ON WEIGHTED GRAPH SEPARATION PROBLEMS AND
FLOW-AUGMENTATION*

EUN JUNG KIM', TOMAS MASARIK!, MARCIN PILIPCZUK}, ROOHANI SHARMAS,
AND MAGNUS WAHLSTROMY

Abstract. One of the first applications of the recently introduced technique of flow-
augmentation [Kim et al., STOC 2022] is a fixed-parameter algorithm for the weighted version
of DIRECTED FEEDBACK VERTEX SET, a landmark problem in parameterized complexity. In this ar-
ticle, we explore the applicability of flow-augmentation to other weighted graph separation problems
parameterized by the size of the cutset. We show the following.

e In weighted undirected graphs MuLTICUT is FPT, both in the edge- and vertex-deletion
version.
e The weighted version of GROUP FEEDBACK VERTEX SET is FPT, even with oracle access
to group operations.
e The weighted version of DIRECTED SUBSET FEEDBACK VERTEX SET is FPT.
Our study reveals DIRECTED SYMMETRIC MULTICUT as the next important graph separation problem
whose parameterized complexity remains unknown, even in the unweighted setting.

Key words. Weighted Multicut, Weighted Group Feedback Vertex Set, Weighted Directed
Subset Feedback Vertex Set, Parameterized Complexity, Directed Flow Augmentation

MSC codes. 05C85, 68Q25, 68W20

1. Introduction. The family of graph separation problems includes a wide
range of combinatorial problems where the goal is to remove a small part of the input
graph to obtain some separation properties. For example, in the MULTICUT problem,
the input graph G is equipped with a set of terminal pairs 7 C V(G) x V(G) and the
separation objective is to destroy, for every (s,t) € T, all paths from s to ¢. In the
SUBSET FEEDBACK EDGE/VERTEX SET problems, the input graph G is equipped
with a set R C E(G) of red edges and the goal is to destroy all cycles that contain
at least one red edge by deleting edges (resp. vertices).! We remark that in directed
graphs, one can equivalently require to destroy all closed walks containing at least one
red edge. Even though the later does not explicitly look like a separation problem, at
the core of it lies a special variant of the MULTICUT problem [3].

Both these problems (and many others) can be considered in multiple variants:
graphs can be undirected or directed, we are allowed to delete edges or vertices, weights
can be present, etc. In this paper, we consider both edge- and vertex-deletion variants
and both cardinality and weight budget for the solution. That is, the input graph G is
equipped with a weight function w that assigns positive integral weights to deletable
objects (i.e., edges or vertices), and we are given two integers: k, the maximum

*Submitted to the editors October 26, 2022.

Funding: This research is a part of a project that has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
Grant Agreement 714704 (T. Masafik and M. Pilipczuk). Eun Jung Kim is supported by the grant
from French National Research Agency under JCJC program (ASSK: ANR-18-CE40-0025-01).

TUniversité Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, 75016,
Paris, France (eun-jung.kim@dauphine.fr).

iUniversity of Warsaw, Warsaw, Poland (masarik@mimuw.edu.pl, malcin@mimuw.edu.pl).

§Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbriicken, Germany
(rsharma@mpi-inf.mpg.de).

TRoyal Holloway, University of London, UK (magnus.wahlstrom@rhul.ac.uk).

n the literature, sometimes one considers red vertices instead of red edges. Since there are
simple reductions between the variants (cf. [11]), we prefer to work with red edges.

1


mailto:eun-jung.kim@dauphine.fr
mailto:masarik@mimuw.edu.pl
mailto:malcin@mimuw.edu.pl
mailto:rsharma@mpi-inf.mpg.de
mailto:magnus.wahlstrom@rhul.ac.uk

2 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

number of deleted objects, and W, the maximum total weight of the deleted objects
in the sought solution.

The study of parameterized complexity of graph separation problems has been a
vivid line for the past two decades, and resulted in many tractability results and a wide
range of algorithmic techniques: important separators and shadow removal [3, 4, 7,
11, 22, 26, 30, 32], branching guided by an LP relaxation [10, 14, 16], matroid-based
techniques [23, 24|, treewidth reduction [27], randomized contractions [5, 8], and,
most recent, flow-augmentation [19, 20]. However, the vast majority of these works
considered only the unweighted versions of the problems for a very simple reason: we
did not know how to handle their weighted counterparts. In particular, one of the
most fundamental notions — important separators, introduced by Marx in 2004 [26]
— relies on a greedy argument that breaks down in the presence of weights. The
quest to understand the weighted counterparts of studied graph separation problems,
with a specific goal to resolve the parameterized complexity of the weighted version
of DIRECTED FEEDBACK VERTEX SET — the landmark problem in parameterized
complexity [4] — was raised by Saurabh in 2017 [34] (see also [25]).

This question has been resolved recently by Kim et al. [20] with a new algorithmic
technique called flow-augmentation. Apart from proving fixed-parameter tractability
of the weighted version of DIRECTED FEEDBACK VERTEX SET, they also showed
fixed-parameter tractability of the weighted CHAIN SAT, resolving another long-
standing open problem [6]. Both the aforementioned results are, in fact, the same
relatively simple algorithm for a more general problem WEIGHTED BUNDLED CUT
WITH ORDER.

Very recently, Galby et al. [13] used the flow-augmentation technique to design
an FPT algorithm for weighted MULTICUT on trees. Our results thus extend theirs
by generalizing the input graphs from trees to arbitrary undirected graphs.

Our results. The goal of this paper is to explore for which other graph separation
problems the flow-augmentation technique helps in getting fixed-parameter algorithms
for weighted graph separation problems. (All algorithms below are randomized; all
randomization comes from the flow-augmentation technique.)

We start with the MULTICUT problem in undirected graphs, whose parameterized
complexity — in the unweighted setting — had been a long-standing open problem
until being settled in the affirmative by two independent groups of researchers in
2011 [2, 30].

THEOREM 1.1. WEIGHTED MULTICUT, parameterized by the cardinality of the
cutset, is randomized FPT, both in the edge- and vertex-deletion variants.

Theorem 1.1 follows from a combination of two arguments. First, we revisit the re-
duction of Marx and Razgon from MULTICUT to a bipedal variant, presented in the
conference version of their paper [29] and show how to replace one greedy step based
on important separators with a different, weights-resilient step. Then, a folklore re-
duction to a graph separation problem called COUPLED MIN-CUT, spelled out in [18],
does the job: the fixed-parameter tractability of a wide generalization of COUPLED
MiN-CuT, including its weighted variant, is one of the main applications of flow-
augmentation [19, 20, 21].

MurTiway CuT is a special case of MULTICUT where the input graph G is
equipped with a set T C V(G) of terminals and T = {(s,t) | s,t € T,s # t},
that is, we are to destroy all paths between distinct terminals. Thus, Theorem 1.1
implies the following.

COROLLARY 1.2. WEIGHTED MULTIWAY CUT, parameterized by the cardinality



ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 3

of the cutset, is randomized FPT, both in the edge- and vertex-deletion variants.

We remark that in directed graphs the parameterized complexity of MULTICUT
is fully understood: without weights, it is W[1]-hard for 4 terminal pairs [31] and
FPT for 3 terminal pairs [15], but with weights, it is already W[1]-hard for 2 terminal
pairs [15], while for 1 terminal pair it is known under the name of BI-OBJECTIVE
st-cuT and its fixed-parameter tractability follows easily via flow-augmentation [20].
Furthermore, while MuLTIWAY CUT on directed graphs is FPT in the unweighted
setting [7], on directed graphs MULTICUT with 2 terminal pairs reduces to MULTIWAY
Cut with two terminals [7]. Hence, MUuLTIWAY CUT with weights is W[1]-hard and
without weights is FPT on directed graphs.

Then we turn our attention to GROUP FEEDBACK EDGE/VERTEX SET. Here, the
input graph G is equipped with a group I', not necessarily Abelian, and an assignment
1, called the group labels, that assigns to every e € E(G) and v € e an element
Y(e,v) € T such that for e = uv we have ¥(e,u) + ¥(e,v) = 0.2 With a walk
C = (v1,e1,v2,€2,...,0s €, Vp11) We associate a sum H(C) = Zle ¥(e;,v;). A walk
C is a null walk in (G,) if ¥(C) = 0 and non-null otherwise. This is well-defined
even for non-Abelian groups, i.e., a cycle being null or non-null does not depend on
the direction of traversal or the choice of starting vertex v; [9]. The separation goal
is to destroy all non-null cycles (equivalently, all non-null closed walks) by edge or
vertex deletions.

THEOREM 1.3. WEIGHTED GROUP FEEDBACK EDGE SET and WEIGHTED
GRrROUP FEEDBACK VERTEX SET, parameterized by the cardinality of the cutset, are
randomized FPT.

