
A Knowledge Representation Framework for
Evolutionary Simulations with Cognitive Agents

Nausheen Saba Shahid, Dan O’Keeffe, Kostas Stathis
Department of Computer Science, Royal Holloway University of London, UK

nausheen.shahid.2017@live.rhul.ac.uk, {daniel.okeeffe, kostas.stathis}@rhul.ac.uk

Abstract—We propose a generic knowledge representation
framework that supports evolutionary game-theoretic simulations
using cognitive agents. The framework allows an experimenter
to test a population of such agents via generations to study how
specific population behaviours evolve over time. A generation is
composed of rounds which can be further divided into encounters
according to model-specific requirements. As agents in the
population interact, events (caused either by agent actions or by
separate environment processes) take place. These events change
the environment, changes are then perceived by agents that, in
turn, decide to take new actions that affect the environment. This
process continues until it is time to evolve a new generation,
when strategies of the fittest players are selected for the next
generation to start evolving. This evolutionary loop continues
until all the terminating conditions of the simulation are met. We
use the framework to show how to successfully repeat existing
experiments from evolutionary simulations of agent cooperation.
Our results validate our framework and pave the way for EVO-
COGNISIM, a simulation platform that implements the key
aspects of the framework in a systematic manner.

Index Terms—Game-theoretic simulation, Cognitive agents,
Cognitive simulation platforms, Evolution of Cooperation.

I. INTRODUCTION

We are interested in simulation models that involve mod-
eling human systems to gain an understanding of how they
behave over time. In particular, we are concerned with models
that need to represent how certain behavioural characteristics,
whether specific to individuals or groups, are so robust and
resilient that survive over generations in a certain environ-
ment [1]. These types of models are called evolutionary
models as they are based on evolutionary concepts of selection
and reproduction [2].

To study the evolution of human behaviour many game-
theoretic simulation models have been proposed, especially
agent-based models of how individuals cooperate [3], [4].
Although these models provide useful insights of how evolu-
tion affects cooperation in specific application domains, their
major shortcomings are that the agent modelling is often
specified by low-level data structures and algorithms that,
despite being efficient, do not always reflect the high-level
concepts these components are meant to represent [5]. On top
of this, the agent modelling being carried out is often based
on mathematical methods that make their behaviour difficult
to interpret, in particular by experimenters who simply act
as simulation users, and were not involved in their design,
specification or implementation.

There are many efforts [6], [7], where a society of agents
has been modeled and evolved as an evolutionary simula-
tion, some expressed as complex mathematical strategies such
as [8]. Also, in some efforts, popular simulation platforms such
as NetLogo [9], Repast [10] and AnyLogic [11] have been
used to implement the simulation model. The major shortcom-
ing of these efforts is that the agents in these approaches lack
the cognitive complexity in symbolic terms to represent human
behaviour, i.e., these models are not based on a set of symbols
that can be combined (e.g., concatenated) in a multitude of
ways, according to precise grammatical rules, and where both
elementary symbols and any admissible combination of them
can be assigned with meaning (i.e., each symbol can be
mapped into some entity from the domain at hand). Another
limitation is that these works don’t discuss explicitly how
they have formulated evolution. Did they perform it at the
platform level or the agent level? As a result, it is difficult to
repeat their experiments, especially if one is using a different
programming language, or platform, as there is a lack of
an explicit specification of evolution that is executable and
interpretable.

This highlights the need for a more transparent and flexible
simulation platform, where the evolutionary behaviour of com-
ponents is interpretable and more understandable by humans.
One of the contribution of our work is to be able to support
experiments evolving generations of multiple entities concep-
tualised as populations of cognitive agents. As cognitive agent
frameworks are more demanding computationally (whether
they are autonomous [12] or not), another contribution of this
work is to offer experimenters optimization opportunities that
make the evolutionary setup scalable and, thus, a complex
simulation feasible. To exemplify these contributions, we
present our framework that we refer to as EVO-COGNISIM.
To demonstrate the usefulness of EVO-COGNISIM, another
contribution of our work is that we show how to use the
framework to program an existing model for evolutionary
cooperation [13], illustrating how to reproduce existing simu-
lations in a systematic manner.

This paper is structured as follows. Section 2 presents the
related work and the gaps that have motivated our effort. In
Section 3 we select a model as a case study to exemplify
the requirements of our framework. Section 4 introduces the
reference model architecture of EVO-COGNISIM, provides
the knowledge representation of its components, and identi-
fies areas for improving its operational performance. EVO-

COGNISIM is then used in Section 5 to implement the
agent-based modelling of the selected use case, whose results
are faithfully reproduced and evaluated, demonstrating the
usefulness of our platform. We summarise our effort in Section
6, where we also discuss directions for future work.

