
Extending the Functionality and
Security of Time-Based Primitives

Jodie Knapp

Information Security Group
Royal Holloway, University of London

This dissertation is submitted for the degree of
Doctor of Philosophy

August 2023

Declaration

These doctoral studies were conducted under the supervision of Dr Elizabeth A. Quaglia.
The contents of this thesis is the result of original research carried out by myself whilst
enrolled in the Information Security Group as a candidate for the degree of Doctor
of Philosophy. The results presented are my own and contains nothing which is the
outcome of work done in collaboration with others, except as specified in the text and
Acknowledgements. This work has not been submitted for any other degree or award
in any other university or educational establishment.

Jodie Knapp
August 2023

Acknowledgements

To start, I would like to thank my supervisor Dr Elizabeth A. Quaglia for her continued
support throughout my four years working with her. Liz is responsible for shaping
me as a researcher and persevering with my dry, overly wordy writing to produce
meaningful work. I have been influenced by your enthusiasm for research, and your
supportive, empathetic mentoring. I look up to you as a strong woman smashing it in
academia and wider life.

In equal measure, I want to endlessly thank my parents and sisters Stacey and Laura for
their support, putting up with the less pleasant side of me and acting as a much-needed
lifeboat in times of stress even if they’re oceans away. A special mention, upon her
insistence, to Stacey for critiquing my acknowledgements. Without the four of you, I
know I wouldn’t have completed my undergraduate degree let alone gone on to do all
the amazing things I’ve been fortunate to experience.

The aspect of my PhD that I will treasure the most is the core memories made with
my peers. I hope those I met know how much I have valued spending time with them -
from deep chats to travelling across continents, living together, card nights, weddings,
and generally having fun. The list of good times is endless; however, the process has
not been without hard times. I believe with every breakdown comes a breakthrough
and I’m glad to have gone on this seemingly never-ending journey with you all.

This leads to my final thank you and that is to the department for accepting my
application and providing me with this opportunity. I feel very fortunate to have
gained so much work experience, advice, and air miles over the last five years and
will never fail to appreciate how much of my future success, both professionally and
personally, will be because of my time with the CDT. Thank you.

Abstract

The overarching theme of this Thesis is to explore the role of time in cryptography
with an emphasis on protocol design, security modelling, and reducing assumptions of
trust placed upon external entities or users.

The first primitive we focus on in-depth is updatable encryption. At the heart of
updatable encryption is the timely transformation of all encrypted information via
outsourced key rotation. To do so requires cryptographic elements known as tokens
which are used by untrusted entities to perform the updates such that they learn
nothing of the underlying information. Despite the benefits updatable encryption
promises, research is concerned with the inferable information an adversary can realise
without the need to corrupt cryptographic elements. Thus, the focal point of literature
is achieving strong security notions such as ciphertext unlinkability, which intuitively
guarantees fresh and updated ciphertexts are indistinguishable. Traditionally, updatable
encryption (UE) is designed as a symmetric primitive. In this Thesis, we consider
updatable encryption in the context of public-key encryption (PKUE) and present
a rigorous model of security to attain ciphertext unlinkability. We build upon our
framework to consider the leakage of ciphertext age by capturing the notion we name
epoch confidentiality.

We extend our understanding of the PKUE primitive by considering the trust given
to entities in the broader public key infrastructure (PKI) to which a PKUE scheme
will be applied. In particular, we seek to reduce trust in the key generation centre of a
PKI in our work on certificateless public key updatable encryption. Second, we explore
reducing trust in the server performing updates for a PKUE scheme in our work to
define multi-server PKUE.

The second direction of interest in our work is secret-sharing schemes. In essence, this
protocol distributes segments of a secret value to several shareholders to mitigate the
risk of adversarial corruption of highly sensitive information. In particular, we examine

the usefulness of a time-delay mechanism to achieve desirable properties related to
the fair and sound reconstruction of a secret. To do so, we construct a scheme using
homomorphic time-lock puzzles which are assumed to take a threshold amount of time
to solve. Not only this, we do not consider honest shareholders and instead assume
rational player participation in a secret-sharing game whereby individuals may seek to
mislead others for an incentive. Exploring secret sharing in a game theory sense allows
us to capture a realistic scenario in which secret sharing may be applied.

v

Contents

List of figures x

List of tables xii

1 Introduction 1
1.1 Motivation . 1
1.2 Chapter Summary . 4
1.3 Publications . 7

2 Preliminaries 8
2.1 Notation . 8
2.2 Provable Security . 10
2.3 Cryptographic Hardness Assumptions 12
2.4 Fundamental Building Blocks . 16

3 Epoch Confidentiality in Public-Key Updatable Encryption 25
3.1 Introduction . 26

3.1.1 Motivation . 26
3.1.2 Our Contributions . 28
3.1.3 Existing Work . 29

3.2 Chapter Preliminaries . 31
3.3 Public-Key Updatable Encryption . 39

3.3.1 Formal Definition of PKUE . 39
3.4 Security Modelling . 41

3.4.1 Lists . 42
3.4.2 Oracles . 43
3.4.3 The UP-IND-RCCA Security Game 45

3.5 Epoch Confidentiality . 49

3.5.1 Security Modelling . 50
3.6 Construction Preliminaries . 53
3.7 An Epoch Confidential Construction 61
3.8 Security Analysis . 66

3.8.1 Assumptions . 66
3.8.2 Formal Security Proof . 71
3.8.3 Efficiency Considerations . 78

3.9 Summary and Outlook . 80

4 Certificateless Public-Key Updatable Encryption 81
4.1 Introduction . 82

4.1.1 Motivation . 82
4.1.2 Existing Work . 84
4.1.3 Our Contributions . 85

4.2 Chapter Preliminaries . 85
4.3 Certificateless Updatable Encryption 87

4.3.1 Syntax . 87
4.3.2 Formal Definition of CLUE . 87

4.4 Security modelling . 89
4.4.1 Lists . 92
4.4.2 Oracles . 93
4.4.3 Security Game . 94

4.5 Construction Preliminaries . 97
4.5.1 Key-Homomorphic Pseudorandom Functions 98
4.5.2 CL-PKE Security . 98
4.5.3 Updatable Encryption Security Assumptions 100

4.6 A Concrete CLUE Construction . 101
4.7 Security Analysis . 106

4.7.1 Assumptions . 106
4.7.2 Proving Security . 110
4.7.3 Efficiency . 115

4.8 Summary and Outlook . 117

5 Dynamic Multi-Server Updatable Encryption 119
5.1 Introduction . 120

5.1.1 Motivation . 120

vii

5.1.2 Existing Work . 121
5.1.3 Our Contributions . 122

5.2 Dynamic Multi-Server Updatable Encryption 123
5.2.1 Syntax . 124
5.2.2 Formal Definition of DMUE . 124

5.3 Security Modelling . 126
5.3.1 Lists . 127
5.3.2 Oracles . 127
5.3.3 Security Game . 129

5.4 Integrity . 131
5.5 Our Construction . 135

5.5.1 Construction Preliminaries . 135
5.5.2 Building DMUE . 137

5.6 Security Analysis . 142
5.6.1 Proof of Security . 142

5.7 Summary and Outlook . 146

6 Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles148
6.1 Introduction . 148
6.2 Rational Secret Sharing . 150

6.2.1 Formal Definitions . 152
6.2.2 A Background in Secret Sharing 154

6.3 A Generic Construction of an FRSS Scheme 158
6.3.1 Tools Required . 158
6.3.2 Building the FRSS Scheme . 161

6.4 Security Analysis . 164
6.4.1 Game Theory for Rational Secret Sharing 164
6.4.2 Proof of Security . 169

6.5 A Concrete FRSS Construction . 178
6.5.1 Building Blocks . 178
6.5.2 Instantiation . 179
6.5.3 Efficiency Considerations . 184

6.6 Summary and Outlook . 186

7 Concluding Remarks 189

viii

References 193

ix

List of figures

2.1 The security experiment for IND-CPA-security of a PKE scheme. 17
2.2 The security experiment for IND-CCA-security of a PKE scheme. 18
2.3 The security experiment for IND-RCCA-security of a PKE scheme. . . . 19
2.4 Indistinguishability experiment for security of PKE scheme ΠPKE with s

as some state information in this figure. 20
2.5 The security game modelling EUF-CMA security for a digital signature

scheme ΠSig. 22

3.1 Details of the initialisation phase run by the challenger and the oracles
adversary A calls in epoch e during the security experiment of Definition
31. 44

3.2 The security experiment for UP-IND-RCCA-security of a PKUE scheme.
Let O = {ODec,ONext,OUpd,OCorrupt-Token,OCorrupt-Key} denote the set of
oracles that adversary A calls during the experiment. 46

3.3 The security game for a PKUE scheme satisfying UP-IND-EC-RCCA-
security, where set L = {L,M∗, T ,K, K̃, C∗} is initially empty, O is the
set of oracles an adversary A calls, and s defines some state information
output by the adversary. 52

3.4 The security game modelling updatable-signature existentially-unforgeable
chosen-message security of the updatable signature scheme ΠUS. 58

3.5 The game modelling security against updatable-signature unlinkable-
updates under chosen-message attacks of the updatable signature scheme
ΠUS. 59

3.6 Experiment of between challenger (C) and distinguisher (D) in the
IND-IK-CPA game for ΠRise, given a DDH instance in G1 with group
generator g ∈ G1. 70

x

4.1 Details of the initialisation phase run by the challenger and the oracles
adversary A has access to during the security experiment of Definition
47. 95

4.2 The security experiment for CLUE-IND-RCCA security of a CLUE scheme,
where the set of lists is L := {L,M∗, T ,K, C∗} is initially empty, s

defines some state information output by the adversary and O denotes
the oracles an adversary has access to, depending on whether they are a
type I or type II adversary. 96

4.3 Indistinguishability experiment for security a CL-PKE scheme ΠCL-PKE

with s as some state information in this figure. 99

5.1 The set of lists L := {L,K, T , C∗} the challenger maintains in the global
state (GS) as a record of during security games. 128

5.2 Details of oracles an adversary A has access to during the security
experiment of Definition 56 that are specific to the multi-server setting. 130

5.3 The oracles an adversary has access to for the experiment capturing
Definition 56 that remain unchanged from the single-server setting of a
PKUE scheme. 131

5.4 The security experiment for MUE-IND-CCA-security of a DMUE scheme.
Let O = {ODec,OCorrupt-Key,ONext,OUpd,OCorrupt-Token} denote the set of
oracles that adversary A calls during the experiment, where the latter
three oracles capture the multi-server aspect of a DMUE scheme. . . . 132

5.5 The security experiment for MUE-INT-CTXT-security of a DMUE scheme.
Let O = {ODec,OCorrupt-Key,ONext,OUpd,OCorrupt-Token} denote the set of
oracles that adversary A calls during the experiment. 134

xi

List of tables

3.1 Key distinctions between the traditional properties of UE and PRE
primitives. 39

3.2 The leakage profile due to inferable information at adversary A’s disposal
across multiple epochs, for any i ∈ N. The blue, red, and purple boxes
demonstrate how the elements in the respective coloured boxes are used
to infer the cryptographic element highlighted in the same colour. . . . 48

4.1 Efficiency comparisons for algorithms (Enc, Dec, Upd) of our construction
against the literature. 116

xii

Chapter 1

Introduction

This Chapter motivates the work presented in this Thesis and outlines the structure.

1.1 Motivation

Time is a fundamental aspect of communication. Depending on the application and
security requirements, there may be a delay in time before the information becomes
useful, or information may only be available for a limited period, after which it becomes
redundant. By way of illustration, consider the need for outsourced storage of encrypted
information like medical data, which is of a sensitive nature. Storing data over a long
period increases the time an adversary has to attack security, meaning the risk of
cryptographic key exposure is high. Cryptographic primitives such as updatable
encryption [24, 92] aim to mitigate this risk by dividing the time the encrypted data is
stored under a specific key, achieved by a rotation functionality. Thus, the exposure of
a key is only useful for a distinct period, after which the corruption is redundant.

An equally important consideration in modern cryptography is the preservation of
privacy. To achieve the privacy of sensitive information, protocol security modelling
attempts to maintain the secrecy of the data. The omission of this property in a cryp-
tographic scheme can result in a malicious entity learning the underlying information,
with potentially grave consequences. One such cryptographic protocol in which privacy
is a central motivator is secret sharing [110, 16]. The procedure of secret distribution
was introduced to alleviate concerns about a single point of failure if the secret is
corrupted. In essence, secret sharing can be viewed as a method to split and distribute

1

a secret, such as a cryptographic key encrypting important data, across multiple entities
who may or may not be trusted.

The interplay between time and privacy in a cryptosystem can be complex. This Thesis
delves into the role that both properties play in cryptographic schemes, with a focus
on extending the definitions and security modelling of timely primitives, as well as
utilising time delay to attain desirable security properties. In particular, we explore
the distinct updatable encryption and secret-sharing primitives mentioned above.

The first part of our work explores extensions of the updatable encryption primitive.
Traditionally, updatable encryption was designed as a symmetric-key encryption primi-
tive and significantly, a large focus of the literature has been on modelling security. Of
utmost importance in updatable encryption is the following question:

How can we outsource encrypted data over long periods in an untrusted environment,
and maintain the confidentiality of the information?

We were interested to explore the possible extensions and new security goals achievable
when redefining the primitive in the public-key setting.

Contributions in Updatable Encryption In this Thesis, we establish a definition
for a public-key updatable encryption primitive. Further, we present a model of security
for our primitive and define important security notions relevant to the public-key
setting. The idea of ciphertext unlinkability, which incorporates the indistinguishability
of ciphertexts derived from encryption versus updates, is of paramount importance to
the security of an updatable encryption scheme.

We build upon the concept of unlinkability to establish a new security goal coined
epoch confidentiality which demonstrates the unlinkability of ciphertexts and the
confidentiality of ciphertext age. In the context of the example we gave at the start of
this Chapter regarding medical data, the leakage of ciphertext age can indicate the
time an individual has been treated or the individual’s age for instance.

Now we have defined public-key updatable encryption (PKUE), we move forward by
exploring the primitive in the wider context of a public-key infrastructure (PKI). In
practice, applying PKUE in a PKI requires trust in a third party producing the epoch
public and secret keys, which is a clear violation of privacy if the key generator behaves
maliciously or is corrupted. This issue of keys being held in escrow leads to our second
contribution in which our primary concern is to reduce trust in the PKI key generator.

2

Our chosen solution is a new primitive called certificateless public-key updatable encryp-
tion (CLUE), which is derived from PKUE such that the underlying encryption scheme
is certificateless public-key encryption (CL-PKE). Our choice to remove certificates
means the key generator does not know the whole epoch secret key, only a partial
secret key they extracted, consequently resolving the key escrow problem in the PKUE
setting.

At this point in our PKUE research, we have implicitly assumed the server will perform
ciphertext updates honestly and so there is a level of trust endowed to this entity.
Continuing our thought process of reducing trust in the entities involved in the PKUE
primitive, we focus on a real issue that may occur when there is a single point of
failure resulting from a server neglecting to update a ciphertext. The consequence in
this scenario would essentially mean that the updatable encryption scheme reverts to
a standard encryption scheme, ultimately defeating the core purpose of defining the
primitive.

Our proposed solution is to define a multi-server public-key encryption scheme in
which a given committee of servers collaborate to update ciphertexts periodically.
It is practical to assume the need for changes in the participating servers over the
entirety of the scheme to maintain security given one or more servers are dishonest or
corrupted. After careful consideration, we proposed secret-sharing techniques as an
ideal foundation to tolerate dynamic multi-server changes in the scheme over time.

Our venture into applying a secret sharing protocol, as a building block for an updatable
encryption scheme, ignited our interest to concentrate on the role of time in secret
sharing more generally. This leads us to the second facet of our work - an exploration
of time delay in secret sharing protocols. Recollect, secret sharing is a useful tool to
ensure privacy. Alas, distributing the secret among several parties does not guarantee
this security goal. To see this, once a threshold number of secret shares have been
corrupted, an adversary is capable of reconstructing the secret. Note that the adversary
may therefore learn vital information before the intended party(s), creating an unfair
scheme. Secret sharing literature suggests the technique of time delay to lessen the
chance of an unfair outcome.

Contributions in Secret Sharing Our work on secret sharing incorporates the
method of a time delay to satisfy fairness [76] alongside a definition of soundness.
We were interested in understanding how fairness and soundness can be achieved

3

in secret sharing protocols when we model shareholders as rational [62, 5]. That is
malicious/deviant players in a game but at the very least selfish. To consider rational
shareholders, we start by viewing secret sharing through a game theory lens. In doing
so, we can gather information about the strategies and outcomes of players in the
secret-sharing scheme. At a high level, we employ homomorphic time-lock puzzles [97]
on the secret shares, to encrypt the shares into lots of computationally hard puzzles,
which means there is a time delay in any entity determining the secret value. As we
will discuss, there are challenges in maintaining the security of a secret sharing scheme
over a long period, whilst attaining desirable properties and increasing the efficiency of
computation.

We now present a summary of the ensuing Chapters proceeded by details of the
published work contained within this Thesis.

1.2 Chapter Summary

In Chapter 2 we present preliminaries used throughout this Thesis. Topics covered
include general notation, fundamental cryptographic building blocks, specific primitives
and hardness assumptions.

In Chapter 3 we formalise public-key updatable encryption (PKUE), a primitive so far
studied formally only in the symmetric setting. UE outsources the periodic rotation of
an encryption key to an untrusted party, transforming a ciphertext encrypted under
an old key into a ciphertext encrypted under a new key. Crucially, the party updates
the ciphertext without the need to decrypt it, using a tool called an update token.
There are two distinct strains of a UE scheme; ciphertext-dependent updates and
ciphertext-independent updates. We centre on the latter strain, which essentially
generates a single token capable of updating all ciphertexts, and model security notions
for the new public-key UE primitive analogous to the symmetric ciphertext-independent
UE literature [92, 80].

Defining UE in the public-key setting enables us to establish a new notion of security we
call epoch confidentiality (EC) which considers the ability of an adversary to distinguish
the public keys used in periods known as epochs and in turn reflects the leakage
of the time in which a ciphertext was created. Lastly, we propose a public-key UE
construction and prove that it satisfies our new notion of security alongside a notion of

4

ciphertext confidentiality such that efficiency is not affected by moving to the public-key
setting.

In Chapter 4 we formalise certificateless public-key updatable encryption (CLUE). At a
high level, the CLUE primitive functions like the PKUE primitive defined in Chapter
3, except the underlying encryption scheme is certificateless public-key encryption
primitive (CL-PKE) [3]. We chose this primitive because by design the key generation
centre (KGC) extracts a partial secret key that the data owner uses as an input to
generate their epoch public/secret key pairs and update tokens. Important to the
security of a PKUE scheme in instances where we do not trust the KGC, our CLUE
primitive is designed such that the KGC does not generate the full epoch key pairs
and so the aforementioned key escrow issue does not arise.

Furthermore, we provide a security model for CLUE to capture the inferable information
at an adversary’s disposal due to update token and key corruption, and we propose a
concrete construction of CLUE taking inspiration from the certificateless encryption
scheme proposed by the authors of [93]. Finally, we prove our construction satisfies
the security notion of ciphertext indistinguishability that we formalised, following the
modular approach given by [80] to reduce security from the updatable to the static
setting.

In Chapter 5 we propose a Dynamic Multi-Server Updatable Encryption (DMUE)
primitive as an extension of standard public-key updatable encryption (PKUE) defined
in Chapter 3. Recall, traditional UE aims to have efficient ciphertext updates performed
by an untrusted server such that the compromise of several cryptographic keys and
update tokens must not reduce the standard security of encryption. To mitigate the
risk of a single point of failure in single-server UE and thus improve the resilience of
the scheme, we formalise a multi-server variant of PKUE to treat the issue of token
leakage. We can achieve a distributed update process by providing each server with an
update token and requiring a threshold of servers to engage honestly. However, servers
may act dishonestly or need to be replaced over time, so our primitive must cater to
dynamic committee changes in the servers participating across epochs. Inspired by the
work of [15] in the context of secret sharing, we propose a generic DMUE scheme built
from PKUE and dynamic proactive secret sharing primitives. In turn, we prove the
ciphertext unlinkability of freshly encrypted versus updated ciphertexts.

5

In Chapter 6 we turn our attention to secret sharing protocols. In particular, we
continue to focus on the impact of time in cryptographic schemes and protocols,
utilising time-delay building blocks to satisfy important secret-sharing properties. In
other words, achieving the properties of fairness and soundness has proved to be
challenging in non-simultaneous rational secret-sharing schemes. To overcome this
challenge, a solution suggested in the literature is to employ a time-delay mechanism.
We propose a new approach to achieve such delay, namely using homomorphic time-lock
puzzles (HTLPs), and constructing a fair and sound rational secret-sharing scheme in
the non-simultaneous setting from HTLPs.

HTLPs are used to embed sub-shares of the secret for a predetermined time. This allows
for restoring fairness of the secret reconstruction phase, despite players having access
to information related to the secret which is required to ensure the soundness of the
scheme. Key to our construction is the fact that the time-lock puzzles are homomorphic
so that players can compactly evaluate sub-shares. Without this efficiency improvement,
players would have to independently solve each puzzle sent from the other players to
obtain a share of the secret, which would be computationally inefficient.

In this Chapter we start by defining a fair rational secret sharing scheme (FRSS), in the
non-simultaneous setting, built from threshold secret sharing and an HTLP. In doing
so, our FRSS scheme can achieve the properties of fairness and soundness. Next, we
provide an instantiation of our scheme and demonstrate provable security and efficiency
improvements compared to other rational secret-sharing literature incorporating a time
delay [96, 40].

To be succinct, we were driven to propose new ideas to research spaces related to time
because we believe it is intellectually challenging and highly relevant to modern-day
cryptography with the increasing usage of long-term storage of sensitive information
and reliance on digital technologies to enhance modern-day life. In particular, we took
an interest in designing protocols, proposing new security notions, and re-imagining
the context in which time-based primitives are used in the hope that our ideas will
inspire and gain traction in the wider cryptographic research community.

6

1.3 Publications

Chapter 3 is based on the paper "Epoch Confidentiality in Updatable Encryption"
which was completed under the supervision of Elizabeth A. Quaglia. This paper [81]
was published and presented in ProvSec 2022.

Chapter 4 is based on the paper titled "CLUE: Certificateless Updatable Encryption"
which was completed under the supervision of Elizabeth A. Quaglia. This paper [82] is
due to be published in ITASEC 2023.

Chapter 5 is based on the paper titled "Dynamic Multi-Server Updatable Encryption".
This paper follows on from our contributions in Chapter 3 and it was completed under
the supervision of Elizabeth A. Quaglia. The paper is currently under submission.

Chapter 6 is based on the paper "Fair and Sound Secret Sharing from Homomorphic
Time-Lock Puzzles" which was completed under the supervision of Elizabeth A. Quaglia.
This paper [83] was published and presented in ProvSec 2020.

7

Chapter 2

Preliminaries

Contents
2.1 Notation . 8
2.2 Provable Security . 10
2.3 Cryptographic Hardness Assumptions 12
2.4 Fundamental Building Blocks . 16

This Chapter introduces standard notation, fundamental definitions, building blocks and
concepts used throughout this Thesis.

2.1 Notation

In this Section, we present the notation that will be used throughout this Thesis.

Sets Let N denote the set of natural numbers {0, 1, 2, . . .}, Z denotes the set of integers
with Z∗ = {0}∪Z+ defining the set of non-negative integers which itself is the union of
zero and the set of positive integers respectively. The set of real numbers is R and the
set of non-negative real numbers is denoted R+ = {x : x ∈ R, x > 0}. For some n ∈ N
let [n] = {0, 1, . . . , n}, and [i, j] is the set {i, . . . , j} of consecutive integers (i, j) ∈ Z
for i ≤ j.

Variables and Strings The set of all binary bit-strings of length n is denoted {0, 1}n,
{0, 1}∗ denotes the set of all finite bit-strings, and 1λ defines a bit-string composed
of λ many ones, where λ is a security parameter. Moreover, |x| is the length of the
bit-string x, if x ∈ R then |x| is the absolute value, and |S| is the cardinality of a set S.

Let x← s denote the assignment of value s to variable x, x← S denotes the uniformly
chosen assignment of an element of a finite set S to variable x, and x

$← S is the
assignment of an element from set S to variable x, which has been uniformly chosen at
random.

Algorithms If A is an algorithm, then y ← A(x1, . . . , xn) is the deterministic evalu-
ation of A on inputs (x1, . . . , xn) with output y. Notation y

$← A(x1, . . . , xn) is the
probabilistic evaluation of A. The term PPT used concerning algorithms is shorthand
for probabilistic polynomial time.

Functions Function f : X → Y maps elements of X to Y , in which we define the
image Im(f) = {f(x) : x ∈ X}. An arbitrary polynomial is denoted poly(n) and
function negl : N→ R is negligible if, for every positive polynomial p, there exists an
N such that for all integers n > N , f(n) < 1

p(n) . Throughout this Thesis negl(1λ) is
used to define a negligible function over the security parameter λ.

Probability Let X denote an event and X denote the converse that event X does not
occur. Then Pr[X] = 1− Pr[X].

Given two separate events X1 and X2, the event (X1 ∧ X2) is the occurrence of
both events, thus, probability Pr[X1 ∧X2] ≤ Pr[X1] by definition. The events are
independent of one another if Pr[X1 ∧X2] ≥ Pr[X1] · Pr[X2].

Given two separate events X1 and X2, the event (X1 ∨X2) is the occurrence of either
event (they are disjoint), thus, probability Pr[X1 ∨X2] ≥ Pr[X1] by definition. The
following upper bound also holds by definition,

Pr[X1 ∨X2] ≤ Pr[X1] + Pr[X2].