Since WEIGHTED SUBSET FEEDBACK EDGE/VERTEX SET can be modeled as

WEIGTED GROUP FEEDBACK EDGE/VERTEX SET with group I' = Z‘QR‘ (cf. 19]),
we immediately have the following corollary.

COROLLARY 1.4. WEIGHTED SUBSET FEEDBACK EDGE SET and WEIGHTED
SUBSET FEEDBACK VERTEX SET, parameterized by the cardinality of the cutset, are
randomized FPT.

The currently fastest FPT algorithm for (unweighted) GROUP FEEDBACK VER-
TEX SET is due to Iwata, Wahlstrom, and Yoshida [16] and uses sophisticated branch-
ing guided by an LP relaxation. To prove Theorem 1.3, we revisit an older (and less ef-
ficient) FPT algorithm due to Cygan, Pilipczuk, and Pilipczuk [9] that performs some
branching steps to reduce the problem to multiple instances of MurLTiwAy CUT. We
observe that the branching easily adapts to the weighted setting, and the algorithm
for WEIGHTED MULTIWAY CUT is provided by Corollary 1.2.

We now move to directed graphs. As already mentioned, the parameterized
complexity of both weighted and unweighted DIRECTED MULTICUT (and DIRECTED
MurTiwAy CuT) is already fully understood [15, 31]. Our main result here is fixed-
parameter tractability of WEIGHTED DIRECTED SUBSET FEEDBACK EDGE/VERTEX
SET.

THEOREM 1.5. WEIGHTED DIRECTED SUBSET FEEDBACK EDGE SET and
WEIGHTED DIRECTED SUBSET FEEDBACK VERTEX SET, parameterized by the car-

2Thorough this paper, we use + for the group operation, 0 for the neutral element in the group,
and — for the group inverse, to conform with the standard terminology of null cycles in GFVS. We
note that this is in tension with the convention that a group operation written as + tends to imply
an Abelian group.



4 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

dinality of the cutset, are randomized FPT.

Theorem 1.5 follows from a surprisingly delicate reduction to WEIGHTED BUNDLED
CuT WITH ORDER, known to be FPT via flow-augmentation [20]. SKEW MULTICUT
is a special case of DIRECTED MULTICUT where the set 7 has the form

{(sirty) [1<i <5<t}

for some terminals s1,...,sp,t1,...,t¢ € V(G). SKEwW MULTICUT naturally arises
in the context of DIRECTED FEEDBACK VERTEX SET if one applies the iterative
compression technique. In the unweighted setting, SKEW MULTICUT is long known
to be FPT parameterized by the size of the cutset [3]. With weights, [20] showed that
SkEw MurticuT is FPT when parameterized by k+/¢. We observe a simple reduction
to WEIGHTED DIRECTED SUBSET FEEDBACK VERTEX SET, yielding fixed-parameter
tractability when parameterizing by & only.

COROLLARY 1.6. WEIGHTED SKEW MULTICUT, parameterized by the cardinality
of the cutset, is randomized FPT, both in the edge- and vertex-deletion variants.

Proof. Let (G, (si,t;)f_;,w, k, W) be a WEIGHTED SKEW MULTICUT instance (in
the edge- or vertex-deletion setting) where w is the weight function (on the edges or
vertices, respectively) and W is the weight budget of the solution. Construct a graph
G’ and a set of red edges R as follows: start with G’ = G, R = 0 and, for every
1 < i< j </, introduce a red edge (¢,s;) and add it to G’ (in the edge-deletion
setting, the new edge has weight W+ 1, that is, it is effectively undeletable). It is easy
to see that the resulting WEIGHTED DIRECTED SUBSET FEEDBACK EDGE/VERTEX
SET instance (G, R,w, k, W) is equivalent to the input WEIGHTED SKEW MULTICUT
instance: any closed walk in G’ involving a red edge contains a subpath from s; to
t; for some 1 < ¢ < j < ¢ without any red edge, and any path in G from s; to t;
for 1 <4 < j </ closes up to a cycle with a red edge (¢;,s;) in G’. Therefore the
corollary follows from Theorem 1.5. ]

The running time bounds of all our algorithms are of the form
2Py (K poly (|V(@)]), where both polynomial dependencies have an unspecified large
degree coming from the use of involved flow-augmentation-based algorithms of [20, 21].

Summary of our results. In this paper we show that the following problems
are fixed-parameter tractable with respect to the solution size k: the vertex- and
edge-deletion variants of WEIGHTED MULTIWAY CUT, WEIGHTED MULTICUT and
WEIGHTED SKEW MULTICUT, WEIGHTED GROUP FEEDBACK VERTEX/EDGE SET,
WEIGHTED SUBSET FEEDBACK VERTEX/EDGE SET and WEIGHTED DIRECTED
SUBSET FEEDBACK VERTEX/ARC SET.

Organization. We introduce the necessary tools, in particular the used corollaries
of the flow-augmentation technique, in Section 2. Theorem 1.1 is proven in Section 3,
Theorem 1.3 is proven in Section 4, and Theorem 1.5 is proven in Section 5. Sec-
tion 6 concludes the paper and identifies DIRECTED SYMMETRIC MULTICUT as a
next problem whose parameterized complexity remains open.

2. Preliminaries.

2.1. Edge- and vertex-deletion variants. For directed graphs, we use edges
and arcs interchangeably. In directed graphs, there is a simple reduction from the
vertex-deletion setting to the edge-deletion one: replace every vertex v with two
vertices v and v~ and an edge (v—,v"); every previous arc (u,v) becomes an arc
(uT,v7). Now, the deletion of the vertex v corresponds to the deletion of the arc



ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 5

(v™,v™). Hence, in Section 5 we will consider only the edge-deletion variant, that is,
DIRECTED SUBSET FEEDBACK EDGE SET. No such simple reduction is available in
undirected graphs and, in fact, in some cases, the vertex-deletion variant turns out to
be significantly more difficult (cf. the k&~-WAy CUT problem [5, 17, 26]).

In the presence of weights, there is a simple reduction from the edge-deletion
variant to the vertex-deletion variant: subdivide every edge with a new vertex that
inherits the weight of the edge it is placed on, and set the weight of the original
vertices to +00, making them undeletable. (For clarity, we allow the weight function
w to attain the value 400, which is equivalent to any weight larger than W and models
an undeletable edge or vertex.) Thus, both in Section 3 and in Section 4 we consider
the vertex-deletion variants.

2.2. Iterative Compression. All problems considered in this paper are mono-
tone in the sense that the deletion of an edge or a vertex from the input graph cannot
turn a YEs-instance into a NO-instance. This allows to use of the standard technique

of iterative compression [33]: We enumerate V(G) = {v1,va,...,v,} for n = |V(G)|,
denote G; = G[{v1,...,v;}] for 0 <i < n and iteratively solve the problem on graphs
Go, G, ..., G, = G. If the instance for G; turns out to be a No-instance, we deduce

that the input instance is a No-instance, too. Otherwise, the computed solution for
G; allows us to infer a set X’ C V(G;) of size at most k such that in G; — X’ already
has the desired separation (i.e., induces a YES-instance with parameter k = 0). We
set X = X' U {v;41} and observe that G;y1 — X = G; — X' and |X| <k + 1.

Furthermore, in all considered problems, using self-reducibility it is immediate to
turn an algorithm that only gives a yes/no answer into an algorithm that, in case of
a positive answer, returns a cutset that is a solution.

Hence, in all our algorithmic results, we can solve a compression version of the
problem. That is, we can assume that our algorithm is additionally given on input
a set X C V(G) of size at most k + 1 such that G — X already satisfies the desired
separation (i.e., has no cycle with a red edge in case of SUBSET FEEDBACK EDGE
SET etc.).

Furthermore, in the problems that involve vertex deletions (i.e., Sections 3 and 4),
we can additionally branch on the set X into 2/X| options, guessing a set ¥ C X
of vertices that are included in the sought solution. In each branch, we delete Y
from the graph and the set X, decrease k by |Y| and decrease W by the weight of
Y. Furthermore, we set the weight of the remaining vertices of X \ 'Y to +oo, so
they become undeletable. In other words, in Sections 3 and 4, we solve a disjoint
compression variant of the problem, where the sought solution is supposed to be
disjoint with the set X.

2.3. Generalized Digraph Pair Cut. We will not need flow-augmentation in
its raw form, but only one algorithmic corollary of this technique.

An instance of GENERALIZED DIGRAPH PAIR CuT (GDPC for short) consists
of:

a directed multigraph G with two distinguished vertices s,t € V(G);
a multiset C of (unordered) pairs of vertices of G, called clauses;
a family B of pairwise disjoint subsets of E(G)UC called bundles such that no
bundle contains two copies of the same arc or two copies of the same clause;
a weight function w: B — Z;
two integers k and W.

We now make a few definitions that help us understand the desired solution of
the GDPC problem.