II. RELATED WORK

There have been some efforts to use cognitive agents for so-
cial simulation [14]–[16] but these simulations were focused
on modeling social phenomena such as simulation of escaping
panic [14], simulation of survival in a group, crowd simulation
of emergency response and pedestrian mobility after an earth-
quake from a non-evolutionary perspective. A notable one is
discussed by Singh [17], where he proposed a middleware to
integrate Belief-Desire-Intention (BDI) agents with the Agent-
Based Modeling (ABM) Platform. These efforts, however, did
not capture the evolutionary aspect of agent behaviour, and so
cannot support evolutionary game-theoretic models as we do.

A more recent work with BDI agents expressed in the
agent-oriented language Jason is described in [18]. This work
extends the widely used JaCaMo platform [19] for simulation
applications and, although important for building practical
simulations because it links concepts such as events, activities
and workspaces, it does not explicitly show how the simu-
lation cycle is formulated symbolically, nor does it link the
simulation cycle to the evolution of generations explicitly, as
provided in this paper.

Fig. 1: The COGNISIM Agent Architecture from [20].

The work closest to our approach is COGNISIM [20]. This
provides a cognitive agent model as shown in Figure 1 with an
associated knowledge representation to express game-theoretic
interactions in simulations. As shown in Figure 2, however, the
agent environment of COGNISIM only supports tournament-
based experiments for a population of agents but abstracts
away from how they might evolve in different generations. To
address this issue, this work non-trivially complements COG-
NISIM by providing the missing knowledge representation
framework for evolutionary simulations, using the environment
evolutionary cycle of [21] as a base.

Fig. 2: The COGNISIM Reference Model from [20].

III. EVOLUTIONARY COOPERATION USE CASE

To understand the requirements of an evolutionary model
that need to be incorporated into COGNISIM, we next select
an evolutionary model from the literature to analyze as a
use case. Many mathematical models have been proposed
to study the evolution of cooperation among self-interested
agents e.g. see [22], [23]. We will follow the model of [13],
which arguably is considered the state-of-the-art in the field of
gossip-mediated evolutionary cooperation. According to this
model [13], we need a population of n players to interact
T number of times. At each time point Ti ∈ T , players
participate in g giving games and r gossip sessions. In a
giving game a donor is selected randomly to give benefit (i.e.
cooperate) or not (i.e. defect) to a randomly selected recipient.
Similarly, in a gossip session, a randomly selected speaker
evaluates n−1 players to a listener, who is randomly selected
too (but not evaluated by the speaker). Every player maintains
an image score of every other player; intuitively an internal
representation of another player’s reputation (sij) using the
following equation:

sij = C(i←j)−D(i←j)+ρ
∑

(u 6= i)[Gj(i←u)−Bj(i←u)] (1)

where ρ is the weight the player i gives to the gossiping
information in the calculation of other player (j) ’s image
score. Cij is the number of times j has cooperated with
player i in the past, Dij is the number of times player j
has defected with player i in the past. Gij is the number of
times i has received a good gossip about player j from its
trusted sources and Bij is the number of time player i has
received bad gossip about player j from its trusted sources.
Also, every player follows a strategy with sub-strategies using
the following parameters:

F = (ρ, k, qG, qB , qR, α) (2)

where ρ is already defined, k is the discrimination threshold
that a player (i) uses when selected as a donor and gives benefit

Fig. 3: Flow of an Encounter

to a recipient player (j) if the sij is greater or equal to k.
qG and qB are the criteria for rating a player as good/bad
respectively during a gossip story. Moreover, a gossiper can
be self-advertising (α = 1) or non self-advertising (α = 0). qR
represents the image score criterion of a player whose gossip
a player trusts.

Depending on the discrimination threshold k, players are
categorized as [13]:

1) Intrinsic cooperators (k ≤ 0), with two further sub-
types:

• Stern discriminators (k = 0);
• Generous discriminators (MinImageRange <
k < 0).

2) Intrinsic defector (MaxImageRange ≥ k > 0).
3) Unconditional cooperator (MinImageRange ≥ k).
4) Unconditional defector (MaxImageRange < k).

