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Abstract

The notion of the depth of a binary sequence was introduced by Etzion. In this paper we
show that the set of infinite sequences of finite depth corresponds to a set of equivalence
classes of rational polynomials. We go on to characterize infinite sequences of finite depth
in terms of their periodicity. We conclude by giving the depth distributions for all linear

cyclic codes.

Index terms: depth, depth distribution, derivative, cyclic code, linear complexity

1 Introduction

In this paper we are concerned with considering the depths of binary sequences, where
depth is as defined by Etzion, [1]. Etzion showed that a linear code of dimension k contains

codewords of k distinct depths, and also gave the distribution of codeword depths for
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certain classes of codes.

We firstly show that the set of infinite sequences of finite depth corresponds to a set of
equivalence classes of rational polynomials. We secondly establish an equivalence between
infinite sequences of finite depth and sequences of specified periodicity. Thirdly we give

the depth distributions for all linear cyclic codes, generalising the results in [1].

2 Definitions and preliminary remarks

2.1 Binary sequences

Suppose s = (s;) (7 > 0) is a binary sequence (either finite or infinite). Then we say s is
periodic with period ¢ (¢ > 0) if s; = s;44 for every ¢ (¢ > 0). If ¢ is the smallest positive
integer for which s is periodic with period ¢, then s is said to have least period ¢ (in which

case s has period ¢’ if and only if ¢|t').

We write 0 and 1 for the sequences of all zeros and all ones respectively. If x and y are
two binary sequences, then we write x 4+ y for the sequence obtained as the term by term
modulo 2 sum of the elements of the two sequences. Finally, in a binary sequence, we

define a 0-run of length &k to be a subsequence containing & consecutive zeros.

2.2 Depths of binary sequences

Suppose s = (s;) (¢ > 0) is a binary sequence (either finite or infinite). The derivative
of s, denoted Ds, is defined to be the sequence t = (#;) where t; = 5,11 — s;, and Dis is
defined to be the result of ¢ applications of D to s. Note that if s is finite of length n then
t is finite of length n — 1. Note also that, for a finite sequence s of length n, D's is only

defined if 0 < ¢ < n.



As defined by Etzion, [1], the depth of a sequence s is then simply the smallest integer ¢
(if one exists) such that D's = 0. If no such i exists then, for a finite sequence of length
n the depth is defined to be n, and for an infinite sequence the depth is defined to be
infinite. Note that sequences of infinite depth certainly exist — consider, for example,

the infinite sequence

(0,1,1,0,1,1,0,1,1,...).

Observe that, as given in [1], if s has depth d, then D% 's = 1.

Let S5 be the set of all infinite binary sequences, i.e.

S ={(s;) : ©>0; s €{0,1} for every 7 > 0}.

We then define 5* to be the subset of 5 consisting only of sequences of finite depth. As
we have already noted 5\ 5* is certainly not empty; however it is simple to see that for
any sequence (s;) € S and any integer N, there exists a sequence (s7) € S* such that

s; = s¥ for every ¢ < N.

We next make an important, albeit trivial, observation.

Remark 2.1 Ifs = (sg,51,...,5,-1) s a finite binary sequence of depth d, say, (0 <
d < n), then the addition of an additional element (0 or 1) to the end of s will either
leave the depth unchanged or will increase the depth to n + 1. Hence any finite binary

sequence of depth d can be uniquely extended to an infinite binary sequence of depth d.

2.3 Linear codes and depth distributions

We are concerned here exclusively with (n, k) linear codes, i.e. subspaces of dimension
k of the n-dimensional vector space over Zy. We also refer to codewords of length n, by

which we mean elements of the n-dimensional vector space over Zs.



A cyclic code C of length n is an ideal in the ring Z[z]/(2™ — 1). This ring is a Principal
Ideal Domain, and hence C' has a generator g. We can associate with g a polynomial
g(z) € Zy[x], where g(x) has degree at most n and g(z)|z™ — 1. If g(z) has degree n — k,

we can then write
C={c(z)g(z) : c(z) € Zy[z]; deg c(z) < k}

and regard C' as a set of polynomials of degree at most n — 1. C'is then an (n, k) linear
code, where with each polynomial a(z) = Z?:_Ol an_i_12' we associate the n bit sequence
(ag, @1, .. 05-1).