6 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

e Aset Z C E(G) is a cut in a GDPC instance Z = (G, s,t,C, B, w, k, W) if
Z C E(G)NUpep B (i-e., Z contains only edges of bundles) and there is no
path from s to t in G — Z.

e A cut Z violates an edge e € E(G) if e € Z and violates a clause uv € C if
both u and v are reachable from s in G — Z.

e A bundle is violated by Z if it contains an edge or a clause violated by Z.

e An edge, a clause, or a bundle not violated by Z is satisfied by Z.

e A cut Z is a solution if every clause violated by Z is part of a bundle, Z
violates at most k£ bundles, and the total weight of violated bundles is at
most W. (Recall that a cut is required to contain only edges of bundles, that
is, it satisfies all edges outside bundles.) Note that &k here is not the number
of edges deleted.

The GDPC problem asks for an existence of a solution. GDPC, parameterized by
k, is W[1]-hard even in the unweighted setting and without clauses: it suffices to have
bundles consisting of two edges for the hardness [28]. However, flow-augmentation
yields fixed-parameter tractability of some specific useful restrictions of GDPC.

For a bundle B € B, let V(B) be the set of vertices that are involved in an arc
or a clause of B and let Gp be an undirected graph with V(Gp) = V(B) \ {s,t}
and uv € E(Gp) if B contains an arc (u,v), an arc (v, u), or a clause uv. A bundle
B is 2Ks-free if Gp is 2Ko-free, that is, it does not contain 2K, (the four-vertex
graph consisting of two independent edges) as an induced subgraph. An instance
T of GDPC is 2Ks-free if every bundle of 7 is 2Ks-free. Finally, an instance Z is
b-bounded if for every B € B we have |V(B)| < b.

One of the main algorithmic corollaries of the flow-augmentation technique is the
tractability of 2Ks-free b-bounded instances of GDPC.

THEOREM 2.1 ([21], Theorem 3.3). There exists a randomized polynomial-time
algorithm for GENERALIZED DIGRAPH PAIR CUT restricted to 2Ks-free b-bounded

instances that never accepts a NO-instance and accepts a YES-instance with probability
27poly(k,b) )

For DIRECTED SUBSET FEEDBACK EDGE SET it will be more convenient to look
at a different restriction of GDPC. Let Z = (G, s,t,0, B, w, k, W) be a GDPC instance
without clauses. An arc e € E(G) is crisp if it is not contained in any bundle, and
soft otherwise. An arc e € FE(G) is deletable if it is soft and there is no copy of e
in G that is crisp. Note that a cut needs to contain soft arcs only, and in fact, we
can restrict our attention to cuts containing only deletable arcs. A bundle B € B has
pairwise linked deletable edges if for every two deletable arcs ey, es € B that are not
incident with either s or ¢, there is a path from an endpoint of one of the edges to
an endpoint of the other that does not use an edge of another bundle (i.e., uses only
edges of B and crisp edges).

In [20], a notion of BUNDLED CUT WITH ORDER has been introduced as one
variant of GDPC without clauses that is tractable. In [21], it was observed that the
notion of pairwise linked deletable edges is slightly more general than the “with order”
assumption and is more handy.

THEOREM 2.2 ([21], Theorem 3.21). There exists a randomized polynomial-time
algorithm that, given a GDPC instance T = (G, s,t,0, B,w, k, W) with no clauses and
whose every bundle has pairwise linked deletable edges, never accepts a NO-instance
and accepts a YES-instance with probability 9—Ok d og(kd) yhere d is the mazimum
number of deletable arcs in a single bundle.



ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 7

Note that if Z is b-bounded, then d < b2.

3. Multicut. This section is devoted to the proof of Theorem 1.1.

As discussed in Subsection 2.1, we can restrict ourselves to the vertex-deletion
variant. Let Z = (G, T,w, k, W) be an instance of WEIGHTED MULTICUT. Let T =
Us,er{s, t} be the set of all terminals. By a simple reduction, we can assume that
all terminals have weight +oo and form an independent set: for every (s,t) € T, add a
new vertex s’ adjacent to s, add a new vertex ¢’ adjacent to ¢, set w(s') = w(t') = 400
and replace (s,t) with (s/,t') in T.

We also use iterative compression, but in the ordering vy, ..., v, of V(G) we start
with terminals. Note that the subgraph of G induced by the terminals is edgeless and
thus admits a solution being the emptyset. As a result, using the standard iterative
compression step discussed in Subsection 2.2 we can assume that the algorithm is
given access to a set X C V(G) \ T of size | X| < k + 1 such that for every (s,t) € T
there is no path from s to t in G — X and we are to check if there is a solution disjoint
with X. We can set w(z) = 400 for every x € X.

We closely follow the steps in Section 5 of [29], reengineering only one branching
step that originally uses important separators.

Fix a hypothetical solution Z. We first guess how the vertices of X are partitioned
between connected components of G — Z. If two vertices of X are guessed to be in the
same connected component of G — Z, we can merge them into a single vertex (recall
that the solution Z is disjoint with X). This results in 20(*1°8%) subcases. After this
step, we can assume that every connected component of G — Z contains at most one
vertex of X and X is an independent set. For brevity, we say that Y C V(G)\ (XUT)
is a multiway cut if every connected component of G —Y contains at most one vertex
of X. Thus, it suffices to develop a randomized FPT algorithm that (a) accepts with
constant probability an instance that admits a solution that is a multiway cut of X;
(b) never accepts a No-instance.

An instance of WEIGHTED MULTICUT with X given by iterative compression
step is bipedal if X is an independent set and for every connected component C of
G — X, we have |[Ng(C)| < 2, that is, C' is adjacent to at most two vertices of X. In
Section 3.2 we show how to reduce a bipedal instance to a GDPC instance handled
by Theorem 2.1. We emphasize that we do not claim authorship of this reduction:
while there is no citeable source of this reduction, it has been floating around in the
community in the last years. The reduction, in the edge-deletion setting (and leading
to an undirected analog of GDPC) has been spelled out in [18]. We include it here
for completeness of the argument.

Section 3.1 describes a branching algorithm, closely following the arguments
of [29], whose goal is to break connected components C' of G — X with |[Ng(C)| > 2.
In the leaves of the branching process, we obtain bipedal instances that are passed to
the algorithm of Section 3.2.

3.1. Branching on a multilegged component. The algorithm is a recursive
branching routine on an instance (G,7T,w,k, W, X) where X is an independent set
and a multicut for 7, and the hypothetical solution is also a multiway cut for X.
In the beginning |X| < k + 1 as discussed earlier. During the branching algorithm,
one may delete vertices, merge vertices or grow the set X while maintaining that the
hypothetical solution is also a multiway cut for (the new) X.

In a recursive call, we start with a few cleaning steps. At every moment, apply
the first applicable reduction step.

1. If @ is a solution, return YES.



8 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

2. If k<0, W <0, or X is not an independent set, return NO.

3. If the number of connected components C' of G — X with |[Ng(C)| > 1 is
more than k, return No. (Note that every such component needs to contain
at least one vertex of every multiway cut for X.)

4. If there exists * € X such that the cardinality of the minimum-cardinality
vertex cut between x and X \ z is of size larger than k, return No. (Recall
that the solution is also a multiway cut for X.)

5. If there exists a vertex v that admits a family P of k& + 2 paths that start in
v, end in distinct vertices of X, and are vertex-disjoint except for v, delete v,
decrease k by one, decrease W by w(v), and recurse. (Note that every such
vertex v needs to be included in any multiway cut for X of size at most k.)

6. If there exists a connected component C of G that do not contain both vertices
of any terminal pair (s,¢) € 7 and contains at most one vertex of X, delete it
and all terminal pairs involving a vertex of C. (Recall that for every (s,t) € T,
the terminals s and ¢ lie in different connected components of G — X. Hence,
this rule applies to any component C' that contains no vertex of X and to
any isolated vertex of X.)

7. If | X| > k(k+1), return NO. (Since Step 5 is inapplicable, for every multiway
cut Z, every z € Z is adjacent to at most k + 1 connected components of
G — Z that contain a vertex of X. Also, since Z is a multiway cut for X, every
vertex of X is in a distinct connected component of G — Z. Further, since
the previous rule (RR 6) is not applicable, there does not exist a connected
component of G — Z that has no neighbor in Z. Indeed, as such an isolated
component will have at most one vertex from each terminal pair in 7 because
Z is a solution and at most one vertex of X since Z is a multiway cut of Z.
Therefore, | X| is at most the number of connected components of G — Z that
intersect X, which is upper bounded by |Z|(k + 1) < k(k +1).)

8. If the current instance is bipedal, pass it to the algorithm of Section 3.2.

A component C of G — X is nontrivial if [Ng(C)| > 1. If neither of the reduction
steps is applicable, we have at most k nontrivial connected components (due to Rule 3)
and the size of the neighbourhood of each component of G—X is at most | X| < k(k+1)
(due to Rule 7).