Based on qG and qB values, the following strategies for a
gossiper are provided:

• Fair (qG = qB = 0).
• Biased (qG = qB = k).
• All Good (ALLB) (qG, qB < MinImageRange).
• All Bad (ALLG) (qG, qB > MaxImageRange).
We formalize the above cooperation model as a multi-agent

environment with cognitive agents of the form:

M =< A,Rbeh, Renv, Gen,G,R,Rounds > (3)

where A = {a1, a2, ..., an+1} is a set of n + 1 agents
consisting of one conductor agent and n player agents. Rbeh =
{rb1, rb2, ..., rbp} is a set of behavioural rules representing
the agent strategies consisting of both discrimination and
gossiping sub-strategies. An agent ai should be initialised
with a subset of these behavioural rules (Rai

beh ⊂ Rbeh).
Renv are all the domain specific environment-level rules that
govern the simulation. It covers both generation level rules
as well as evolution rules used for evolving one generation
to another. Generation level rules are the same as rules in
the tournament setup. Gen is the total number of generations
to be evolved, and Nc ∈ {1..Gen} is the current generation
evolving. A generation goes through a number of Rounds
before it terminates.

In [13], a round allows G giving games and R gossiping
sessions to take place (in a sequence) in a single time step.
We can treat each giving game or gossiping session as an
encounter with three time steps, as illustrated in Figure 3.
The evolution of each generation is like a single tournament
of COGNISIM, but the way the conductor agent conducts
the simulation is different. For example, in this model, the
conductor randomly selects two agents and requests them to
start an encounter by assigning them roles. For the purpose
of this discussion, we assume it is a giving encounter. Then,
the donor (Player1 in Figure 3) agent will inform the recip-
ient (Player2 in Figure 3) about its specific action. In the
next cycle, it informs the conductor that the encounter has
been completed. A similar interaction protocol is used for
a gossiping encounter. A simulation experiment is then an
environment that evolves generations of cognitive agents. In
the next section, we will discuss such a new framework.

IV. EVO-COGNISIM

We discuss how to complement COGNISIM to simulate
evolutionary models.

A. EVO-COGNISIM Reference Model

The component architecture of EVO-COGNISIM is shown
in Figure 4. As with tournaments in COGNISIM(or other plat-
forms [24]), the simulation management components such as
Display, Experiment Configuration, Simulation Control, Simu-
lation Component Knowledge Base (SCKB), Event History of
the framework interact in the same way. The main difference
now is that we need an Evolution Rules knowledge base so
the Simulation Control can determine which strategies survive
from one generation to another. Also, the agent environment
consists of generations of player agents whereas the conductor
agent resides in the agent environment until the end of the
simulation and is responsible for starting and conducting all
the encounters in each round of a generation.

B. EVO-COGNISIM Components

Like COGNISIM, an agent of EVO-COGNISIM is a com-
ponent that has a default functionality to perceive the envi-
ronment, revise its internal state with the percepts it receives,
decide which action to perform next, including actions that
allow the agent communication with other agents and then
perform the action. In EVO-COGNISIM, the internal state of
agent i at time t, denoted as ISt

i is characterized as:

ISt
i := KBi

⋃
BBt

i (4)

where KBi is a static knowledge base component defined
at the time the agent is created and BBt

i is the belief base
component of i that can change as time t progresses. A
component like KBi in EVO-COGNISIM is defined using
logic-based rules of the form:

rule(C, H, [B1,B2,..Bn]),

where C is a unique identifier of the component, H is
the head of the rule, and the list [B1,B2,...,Bn] represents

Fig. 4: EVO-COGNISIM Reference Model

the conditions in the rule’s body. For example, we show
below how a stern cooperator agent component ag1 (with
discrimination threashold equal to 0) knows whether an
image score (ImgScore) of another player is good or not.

rule(ag1, discrimination threshold(0),[]).
rule(ag1,good image(ImgScore),[

discrimination threshold(K),
ImgScore >= K

]).

The first rule is a fact, i.e. the body is empty, while the second
rule contains conditions that determine what is a good image
score. As in COGNISIM, a vanilla meta-interpreter demo/2
is used to infer what is known by an agent and deals with
additional aspects such as negation-as-failure, arithmetic and
system specific operations [25]. A call to agent ag1 of the
form ?- demo(ag1, good image(5)), will allow us infer that
the image score 5 is good, given what that agent knows.

TABLE I: Event Calculus Ontology in COGNISIM.

