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certain classes of codes.We �rstly show that the set of in�nite sequences of �nite depth corresponds to a set ofequivalence classes of rational polynomials. We secondly establish an equivalence betweenin�nite sequences of �nite depth and sequences of speci�ed periodicity. Thirdly we givethe depth distributions for all linear cyclic codes, generalising the results in [1].2 De�nitions and preliminary remarks2.1 Binary sequencesSuppose s = (si) (i � 0) is a binary sequence (either �nite or in�nite). Then we say s isperiodic with period t (t > 0) if si = si+t for every i (i � 0). If t is the smallest positiveinteger for which s is periodic with period t, then s is said to have least period t (in whichcase s has period t0 if and only if tjt0).We write 0 and 1 for the sequences of all zeros and all ones respectively. If x and y aretwo binary sequences, then we write x+y for the sequence obtained as the term by termmodulo 2 sum of the elements of the two sequences. Finally, in a binary sequence, wede�ne a 0-run of length k to be a subsequence containing k consecutive zeros.2.2 Depths of binary sequencesSuppose s = (si) (i � 0) is a binary sequence (either �nite or in�nite). The derivativeof s, denoted Ds, is de�ned to be the sequence t = (ti) where ti = si+1 � si, and Dis isde�ned to be the result of i applications of D to s. Note that if s is �nite of length n thent is �nite of length n � 1. Note also that, for a �nite sequence s of length n, Dis is onlyde�ned if 0 � i < n. 2



As de�ned by Etzion, [1], the depth of a sequence s is then simply the smallest integer i(if one exists) such that Dis = 0. If no such i exists then, for a �nite sequence of lengthn the depth is de�ned to be n, and for an in�nite sequence the depth is de�ned to bein�nite. Note that sequences of in�nite depth certainly exist | consider, for example,the in�nite sequence (0; 1; 1; 0; 1; 1; 0; 1; 1; : : :):Observe that, as given in [1], if s has depth d, then Dd�1s = 1.Let S be the set of all in�nite binary sequences, i.e.S = f(si) : i � 0; si 2 f0; 1g for every i � 0g:We then de�ne S� to be the subset of S consisting only of sequences of �nite depth. Aswe have already noted S n S� is certainly not empty; however it is simple to see that forany sequence (si) 2 S and any integer N , there exists a sequence (s�i ) 2 S� such thatsi = s�i for every i � N .We next make an important, albeit trivial, observation.Remark 2.1 If s = (s0; s1; : : : ; sn�1) is a �nite binary sequence of depth d, say, (0 �d � n), then the addition of an additional element (0 or 1) to the end of s will eitherleave the depth unchanged or will increase the depth to n + 1. Hence any �nite binarysequence of depth d can be uniquely extended to an in�nite binary sequence of depth d.2.3 Linear codes and depth distributionsWe are concerned here exclusively with (n; k) linear codes, i.e. subspaces of dimensionk of the n-dimensional vector space over Z2. We also refer to codewords of length n, bywhich we mean elements of the n-dimensional vector space over Z2.3



A cyclic code C of length n is an ideal in the ring Z[x]=(xn� 1). This ring is a PrincipalIdeal Domain, and hence C has a generator g. We can associate with g a polynomialg(x) 2 Z2[x], where g(x) has degree at most n and g(x)jxn� 1. If g(x) has degree n� k,we can then write C = fc(x)g(x) : c(x) 2 Z2[x]; deg c(x) < kgand regard C as a set of polynomials of degree at most n � 1. C is then an (n; k) linearcode, where with each polynomial a(x) =Pn�1i=0 an�i�1xi we associate the n bit sequence(a0; a1; : : : ; an�1).For background information on cyclic codes see, for example, Chapter 7 of [2]. Againfollowing Etzion, [1], given a code C of length n, let Di denote the number of codewordsin C of depth i (i > 0), and the depth distribution of C is simply the tuple of numbers(D1; D2; : : : ; Dn).Result 2.2 (Theorem 1 of [1]) The depth distribution of an (n; k) linear code containsexactly k non-zero values.We refer to the set of values of i for which Di is non-zero as the depth spectrum of a code,which, by Result 2.2, must contain exactly k integers.3 Rational polynomials and binary sequencesWe now consider a special class of rational polynomials. We show that, under a simpleequivalence relation, the equivalence classes of these polynomials have a direct corre-spondence with in�nite binary sequences of �nite depth. Moreover the depth of a binarysequence simply corresponds to the minimal degree of all polynomials in the correspondingequivalence class. 4