At every branching step, we will ensure that one of the following progresses happen
in any recursive call:

e the instance will be resolved immediately by Reduction Rules 1-4, 7, or 8, or

e the parameter k decreases, or

e the parameter k stays the same, but the number of nontrivial connected com-
ponents plus the number of vertices of X adjacent to a nontrivial component
increases.

We observe that the reduction rules do not reverse the above progress. That is, Rule 5
can decrease the number of nontrivial connected components or the number of vertices
of X incident with a nontrivial connected component, but at the same time decreases
k by one, while Rule 6 cannot delete a nontrivial connected component.

After the application of the described reduction rules, the number of nontrivial
components is at most k and the size of X is at most k(k 4+ 1). Thus, the depth of
the recursion is bounded by O(k?).

Let C' be a component of G — X with |[Ng(C)| > 2. (It exists as the instance
is not bipedal.) For a subset B C C' and a function f : B — Ng(C'), we construct
an instance Z; as follows: for every v € B, we merge v onto the vertex f(v) (we use
f(v) as the name of the resulting vertex and the resulting vertex still belongs to X).



ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 9

We say that B is a shattering set if for every f: B — Ng(C), the instance Z; either
contains strictly more nontrivial components than the current instance, or recursing
on Z; will result in returning an immediate answer by one of the first four reduction
rules.

The main technical contribution of Section 5 of [29] is the following statement.

LEMMA 3.1 ([29, Lemma 5.3]). Given an instance (G, T,w,k, W) together with
a set X CV(G)\T such that in G — X there is no path from s to t for any (s,t) € T,
and a component C of G — X with |[Ng(C)| > 2, one can find a shattering set B C C
of size at most 3k in polynomial time.

We apply Lemma 3.1 to C, obtaining a set B of size at most 3k. We branch,
guessing the first of the following options that happens with regards to a hypothetical
solution Z:

1. There is a vertex v € BN Z. We guess v, delete v from the graph, decrease k
by one, decrease W by w(v), and recurse. This gives |B| < 3k subcases and
in each subcase k drops.

2. For every v € B, the connected component of G — Z that contains v also
contains a vertex of X. For every v € B, we guess a vertex f(v) € Ng(C)
that is in the same connected component of G — Z as v. As [Ng(C)| < |X| <
k(k + 1) and |B| < 3k, there are 20 198k) options for f : B — Ng(C). We
recurse on Z¢. To see that we obtain progress, observe that:

e the parameter k stays the same;

e if X is not an independent set, the recursive call returns NO immediately;

e otherwise, the fact that B is a shattering set implies that in each in-
stance Zy, the number of nontrivial components increases, while the
connectivity of C' implies that every vertex of Ng(C') remains adjacent
to a nontrivial connected component, so the set of vertices of X adjacent
to a nontrivial connected component does not change.

3. There exists v € B such that the connected component of G — Z that contains
v is disjoint with X. Here, [29] branches on an important separator separating
v from X. This does not work in the presence of weights, so we need to proceed
differently. We insert v into X, set its weight to 400, and recurse. Clearly,
the hypothetical solution Z remains a solution and, if the guess is correct, Z
remains a multiway cut (with regards to the enlarged set X). To see that we
obtain progress, observe that:

e the parameter k stays the same;

e if X is not an independent set, the recursive call returns NO immediately;

e otherwise, first observe that in the right guess v has no neighbors in
the set X; therefore, for every y € Ng(C), there exists a connected
component Cy of C — {v} with y € Ng(Cy) and as v € Ng(C,) due to
connectivity of C, Cy is a new nontrivial component; hence the number
of vertices of X that are incident with a nontrivial connected component
increases as both v and the whole Ng(C') are now adjacent to nontrivial
connected components; furthermore, the number of nontrivial connected
components does not decrease as at least one new nontrivial component
is created in the place of C since Ng(C) # 0.

Hence, the recursive step invokes 29(F198%) recursive subcalls, in each obtaining
the promised progress. Every single recursive call takes polynomial time. Conse-
quently, the branching algorithm takes 20" 108%);,0(1) time and results in 20" log k)
leaves of the recursion trees that give either an immediate answer or a bipedal in-



10 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

stance, which is passed to Section 3.2.

3.2. Solving a bipedal instance. We now show how to reduce a bipedal in-
stance to a GDPC instance where every bundle consists of at most two arcs and
a single clause containing the heads of these two arcs. These bundles are 2Ks-free
and 4-bounded and hence can be solved by Theorem 2.1 in randomized FPT time
2k?"pO() | This is essentially repeating the arguments of Lemma 7.1 of [18], ad-
justed for the vertex-deletion setting and GDPC.

We start with a graph H consisting of vertices s and ¢. For every component
C of G — X, proceed as follows. Recall that |[Ng(C)| € {1,2}. Denote one of the
elements of Ng(C') as s¢ and the other as t¢, if present. For every v € V(G), create
four vertices v, vy, v, vy, arcs (v7,vY), (v, ,v;), and a clause viv;". The two
constructed arcs and the constructed clause form a bundle B, of weight w(v). These
are all the bundles that we will construct; all subsequent arcs and clauses will not
be in any bundle and thus will be undeletable. For every connected component C' of
G — X and wv € E(G[C]), add arcs (uf,vy), (vi,uy) (uf,v;), and (v;",u; ). For
every vsc € F(G) with v € C, add arcs (s,v;) and (v;,t). For every vtc € E(G)
with v € C, add arcs (s,v; ) and (vF,¢). Observe that this creates an s to ¢ path in
H whenever there is an s¢ to t¢ path whose internal vertices are contained in C (this
is formalized later in Lemmas 3.2 and 3.3). Since our solution is also a multiway cut
for X, it needs to kill all s¢ to tc paths. In the new graph H, this will amount to
deleting the s to t paths.

Finally, for every (u,v) € T we proceed as follows. Note that u and v are in
distinct connected components of G — X, say C, and C,. For every x € Ng(C,) N
Ng(C,) we proceed as follows. Say = a¢, and z = ¢, for o, 3 € {s,t}. Add
a clause Uy Vg - This is done to ensure that the paths between the endpoints of
any terminal pair (that definitely lie in two distinct components of G — X) are hit
by the GDPC solution. This finishes the description of the GDPC instance 7' =
(H,s,t,C,B,w,k,W); see Figure 1 for a simple example of the construction. It is
immediate that the instance satisfies the prerequisites of Theorem 2.1 with b = 4.

It remains to check the equivalence of the instance Z' of GDPC with the input
instance Z = (G, T,w,k, W) together with the set X. We do it in the next two
lemmata, completing the proof of Theorem 1.1. Recall T is the set of all terminal
vertices.

LEMMA 3.2. If Z CV(G)\ (X UT) is a solution that is also a multiway cut for
X, then Z' =,., By N E(H) is a cut in I' that satisfies all clauses outside B, for
veEZ.

veEZ

Proof. Assume first that H — Z’ contains a path P’ from s to ¢. Observe that
there exists a component C of G — X and « € {s,t} such that all internal vertices of
P’ are of the form v or v, for v € C. Then, the path P’ induces a path from s¢ to
tc via C in G — Z, a contradiction to the assumption that Z is a multiway cut for X.

Assume now that Z’ violates a clause v} v;" in B,. Then first observe that v € C,
for a component C' of G — X. Let P! be a path from s to v} in H — Z' and let P|
be a path from s to v} in H — Z’. In G — Z, the path P! yields a path P, from s¢
to v and the path P/ (reversed) yields a path P, from v to to. Together, Ps and P;
yield a path from s¢ to t¢ in G — Z, a contradiction to the assumption that Z is a
multiway cut.

Finally, assume that Z’ violates a clause u,v, for some (u,v) € T, where C,
and C, are the components of G — X containing u and v, respectively, x € Ng(C,) N



ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 11

G

S1

Sc to

Fic. 1. Ilustration of the construction of Subsection 3.2. On the top, there is graph G with
(s1,t2) € T and sc,tc € X. On the bottom, there is the corresponding constructed graph H with
clauses depicted in red.

N¢g(Cy), and © = a¢,, x = B¢, for a, 8 € {s,t}. Let P/, be a path from s to u,, in
H — Z' and let P be a path from s to vy in H — Z'. In G — Z, P, yields a path P,
from u to z = a¢, and P} yields a path P, from v to x = B¢,. Together, P, and
P, yield a path from u to v in G — Z, a contradiction to the assumption that Z is a
solution. ]

LEMMA 3.3. If Z' is a cut in I' that satisfies all clauses that are not in bundles
and Z consists of those v such that Z' violates B, then Z is a solution to T that is
also a multiway cut for X.

Proof. We first show that Z is a multiway cut for X. By contradiction, assume
that there exists a component C' of G — X and a path P from s¢ to t¢ via C that
avoids Z. Let v be an arbitrary vertex of P in C'. Then, the prefix of P from s¢ to
v lifts to a path P, in H — Z’ from s to v}. Similarly, the suffix of P from v to tc,
reversed, lifts to a path P/ in H — Z' from s to v;'. Hence, Z’ violates the clause
vio) and hence the bundle B,, which is a contradiction.