Predicate Description
happens at(E, T) Event E happens at time T.
holds at(F=V, T) Fluent F has value V at time T.
holds for(F=V, [Ts,Te]) Fluent F continuously has value

V from time Ts to time Te.
broken(F=V, [Ts,Te]) Fluent F has changed value V

from time Ts to time Te.
initiates at(E, F=V, T) Event E initiates value V for

fluent F at time T.
terminates at(E, F=V, T) Event E terminates value V for

fluent F at time T.

In COGNISIM organising an agent’s knowledge base as
a component described by rules is important, but we still
need to address how to represent belief bases as components
that change over time. For this we use the Event Calculus

(EC) that relies on three basic constructs to represent change:
events, fluents (state variables whose values change) and time
points with a linear time model. Many versions of the EC
exist [26], here we use the version described in [27] but with
multi-valued fluents [28]. Events happen instantaneously and
are represented in terms of the time point when they happen.
An event initiates/terminates the value of a fluent in the state
of interest indexed by a time point. Table I summarises the
ontology of the domain-independent axioms we employ to
represent state changes in the environment or the agents.

We define the general axioms of the calculus as in [27],
but for caching we adopt the update mechanism described
in [29]. We can then use these techniques to query evolving
components by adding to the meta-interpreter a bridge rule:

demo(C, F=V@T)← holds at(C:F=V, T).

The bridge rule interprets time-dependent conclusions of
the form F=V@T in a component C as component indexed
fluents of the form C:F=V at time T using the EC axioms.
We can now treat the agent beliefs as an evolving and time-
dependent component. For example, to calculate the image
score of another agent X at time T, an agent ag1 uses the rule:

rule(ag1, image(X,ImgScore,T), [
cooperation(X)=C@T,
defection(X)=D@T,
goodgossip(X)=G@T,
badgossip(X)=B@T,
gossipweight(P),
ImgScore is (C-D) + P*(G-B)

])

where beliefs such as (cooperation(X)=C and
defection(X)=D are maintained as fluents in the Event
Calculus level, while conditions such as gossipweight(P)
are maintained as facts. Now, to compute with the rule we
need to call the meta-interpreter to answer a query of the form:

?-demo(ag1, image(ag2,Img,3)).

Such a query will answer the question of what is the image
score of player ag2 from the point of view of ag1 at time 3?
and will instantiate the computed image score in variable Img.

C. Teleo-reactive Behaviours

In EVO-COGNISIM, each strategy a player uses to
achieve a goal is represented as a teleo-reactive program [30]:

G: {
C11, C12,, C1k → A1,
C21, C22,, C2l → A2,
.....,
Cn1, Cn2,Cnm → An

}

where G is the goal that an agent is pursuing and Ai(i ∈
{1...n}) is either an atomic action or a sub-goal SG of G. A
condition of the form Cij(i ∈ {1...n} ∧ j ∈ {k, l, ..,m}) are
conditions that need to hold at a given time t to make the agent
select a particular Ai. The ordering of condition-action rules
above is important as the conditions of the ith rule implicitly
imply the negation of all the conditions of the i− 1 rules. For
atomic actions, teleo-reactive rules are translated in the KBAg

as selection rules of the form:

rule(Ag, select(E, G, A, T), [C1,C2,..., Cm]).

E represents the domain specific encounter (information
required to distinguish different interactions by the
implementation), G represents the goal that agent Ag is
pursuing, and A is the action that is to be selected at time
T. Similarly, {C1,C2..., Cm} represent the conditions that
must be evaluated to true for the action to be selected. An
example of a selection rule when the goal is to act as a stern
cooperator is given below:

rule(ag1, select(E, be stern, cooperate, T),[
rec of(E)=R,
image(R,Img,T),
good image(Img)

]).

Such a rule states that if the agent ag1 has the be stern
goal in an encounter E at T, then it should cooperate with
a recipient R if its image Img is good according to ag1’s
knowledge. A similar rule structure can deal with an action
that is sub-goal SG, following the format below:

rule(Ag, select(E, G, A, T),[C1,C2,..., select(E, SG, A, T)]).

SG now represents a whole sub-behaviour that agent Ag has to
pursue at time T, and return action A assuming that SG and G
are not conflicting. An example of such a rule is shown below:

rule(ag1, select(E, be stern fair, A, T),[
type of(E)=giv,
my role(E)=donor,
select(E, be stern, A, T)

]).

The rule above is required for stern cooperation and fair gossip
and assumes a top level goal called be stern fair for the
behaviour of the agent to be triggered during the decision-
making process using demo/2 to interpret teleo-reactive rules.