These results were inspired by corresponding results for sequences over the reals. The useof the � operator to �nd a polynomial of minimal degree which matches a given set ofdata points dates back to Newton, and such methods can be found in any elementary texton Numerical Analysis, e.g. Chapter 6 of [3]. What is perhaps surprising is the usefulnessof the �eld Q in this context, instead of �nite �elds as used in analogous work in [4].Let Q[x] be the set of all polynomials over the rationals Q. Further let QZ[x] be thesubset of Q[x] containing those polynomials which are integer-valued for all integers x,i.e. QZ[x] = ff(x) 2 Q[x] : f(i) 2 Z for every i 2 Zg:If f(x); g(x) 2 QZ[x] then we de�ne the equivalence relation ' by f(x) ' g(x) if andonly if f(i) � g(i) (mod 2) for every i 2 Z. For any polynomial f(x) we write f(x)for the equivalence class containing f(x). Let QZ[x] denote the set of equivalence classesunder '. For the purposes of this paper we are almost exclusively concerned with theseequivalence classes.Remark 3.1 Note that Z[x] is a subset of QZ[x], but is rather an uninteresting subsetfrom our viewpoint, since if f(x) 2 Z[x] then f(x) 2 f0; 1; x; x+ 1g, i.e. all polynomialsin Z[x] fall into one of just four equivalence classes in QZ[x].Conversely, QZ[x]nZ[x] contains in�nitely many equivalence classes, e.g. x2=2 + x=2 andx3=6 + x2=2 + x=3 (see Lemma 3.7 below).We de�ne the depth of an equivalence class of polynomials f(x) to be one greater than theminimum degree amongst the polynomials in f(x). We show below how this correspondsdirectly to the notion of the depth of a binary sequence. We also de�ne the meaning ofthe � operator for polynomials: if f(x) 2 QZ[x] then �f(x) = (f(x+1)�f(x)) 2 QZ[x].5



Note that, for convenience, we refer to the zero polynomial as having degree -1.Remark 3.2 There is only one equivalence class of polynomials of depth 0, and onlyone equivalence class of polynomials of depth 1, namely 0 and 1 respectively. This holdsbecause the only polynomial in QZ[x] of degree -1 is 0, and the only polynomials in QZ[x]of degree 0 are those equal to an integer. The even integer polynomials all belong to 0,and the odd integer polynomials all belong to 1.We can now state the following well-known result:Result 3.3 (Section 6.8 of [3]) Suppose f(x) 2 QZ[x] has degree d � 0, and hence letf(x) = dXi=0 fixi:Then �f(x) = d�1Xi=0 gixi:where gj = dXi=j+1 ij!fi; 0 � j < d:I.e. �f(x) has degree exactly d� 1.We next de�ne ��1 as follows. If g(x) 2 QZ[x] then��1g(x) = ff(x) 2 QZ[x] : �f(x) = g(x)g:We now establish the following simple result, which coincides with corresponding resultsfor derivatives and integrals.Lemma 3.4 If g(x) 2 QZ[x] with leading coe�cient r and degree d� 1, then ��1g(x) isa non-empty set with the property that if f(x) 2 ��1g(x) then:6