The conditional probability of events X1 given X2 is Pr[X1|X2] = Pr[X1∧X2]
Pr[X2] , by definition

and given Pr[X]2 ̸= 0. The ensuing equation follows,

Pr[X1 ∧X2] = Pr[X1|X2] · Pr[X2].

Asymptotic Notation For functions f, g : Z∗ → R+ the following notation is used:

• f(n) = O(g(n)) if ∃c, n′ ∈ Z+ such that ∀n > n′ it holds that f(n) ≤ c · g(n).

• f(n) = Ω(g(n)) if ∃c, n′ ∈ Z+ such that ∀n > n′ it holds that f(n) ≥ c · g(n).

9

• f(n) = Θ(g(n)) if ∃c1, c2, n′ ∈ Z+ such that ∀n > n′ it holds that c1 · g(n) ≤
f(n) ≤ c2 · g(n).

• f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0.

• f(n) = ω(g(n)) if limn→∞
f(n)
g(n) =∞.

2.2 Provable Security

Careful consideration is needed to define the security of cryptographic primitives to
ensure an accurate analysis of the security of constructed schemes in the real world.
One approach taken to evaluate the security of cryptographic protocols is to define
security games in which adversarial corruption is modelled.

Security games aim to reflect real-life security as closely as possible, using definitions,
cryptographic assumptions based on mathematics, adversarial threat modelling and
conditions required to meet the chosen level of security to prevent an adversary from
succeeding in winning the game. Informally, a game (Exp) occurs between a challenger
and a probabilistic-polynomial time adversary (A) such that the challenger provides
inputs to the adversary and the adversary proceeds to output its challenges under
corruption restrictions modelled in the security game. Ultimately, the adversary’s final
output determines their success in breaking the security notion (X) of the given scheme
(Π).

Crucially, for a scheme to remain secure for the chosen level of security, the success or
advantage (Adv) of the adversary in winning the game (Exp) must be negligible over
the security parameter (λ). More formally,

AdvExp
Π,A(1λ) = Pr[ExpX

Π,A(1λ) = 1] ≤ negl(1λ)

for some negligible function negl(·).

In some instances, a security game is defined as an indistinguishability experiment.
That is, A must distinguish which game they are playing according to a randomly
selected bit b

$← {0, 1} chosen by the challenger. Informally, the experiment returns
A’s guess bit b′ and A is considered successful if b′ = b. Formally, A’s advantage in an
indistinguishability experiment (X) against protocol Π is defined as

10

AdvExp,b
Π,A (1λ) = |Pr[ExpX,0

Π,A(1λ) = 1]− Pr[ExpX,1
Π,A(1λ) = 1]|.

Notably, success is assumed to be negligible for protocol Π to satisfy security notion
X. Formally, for some negligible function negl(·) over security parameter λ,

AdvExp,b
Π,A (1λ) = |Pr[ExpX,b

Π,A(1λ) = 1]− 1
2 | ≤ negl(1λ).

Security Modelling Security can be modelled in the standard or random oracle
setting, which we discuss in more depth below. In the latter, the adversary can
make queries to oracles (O) emulating cryptographic functions to return output to
the adversary. Moreover, proofs of security often use a reduction technique, that is,
reducing the security of the scheme to underlying hardness assumptions. Throughout
this Thesis, we will utilise the aforementioned techniques of capturing security games
in the standard and random oracle model and proving by reduction.

Hash Functions Hash functions are an essential building block to many cryptographic
protocols. Informally, a hash function H : {0, 1}∗ → {0, 1}l maps long input strings
to output a compressed fixed-length string known as a digest. Assuming the domain
of H is larger than the range {0, 1}l, two input strings can map to the same digest,
therefore, collision resistance is an essential property for secure cryptographic hash
functions. More formally,

Definition 1 (Collision Resistance). A cryptographic hash function H is collision-
resistant if, for all PPT adversaries A, there exists a negligible function over the
security parameter λ such that,

Pr[(x, y) $← A(·) : H(x) = H(y) ∧ (x ̸= y)] ≤ negl(1λ).

Random Oracle Model Proving the security of cryptographic schemes built from
hash functions, assuming collision resistance alone, is typically insufficient in the
standard model. A solution is to prove security in the random oracle model (ROM)
instead, whereby we treat the hash function H as a truly random function that is
evaluated by querying an oracle. The oracle can be thought of as a consistent black
box in which the output is H(x) on a queried input of x ∈ {0, 1}∗.

Practically speaking, a scheme in the ROM is implemented with an appropriately
chosen cryptographic hash function H′ such that any PPT adversary A can compute
H′(x) for any input x ∈ {0, 1}∗. In line with the formal definition presented in [14] the
following properties must be satisfied upon adversarial queries:

11

• Uniformity If x has previously been queried, then output H(x) is always returned.
If x has not been queried then H must uniformly choose at random the output
H(x) and store (x, H(x)) for future reference.

• Extractability If x is queried to H then a reduction proof of security can see
the query and learn the input x.

• Programmability The reduction can set the output value H(x) to a value of
its choice, provided the output is distributed properly.

In essence, the core purpose of proving security in the random oracle model is to
demonstrate that there are no inherent flaws in the design of a cryptographic protocol
as opposed to proving the security of an implemented scheme in the real world. In the
context of provable security, it is required that H′ is a sufficiently good replica of an
oracle, however, this assumption is not rigorous in either a mathematical or heuristic
sense. This leads to the general debate within the cryptographic community regarding
the usefulness of proving security in the random oracle model.

In more words, the random oracle model is deemed incapable of guaranteeing provable
security when instantiated in the so-called real world since there does not exist a truly
random hash function H′. Research supporting this opinion includes that from the
authors of [27], however, it is important to note that proposed schemes are somewhat
orchestrated and more importantly, there have been no successful real-world attacks
on schemes whose security has been proven in the random oracle model. Further,
supportive evidence includes the recent work from the authors of [26] on global random
oracles in which they demonstrate the ability to generically prove the existence of
practical realisations of a number of essential cryptographic primitives including PKE
schemes in the random oracle model.

2.3 Cryptographic Hardness Assumptions

In the following, we present the number theoretic notation, cryptographic hardness
assumptions, and definitions related to cyclic groups which are used in this Thesis.

Let G be a PPT group generation function outputting the tuple (G, q, g) which defines
the cyclic group G, of prime order q, generated by element g ∈ G. For example, group
Zq is the additive group of integers modulo q defined as {0, . . . , q − 1}. Group Z∗

q

12

denotes the multiplicative group of invertible integers modulo q, that is, invertible
integers that are relatively prime to q. We denote G = {g0, . . . , gq−1} and ∀h ∈ G,
there exists a unique x ∈ Zq such that gx = h, such that element x is called the discrete
logarithm of h with respect to g (x = logg(h)).

The Discrete Logarithm Problem The discrete logarithm problem is assumed to
be hard if the following holds.

Definition 2 (DLP). For security parameter λ, let G(1λ) → (G, q, g). The discrete
logarithm assumption holds for tuple (G, q, g) if, for all PPT adversaries A, there exists
a negligible function over security parameter λ such that

Pr[h $← G; x
$← A(G, q, g, h) : gx = h] ≤ negl(1λ).

The Diffie-Hellman Problem The computational Diffie-Hellman (CDH) problem is
presented in the following.

Definition 3 (CDH Problem). The CDH assumption holds over cyclic group (G, q, g)
if, given (gx, gy) such that x, y

$← Zq, it is computationally intractable for any PPT
adversary A to compute gxy.

The Decisional Diffie-Hellman (DDH) problem is assumed to be hard if, given elements
(gx, gy) for x, y

$← Zq, element gxy is indistinguishable from a random element g ∈ G.
Formally,

Definition 4 (DDH Problem). The DDH assumption holds over cyclic group (G, q, g)
if, for all PPT adversaries A, there exists a negligible function over security parameter
λ such that

|Pr[x, y
$← Zq : A(gx, gy, gxy) = 1]− Pr[x, y, z

$← Zq : A(gx, gy, gz) = 1]| ≤ negl(1λ).

Bilinear Maps Alternatively known as pairings, we define bilinear maps using multi-
plicative notation as follows.

Definition 5 (Bilinear Maps). Let cyclic groups G1,G2, and GT have prime order q,
such that G1 is generated by P , and G2 is generated by Q. A pairing is a bilinear map
ê : G1 ×G2 → GT with the following properties,

13

1. Bilinearity: ∀a, b ∈ Z∗
q,∀P ∈ G1, Q ∈ G2 : ê(P a, Qb) = ê(P, Q)ab;

2. Non-Degeneracy: ê ̸= 1, that is, the mapping is not the identity map;

3. Computability: An efficient algorithm exists to determine the output of map ê.

Definition 5 can be classified into three types, in line with [58]:

• I : If G1 = G2. This is known as a symmetric bilinear map.

• II : If G1 ̸= G2 and there exists an efficiently computable homomorphism
ϕ : G2 → G1.

• III : If G1 ̸= G2 and there does not exist an efficiently computable homomorphism
like ϕ.

Next we present a variation of the definition for the CDH problem (Definition 3), fol-
lowing the work of [118], which is in the context of pairings. Namely, the computational
co-Diffie-Hellman problem.

Definition 6 (co-CDH Problem). Let cyclic groups (G1,G2) be defined in Definition
5. Given (P, P a) ∈ G1 for random element a and Q ∈ G2, computing Qa is assumed
to be computationally infeasible in polynomial time.

The External Diffie-Hellman Problem Now we introduce the XDH assumption,
a computational hardness assumption used in elliptic curve cryptography, to define
the symmetric XDH assumption (SXDH) which is required in Chapter 3. The XDH
assumption holds if the two distinct groups (G1,G2) exist with the following properties:

• The discrete logarithm (DLP) problem given in Definition 2, the computational
Diffie-Hellman (CDH) problem given in Definition 3, and the computational
co-Diffie-Hellman (co-CDH) problem given in Definition 6 are intractable in
groups (G1,G2).

• There exists an efficiently computable bilinear map ê (Definition 5).

• The decisional Diffie-Hellman problem (DDH) given Definition 4 is intractable in
G1.

14

The symmetric XDH (SXDH) holds if the DDH assumption is also intractable in G2.

Definition 7 (SXDH Assumption). Given ê is defined as in Definition 5 over groups
(G1,G2,GT), the SXDH-problem is intractable in polynomial time if groups (G1,G2)
are both DDH-hard groups.

This means that given (P0, P1, P2, P3) ∈ G4
1 it is infeasible to determine if there exists

a value x such that P1 = P x
0 and P3 = P x

2 simultaneously (similarly for group G2).

Next we introduce the p-Bilinear Diffie Hellman Inversion (p-BDHI) problem, which is
used to prove the security of our construction in Chapter 4. The p-BDHI problem is
stated as follows:

Definition 8 (p-BDHI Problem). Given map ê defined as in Definition 5 over groups
(G1,G2,GT) and given {P, P α, P α2

, . . . , P αp} ∈ Gp+1
1 , the p-BDHI problem is consid-

ered hard if it is computationally intractable to compute ê(P, P)1/α ∈ GT in polynomial
time.

The RSA Assumption In the ensuing, we define a strong RSA modulus before stating
the sequential squaring assumption needed to prove the security of our construction in
Chapter 6. Concretely, our construction utilises a time-delay mechanism introduced in
[108], formally called time-lock puzzles (TLPs). At a high level, the TLPs we use in
Chapter 6 are computational puzzles based on sequential squaring and the intractability
of sequential squaring is essential to assume a TLP takes a threshold amount of time
to solve.

First we need to define an RSA integer. Let N = p · q be a composite for primes (p, q),
such that N is a strong RSA integer.1 Let Z∗

N = {x ∈ ZN |gcd(x, N) = 1} define the
finite group of integers modulo N closed under the multiplication operation (⊗). For
prime p, the Jacobian subgroup Jp ⊆ Z∗

p is defined as; Jp = {x ∈ Z∗
p : ∃y ∈ Z∗

p s.t y2 =
x (mod p)}. The same holds for prime q. Thus, the Jacobian subgroup JN ⊆ Z∗

N is
formed of elements x such that JN(x) = Jp(x) · Jq(x).

Definition 9 (Strong RSA Modulus Assumption). Let λ be the security parameter
and N be the product of two λ-bit distinct strong primes p, q, where p = 2p′ + 1 and

1N is a strong RSA integer if primes p = 2p′ + 1 and q = 2q′ + 1, with p′, q′ also primes.

15

q = 2q′ + 1. Let e be a randomly chosen prime such that 2λ < e < 2λ+1 − 1. Let QRN

be the group of quadratic residues in Z∗
N of order p′ · q′. Given (N, e) and a random

h ∈ QRN , it is hard to compute x such that xe ≡ h (mod N).

Definition 10 (Sequential Squaring Assumption). Let N be a uniform strong RSA
integer, g a generator of JN , and T (·) be a polynomial. Then there exists some 0 < ϵ < 1
such that for every polynomial-size adversary A = {Aλ}λ∈N who’s depth is bounded
from above by T ϵ(1λ), there exists a negligible function negl(·) such that

Pr

b← A(N, g, T (1λ), x, y) :

x
$← JN ; b

$← {0, 1}

if b = 0 then y
$← JN

if b = 1 then y := x2T (1λ)

 ≤ 1
2 + negl(1λ).

2.4 Fundamental Building Blocks

In this Section, we present the definitions of building blocks essential to cryptographic
schemes, and we formalise relevant security notions for each primitive.

Public-Key Encryption The public-key encryption primitive (PKE) is fundamental
to many modern cryptosystems [77], applications of which provably satisfy desirable
security properties such as confidentiality, integrity, authentication and so on. This
primitive is utilised throughout this Thesis and in this Section, we present a standard
definition of a PKE scheme and formalise several standard and relevant security notions
used in this body of work.

Definition 11 (PKE). Given the security parameter λ, a public-key encryption scheme
consists of a tuple of four PPT algorithms ΠPKE = (Setup, KG, Enc, Dec) which run as
follows,

• Setup(1λ) $→ pp : given the input of the security parameter λ, the probabilistic
setup algorithm outputs public parameters pp.

• KG(pp) $→ (pk, sk) : given the input public parameters pp, the probabilistic key
generation algorithm returns a public and private key pair (pk, sk).

• Enc(pp, pk, m) $→ C : given input the public parameters pp, public key pk, and
the message m, the probabilistic encryption algorithm outputs a ciphertext C.

16

• Dec(pp, sk, C)→ {m,⊥} : given input the public parameters pp, secret key, sk

and ciphertext C, the deterministic decryption output outputs the message m on
correct execution of the scheme or outputs ⊥ to indicate an invalid ciphertext.

Correctness Given security parameter 1λ, Definition 11 is correct if, for any valid
message m in message space MSP, there exists a negligible function negl such that
the following holds with overwhelming probability.

Pr
pp

$← Setup(1λ); (pk, sk) $← KG(pp); C
$← Enc(pp, pk, m) :

Dec(pp, sk, C) = m

 ≥ 1− negl(1λ).

IND-CPA Security Security against Chosen Plaintext Attacks captures adversary A
with an inability to distinguish between the encryption of two chosen messages.

ExpIND-CPA,b
ΠPKE,A (1λ)

pp
$← Init(1λ)

(pk, sk) $← KG(pp)
(m0, m1, s) $← A(pp, pk)

Some state information s
b

$← {0, 1}
C

$← Enc(pp, pk, mb)
b′ $← A(pp, C, s)
return b′

Fig. 2.1 The security experiment for IND-CPA-security of a PKE scheme.

Definition 12 (IND-CPA Security). A PKE scheme ΠPKE is IND-CPA secure if for
every efficient PPT adversary A, the advantage the adversary has in the security
experiments detailed in Figure 2.1 is negligible as a function of the security parameter
1λ.

AdvIND-CPA
ΠPKE,A (1λ) = |Pr[ExpIND-CPA,0

ΠPKE,A (1λ) = 1]− Pr[ExpIND-CPA,1
ΠPKE,A (1λ) = 1]| ≤ negl(1λ).

IND-CCA Security In Chapter 5 we model security against chosen ciphertext attacks.
This indistinguishability notion captures adversary A with an inability to distinguish
between the encryption of two chosen messages, despite oracle access to the decryption
of arbitrary ciphertexts not equal to the challenge ciphertext.

17

ExpIND-CCA,b
ΠPKE,A (1λ)

pp
$← Init(1λ);

(pk, sk) $← KG(pp)
(m0, m1, s) $← AODec(pp, pk)
Some state information s
b

$← {0, 1}
C

$← Enc(pp, pk, mb)
b′ $← AODec(pp, C, s)
return b′

ODec(C ′)
m′←Dec(pp, sk, C ′)
if C ′ = C then

return ⊥
else

return m′

Fig. 2.2 The security experiment for IND-CCA-security of a PKE scheme.

Definition 13 (IND-CCA Security). A PKE scheme ΠPKE is IND-CCA secure if for
every efficient PPT adversary A, the advantage the adversary has in the security
experiments detailed in Figure 2.2 is negligible as a function of the security parameter
1λ.

AdvIND-CCA
ΠPKE,A (1λ) = |Pr[ExpIND-CCA,0

ΠPKE,A (1λ) = 1]− Pr[ExpIND-CCA,1
ΠPKE,A (1λ) = 1]| ≤ negl(1λ).

IND-RCCA Security In Chapters 3 and 4, we model replayable chosen ciphertext
(RCCA) security. The authors of [13] prompted a rich area of research into the tightness
of the security of encryption schemes, and in turn, the level of trust placed on the
underlying cryptographic assumptions upon which the security of the scheme relies.
However, it remained unclear the level of tangible security a PKE scheme could produce
in practice.

This question led to compelling research such as the work of [28] who introduced the
notion of replayable CCA security. In essence, the authors highlighted that traditional
CCA security is not essential for implementing secure channels - RCCA security suffices
and may even permit more efficient instantiations.

Effectively, RCCA-security follows the same security modelling as CCA-security with
a relaxation of the decryption oracle, intuitively providing an adversary with inferable
information about a queried ciphertext depending on the oracle’s response. That is,
an adversary can call the decryption oracle on arbitrary ciphertexts, however, the

18

oracle will respond with test to queries that decrypt to either of the challenge messages
(m0, m1). This includes queried ciphertexts that differ from the challenge ciphertext C

which the adversary obtains from the challenger.

We now present a security game derived from [28] which is used to model this IND-RCCA-
security notion for a PKE scheme (Definition 11).

ExpIND-RCCA,b
ΠPKE,A (1λ)

pp
$← Init(1λ)

(pk, sk) $← KG(pp)
(m0, m1, s) $← AODec(pp, pk)
Some state information s
b

$← {0, 1}
C

$← Enc(pp, pk, mb)
b′ $← AODec(pp, C, s)
return b′

ODec(pp, C ′)
m′←Dec(pp, sk, C ′)
if m′ = {m0, m1} ∨ C ′ ̸∈ CSP then

return test
else

return m′

Fig. 2.3 The security experiment for IND-RCCA-security of a PKE scheme.

Definition 14 (IND-RCCA Security). A PKE scheme ΠPKE is IND-RCCA secure if
for every efficient PPT adversary A, the advantage the adversary has in the security
experiments detailed in Figure 2.3 is negligible as a function of the security parameter
1λ.

AdvIND-RCCA
ΠPKE,A (1λ) = |Pr[ExpIND-RCCA,0

ΠPKE,A (1λ) = 1]− Pr[ExpIND-RCCA,1
ΠPKE,A (1λ) = 1]| ≤ negl(1λ).

Key Privacy In Chapter 3, our analysis of security requires an extended notion
of RCCA security that additionally captures the indistinguishability of public keys.
This property is formally known as key privacy and was introduced by [12]. A PKE
scheme secure against key-private, replayable CCA-attacks is modelled in the security
experiment for IND-IK-RCCA-security, presented in Figure 2.4, following the design in
[12].

Intuitively, modelling key-privacy corresponds to an indistinguishability experiment
run by a challenger whereby a polynomial-time adversary with access to a decryption

19

oracle is given public parameters, including two public keys (pk0, pk1), generated by
the challenger in the initialisation process. The adversary outputs two chosen messages
(m0, m1) ∈ MSP and the challenger proceeds to encrypt message mb using public
key pkb for chosen bit b ∈ {0, 1}. Security is captured by the adversary’s success in
the game which corresponds to distinguishing the message and public key used in
encryption to produce the challenge ciphertext without knowledge of the corresponding
secret keys. More formally,

ExpIND-IK-RCCA,b
ΠPKE,A (1λ)

pp
$← Init(1λ);

(pki, ski) $← KG(pp); for i := {0, 1}
(m0, m1, s)← AODec(pp, pk0, pk1)
if |m0| ≠ |m1| ∨ {m0, m1} ̸∈ MSP ∨
(m0 = m1) then

return ⊥
else

b
$← {0, 1}

C
$← Enc(pp, pkb, mb)

b′ ← AODec(pp, C, s)
return b′

ODec(C ′)
m′←Dec(pp, skb, C ′)
if m′ = {m0, m1} then

return test
else

return m′

Fig. 2.4 Indistinguishability experiment for security of PKE scheme ΠPKE with s as
some state information in this figure.

Definition 15 (IND-IK-RCCA Security). A PKE scheme ΠPKE is IND-IK-RCCA secure
if for every efficient PPT adversary A, the advantage the adversary has in the security
experiments detailed in Figure 2.4 is negligible as a function of the security parameter
λ.

AdvIND-IK-RCCA
ΠPKE,A (1λ) = |Pr[ExpIND-IK-RCCA,0

ΠPKE,A (1λ) = 1]− Pr[ExpIND-IK-RCCA,1
ΠPKE,A (1λ) = 1]| ≤

negl(1λ).

Digital Signature Schemes We use digital signatures as a building block for a
concrete instantiation in Chapter 3 to ensure a notion of integrity for updatable
encryption in a public-key encryption setting. In the following, we formalise the
primitive and define correctness and security.

Definition 16 (Digital Signature Scheme). Given a security parameter λ, a digital
signature scheme ΠSig consists of a tuple of four algorithms ΠSIG = (Setup, KG, Sign, Vrfy)
such that,

20

• Setup(1λ) $→ pp : take as input security parameter 1λ and returns public parame-
ters pp.

• KG(pp) $→ (pk, sk) : returns the public and secret key pair comprised of the
verification key (pk) and signing key (sk) respectively.

• Sign(pp, sk, m) $→ σ : returns a signature σ of valid message m ∈ MSP with
respect to the signing key sk.

• Vrfy(pp, pk, m, σ) → {accept,⊥} : takes as input the verification key pk and
signature σ on message m, returning either accept or rejection (⊥).

Correctness Given security parameter 1λ, Definition 16 is correct if, for any valid
message m in message space MSP, there exists a negligible function negl such that
the following holds with overwhelming probability.

Pr
pp

$← Setup(1λ); (pk, sk) $← KG(pp); σ
$← Sign(pp, sk, m) :

Vrfy(pp, pk, m, σ) = accept

 ≥ 1− negl(1λ).

Security is based on the fact that an adversary should be unable to output a forgery
even if it obtains signatures on multiple other chosen messages. This is done by running
an experiment where the adversary queries an oracle on chosen messages to obtain
signatures, and succeeds in forgery over a message that they have not queried to the
oracle.

In more detail, existentially unforgeable under an adaptive chosen message attack
(EUF-CMA) security is captured in Figure 2.5. This security notion defines the security
of a digital signature scheme ΠSig under the leakage of the verification key. That is,
an adversary can query a signing oracle OSign on some message m′ ∈MSP , receiving
a valid signature σ′ $← Sign(pp, sk, m′) output from the oracle. Note, list M∗ is a list
maintained by the challenger to tally the messages used for queries in the signing oracle.
The adversary proceeds to output a guess signature σ and the challenge returns the
message if the signature is valid.

We adapt the notation of [80] in the formal definition of EUF-CMA security as follows,

Definition 17 (EUF-CMA Security). A digital signature scheme ΠSig, following Defi-
nition 16, is EUF-CMA secure if a PPT adversary A has a negligible advantage in the
security experiment defined in Figure 2.5.

21

ExpEUF-CMA,b
ΠSig,A (1λ)
∅ ←M∗

pp
$← Setup(1λ)

(pk, sk) $← KG(pp)
(m, σ)← AOSign(pp, pk)
if m ̸∈ M∗∧Vrfy(pp, pk, m, σ) = accept
then

return 1
else

return ⊥

OSign(m′) :
if m′ ∈M∗ then

return ⊥
else

σ′ $← Sign(pp, sk, m′)
M∗ ←M∗ ∪ {m′}
return σ′

Fig. 2.5 The security game modelling EUF-CMA security for a digital signature scheme
ΠSig.

AdvEUF-CMA
ΠSig,A (1λ) = |Pr[ExpEUF-CMA,0

ΠSig,A (1λ) = 1]− Pr[ExpEUF-CMA,1
ΠSig,A (1λ) = 1]| ≤ negl(1λ).

In Chapter 3 we make use of a structure-preserving digital signature scheme. Formally,
over bilinear groups (G1,G2,GT , q, g1, g2, e), following Definition 5, an EUF-CMA secure
digital signature scheme satisfies the following definition [107].

Definition 18 (Structure Preserving Digital Signature Scheme). A digital signature
scheme is structure-preserving if messages, the verification key and the signature are
group elements in G1,G2 and if the verification is a pairing product equation.

Threshold Secret Sharing We explore extensions and applications of secret sharing
schemes in Chapters 5 and 6. Informally, secret sharing is a protocol for distributing the
storage of highly sensitive information. In this Section, we recall the standard definition
of a threshold secret sharing scheme as well as an extension, defining important
properties for each, and presenting a widely used concrete scheme.