Consider now (u,v) € T and assume there is a path P from u to v in G — Z.
Since Z is a multiway cut for X, P contains at most one vertex of X. Since u and



12 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

v are in distinct connected components of G — X (say, C,, and C,, respectively), P
contains at least one vertex of X. That is, P starts in u, continues via C), to a vertex
x € Ng(Cy,) N Ng(C,), and then continues via C,, to v. The prefix of P from u to
x (reversed) lifts to a path P, in H — Z' from s to u,, where x = ac,, o € {s,t}.
The suffix of P from x to v lifts to a path P, in H — Z’ from s to vy where z = f¢,,
B € {s,t}. Hence, the clause ug vy is violated by 7', a contradiction. This finishes
the proof of Lemma 3.3. O

With the discussion above, Lemmata 3.2 and 3.3 conclude the proof of Theo-
rem 1.1.

4. Group Feedback Edge/Vertex Set. This section is devoted to the proof
of Theorem 1.3. In fact, we just closely follow the arguments of [9] and verify that
they also work in the weighted setting. The algorithm reduces the problem to mul-
tiple instances of MULTIWAY CUT. Here, in the presence of weights, we apply the
algorithm of Theorem 1.1 to solve WEIGHTED MULTIWAY CUT (in particular, we use
Corollary 1.2).

As discussed in Subsection 2.1, we can focus on the vertex-deletion variant GROUP
FEEDBACK VERTEX SET Using iterative compression (Subsection 2.2) we assume
that, apart from the input instance (G, v, w, k, W), we are given a set X C V(G) of
size at most k + 1 such that G — X has no non-null cycles and the goal is to find a
solution disjoint from X. We set w(xz) = +oo for every € X. Recall that in this
problem, the input graph G is equipped with a group T'.

For a graph H with group labels ¥, a consistent labeling is a function ¢ : V(H) —
I' such that ¢(v) = ¢(u) + (e, u) for every e = uwv € E(H). It is easy to see that
(H, ) has no non-null cycle if and only it admits a consistent labeling.

Untangling. By standard relabelling process, we can assume that (e, v) = 0 for
every e € E(G — X) and v € e; we call such an instance untangled. Since G — X
has no non-null cycles, there exists ¢ : V(G) \ X — T such that for every e = uv €
E(G — X) we have ¢(v) = ¢(u) + (e, u). For every e = uv € E(G — X) we relabel
Y(e,u) = ¢(u) + Y(e,u) — ¢(v) and (e, v) := d(v) + (e, v) — ¢(u). Furthermore,
for every e = uv € E(G) with u € X but v ¢ X, we relabel ¢(e,u) := (e, u) — ¢(v)
and ¥(e,v) = ¢(v) + (e, v). Tt is easy to check that, after the above relabeling, for
every closed walk C it does not change whether ¢(C) = 0 or not, while 1(e,v) = 0
for every e € E(G — X) and v € e.

Extending a labeling of X. We now observe that, given a labeling ¢g : X — T,
finding a set Z C V(G) \ X such that ¢y extends to a consistent labeling of G — Z
reduces to MULTIWAY CUT.

LEMMA 4.1. There exists a randomized FPT algorithm with running time bound
kM o) that, given an untangled instance (G, ¥, w,k, W, X) and a function ¢ :
X — T, checks if there is a set Z C V(G)\ X of cardinality at most k and weight at

most W such that G — Z admits a consistent labeling extending ¢q.

Proof. First, we check if for every e = wv € E(G[X]) we indeed have ¢¢(v) =
do(u) + (e, u), as otherwise, the answer is No. We construct a MurLTiway CuT
instance as follows. Let T be the set of those elements g € I' such that there exists
w € E(G),ue X,v ¢ X, and g = ¢o(u) + ¢(uv,u) (ie., in a consistent labeling
extending ¢g, we would need to assign g to v). Note that |T'| < |E(G)|. Let H be the
graph consisting of a copy of G — X (with weights inherited), the set T as additional
vertices, and for every wv € E(G), u € X, v ¢ X, an edge from ¢g(u) + p(uv,u) € T
to v. A direct check shows that it suffices to solve the obtained MuLTIWAY CUT



ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 13

instance (G, T,w, k, W) and return the answer (the proof of the equivalence is spelled
out in the proof of Lemma 7 in [9]). d

Enumerating reasonable labelings of X . Since I' can be large, we cannot enumer-
ate all labelings ¢ : X — I'. In [9], a procedure is presented that enumerates a family
of 20(F1ogk) Jabelings such that, for every solution Z, there is a consistent labeling of
G — Z that extends one of the enumerated labelings.

The main trick lies in the following reduction step. For v € V(G)\ X and z € X,
we define a flow graph F'(v,x) as follows. Let I',, be the set of those g € T' such that
there exists zu € E(G), v ¢ X and ¢(zu,u) = g. Note that |I';| < |E(G)|. The
graph F(v,x) consists of a copy of G — X, the set I';, as additional vertices and, for
every zu € E(G) with u ¢ X, an edge wip(zu, u).

We have the following statement.

LEMMA 4.2 (Lemma 8 of [9]). If there are k + 2 paths in F(v,z) from v to
distinct elements of 'y that are vertex-disjoint except for v, then v is contained in
every solution of cardinality at most k.

The condition of Lemma 4.2 can be checked in polynomial time. If such a vertex v is
discovered, we can delete it, decrease k by one, decrease W by w(v), and repeat the
analysis.

Fix z,y € X, z # y. An external path from x to y is a path with endpoints x and
y and all internal vertices in G — X; note that an edge zy is also an external path.
Let I'(z,y) be the set of all elements g € I" such that there exists an external path P
from z to y with ¢¥)(P) = g. We also have the following statement.

LEMMA 4.3 (Lemma 9 of [9]). If there is no vertex v as in Lemma 4.2, but for
some z,y € X, x # y we have |U(z,y)| > k3(k + 1) + 2, then there is no solution of
cardinality at most k.

The condition of Lemma 4.3 can be again checked in polynomial time and, if we find
that T'(z,y) is too large for some z,y € X, x # y, we return NO.

Otherwise, we enumerate reasonable labelings ¢g : X — T' as follows. First, we
guess how X is partitioned into connected components of G — Z for a hypothetical
solution Z; in every connected component, we can set ¢y independently. Let Y C X
be a set of vertices guessed to be in the same connected component of G — Z; note
that necessarily Y needs to live in the same connected component of G, so T'(z,y) # 0
for every distinct z,y € Y. Fix y € Y and set ¢o(y) = 0. Note that in a consistent
labeling of G — Z that assigns the value of 0 to y, for x € Y \ {y} the value assigned
to x needs to be in I'(y,z) as a path P from y to z in G — Z has (P) € I'(y,x).
By Lemma 4.3, there are only O(k®) options for ¢g(z). Overall, this gives 20(klogk)
options for ¢q, as desired.

This finishes the proof of Theorem 1.3.

5. Directed Subset Feedback Edge/Vertex Set. This section is devoted to
the proof of Theorem 1.5. As discussed in Section 2.1, we can restrict ourselves to
the edge-deletion version, that is, to the DIRECTED SUBSET FEEDBACK EDGE SET
problem. Furthermore, we can assume that red edges are undeletable (of weight +00):
for every e = (u,v) € R, we subdivide e, replacing it with a path u — x. — v; the
edge (u,z.) becomes red and of weight +oo, and (x.,v) is not red and inherits the
weight of e.

Let T = (G, R,w, k,W) be the input instance. Using iterative compression, we
can assume we are given access to a set X C V(G) of size at most k + 1 such that



14 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

G — X has no cycle involving a red edge.

Let Z C E(G) \ R. Observe that G — Z has no cycle containing a red edge if and
only if for every (u,v) € R, there is no path from v to w in G—Z. The latter condition
is equivalent to u and v being in different strong connected components of G — Z. We
will use the above reformulations of the desired separation property interchangeably.

Let Z be a sought solution. We start with some branching steps. First, we guess
how the vertices of X are partitioned between strong connected components of G—Z.
We identify vertices of X that are guessed to be in the same connected components
of G — Z; note that in the branch where the guess is correct, this does not change
whether two vertices of G — Z are in the same strong connected component or not.
Henceforth, by somewhat abusing the notation, we can assume that the vertices of X
lie in distinct strong connected components of G — Z. We guess the order of X in a
topological ordering of the strong connected components of G — Z; that is, we guess
an enumeration of X as x1,¥2,...,7 x| such that in G — Z there is no path from x;
to z; for 1 <i < j < |X|. Since initially |X| < k+ 1, there are 2918 %) hranches up
to this point and we retain the property | X| < k + 1.