(i) f(x)� f�(x) is a constant polynomial if and only if f�(x) 2 ��1g(x), and(ii) f(x) has leading coe�cient r=d and degree d.Proof Suppose g(x) 2 QZ[x] has degree d� 1, and letg(x) = d�1Xi=0 gi xi!(this is the standard form for an Integer Valued Polynomial). Now de�ne the degree dpolynomial f(x) 2 QZ[x] by: f(x) = dXi=1 gi�1 xi!It follows immediately that �f(x) = g(x), and so ��1g(x) is non-empty.Now suppose f(x) 2 ��1g(x).(i) By Result 3.3 it should be clear that if f(x); f�(x) 2 ��1g(x), then f(x)� f�(x) isequal to a constant. Moreover, if f(x) � f�(x) is equal to a constant, then, againby Result 3.3, �f(x) = �f�(x).(ii) By Result 3.3 it should be clear that fd = gd�1=d, and the result now follows. 2We now abuse our notation slightly and also consider � as a mapping from QZ[x] intoQZ[x]. This is well de�ned since if f(x) ' h(x) then�f(x) = f(x+ 1)� f(x) ' h(x+ 1)� h(x) = �h(x):It also follows that �f(x) = �f(x).We then immediately have:Corollary 3.5 Suppose f(x) 2 QZ[x] has depth d > 0. Then �f(x) has depth d� 1.7



Proof Since f(x) 2 QZ[x] has depth d > 0, there exists a polynomial h(x) 2 f(x) ofdegree d � 1 (and no polynomial of smaller degree). Now, by de�nition, �h(x) (whichhas degree d � 2 by Result 3.3) is an element of �f(x), and hence �f(x) has depth atmost d� 1.Now suppose h(x) 2 �f(x) has depth less than d � 2. Then there exists a polynomialm(x) 2 f(x) such that �m(x) = h(x); hence, by Result 3.3, m(x) has degree less thand� 1. This contradicts our assumption that f(x) has depth d. 2We can also de�ne the action of ��1 on an element of QZ[x]. We then have:Lemma 3.6 Suppose h(x) 2 QZ[x]. Then ��1h(x) contains precisely two elements ofQZ[x].Proof Suppose f1(x); f2(x) 2 QZ[x] satisfy �f1(x) ' �f2(x). Then, if m(x) =�(f1(x)� f2(x)), by de�nition we have:m(i) � 0 (mod 2)for every integer i � 0. Hence m(x) ' 0, i.e. �(f1(x)� f2(x)) has depth 0. Hence,by Corollary 3.5, f1(x)� f2(x) has depth 0 or 1. Now, by Remark 3.2, this means thatf1(x)� f2(x) 2 f0; 1g, i.e. either f1(x)� f2(x) ' 0 or f1(x)� f2(x) ' 1.Hence either f1(x) ' f2(x) or f1(x) ' f2(x) + 1. Thus either f1(x) = f2(x) or f1(x) =f2(x) + 1, and hence ��1h(x) either contains zero or two elements. But, by Lemma 3.4,��1h(x) cannot be empty, and the result follows. 2We also have the following lemma establishing some basic properties of QZ[x].Lemma 3.7 (i) The number of equivalence classes inQZ[x] which have depth d (d > 0)is precisely 2d�1. 8



(ii) Suppose g(x) 2 QZ[x] has depth d + 1 (d � 0). Then there exists f(x) 2 g(x) ofdegree d with leading coe�cient equal to (1=d!).Proof We establish both results by induction on the depth d.(i) By Remark 3.2, the result holds for d = 1. Suppose that the result holds forall depths less than d, for some d > 1. Now, by Lemma 3.6, if g(x) has depthd � 1, then there exist precisely two equivalence classes f(x) with the propertythat �f(x) = g(x). Moreover, both these equivalence classes will have depth d byCorollary 3.5. By the inductive hypothesis, there are 2d�2 such equivalence classesg(x), each having two such equivalence classes f(x) of depth d. All these 2d�1equivalence classes will be distinct, and they will include all possible equivalenceclasses of depth d (again by Corollary 3.5). The result now follows.(ii) 1 2 1 (which has leading coe�cient 1), and hence the result holds for d = 0. Nowsuppose it holds for all depths less than or equal to d, and suppose g(x) has depthd+1. Now, by Corollary 3.5, �g(x) has depth d. Choose h(x) 2 �g(x) with degreed� 1 and leading coe�cient 1=d! (which exists by the inductive hypothesis). Now,by Lemma 3.4(ii), if f(x) 2 ��1h(x), then f(x) has degree d and leading coe�cient1=(d+ 1)!, and the result follows. 2Next de�ne the function � : QZ[x]! S as follows.De�nition 3.8 �(f(x)) = (si); i � 0, where si = f(i) mod 2 for every i.We then immediately have the following result.Lemma 3.9 � has the following properties.(i) � is a group homomorphism from (QZ[x];+) into (S;+).9