For background information on cyclic codes see, for example, Chapter 7 of [2]. Again
following Etzion, [1], given a code C' of length n, let D; denote the number of codewords

in C' of depth 7 (¢ > 0), and the depth distribution of C' is simply the tuple of numbers

(D1,Dg,...., D).

Result 2.2 (Theorem 1 of [1]) The depth distribution of an (n, k) linear code contains

exactly k non-zero values.

We refer to the set of values of ¢ for which D; is non-zero as the depth spectrum of a code,

which, by Result 2.2, must contain exactly k integers.

3 Rational polynomials and binary sequences

We now consider a special class of rational polynomials. We show that, under a simple
equivalence relation, the equivalence classes of these polynomials have a direct corre-
spondence with infinite binary sequences of finite depth. Moreover the depth of a binary
sequence simply corresponds to the minimal degree of all polynomials in the corresponding

equivalence class.



These results were inspired by corresponding results for sequences over the reals. The use
of the A operator to find a polynomial of minimal degree which matches a given set of
data points dates back to Newton, and such methods can be found in any elementary text
on Numerical Analysis, e.g. Chapter 6 of [3]. What is perhaps surprising is the usefulness

of the field Q in this context, instead of finite fields as used in analogous work in [4].

Let Q[xz] be the set of all polynomials over the rationals Q. Further let Qg[z] be the
subset of Q[z] containing those polynomials which are integer-valued for all integers z,
i.e.

Qzlz] = {f(z) € Q[z] : f(i) € Z for every i € Z}.

If f(z),¢9(z) € Qgzlz] then we define the equivalence relation ~ by f(z) ~ g(x) if and

only if f(i) = ¢g(¢) (mod 2) for every ¢ € Z. For any polynomial f(z) we write f(z)

for the equivalence class containing f(z). Let Qz[z] denote the set of equivalence classes
under ~. For the purposes of this paper we are almost exclusively concerned with these

equivalence classes.

Remark 3.1 Note that Z[x] is a subset of Qgz[z], but is rather an uninteresting subset

from our viewpoint, since if f(z) € Z[z] then f(z) € {0,1,%,z + 1}, i.e. all polynomials

in Z[z] fall into one of just four equivalence classes in Qgzlz].

Conversely, Qgzlx]\ Z[z] contains infinitely many equivalence classes, e.g. 2 /2 + x/2 and

2364 22/2 + x/3 (see Lemma 3.7 below).

We define the depth of an equivalence class of polynomials f(z) to be one greater than the
minimum degree amongst the polynomials in f(z). We show below how this corresponds

directly to the notion of the depth of a binary sequence. We also define the meaning of

the A operator for polynomials: if f(z) € Qgz[z] then Af(z) = (f(z+1)— f(z)) € Qz[z].



Note that, for convenience, we refer to the zero polynomial as having degree -1.

Remark 3.2 There is only one equivalence class of polynomials of depth 0, and only
one equivalence class of polynomials of depth 1, namely 0 and 1 respectively. This holds
because the only polynomial in Qgzz] of degree -1 is 0, and the only polynomials in Qz[x]
of degree 0 are those equal to an integer. The even integer polynomials all belong to 0,

and the odd integer polynomials all belong to 1.

We can now state the following well-known result:

Result 3.3 (Section 6.8 of [3]) Suppose f(z) € Qgz[z] has degree d > 0, and hence let

d
fle) =) fix'
1=0
Then
d—1 )
Af(z) = gix'.
1=0
where

d .
(3 .
g= > (j)fi, 0<j<d.

i=7+1

Le. Af(z) has degree exactly d — 1.

We next define A™! as follows. If g(2) € Qgz[z] then
A7lg(2) = {f(z) € Qzlz] : Af(2) = g(2)}.

We now establish the following simple result, which coincides with corresponding results

for derivatives and integrals.