We now construct a GDPC instance Z'. We first construct a graph H as follows.
We start from 2| X |+ 1 copies of the graph G, denoted G for 1 < a < 2|X|+ 1. For
u € V(G), let u® be the copy of u in the graph G*. For every 1 <a <b <2|X|+1
and every u € V(G) we add an arc (u’, u®). For every red arc (u,v) € R and every
1 <a < |X|, we add an arc (u?*,v??T1). Finally, we introduce two new vertices s and
t and, for every 1 <a < X and 1 < b < 2|X|+ 1 an arc (s,z?) if 2a > b and an arc
(2% 1) if 2a < b.

For every e = (u,v) € E(G) \ R, we make a bundle B, consisting of all 2|.X |+ 1
copies of the arc e. We set w(B.) = w(e). This finishes the description of a GDPC
instance Z' = (H, s,t,0, B,w, k, W) with no clauses. See Figure 2.

We observe that the obtained instance has pairwise linked deletable edges, due
to the existence of crisp arcs (ub,u?) for every u € V(G) and 1 < a < b < 2|X| + 1.
Furthermore, every bundle contains at most 2| X|+ 1 < 2k + 3 deletable edges. Thus,
by Theorem 2.2, we can resolve it in randomized FPT time 20(k* log k), O(1)

It remains to show that the answer to Z’ is actually meaningful. This is done in
the next two lemmata that complete the proof of Theorem 1.5.

LEMMA 5.1. Let Z C E(G) \ R be such that G — Z has no cycle containing a red
edge, and, additionally, all vertices of X lie in distinct strong connected components
of G — Z, and there is no path from x; to x; in G — Z for every 1 < i < j < |X]|.
Then Z' = U,c, Be is a solution to T'.

Proof. By contradiction, assume that G — Z’ contains a path P’ from s to . Pick
such a path P’ that minimizes the number of indices a such that P’ contains a vertex
of G*. Let a € {1,...,2|X|+1} be the minimum index such that P’ contains a vertex
of G* and let u® € V(P') be the last vertex of P’ in G®. Observe that if (s,z?) is the
first edge of P’, then H also contains crisp edges (s,z?) for every 1 < < b. Hence,
by the minimality of a, we can modify P’ so that the entire prefix from s to u® is
contained in G*: whenever P’ traverses a vertex va/, we instead traverse the vertex
4.

Symmetrically, by choosing a to be maximum such that P’ contains a vertex of
G® and u® € V(P') to be the first vertex of P’ in G, we observe that we can replace
the suffix of P’ from u® to ¢ so that it is completely contained in G*.

Observe that the only edges of H that lead from G° to G for a < b are edges of
the form (u??,v2+1) for 1 < a < |X| and red arcs (u,v). Hence, we can assume that



ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 15

1 % h
;1\ : Tar1

Gl

[ . N —

I S
By o

z2d+ zi S w2

—
—
\\2.\+2 2'2/2
T2 £ u?

Ta

2|X|+1 _2[X|+1, 2 +1,2 +1,,2 +1 2| X[+1 2| X|+1
SR 2 222X 21

F1a. 2. Illustration of the reduction of Section 5. All copies of an edge e of G form a bundle
Be: here, blue edges form one bundle for an edge (u,v) and magenta edges form another bundle
for an edge (v,w). Furthermore, if (v,w) is red, then there is an extra arc (v2*, w?*t1) for every
1< a < |X|, depicted in red. Intuitively, this arc together with arcs (s,x2*) and (z2%71,t) asks to
destroy all closed walks that pass both through (v,w) and z4.

the path P’ is of one of the following two types:
1. All internal vertices of P’ lie in the same graph G°.
2. For some 1 < a < |X]|, the path P’ first goes from s via G2, then uses one
edge (u?®,v?¢*1) for some (u,v) € R, and then continues via G221 to t.
In the first case, let (s,x$) be the first edge of P’ and let (x{,t) be the last edge of
P’. By construction of H, we have 2j > a > 2i, so j > 4. Thus, P’ without the first
and the last edge gives a path in G — Z from z; to x; for some j > 7, a contradiction.
In the second case, let (s, z3*) be the first edge of P’ and let (22°*1 1) be the last
edge of P’. By construction of H, we have 2j > 2a and 2a+1 > 2i,s0 j > 1. If j > i,
P’ without the first and the last edge gives a path from z; to x;, again a contradiction
as in the first case. If j = i, then the subpath of P’ from v2%*! to mf““ gives a path
from v to x; in G — Z and the subpath of P’ from x?“ to u?® gives a path from z; to
win G—Z. As j =i, this gives a path from v to u in G — Z, a contradiction as (u, v)
is a red edge. 0



16 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

LEMMA 5.2. Let Z' be a cut inZ' and let Z = {e € E(G)\ R | Be.NZ' # 0}.
Then G — Z contains no cycle containing a red edge.

Proof. By contradiction, assume G — Z contains a path P from v to u for some
(u,v) € R. Since G — X contains no such path, P contains a vertex of X. Let
x; € V(P). Let P, be the prefix of P from v to x; and let P, be the suffix of P from
x; to u. Consider the copy P! of P, in G**1 and the copy P2?* of P, in G*. Then,
since Z' contains no edge of B, for any e € E(P), P21 and P2 are disjoint with Z’.
This is a contradiction, as a concatenation of (s,x?%), P2 (u%,0?*1) P2+l and
(z2"*1 ) is a path from s to ¢ in H — Z'. O

6. Conclusions. We showed fixed-parameter tractability of a number of
weighted graph separation problems. Our first result extends a recent result of Galby
et al. [13], who considered the special case of weighted MULTICUT in trees. For all
our algorithms, we revisited an old combinatorial approach to the problem, adjusted
it to weights, and provided a reduction to GDPC in one of its tractable variants.
The application of the technique of flow-augmentation is hidden in the algorithms for
GDPC (Theorems 2.1 and 2.2).

We would like to highlight here one graph separation problem that resisted our
attempts: DIRECTED SYMMETRIC MULTICUT. Here, the input consists of a directed
graph G, weights w : E(G) — Z4 (that is, we consider an edge-deletion variant, but,
as we are working with directed graphs, it is straightforward to reduce between edge-
and vertex-deletion variants), integers k and W, and a set 7 C (V(QG)) of unordered
pairs of vertices of G. The problem asks for an existence of a set Z C E(G) of size at
most k and total weight at most W such that for every uv € T, the vertices v and v
are not in the same strong connected component of G — Z (i.e., Z cuts all paths from
u to v or cuts all paths from v to u). Eiben, Rambaud, and Wahlstrom [12] consid-
ered the parameterized complexity of DIRECTED SYMMETRIC MULTICUT and gave
partial results, but the main problem of the parameterized complexity of DIRECTED
SYMMETRIC MULTICUT parameterized by k remains open, even in the unweighted
setting.

To motivate the DIRECTED SYMMETRIC MULTICUT problem further, we point
out that it has a very natural reformulation in the context of temporal CSPs, that is,
constraint satisfaction problems with domain Q and access to the order on Q. More
formally, a temporal CSP relation is an FO formula with a number of free variables
that can be accessed via comparison predicates x = y, * # y, ¢ < y, and = < y.
A temporal CSP language is a set of temporal CSP relations. For a temporal CSP
language A, an instance of CSP(A) consists of a set of variables X and a set C of
constraints; each constraint is an application of a formula from A to a tuple of variables
from X. The goal is to find an assignment « : X — Q that satisfies all constraints.
In the MAX SAT(A) problem, we are additionally given an integer k and the goal is
to satisfy all but k constraints (i.e., delete at most k constraints to get a satisfiable
instance).

In various CSP contexts, the Max SAT(A) problem is usually hard, yet the
parameterized complexity landscape with k as a parameter is often rich; see, e.g., the
recent dichotomy for the Boolean domain [21] and references therein. The P vs NP
dichotomy for temporal CSP(A) is known since over a decade [1]. Can we establish
parameterized complexity dichotomy for temporal MaX SAT(A) parameterized by
k?



ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 17
One of the most prominent examples of temporal CSP languages is

A={z=yrv#yr<yx<y}

called a point algebra. Here, CSP(A) is known to be polynomial-time solvable. We
observe that Max SAT(A) is equivalent to the (unweighted) DIRECTED SYMMETRIC
MuLTiCcUT.

In one direction, given an unweighted DIRECTED SYMMETRIC MULTICUT instance
(G, T,k), we set X = V(G), model every arc (u,v) € E(G) as a constraint v < v
and each pair uwv € T as k + 1 copies of a constraint u # v. Intuitively, a desired
assignment « : V(G) — Q maps all vertices of the same strong connected component
to the same number, and otherwise sorts the strong connected components according
to a topological ordering.