(ii) � commutes with D=�, i.e. �(�f(x)) = D�(f(x)), for every f(x) 2 QZ[x].As we did with the � operator, we now abuse our notation slightly and also consider �as a mapping from QZ[x] into S. This is well de�ned by the de�nition of '.We then have the following results.Lemma 3.10 If f(x) 2 QZ[x], then the depth of f(x) equals the depth of the sequence�(f(x)).Proof Suppose f(x) 2 QZ[x] and suppose the in�nite binary sequence �(f(x)) hasdepth d, i.e. Dd�1�(f(x)) = 1:Hence, by Lemma 3.9(ii): �(�d�1f(x)) = 1i.e. �d�1f(i) � 1 (mod 2) for every integer i. Hence �d�1f(x) = 1 (the unique equiva-lence class of polynomials of depth 1). Hence, by Corollary 3.5, f(x) has depth preciselyd, and the result follows. 2Theorem 3.11 � is a group isomorphism of (QZ[x];+) onto (S�;+).Proof We �rst show that � always maps an element of QZ[x] into an element of S�.Suppose f(x) 2 QZ[x], and hence f(x) has depth d (for some integer d). Then, byLemma 3.10, �(f(x)) also has �nite depth d and so �(f(x)) 2 S�.By Lemma 3.9(i), we need only show that � is a bijection. First suppose �(f1(x)) =�(f2(x)). Hence g1(i) � g2(i) (mod 2) for any g1(x) 2 f1(x) and any g2(x) 2 f2(x).Hence f1(x) = f2(x), and we have shown that � is injective.10



We show that � is surjective by induction on the depths of elements in S�. First observethat 0 is the unique sequence of depth 0, and �(0) = 0. Now suppose that every binarysequence of depth less than d has a pre-image in QZ[x] under �. Suppose that x is abinary sequence of depth d.By de�nition, Dx has depth d� 1, and hence by the inductive hypothesis, there exists apolynomial f(x) 2 QZ[x] such that:(a) f(x) has depth d� 1, and(b) �(f(x)) = Dx.Now, by Lemma 3.6, ��1f(x) contains precisely two elements of QZ[x]. Additionally, byLemma 3.9(ii), �(��1f(x)) � D�1�(f(x)) = D�1Dx:ButD�1Dx contains two elements, namely x and x+1, and hence �(��1f(x)) = D�1Dx.The result now follows. 2We conclude by observing that if f1(x); f2(x) 2 QZ[x], then, f1(x) + f2(x) will clearlyhave depth equal to the greater of the depths of f1(x) and f2(x), given they are di�erent.If they have the same depth, d say, then f1(x) + f2(x) will have depth less than d (thisfollows immediately from Lemma 3.7(ii)). This provides the basis of an alternative prooffor Result 2.2.Before proceeding we give some elementary results about the depths and periodicityof in�nite binary sequences. We �rst have the following simple result, which followsimmediately from Lemma 3.7(i) and Theorem 3.11.Lemma 3.12 If d > 0 then there are precisely 2d�1 in�nite binary sequences of depth d.11