Definition 19 ((t, n) Secret Sharing Protocol). Given a dealer D, a secret s ∈ Sλ for
security parameter λ, and a set of n authorised players P = {P1, . . . , Pn}, a (t, n) secret
sharing scheme (ΠSS) is a tuple of three PPT algorithms ΠSS = (Setup, Share, Recon)
defined as follows:

- Share Phase: D takes as input the secret s and performs the following steps
non-interactively:

22

1. Setup(1λ) $→ pp : a probabilistic algorithm that takes as input security
parameter 1λ and outputs public parameters pp, which are broadcast to all
players in P .

2. Share(pp, s) $→ {s1, . . . , sn} : a probabilistic algorithm that takes as input
the secret s ∈ Sλ and outputs n shares si, one for each player in P .

3. Distribute si to player Pi for every i ∈ [n] over a secret, authenticated
channel.

- Reconstruction Phase: Any player in P = {P1, . . . , Pn} can take part in this
phase.

1. Communication:

(a) Each player Pi sends their share si over a secure broadcast channel to
all other players in P .

(b) Pi checks that they have received (t − 1) or more shares. If so, they
proceed to processing.2

2. Processing:
Once Pi has a set of t′ shares labelled S ′, they independently do the following:

(a) Recon(pp, S ′)→ {s,⊥} : a deterministic algorithm that takes as input
the set S ′ of t′ shares and outputs the secret s if t′ ≥ t or outputs abort
⊥ otherwise.

A (t, n) threshold SS scheme needs to satisfy the properties of correctness and secrecy.
Informally, correctness means that an honest execution of the scheme results in the
true secret being output, except with negligible probability; and secrecy ensures that
reconstruction with fewer shares than the threshold (t) results in abort (⊥) being
output, except with negligible probability. Formally, Definition 19 needs to satisfy the
properties of correctness and secrecy as follows,

Definition 20 (SS Correctness). A (t, n) secret sharing scheme ΠSS is correct if
∀λ ∈ N and for all possible sets of n authorised players P = {P1, . . . , Pn}, given
Setup(1λ) $→ pp; for all secrets s ∈ Sλ and any subset of t′ ≥ t shares S ′ from
Share(pp, s) $→ {s1, . . . , sn} communicated by players in P , there exists a negligible
function negl(·) such that

2Whilst not explicit in the definition, there is an upper bound on how long players can communicate
their shares. Therefore, at the end of their communication, if a player Pi has not obtained a sufficient
number of shares, then they output ⊥ at the end of the reconstruction phase.

23

Pr[Recon(pp, S ′) ̸= s] ≤ negl(1λ).

Definition 21 (SS Secrecy). A (t, n) secret sharing scheme ΠSS is secret if ∀λ ∈ N and
for all possible sets of n authorised players P = {P1, . . . , Pn}, given Setup(1λ) $→ pp;
for all secrets s ∈ Sλ and any subset of t′ < t shares S ′ from Share(pp, s) $→ {s1, . . . , sn}
communicated by players in P , there exists a negligible function negl(·) such that

Pr[Recon(pp, S ′) ̸= ⊥] ≤ negl(1λ).

Shamir’s Secret Sharing Shamir’s threshold secret sharing scheme [110] is a concrete
SS scheme, following Definition 19, based on polynomial interpolation. We will
informally present this method of secret sharing in the following:

Let GF(q) be a finite field of prime order q ≥ n such that the secret s ∈ GF(q). The
dealer D randomly chooses a polynomial f(x) of degree (t − 1) such that f(0) = s.
That is, f(x) = s + ∑t−1

i=1 aix
i. Furthermore, ∀i ∈ n, the dealer randomly chooses a

unique αi
$← GF(q) and secretly distributes shares si = f(αi) to the corresponding

player in P .

Given subset P ′ ⊂ P with |P ′| ≥ t, the players in P ′ can reconstruct s using polynomial
interpolation as follows:

f(αi) = ∑
Pj∈P ′ λP ′

j,if(αj) = ∑
Pj∈P ′ λP ′

j,isj,

such that the Lagrangian Coefficient λP ′
j,i = ΠPl∈P ′,l ̸=j

αi−αl

αj−αl
. Note that any subset

P ′ ⊂ P of players whereby |P ′| < t cannot obtain any information about the secret s

from the polynomial f(x).

Equipped with these tools, we are now ready to present our results.

24

Chapter 3

Epoch Confidentiality in Public-Key
Updatable Encryption

Contents
3.1 Introduction . 26
3.2 Chapter Preliminaries . 31
3.3 Public-Key Updatable Encryption . 39
3.4 Security Modelling . 41
3.5 Epoch Confidentiality . 49
3.6 Construction Preliminaries . 53
3.7 An Epoch Confidential Construction 61
3.8 Security Analysis . 66
3.9 Summary and Outlook . 80

This Chapter introduces a new updatable encryption primitive defined in the public-key
setting and a novel security notion for updatable encryption capturing the leakage of
the age of the ciphertext. We present a security model and propose a construction
provably satisfying this notion. Part of this work appears in [81] which is joint work
with Elizabeth A. Quaglia, published and presented at ProvSec 2022.

3.1 Introduction

3.1.1 Motivation

In recent years there has been an increased need to outsource the storage of encrypted
data to a potentially untrusted host. To protect the privacy of the underlying data and
mitigate the security risks of key compromise over a long time, several cryptographic
schemes have proposed employing the technique of key-rotation which is a mechanism
to move existing ciphertexts from encryption under an old to a new cryptographic key.

Trivially, a scheme can satisfy this idea of key rotation by decrypting the ciphertext and
then re-encrypting the result with the updated key. However, when the encrypted data
has been outsourced to an external (un-)trusted entity, this is an impractical method.
There are two options for a data owner if key rotation is performed in the trivial sense.
Either the owner downloads, re-encrypts and updates all ciphertexts themself, which is
computationally inefficient. Alternatively, the owner could outsource the update by
sending the encryption keys to the untrusted host to perform re-encryption, which no
longer ensures security.

The authors of [24] introduced the updatable encryption (UE) primitive to provide a
more elegant, non-trivial solution to the above discussion. Instead of re-encrypting a
ciphertext from an old to a new key, the data owner instead generates a token that
enables the host to convert the ciphertext to encryption under the new key (provided
it is trusted to delete old tokens and ciphertexts after an update) without the need to
decrypt.

Traditionally, the UE primitive is designed in the symmetric-key setting [24, 52, 25,
32, 104, 75] to convert ciphertexts in a periodic manner marked by set time-intervals
known as epochs and using encryption keys valid only for their associated epoch. We
provide a lengthy discussion on symmetric UE literature in the section proceeding
the introduction. However, we note here that it is essential to security that the
potentially untrusted server should not learn anything about the underlying message
of the ciphertext that they are updating, or surplus information arising from the
ciphertexts that they are storing.

To date, the focus of UE research has been dominated by the development of rigorous
security models to encapsulate notions of ciphertext confidentiality and integrity. As a

26

consequence, numerous frameworks for security have been proposed and the relationship
between security notions has become well-understood [25]. Notwithstanding the
importance of strengthening security for the UE primitive, we think it is of equal
interest to consider extending the UE primitive to alternative settings and applications.

Precisely, we are interested to explore possible extensions of UE schemes and security
modelling in the public-key setting. To start, it is considered good key management
practice to rotate cryptographic keys when storing encrypted data over a long time.
So-called data-at-rest is not limited to the symmetric setting alone, therefore, the
update functionality and strong security guarantees from UE literature can be utilised
in public-key encryption schemes when applying PKUE as a building block. Thus,
formalising a PKUE primitive will be useful in real-world applications requiring public-
key encryption, especially in scenarios whereby the data owner does not trust the host
storing data, or at the very least the owner seeks to reduce trust in the host.

In particular, broadening the scope of UE enables us in this Thesis to design cer-
tificateless UE schemes, which is a cryptographic scheme used to mitigate the key
escrow problem in identity-based encryption [3]. Further, in formalising PKUE we
are able to consider identity-based, multi-server updatable encryption schemes. The
latter extension is particularly useful for applications such as storing secrets on a
public blockchain [15]. These extensions will be explored in Chapter 4 and Chapter 5
respectively.

Another compelling argument for lifting UE to the public-key setting is so we can
employ public-key techniques in security modelling. In doing so, we can capture
new and interesting security notions that were previously difficult to capture in the
traditional, symmetric UE setting. Conventionally, an adversary attacking a UE scheme
has greater corruption capabilities in comparison to ‘static’ encryption, due to the
interconnected nature of cryptographic elements such as epoch keys and update tokens.
Therefore, finding novel techniques is important since there are unique challenges in
UE security modelling arising from the update feature.

In particular, it is important to hide the number of times a ciphertext has been updated
in a UE scheme, especially one with authenticated encryption [75], which in practice
is the majority of UE schemes. We take the approach of [12] to model a form of key
privacy for the public keys in PKUE, which is an overlooked technique in the traditional
UE security framework. Key privacy essentially ensures no two public epoch keys are

27

distinguishable in the eyes of an adversary. This property is usefully applied in our
PKUE security model to achieve the new notion of confidentiality of an epoch, which
in turn implies the confidentiality of the age of a ciphertext.

In the wider sense, the complexities in ensuring security could dominate important
factors such as the efficiency, practicality and cost of implementation. We believe it is
important to consider all factors to a varying degree, depending on the application to
which PKUE is applied. With careful deliberation, we chose to place more emphasis on
modelling strong security notions for our PKUE primitive due to the aforementioned
corruption capabilities of an adversary. Otherwise, the usefulness of the update feature
becomes redundant and one may as well use a standard public-key encryption scheme.

As a consequence, we chose to design a public key UE primitive with probabilistic
updates to attain desirable levels of privacy. In practice, re-randomising ciphertexts
result in a more expensive scheme and the server is burdened with producing ‘good’
randomness. However, this property allows us to model an adversary with stronger
corruption powers than in deterministic schemes. Further, we define PKUE to be
a ciphertext-independent update primitive since a clear goal in UE is to limit the
bandwidth required for the implementation of a scheme. To illustrate, the alternative
ciphertext-dependent setting requires individual tokens to be generated per ciphertext
and ciphertexts need to be stored for longer periods. We defer to Section 3.2 for an
in-depth discussion of the probabilistic, ciphertext-independent setting of UE.

3.1.2 Our Contributions

To begin, we formally define our public-key updatable encryption primitive (PKUE)
and formalise the correctness property of PKUE.

Next we comprehensively detail a public-key UE security model to capture two essential
UE security notions: post-compromise security and ciphertext unlinkability. Both
are necessary because an adversary can infer information independently due to the
interwoven relationship between cryptographic elements. Informally, post-compromise
security is a property necessary in updatable schemes to prevent an adversary from
gaining an advantage in decrypting ciphertexts generated in a later epoch than one in
which a secret key has been compromised. Post-compromise security must be attained
under the assumption that old epoch keys and tokens have not been deleted. Else, the
security of a UE scheme is reduced to the security of a non-updatable encryption scheme

28

since old epoch keys are no longer useless and tokens incorporate old keys as well as
new ones [92]. The latter property of ciphertext unlinkability is an indistinguishability
notion (IND-UPD [92]) desirable in the UE framework since an adversary can corrupt
two types of ciphertext, namely, updated ciphertexts and newly encrypted ciphertexts.
If ciphertexts are linkable then an adversary is capable of tracing an updated ciphertext
back to the original version and possibly inferring information about update tokens or
epoch keys in the process.

More formally, we encapsulate post-compromise security and ciphertext unlinkability
in a replayable chosen-ciphertext security game (UP-IND-RCCA) in which an adversary
queries updates of arbitrary ciphertexts. We defer the reader to Section 2.4 and Section
3.2 for a discussion about the replay-ability of ciphertexts in security experiments but
we note here for clarity that the probabilistic nature of ciphertext updates in the design
of our PKUE primitive prevents the strictly stronger notion of security against chosen
ciphertext attacks from being achieved.

Following the above framework for standard security notions, we explore a previously
overlooked issue related to the leakage of ciphertext age which is important considering
applications of UE in which leakage of this information could violate the privacy of an
individual. Concretely, we introduce a new notion of security called epoch confidentiality
tackling the above problem which we achieve by using public-key techniques. In
particular, we apply key privacy [12] methods (see Section 2.4) in our security model
to satisfy epoch confidentiality for our PKUE primitive. We believe key privacy is
especially important in PKUE schemes for the same reason that post-compromise
security is important. Namely, epoch keys have more functions than in standard PKE
schemes since epoch keys are required in update token generation and they directly
relate to the corresponding epoch in which they are used.

Lastly, we present a concrete public-key UE scheme which is an adaptation of an
existing symmetric UE construction [80] explicitly using updatable public-key building
blocks. We conclude by considering the efficiency of the scheme and demonstrating it
is provably secure for the epoch confidentiality notion.

3.1.3 Existing Work

The authors of [49] established definitions for updatable public-key encryption (UPKE)
using an alternative update procedure. One can view the UPKE primitive [49, 45] as

29

dual to the UE primitive in the sense of key-policy versus ciphertext-policy attribute-
based encryption respectively. Specifically, the authors of [49] look at the separate
primitive of key-updatable encryption scheme which is for message layer security (MLS)
like environments where a key pair can be partially updated by any party in the
group to provide post-compromise security. The token mechanism used in a UPKE
scheme updates the public key, rather than the ciphertext. As a consequence, the
designs and security modelling for the UPKE scheme [49] differ from the UE literature
[52, 24, 92, 80]. Therefore, our formal definition of public-key UE presented below can
be considered distinct from the definition of [49].

Closely related to our definition of public-key updatable encryption is the work on
Self-Updatable Encryption (SUE) schemes in [91, 90]. An SUE scheme is a public-key
encryption primitive enabling ciphertext updates which are used to provide timed
access control in applications with cloud storage. The basic idea [90] is to associate
independent time parameters to ciphertexts and keys, such that public ciphertext
updates (to a future time) can be performed using only an individual’s public key
and decryption of ciphertexts is possible with a user’s secret key from some past time.
Additionally, neither decryption nor updates of ciphertexts should be possible after a
user has their access revoked.

The authors of [91, 90] defined an extension of the SUE primitive enabling time-specific
[105] encryption (TI-SUE). Essentially, the TI-SUE primitive limits the decryption
and updates of ciphertexts to distinct windows of time. Despite similarities between
the (TI-)SUE and UE primitives, there are rudimentary distinctions between the
two. Categorically, the UE primitive does not enable public ciphertext updates, a
basic feature of SUE. Conversely, the update mechanism in a UE scheme requires an
element known as a token and the process is outsourced to a specific server for storage.
Moreover, SUE traditionally updates only a fraction of the ciphertext and so notions
featured in UE security modelling, such as ciphertext unlinkability, cannot be satisfied.

Recently the authors of [120] proposed a re-randomisable encryption scheme in the
identity-based setting, to achieve the unlinkability of identities in an IBE scheme.
Despite UE schemes currently being defined for individuals, the parallels of [120] to
our work exemplify the usefulness of defining public-key UE schemes.

One may view our PKUE primitive as an alternative version of a multi-hop PRE
(MH-PRE) primitive [38], in the sense of key updates and the security level attained.

30

In particular, MH-PRE allows delegation of decryption by updating ciphertexts from
encryption under the key of one recipient to the next recipient (which can be repeated
many times). Conversely, PKUE is designed to be used in public-key primitives in
which one user outsources the update of their secret information by rotating keys
from one epoch to the next over distinct periods. In general, PRE schemes do not
necessarily require the originally re-encrypted ciphertext to be of the same form as the
originally generated ciphertext. In this case, the notion of ciphertext unlinkability that
is fundamental to a UE scheme is not satisfied in PRE. Ultimately, the distinction
between any extended UE and PRE scheme can be seen in the fundamental differences
of the underlying primitives. We highlight the similarities and differences between UE
and PRE primitives in Section 3.2, Table 3.1.

The authors of [6] introduce a notion of anonymous re-encryption keys for PRE schemes
which are achieved using a similar technique to our technique for modelling epoch
confidentiality. Whilst the key-privacy techniques used in [6] are similar to our own,
we model in tandem the indistinguishability of public keys used in encryption and
ciphertext updates and ciphertext confidentiality.

Further UE research centring on a notion similar to epoch confidentiality can be seen in
[19, 25] who simultaneously observed that prior schemes such as [52] do not prevent the
leakage of the age of a ciphertext, be that from fresh encryption or ciphertext updates.
In other words, their work focuses on strengthening existing ciphertext confidentiality
security notions. Our results, however, are distinguished from this line of work as we
detail further in Section 3.5.

3.2 Chapter Preliminaries

In this Section, we begin by presenting the syntax related to traditional updatable
encryption. Next, we formally introduce symmetric UE, followed by a definition of
correctness. Furthermore, we discuss the state of the art in UE literature, providing a
discussion regarding differing standard security notions and assumptions dependent on
the type of UE scheme being used. Lastly, we make comparisons between the closely
aligned UE and proxy re-encryption primitives. We note that the UE primitive is
featured in Chapters 3, 4, and 5.

Syntax We present the syntax used throughout this Chapter and the ensuing Chapters
related to updatable encryption. This primitive is defined by epochs of time ei from

31

the range of time i = {0, . . . , max}. We denote the current epoch e or use the subscript
notation ei for i ∈ N if we define multiple epochs at once and in security games the
challenge epoch is represented by ẽ. To signify epoch keys the notation ke, ke+1 and
kold, knew are used interchangeably in this Thesis, depending on whether we require
explicit epoch notation or we only need to define consecutive epoch keys (similarly for
update tokens ∆).

Introduced by [24], updatable encryption (UE) is an important building block to appli-
cations in which sensitive information is outsourced over long periods. Traditionally,
UE is a symmetric primitive designed to enable the periodic rotation of the encryption
key such that a ciphertext is updated to encryption under a new key. The update
is achieved using an update token generated by the data owner and the update itself
is processed by an untrusted, outsourced host. The formal definition of symmetric
updatable encryption is as follows.

Definition 22 (UE). An updatable encryption scheme ΠUE for message space MSP
consists of a set of polynomial-time algorithms ΠUE = (Setup, KG, TG, Enc, Dec, Upd)
which are defined as follows:

1. Setup(1λ) $→ pp : The data owner runs the probabilistic setup algorithm on input
security parameter λ, outputting public parameters pp.

2. KG(pp, e) $→ (ke+1) : The data owner runs the probabilistic key generation
algorithm on input public parameters pp for the current epoch e. The output is
a new secret key ke+1 for the next epoch.

3. TG(pp, ke, e+1)→ ∆e+1 : The data owner runs the deterministic token generation
algorithm using the current epoch secret key ke as input and outputs an update
token ∆e+1 for the next epoch.

4. Enc(pp, ke, m) $→ Ce : The data owner runs the probabilistic encryption algorithm
on input a message m ∈MSP and secret key ke of some epoch e, outputting a
ciphertext Ce.

5. Dec(pp, ke, Ce) → {m,⊥} : The data owner runs the deterministic decryption
algorithm on input a ciphertext Ce and secret key ke for some epoch e, returning
either the message m or abort ⊥.

32

6. Upd(pp, ∆e+1, Ce)→ Ce+1 : The host runs either the deterministic or probabilistic
ciphertext update algorithm. This is run on input ciphertext Ce for epoch e,
update token ∆e+1 for the next epoch (e + 1), and returns as output the updated
ciphertext Ce+1.

Correctness Given security parameter λ, Definition 22 is correct if, for any message
m ∈MSP and for any j ∈ {1, . . . , max}, i ∈ {0, . . . , max} with max > i, there exists
a negligible function negl such that the following holds with overwhelming probability.

Pr



pp
$← Setup(1λ); kej

$← KG(pp, ej);

∆ej
← TG(pp, kej−1 , ej); Cei

$← Enc(pp, kei
, m);

{Cej
← Upd(pp, ∆ej

, Cej−1) : j ∈ {i + 1, · · · , max}};
Dec(pp, kemax , Cemax) = m


≥ 1− negl(1λ).

State of the Art in Updatable Encryption There are two distinct types of UE
schemes in the literature, both with their own merits. Ciphertext-dependent UE schemes
[24, 52, 19, 32] require the host to send a header for each ciphertext followed by the
data owner creating and sending tokens for each header. As such, communication
grows linearly with the number of stored messages [53] and so efficiency and cost are
affected. Less obvious is the fact that epoch keys will be retained for a long time
to enable the data owner to generate individual tokens, increasing the power of the
adversary and potentially reducing security as the adversary can compromise keys for
a longer period.

Ciphertext-independent UE schemes [92, 80, 25, 75, 104] require the data owner to
generate a single update-token. Typically, the server can sequentially update ciphertexts
using a token derived purely from the old and new epoch keys. A consequence of this is
that post-compromise security [92] must be satisfied to capture the security of epochs
after the corruption of keys or tokens since one cannot rely on the secure deletion of
old keys in this updated setting [92]. The broader functionality of the update token
escalates the issues in providing security, however, from an efficiency point-of-view
generating a single compact token that can update any ciphertext to the next epoch is
desirable [75, 104]. Moving forwards, we will focus on ciphertext-independent updatable
encryption.

33

Standard security notions for a UE scheme include ciphertext confidentiality and
plaintext/ciphertext integrity which are two established security notions that are
considered fundamental to the security of a UE scheme. Ciphertext confidentiality [92,
80, 25] models the indistinguishability of ciphertexts that have either been updated or
freshly generated, even with an adversary possessing past ciphertexts. Integrity notions
model an adversary attempting to produce valid forgeries of a plaintext/ciphertext
[80, 25, 19], in which a successful ciphertext forgery informally means an adversary is
capable of generating a ciphertext that decrypts to a valid message (m ̸= ⊥).

Current literature shows that attaining such levels of security can be affected by whether
the UE scheme is designed for deterministic or probabilistic ciphertext updates, and
there are merits to both designs depending on the application of the scheme. Indeed,
prior UE schemes have demonstrated that probabilistic updates are more expensive
and one cannot achieve ciphertext-integrity (CTXT) nor CCA security [92, 80, 25].
However, randomised updates enable a meaningful definition of ciphertext unlinkability
[53, 112], namely, updated ciphertexts appear indistinguishable from freshly encrypted
ciphertexts, even in possession of previous ciphertexts and tokens.

Conversely, without provisions in the security modelling, an adversary in a deterministic
scheme is capable of corrupting an update token in an epoch and trivially distinguishing
between an update of a known ciphertext and other ciphertexts in the next epoch [25].
As a consequence, some deterministic schemes such as [52] can only allow adversarial
ciphertext update queries on honestly generated ciphertexts, preventing such schemes
from achieving the ciphertext unlinkability notion unless stronger assumptions on the
adversary’s corruption capabilities are made (see [80]).

Notably, modelling security against passive re-encryption attacks is not appropriate for
probabilistic UE schemes which allow re-encryption queries on arbitrary ciphertexts
and thus assume an adversary is active. The approach taken by [80], who design UE
with probabilistic re-encryption of ciphertexts, is to model replayable-CCA security
of a UE scheme. Recall from Section 2.4 a discussion on the RCCA-security [28] of
a standard PKE scheme. The authors of [65] first revealed that RCCA-secure PKE
schemes can have re-randomisable ciphertexts such that, given an input ciphertext, the
re-randomisation mechanism produces a fresh and unlinkable ciphertext decrypting
to the same message. Therefore, such PKE schemes can be used for applications
requiring secure communication guarantees such as confidentiality and anonymity [54].

34

Consequently, we concur with [80] that modelling an RCCA-secure UE scheme with
probabilistic updates is a suitably chosen level of security since ciphertext unlinkability
is an important security notion in the context of updatable encryption.

In the context of update direction, prior works including [92, 24, 52, 25] have defined
schemes in which updates are bi-directional, meaning a scheme supports the down-
grading of epoch keys and ciphertexts to a previous epoch. This is less desirable from a
security modelling standpoint as an adversary has more indirect information available,
alas, the challenges of achieving one-way updates to the future had prevented any uni-
directional schemes from being proposed. More recently, however, [75] demonstrated
that the direction of ciphertext updates does not matter much and they proved that
security notions in uni- versus bi-directional schemes are equivalent.

Moreover, [104] introduced a new definition called backwards-leak uni-directional key
updates and demonstrated that prior bi-directional UE schemes did not satisfy this
strictly stronger security notion.1 Further, [112] showed that there is currently no
suitable approach to provide (replayable-) CCA security for uni-directional UE schemes.
In addition, the authors of [75, 112] investigated a strictly stronger level of security,
compared to bi/uni-directional key update setting, if one designs update tokens to be
no-directional, meaning that no keys in two successive epoch keys can be derived from
the other.

Probabilistic Versus Deterministic Updates Recall from the above discussion on
UE literature, the primitive can be categorised depending on whether the primitive
is defined for probabilistic or deterministic ciphertext updates. This distinction is
necessary for security modelling, as a UE challenger must record more information than
standard security modelling. In particular, the challenger needs to track the epochs
in which honestly generated or challenge ciphertexts have been updated, however, if
ciphertexts are re-randomised upon updates then they are harder to trace.

In more detail, the level of security achieved for probabilistic and deterministic UE
differs. Concretely, the strongest notion of ciphertext confidentiality in probabilistic UE
schemes is security against replayable chosen ciphertext attacks (RCCA) [28], whereas
deterministic UE schemes can attain the stronger notion of chosen ciphertext attacks
(CCA). See Definition 14 and Definition 13 respectively, from Section 2.4.

1Observe that the proposed scheme in [75] is distinguished by the authors of [104] to be forward-leak
uni-directional.

35

Recollect, the model of RCCA differs in an adversary’s corruption capabilities; they can
query updates on arbitrary ciphertexts including a version of the challenge ciphertext.
Security against CCA attacks cannot be satisfied with probabilistic updates since
a challenger cannot track whether a queried ciphertext derives from the challenge
ciphertext. This trivial attack occurs if an adversary has corrupted an update token
since they can manually re-encrypt ciphertexts. Note that this attack does not apply
to the deterministic setting as updates of ciphertexts are not re-randomised.