Lemma 3.4 If g(z) € Qgz[z] with leading coefficient r and degree d — 1, then A7 g(z) is

a non-empty set with the property that if f(z) € A= g(x) then:



(i) f(z)— f*(x) is a constant polynomial if and only if f*(x) € A7 g(2), and

(ii) f(x) has leading coefficient r/d and degree d.

Proof Suppose g(z) € Qgz[z] has degree d — 1, and let

d-1 r
g(z) = Z 9i ( )
=0 t
(this is the standard form for an Integer Valued Polynomial). Now define the degree d
polynomial f(z) € Qz[z] by:
d
x
f(z) = Zgi—1 (2)
=1
It follows immediately that Af(z) = g(x), and so A~tg(z) is non-empty.

Now suppose f(z) € A~ g(z).

(i) By Result 3.3 it should be clear that if f(z), f*(z) € A~ g(x), then f(z)— f*(z)is
equal to a constant. Moreover, if f(z) — f*(x) is equal to a constant, then, again

by Result 3.3, Af(z) = Af*(z).

(ii) By Result 3.3 it should be clear that f; = g4—1/d, and the result now follows. O

We now abuse our notation slightly and also consider A as a mapping from Qgz[z] into

Qz[z]. This is well defined since if f(z) ~ h(z) then

Af(x) = fa+ 1) = f(z) = bz + 1) = h(z) = Ah(z).

It also follows that Af(z) = Af(z).

We then immediately have:

Corollary 3.5 Suppose f(z) € Qgz[z] has depth d > 0. Then Af(z) has depth d — 1.



Proof Since f(z) € Qg[z] has depth d > 0, there exists a polynomial h(z) € f(z) of

degree d — 1 (and no polynomial of smaller degree). Now, by definition, Ah(z) (which

has degree d — 2 by Result 3.3) is an element of Af(z), and hence Af(z) has depth at

most d — 1.

Now suppose h(z) € Af(x) has depth less than d — 2. Then there exists a polynomial

m(z) € f(x) such that Am(z) = h(z); hence, by Result 3.3, m(z) has degree less than

d — 1. This contradicts our assumption that f(z) has depth d. a

We can also define the action of A~! on an element of Qz[z]. We then have:

Lemma 3.6 Suppose h(z) € Qgz[z]. Then A™1h(z) contains precisely two elements of

Qzlz].

Proof Suppose fi(2), fo(z) € Qgzlz] satisfy Afi(x) ~ Afy(a). Then, if m(z) =

A(fi(z)— fa(z)), by definition we have:

m(i) =0 (mod 2)

for every integer ¢ > 0. Hence m(z) ~ 0, i.e. A(fi(x)— f2(z)) has depth 0. Hence,

by Corollary 3.5, fi(x) — f2(z) has depth 0 or 1. Now, by Remark 3.2, this means that

fi(z) = fo(z) € {0,1}, i.e. either fi(z)— fo(z) ~ 0 or fi(z) — fo(x) ~ 1.

Hence either fi(z) ~ fa(z) or fi(z) ~ fa(2) + 1. Thus either fi(z) = fo(z) or fi(z) =

fa(z)+ 1, and hence A~!h(x) either contains zero or two elements. But, by Lemma 3.4,

A~1h(z) cannot be empty, and the result follows. O

We also have the following lemma establishing some basic properties of Qz|[z].

Lemma 3.7 (i) The number of equivalence classes in Qgz[x] which have depth d (d > 0)

is precisely 2471,



(71) Suppose g(z) € Qgz[z] has depth d+ 1 (d > 0). Then there exists f(x) € g(z) of

degree d with leading coefficient equal to (1/d!).

Proof We establish both results by induction on the depth d.

(i)

(i)

By Remark 3.2, the result holds for d = 1. Suppose that the result holds for

all depths less than d, for some d > 1. Now, by Lemma 3.6, if g(z) has depth

d — 1, then there exist precisely two equivalence classes f(x) with the property
that Am = m Moreover, both these equivalence classes will have depth d by
Corollary 3.5. By the inductive hypothesis, there are 2972 such equivalence classes
m, each having two such equivalence classes w of depth d. All these 291

equivalence classes will be distinct, and they will include all possible equivalence

classes of depth d (again by Corollary 3.5). The result now follows.