We can also establish results characterising binary sequences of �nite depth in terms oftheir period. We �rst have the following trivial result, whose proof follows immediatelyfrom the de�nition of D.Lemma 3.13 If x is a binary sequence of �nite depth d > 0, and Dx is periodic withleast period t, then x is periodic with least period either t or 2t.We can now establish:Lemma 3.14 If x and y are binary sequences of �nite depth d > 0, then x and y areperiodic, and have the same period which must be equal to a power of 2.Proof Since 1 is the unique sequence of depth 1 and has period 20 = 1, Lemma 3.13immediately implies that every sequence of �nite depth must have �nite period equal toa power of 2. The result then follows from Etzion's observation in [1] that, for a �nitesequence of length 2i (for some i > 0), the notion of depth corresponds precisely to thelinear equivalence of the corresponding in�nite sequence of period 2i. 2Finally, given the above-mentioned correspondence between depth and linear equivalence,we can also give the following result, well-known in the context of the linear equivalenceof sequences.Theorem 3.15 The set S� of in�nite binary sequences with �nite depth is equal to theset of in�nite binary sequences of period 2i for some i � 0. Moreover, if s 2 S has depthd, then the least period of s is 2blog2 dc+1, i.e. the set of sequences having depths fromf2i + 1; 2i + 2; : : : ; 2i+1g is equal to the set of sequences of period 2i+1 (i � 0).Remark 3.16 It is interesting to note that we have established a relationship between thelinear equivalence of sequences having period a power of 2, and the degrees of polynomials12



in the corresponding equivalence classes of rational polynomials.4 Depth distributions of linear cyclic codesIn this section we characterise the depth distributions of all linear cyclic codes. The keyobservation that we use to establish this characterisation is that, if x is a codeword of alinear cyclic code, and 1 is not a codeword of C, then Dsx must be equal to a substringof some non-zero codeword.We �rst need the following elementary observation.Lemma 4.1 Suppose c = (c0; c1; : : : ; cn�1) is a binary codeword of length n, with corre-sponding polynomial: c(x) = c0xn�1 + c1xn�2 + � � �cn�1:Then the n� i elements of Dic equal the �rst n� i terms (i.e. the terms for xn�1, xn�2,. . . , xi) of the polynomial c(x)(x� 1)i mod (xn � 1).Proof We prove this result by induction on i. It is trivially true for i = 0. Nowsuppose it is true for all i < r, for some r > 0, i.e. we know that Dr�1c correspondsto the �rst n � r + 1 terms of the polynomial c(x)(x � 1)r�1 mod (xn � 1). SupposeDr�1c = (b0; b1; : : : ; bn�r) and henceb0xn�1 + b1xn�2 + � � �+ bn�rxr�1is equal to the �rst n � r + 1 terms of c(x)(x� 1)r�1 mod (xn � 1). ThusDrc = (b1 � b0; b2� b1; : : : ; bn�r � bn�r�1)and, working modulo (xn � 1):c(x)(x� 1)r = (x� 1)(b0xn�1 + b1xn�2 + � � �+ bn�rxr�1 + f(x))13



= (b1 � b0)xn�1 + (b2 � b1)xn�2 + � � �+ (bn�r � bn�r�1)xr + f 0(x)where f(x) and f 0(x) are polynomials of degrees at most r� 2 and r � 1 respectively.The result now follows. 2We can now establish:Lemma 4.2 Suppose C is a linear cyclic code of length n with the property that 1 is nota codeword. Suppose also that the maximum length of a 0-run in a codeword of C � f0gis L. Then all the non-zero codewords in C have depth at least n � L.Proof Suppose x is a non-zero codeword from C, and choose s = n�L�1. Then, sinceC is a linear cyclic code, Dsx is equal to n � s consecutive bits of a non-zero codeword.This follows by induction, since Dx is simply n� 1 consecutive bits of the sum of x witha copy of x cyclically shifted by one position. Now, since C is linear and cyclic, Dx isequal to n� 1 bits of a codeword, which is non-zero since x 6= 1.Moreover, the n� s consecutive bits of Dsx cannot all be zero since n� s = L+ 1 > L.Hence x has depth greater than s = n� L� 1, and the result follows. 2Corollary 4.3 If g(x) is the generator polynomial for an (n; k) linear cyclic code C, and(x� 1) 6 j(xn � 1)=g(x), then C has depth spectrum fn; n� 1; : : : ; n� k + 1g.Proof In such a linear cyclic code, if a codeword contains a 0-run of length k then it mustbe the all-zero codeword. Moreover, 1 cannot be a codeword since (x�1) 6 j(xn�1)=g(x).The result now follows from Result 3.3 and Lemma 4.2. 2Lemma 4.4 Suppose (x � 1)sj(xn � 1), and let C be an (n; s) linear cyclic code. ThenC has generator polynomial (xn � 1)=(x� 1)s if and only if the depth spectrum of C isf1; 2; : : : ; sg. 14