In UE security modelling, to prevent the decryption of an updated challenge ciphertext,
irrespective of whether the UE scheme is probabilistic or deterministic, a useful predicate
defined in [80] can be utilised in the running of decryption and update oracles.2

Informally, the isChallenge(kei
, C) predicate detects any queries to the decryption and

update oracles on challenge ciphertexts (C̃), or versions (i.e. updated) of the challenge
ciphertext. Formally,

Definition 23 (isChallenge Predicate). Given challenge epoch ẽ and challenge ciphertext
C̃, the isChallenge predicate, on inputs of the current epoch key kei

and queried ciphertext
Cei

, responds in one of three ways:

1. If (ei = ẽ) ∧ (Cei
= C̃), return true;

2. If (ei > ẽ)∧ (C̃ ≠ ⊥), return true if C̃ei
= Cei

in which C̃ei
is computed iteratively

by running Upd(pp, ∆el+1 , C̃el
) for el = {ẽ, . . . , ei};

3. Otherwise, return false.

Moreover, depending on whether a ciphertext is re-randomised in the update process
affects the underlying assumptions placed on the scheme, necessary to ensure security.
We state these assumptions in the proceeding content as we will propose concrete
public key UE schemes designed for both forms of update in Chapters 3 and 4 of this
Thesis.

Probabilistic Update Assumptions: The property of perfect re-encryption is assumed
to hold for a UE scheme with probabilistic ciphertext updates when following the
generic approach to proving security (by reduction) first defined by [80]. We assume
this property holds in Chapter 3 to prove the security of a concrete public-key UE
scheme with re-randomised ciphertext updates.

2A predicate is a statement or mathematical assertion that contains variables. The outcome of the
predicate may be true or false depending on the input values.

36

Definition 24 (Perfect Re-Encryption). Given a UE scheme where the algorithm
Upd is probabilistic, the update of a ciphertext is perfect if for all pp

$← Setup(1λ),
for all old and new epoch key pairs ke

$← KG(pp, e) and ke+1
$← KG(pp, e + 1), for all

ciphertexts C ∈ CSP and for all tokens ∆e+1←TG(pp, ke, e + 1), we have the following:

Enc(pp, ke+1, Dec(pp, ske, C)) Dist= Upd(pp, ∆e+1, C).

Equality Dist= denotes the equal distribution of the left and right-hand sides of the
equation. For any epoch e, Enc(pp, pke,⊥) = ⊥ by definition.

Deterministic Update Assumptions: To prove the security of a UE scheme with de-
terministic ciphertext updates, we assume the properties of randomness-preserving
re-encryption and tidy encryption in addition to the aforementioned simulatable token
generation assumption. We assume this property holds in Chapter 4 to prove the
security of a concrete public-key UE scheme with deterministic updates.

Definition 25 (Randomness Preserving Re-Encryption). Given a UE scheme (ΠUE)
designed with deterministic updates, an updated ciphertext is randomness-preserving
assuming ΠUE encrypts with uniformly chosen randomness (the outputs of Enc(pp, m, ke)
and Enc(pp, m, ke; r) for uniformly chosen r are identically distributed). If for all
pp

$← Setup(1λ); for all old and new epoch keys (ke, ke+1) generated from running the
KG in epochs e and (e + 1) respectively; for all valid ciphertexts C ∈ CSP and for all
tokens ∆e+1←TG(pp, ke, e + 1), we then have the following:

Enc(pp, ke+1, Dec(pp, ke, Ce)) = Upd(pp, Ce, ∆e+1).

Definition 26 (Tidy Encryption). A UE scheme is randomness-recoverable if there
is an associated efficient deterministic algorithm RDec(pp, Ce, ke) for epoch e such
that ∀ke, m, r : RDec(pp, ke, Enc(pp, ke, m; r)) = (m, r). A randomness-recoverable UE
scheme tidy if ∀(ke, Ce) :RDec(pp, Ce, ke) = (m, r) =⇒ Enc(pp, ke, m; r) = Ce.

Informally, this means that the public key encryption scheme is tidy if encryption
and decryption algorithms are bijections(one-to-one correspondence for a fixed key)
between the message-randomness pairs and valid ciphertexts.

Lastly, simulatable token generation is an important property, required in this Thesis
for proving security, irrespective of the manner in which ciphertexts are updated. That
is, we assume that simulatable token generation is feasible to prove the security of
concrete constructions in Chapters 3 and 4. Informally, this property means it is
possible to simulate perfectly indistinguishable update tokens. More formally,

37

Definition 27 (Simulatable Token Generation). The UE scheme defined in Definition
22 has simulatable token generation if the following properties hold:

1. There exists a PPT algorithm denoted Sim.TG(pp) which samples a pair of update
tokens (∆, ∆′) of the token and reverse token respectively.

2. For arbitrary (fixed) epoch key kold ← KG(pp, old), the following token (∆) distri-
butions are the same:

• Distribution induced by running (∆, ·) $← Sim.TG(pp);

• Distribution induced by running (∆, ·) $← TG(pp, kold, new)), for epoch key
knew $← KG(pp, new).

UE vs. PRE Standards and frameworks for cloud computing have garnered much
interest in the cryptographic research community. In particular, cloud computing
affects the risks to the security and privacy of cryptographic schemes implemented in
this setting, thus, new solutions are necessary to maintain security.

Two important solutions to cloud computing are updatable encryption and proxy
re-encryption (PRE) [17], which are closely aligned cryptographic primitives in terms
of motivation and design. The PRE primitive is used for decryption delegation in the
cloud and it works as follows. At a high level, a delegating party (A) outsources the
re-encryption of their ciphertext via a trusted third party (proxy) such that the output
is a ciphertext encrypted under the cryptographic key of the intended receiving party
(B). Consequently, party B can decrypt party A’s ciphertext and learn the underlying
message. Instantly, one can see the synchronicity between UE and PRE such as the
outsourcing of re-encryption, however, UE re-encryption or so-called updates are related
to time keys not the delegation of decryption.

In Table 3.1 we explicitly compare key features and properties of UE and PRE to
highlight that there are clear distinctions between the two primitives. We note that in
Chapters 3, 4, and 5 we provide a discussion on extensions of PRE relevant to each
Chapter in their respective related work Sections. We highlight that despite some of
the similarities, any extended PRE scheme remains distinct from our UE contributions
due to the fundamental differences between standard UE and PRE definitions. The
contrast between the two primitives is further supported by the works of [39, 92, 80].

38

UE vs. PRE
Properties Updatable Encryption Proxy Re-Encryption
Applications Timely updates from

epoch ei to ei+1.
Ciphertext decryption
delegation from user A
to user B.

Type of cryptosystem Symmetric but can be
asymmetric.

Asymmetric

The direction of updates Bi-directional or no-
directional.

Uni-directional or bi-
directional.

Token generation Sequential and determin-
istic.

Probabilistic

Security goals Full re-randomisation of
updated ciphertexts (ci-
phertext unlinkability).

Full re-randomisation is
not necessary.

Table 3.1 Key distinctions between the traditional properties of UE and PRE primitives.

3.3 Public-Key Updatable Encryption

In this Section, we give an intuition for public-key updatable encryption (PKUE), we
present a formal definition of a PKUE primitive and define correctness.

3.3.1 Formal Definition of PKUE

Recall from Section 3.2 that a symmetric UE scheme has an owner create a ciphertext
(encryption of sensitive information) that will be outsourced over a long time. Time in a
UE scheme is formally divided into equal periods known as epochs in which epochs are
associated with distinct keys. A ciphertext is updated (re-encrypted) by a potentially
untrusted host to the next epoch to provide stronger security by rotating the key used
for encryption. Crucially, this update is performed by the host using an update token
derived by the data owner, which is formed from the current and preceding epoch keys,
such that the host is incapable of learning anything about the encrypted information.

Following the discussion in the Introduction of this Chapter, we are motivated to
formalise a public-key UE scheme (PKUE) which will be provided below. The key
idea is to lift the definition of UE to the public-key setting by generating an epoch key
consisting of a public key and a secret key component, and the update token is derived
from the past epoch secret key and the current (full) epoch key.

39

Definition 28 (PKUE). A public-key updatable encryption scheme for message space
MSP consists of a set of polynomial-time algorithms ΠPKUE = (UE.Setup, UE.KG, UE.TG,

UE.Enc, UE.Dec, UE.Upd), defined as follows:

- UE.Setup(1λ) $→ pp : The owner runs the probabilistic setup algorithm on input
security parameter λ, outputting public parameters pp. Whilst not made explicit,
assume throughout that the security parameter (λ) is input into the algorithms
of the scheme.

- UE.KG(pp, e) $→ ke := (pke, ske) : The owner runs the probabilistic key-generation
algorithm UE.KG for epoch e on input of the public parameters. The output is
an epoch key ke := (pke, ske) composed of the public key (pke) and secret key
(ske) elements.

- UE.TG(pp, ske, ke+1)→ ∆e+1 : The owner generates the update token by running
the deterministic algorithm UE.TG on input the public parameters pp, the secret
key ske of epoch key pair ke, and epoch key pair ke+1 for the proceeding epoch.

- UE.Enc(pp, pke, m) $→ Ce : The owner runs the probabilistic encryption algorithm
on input the public parameters pp, a message m ∈MSP , and public key pke for
epoch e, outputting a ciphertext Ce.

- UE.Dec(pp, ske, C) → {m,⊥} : The owner runs the deterministic algorithm
UE.Dec on input the public parameters pp, a ciphertext C, and secret key ske for
some epoch e, returning either the message m or abort ⊥.

- UE.Upd(pp, ∆e+1, Ce) $→ Ce+1 : The host runs the probabilistic update algorithm
on inputs the public parameters pp, ciphertext Ce for epoch e, and update token
∆e+1 for the next epoch (e + 1). The resulting updated ciphertext Ce+1 is output.

Informally, the correctness property ensures that fresh encryptions and updated ci-
phertexts should decrypt to the underlying plaintext, given the appropriate epoch key
[92, 80, 25].

Definition 29 (Correctness). Given security parameter λ, updatable encryption scheme
ΠPKUE formalised in Definition 28 is correct if, for any message m ∈ MSP and for
any j ∈ {1, . . . , max}, i ∈ {0, . . . , max} with max > i, there exists a negligible function
negl such that the following holds with overwhelming probability.

40

Pr



pp
$← UE.Setup(1λ); kej

$← UE.KG(pp, ej);

∆ej
← UE.TG(pp, skej−1 , kej

); Cei

$← UE.Enc(pp, pkei
, m);

{Cej

$← UE.Upd(pp, ∆ej
, Cej−1) : j ∈ {i + 1, · · · , max}};

UE.Dec(pp, skemax , Cemax) = m


≥ 1− negl(1λ).

3.4 Security Modelling

In this Section, we formally model security for our PKUE primitive and define an
essential privacy property in ciphertext-independent UE literature.

We concur with the literature [92, 25] that ciphertext confidentiality is an essential
security requirement to be satisfied for any updatable encryption scheme. In particular,
we focus on capturing indistinguishability security notions for ciphertext unlinkability,
defining an equivalent notion of replayable chosen-ciphertext (RCCA)-security [28, 80]
for a public-key UE scheme.

As we mentioned in Section 3.1 and Section 3.2, RCCA-security is the strongest level
of confidentiality that can be attained in a UE scheme with probabilistic updates.
Recollect, the stronger notion of CCA security cannot be obtained for the following
reason: recording ciphertext updates is vital to ensure the adversary cannot trivially
succeed in breaking security. However, from the moment an adversary corrupts an
update token, the challenger can no longer keep track of the updates on challenge
ciphertexts as they have been re-randomised in the update procedure.

Formally, to prevent an adversary from exploiting the probabilistic update mechanism,
we model replayable chosen-ciphertext security UP-IND-RCCA (Definition 31) for a
public-key UE scheme (Definition 28). This security notion is based on the security
game presented in Figure 3.2. In line with the UE literature [92, 80, 25], we produce a
security framework using indistinguishability experiments such that an adversary can
access some oracles and a challenger can continuously update lists to record every call
to an oracle, as presented in Figure 3.1. Lists are especially important to a challenger
for keeping records of adversary’s corruptions and the indirect knowledge an adversary
can infer in specific epochs.

41

3.4.1 Lists

To initialise the UP-IND-RCCA security experiment, the challenger runs Init(1λ) which
outputs the global state (GS) oracles have access to throughout. At the start, GS :=
(pp, k0, ∆0, L, 0) contains the public parameters pp generated by the setup algorithm;
epoch key k0 := (pk0, sk0); initial update token ⊥ → ∆0; set L := {L,M∗, T ,K, C∗}
containing initially empty lists that the challenger is required to maintain throughout
the experiment and current epoch 0→ e.

List L is maintained to keep a log of updated versions of honestly-generated ciphertexts
and the corresponding epoch that the adversary learns through calls to the relevant
oracles. List M∗ tracks the challenge messages the adversary sends to the challenger.
Further, lists T and K keep track of the epoch(s) in which the adversary has obtained
an update token or an epoch secret key respectively.

We define a list C that tracks the epochs in which an adversary obtains an updated
version of the challenge-ciphertext via queries to the ciphertext update oracle. The
probabilistic nature of ciphertext updates in PKUE means we have to extend list C
to capture additional information, else an adversary can trivially win in the security
experiment for Definition 31 (see Section 3.2).

To satisfy RCCA-security, we extend C to a list labelled C∗ which encapsulates all of
the challenge-equal epochs in which the adversary knows a version of the challenge
ciphertext. Versions of the challenge ciphertext can be obtained via oracle queries or
manually since there are epochs in which the adversary can infer information using
corrupted tokens and/or updated ciphertexts (recall Table 3.2). To see this, if an
adversary knows a ciphertext C̃e from challenge epoch e and update token ∆e+1, then
the adversary can manually update the ciphertext to the epoch (e + 1) and realise
challenge ciphertext C̃e+1. Without making a record of challenge-equal epochs {e, e+1},
the challenger has no means to track this ciphertext update due to the re-randomisation
of updates, which is problematic if the adversary proceeds to corrupt additional tokens
or updated ciphertexts. We highlight that the challenge-equal predicate plays a crucial
role in calls made to the update oracle and the winning conditions of the RCCA security
experiment, both of which will be described below. We proceed to the formal definition
of the challenge-equal predicate.

Definition 30 (Challenge-Equal Predicate). The recursive predicate challenge-equal
defines epochs connected to challenge ciphertexts as follows,

42

C∗ ← {e ∈ {0, . . . , emax}|challenge-equal(e) = true}

and true← challenge-equal(e) iff :
(e ∈ C) ∨ (challenge-equal(e− 1) ∧ e ∈ T)
∨(challenge-equal(e + 1) ∧ (e + 1) ∈ T).

3.4.2 Oracles

Recollect from Section 3.2, our discussion on trivial attacks on probabilistic UE schemes.
Within the discussion, we present a predicate dubbed isChallenge (Definition 23). This
predicate is used in modelling to prevent the decryption of updated versions of the
challenge ciphertext and is an essential component of the decryption and update oracles.

Informally, a ciphertext can be queried to decryption oracle ODec provided one of two
conditions does not hold. First, the ciphertext decrypts to one of the adversary’s chal-
lenge messages {m0, m1} ∈ M∗. Second, if the predicate isChallenge, from Definition
23 in Section 3.2, returns true. If either case holds then test is returned. Otherwise,
the decryption of a valid ciphertext under the current epoch secret key is returned to
the adversary.

The adversary can update arbitrary ciphertexts via calls to OUpd. In return, A receives
a version of the queried ciphertext updated to the current epoch such that the new
epoch is added to the list C. In CCA-secure UE schemes, the oracle restricts calls to
non-challenge ciphertexts. Conversely, RCCA-secure UE schemes allow any ciphertext
to be updated from the prior epoch ei to the current epoch e. Ciphertext Ce is
computed by the update oracle running UE.Upd from epoch ei to epoch {ei+1, . . . , e}
iteratively.

Whilst the update oracle returns a re-encryption of arbitrary ciphertexts to the current
epoch, the challenger records the inferable information leading to trivial wins to use as
part of the winning conditions in the security experiment. Specifically, if (ei, Cei

) is an
honestly generated ciphertext (that is, in list L) then the current epoch and updated
ciphertext (e, Ce) are added to L. Moreover, if the queried ciphertext C decrypts to
one of the challenge messages {m0, m1} ∈ M∗ or the isChallenge predicate returns true,
then the challenger updates list C∗ to contain the challenge-equal epoch e that the
queried ciphertext has been updated to.

43

Init(1λ)

pp
$← UE.Setup(1λ)

k0
$← UE.KG(pp, 0);

k0 := (pk0, sk0)
∆0 ← ⊥
e← 0
L ∈ ∅ for the set of lists L :=
{L,M∗, T ,K, C∗}
return GS
GS := (pp, k0, ∆0, L, 0)
ODec(C)

m← UE.Dec(pp, ske, C)
if (m ∈ M∗) ∨ (isChallenge(ke, C) =
true) then

return test
else

return m

OUpd(Cei
)

for ej = {ei+1, . . . , e} do
Cej

$← UE.Upd(pp, ∆ej
, Cei

)
Ce ← Cej

return Ce

if (ei, Cei
) ∈ L then

L ← L ∪ {(e, Ce)}
if (UE.Dec(pp, skei

, C) = m ∈ M∗) ∨
(isChallenge(ke, Ce) = true) then
C∗ ← C∗ ∪ {e}

ONext(e)

ke+1
$← UE.KG(pp, e + 1)

∆e+1 ← UE.TG(pp, ske, ke+1)
Update GS
(pp, ke+1, ∆e+1, L, e + 1)
if (e ∈ K) ∨ ((C, e) ∈ L) then

(e + 1, C ′) $← UE.Upd(pp, ∆e+1, C)
L ← L ∪ {(e + 1, C ′)}
OCorrupt-Token(e∗)

if (e∗ ≥ e) then
return ⊥

else
return ∆e∗

T ← T ∪ {e∗}
OCorrupt-key(e∗)

if (e∗ ≥ e) then
return ⊥

else
return ske∗

K ← K ∪ {e∗}

Fig. 3.1 Details of the initialisation phase run by the challenger and the oracles
adversary A calls in epoch e during the security experiment of Definition 31.

Lastly, we highlight the technique used of so-called ‘skipping’ epoch keys in the update
oracle queries. This method applies to a PKUE security model, as it captures the
behaviour of an adversary more realistically. The reason is that skipping epochs enables
an adversary to corrupt keys in between the old epoch ei and updated epoch e [80].

Querying oracleONext in challenge epoch e results in the PKUE key-generation algorithm
updating the epoch key to ke+1 and the token generation algorithm then computes

44

update token ∆e+1. In turn, the global state must be updated such that the current
epoch is (e + 1). Observe the following: if the query is in an epoch such that the
adversary has corrupted the epoch key or the epoch belongs to list L, then the challenge
ciphertext must be updated to the next epoch using the generated update token ∆e+1

and the new ciphertext is added to the list of honestly updated ciphertexts (L).

Lastly, queries made to OCorrupt-Token and OCorrupt-Key are for the corruption of an update
token and epoch secret key respectively. The restriction for both oracles is that the
adversary’s query must be from an epoch preceding the current epoch e. The oracle
returns the token (resp. the secret key) for the queried epoch.

Note in the case of key corruption only the epoch secret key is revealed to the adversary,
but the update token is not revealed. A dedicated query to the corrupt-token oracle
must be made if the adversary wants to learn the token for that epoch as well [92]. We
intentionally separate oracle access to tokens and secret epoch key corruption for a
given epoch, unlike previous works [92, 25, 80], to provide a granular level of corruption
modelling.

3.4.3 The UP-IND-RCCA Security Game

In the security experiment of Figure 3.2, the initialisation process is first run by the
challenger. Equipped with a challenge public key, the adversary proceeds to query the
detailed oracles in Figure 3.1 with their relevant restrictions, outputting two challenge
messages (m0, m1) ∈ M∗ alongside some state information s. The challenger must
check that the given messages are of the same length and belong to the message space
MSP of the scheme before proceeding, else the challenger aborts the game and returns
⊥.

Moving forward the challenger runs the PKUE encryption algorithm on one of the
messages mb for chosen bit b ∈ {0, 1}, outputting a challenge ciphertext C. The
challenger sends C to A and updates the current epoch to the challenge epoch ẽ as
well as the lists in L. Equipped with a challenge ciphertext and state information, the
adversary can query the oracles again before outputting a guess bit b′ ∈ {0, 1}. The
adversary succeeds in the security experiment if they satisfy the winning conditions
and successfully guess the correct bit (b′ = b).

45

ExpUP-IND-RCCA,b
ΠPKUE,A (1λ)

GS $← Init(1λ) the initial global state GS = (pp, k0, ∆0, L, 0)
ke

$← UE.KG(pp, e); ke := (pke, ske)
(m0, m1, s) $← AO(pp, pke)
Some state information s
if |m0| ≠ |m1| ∨ {m0, m1} ̸∈ MSP then

return ⊥
else

C
$← UE.Enc(pp, pke, mb)

M∗ ←M∗ ∪ (m0, m1); C∗ ← C∗ ∪ {e};ẽ← {e}
b′ $← AO(pp, C, s)
if (K ∩ C∗ = ∅) then

return b′

Else abort.

Fig. 3.2 The security experiment for UP-IND-RCCA-security of a PKUE scheme.
Let O = {ODec,ONext,OUpd,OCorrupt-Token,OCorrupt-Key} denote the set of oracles that
adversary A calls during the experiment.

Definition 31 (UP-IND-RCCA-Security). A public-key updatable encryption scheme
ΠPKUE as in Definition 28 is UP-IND-RCCA secure if for any PPT adversary A the
following advantage is negligible over security parameter λ:

AdvUP-IND-RCCA,b
ΠPKUE,A (1λ) :=|Pr[ExpUP-IND-RCCA,0

ΠPKUE,A (1λ) = 1]−
Pr[ExpUP-IND-RCCA,1

ΠPKUE,A (1λ) = 1]| ≤ negl(1λ)

where the indistinguishability experiment is defined in Figure 3.2.

Security Framework For clarity, we note that Figure 3.2 captures a challenger who
returns a challenge-ciphertext (C) generated by the encryption algorithm only. At
first glance, this model does not appear to capture the indistinguishability of freshly
generated ciphertexts versus updated ciphertexts, as the challenge ciphertext is never
generated from the update algorithm in the experiment.

However, to demonstrate the satisfaction of ciphertext unlinkability in this Chapter, we
do not require an amendment to our security game when following the modular proof
technique suggested in [80]. Namely, a generic transformation demonstrating that it is
sufficient to consider the underlying encryption and key-rotation capabilities of a scheme

46

(almost) separately to imply ciphertext unlinkability. In other words, it is only required
that the underlying public-key encryption scheme (UE.Setup, UE.KG, UE.Enc, UE.Dec)
scheme satisfies standard security to imply unlinkability.

Crucially, for the generic transformation to work we make assumptions on the update
feature. Firstly, that our scheme satisfies a notion of perfect re-encryption and secondly,
we assume that simulatable reversible update tokens exist in which a reversible token
(∆−1

e) can downgrade a ciphertext from epoch (e + 1) to epoch e. We stress that a
reversible update token is not a feature of a PKUE scheme, rather, it is used as part of
the formal security analysis. Both assumptions will be defined and proven to hold in
Section 3.8.

Preventing Trivial Wins and Ciphertext Updates To reflect the adaptive or
retroactive corruptions of any update token or epoch secret key in the security experi-
ment, Definition 28 must capture the following:

• Forward Security An adversary compromising the epoch secret key (ske∗) in
some epoch e∗ does not gain an advantage in decrypting ciphertexts in a prior
epoch e (condition e < e∗).

• Post-Compromise Security An adversary compromising an epoch secret key
in some epoch e∗ does not gain an advantage in decrypting ciphertexts in an
epoch e after the compromise (condition e > e∗).

Satisfying both forms of security means the adversary does not further their advantage
in decrypting ciphertexts from any epoch, including the challenge epoch. In particular,
post-compromise security is important when dealing with sequentially derived update
tokens, in which both old and new epoch keys are used.

To illustrate, if A compromises a secret key skei
or skei+1 and updates token ∆ei+1 ,

one would expect the confidentiality of ciphertexts encrypted for epoch ei+1 to remain
confidential, however, this is not the case. In the forward security case, the adversary
can determine skei

having corrupted (skei+1 , ∆ei+1) and decrypt past ciphertexts Cei
.

Conversely, in the post-compromise scenario, the adversary can determine skei+1 having
corrupted (skei

, ∆ei+1) and decrypt Cei+1which is a future ciphertext in the eyes of the
adversary.

47

Inferable Information
Epoch Key-Pairs Update Tokens Challenge
ei−2 kei−2 := (pkei−2 , skei−2) ∆ei−1 C̃ei−2

ei−1 kei−1 := (pkei−1 , skei−1) ∆ei
C̃ei−1

ei kei
:= (pkei

, skei
) ∆ei+1 C̃ei

ei+1 kei+1 := (pkei+1 , skei+1) ∆ei+2 C̃ei+1

ei+2 kei+2 := (pkei+2 , skei+2) ∆ei+3 C̃ei+2

Table 3.2 The leakage profile due to inferable information at adversary A’s disposal
across multiple epochs, for any i ∈ N. The blue, red, and purple boxes demonstrate
how the elements in the respective coloured boxes are used to infer the cryptographic
element highlighted in the same colour.

Crucially queries made to the token and key corruption oracles (OCorrupt-Token and
OCorrupt-Key respectively) in epoch e∗ are met with a response in which the challenger
allows for corruption of tokens and secret keys in a prior epoch e∗ to the current epoch
e. The post-compromise security notion is satisfied due to the challenger updating
lists T ∈ C∗ and K respectively with epoch e∗, both of which are lists featured in the
winning condition of Figure 3.2, namely, the requirement stating that the intersection
of lists K and C∗ must be empty.