The other direction is slightly more involved due to some technicalities. First,
we replace each constraint x = y with a pair of constraints z < y and y < x; note
that we will never want to delete both such constraints. Similarly, we replace each
constraint x < y with z # y and x < y; again we will never want to delete both
resulting constraints. Thus, we can assume that the instance uses only =z # y and
2 < y constraints. Then, for every constraint x # y, we introduce fresh copies 2’ and
1y’ of z and y, introduce constraints z < 2/, 2’ <z, y < v, vy <y, and k + 1 copies
of ' # 3/, and delete x # y. Now deleting x # y is equivalent to deleting one of the
inequalities, say x < xz/, and setting =’ to some very small number different than y
and 3. Thus, we end up in an instance where only z < y and x # y constraints are
present, and the latter constraints are always undeletable (appear in batches of k + 1
copies). Now, we can directly model it as DIRECTED SYMMETRIC MULTICUT: we set
V(G) = X, for every constraint < y we add an arc (z,y) and for every batch of
k + 1 constraints = # y we add a pair zy to T.

With a very similar reduction we observe that for A’ = {x < y,x < y} the problem
Max SAT(A’) is equivalent to (unweighted) DIRECTED SUBSET FEEDBACK EDGE
SET: every constraint < y is equivalent to a red arc (x,y) and every constraint
x <y is equivalent to a non-red arc (z,y).

Therefore, the unresolved status of the parameterized complexity of DIRECTED
SYMMETRIC MULTICUT stands as the main obstacle to obtain a dichotomy for param-
eterized complexity of Max SAT(A) for temporal CSP languages A, parameterized
by the deletion budget k.

REFERENCES

[1] M. Bopirsky AND J. KARA, The complezity of temporal constraint satisfaction problems, J.
ACM, 57 (2010), pp. 9:1-9:41, https://doi.org/10.1145/1667053.1667058.

[2] N. BOUSQUET, J. DALIGAULT, AND S. THOMASSE, Multicut is FPT, SIAM J. Comput., 47
(2018), pp. 166-207, https://doi.org/10.1137/140961808.

[3] J. CHEN, Y. Liu, S. Lu, B. O’SULLIVAN, AND I. RAZGON, A fized-parameter algorithm for the
directed feedback vertex set problem, J. ACM, 55 (2008), pp. 21:1-21:19, https://doi.org/
10.1145/1411509.1411511.

[4] R. Currnis, M. CYGAN, M. HAJIAGHAYI, AND D. MARKX, Directed subset feedback verter set
is fized-parameter tractable, ACM Trans. Algorithms, 11 (2015), pp. 28:1-28:28, https:
//doi.org/10.1145/2700209.

[5] R. Currnis, M. CycaN, M. HAJIAGHAYI, M. PILIPCZUK, AND M. PILIPCZUK, Designing FPT
algorithms for cut problems using randomized contractions, SIAM J. Comput., 45 (2016),
pp. 1171-1229, https://doi.org/10.1137/15M1032077.

[6] R. CHITNIS, L. EGRI, AND D. MARX, List H-coloring a graph by removing few vertices, Algo-
rithmica, 78 (2017), pp. 110-146, https://doi.org/10.1007/s00453-016-0139-6.


https://doi.org/10.1145/1667053.1667058
https://doi.org/10.1137/140961808
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1145/2700209
https://doi.org/10.1145/2700209
https://doi.org/10.1137/15M1032077
https://doi.org/10.1007/s00453-016-0139-6

18

[10]

[11]

[12]

[14]

[15]

[22]

23]

M.

M.

M.

M.

M.

=

S.

E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

. CHITNIS, M. HAJIAGHAYI, AND D. MARKX, Fized-parameter tractability of directed multiway

cut parameterized by the size of the cutset, SIAM J. Comput., 42 (2013), pp. 1674-1696,
https://doi.org/10.1137/12086217X.

CycaAN, P. Komosa, D. LoksHTANOV, M. PILiPCcZUK, M. PILIPCZUK, S. SAURABH, AND
M. WAHLSTROM, Randomized contractions meet lean decompositions, ACM Trans. Algo-
rithms, 17 (2021), pp. 6:1-6:30, https://doi.org/10.1145/3426738.

CYGAN, M. PILIPCZUK, AND M. PILIPCZUK, On group feedback vertex set parameterized
by the size of the cutset, Algorithmica, 74 (2016), pp. 630-642, https://doi.org/10.1007/
s00453-014-9966-5.

Cya@an, M. PiLipczuk, M. PiLipczuk, AND J. O. WOJTASZCZYK, On multiway cut pa-
rameterized above lower bounds, ACM Trans. Comput. Theory, 5 (2013), pp. 3:1-3:11,
https://doi.org/10.1145/2462896.2462899.

CYGAN, M. PiLipczuk, M. PILIPCZUK, AND J. O. WOJTASZCZYK, Subset feedback vertex
set is fized-parameter tractable, SIAM J. Discrete Math., 27 (2013), pp. 290-309, https:
//doi.org/10.1137/110843071.

. EBEN, C. RAMBAUD, AND M. WAHLSTROM, On the parameterized complexity of sym-

metric directed multicut, in 17th International Symposium on Parameterized and Ex-
act Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, H. Dell and
J. Nederlof, eds., vol. 249 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fir Informatik,
2022, pp. 11:1-11:17, https://doi.org/10.4230/LIPIcs.IPEC.2022.11, https://doi.org/10.
4230/LIPIcs. JPEC.2022.11.

. GALBY, D. MARX, P. SCHEPPER, R. SHARMA, AND P. TALE, Parameterized complexity

of weighted multicut in trees, in Graph-Theoretic Concepts in Computer Science - 48th
International Workshop, WG 2022, Tiibingen, Germany, June 22-24, 2022, Revised Se-
lected Papers, M. A. Bekos and M. Kaufmann, eds., vol. 13453 of Lecture Notes in Com-
puter Science, Springer, 2022, pp. 257-270, https://doi.org/10.1007/978-3-031-15914-5_19,
https://doi.org/10.1007/978-3-031-15914-5_19.

. GUILLEMOT, FPT algorithms for path-transversal and cycle-transversal problems, Discrete

Optimization, 8 (2011), pp. 61-71, https://doi.org/10.1016/j.disopt.2010.05.003.

HaTzEL, L. JAFFKE, P. T. LiMA, T. MASARIK, M. PiLIPcZUK, R. SHARMA, AND M. SORGE,
Fized-parameter tractability of DIRECTED MULTICUT with three terminal pairs param-
eterized by the size of the cutset: twin-width meets flow-augmentation, in Proceedings of
the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, Jan-
uary 22-25, 2023, N. Bansal and V. Nagarajan, eds., SIAM, 2023, pp. 3229-3244, https://
doi.org/10.1137/1.9781611977554.ch123, https://doi.org/10.1137/1.9781611977554.ch123.

. IwaTA, M. WAHLSTROM, AND Y. YOSHIDA, Half-integrality, LP-branching, and FPT algo-

rithms, SIAM J. Comput., 45 (2016), pp. 1377-1411, https://doi.org/10.1137/140962838.
KAWARABAYASHI AND M. THORUP, The minimum k-way cut of bounded size is fixed-
parameter tractable, in IEEE 52nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, R. Ostrovsky, ed., IEEE
Computer Society, 2011, pp. 160-169, https://doi.org/10.1109/FOCS.2011.53.

. J. KM, S. KraTscH, M. PILIPCZUK, AND M. WAHLSTROM, Solving hard cut problems via

flow-augmentation, CoRR, abs/2007.09018 (2020), https://doi.org/10.48550/arXiv.2007.
09018.

J. KM, S. KrRATSCH, M. PILIPCZUK, AND M. WAHLSTROM, Solving hard cut problems via
flow-augmentation, in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, D. Marx, ed., SIAM, 2021,
pp. 149-168, https://doi.org/10.1137/1.9781611976465.11.

. J. KM, S. KrATSCH, M. PILIPCZUK, AND M. WAHLSTROM, Directed flow-augmentation, in

STOC 2022: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome,
Italy, June 20 - 24, 2022, S. Leonardi and A. Gupta, eds., ACM, 2022, pp. 938-947,
https://doi.org/10.1145/3519935.3520018.

J. Kim, S. KRATSCH, M. PILIPCZUK, AND M. WAHLSTROM, Flow-augmentation III: com-
plexity dichotomy for boolean csps parameterized by the number of unsatisfied constraints,
in Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, N. Bansal and V. Nagarajan, eds., STAM, 2023,
pp. 3218-3228, https://doi.org/10.1137/1.9781611977554.ch122, https://doi.org/10.1137/
1.9781611977554.ch122.

KRrATSCH, M. PILIPCZUK, M. PILIPCZUK, AND M. WAHLSTROM, Fized-parameter tractability
of multicut in directed acyclic graphs, SIAM J. Discrete Math., 29 (2015), pp. 122-144,
https://doi.org/10.1137/120904202.