Teleo-reactive rules in EVO-COGNISIM are similar to the
BDI model [31], except they do not rely on planning from first-
principles or explicit intention management, as teleo-reactive
programs are plan libraries where the intentions are implicit as
part of the rule ordering and goal/sub-goal execution. As we
will discuss in a while, this type of basic cognition is flexible
and robust enough to represent quite complex behaviours.

D. Environment Evolution
In the evolutionary context, the predicates of the core

Simulation Control are now as shown next.

evolve all for(gens(Nc,N),[Te,Te])←
Nc>N,
finalize at(gens(Nc,N), Te).

evolve all for(gens(Nc,N),[Ts,Te])←
Nc≤N,
initialize at(gen(Nc,Ti, Tj), Ts),
evolve one for(gen(Nc),[Ti, Tj]),
evolve all for(gens(Nc+1,N), [Tj,Te]).

evolve one for(gen(Nc),[Ts, Te])←
Ts>Te,
finalize at(gen(Nc),Te).

evolve one for(gen(Nc),[Ts, Te])←
Ts≤Te
consume at(gen(Nc), Es, Ts),
display at(gen(Nc), Es, Ts),
optimize at(gen(Nc), Ts),
evolve one for(gen(Nc),[Ts+1, Te]).

The first clause of evolve all for/2 halts the simulation
when the number of the current generation Nc has exceeded
the number of generations specified at the start of an exper-
iment N and returns the simulation end time Te, as well as
finalizing/saving the results. The second clause takes the num-
ber of generations N for the experiment, the current generation
Nc, and the starting time Ts, initializes Nc and determines
its starting and ending times (Ti and Tj respectively), evolves
it, and proceeds to the next generation Nc+1 until all N
generations are simulated. The evolution of a single generation
Nc is dealt within evolve one for/2, which takes the starting
time Ts and ending time Te, consumes all the events Es that
take place in the agent environment, displays the transition to
the next state to all agents, including the user. If necessary,
a state is optimised and simulation moves to the next cycle,
until the end time Te is reached. The evolution of a generation
stops if Te is reached, where the generation is finalized.

1) Initialising a Generation: As seen in the previous
section, an experiment needs to set up a population of agents,
which will need to be initialised and associated with a
generation number, Nc. We specify this in EVO-COGNISIM
using initialize at/2 which is similar to the initialization of
a tournament. In the first generation, we initialise all the
player agents and the conductor, and we set each player’s P
fitness to zero; a variable stating how fit a player agent is.
A generation will then evolve until it reaches termination,
at which point it will need to evolve into a new one using
the notion of cultural reproduction [32] [13], where the
strategies of the fittest players get more chances of survival to
transfer into the next generation. To support this, we need a
second definition of initialize at/2 for initializing subsequent
generations.

Fig. 5: Time span of generations in memory

initialize at(gen(Nc,Ti,Tj),Ts)←
not start time(Ts),
calculate duration(Nc,Ts,Ti,Tj),
update at(initially(generation(Nc)=true),Ts),
players of(Nc-1,Players),
selection of fittest(Players, Parents),
strategies of(Parents, Strategies),
new players(Strategies, NewPlayers),
forall(member(P, NewPlayers),

(update at(player of(Nc,P),Ts),
initialize at(player(P), Ts),
update at(initially(fitness(P)=0),Ts))),

clear at(player agents(Nc-1), Ts).

Those players whose Strategies survive to the next generation
are selected as Parents. This selection is performed in selec-
tion of fittest/2. Then the Strategies of the Parents players
are used to create NewPlayers using new players/2. These
new players are then associated with the next generation, their
knowledge bases get initialized and their fitness is set to
zero. As a final step in this process, we remove the previous
generation from the working memory using clear at/2.

E. Performance Optimization

As evolutionary simulations generate a large number of
events, to improve the simulation efficiency, the concept of
forgetting in COGNISIM is re-specified in EVO-COGNISIM
to forget all events and agent knowledge when a generation
ends. Figure 5 shows the life span of different types of
knowledge in the working memory of the EVO-COGNISIM.
Within a generation forgetting is the same as COGNISIM.
The relevant predicate such as optimize at/2 [20] takes the
generation number Nc as well with time T.

clear at(players(Nc),T)←
findall(A,(role of(A,player), generation of(A,Nc)), As),
forall(member(P,As),clear at(player(P),T)).