1 € T (which has leading coefficient 1), and hence the result holds for d = 0. Now

suppose it holds for all depths less than or equal to d, and suppose g(x) has depth

d+ 1. Now, by Corollary 3.5, Ag(z) has depth d. Choose h(z) € Ag(z) with degree
d — 1 and leading coefficient 1/d! (which exists by the inductive hypothesis). Now,
by Lemma 3.4(ii), if f(z) € A~ h(z), then f(z) has degree d and leading coefficient

1/(d+ 1)!, and the result follows. ]

Next define the function ® : Qz[z] — 5 as follows.

Definition 3.8 ®(f(z)) = (s;), ¢t > 0, where s; = f(¢) mod 2 for every i.

We then immediately have the following result.

Lemma 3.9 ® has the following properties.

(i) ® is a group homomorphism from (Qgzlz], +) into (S, +).



(i) ® commutes with D/A, i.e. D(Af(z)) = DO(f(x)), for every f(z) € Qz[z].

As we did with the A operator, we now abuse our notation slightly and also consider ®

as a mapping from Qgz[z] into 5. This is well defined by the definition of ~.

We then have the following results.

Lemma 3.10 If f(z) € Qgz[z], then the depth of f(x) equals the depth of the sequence

o(f(2)).

Proof Suppose f(z) € Qgz[z] and suppose the infinite binary sequence ®(f(z)) has
depth d, i.e.

DB (f(2)) = 1.

Hence, by Lemma 3.9(ii):

S(AT f(e)) =1

ie. AT1f(i)=1 (mod 2) for every integer i. Hence A1 f(z) =T (the unique equiva-

lence class of polynomials of depth 1). Hence, by Corollary 3.5, f(2) has depth precisely

d, and the result follows. a

Theorem 3.11 ¢ is a group isomorphism of (Qz[z],+) onto (5%, +).

Proof We first show that ® always maps an element of Qgz[z] into an element of 5*.

Suppose f(z) € Qgz[z], and hence f(z) has depth d (for some integer d). Then, by

Lemma 3.10, ®( f(2)) also has finite depth d and so ®(f(z)) € S*.

By Lemma 3.9(i), we need only show that ® is a bijection. First suppose ®(fi(z)) =

®(f2(x)). Hence g1(i) = g2(7) (mod 2) for any g1(z) € fi(x) and any ga(2) € fa(z

Hence fi(z) = fa(z), and we have shown that & is injective.

S~—r
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We show that @ is surjective by induction on the depths of elements in 5*. First observe
that 0 is the unique sequence of depth 0, and ®(0) = 0. Now suppose that every binary
sequence of depth less than d has a pre-image in Qgz[z] under ®. Suppose that x is a

binary sequence of depth d.

By definition, Dx has depth d — 1, and hence by the inductive hypothesis, there exists a

polynomial f(z) € Qgz[z] such that:

(a) f(z) has depth d — 1, and

(b) ®(f(x)) = Dx.

Now, by Lemma 3.6, A~! f(x) contains precisely two elements of Qz[z]. Additionally, by
Lemma 3.9(ii),
®(A f(z)) c DT'e(f(z)) = D' Dx.

But D~ Dx contains two elements, namely x and x+1, and hence ®(A~! f(2)) = D~1 Dx.

The result now follows. O

We conclude by observing that if fi(z), fo(2) € Qgzlz], then, fi(z)+ fa(z) will clearly

have depth equal to the greater of the depths of fi(z) and fa(2), given they are different.
If they have the same depth, d say, then fi(x)+ fa(z) will have depth less than d (this
follows immediately from Lemma 3.7(ii)). This provides the basis of an alternative proof

for Result 2.2.

Before proceeding we give some elementary results about the depths and periodicity
of infinite binary sequences. We first have the following simple result, which follows

immediately from Lemma 3.7(i) and Theorem 3.11.