Proof Suppose that (xn � 1)=(x� 1)s is the generating polynomial for C, and henceC = ff(x)(xn � 1)=(x� 1)s mod xn � 1 : deg(f(x)) < sg:If c 2 C is a codeword with corresponding polynomial c(x) then, by Lemma 4.1, Dsccorresponds to the �rst n � s terms of (x � 1)sc(x). But, by our assumption, c(x) =c0(x):(xn� 1)=(x� 1)s mod xn � 1, for some polynomial c0(x). Hence Dsc corresponds tothe �rst n� s terms of (x� 1)sc0(x)(xn � 1)=(x� 1)s = 0 mod xn � 1, i.e. c has depth atmost s, and hence, by Result 3.3, the depth spectrum is f1; 2; : : : ; sg.Now suppose every codeword has depth at most s < n (the case s = n is trivial since everydepth must occur). Using the converse argument, we see that for any c(x) correspondingto a codeword c, the �rst n � s terms of (x � 1)sc(x) must all be zero. But, since C iscyclic, every cyclic shift of (x�1)sc(x) must equal (x�1)sc0(x) for some other polynomialc0(x) corresponding to a codeword. Hence (x� 1)sc(x) = 0 for every c(x), i.e.(xn � 1)j(x� 1)sc(x)for every c(x). The result now follows. 2We are now ready to state the main result of this part of the paper, which provides acomplete characterisation of the depth spectra of linear cyclic codes.Note that in the next theorem we use jj to denote `exactly divides', in the sense thata(x)rjjb(x) if and only if a(x)rjb(x) and a(x)r+1 6 jb(x).Theorem 4.5 Suppose C is an (n; k) linear cyclic code, and let g(x), of degree n� k, bethe generator polynomial for C. Then(x� 1)sjj(xn � 1)=g(x)if and only if C has depth spectrum f1; 2; : : : ; sg [ fn; n� 1; : : : ; n� k + s+ 1g.15



Proof Suppose g(x), the generator polynomial for C, satis�es(x� 1)sjj(xn � 1)=g(x):We de�ne two related linear cyclic codes: C0, an (n; s) code with generator polynomial(xn � 1)=(x � 1)s, and C1, an (n; k � s) code with generator polynomial g(x)(x � 1)s.By Lemma 4.4, C0 has depth spectrum f1; 2; : : : ; sg, and by Corollary 4.3, C1 has depthspectrum fn; n� 1; : : : ; n� k + s+ 1g.Now, since both C0 and C1 have generator polynomials which are a multiple of g(x), bothC0 and C1 are subcodes of C. Hence, by Result 2.2, C has depth spectrum f1; 2; : : : ; sg[fn; n� 1; : : : ; n� k + s + 1g.The converse follows from the simple observation that, for any g(x), there exists an s suchthat (x� 1)sjj(xn � 1)=g(x) 25 Concluding remarkMany of the results concerning in�nite sequences can probably be generalised to the ringof integers modulo c (Zc) for arbitrary c. Similarly, the results on �nite sequences andcodes are likely to be capable of generalisation to arbitrary �nite �elds GF(q).AcknowledgementsThe author would like to acknowledge the valuable comments and suggestions of T. Etzion,G.A. Kabatyanskii, K.G. Paterson, and two anonymous referees. Additionally, withoutthe support of the EPSRC, under Grant Number GR/L07260, for Tuvi Etzion's visit toRoyal Holloway during the summer of 1996, this paper would not have been written.16
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