depth
analysis of hardware resources needed vs QLMS features is
given in the following subsections.

1) Hardware resources vs QLMS data type: To highlight
the influence of the data type on the performance of the
QLMS, the relative RMSE (rRMSE) across all 4 quaternion
components (18) was calculated as the root mean square error
(RMSE) normalised by the root mean square (RMS) value
of the quaternion signal. The rRMSE values are shown in
Fig. 8 as a function of the number of bits allocated for
data implementation sn.p, with s representing the sign, n the
number of bits representing the integer part, and p the number
bits allocated for the fractionally part of the number.

rRMSE =
RMSE
RMS

=

√√√√∑N
n=1 (y

double
n − ysn.p

n )
2∑N

n=1 (y
double
n )2

(18)

where ydouble
n denotes the Matlab quaternion toolbox double

data type [12] and ysn.p
n represents the proposed sn.p fixed

point data type implementation. As expected, the worst rRMSE
value corresponds to the lowest bit resolution sn.p = s2.2,
as shown in Fig. 8. On the other hand, rRMSE decreases
exponentially as n and p increases, reaching a plateau of
0.1% dissimilarity for n ≥ 2 and p ≥ 12. Ideally, n and
p should be chosen so that rRMSE = 0. Yet, this requires
higher bit resolutions, which in turn demands more hardware
resources. Therefore, a trade-off between the rRMSE value
and the hardware resources required must first be found in
terms of n and p values. It can be noticed from Fig.8 that the

TABLE II: Hardware resources used vs. data representation
for L = 8 QLMS implementation

Data Hardware resources
representation LUT FFs BRAMs LUTRAM DSP

s2.8 4514 4991 1 160 32
s2.12 6850 7087 1 256 32

TABLE III: Hardware resources vs. QLMS length (L) for s2.12
data representation in Artix 7 (XC7A100T)

L Hardware resources
LUT FFs BRAMs LUTRAM DSP

8 6850 7087 1 256 32
16 14009 13999 1 512 64
32 27497 27823 1 1024 128
48 41943 41647 1 1536 192
56 49047 48559 1 1792 224
64 55271 55471 1 2048 256

available 63400 126800 135 19000 240

minimum sn.p resolution that ensure the lowest rRMSE value
of 0.1% is s.2.12. The hardware resources used (especially
the dedicated DSP48 multipliers) strongly depended on the
data representation adopted. However, due to the multiplier’s
18 x 25-bit input architecture [17], the QLMS implementation
requires a constant number of 32 DSP48 blocks for L = 8
QLMS, for any data representation under 18-bit, as shown
in Table II for s2.8 and s2.12. Nevertheless, the number of
DSPs will increase proportionally with the quotient of (data
representation)/18, as bit resolution is increased: e.g: for an
L = 8 QLMS with 19 to 36-bit resolution, there are required
(quote(36/18) ∗ 32 = 64) DSP48 blocks. Consequently, in
the rest of the paper, the implementations will be made in
the s2.12 resolution, to ensure the highest accuracy/hardware
resources ratio.

2) Hardware resources vs QLMS length L: Besides the bit
resolution, the hardware resources required for implementing
the QLMS model are strongly determined by the QLMS length
and the targeted FPGA architecture: i.e. an L-QLMS requires
L-TAPn units (as detailed in Section III-B), and each of them
uses 4 DSP48 blocks, where each DSP48 block has 25 × 18
bit two’s-complement multiplication, 48-bit accumulators and
24-bit add/subtract capabilities. For a complete picture, the
numbers of RAM blocks, LUTs, flip-flops (FF) and DSP48
blocks function of L are shown Table III. Based on Table III,
it can be inferred formulae to approximate the number of used
hardware blocks function of the QLMS length, (19)-(22).