2d—1

Lemma 3.12 Ifd > 0 then there are precisely infinite binary sequences of depth d.

11



We can also establish results characterising binary sequences of finite depth in terms of
their period. We first have the following trivial result, whose proof follows immediately

from the definition of D.

Lemma 3.13 If x is a binary sequence of finite depth d > 0, and Dx is periodic with

least period t, then x is periodic with least period either t or 2t.

We can now establish:

Lemma 3.14 If x and y are binary sequences of finite depth d > 0, then x and y are

periodic, and have the same period which must be equal to a power of 2.

Proof Since 1 is the unique sequence of depth 1 and has period 2° = 1, Lemma 3.13
immediately implies that every sequence of finite depth must have finite period equal to
a power of 2. The result then follows from Etzion’s observation in [1] that, for a finite
sequence of length 2° (for some ¢ > 0), the notion of depth corresponds precisely to the

linear equivalence of the corresponding infinite sequence of period 2. a

Finally, given the above-mentioned correspondence between depth and linear equivalence,
we can also give the following result, well-known in the context of the linear equivalence

of sequences.

Theorem 3.15 The set §* of infinite binary sequences with finite depth is equal to the
set of infinite binary sequences of period 2° for some i > 0. Moreover, if s € S has depth
d, then the least period of s is 20224+l e the set of sequences having depths from

{204 1,20+ 2,...,211} s equal to the set of sequences of period 211 (i > 0).

Remark 3.16 It is interesting to note that we have established a relationship between the

linear equivalence of sequences having period a power of 2, and the degrees of polynomials

12



in the corresponding equivalence classes of rational polynomials.

4 Depth distributions of linear cyclic codes

In this section we characterise the depth distributions of all linear cyclic codes. The key
observation that we use to establish this characterisation is that, if x is a codeword of a
linear cyclic code, and 1 is not a codeword of (', then D*x must be equal to a substring

of some non-zero codeword.

We first need the following elementary observation.

Lemma 4.1 Suppose ¢ = (cg,¢1,...,Cn—1) i a binary codeword of length n, with corre-
sponding polynomial:
c(z) = cor" V" ey,

Then the n — i elements of Dic equal the first n — i terms (i.e. the terms for "1 2772

.., @) of the polynomial c(z)(x — 1)* mod (2" — 1).

Proof We prove this result by induction on ¢. It is trivially true for + = 0. Now
suppose it is true for all 7 < 7, for some 7 > 0, i.e. we know that D" "¢ corresponds
to the first m — 7 + 1 terms of the polynomial ¢(z)(z — 1)"~' mod (2" — 1). Suppose

D" te = (bg,by,...,b,_,) and hence
bor" V4 by 4t by
is equal to the first n — 7 + 1 terms of ¢(2)(2z — 1)"~! mod (2™ — 1). Thus
D¢ = (by —bo, by — b1, by — by—yq)
and, working modulo (2" — 1):
clz)(z—1) = (2—1)(boz" ' +b2" 2+ -+ b, 2"+ f2))

13



= (b — bo)ﬂﬁn_1 + (b — (91)9671_2 4ot (bpey — bpyr)z” + f(2)
where f(2) and f'(z) are polynomials of degrees at most r — 2 and r — 1 respectively.
The result now follows. a

We can now establish:

Lemma 4.2 Suppose C' is a linear cyclic code of length n with the property that 1 is not
a codeword. Suppose also that the mazimum length of a O-run in a codeword of C'— {0}

ts L. Then all the non-zero codewords in C have depth at least n — L.

Proof Suppose x is a non-zero codeword from ', and choose s = n— L — 1. Then, since
(' is a linear cyclic code, D*x is equal to » — s consecutive bits of a non-zero codeword.
This follows by induction, since Dx is simply n — 1 consecutive bits of the sum of x with
a copy of x cyclically shifted by one position. Now, since (' is linear and cyclic, Dx is

equal to n — 1 bits of a codeword, which is non-zero since x # 1.