Moreover, to satisfy forward security the winning condition (K∩C∗ = ∅) is of importance
to prevent the adversary from trivially winning in the security game as follows. The
challenge epoch (e) of the experiment cannot belong to the set of epochs in which an
update token has been learned or inferred, nor can there exist a single epoch where
the adversary knows both the epoch key (public and secret key components) and the
(updated) challenge-ciphertext [92]. To see this, if the adversary A corrupts token
∆e+1 in an epoch after which A has obtained the challenge ciphertext C̃ during epoch
e, either by inference or via an update, then the adversary is capable of updating the
ciphertext into the next epoch (e + 1) [80]. It is easy to see that the forward security
condition e < e∗ where (e∗ = e + 1) in this example is satisfied. We supply Table
3.2 above to further assist in illustrating the information an adversary can infer upon
corrupting different elements of a PKUE scheme via oracle queries.

48

3.5 Epoch Confidentiality

In this Section, we introduce the notion of an epoch confidential public-key UE
primitive. We extend Definition 31 to capture both epoch and ciphertext confidentiality
simultaneously, formalised by security notion UP-IND-EC-RCCA (Definition 32).

Recollect from the Introduction of this Chapter, a motivation in defining PKUE was
so we can utilise public-key techniques in security modelling to formalise novel notions
previously overlooked or unattainable in the traditional, symmetric setting. In this
Section, we examine how our security framework from Section 3.4 can be supplemented
to prevent an adversary from inferring the number of times a ciphertext has been
updated. That is, the epoch associated with the ciphertext.

In particular, the exposure of personally identifiable information such as the age of a
ciphertext, which we deem to be an undesirable outcome from a security perspective as
privacy is no longer ensured since ciphertext age directly translates to the number of key
updates on the encrypted file. To tackle this problem, we define epoch confidentiality, a
notion capturing the leakage of the so-called ciphertext age in the ciphertext-independent
updatable encryption setting. To re-emphasise, we believe epoch confidentiality is an
attractive security property for any UE scheme to guarantee privacy.

Our belief is supported by the literature. In particular, the authors of [19, 25] inde-
pendently highlighted ciphertext-age leakage to be problematic in real-world scenarios.
For instance, [19] considers the setting of dating apps where the number of updates in
a UE scheme would reveal how long the person has been a customer which is sensitive
information. An alternative application is the storage of medical data, and leakage of
ciphertext age could reveal anything from how long an individual has been registered
with an organisation, to the age of the individual.

In detail, issues occur in schemes such as that of [52], in which ciphertexts expand as
time progresses, producing ciphertext length variance. The authors of [19] demonstrated
how ciphertext length can be used to trivially infer ciphertext age in a UE scheme. They
proposed a tentative solution to require the length of fresh and updated ciphertexts to
be equal, a notion known as compactness. We note that satisfying compactness alone
does not guarantee there will be no leakage of ciphertext age without additionally
satisfying ciphertext unlinkability.

49

To illustrate, ciphertext compactness is a property that, on its own, does not prevent
patterns from occurring between ciphertexts. Therefore, an adversary remains capable
of using these patterns to distinguish ciphertexts generated from fresh encryption
versus updates. Indeed, in [19] a simple example is given in which the last bit of the
respective ciphertexts differ, and an adversary can determine whether the ciphertext
was derived from an update of a pre-existing ciphertext or fresh encryption simply by
comparing the last bits of the ciphertexts, thus leaking age information.

Note that the UE framework in [19, 25] is for symmetric encryption. In the context
of this Chapter, more thought needs to be given to security modelling as we are in
the public-key setting, so an adversary remains capable of inferring the epoch and
consequently the age of a ciphertext by distinguishing the public component of the
epoch key used in encryption, token generation and ciphertext updates.

Consequently, our contribution in this Section extends the above by additionally
modelling the indistinguishability of epoch public keys. This is because ciphertext-
independent UE schemes are designed such that the update token can be derived
from the current and proceeding epoch keys. Without specific conditions in security
modelling, the corruption of epoch keys and update tokens in challenge-equal epochs
enables an adversary to infer information about a version of the challenge ciphertext.
To be clear, we necessitate the computational indistinguishability of the epoch public
keys in addition to ciphertext unlinkability to provide epoch confidentiality in a given
UE scheme.

3.5.1 Security Modelling

To achieve epoch confidentiality for a public-key updatable encryption scheme ΠPKUE as
in Definition 28, an adversary should be unable to distinguish the public-key component
of the epoch key under which a ciphertext has been generated. Thus, possession
of distinct public keys and a challenge ciphertext should not give an adversary an
advantage in determining which public key and therefore which epoch the ciphertext
was encrypted under. This approach to modelling security is inspired by and similar in
manner to key privacy [12], which is used to define anonymity in public-key encryption
schemes.

To formalise Definition 32, we use the security experiment (ExpUP-IND-EC-RCCA,b
ΠPKUE,A (1λ))

given in Figure 3.3 . The intuition is to model an indistinguishability game between

50

the challenger and an adversary A. Initially, the adversary has two challenge public
keys (pke0 , pke1) and A proceeds to query the oracles detailed in Figures 3.1.

To define epoch confidentiality, we introduce a new list of epochs satisfying certain
requirements. As a consequence, the oracles of Figure 3.1 must be adapted. Informally,
the challenger must check before running every oracle whether the current epoch
is contained in our new list and if so, they abort the interaction. In opposition to
Definition 31, A must distinguish not only the underlying message that has been
encrypted but also the public key used for encryption, given only access to the relevant
oracles and a challenge ciphertext.

The aforementioned extra list maintained by the challenger will be denoted K̃. Infor-
mally, list K̃ captures the epochs in which adversary A receives challenge public keys
and this list must be checked before responding to oracle queries, to prevent trivial
wins. The initialisation process runs as normal (see Figure 3.1), however, there is a
nuanced difference in the remaining oracles.

The adapted oracles run as described in Section 3.4, Figure 3.1 with the following
prerequisites:

• List K̃ is initialised, at time 0, by running Init(1λ) and the set of lists contained
within the global state now becomes L = {L,M∗, T ,K, K̃, C∗} such that L ∈ ∅.

• ODec,ONext : if the current epoch e ∈ K̃ then the corresponding oracle that has
been queried by A does not proceed with running the oracle nor responding to
an invalid query. Otherwise, the oracle runs as normal.

• OCorrupt-Token,OCorrupt-Key : if the queried epoch e∗ belongs to the set K̃ then the
corresponding oracle that has been queried by A does not proceed with running
nor responding to an invalid query. Otherwise, the oracle runs as normal.

• OUpd : if the queried epoch ei ∈ K̃ or current epoch e ∈ K̃ then the oracle
ceases running on an invalid query and aborts (⊥). Otherwise, the oracle runs as
normal.

In other words, the game in Figure 3.3 starts by initialising the global state GS as
previously explained. Next, the key-generation algorithm is run twice to generate
epoch keys ke0 = (pke0 , ske0) and ke1 = (pke1 , ske1) for distinct epochs of time e0, e1.

51

ExpUP-IND-EC-RCCA,b
ΠPKUE,A (1λ)

GS $← Init(1λ) for initial global state GS = (pp, k0, ∆0, L, 0)
ke0

$← UE.KG(pp, e0), ke1
$← UE.KG(pp, e1) such that ke0 ̸= ke1, (e0, e1) ̸∈ K

ke0 := (pke0 , ske0), ke1 := (pke1 , ske1)
K̃ ← {(e0, e1)} ∩ K̃
(m0, m1, s) $← AO(pp, pke0 , pke1)
Some state information s
if |m0| ≠ |m1| ∨ {m0, m1} ̸∈ MSP ∨ (m0 = m1) then

return ⊥
else

C
$← UE.Enc(pp, pkeb

, mb)
M∗ ←M∗ ∪ {(m0, m1)}; C∗ ← C∗ ∪ {eb}; ẽ← {eb}

b′ $← AO(pp, C, s)
if (K ∩ C∗ = ∅) then

return b′

Else abort.

Fig. 3.3 The security game for a PKUE scheme satisfying UP-IND-EC-RCCA-security,
where set L = {L,M∗, T ,K, K̃, C∗} is initially empty, O is the set of oracles an
adversary A calls, and s defines some state information output by the adversary.

Given the challenge public keys (pke0 , pke1), the adversary proceeds to query oracles
O = {ODec,OUpd,ONext,OCorrupt-Token,OCorrupt-Key} to output valid challenge messages
(m0, m1) ∈MSP required to be of the same length, alongside some state information
s. Subsequently, the challenger encrypts mb using public key pkeb

, for a pre-determined
bit b ∈ {0, 1}, sending the challenge ciphertext C to the adversary. Using this challenge
ciphertext alongside the state information s and further access to previously detailed
oracles, A guesses the bit b′ and succeeds in the game if their guess corresponds to the
bit b chosen before the experiment began. More formally,

Definition 32 (UP-IND-EC-RCCA-Security). A public-key updatable encryption scheme
ΠPKUE formalised in Definition 28, satisfies UP-IND-EC-RCCA security if for any PPT
adversary A there exists a negligible function negl such that

AdvUP-IND-EC-RCCA,b
ΠPKUE,A (1λ) :=|Pr[ExpUP-IND-EC-RCCA,0

ΠPKUE,A (1λ) = 1]−
Pr[ExpUP-IND-EC-RCCA,1

ΠPKUE,A (1λ) = 1]| ≤ negl(1λ).

52

Remark 1. Recall in Section 3.4 that we discussed the generic transformation first
proposed in [80] in which the security of a standard encryption scheme, coupled with the
assumption of perfect re-encryption for the update feature, directly implies ciphertext
unlinkability of a PKUE scheme. We make explicit that the same transformation is
utilised in the security analysis of our construction (Definition 39) to illustrate that
epoch confidentiality is achieved.

To distinguish our contribution we compare it to closely related work of [19]. The
authors define a notion of confidentiality in the ciphertext-dependent UE setting that
captures the idea of hiding the age of the ciphertext, namely the number of times
that the ciphertext was re-encrypted since it was initially created. Their notion of
confidentiality is considered stronger than prior notions of confidentiality from works
such as [24, 52] since [19] require re-encrypted ciphertexts to be computationally
indistinguishable from freshly generated ciphertexts, no matter how many times re-
encryption occurs. This requirement is in addition to message confidentiality and
re-encryption indistinguishability security notions defined in [24, 52].

Whilst we are motivated by the same reasoning as [19], our notion of epoch confiden-
tiality is designed for ciphertext-independent PKUE schemes, which we established
as a distinct strain of updatable encryption. Secondly, our security model captures
the indistinguishability of epoch public keys, not ciphertexts. Definition 32 does cover
ciphertext confidentiality with the addition of epoch confidentiality which means that
an adversary cannot use epoch public keys to distinguish the epoch public key used to
generate a ciphertext, be that from encryption or ciphertext updates. As a consequence,
an adversary cannot determine the epoch a ciphertext has derived from.

3.6 Construction Preliminaries

In this Section, we present the building blocks and assumptions required to construct
our concrete public-key updatable encryption scheme ΠPKUE. We use an ElGamal-based
public-key UE scheme; a message-independent signature scheme and a linear malleable
proof system, detailed in this order.

First, our construction ΠPKUE is a modified version of the NYUE scheme [80], itself
based upon RISE [92] which we convert to the public-key setting.

53

Definition 33 (Rise). Given security parameter λ, the RISE PKUE scheme is a tuple of
six PPT algorithms ΠRISE = (Rise.Setup, Rise.KG, Rise.TG, Rise.Enc, Rise.Dec, Rise.Upd)
defined as follows:

• Rise.Setup(1λ) $→ pp : the data owner runs the setup algorithm on input the
security parameter λ and outputs public parameters pp := (G1, g, q) for G1 a
cyclic group with generator g, of prime order q > 2λ.

• Rise.KG(pp, e) $→ ke : given inputs the public parameters pp and epoch e, the
key-generation algorithm outputs the epoch key-pair ke := (pke, ske), where the
secret key ske is a randomly chosen value x

$← Z∗
q, and the public key pke is

computed as gx ∈ G1.

• Rise.TG(pp, ske, ke+1)→ ∆e+1 : the owner parses ke+1 = (pke+1, ske+1) the epoch
key and computes the update token as ∆e+1 ← (ske+1/ske, pke+1), returning
∆e+1. Note that the token space is defined over Z∗

q ×G1.

• Rise.Enc(pp, pke, m) $→ Ce : for m ∈ G1 the data owner draws r
$← Zq, and

returns Ce = (pkr
e , grm) ∈ (G1)2.

• Rise.Dec(pp, ske, Ce)→ {m,⊥} : the data owner parses Ce = (C1, C2) and returns
m← C2 · C1

−1/ske . Else, they abort and output ⊥.

• Rise.Upd(pp, ∆e+1, Ce) $→ Ce+1 : the data host parses ∆e+1 = (∆, pke+1) and
Ce = (C1, C2), draws r′ $← Zq, computes C ′

1 ← C∆
1 · pkr′

e+1, C ′
2 ← C2 · gr′ , and

returns Ce+1 = (C ′
1, C ′

2).

Given honestly generated consecutive epoch keys ke := (pke, ske) = (gx, x) and ke+1 :=
(pke+1, ske+1) = (gx′

, x′), token ∆e+1 = (ske+1/ske, pke+1) such that ∆ := ske+1/ske,
and ciphertext Ce := (C1, C2) = (pkr

e , grm), correctness of updates is demonstrated as
follows:

• C ′
1 = C∆

1 · pkr′
e+1 = (pkr

e)ske+1/ske · pkr′
e+1 = (gxr)(x′/x) · (gx′)r′ = gx′(r+r′) = pk

(r+r′)
e+1 ;

• C ′
2 = C2 · gr′ = grm · gr′ = gr+r′

m.

Since randomness (r + r′) ∈ Zq, updated ciphertext Ce+1 := (C ′
1, C ′

2) is of the correct
form.

54

If we remove the update feature of ΠRise, from Definition 33, then we are left with
the public-key encryption scheme ΠPKE = (Rise.Setup, Rise.KG, Rise.Enc, Rise.Dec). To
prove the security of our construction (Section 3.8), we move from the updatable to
the standard setting by the method of reduction. Thus, we reduce the security of our
construction to that of ΠPKE and use the ensuing remark to support our analysis.

Remark 2. The authors of [12] demonstrated that an El-Gamal-based PKE scheme
such as ΠPKE satisfies key privacy under chosen-plaintext attacks (IND-IK-CPA), as-
suming the hardness of the DDH in G1. We discuss this in more detail in Section
3.8.

Recall Figure 2.4 used in Definition 15 (Section 2.4), which formalises the strictly
stronger key-private replayable security notion (IND-IK-RCCA) for a PKE scheme. A
key-private CPA-secure PKE scheme models an adversary’s capability of distinguishing
the public key used to encrypt a chosen message from the challenge ciphertext.

Message Independent Updatable Signature Scheme The authors of [34] were
the first to introduce the explicit definition of updatable signature (US) schemes,
present concrete US schemes from key-homomorphic signature, and formally prove
security properties in the updatable setting using the key-insulation technique of [80]. In
particular, they modelled security against updatable-signature and unlinkable-signature
existentially-unforgeable chosen message attacks.

Previously, there were notions of signatures supporting key rotation in addition to
guaranteeing unforgeability when allowing queries under (adversarially) updated keys.
However, [34] highlighted that none of the prior literature rigorously defines security
when signatures were updated between different keys.

In the context of our work, we use a message-independent updatable signature (MI-US)
scheme formalised in [34] to build a concrete PKUE scheme. Message independence is
desirable since we want signature updates without the input of the underlying message,
given the outsourced environment in which UE schemes are applied. Moreover, this
property is important in practical applications as access to the message is not required,
meaning that signature verification can be stored and updates can occur at a later
time, in batches. To achieve message independence the authors of [34] adapt signature
schemes such as [22, 107] such that updates to signatures are multiplicative. In the
following definition, we present the concrete MI-US scheme proposed by [34] which is
based on the efficient, short signature scheme given in [107].

55

Definition 34 (MI-US). Given security parameter λ ∈ N, let the message-independent
updatable signature scheme be defined by a tuple of six PPT algorithms ΠUS =
(US.Setup, US.KG, US.Next, US.Sign, US.Upd, US.Ver) as follows,

• US.Setup(1λ) $→ pp : given security parameter λ, run the bilinear group generator
algorithm BG.Gen(1λ)→ pp := (G1,G2,GT , g, g̃, ê, q) where g is the generator of
G1 and g̃

$← G2 for groups G1,G2 of prime order q and asymmetric bilinear map
ê : G1 ×G2 → GT . Output public parameters pp.

• US.KG(pp) $→ (sige, vke) : randomly choose values x
$← Zq, y

$← Z∗
q; set sige :=

(x, y) and vke := (X̃, Ỹ) = (g̃x, g̃y).

• US.Next(pp, sige, vke) $→ (∆e+1, vke+1) : define ∆e+1 := (∆e+1,1, ∆e+1,2) such
that ∆e+1,1

$← Z∗
q; set ∆e+1,2

$← Zq. Compute new keys sige+1 := (x′, y′) =
(x ·∆e+1,1 + ∆e+1,2, y ·∆e+1,1) and vke+1 := (X̃ ′, Ỹ ′) = (X̃∆e+1,1 · g̃∆e+1,2 , Ỹ ∆e+1,1).

• US.Sign(pp, sige, m) $→ σe for message m ∈ MSP := Zq, randomly choose
h

$← G∗
1 and set signature σe := (σe,1, σe,2) = (h, h(x+y·m)).

• US.Upd(pp, ∆e+1, σe) $→ σe+1 : choose randomness value r ← Z∗
q and compute

the updated signature σe+1 := (σe+1,1, σe+1,2) = (σr
e,1, σ

r·∆e+1,1
e,2 · σr·∆e+1,2

e,1).

• US.Ver(pp, vke, m, σe) → b ∈ {0, 1} : parse σe := (σe,1, σe,2) and first check that
σ1 ̸= 1G1 . If so, check ê(σe,1, X̃ · Ỹ m) ?= ê(σe,2, g̃). If the equality holds, output 1
and output 0 otherwise.

Correctness of verification and updates is demonstrated respectively as follows:

1. If σe := (σe,1 = h, σe,2 = h(x+y·m)) then ê(σe,1, X̃ · Ỹ m) = ê(h, g̃)(x+y·m) =
ê(h(x+y·m), g̃) = ê(σe,2, g̃).

2. Given σe+1 := (σr
e,1, σ

r·∆e+1,1
e,2 · σr·∆e+1,2

e,1) = (hr, h(x+y·m)·r·∆e+1,1 · hr·∆e+1,2) =
(hr, hr(·(x+y·m)·∆e+1,1+∆e+1,2)) = (hr, hr(x′+y′·m)), the randomisation property of
the scheme allows for a valid updated signature by replacing h ∈ G∗

1 with
h′ := hr ∈ G∗

1.

Security of Definition 34 follows from the assumptions and proofs given in [107, 34]. For
clarity, we state the relevant definitions and security assumptions relevant to our work
in the following, and the proofs follow from [34]. Firstly, all US schemes proposed in

56

[34], including Definition 34, are based on additive or multiplicative key-homomorphic
(KH) signature schemes (Σ = (Gen, Sig, Adapt, Vrfy)) whereby Σ has perfect adaptation.
Formally,

Definition 35 (Perfect Adaptation). Key-homomorphic signature scheme Σ = (Gen, Sig,

Adapt, Vrfy) satisfies the perfect adaptation property. Using a secret-key to public-key
homomorphism µ : H→ E with H being the secret key space of Σ, the following holds,

∀sk, sk′ ∈ H : µ(sk + sk′) = µ(sk) · µ(sk′) and ∀(sk, pk)← Gen(1λ) it holds that pk =
µ(sk).

then there exists a PPT algorithm Adapt(pp, pk, m, σ, ∆)→ (pk′, σ′),∀∆ ∈ H.

Assumption 1. Let (q,G1,G2,Gt, ê, g, g̃) be a bilinear group setting with g, g̃ generators
groups G1,G2 respectively. For (X̃ = g̃x, Ỹ = g̃y) for x

$← Zq, y
$← Z∗

q, we define
the oracle O(m) for message m ∈ Zq which chooses h

$← G∗
1 and outputs the pair

P = (h, h(x+y·m)). Given (X̃, Ỹ) and unlimited access to the defined oracle, no adversary
can efficiently generate a pairing like P with randomness h ̸= 1G1, for a new message
m∗ that was not queried to the oracle.

The next two definitions formalise US-EUF-CMA and US-UU-CMA security in Figures
3.4, 3.5 respectively. In essence, the former notion encapsulates a standard signature
scheme security notion translated to the updatable setting and the latter security
notion captures the indistinguishability of freshly generated versus updated signatures
against chosen message attacks.

Informally, the set of lists L = (I,K, T ,S) track all the keys and tokens corrupted;
epochs in which the key was corrupted; epochs in which the token was corrupted;
and the tuple of the epoch, message, and signature in which an adversary ob-
tained the signature via fresh signing or an update. We note that oracles O′ :=
{OSign,ONext,OUpd,OVer,OCorrupt} are the signature equivalent of our UE security ora-
cles presented in Section 3.4, except for OVer which on an input message and signature
pair (m, σe′) returns the verification bit b using public verification key vke′ . Further-
more, algorithm UpdCH in Figure 3.5 is the repeated application of the US update
algorithm from epoch e′ to challenge epoch e∗. We defer the reader to [34] for a full
treatment of the security of an updatable signature scheme. More formally,

57

Definition 36 (US-EUF-CMA Security). The updatable signature scheme ΠUS given in
Definition 34 is US-EUF-CMA secure iff a PPT adversary A has a negligible advantage
in the security experiment defined in Figure 3.4. Namely,

AdvUS-EUF-CMA
ΠUS,A (1λ) := Pr[ExpUS-EUF-CMA

ΠUS,A (1λ) = 1] ≤ negl(1λ).

ExpUS-EUF-CMA
ΠUS,A (1λ)

pp
$← US.Setup(1λ)

(sig1, vk1) $← US.KG(pp)
L = (I,K, T ,S) for I := {(sig1, vk1),⊥},K := T := S := ∅
(m∗, σ∗

e∗)← AO′(1λ)
if US.Vrfy(pp, vke∗ , m∗, σ∗

e∗) = accept then
return 1

Else abort.

Fig. 3.4 The security game modelling updatable-signature existentially-unforgeable
chosen-message security of the updatable signature scheme ΠUS.

Definition 37 (US-UU-CMA Security). The updatable signature scheme ΠUS given in
Definition 34 is US-UU-CMA secure iff a PPT adversary A has a negligible advantage
in the security experiment defined in Figure 3.5. Namely,

AdvUS-UU-CMA
ΠUS,A (1λ) := |Pr[ExpUS-UU-CMA,1

ΠUS,A (1λ) = 1]− Pr[ExpUS-UU-CMA,0
ΠUS,A (1λ) = 1]| ≤

negl(1λ).

Lemma 1. The message-independent updatable signature scheme ΠUS of Definition 34
is secure against updatable signature existentially unforgeable chosen message attacks
(US-EUF-CMA) and unlinkable signature chosen message (US-UU-CMA) attacks given
that the underlying signature scheme is EUF-CMA secure and satisfies perfect adaptation
([34]).

Linear Malleable Proofs We require a (linear) malleable proof system to support
the re-randomisation of commitments and proofs in the updatable signature scheme
used to build a concrete updatable encryption scheme. Linear malleability of proofs
essentially ensures that commitments are homomorphic.

58

ExpUS-UU-CMA,b
ΠUS,A (1λ)

pp
$← US.Setup(1λ)

(sig1, vk1) $← US.KG(pp)
L = (I,K, T ,S) for I := {(sig1, vk1),⊥},K := T := S := ∅
(m∗, e∗)← AO′(1λ)
b

$← {0, 1}
σ(0) ← US.Sign(pp, sige∗ , m∗), σ(1) ← UpdCH(m∗)
b∗ ← AO′(σ(b))
if (e′, m∗, ·) ∈ S ∧ (e′ < e∗) ∧ (b = b∗) then

return b∗

Else abort.

Fig. 3.5 The game modelling security against updatable-signature unlinkable-updates
under chosen-message attacks of the updatable signature scheme ΠUS.

The concrete proof system used to support our construction is a Groth-Sahai proof
system [67, 50], needed to ensure the randomisability and malleability of our updateable
encryption scheme. Commonly, GS-proofs are commit-and-prove systems for quadratic
equations. One commits to a witness and then proves the committed witness is a
solution for the given system of equations. In other words, it is a system that proves
the satisfiability of sets of linear and quadratic pairing equations.

Note that Definition 38 presented below can be viewed as dual-mode proof systems
in the sense that there are two setup algorithms: GS.SetupH(gp), GS.SetupB(gp) gen-
erates hiding and binding common reference strings (crsH , crsB) respectively. As a
consequence, the resulting proof π is perfectly hiding and perfectly sound respectively.
Furthermore, binding commitments to groups are extractable [80] which is a property
implying structure-preserving cryptographic schemes. For notational purposes, the first
two algorithms have been combined into one setup algorithm (GS.Setup). We provide
an explicit definition as follows.

Definition 38 (GS-Proof System). Let (e,G1,G2,GT , q) be a pairing group. Define a
GS-proof system as a tuple of four PPT algorithms ΠGS = (GS.Setup, GS.Com, GS.Prove,

GS.VRFY) that works in the following way,

• GS.Setup(gp) $→ crs : global parameters are input into the probabilistic setup
algorithm that outputs a common reference string crs := (crsH , crsB) which is a

59

pair of hiding and binding common reference strings. Let the output (crs) be
implicitly input into the following algorithms.

• GS.Comt(x; r) $→ c : the probabilistic commitment algorithm takes a variable of
type t and outputs a commitment (c) for input x, using randomness r. Note that
the type t determines what group the input x is in, for example. Further, the
implicit input of crs means that the commitment is perfectly hiding and binding
respectively.