The major difference now is that at the time of evolution
of a generation from one to another, first a new generation
is initialized, then the previous generation is forgotten using
clear at/2, a predicate that retracts knowledge from the mem-
ory (see section IV-D1). If it has been called with players(Nc)
as the first parameter, it searches for all the player agents of
generation Nc and retracts them one by one.

V. EXPERIMENT EVALUATION

We evaluate EVO-COGNISIM for evolutionary simulations
by performing multiple experiments. We validated our ap-
proach by reproducing key experimental results from [13].

A. Experiments on the Gossip Model

1) First experimental setup:: A generation of 660 player
agents is initialised, where every 5 players share the same
strategic values for discrimination threshold (a value chosen
from -5.0 to 5.5 at intervals of 0.5) and gossip weight (a
value chosen from [1,1/2,1/4,1/8,1/1024,0]). Rounds, N and
G are set to 660, 10 and 5 respectively, whereas R is varied
from 0 to 25 at intervals of 5 for different experiments.
As a result the λ (= G/R) value can vary from 0 to 5.
We set trust criteria=everyone and gossip type=fair with
self advertise=no for experiments related to first and third
hypotheses. We also set gossip type=fair with 264 self
advertisers (self advertise=no) for all the experiments
related to the second and third hypotheses. 20 trials were
performed for each experiment. The benefit and cost of
cooperation are set to 10 and 1 respectively.

Hypothesis 1: If a population consists of all types of
discriminators who gossip fairly and no one self-advertises,
then intrinsic cooperators perform well on getting more
gossiping opportunities. Figure 6 shows the proportion of
all trials where cooperation emerged. As it can be seen, the
society cooperated more (higher value/shown in blue) in trails
with more gossiping encounters (higher λ) or where the value
of T is higher (higher generation).

Hypothesis 2: If a population consists of all types of
discriminators who gossip fairly and some players falsely
self-advertise, then intrinsic cooperators perform well at the
intermediate level of gossiping. Figure 7 shows that most of
the trials, where a population had a higher level of gossiping,
did not evolve into cooperation (no higher values/not blue)
because false gossip has proliferated too much in the
population, whereas cooperation (higher value/blue) emerged
when there is an intermediate level of gossip (λ is 2 or 3) in
the society.

Hypothesis 3: When all possible strategic values are uni-
formly distributed at the first generation, stern discriminators
are more likely to evolve than more generous discriminators.
All trials in the previous two experiments (of Figure 6 and 7)
highlight that if a population evolved into a cooperative
society, stern agents were almost always present at the end,
whereas there is no specific generous cooperation strategy
found that survives till the end.

2) Second experimental setup:: A bi-strategic generation1

of 100 players is initialized with two strategies; always
defect (discrimination threshold=7) or stern cooperation
discrimination threshold=0. Different proportions of each

1Only two strategies are used by all players in the generation.

Fig. 6: Cooperation in Fair Gossiping Soci-
ety with no self-advertisers

Fig. 7: Cooperation in Fair Gossiping Soci-
ety with some self-advertisers

strategy are set for different trials. We set gossip weight=1
and 0 for stern cooperators and defectors respectively. Round
values vary from [50,100,150,200], whereas R is varied
from 0 to 10 at intervals of 1 for different trials. We also
set trust criteria=everyone and gossip type=fair, with
self advertise=no for stern cooperators and nogossip for
defectors. N , G, benefit and cost are set as before.

Hypothesis 4: In a bi-strategic population of non-gossiping
defectors and fair gossiping stern discriminators, less number
of stern discriminators are required to evolve cooperation
if more time or gossip opportunity is available. Different
proportions of stern discriminator are tried with defectors to
find out the expected minimum number of stern discriminators
required for the fixation of this strategy and as Figure 8
shows, a lesser number is needed if T is high or more gossip
encounters are available.

Fig. 8: Expected stern cooperators in a generation

B. Performance Evaluation of EVO-COGNISIM

The performance of the EVO-COGNISIM platform has
been evaluated on an Intel(R) Xeon(R) CPU E5-2683 v4
with 2.10GHz and 98GB of RAM by varying the number
of generations from 100 to 500. Other parameters such as
Rounds G and R are set to 660, 5 and 5 respectively and a bi-
strategic population of 20 agents is used. Figure 9a shows that
the execution time of the experiment increases linearly with the
number of generations. Also, the forgetting mechanism makes
the simulation run efficiently whereas without forgetting, the
performance deteriorates after 40 rounds. Similarly, as shown
in Figure 9b the RAM usage also grows rapidly without
the forgetting mechanism after approximately 40 rounds, so
we therefore set the time for optimisation experimentally
(within a generation) as the time equivalent to 40 rounds.
Figures 9c and 9d show the update and query times with
and without the forgetting mechanism. After 300 generations,
circa 11880000 events have been processed. The update time
is approximately 13ms and the query time is negligible (less
than a millisecond). The simulation run time is 10436.785s in
total and it uses 289.9MB RAM. Table II shows the summary
of performance evaluation results.