LUTs estimated = 850× L (19)
FFs estimated = 875× L (20)

LUTRAMs estimated = 32× L (21)
DSPs estimated = 4× L (22)

These formulae give the advantage of predicting the max-
imum QLMS length that fits an FPGA, prior to its hard-
ware implementation. Consequently, it can be shown that
the maximum QLMS lengths that can be implemented in an
Artix7-XC7A100T is 60. Note that the resources used for
implementing the L64-QLMS (Table III) were obtained for



6

TABLE IV: Ideal µ vs. QLMS length (L) and minimum data
resolution (sn.p) for a relative error < 0.05%

L 8 32 64 128 200 256 515 1024
µ× 10−2 33 26 15 9 5 3 1 1
min sn.p 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

TABLE V: Maximum data path delay vs. QLMS length (L)

L 8 16 32 48 56 64
Data path delay (ns) 9.57 10.08 10.05 10.07 11.02 14.7

a different FPGA than XC7A100T (hence the text in italic).
Here, it was used Artix-7 XC7A200T with 740 DSP blocks.

3) Hardware resources vs QLMS learning factor: Another
possible limiting factor in deploying large QLMS filters is
the learning factor µ implementation, which, in order to keep
the filter stable, takes values that decrees with the QLMS
length. The appropriate data resolution for µ implementation
for the 3D rotation application is shown in Table IV. For
this particular application, although µ varies, the required
data representation remains constant to 11 bits and therefore
we were able to exploit (19)-(22) to calculate the necessary
resources for the QLMS implementation.

4) Data Throughput: The data throughput of the QLMS
depends on the system clock frequency and the QLMS length.
The minimum time period to calculate the QLMS output is de-
termined by the COUNT value, which is a function of log2(L)
(8). Due to the concurrent nature of the implementation, the
QLMS length has a little influence on the maximum data
path delay, but it greatly determines the throughput (due to
the sequential part of the QLMS algorithm) and the hardware
resources used to accommodate the concurrency, TableV.

The implementation timing report, shown in Table VI,
gives for L = 8 a minimum clock period of 9.57ns, which
ensures a data throughput of (19 + log2(8)) × 10ns = 220ns
or 4.7M samples per second. Fig. 9 shows the benchmark
processing time for the QLMS calculated using the Matlab’s
quaternion toolbox [12] (on the green axis) and the cost
effective QLMS algorithm reported in [11] (on the red axis),
where the proposed fQLMS implemented in FPGA is shown
on the blue axis. The significantly lower running time of the
FPGA implementation (in order of hundreds of nanoseconds)
over the 4 cores at 3.60 GHZ CPU implementation (in order
of seconds) confirms the computational advantage of our
proposed method.

B. Filtering of noisy 3D rotations

The second application addressed the denoising of the 3D
rotation measurements, i.e. q(n) in (17), whereas the aim of
the first application was to predict the 3D coordinates in p†(n)
in (17). As such, Fig. 11 shows the 3 rotations (in degrees)
about the three axes Z − Y − X for the second application,
whereas the left plots of Fig. 7 shows the 3D positions in
the sphere for the first application. In the second application,
the adaptive filter takes in x(n) as the noisy 3D rotation
measurement inputs, i.e.

x(n) = q(n) + η(n) (23)

TABLE VI: Maximum data path delay vs. data representation
for L = 8 QLMS implementation

sn.p s2.8 s2.10 s2.12 s2.14
Data path delay (ns) 9.57 9.63 9.67 9.82

Fig. 9: Processing time for iQLMS (green) and iQLMS FC
(red) [11] vs proposed fQLMS (blue) against QLMS length
for a system clock of 10ns.

The noise η(n) was added to 3D rotation q(n) at a signal-
to-noise ratio of 10 dB. As such, the aim is to denoise x(n)
so that its output y(n) is as close as possible to q(n). Fig.
11 shows the noisy 3D rotation measurements in brown, and
its filtered counterpart in blue (which was denoised by our
method).