• GS.Prove(ϵ, (wi)i, (ri)i) $→ π : Define input ϵ to be an equation which can involve
variables, constants over G1,G2 or scalar Fq (where Fq is a finite field of prime
order q). Let input (wi)i be a solution to ϵ3. Let input (ri)i be commitment
randomness for wi and (Ci)i = (Comti

(wi; ri))i be the set of commitments. Thus,
running the algorithm GS.Prove(ϵ, (wi)i, (ri)i) $→ π produces a proof.

• GS.VRFY(ϵ, (ci)i, π)→ {accept, reject} : Given an equation ϵ, commitments (Ci)i

and a proof π, the deterministic verification algorithm either accepts or rejects
the proof.

Let a statement/equations (ϵj)j be defined by (Γi,j, [aj]1, [bi]2) and the solution/witness
defined by ([xi]1, [yj]2). It suffices to prove and verify each equation ϵj for the same
committed solution (Ci)i. The proof π and commitments are used implicitly to prove
the satisfiability of the system of equations of the form:

∑
i,j

Γi,j ê([xi]1, [yj]2) +∑
i

Γi,j ê([xi]1, [bi]2) +∑
j

Γj ê([aj]1, [yj]2) = [t]T ,

where Γi,j ∈ Fq, ([xi]i, [aj]1) ∈ G1, ([bi]2, [yj]2) ∈ G2, and [t]T ∈ GT and pairing ê is
some bilinear map between Fq,G1, and G2.

The technique of proving in our construction will use an OR-compilation of statements
(equation) (S0, S1) to enumerate the constants and variables contained within the two
equations such that the witness is OR(S0, S1). This is a commit-and-prove method,
such that the commitment is necessarily linearly malleable, to suit the update feature
of our construction.

We assume commitments are additively homomorphic, that is, Ci(a; r) + Ci(b; s) =
Ci(a + b; r + s). Further, we assume perfectly re-randomisable commitments and proofs

3That is, is a suitable variable assignment with variable wi of type ti.

60

((Ci)i, πj) respectively in the sense that re-randomised commitments and proofs are iden-
tically distributed to the freshly generated ones. We highlight that re-randomisability
is the property required for unlinkability in probabilistic updatable encryption schemes.

The high-level idea to prove one of the two statements (S0, S1) is true is as follows.
Given bit b ∈ {0, 1} and solution (xi)i to equation Sb, the constants and witness xi

of valid equation Sb are copied to solution xi,b. The unsatisfied statement S1−b and
witness are copied to 0, to ensure equalities trivially hold. Consequently, witness (xi)i

is easy to reconstruct from a witness for OR(S0, S1).

3.7 An Epoch Confidential Construction

In this Section, we present a concrete construction of a public-key UE scheme which we
later prove to satisfy UP-IND-EC-RCCA security in Section 3.8. We chose to define a
concrete construction to demonstrate the existence of a PKUE scheme satisfying epoch
confidentiality in practice and to compare the efficiency of our construction versus
concrete symmetric UE schemes.4

High Level Idea Our construction (ΠPKUE), presented in Definition 39, generates two
epoch key pairs (k1

e = (pk1
e , sk1

e), k2
e = (pk2

e , sk2
e)) for the same epoch. This is achieved

following the public-key RISE key generation algorithm presented in Definition 33 of
Section 3.6, which is an El-Gamal-based PKUE scheme. Then, we encrypt message m

twice using the encryption algorithm in Definition 33 with the two generated epoch
public keys (pk1

e , pk2
e) and specified randomness (r1, r2 respectively). In addition, the

ciphertext contains a NIZK proof (π) of validity, using a dual-mode GS-proof system
presented in Definition 38, Section 3.6. We note that a message-independent updatable
signature scheme ΠUS from Definition 34, Section 3.6, is used in running the proof
system. We chose to use this scheme since ΠUS is an updatable building block satisfying
a notion of signature unlinkability, and crucially, it is compatible with the GS proof
system.5

4Concrete schemes provide quantitative information for the computational security of a crypto-
graphic scheme by explicitly bounding the maximum success probability of any PPT adversary [76].
Quantitative security is useful in practice when care is taken with the conclusions made from security
analysis.

5In the sense that it is a structure-preserving signature scheme (Definition 18, Section 3.6).

61

To decrypt, we first require the verification of the proof contained within the ciphertext
and, if accepted, the decryption algorithm follows the decryption process given in
Definition 33.

The token generation procedure follows Definition 33 in producing a ciphertext update
token and additionally runs the updatable signature token generation algorithm.

Lastly, ciphertext updates follow a four-step process of 1) verification; 2) key rotation
through the use of the generated update tokens and update procedure of ciphertext
and signatures respectively, together with a new NIZK proof; 3) re-randomisation of
the new ciphertexts, followed by 4) re-randomisation of the new signature and NIZK
proof.

Formal Description To build construction ΠPKUE we use a modified Naor-Yung
transform [102] applied to the public-key UE scheme ΠRise , a linear malleable NIZK
GS-proof system ΠGS [67], and a message-independent updatable signature scheme
ΠUS [34] that is compatible with ΠGS.

These building blocks assume the intractability of the SXDH-problem in (e,G1,G2,GT)
[8, 67], presented in Definition 7, Section 2.3. Informally, this assumption implies
the existence of cyclic groups (G1,G2) in which the DDH problem is hard in both
groups and with the property that there exists an efficiently computable bilinear map
ê : G1 ×G2 → GT (Definition 5, Section 2.3). The intractability of the SXDH problem
is useful in building ΠPKUE since the DDH assumption holds within at least one of a pair
of XDH groups (G1,G2), which can be used to construct a pairing-based protocol for
the ElGamal-style encryption. Namely, the PKUE scheme ΠRise detailed in Definition
33, Section 3.6.

The NIZK GS-proof system ΠGS used is a simulation-sound commit-and-prove system
admitting malleable and re-randomisable proofs to facilitate the public verification of
ciphertext consistency. The system works by demonstrating one of two statements
is true in our construction ΠPKUE: either two ciphertexts c1 = UE.Enc(pp, pk1, m1),
c2 = UE.Enc(pp, pk2, m2) are encryptions of the same message (meaning m1 = m2),
or, possibly distinct messages (m1, m2) are signed under a signature verification key
derived from the message-independent updatable signature scheme ΠUS.

We label the aforementioned statements as SNY and SUS respectively, and to prove that
the equations in one of the statements hold, we use an OR-compilation technique to

62

compile these equations into a single equation which can then be proven to be satisfied,
demonstrating the truth of the chosen statement. Further details on OR-compilations
can be found in the works of [66, 80]. The probabilistic message-independent updatable
signature scheme (ΠUS) used in proving one of the two statements is based on the
efficient, short signature scheme in [107] that satisfies updatable security properties
such as signature unlinkability (see Definition 36, Section 3.6). We now present the
formal definition of our concrete construction.

Definition 39 (PKUE Scheme). Given the security parameter λ ∈ N, let the public-
key updatable encryption scheme be defined by a tuple of six algorithms ΠPKUE =
(UE.Setup, UE.KG, UE.TG, UE.Enc, UE.Dec, UE.Upd) as follows,

• UE.Setup(1λ) $→ pp : given the security parameter λ, the setup algorithm runs:

– RISE.Setup(1λ) $→ ppUE := (G1, g, q) for some cyclic group G1 with generator
g of prime order q.

– GS.Setup(gp) $→ crsGS: outputs a common reference string;

– US.Setup(1λ) $→ ppUS : given security parameter λ, run the bilinear group
generator algorithm BG.Gen(1λ) → ppUS := (G1,G2,GT , g, g̃, ê, q) where g

is the generator of G1 and g̃
$← G2 for groups G1,G2 of prime order q of

asymmetric bilinear map ê : G1 ×G2 → GT .

– US.KG(ppUS) $→ (sige, vke) : randomly choose values x
$← Zq, y

$← Z∗
q; set

sige := (x, y) and vke := (X̃, Ỹ) = (g̃x, g̃y). Only return vke in the system
parameters. 6

Return public parameters pp := (ppUE, crsGS, (ppUS, vke)).

• UE.KG(pp, e) $→ ke : given the public parameters, return the key pairs ki
e :=

(pki
e, ski

e) generated from running RISE.KG(ppUE, e) $→ ki
e twice for i = {1, 2}.

Parse ki
e = (pki

e, ski
e), let ske := (sk1

e , sk2
e), pke := (pk1

e , pk2
e).

• UE.TG(pp, (ske, ke+1), (sige, vke))→(∆e+1, (δe+1, vke+1)) : compute update token
RISE.TG(ppUE, ski

e, ki
e+1)→∆i

e+1 such that ∆i
e+1 := (ski

e+1/ski
e, pki

e+1) for i =
{1, 2} and set ∆e+1 := (∆1

e+1, ∆2
e+1). Run US.Next(ppUS, sige, vke)→ (δe+1, vke+1)

where we use the notation δ for the signature scheme tokens.
6Note that the signature signing key sige should be different to the epoch secret key ske. That is,

if ske = x′ ∈ Z∗
q then we require x′ ̸= {x, y}.

63

• UE.Enc(pp, pke, m; r1, r2) $→ Ce : compute RISE.Enc(ppUE, pki
e, m; ri) $→ ci

e for
i = {1, 2}, proving one of the following two statements is true by running
GS.Prove(OR(SNY, SUS)) $→ π, with common input (pp, pk1

e , pk2
e , c1

e, c2
e) such that

– SNY : ∃m̂, r̂1, r̂2 : RISE.Enc(ppUE, pk1
e , m̂; r̂1) = c1

e∧RISE.Enc(ppUE, pk2
e , m̂; r̂2)

= c2
e;

– SUS : ∃m̂1, m̂2, r̂1, r̂2, σ̂ : RISE.Enc(ppUE, pk1
e , m̂1; r̂1) = c1

e ∧
RISE.Enc(ppUE, pk2

e , m̂2; r̂2) = c2
e ∧ US.Ver(ppUS, vke, (m̂1, m̂2), σ̂e) = 1.7

Output ciphertext Ce := (c1
e, c2

e, πe).

• UE.Dec(pp, ske, Ce) → {m,⊥} : parse ke := (pke, ske) and Ce = (c1
e, c2

e, π) for
some epoch e, run GS.Vrfy(vke, Ce) → {accept, reject} w.r.t epoch public key
pke := (pk1

e , pk2
e). If the GS-verification algorithm outputs accept then proof π

is accepted and the message RISE.Dec(ppUE, sk1
e , c1

e) = m is returned. Rejection
(⊥) is output otherwise.

• UE.Upd(pp, (∆e+1, (δe+1, vke+1)), Ce) $→ Ce+1 : parse the ciphertext Ce = (c1
e, c2

e, π)
and update tokens ∆e+1 = (∆1

e+1, ∆2
e+1), δe+1 := (δe+1,1, δe+1,2) for ciphertexts

and signatures respectively. Proceed as follows,

1. Verification of Ciphertext: GS.Vrfy(vke, Ce)→ {accept, reject} given the
verification key the update process aborts on reject and proceeds otherwise.

2. Key Rotation: ciphertext parts c1
e, c2

e are updated by running
Rise.Upd(ppUE, ∆1

e+1, c1
e) $→ c1

e+1 and Rise.Upd(ppUE, ∆2
e+1, c2

e) $→ c2
e+1. Next,

the signature is updated by running US.Upd(ppUS, δe+1, σe) $→ σe+1. Given
pki

e+1, which is a component of ∆i
e+1 := (ski

e+1/ski
e, pki

e+1) for i = {0, 1},
proof πe can be updated as a consistency proof of the new statement πe+1

$←
GS.Prove(sp, pke+1, c1

e+1, c2
e+1). The final step is due to the malleability of

GS-proofs (Section 3.6).

3. Re-Randomisation Ciphertexts: ciphertext parts c1
e+1, c2

e+1 are re-randomised.
Linear malleability of GS proofs ensures that the updated proof πnew is valid
for the re-randomised ciphertexts and signature.

7Note that σ̂e
$← US.Sign(ppUS, sige, M̂) for M̂ := (m̂1, m̂2) ∈ G2

1 effectively produces two signa-
tures σ̂e := (σ1

e , σ2
e) following Definition 34 in Section 3.6 in which a signature on a single message m is

as follows σe := (σe,1, σe,2) = (h, h(x+y·m)) for some randomly chosen h ∈ G∗
1 and recall sige = (x, y).

64

4. Re-Randomise Proof: lastly we re-randomise the proof πnew. Note that
signature σe+1 does not need to be re-randomised as it is message indepen-
dent.

Return updated ciphertext Ce+1 := (c1
e+1, c2

e+1, πnew).

Correctness The construction ΠPKUE presented in Definition 39 satisfies correctness
(Definition 29) due to the correctness of the underlying building blocks. Formally,

Theorem 1 (Correctness of PKUE Construction). ΠPKUE is correct assuming ΠRise,
ΠGS, and ΠUS are correct updatable encryption, proof system, and updatable signature
schemes respectively.

Proof. First, we observe that ΠRise and ΠUS have been shown to be correct updatable
encryption and signature schemes respectively (see Section 3.6). Second, by definition
of the correctness of a PKUE scheme, ΠPKUE is correct with overwhelming probability
if it outputs message m upon running UE.Dec(pp, skemax , Cemax), for final epoch emax,
such that Cemax is an updated ciphertext from UE.Upd.

This translates to the following requirements:

• GS.Vrfy(vkemax , Ce) outputs accept with respect to epoch public key pkemax =
(pk1

emax , pk2
emax). Note that the updatable signature σemax

$← US.Sign(pp, sigemax , vkemax)
from ΠUS must be correct for this to hold.

• RISE.Dec(pp, skemax , Cemax) outputs m given ciphertext Cemax derived from Rise.Upd
on honestly generated inputs.

Let us assume instead that Rise.Dec outputs ⊥ and/or GS.Vrfy outputs reject. Either
outcome contradicts the assumed correctness of ΠRise and ΠGS.

Remark 3. Construction ΠPKUE is designed for bi-directional key updates, however,
when analysing the security of their scheme, the authors of [59] recently combined
the work of [75, 104] to demonstrate that a strictly stronger notion of security for key
updates is possible in the uni-directional setting. The authors of [112, 31] recently
proved an equivalency of this key update notion in the no-directional key update setting.
Regardless, we place precedence on modelling bi-directional key updates, despite the
added complexity, to enable the modelling of stronger ciphertext confidentiality notions
not yet possible in the other two cases.

65

Comparisons We remark the NYUE construction proposed in [80] already uses public-
key techniques, however, it is still a symmetric UE scheme. We view the scheme as
a suitable candidate to inspire our public-key UE construction, since the Naor-Yung
paradigm is a double encryption technique that transforms a CPA-secure PKE scheme
(such as the El-Gamal-based PKE in RISE) into a CCA-secure PKE scheme, and in
our case, the transform can be modified to satisfy the RCCA-security of a PKUE
scheme. In other words, adapting the NYUE scheme to suit the definition and needs
of our PKUE framework allows us to attain the level of security we necessitated in
Section 3.4 and Section 3.5.

Another key difference to the scheme in [80] compared to our construction is our
explicit use of updatable building blocks. In particular, we use an updatable message-
independent signature scheme, detailed in Section 3.6. We note that the authors of
[80] implicitly used a modified deterministic updatable version of a one-time signature
scheme from [79], however, they do not treat the signature security in the updatable
setting. Conversely, our chosen signature scheme ΠUS is formally proven secure in the
updatable setting, that is, signatures from consecutive epochs are unlinkable in the
same sense as ciphertext unlinkability. Moreover, ΠUS is perfectly re-randomisable and
the message-independent update property is desirable in the UE setting since updates
are outsourced.

3.8 Security Analysis

In this Section, we formally state and prove that our construction ΠPKUE satisfies epoch
confidentiality. To demonstrate provable security, we must first prove that several
underlying assumptions are satisfied. Moreover, due to the length of the proof of our
main theorem and the general complexity of PKUE notation and security modelling,
we provide a sketch proof before the two-part proof by reduction at the end of this
Section.

3.8.1 Assumptions

PKUE Building Block Recollect, in Section 3.2 we present symmetric UE definitions
and assumptions that we now adapt to the public-key setting and prove in the ensuing.

66

First and foremost, our formal security statement Theorem 2 requires ΠPKUE to satisfy
perfect re-encryption, simulatable reversible tokens and simulatable update-token
generation in the public-key setting. We follow the notation in [80], using terms such
as supp(x) which denotes the set of outcomes of positive probabilities. Observe that
the following definitions do not need encryption randomness, nor are they restricted by
invalid ciphertexts. To begin, Definition 40 formalises the indistinguishability between
encrypted versus updated ciphertexts from the same epoch.

Definition 40 (Perfect Re-Encryption [80]). Given a PKUE scheme where the
algorithm UE.Upd is probabilistic, the update of a ciphertext is perfect if for all
pp

$← UE.Setup(1λ), for all old and new epoch key pairs ke
$← UE.KG(pp, e) and ke+1

$←
UE.KG(pp, e+1), for all ciphertexts C ∈ CSP and for all tokens ∆e+1←UE.TG(pp, ske, ke+1),
we have the following:

UE.Enc(pp, pke+1, UE.Dec(pp, ske, C)) Dist= UE.Upd(pp, ∆e+1, C).

Equality Dist= denotes the equal distribution of the left and right-hand sides of the
equation. For any epoch e, UE.Enc(pp, pke,⊥) = ⊥ by definition.

Lemma 2. The public-key UE scheme ΠPKUE satisfies perfect re-encryption.

Proof. Recall, the ciphertext in ΠPKUE for epoch e is denoted Ce = (c1
e, c2

e, πe), and
proof πe ∈ GT . Further, we have an honestly generated update token for the following
epoch which we defined as ∆e+1 := (∆, pke+1) ∈ (Z∗

q ×G), such that pke+1 ← pke
∆.

To perform the second step of the PKUE update (UE.Upd), key rotation is first
achieved by applying Rise.Upd on the ciphertext components (c1

e, c2
e) using tokens

∆ = (∆1, ∆2) = (sk1
e+1/sk1

e , sk2
e+1/sk2

e) and the output is (c1
e+1, c2

e+1). Second, the new
consistency proof πe+1 is generated by running the GS.Prove algorithm from ΠGS on
inputting of the freshly updated ciphertexts (c1

e+1, c2
e+1).

To perform the final two steps of the PKUE update process, the key-rotated components
(c1

e+1, c2
e+1) and new proof πe+1 are perfectly re-randomised (Definition 40). The perfect

property translates to the outputs looking like a freshly generated ciphertext and proof
respectively, and we note that perfect re-randomisation of a proof is possible due to
the linearity property of GS-proofs. In other words, the distribution of ciphertexts
((c1

e+1), (c2
e+1)) is equivalent to a ciphertext produced from running the Rise.Enc al-

gorithm for epoch (e + 1), and the distribution of the updated proof has an equal
distribution to a proof generated by running GS.Prove for epoch (e + 1).

67

Therefore, the update procedure UE.Upd in ΠPKUE satisfies the correctness of the
equation in Definition 40 and the updated ciphertext Ce+1 = (c1

e+1, c2
e+1, πe+1) is

identically distributed to running decrypt-then-encrypt algorithms in ΠPKUE. Thus,
ΠPKUE perfectly re-encrypts ciphertexts in the update procedure.

Definition 41 and Definition 42 are related to the update token ∆, similar to those
given in Section 3.2, but modified to the PKUE primitive. Simulating reversible update
tokens is necessary for a PKUE scheme as security relies on the assumption that it is
possible to simulate perfectly indistinguishable update tokens.

Definition 41 (Reversible Update Tokens). Update token ∆−1 is called a reverse
token of ∆ if for every pair of epoch keys (kold, knew) in key-space KSP such that
∆ ∈ supp(UE.TG(pp, skold, knew)), we have ∆−1 ∈ supp(UE.TG(pp, sknew, kold))

Definition 42 (Simulatable Reversible Token Generation). The PKUE scheme defined
in Definition 28 has simulatable token generation if the following properties hold:

1. There exists a PPT algorithm denoted Sim.TG(pp) which samples a pair of update
tokens (∆, ∆−1) of the token and reverse token respectively.

2. For arbitrary (fixed) kold ← UE.KG(pp, eold), the following token (∆) distributions
are the same:

• Distribution induced by running (∆, ·) $← Sim.TG(pp);

• For epoch key knew $← UE.KG(pp, enew) the distribution is induced by running
(∆, ·) $← UE.TG(pp, skold, knew)).

Lemma 3. The public-key UE scheme ΠPKUE satisfies simulatable token and reversible
token generation.

Proof. Our construction sets an update token ∆e+1 := (∆′, pke+1) ∈ (Z∗
q × G1) for

new epoch (e + 1) such that (ske+1/ske) := ∆′ $← Z∗
q and pke+1 can be generated

from the previous epoch as pke+1 ← pke
∆′ since UE.KG derive the epoch public

key as pke := gske . We define a reversible token ∆−1
e+1 := ((∆′)−1, (pke+1)(∆′)−1)

such that (∆′)−1 := invert(∆′), for some invertible function. Correctness holds as
follows: (∆′)−1 := (ske/ske+1) ∈ Z∗

q and (pke+1)(∆′)−1 = (gske+1)ske/ske+1 = gske =
pke. Thus, ΠPKUE satisfies the necessary properties for simulatable token generation,
as in Definitions 41, 42 since UE.Upd(pp, ∆−1

e+1, UE.Upd(pp, ∆e+1, Ce)) is distributed

68

equivalently to re-randomising the ciphertext Ce. The final statement follows from
Lemma 2 of perfect re-encryption.

Observe that the proof of simulatable update tokens implies our construction does
not achieve UE-IND-CCA security because of the update mechanism in ΠPKUE since a
CCA-secure UE scheme does not admit down-grading of ciphertexts.

MI-US Building Block The MI-US scheme in Definition 34 must be compatible
with the NIZK GS proof system used in our construction ΠPKUE. That is, the signature
scheme must satisfy the structure-preserving signature property (Definition 18, Section
2.4). Formally,

Definition 43 (Structure Preserving Signatures). Signature scheme ΠUS is structure-
preserving if messages and the signature are group elements in (G1,G2).

This holds for ΠUS (see Definition 34, Section 3.6). Note that specific verification keys
are not required for the structure-preserving property to hold, due to the GS-proof
system used. Similarly to [80], a weakened form of Definition 18 can be used for
construction ΠPKUE.

Definition 34 must satisfy a further two properties: perfect re-randomisation and
simulatable token generation.

Lemma 4. The message-independent updatable signature scheme ΠUS of Definition
34, Section 3.6 satisfies perfect re-encryption and simulatable token generation.

Proof. (Perfect Re-Encryption) In ΠUS, we have a signature for epoch e denoted
σe = (σe,1, σe,2) = (h, hx+y·m) with the update token ∆e+1 := (∆e+1,1, ∆e+1,2) with ran-
domly chosen components from (Z∗

q,Zq), such that vke+1 = (g̃(x·∆e+1,1+∆e+1,2), g̃y·∆e+1,1).
When running US.Upd, key-rotation outputs σe+1 = (hr, hr·((x+y·m)·∆e+1,1+∆e+1,2)) using
randomness r

$← Z∗
q. Randomisation is perfect in the sense that the output looks like a

freshly generated signature since running US.Sign(pp, sige+1, m) $→ σe+1 = (h, h(x+y·m))
for signing key sige+1 = (x, y). Therefore, US.Ver(pp, vke+1, m, σe+1) = 1 and accepts
the signature since verification check ê(h, g̃x · g̃y·m) = ê(h(x+y·m), g̃). Thus, the update
procedure US.Upd in ΠUS satisfies the correctness of the equation in Definition 40 and
the updated signature σe+1 is identically distributed to running US.Sign in ΠUS. Thus,
ΠUS perfectly re-encrypts ciphertexts in the update procedure.

(Simulatable Token Generation) Scheme ΠUS sets update token ∆e+1 := (∆e+1,1, ∆e+1,2)
in (Z∗

q×Zq) for new epoch (e+1) such that both components were chosen randomly, the

69

verification key vke+1 = (g̃(x·∆e+1,1+∆e+1,2), g̃y·∆e+1,1) can be generated from the US.Next
algorithm and US.KG derives the epoch verification key as vke := (g̃x, g̃y). We define
a reversible token ∆−1

e+1 := ((∆e+1,1)−1, (∆e+1,2)−1) such that ∆−1
e+1 := invert(∆e+1),

for some invertible function. Construction ΠUS satisfies the necessary properties
for simulatable token generation, as in Definitions 41, 42 adapted to the signature
setting since US.Upd(pp, ∆−1

e+1, US.Upd(pp, ∆e+1, σe)) is distributed equivalently to re-
randomising the signature σe. The final statement follows from Lemma 2 of perfect
re-encryption for the signature scheme setting.

Key Privacy A PKE scheme secure against key-private, replayable CCA-attacks is
modelled in the security experiment for IND-IK-RCCA-security given in Figure 2.4,
Section 2.4. Recall, modelling key privacy corresponds to an indistinguishability
experiment run by a challenger whereby a polynomial-time adversary with access to
a decryption oracle is given public parameters plus two public keys (pk0, pk1), which
are inputs given by the challenger from the initialisation process. The adversary
outputs two chosen messages (m0, m1) ∈MSP and the challenger proceeds to encrypt
message mb using public key pkb for chosen bit b ∈ {0, 1}. Security is captured by the
adversary’s success in the game which corresponds to distinguishing the message and
public key used in encryption to produce the challenge ciphertext without knowledge
of the corresponding secret keys.