(a) Total Simulation Time (b) Memory Usage

(c) Update Time (d) Query Time

Fig. 9: Performance Evaluation of EVO-COGNISIM.

TABLE II: Performance Evaluation of the EVO-
COGNISIM platform. First column(×) in every criteria
represents values without forgetting and the second column(X)
shows values recorded with forgetting.

N (20
play-
ers)

Total
Time(sec)

Update
Time(ms)

Query
Time(ms)

RAM(MB)

× X × X × X × X
100 540.23 330.4 8 1 1 0 84.5 98
200 802.889 634.45 9 2 2 0 113 131.5
300 10436.785 3694.843 24 13 3 0 182.9 289.9
400 12324.287 4289.561 27 18 4 0 201.45 363.6
500 22052.02 7548.842 53 24 4 0 248 430

VI. CONCLUSION AND FUTURE WORK

We have proposed a systematic knowledge representation
framework for evolutionary simulations using cognitive agents.
The framework non-trivially extends previous work and allows
an experimenter to test a population of such agents via
generations to study how specific population behaviours evolve
over time. The proposed framework is implemented in EVO-
COGNISIM, a proof-of-concept prototype of our approach. To
validate EVO-COGNISIM, we have reproduced successfully
the results of existing simulation experiments based on a state-
of-the-art model from the literature.

One open question that arises as part of developing EVO-
COGNISIM is the following: Now that we have an explicit
representation for developing evolutionary simulations, what
is it that we need to provide, after an evolutionary simulation
has ended, so that an experimenter can inspect post-hoc the
behaviour of agents that produced the results? We endeavour
to answer this question in our future work.

ACKNOWLEDGEMENTS

The first author expresses gratitude for the support received
by Royal Holloway, University of London & the Higher
Education Commission (HEC), Pakistan. The third author was
funded by Leverhulme Trust, Research Grant LIP-2022-001.

REFERENCES

[1] G. Kendall, X. Yao, and S. Y. Chong, The Iterated Prisoners’ Dilemma:
20 years on. World Scientific, 2007, vol. 4.

[2] J. M. Smith, Evolution and the Theory of Games. Cambridge Univ.
Press, 1982.

[3] M. A. Nowak and K. Sigmund, “Evolution of indirect reciprocity,”
Nature, vol. 437, no. 7063, pp. 1291–1298, 2005.

[4] H. Ohtsuki and Y. Iwasa, “The leading eight: social norms that can
maintain cooperation by indirect reciprocity,” Journal of theoretical
biology, vol. 239, no. 4, pp. 435–444, 2006.

[5] V. A. Knight, O. Campbell, M. Harper, K. M. Langner, J. Campbell,
T. Campbell, A. Carney, M. Chorley, C. Davidson-Pilon, K. Glass et al.,
“An open framework for the reproducible study of the Iterated Prisoner’s
Dilemma,” Journal of Open Research Software, vol. 4, no. 1, 2016.

[6] A. L. Bazzan, R. H. Bordini, and J. A. Campbell, “Evolution of agents
with moral sentiments in an Iterated Prisoner’s Dilemma exercise,” in
Game theory and decision theory in agent-based systems. Springer,
2002, pp. 43–64.

[7] C. Power, “A spatial agent-based model of N-person Prisoner’s Dilemma
cooperation in a socio-geographic community,” Journal of Artificial
Societies and Social Simulation, vol. 12, no. 1, p. 8, 2009.

[8] T. A. Han, L. M. Pereira, F. C. Santos, and T. Lenaerts, “Why is it so
hard to say sorry? evolution of apology with commitments in the iterated
prisoner’s dilemma,” in Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence, 2013, pp. 177–183.

[9] S. Tisue and U. Wilensky, “Netlogo: Design and implementation of a
multi-agent modeling environment,” in Proceedings of Agent, vol. 2004,
2004, pp. 7–9.

[10] N. Collier, “Repast: An extensible framework for agent simulation,” The
University of Chicago’s Social Science Research, vol. 36, p. 2003, 2003.