Moreover, the n — s consecutive bits of D®x cannot all be zero since n —s =L + 1 > L.

Hence x has depth greater than s = n — L — 1, and the result follows. a

Corollary 4.3 If g(z) is the generator polynomial for an (n,k) linear cyclic code C, and

(z—=1) f(a™ = 1)/g(2), then C has depth spectrum {n,n—1,...,n—k+ 1}.

Proof In such alinear cyclic code, if a codeword contains a 0-run of length k then it must
be the all-zero codeword. Moreover, 1 cannot be a codeword since (z —1) f(z"—1)/g(2).

The result now follows from Result 3.3 and Lemma 4.2. a

Lemma 4.4 Suppose (z — 1)°|(2" — 1), and let C be an (n,s) linear cyclic code. Then
C' has generator polynomial (2™ — 1)/(x — 1)* if and only if the depth spectrum of C' is
{1,2,...,s}.

14



Proof Suppose that (z" — 1)/(«z — 1)® is the generating polynomial for C', and hence

C={f(z)(2"-1)/(z —1)°’mod 2" —1 : deg(f(z)) < s}.

If ¢ € C is a codeword with corresponding polynomial ¢(z) then, by Lemma 4.1, D¢
corresponds to the first n — s terms of (z — 1)%¢(x). But, by our assumption, c¢(z) =
d(z).(z" —=1)/(z — 1) mod 2™ — 1, for some polynomial ¢/(z). Hence D*c corresponds to
the first n — s terms of (z — 1)°¢/(z)(2" — 1)/(z — 1) = 0 mod 2™ — 1, i.e. ¢ has depth at

most s, and hence, by Result 3.3, the depth spectrum is {1,2,...,s}.

Now suppose every codeword has depth at most s < n (the case s = n is trivial since every
depth must occur). Using the converse argument, we see that for any ¢(z) corresponding
to a codeword c, the first n — s terms of (z — 1)°c(2) must all be zero. But, since C is
cyclic, every cyclic shift of (z —1)%¢(z) must equal (z —1)°¢/(2) for some other polynomial

d'(z) corresponding to a codeword. Hence (2 — 1)°c(z) = 0 for every ¢(z), i.e.

(2" =Dz = 1)%(z)
for every ¢(). The result now follows. ]

We are now ready to state the main result of this part of the paper, which provides a

complete characterisation of the depth spectra of linear cyclic codes.

Note that in the next theorem we use || to denote ‘exactly divides’, in the sense that

a(z)"||b(z) if and only if a(x)"|b(z) and a(z) Tt Jb(z).

Theorem 4.5 Suppose C' is an (n, k) linear cyclic code, and let g(x), of degree n — k, be

the generator polynomial for C'. Then

(2 = 1)°[|(2" = 1)/g(x)
if and only if C has depth spectrum {1,2,...,s}U{n,n—1,....n —k+4+ s+ 1}.

15



Proof Suppose g(z), the generator polynomial for C', satisfies

(z = 1?[|(2" = 1)/g(2).

We define two related linear cyclic codes: Cp, an (n,s) code with generator polynomial
(z" —1)/(z — 1)%, and Cy, an (n,k — s) code with generator polynomial g(z)(z — 1)*.
By Lemma 4.4, Cy has depth spectrum {1,2,...,s}, and by Corollary 4.3, Cy has depth
spectrum {n,n—1,....,n —k+ s+ 1}.

Now, since both Cy and Cy have generator polynomials which are a multiple of g(z), both
Cp and ' are subcodes of C'. Hence, by Result 2.2, C' has depth spectrum {1,2,...,s}U
{n,n—1,....,n—k+s+1}.

The converse follows from the simple observation that, for any ¢g(«), there exists an s such

that (- 17][(2" - 1)/g(x) 0

5 Concluding remark

Many of the results concerning infinite sequences can probably be generalised to the ring
of integers modulo ¢ (Z.) for arbitrary ¢. Similarly, the results on finite sequences and

codes are likely to be capable of generalisation to arbitrary finite fields GF(q).
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