ExpIND-IK-CPA
ΠRise,D (G1, q, x, y, t)

bC
$← {0, 1}

(u, v, w) $← Z∗
q; x0 ← x; y0 ← y, t0 ← t;

x1 ← x0.g
u; y1 ← (y0)w.gv; t1 ← tw.xv.yuw.guv

pk0 = gx0 ; pk1 = gx1

return (pk0, pk1)
(m0, m1, s)←A(pp, pk0, pk1)
bD

$← {0, 1}
C

$← Rise.Enc(pp, pkbD , mbD) where C = (tbD , ybD .mbD)
b′ ← A(pp, C, s)
return b′

Fig. 3.6 Experiment of between challenger (C) and distinguisher (D) in the IND-IK-CPA
game for ΠRise, given a DDH instance in G1 with group generator g ∈ G1.

70

Remark 2 in Section 3.7 that states the authors of [12] have already proved that an
El-Gamal based PKE scheme satisfies IND-IK-CPA-security assuming the hardness of
DDH-problem. We note that the IND-IK-CPA security experiment follows Figure 2.4
from Section 2.4, with the omission of a decryption oracle.

In Figure 3.6, we present a distinguisher D using adversary A as a subroutine in an
IND-IK-CPA game for the security of ΠPKE (see Definition 33), given a DDH instance
(x, y, z) ∈ G1. We closely follow the distinguisher designed in [12] (see Remark 2) and
use Figure 3.6 for the security analysis of Theorem 2.

The proof of security essentially shows that the advantage of a distinguisher in solving
the DDH problem is greater than the advantage of adversary A distinguishing whether
the challenge ciphertext is an encryption of the valid DDH triples (x0, y0, t0) or (x1, y1, t1)
and so cannot determine which public key in (pk0, pk1) has been used for encryption
either. The full reduction proof is given in [12] for the security of a key-private
CPA-secure El-Gamal PKE scheme such as ΠPKE to the DDH problem.

3.8.2 Formal Security Proof

Theorem 2. If the public key UE scheme ΠPKUE satisfies perfect re-encryption and sim-
ulatable token generation properties, then ΠPKUE = (UE.Setup, UE.KG, UE.TG, UE.Enc,

UE.Dec, UE.Upd) is UP-IND-EC-RCCA secure assuming the SXDH problem is hard in
the bilinear map (e,G1,G2,GT).

Sketch Proof. We take a two-step modular approach in proving the Theorem 2, in
which we reduce the proof of security from the updatable setting to the standard
setting. In particular, we provide a proof reduction to the security of the underlying
PKE scheme ΠPKE := (UE.Setup, UE.KG, UE.Enc, UE.Dec) of ΠPKUE.

The first step of the proof is used to prove that ΠPKE satisfies IND-IK-RCCA security in
an isolated epoch of ΠPKUE. That is, we demonstrate the security notion of key privacy
against an adversary A admitting replayable chosen-ciphertext attacks (IND-IK-RCCA
security, Section 2.4, Figure 2.4) assuming the hardness of the DDH problem in groups
G1,G2 (SXDH, Definition 7, Section 2.3) and using the updatable US-EUF-CMA security
of ΠUS (Definition 36, Section 3.6).

Intuitively, to prove of IND-IK-RCCA security we use an adversary A to construct an
adversary B against the PKE scheme ΠPKE in Definition 33 (Section 3.6), which is

71

interacting in an IND-IK-CPA security experiment. Remark 2 of Section 3.6 recalls
the demonstration from the authors of [12] that IND-IK-CPA security in an El-Gamal
PKE scheme reduces to the hardness of the DDH problem in G1. Therefore, we can
demonstrate IND-IK-RCCA security of ΠPKE reduces to the proven secure IND-IK-CPA
game against adversary B described as above, assuming the intractability of the SXDH
problem.

Second, we look at proving epoch confidentiality and ciphertext unlinkability of the
updatable construction ΠPKUE over multiple epochs. For clarity, we design a sequence
of hybrid games Hl built for epochs el ∈ {0, . . . , emax + 1} of ΠPKUE where emax is the
maximum number of epochs in which an adversary A attacking ΠPKUE can query
oracles (Figure 3.1). We use A to construct an adversary Bl against the standard
PKE construction ΠPKE which is proven IND-IK-RCCA secure following the first part
of our proof. Constructing adversaries in this way enables us to demonstrate the
indistinguishability of games Hl−1, Hl for the epochs of the ΠPKUE el ∈ {0, . . . , emax + 1}.
Thus, updatable security can be reduced to the security of ΠPKE in an isolated epoch
of ΠPKUE.

In more detail, an adversary Bl guesses the set of challenge-equal epochs for A, embeds
their PKE challenge into epoch el and simulates the challenger in A’s game (Figure
3.3). The effect is that game Hl behaves exactly like the game from Figure 3.3 up
to epoch el−1. Further, from epoch el onwards Bl will randomly determine challenge
ciphertexts. Consequently, we can show that game H0 in challenge epoch ẽ = 0 is run
independently of challenge bit b, meaning there does not exist an adversary with a
non-trivial advantage against H0.

Moreover, a hybrid game Hemax+1 for the final challenge epoch can be viewed as the
UP-IND-EC-RCCA-game. To surmise, the above technique sees an adversary Bl guess
a window of epochs; embeds a PKE challenge into the UE security game; simulates
challenger responses of the game in Figure 3.3 for the window of epochs and the
challenge epoch, then randomly determine the challenge ciphertext when simulating
responses to A after the challenge epoch.

This method allows us to prove that A has a negligible advantage in distinguishing
between games Hl, Hl+1 for epochs el ∈ {0, . . . , emax + 1}, thus proving that Theorem
2 holds. Observe that we achieve this final result using a key insulation method
formalised in [80] (see Remark 1).

72

We present an in-depth analysis of the security of our construction. Before proceeding,
we emphasise that it has already been demonstrated that GS-proofs (ΠGS) satisfy
zero-knowledge [67] with the property that proofs are perfectly simulatable and contain
a valid signature under certain conditions. Further, the structure-preserving signature
scheme ΠUS [34] satisfies US-EUF-CMA-security. The aforementioned proofs assumed
hardness of the SXDH problem which translates to the hardness of DDH in groups
G1,G2, presented in Definition 7. Finally, the underlying PKE scheme (ΠPKE) of
Definition 33 satisfy IND-IK-CPA-security by reduction to the DDH-problem [12] in G1

(Remark 2). We use these facts in both stages of the proof of security following the
formal statement Theorem 2.

Lemma 5. The underlying public-key encryption scheme ΠPKE := (UE.Setup, UE.KG,

UE.Enc, UE.Dec) of construction ΠPKUE, satisfies IND-IK-RCCA security assuming the
hardness of the SXDH problem in (e,G1,G2,GT).

Proof. We model an adversary A (with access to ODec, Figure 3.1) against ΠPKE in
the security game for IND-IK-RCCA by constructing an adversary B against ΠPKE in
the IND-IK-CPA game. Adversary B acts as a challenger to adversary A in a specific
challenge epoch ẽ. We will demonstrate that A’s advantage in guessing the correct
bit is the same as B’s advantage in the IND-IK-CPA game, which has been proven to
reduce the DDH-problem in G1 (recall Remark 2.)

In more words, challenger C in the IND-IK-CPA game initialises the global parameters
(GS) by running Rise.Setup and computes k0 := (pk0, sk0) such that sk0 is sampled as
x0

$← Z∗
q and pk0 := gx0 for group generator g ∈ G1. The challenger generates a DDH

instance (x, y, z) in G1 and follows Figure 3.6 (Section 3.8) in their participation in
the IND-IK-CPA game; setting the challenge epoch public keys pke0 = gxe0 , pke1 = gxe1 ,
adding K̃ ← K̃ ∪ {(pke0 , pke1)} and sending (pke0 , pke1) to B. Adversary B forwards
(pke0 , pke1) to A and at some point in the game A outputs challenge messages (m0, m1),
which B adds to list M∗.

Our proof makes use of the NY-transform and uses the fact that the DDH assump-
tion holds in G1,G2 (SXDH-assumption). This guarantees that GS-proofs are zero-
knowledge, the underlying encryption of ΠRISE is secure under pkeb

and US-EUF-CMA
security of ΠUS ensures an adversary A cannot simulate a consistent proof for a fresh
message, even in the presence of simulated proofs. Thus, B proceeds to make the

73

second component of the challenge ciphertext c2 (in ΠPKE) inconsistent8 by always
encrypting m0. Then B switches to decryption of the second component c2 in ΠPKE

(rather than c1 in construction ΠPKE) when A queries the decryption oracle. To succeed
in the IND-IK-RCCA game, A would have to simulate a proof of consistency (π) of com-
ponents (c1, c2) by breaking the US-EUF-CMA security of ΠUS, which is a contradiction
of security.

Secondly, we proceed by having B encrypt mb in c1 (using Rise.Enc), thus A must
distinguish if B encrypts m0 in c1 (which perfectly hides the challenge bit b from
A) or B encrypts m1 (this can be thought of as A distinguishing between a game
G0 and G1 respectively). More precisely, B chooses a bit b ∈ {0, 1} and proceeds
to forward (m0, mb) to their own challenger C from the IND-IK-CPA game, receiving
challenge ciphertext c∗ (under chosen bit bC) following Figure 3.6. Further, B runs
c1 $← Rise.Enc(pp, pkeb

, mb), simulates the proof π of ciphertext consistency and returns
C̃ = (c1, c∗, π) to A.

Moreover, adversary B must handle queries that A makes to decryption oracle ODec

without the ability to query a decryption oracle. We note that A specifies decryption
corresponding to a chosen epoch eb. To start, B must decrypt the queried message
C: first deriving the current epoch key by running Rise.KG(pp) $→ kẽ := (pkẽ, skẽ),
simulating a reverse or update token ∆ẽ (∆−1 or ∆ resp. using Sim.TG) depending
on whether eb > ẽ or eb < ẽ respectively. Next, B runs Rise.Upd(pp, ∆ẽ, C) $→ Cẽ to
update the queried ciphertext to the epoch in which they know the corresponding
epoch secret-key skẽ := (sk1

ẽ , sk2
ẽ).

Thus, B can decrypt manually using Rise.Dec(pp, sk2
ẽ , c2

ẽ)→ m. If the output m ̸∈ M∗,
B responds to A with the decryption m. However, if the decryption message m ∈M∗

then B aborts their response and returns test, simulating the decryption oracle perfectly.
Observe that we have used the fact that perfect token simulation and perfect re-
encryption holds for ΠPKUE and ΠPKE.

8That is, the encryption randomness r2 used to generate c2 is inconsistent w.r.t the challenge
ciphertext. Recall that inconsistency is directly related to the NIZK GS-proof. In the description
preceding our construction ΠPKUE we explained the basic idea of a NIZK GS-proof following from
[72, 80]. Essentially, one of two statements SNY, SUS is true and either c1, c2 are encryptions of
the same message (m1 = m2), implying consistency, or distinct messages (m1 ≠ m2), implying
inconsistency. The same idea holds for the consistency of the randomness r1, r2 used in the encryption
of m0, m1 respectively.

74

The adversary A continues to query ODec on non-challenge ciphertexts, as described
above and finally guesses the game by outputting a bit b′ which will also be output as
B’s guess to C. As such, the probability that A wins this game against IND-IK-RCCA-
security (denoted by event Succ) is the same probability as adversary B’s guess against
IND-IK-CPA-security. However, B has a negligible advantage in winning this game (by
guessing whether b′ = bC). Thus,
|Pr[ExpIND-IK-RCCA

A,ΠPKE
(1λ) = 1]− 1

2 | = |PrA,ΠPKE [Succ]− 1
2 |

≤ |PrB,ΠPKE [Succ]− 1
2 | ≤ negl(1λ).

Hybrid Game Indistinguishability We have shown that Lemma 5 holds for The-
orem 2. That is, ΠPKE satisfies IND-IK-RCCA-security. To complete the proof of
Theorem 2, our approach is to construct a series of hybrid games Hl for epochs
el ∈ {0, . . . , emax + 1} where emax is the maximum number of epochs in which an
adversary can query oracles.

Before diving into the involved key-insulation security proof method, we will provide a
simplified version of the approach to proving hybrid game indistinguishability for a
probabilistic UE scheme, per the authors of [80] who first introduced this method.

Recall that adversary Bl will embed a static challenge from the security experiment
IND-IK-RCCA into the UP-IND-EC-RCCA game in response to adversary A’s challenge
in epoch e under one of the given public keys pkeb

. Note that asides from key pkeb
,

other epoch keys and update tokens are unknown to Bl which means that responding
to oracle queries from A calls for Bl to use its personal oracles. Namely, the decryption
oracle in addition to simulating update tokens (Definition 42).

Given the current epoch is ẽ, the overarching idea is that if A queries the token
corruption oracle for some epoch e, adversary Bl can simulate the token ∆e (and
reverse token ∆−1

e) for some epoch e < ẽ. However, Bl does not know the corresponding
keys for epoch e. To handle an update query from A, adversary Bl can instead call
their decryption oracle and then use the simulated token ∆e to update the ciphertext
to epoch e. Ciphertexts created in this way are distributed equally to fresh encryptions
of a ciphertext under epoch public key pke assuming perfect re-encryption formalised
in Definition 40. To handle a decryption query from A, adversary Bl can instead use

75

the simulated tokens to up/downgrade the ciphertext to epoch ẽ and then call its
decryption oracle on ciphertext Cẽ.

The brief overview above is extended in the proof of the following Lemma so that
instead of adversary Bl guessing the challenge epoch plus epochs to the left and right in
which the adversary A has corrupted tokens (or keys, but not both at the same time to
prevent trivial attacks) and then embedding their static challenge in this guess epoch,
the adversary Bl instead guesses a window of epochs that will contain the correct
challenge epoch and embeds their static challenge there. More formally,

Lemma 6. Hybrid games Hl−1, Hl are indistinguishable.

Proof. The indistinguishability of consecutive hybrid game pairs sees an adversary A
against PKUE construction ΠPKUE in games Hl−1, Hl for the UP-IND-EC-RCCA security
experiment (Figure 3.3), such that el ∈ {0, . . . , emax + 1} with emax being the final
epoch in which A can make queries to oracles.

The reduction Bl attempts to simulate the challenger in A’s game using a technique
known as key-insulation, such that game Hl behaves exactly like the UP-IND-EC-RCCA
security experiment in Figure 3.3 up to epoch el−1 and the game randomly determines
challenge ciphertexts after el−1. Observe that game H0 is run independently of the
challenge bit b, so A’s advantage of winning is negligible against H0 and game Hemax+1

represents the UP-IND-EC-RCCA game.

The idea is for adversary Bl to correctly guess the boundaries of the set of challenge-
equal epochs {e, . . . , e} containing the challenge-epoch, such that A does not corrupt
the epoch keys in this set nor will they corrupt update tokens ∆e, ∆e+1. Adversary Bl

proceeds to embed their IND-IK-RCCA challenge in epoch el, without knowledge of the
corresponding epoch secret-key skel

.

In more detail, Bl receives challenge epoch public keys pke0 = gxe0 , pke1 = gxe1 , for
some group generator g of G1, from the challenger (C) in the IND-IK-RCCA-game. After
updating K̃ ← K̃ ∪ {(pke0 , pke1)}, they forward the challenge public keys to A and
proceed to sample e

$← {0, . . . , el} , e
$← {el+1, . . . , emax}. Observe, reduction Bl has

access to the PKE decryption oracle only and they will attempt to simulate responses
in time-frame {e, . . . , e}, without knowledge of the corresponding epoch secret keys
and in turn without the capability of deriving the update tokens manually from epochs

76

{e, . . . , e}. Instead, Bl must simulate the update tokens within this region (Lemma
3). The real challenge is in Bl simulating the remaining oracles in ExpUP-IND-EC-RCCA,b

ΠPKUE,A

which we will describe in the ensuing paragraphs, including the period after which A
outputs challenge messages (m0, m1) ∈M∗ and receives a challenge-ciphertext.

ONext(e): to start, if a ciphertext is queried in epoch e ∈ K̃ then Bl aborts. Else, if the
call is made by A in epoch e < (e− 1) or e > e, then Bl generates a new epoch key
ke+1 := (pke+1, ske+1) such that ske+1 is sampled as xe+1

$← Z∗
q and pke+1 = gxe+1and

then generates update token ∆e+1 = (ske+1/ske, pke+1). For query epoch e = e− 1, Bl

can simply set ∆e+1 = ⊥, since A is assumed not to query the token in this epoch,
and set ke+1 = g. For query epoch e = e, again Bl sets ∆e+1 = ⊥ and the epoch key
ke+1 = (gxe+1 , xe+1) for some xe+1

$← Z∗
q. For query epochs e ≤ e ≤ e , Bl must sample

a random value αe+1
$← Z∗

q, setting the new epoch key as ke+1 ← kαe+1
e and update

token as ∆e+1 = (αe+1, ke+1).

Finally, Bl must deal with the instance that A queries ONext in an epoch proceeding
the current challenge epoch (e > ẽ), by updating the list L as follows: if e = e − 1
(meaning the challenge epoch ẽ is outside of the guessed epoch window), choose r

$← Z∗
q

and set Ce+1 = (gr, gr ·mb′); if e = e− 1 we sample α′ := {αe+1, . . . , αe}
$← Z∗

q and set
Ce+1 = (gα′

, g ·mb′); if e ≥ e, choose Ce+1 to be two random group elements. Otherwise,
Ce+1 is determined by regular updates. In all cases, Bl updates L ← L∪{(Ce+1, e+1)}.

ODec(Cei
): to start in current epoch e, if a ciphertext C is queried in some epoch ei ∈ K̃

then Bl aborts. Else, if the call is made by A for epoch ei ̸∈ {e, . . . , e}, Bl can simply run
UE.Dec(pp, skei

, Cei
)→ m by first deriving the epoch key kei

:= (pkei
, skei

). If however
ei ∈ {e, . . . , e}, as Bl does not know the corresponding secret keys for these epochs, they
must update ciphertext Cei

first by iteratively running Cej

$← UE.Upd(pp, ∆−1
j , Cei

)
for j := {i − 1, . . . , l} such that ei > el, or running Cej

$← UE.Upd(pp, ∆j, Cei
) for

j = {i + 1, . . . , l} such that ei < el. This is achieved using reverse and forward
tokens (∆−1

j , ∆j) respectively to down/up-grade the ciphertext into the previous epoch,
assuming the existence of simulatable tokens (Lemma 3).

Next, Bl queries C on the PKE decryption oracle ODec(Cel
) to obtain the message m

as it does not know skel
. Note, the queried ciphertext does not need to appear ‘fresh’

to A if downgraded by a reversible token since A does not see the downgraded version
of the ciphertext. Provided the output m ̸∈ M∗, Bl responds to A with the decryption
m.

77

OCorrupt-Token(ei): if the call is made by A for an epoch ei < e, where e is the cur-
rent epoch, then Bl can return ∆ei

provided ei ̸= {e, e} and returns ⊥ otherwise.
OCorrupt-Key(ei): Similarly, if the call is made by A for an epoch ei < e, Bl can return
key kei

provided ei ̸∈ K̃ and ei ̸∈ {e, . . . , e}. Else, output ⊥.

OUpd(Cei
) : for some epoch ei < e (where e is the current epoch) adversary Bl must first

check that {ei, e} ̸∈ K̃ and proceed only if this is the case. Further, if ei ̸∈ {e, . . . , e+1}
then Bl can simply run Ce

$← UE.Upd(pp, ∆e, Cei
) itself. If ei ∈ {e, e + 1} then Bl

can call the PKE decryption oracle ODec(Cei
), obtaining a message m and proceed

to encrypt for epoch e by running Ce
$← UE.Enc(pp, pke, m; r1, r2). Ciphertext Ce

satisfies perfect re-encryption following Lemma 2, so A is unable to detect whether the
ciphertext is a fresh or updated ciphertext.

If A queries an update of the challenge ciphertext C̃ (challenge epoch ẽ) to current
epoch e, Bl proceeds as follows: if e ̸= {el, e + 1} then simulated tokens can be used in
the normal manner of simulated ciphertext updates. If e = el, Bl proceeds by decrypting
m← UE.Dec(pp, ske−1, C̃) and send (m0, m) to C and receive a challenge ciphertext C̃el

.
This is possible as Bl can retrieve previous challenge ciphertexts since they’re acting as
the challenger to adversary A. Finally, if e = e + 1 then Bl can decrypt C̃ for epoch
e using the ODec procedure described above, and run C̃e

$← UE.Enc(pp, pke, m0; r1, r2)
which is compliant with both hybrid games Hl−1, Hl.

Assuming Bl correctly guesses the boundaries plus challenge-epoch el and following
the above reduction, the view of A is that they are playing game Hl−b. Following
the proof of Lemma 5 if Bl chooses b = 0 in the IND-IK-RCCA game, then A is
against the security experiment for UP-IND-EC-RCCA up until epoch el−1, which
translates to game Hl (similarly if b = 1 then A plays Hl−1). Thus, A’s guess b′

a guess of bit-b and so if we label the event that b′ = b as Succ, we have that
1

emax+1 Pr[Succ]A,ΠPKUE ≤ PrBl,ΠPKE [Succ] ≤ negl(1λ), where the second inequality derives
from the proof of Lemma 5.

3.8.3 Efficiency Considerations

Generally speaking, our construction ΠPKUE has a comparable cost to a standard
public-key encryption scheme whose security relies on the intractability of the DDH
problem. We remark that ΠPKUE is more expensive compared to some UE schemes
from the literature. Precisely, we chose to have probabilistic updates, a property which

78

requires a server to produce good randomness, to model stronger corruption capabilities
compared to the deterministic setting. All known UE schemes indicate that randomised
updates are more expensive than deterministic updates [25]. Despite this, we believe
modelling an adversary in this way is important in capturing epoch confidentiality
or any other essential security notion in a PKUE security framework, especially one
in which high levels of privacy are desired. Therefore, we are of the opinion that the
resulting higher costs of ΠPKUE compared to deterministic UE schemes are outweighed
by the security results produced, especially given the fact that no prior schemes satisfy
the notion of epoch confidentiality.

In detail, the approximate size and cost measurements of construction ΠPKUE (de-
fined in pairing groups G1,G2) support the decryption of ciphertexts with lengths
of (34|G1|, 34|G2|); the cost of ciphertext updates is approximated to be (60E, 70E)
where E denotes the cost of one exponentiation and the approximate cost of ciphertext
decryption is 22e where e denotes a pairing of the groups (G1,G2). Further, the
signature produced by ΠUS in our construction is always of the size 2|G1| regardless of
the randomness used in the scheme.

Comparison The public-key UE construction ΠPKUE inherits the efficiency of the
symmetric NYUE construction in [80] since we similarly use ΠRise, and ΠGS. Distinctly,
our scheme uses a different underlying signature scheme ΠUS based on an updatable,
multiplicative version of the Pointcheval-Sanders scheme [34, 107], compared to the
authors of [80] who use a modification of the signature scheme from [79]. Assuming some
security parameter k > 2, the size of the signature produced in ΠPKUE is smaller and
therefore the scheme costs less than the one in [80] (that is, 2|G1| compared to signature
size k|G1| respectively). As such, the number of verification pairing computations in
our construction is limited to 2, whereas the number of pairing computations in [80] is
k.

Moreover, the verification keys vke in our construction are group elements of G2,
whereas in [80] the verification key is a matrix distribution in G2. Therefore, the
signature produced by [34] results in potential efficiency gains when compared to [80]
in terms of both computations (number of pairings constant vs linear respectively) and
communication costs, depending on the choice of parameter k in [80].

To reiterate, the computational cost of proofs and ciphertext updates in ΠPKUE may be
expensive compared to some deterministic UE schemes from the literature: BLMR [24],

79

SHINE [25], and E&M [80]. However, more efficient schemes are either designed in
different UE settings such as for ciphertext-dependent [52] or deterministic ciphertext
updates [80, 25, 24], which are less desirable from a bandwidth and security modelling
perspective respectively, or generally lower levels of security are satisfied [92].

3.9 Summary and Outlook

Our first contribution to this Chapter was re-imagining updatable encryption as a
public-key primitive and modelling security for public-key standard security notions,
which we deem to be necessary security requirements for all probabilistic UE schemes.
Our second major contribution was to introduce a new concept of security called epoch
confidentiality to tackle the problem of leakage of ciphertext age inherent in many
UE schemes. Following the introduction of our new security notion, we modified an
existing, symmetric UE construction to the PKUE setting with no impact on the
cost/efficiency. In turn, providing a concrete scheme enabled us to show the feasibility
of a PKUE construction satisfying epoch confidentiality.

In line with a general open problem inherent in a lot of UE schemes, we wish to
improve the efficiency of a PKUE construction whilst maintaining the high level of
security we demonstrated in this Chapter. Additionally, it is of interest to consider
post-quantum security to construct a new and efficient PKUE scheme using, for example,
the decisional learning with errors assumption.

We observe that security modelling allows bi-directional updates, meaning keys and
ciphertexts can be upgraded to the next epoch or downgraded to a prior epoch. Whilst
this property provides equivalent security to uni-directional schemes [75], we believe
the next challenge in PKUE design is to define a no-directional update token [112]
meaning that epoch keys cannot be derived from the tokens. We believe it is worth
investigating no-directional key updates further, as the property would allow us to
consider the concept of expiry epochs. Expiration decides how long a ciphertext can be
updated to yield a new and decryptable ciphertext, and we think this concept should
be examined in the PKUE security modelling context to see the effect it has on a
scheme satisfying epoch confidentiality.

80

Chapter 4

Certificateless Public-Key
Updatable Encryption

Contents
4.1 Introduction . 82
4.2 Chapter Preliminaries . 85
4.3 Certificateless Updatable Encryption 87
4.4 Security modelling . 89
4.5 Construction Preliminaries . 97
4.6 A Concrete CLUE Construction . 101
4.7 Security Analysis . 106
4.8 Summary and Outlook . 117

This Chapter introduces an extension of public-key updatable encryption in which we
remove the need for certificates to reduce trust in entities captured in the wider public
key infrastructure. Our contribution is CLUE, a certificateless PKUE primitive based
on a certificateless public-key encryption primitive CL-PKE. We model standard and
updatable security notions for our definition, propose a concrete construction, and
demonstrate it provably satisfies the security notion we defined. Part of this Chapter,
which is joint work with Elizabeth A. Quaglia, is due to be published at ITASEC 2023
[82].