[11] A. Borshchev, S. Brailsford, L. Churilov, and B. Dangerfield, “Multi-
method modelling: Anylogic,” Discrete-event simulation and system
dynamics for management decision making, pp. 248–279, 2014.

[12] M. Witkowski and K. Stathis, “A dialectic architecture for computa-
tional autonomy,” in Agents and Computational Autonomy, M. Nickles,
M. Rovatsos, and G. Weiss, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 261–273.

[13] M. Seki and M. Nakamaru, “A model for gossip-mediated evolution
of altruism with various types of false information by speakers and
assessment by listeners,” Journal of Theoretical Biology, vol. 407, pp.
90–105, 2016.

[14] C. Adam and B. Gaudou, “BDI agents in social simulations: A survey,”
The Knowledge Engineering Review, vol. 31, no. 3, pp. 207–238, 2016.

[15] M. Grinberg and E. Todorov, “Cognitive agent based simulation platform
for modeling large-scale multi-level social interactions with experimental
games,” Information Content and Processing, vol. 3, 2016.

[16] T. Deutsch, T. Zia, R. Lang, and H. Zeilinger, “A simulation platform
for cognitive agents,” in 2008 6th IEEE International Conference on
Industrial Informatics. IEEE, 2008, pp. 1086–1091.

[17] D. Singh, L. Padgham, and B. Logan, “Integrating BDI agents with
agent-based simulation platforms,” Autonomous Agents and Multi-Agent
Systems, vol. 30, no. 6, pp. 1050–1071, 2016.

[18] A. Ricci, A. Croatti, R. H. Bordini, J. F. Hübner, and O. Boissier, “Ex-
ploiting simulation for MAS development and execution—the JaCaMo-
Sim approach,” in EMAS’20. Springer, 2020, pp. 42–60.

[19] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with JaCaMo,” Science of Computer
Programming, vol. 78, no. 6, pp. 747–761, 2013.

[20] N. S. Shahid, D. O’Keeffe, and K. Stathis, “Game-theoretic simulations
with cognitive agents,” in 2021 IEEE 33rd International Conference on
Tools with Artificial Intelligence (ICTAI). IEEE, 2021, pp. 1300–1305.

[21] K. Stathis, “A game-based architecture for developing interactive com-
ponents in computational logic,” Journal of Functional and Logic
Programming, vol. 5, no. 2000, p. 58, 2000.

[22] Y. Gong, S. Liu, and Y. Bai, “Reputation-based co-evolutionary model
promotes cooperation in Prisoner’s Dilemma game,” Physics Letters A,
vol. 384, no. 11, p. 126233, 2020.

[23] M. A. Nowak, “Five rules for the evolution of cooperation,” Science,
vol. 314, no. 5805, pp. 1560–1563, 2006.

[24] J. Hopkins, Ö. Kafalı, and K. Stathis, “Open game tournaments in
STARLITE,” in Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems. International Foundation
for Autonomous Agents and Multiagent Systems, 2015, pp. 1927–1928.

[25] A. Brogi and F. Turini, “Metalogic for knowledge representation,”
in Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR’91). Cambridge, MA,
USA, April 22-25, 1991, J. F. Allen, R. Fikes, and E. Sandewall, Eds.
Morgan Kaufmann, 1991, pp. 61–69.

[26] E. T. Mueller, “Event calculus,” Foundations of Artificial Intelligence,
vol. 3, pp. 671–708, 2008.

[27] L. Chittaro and A. Montanari1, “Efficient temporal reasoning in the
cached event calculus,” Comput. Intell., vol. 12(3), pp. 359–382, 1996.

[28] A. Artikis, M. J. Sergot, and J. V. Pitt, “Specifying norm-governed
computational societies,” ACM Trans. Comput. Log., vol. 10, no. 1, pp.
1:1–1:42, 2009.

[29] O. Kafali, A. Romero, and K. Stathis, “Agent-oriented activity recog-
nition in the event calculus: An application for diabetic patients,”
Computational Intelligence, vol. 33, no. 4, pp. 899–925, 2017.

[30] N. Nilsson, “Teleo-reactive programs for agent control,” Journal of
artificial intelligence research, vol. 1, pp. 139–158, 1993.

[31] A. S. Rao, M. P. Georgeff et al., “BDI agents: from theory to practice.”
in ICMAS, vol. 95, 1995, pp. 312–319.

[32] D. G. Rand and M. A. Nowak, “Human cooperation,” Trends in cognitive
sciences, vol. 17, no. 8, pp. 413–425, 2013.