The hardware resources constraint and accuracy: Although
the main topology of the fQLMS remained the same, the
purpose of the second simulation is to demonstrate another ap-
plication and the method’s adaptability to another set of data.
To ensure the same level of accuracy as the one considered
in Section IV-A, the hardware implementation of the QLMS
algorithm in the FPGA required a specific data representation.
For this, as in the case of the 3D position prediction, there were
a series of FPGA implementations to calculate the rRMSE
between the signal filtered using the QLMS implemented in
Matlab Quaternion Toolbox and the QLMS implemented in
FPGA, for a range of number of bits used to represent the
integer part (n) and the fractionally part (p) of the value.
After analysing the rRMSE results presented in Fig. 10, it
can be concluded that for an rRMSE < 0.1%, a minimum
of 16-bit representation (n = 4 and p = 12) was required.
This had an impact on the hardware resource used for FPGA
implementation, presented in Fig. VII. Comparing them with
the implementation results shown in Table II and the equations
(19)-(22) it is noteworthy to see that the resources used for
the s4.10 implementation were similar to the ones reported

Fig. 10: The relative RMSE (rRMSE) value of the L = 8
fQLMS for data denoising vs data representation (n and p)



7

TABLE VII: Hardware resources used vs. data representation
for L = 8 QLMS implementation

Data Hardware resources
representation LUT FFs BRAMs LUTRAM DSP

s4.10 7025 7151 1 256 32
s4.12 7801 8199 1 256 32

Fig. 11: The filtering results of the L = 8 fQLMS applied to
rotational quaternion data

for s2.12 implementation, as the total number of bits used
in data representation remained the same, i.e. 14. (Note: the
slight differences come from the use of a different learning
stepsize µ values, here it was 0.1). As expected, the number
of used DSP blocks remained the same, i.e. 32, for s4.10
and s4.12, due to the block’s 25 × 18 bit two’s-complement
multiplication capability. The filtering results of applying the
L = 8 fQLMS to noisy quaternion rotational data is shown
in Fig. 11. They demonstrate the efficiency of the hardware
fQLMS applied to noisy rotational data and the capability of
accommodating variable algorithm parameters (such as sn.p
data representation, or the µ values) and the inherent hardware
implementation constraints.

V. CONCLUSION

We have proposed a hardware architecture for the QLMS
algorithm that can leverage the parallel processing of FPGAs.
The model fQLMS is adaptable and easily reconfigurable
to accommodate hardware implementation constraints (hard-
ware resources and data representation) for variable QLMS
parameters (QLMS length and accuracy). fQLMS exhibited
a massive 106 fold decrease of the processing time over
QLMS. No fully reconfigurable FPGA-based hardware with
prior implementation FPGA resources estimators have yet
been reported. As such, the model is intended as a tool for
FPGA designers to rapid prototype real-time applications. For
rigour, various analyses such as the output sampling time (8)
and the hardware resources used (19)-(22) have been derived
to facilitate the pre-implementation design of fQLMS for other
industrial applications.

REFERENCES

[1] A. Tisan and J. Chin, “An enduser platform for FPGA-based design
and rapid prototyping of feedForward artificial neural networks with
on-chip back propagation learning,” IEEE Transactions on Industrial
Informatics, vol. 12, no. 3, pp. 1124–1133, 2016.

[2] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and
M. W. Naouar, “FPGAs in industrial control applications,” IEEE Trans-
actions on Industrial Informatics, vol. 7, no. 2, pp. 224 – 243, 2011.

[3] R. Morales-Caporal, E. B. Huerta, C. H. Flores, M. A. A. López, and
M. Pacas, “Transducerless acquisition of the rotor position for predictive
torque controlled PM synchronous machines based on a DSP-FPGA
digital system,” IEEE Transactions on Industrial Informatics, vol. 9,
no. 2, pp. 799–807, 2013.

[4] C. Cheong Took and D. P. Mandic, “The Quaternion LMS Algorithm
for Adaptive Filtering of Hypercomplex Real World Processes,” IEEE
Transactions on Signal Processing, vol. 57, pp. 1316 – 1327, 2009.