S. KRATSCH AND M. WAHLSTROM, Compression via matroids: A randomized polynomial kernel


https://doi.org/10.1137/12086217X
https://doi.org/10.1145/3426738
https://doi.org/10.1007/s00453-014-9966-5
https://doi.org/10.1007/s00453-014-9966-5
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1137/110843071
https://doi.org/10.1137/110843071
https://doi.org/10.4230/LIPIcs.IPEC.2022.11
https://doi.org/10.4230/LIPIcs.IPEC.2022.11
https://doi.org/10.4230/LIPIcs.IPEC.2022.11
https://doi.org/10.1007/978-3-031-15914-5_19
https://doi.org/10.1007/978-3-031-15914-5_19
https://doi.org/10.1016/j.disopt.2010.05.003
https://doi.org/10.1137/1.9781611977554.ch123
https://doi.org/10.1137/1.9781611977554.ch123
https://doi.org/10.1137/1.9781611977554.ch123
https://doi.org/10.1137/140962838
https://doi.org/10.1109/FOCS.2011.53
https://doi.org/10.48550/arXiv.2007.09018
https://doi.org/10.48550/arXiv.2007.09018
https://doi.org/10.1137/1.9781611976465.11
https://doi.org/10.1145/3519935.3520018
https://doi.org/10.1137/1.9781611977554.ch122
https://doi.org/10.1137/1.9781611977554.ch122
https://doi.org/10.1137/1.9781611977554.ch122
https://doi.org/10.1137/120904202

ON WEIGHTED GRAPH SEPARATION PROBLEMS AND FLOW-AUGMENTATION 19

for odd cycle transversal, ACM Trans. Algorithms, 10 (2014), pp. 20:1-20:15, https://doi.
org/10.1145/2635810.

(24] S. KRATSCH AND M. WAHLSTROM, Representative sets and irrelevant vertices: New tools for
kernelization, J. ACM, 67 (2020), pp. 16:1-16:50, https://doi.org/10.1145/3390887.

[25] D. LOKSHTANOV, M. S. RAMANUJAN, AND S. SAURABH, When recursion is better than iteration:
A linear-time algorithm for acyclicity with few error vertices, in Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans,
LA, USA, January 7-10, 2018, A. Czumaj, ed., STAM, 2018, pp. 1916-1933, https://doi.
org/10.1137/1.9781611975031.125.

[26] D. MARX, Parameterized graph separation problems, Theor. Comput. Sci., 351 (2006), pp. 394—
406, https://doi.org/10.1016/j.tcs.2005.10.007.

[27] D. MARX, B. O’SULLIVAN, AND 1. RAZGON, Finding small separators in linear time via treewidth
reduction, ACM Trans. Algorithms, 9 (2013), pp. 30:1-30:35, https://doi.org/10.1145/
2500119.

[28] D. MARX AND I. RazcoN, Constant ratio fized-parameter approzimation of the edge multicut
problem, Inf. Process. Lett., 109 (2009), pp. 1161-1166, https://doi.org/10.1016/j.ipl.2009.
07.016.

[29] D. MARX AND I. RAZGON, Fized-parameter tractability of multicut parameterized by the size of
the cutset, in Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC
2011, San Jose, CA, USA, 6-8 June 2011, L. Fortnow and S. P. Vadhan, eds., ACM, 2011,
pp. 469-478, https://doi.org/10.1145/1993636.1993699.

[30] D. MARX AND L. RAZGON, Fized-parameter tractability of multicut parameterized by the size of
the cutset, SIAM J. Comput., 43 (2014), pp. 355-388, https://doi.org/10.1137/110855247.

[31] M. PiLipcZUK AND M. WAHLSTROM, Directed multicut is W/[1]-hard, even for four terminal
pairs, ACM Trans. Comput. Theory, 10 (2018), pp. 13:1-13:18, https://doi.org/10.1145/
3201775.

[32] I. RazZGON AND B. O’SULLIVAN, Almost 2-SAT is fized-parameter tractable, J. Comput. Syst.
Sci., 75 (2009), pp. 435-450, https://doi.org/10.1016/].jcss.2009.04.002.

[33] B. A. REED, K. SMITH, AND A. VETTA, Finding odd cycle transversals, Oper. Res. Lett., 32
(2004), pp. 299-301, https://doi.org/10.1016/j.0rl.2003.10.009.

[34] S. SAURABH, What’s next? future directions in parameterized complexity, 2017, https://
rapctelaviv.weebly.com/uploads/1/0/5/3/105379375 /future.pdf. Recent Advances in Pa-
rameterized Complexity school, Tel Aviv, December 2017.

Appendix A. Problem Definitions.
In this section, we give formal descriptions of the problems discussed in this paper.

WEIGHTED MULTICUT (vertex-/edge-deletion variant) Parameter: k
Input: An undirected graph G, a set T C V(G) x V(G), a weight function
w: V(G) = N (resp. w : E(G) — N), and positive integers k, W

Question: Does there exist S C V(G) (resp. S C E(QG)) such that |S| < k,
w(S) < W and, G — S has no path from s to ¢ for any (s,¢) € T.

WEIGHTED MULTIWAY CUT (vertex-/edge-deletion variant) Parameter: k
Input: An undirected graph G, a set T C V(G), a weight function w : V(G) - N
(resp. w: E(G) — N), and positive integers k, W

Question: Does there exist S C V(G) (resp. S C E(G)) such that |S| < k,
w(S) < W and, G — S has no path from ¢ to ¢’ for any t,t' € T, t # .



https://doi.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.1145/3390887
https://doi.org/10.1137/1.9781611975031.125
https://doi.org/10.1137/1.9781611975031.125
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1145/2500119
https://doi.org/10.1145/2500119
https://doi.org/10.1016/j.ipl.2009.07.016
https://doi.org/10.1016/j.ipl.2009.07.016
https://doi.org/10.1145/1993636.1993699
https://doi.org/10.1137/110855247
https://doi.org/10.1145/3201775
https://doi.org/10.1145/3201775
https://doi.org/10.1016/j.jcss.2009.04.002
https://doi.org/10.1016/j.orl.2003.10.009
https://rapctelaviv.weebly.com/uploads/1/0/5/3/105379375/future.pdf
https://rapctelaviv.weebly.com/uploads/1/0/5/3/105379375/future.pdf

20 E.J. KIM, T. MASARIK, M. PILIPCZUK, R. SHARMA AND M. WAHLSTROM

WEIGHTED GROUP FEEDBACK VERTEX/EDGE SET Parameter: k
Input: An undirected graph G equipped with a group I which is not necessarily
Abelian,

an assignment 1, called the group labels, from a pair (e, v), where e € E(G) and
v € e, to an element (e, v) € T such that for any e = uv € E(G) (e, u)+v(e,v) =
Oa

a weight function w: V(G) — N (resp. w : E(G) — N), and positive integers k, W
Question: Does there exist S C V(G) (resp. S C E(G)) such that |S] < k, w(S) <
W and, G—S has no non-null cycle C, that is, if C = (v1, e1,v2, €2, ..., €0, Vp41),

then $(C) = 32, ¥(ei, v;) # 0,

WEIGHTED DIRECTED FEEDBACK VERTEX/EDGE SET Parameter: k
Input: A directed graph G, a weight function w : V(G) — N (resp. w : E(G) —
N), and positive integers k, W

Question: Does there exist a set S C V(G) (resp. S C E(G)) such that G — S is
a directed acyclic graph.

WEIGHTED DIRECTED SUBSET FEEDBACK VERTEX/EDGE SET Parameter: k
Input: A directed graph G, a set R C E(G), a weight function w : V(G) = N
(resp. w : E(G) — N, and positive integers k, Ws)

Question: Does there exist S C V(G) (resp. S C E(G)) such that G — S has no
directed cycle that contains at least one edge of R.

WEIGHTED SKEW MULTICUT (vertex-/edge-deletion variant) Parameter: k
Input: A directed graph G, an ordered set {(s1,t1),...,(s¢,t0)} CV(G) x V(G),
a weight function w : V(G) — N (resp. w : E(G) — N), and positive integers k, W
Question: Does there exist S C V(G) (resp. S € E(QG)) such that |S| < k,
w(S) < W and, G — S has no path from s; to ¢; for any 1 <¢ < j <2

DIRECTED SYMMETRIC MULTICUT Parameter: k
Input: A directed graph G, aset T C V(G)xV(G), a weight function w : E(G) —
N, and positive integers k, W

Question: Does there exist S C E(G) such that |S| < k, w(S) < W and for each
(s,t) € T, G — S has either no path from s to ¢ or no path from ¢ to s.




	Introduction
	Preliminaries
	Edge- and vertex-deletion variants
	Iterative Compression
	Generalized Digraph Pair Cut

	Multicut
	Branching on a multilegged component
	Solving a bipedal instance

	Group Feedback Edge/Vertex Set
	Directed Subset Feedback Edge/Vertex Set
	Conclusions
	References
	Appendix A. Problem Definitions