[5] J. Cao, J. Liu, J. Wang, and X. Lai, “Acoustic vector sensor: reviews
and future perspectives,” IET Signal Processing, vol. 11, pp. 1–9, 2017.

[6] A. Bravi and A. M. Sabatini, “A multidimensional approach to postural
sway modeling,” in 2010 IEEE International Workshop on Medical
Measurements and Applications, pp. 121–124, 2010.

[7] C. C. Took, G. Strbac, K. Aihara, and D. Mandic, “Quaternion-valued
short-term joint forecasting of three-dimensional wind and atmospheric
parameters,” Renewable Energy, vol. 36, no. 6, pp. 1754–1760, 2011.

[8] G. Cosma et al., “A survey on computational intelligence approaches
for predictive modeling in prostate cancer,” Expert Systems with Appli-
cations, vol. 70, pp. 1–19, 2017.

[9] K. Adhikari, S. Tatinati, W. T. Ang, K. C. Veluvolu, and K. Nazarpour,
“A quaternion weighted Fourier linear combiner for modeling physio-
logical tremor,” IEEE Transactions on Biomedical Engineering, vol. 63,
no. 11, pp. 2336–2346, 2016.

[10] F. G. A. Neto and V. H. Nascimento, “Low-complexity quaternion
adaptive filters,” arXiv:1410.2854, Oct. 2014.

[11] M. Xiang, C. Took, and D. P. Mandic, “Cost-effective quaternion
minimum mean square error estimation: From widely linear to four-
channel processing,” Signal Processing, vol. 136, pp. 81 – 91, Jul. 2017.

[12] S. Sangwine and N. L. Bihan, “Quaternion and octonion toolbox for
matlab.” http://qtfm.sourceforge.net/, 2015. Accessed: 2021-06-16.

[13] T. Howell and J. Lafon, “The complexity of the quaternion product,”
Technical Report Cornell University (TR 75-245), pp. 1–13, 1975.

[14] A. Cariow and G. Cariowa, “An algorithm for dividing quaternions,”
arXiv:2009.00425, Aug. 2020.

[15] J. L. Contreras-Hernandez, D. L. Almanza-Ojeda, S. Ledesma-Orozco,
A. Garcia-Perez, R. J. Romero-Troncoso, and M. A. Ibarra-Manzano,
“Quaternion signal analysis algorithm for induction motor fault detec-
tion,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11,
pp. 8843–8850, 2019.

[16] Xilinx, Model-Based DSP Design using Add-on for MATLAB and
Simulink, 11 2020. v2020.2 Accessed: 2021-06-16.

[17] Xilinx, 7 Series DSP48E1 Slice User Guide, 3 2018. v1.10.

Alin Tisan, PhD, MIEEE, CEng, MIET Alin
received a BEng (1997) and a MSc (1998) in Physics
from Babeş-Bolyai University and a PhD (2008)
in neuromorphic systems for olfaction applications
from Technical University of Cluj Napoca, RO. He
is currently lecturer in the Electronic Engineering
Department at Royal Holloway University of Lon-
don, UK. His research interests include AI on system
on chip (neuromorphic software/hardware systems),
machine learning for neuronal data, data processing
in olfaction, signal processing for gas sensors, IoT

with applications in pervasive, unobstructive healthcare and smart homes. He
has published over 50 papers and co-chaired several Electronic Systems-on-
Chip and Embedded Systems related Technical Tracks and Special Sessions.



8

Clive Cheong Took, SMIEEE received his PhD
degree in signal processing from Cardiff University
in 2007. Clive is now a senior lecturer at Royal
Holloway, University of London. He was part of
the editorial team at IEEE Transactions on Neural
Networks and Learning Systems and was awarded
the outstanding associate editor in 2019. Clive co-
edited special issues on “Deep neural network repre-
sentation and Generative Adversarial Learning” and
on “Deep Representation and Transfer Learning for
Smart and Connected Health”. He is currently holds

an editorship position at the Elsevier Neural Networks and is an executive
committee member of IET Healthcare Network. His research interests lie in
neural networks and signal processing.