4.1 Introduction

4.1.1 Motivation

In Chapter 3 we formalised a novel public-key updatable encryption primitive named
PKUE (Definition 28, Section 3.6). In practice, the public-key infrastructure (PKI)
in which PKUE will be used as a building block is a lot more involved than simply
considering a data owner and a server. Specifically, digital certificates are typically
associated with the public and secret epoch key pairs to authenticate the data owner
(individual or organisation).

For context, identity-based encryption (IBE) [20] is an approach to simplifying the
public key and certificate management in a PKI, in which a unique identifier is attached
to the key pair. Realistically, a data owner cannot generate the secret key associated
with the unique identifier. Instead, a key generation centre (KGC) computes the secret
key and so the data owner must trust this entity which is in direct opposition to the
goal of PKUE in which we aim to minimise the trust in external entities.

Placing trust in the KGC is futile if the entity becomes corrupted or behaves dishonestly.
This is due to key escrow issues that can be summarised as follows. Traditional IBE
schemes rely on an arrangement in which the key needed to decrypt a ciphertext is
held in escrow so that under certain circumstances, an authorised third party, e.g. the
key generation centre (KGC), can gain access to the secret keys of all users. Thus,
if the KGC is corrupt, they can forge signatures on any message and decrypt the
ciphertext without the consent of the users, which is a clear privacy issue. We observe
that a corrupt KGC has even more power in a PKUE since the epoch secret keys
are incorporated into update tokens, meaning the KGC would be able to maliciously
update ciphertexts as well as learn the underlying information. Therefore, we must
consider a solution to the key escrow problem with regard to PKUE, such that an
identifier is associated with an epoch instead of a user. This is especially important
given the sensitive nature of information encrypted in applications of a PKUE scheme.

Our chosen solution is a primitive introduced by [3] called certificateless public-key
encryption (CL-PKE), detailed in Definition 44 of the proceeding Section. The CL-PKE
primitive is an alternative primitive to PKI-supported IBE used to remove the need
for certificate management and tackle the key escrow problem inherent in traditional
identity-based encryption (IBE) schemes [111, 20, 60]. In other words, CL-PKE benefits

82

from the advantages of identity-based cryptography without suffering from its inherent
key escrow issue [93].

At a high level, the KGC in a CL-PKE scheme generates a partial secret key that is
distributed to the corresponding data owner who combines this cryptographic element
with their own, randomly chosen secret value to generate the secret and public keys
associated with their identity. In this way, the KGC does not learn the actual value of
the secret key, which mitigates the key escrow problem and is crucial to the security of
a CL-PKE scheme.

Observe that for tight security reductions in security modelling of CL-PKE schemes,
two types of adversaries need to be captured. Namely, the traditional external adversary
and an internal adversary such as a corrupted KGC who has access to the partial secret
key, by definition, as well as corrupted secret keys.

We deem CL-PKE to be a suitable candidate for a revised version of the PKUE primitive
if entities in the PKI cannot be trusted. Specifically, in this Chapter, we formalise
a certificateless public-key UE primitive (CLUE). We do so with care considering
both the security requirements of traditional CL-PKE (including inside and outside
adversaries) and the intricacies of security modelling in UE arising from information
inferred from tokens and epoch keys.

We stress, the CLUE primitive applies to any setting in which the KGC generating
cryptographic keys and the server performing updates are separate entities that cannot
be trusted or instances where individuals want to reduce trust in the KGC. Therefore,
our main motivation in defining CLUE is to support long-term outsourced storage in
an environment with reduced trust, with the intent to preserve privacy on behalf of the
data owner.

Additionally, we believe in the context of real-world applications that our certificateless
PKUE primitive should be considered in industry standards. In particular, the function-
ality of UE is included in the payment card industry data security standard (PCI DSS)
for commercial operation [36] under the umbrella of key-rotatable encryption primitives.
This standard identifies how credit card information is to be stored in an encrypted
format, explicitly stating that key rotation should be used to move encryption from
an old to a new key. Whilst removal or reduction of trust in cryptographic schemes is
not explicitly covered in the PCI DSS document [36] or other standards, we think it

83

is of interest to extend standards to include cases where there is a desire to limit the
amount of trust given to a KGC, as in our CLUE primitive.

4.1.2 Existing Work

Certificateless proxy re-encryption (CL-PRE) [122, 113, 123, 68] is a primitive closely
related to CLUE due to the underlying similarities of standard PRE and UE primitives.
For clarity, there are fundamental differences between the two, the most obvious being
that PRE is for ciphertext decryption delegation with no time element, whereas UE is
for ciphertext updates from one epoch to the next. Moreover, security modelling for
CL-PRE does not focus on the same security notions as CLUE - the information an
adversary can infer from the corruption of keys and the update token. Clear distinctions
between the underlying PRE and UE building blocks have been researched in the works
of [89, 39, 92, 80]. We discuss the similarities and likenesses between UE and PRE in
Section 3.2, Table 3.1.

In a similar vein to CLUE, the recent work by [120] highlighted an interest in considering
the notion of ciphertext updates in the identity-based setting. Albeit, the proposed
scheme in [120] is different to CLUE in the sense that ciphertext updates are not
performed using a token, but rather using the trivial method of decrypting under one
key and re-encrypting with the new key. In addition, the recent works of [49, 45]
further showed an interest in moving towards defining some form of an identity-based
updatable cryptosystem.

Related in design to our proposed CLUE primitive is the identity-based encryption
scheme presented by [114] which tackles the issue of user revocation in an outsourced
environment. The suggested solution given by [114] is to update ciphertexts in a
process of decryption followed by re-encryption to a new time key. Informally, public
time keys are issued and are used to evolve the ciphertext to a new time. One may
think that the scheme is the same as CLUE, however, it does not use update tokens
and so in the scheme in [114] one needs to decrypt then re-encrypt with a new key,
rather than apply an update token to a ciphertext without the need to decrypt as in
UE schemes.

84

4.1.3 Our Contributions

Our contributions are threefold: first, we introduce and formalise CLUE, a certificateless
public-key updatable encryption primitive, in Section 4.3, and present a definition of
correctness for the CLUE primitive.

Secondly, we define and model a new security notion (CLUE-IND-RCCA security) in
Section 4.4 which captures the indistinguishability of freshly generated and updated
ciphertexts. In other words, this notion captures security again replayable chosen
ciphertext attacks [28] (recall Definition 14 in Section 2.4 and Section 3.4). In essence,
replayable ciphertext attacks allow an adversary to query the decryption of arbitrary
ciphertexts, including versions of a challenge ciphertext, and it can be viewed as a
relaxed version of chosen ciphertext attack security (IND-CCA). We chose to model
replayable security as it is our belief that a relaxation in the security guarantees of
CLUE will better reflect realistic adversaries in applications of CLUE. The literature
further supports our belief, which we will discuss in more detail in Section 4.4.

Last but not least, we propose a concrete CLUE scheme in Section 4.6 which takes
inspiration from the pairing-based CL-PKE scheme given in [93]. We prove that our
construction satisfies CLUE-IND-RCCA security and discuss the scheme’s efficiency in
Section 4.7.

4.2 Chapter Preliminaries

Certificateless public-key encryption (CL-PKE) [3] is an alternative primitive to PKI-
supported identity-based cryptography [20] used to remove the need for expensive
certificate management whilst avoiding the key escrow problem inherent in IBE cryp-
tosystems. In this Chapter, we extend the CL-PKE primitive to the updatable encryp-
tion setting. Here we present a standard CL-PKE definition.

Definition 44 (CL-PKE). Let a certificateless public-key encryption scheme be defined
by a tuple of seven algorithms ΠCL-PKE = (Setup, Partial-SK-Extract, Set-Secret-Value,

Set-SK, Set-PK, Enc, Dec) as follows,

• Setup(1λ) → (pp, msk) : given input of the security parameter λ, the setup
algorithm run by the key generation centre (KGC) outputs public parameters pp

and master secret key msk.

85

• Partial-SK-Extract(pp, msk, IDA)→ DA : given public parameters pp, the master
secret key msk and user A with identity IDA ∈ {0, 1}∗ the partial secret-key
extraction algorithm is run by the KGC and outputs the partial secret key DA

sent to the user.

• Set-Secret-Value(pp, IDA) $→ xA : the user A takes public parameters pp and their
identity IDA to randomly select a secret value xA that is used to generate the
full secret and public keys.

• Set-SK(pp, DA, xA)→ skA : given input pp, partial secret key DA and secret value
xA, user A runs the set secret key algorithm to output the full secret key skA.

• Set-PK(pp, xA)→ pkA : given input pp and secret value xA, user A runs the set
public key algorithm to output the full public key pkA.

• Enc(pp, m, pkA, IDA) $→ {C,⊥} : given public parameters pp; message m ∈MSP ;
full public key pkA and identity IDA, the encryption algorithm outputs ciphertext
C ∈ CSP or failure symbol ⊥ if pkA does not have the correct form.

• Dec(pp, C, skA) → {m,⊥} : given public parameters pp, ciphertext C and full
secret key skA, user A runs the decryption algorithm to output message m or
failure symbol ⊥.

Correctness Given security parameter 1λ, Definition 44 is correct if, for any valid
message m ∈ MSP, there exists a negligible function negl such that the following
holds with overwhelming probability.

Pr



(pp, msk) $← Setup(1λ);
DA ← Partial-SK-Extract(pp, msk, IDA);

xA
$← Set-Secret-Value(pp, IDA);

skA ← Set-SK(pp, DA, xA);
pkA ← Set-PK(pp, xA);
Dec(pp, Enc(pp, m, pkA, IDA), skA) = m


≥ 1− negl(1λ).

Security In this Chapter we comprehensively adapted the CL-PKE security framework
to suit the requirements of updatable encryption. Nevertheless, our security framework
inherits key elements of CL-PKE security modelling, including the considerations of

86

two types of adversaries. Namely an internal attacker such as an honest but curious key
generation centre (KGC) and a traditional external adversary. Due to the "uncertified"
nature of a public key generated by a user, CL-PKE security models assume an
adversary is capable of replacing the users’ public key [3]. Further extensions to the
CL-PKE security model include an adversary’s ability to extract partial private keys,
secret keys, or both [126]. We defer the reader to Section 4.7 for an in-depth discussion
and formal treatment of certificateless security modelling.

4.3 Certificateless Updatable Encryption

In this Section, we first introduce the syntax used for defining certificateless public-key
updatable encryption (CLUE) and relevant security modelling. Second, we present the
formal definition of a CLUE primitive and define correctness.

4.3.1 Syntax

We denote the current epoch as e, and use the subscript notation ei if we define
multiple epochs at once with the range of time i = {0, . . . , max} such that emax is
the last epoch in the scheme. Further, (ei, ei+1) are two consecutive epochs for any
i ∈ N and ẽ represents the challenge epoch in security games. In the context of
certificateless encryption, we introduce new elements to the definition of a PKUE
primitive. Specifically, in a given epoch e: IDe is the identifier for epoch e, De is the
partial secret key for epoch e, and xe is the set secret value for this epoch which is
renewed every period. In our construction, we use < · > to denote an encoding of the
bracket contents to a string {0, 1}∗.

4.3.2 Formal Definition of CLUE

Adding an update feature to the CL-PKE primitive presented in Definition 44, from
Section 4.2 requires the addition of two algorithms: set token generation (Set-Token)
and ciphertext update (Upd). Informally, the update feature of the scheme means
by design it is defined in epochs of time in which the keys, token and ciphertext are
associated with a given epoch in time and the ciphertext update algorithm rotates
the ciphertext to encryption under a new epoch key using the token. For each epoch,
a potentially untrusted key generation centre (KGC) generates a randomly chosen
secret value, in line with the design of a CL-PKE scheme. The data owner proceeds to

87

generate their public and secret key pairs as well as an update token, using this set
secret value. Encryption and decryption of information is run in a standard manner
and ciphertext updates are outsourced to a host. More formally,

Definition 45 (CLUE). Given n epochs identified by space IDSP, security parameter
λ ∈ N, message space MSP, and ciphertext space CSP, a certificateless public-
key updatable encryption scheme is defined by a tuple of nine algorithms ΠCLUE =
(Setup, Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Set-Token, Enc, Dec, Upd) as
follows,

• Setup(1λ) $→ (pp, msk) : The key generation centre (KGC) takes security pa-
rameter λ as input and outputs public parameters pp and master secret key
msk.

• Partial-SK-Extract(pp, msk, IDe)→ De : the KGC takes the public parameters pp,
the master secret key msk and identity IDe ∈ IDSP for epoch e as input and
outputs partial secret key De.1

• Set-Secret-Value(pp, e) $→ xe : the data owner takes the public parameters pp

and the current epoch e that they are running the algorithm for as inputs and
randomly chooses secret value xe.

• Set-SK(pp, De, xe)→ske : the data owner takes the public parameters pp, partial
secret key De and secret value xe as inputs and computes their secret key ske.

• Set-PK(pp, xe)→pke : the data owner takes the public parameters pp and secret
value xe as inputs and computes their public key pke.

• Set-Token(pp, ske, xe+1)→∆e+1 : the data owner takes the public parameters pp,
current epoch secret key ske, and new epoch secret value xe+1 as inputs and
computes the update token ∆e+1 to the epoch (e + 1) which is sent to the server.

• Enc(pp, m, pke, IDe) $→ {Ce,⊥} : the data owner takes the public parameters pp;
message m ∈MSP; public key pke and identity IDe as inputs and outputs the
ciphertext Ce ∈ CSP or failure symbol ⊥ if public key pke does not have the
correct form.

1This algorithm is run once for each epoch and the KGC distributes the partial secret keys to the
data owner in a secure manner [41].

88

• Dec(pp, Ce, ske) → {m,⊥} : the data owner takes the public parameters pp,
ciphertext C and secret key ske as inputs and outputs the message m or failure
symbol ⊥.

• Upd(pp, Ce, ∆e+1) → {Ce+1,⊥} : the server takes the public parameters pp,
ciphertext Ce and update token ∆e+1 as inputs and outputs the updates ciphertext
Ce+1 for epoch (e + 1) or failure symbol ⊥.

Correctness Following the PKUE definition of correctness from Chapter 3 (Definition
29), the correctness of the CLUE primitive intuitively means that fresh and updated
ciphertexts should decrypt to the corresponding plaintext given the appropriate epoch
key. The formal definition of CLUE correctness follows.

Definition 46 (Correctness). Given security parameter λ ∈ N, a certificateless up-
datable encryption scheme (ΠCLUE) formalised in Definition 45 is correct if, for any
message m ∈ MSP and for any j ∈ {1, . . . , max}, i ∈ {0, . . . , max} with max > i,
there exists a negligible function negl such that the following holds with overwhelming
probability.

Pr



(pp, msk) $← Setup(1λ);
De ← Partial-SK-Extract(pp, msk, IDe);

xe
$← Set-Secret-Value(pp, e);

ske←Set-SK(pp, De, xe);
pke←Set-PK(pp, xe);
∆ej
←Set-Token(pp, ske, xe+1);

Cei

$← Enc(pp, m, pkei
, IDe);

{Cej
← Upd(pp, Cej−1 , ∆ej

) : j ∈ {i + 1, . . . , max}};
Dec(pp, Cemax , skemax) = m



≥ 1− negl(1λ).

4.4 Security modelling

In this Section, we formally model security for our CLUE primitive and define an
essential privacy property capturing the indistinguishability of freshly generated and
updated ciphertexts.

89

Defining the security of a cryptographic primitive is often a complex process. For CLUE
we want to combine the approach to security taken in CL-PKE with the intricacies of
UE security modelling to capture the indistinguishability of ciphertexts deriving from
fresh encryption and updates. The notion of security we settle on is CLUE-IND-RCCA
(Definition 47) and we give an intuition of this notion below.

Recollect the discussion we provided in Chapter 3, Section 3.4. Namely, the authors of
[28] introduced a notion of security against a replayable, adaptively chosen-ciphertext
(RCCA) attack that provides confidentiality of the underlying message. We conjecture
that this property is the gold standard of security achievable, to generically satisfy both
probabilistic and deterministic updates in any PKUE construction to satisfy ciphertext
unlinkability.

Note, it is accepted in the literature that CCA-security cannot be obtained in the
probabilistic UE setting [25, 53], as we highlighted in the previous Chapter. Whilst
our CLUE primitive is designed as a deterministic ciphertext-independent updatable
encryption scheme, we believe that relaxing adversarial corruption capabilities by
enabling replayable ciphertext attacks will reflect a more realistic adversary in the
outsourced environment under which CLUE is designed to be used.

In more detail, replayable CCA (RCCA) security is the same model as the CCA-notion
with the following adaptation: the adversary can generate fresh ciphertexts that decrypt
to the same value as a given ciphertext, however, this should not aid the adversary
in winning the game. Technically speaking, the change in modelling RCCA-security
for CLUE can be attributed to the behaviour of the decryption oracle: an adversary
can invoke the oracle on arbitrary ciphertexts but the oracle will respond with test
to queries that decrypt to either of the challenge messages (m0, m1). This includes
queried ciphertexts that differ from the challenge ciphertext C̃ which the adversary
obtains from the challenger.

Interestingly, capturing RCCA-security for CLUE resurrects an important security
debate in the CL-PKE literature, highlighted by [41]: should the attacker be given as
much power as possible or should the construction of security models reflect realistic
attackers’ capabilities?2

2Notably, there are two types of adversaries considered in CL-PKE schemes that must be distin-
guished in security modelling: an outside attacker and the honest but curious key-generation centre
(KGC). Necessary to establishing an adversary in CL-PKE security experiments, we will distinguish
between the two types of adversaries in the oracles that they have access to respectively in this Section.

90

We believe that modelling CLUE-IND-RCCA for the Definition 45 settles this debate
given the prior reasoning that RCCA-security is deemed to be the strongest notion
achievable in any updatable encryption scheme and yet, RCCA-security is more realistic
in certificateless schemes. That is, compared to the seminal work of [3], heralded as
the strongest notion of security achievable in CL-PKE literature, which captures
the CCA-security of a CL-PKE scheme under tight adversarial restrictions. In the
context of ciphertext evolution, we observe that the authors of [68] also defined the
RCCA-security of a CL-PRE scheme.

The preceding discussion leads into the technical details for this Section, in which we
construct an indistinguishability experiment where an adversary can access oracles
and a challenger must continuously update lists to record every call to such oracles.
We re-emphasise that it is essential to record and capture the inferable information
available to an adversary during security modelling of any updatable scheme, including
CLUE, which we detail in Figure 4.1 of Section 4.4.

Intuition First, we provide an intuition of the security experiment given in Figure
4.2 in which the adversary has access to oracles and the challenger records essential
lists, both of which are key to capturing security given the challenging nuances of the
update functionality in CLUE.

We define a notion of freshly encrypted and updated ciphertext indistinguishability for
a CLUE scheme.3 This is formalised in Definition 45 through the security experiment
ExpCLUE-IND-RCCA

ΠCLUE,A (1λ) presented in Figure 4.2. Informally, the game is between a chal-
lenger and an adversary A such that the latter can query the oracles detailed in Figure
4.1. To win the experiment, adversary A must distinguish the underlying message
of the challenge ciphertext without possession of the corresponding epoch secret key,
given only access to the relevant oracles and a challenge ciphertext. Security is satisfied
if the adversary’s advantage in succeeding is negligible, as detailed in Definition 47.

Moving forwards, we detail the lists and oracles used in our security experiment for the
definition of CLUE-IND-RCCA security. We extend the oracles inherited from Chapter
3, Figure 3.1 to additionally allow an adversary to extract partial secret keys, following
CL-PKE modelling [3, 41, 93, 68]. On top of the extension to incorporate CL-PKE
modelling, we discuss the corruption capabilities of the adversary in CL-PKE literature

3This indistinguishability notion is equivalent to the IND-ENC UE security notion defined by the
authors of [92].

91

which necessitates security against both an outside threat as well as an honest but
curious KGC [3, 41].4

4.4.1 Lists

To initialise the CLUE-IND-RCCA security experiment, the challenger runs Init(1λ)
which outputs the global state (GS) oracles have access to throughout. At the start,
GS := (pp, sk0, pk0, ∆0, L, 0) contains the public parameters pp generated by the CLUE
setup algorithm; epoch secret and public keys (sk0, pk0) respectively; initial update
token ⊥ → ∆0; set L := {L,M∗, T ,K, C∗} containing initially empty lists that the
challenger is required to maintain throughout the experiment to prevent A from trivially
winning and setting the current epoch 0→ e.

List L is maintained to keep a log of updated versions of honestly-generated ciphertexts
(and the corresponding epoch) that the adversary learns through calls to the update
oracle. List M∗ tracks the challenge messages the adversary sends to the challenger.
Further, list T records the epoch(s) in which the adversary has obtained an update
token and K tracks the epoch(s) in which the adversary has obtained an epoch secret
key or epoch partial secret key.

The challenger records in list C the epochs in which an adversary obtains an updated
version of the challenge-ciphertext through querying the ciphertext update oracle.
Recall that the extended list denoted C∗ records all of the challenge-equal epochs
in which the adversary knows a version of the challenge ciphertext since there are
epochs in which the adversary can infer information independently including epochs
belonging to lists C, T . Challenge-equal ciphertexts are defined by a recursive predicate
challenge-equal as follows,

C∗ ← {e ∈ {0, . . . , emax}|challenge-equal(e) = true}

and true← challenge-equal(e) iff :
(e ∈ C) ∨ (challenge-equal(e− 1) ∧ e ∈ T)
∨(challenge-equal(e + 1) ∧ (e + 1) ∈ T).

4In-line with CL-PKE security modelling, observe that security games separate the inside and
outside adversary by their access to oracles, however, the game itself and security definition unifies
the two as one adversary capturing both scenarios.

92

4.4.2 Oracles

Figure 4.1 provides formal descriptions of the initialisation phase a challenger runs and
the oracles an adversary has access to during the security experiment for Definition 47
(CLUE-IND-RCCA).

Informally, a ciphertext can be queried to decryption oracle ODec provided it does not
decrypt to one of the adversary’s challenge messages (m0, m1) ∈M∗ nor is the output
of isChallenge = true. If this is the case then the oracle returns test which is a reserved
symbol different from all possible outputs of decryption [28]. Otherwise, the oracle
returns a decryption of a valid ciphertext under the current epoch secret key for the
epoch with identifier IDe. We stress that returning test in the decryption oracle reveals
to the adversary that the queried ciphertext decrypts to one of the challenge messages
(m0, m1). As shown by [28], this intuitively captures the inability of an adversary to
win the security game despite generating distinct ciphertexts that decrypt to the same
message as the challenge ciphertext.

The adversary can update arbitrary ciphertexts via calls to OUpd. In return, A receives
a version of the queried ciphertext updated to the current epoch such that this epoch
is added to list C. Note, an RCCA-secure scheme allows any ciphertext to be updated
from prior epoch ei to the current challenge epoch e. Ciphertext Ce is computed by
the update oracle iteratively running Upd from epoch ei all the way through epochs
{ei+1, . . . , e}. Note that if the queried ciphertext decrypts to one of the challenge
messages {m0, m1} ∈ M∗ or isChallenge(ke, Ce) = true for the updated ciphertext and
current epoch, then the challenger adds the epoch to the list of challenge-equal epochs
C∗.

Querying oracle ONext in challenge epoch e results in the update of the global state
to the epoch (e + 1). To do so, algorithms Set-Secret-Value, Set-SK and Set-PK are
run to generate updated epoch keys ke+1 = (ske+1, pke+1) and the set token algorithm
updates the token ∆e+1. An additional step is taken given the query is in an epoch such
that the adversary has corrupted the corresponding secret key. Namely, the challenge
ciphertext must be updated to the next epoch using the generated update token ∆e+1

and the new ciphertext and epoch are added to the list L.

Queries made to OCorrupt-Token, OCorrupt-Key and OPSKE are for the corruption of an update
token, epoch secret key and epoch partial secret key of the given epoch, respectively.

93

The restriction on all three oracles is that the adversary’s query must be from an epoch
preceding the current epoch e. Note that oracle OPSKE has the additional caveat that
queried epoch e∗ cannot belong to the list K to prevent the adversary from corrupting
the secret key and partial secret key simultaneously, as this would enable them to
compute the secret value for the epoch. If the above conditions are met then the
corresponding token, secret key and partial secret key respectively for e∗ are returned
and the corruption epoch is added to the corresponding lists T and K.

Recall that the CL-PKE adversarial model focuses on two types of adversaries, namely,
an outside and inside (honest but curious KGC) attacker. Here we explicitly define
the oracles in the set O that these distinct adversaries possess during the security
experiment of Figure 4.2. In other words, adversary AI has no access to the master
secret key, however, they have access to all of the oracle described above and in the set
O = {ODec,ONext,OUpd,OCorrupt-Token,OCorrupt-Key,OPSKE}.

Conversely, adversary AII has implicit access to a master secret key, which means
they can compute partial secret keys for their own use given the master secret key
and therefore do not need access to oracle OPSKE. Therefore, AII has access to the set
O = {ODec,ONext,OUpd,OCorrupt-Token,OCorrupt-Key}.

Note that we do not allow either adversary to adaptively replace public keys of their
choice, which deviates from CL-PKE security modelling. However, the adversary can
call oracle ONext to update the public key to the next epoch. One strategy given in
CL-PKE security modelling [93] is to have the challenger record ciphertexts related
to decryption queries. This is not required when modelling from our CLUE security
framework as the challenger in Figure 4.2 records epochs and ciphertext that would
prevent such a public-key replace attack from occurring.

4.4.3 Security Game

The formal indistinguishability game given in Figure 4.2 is between a challenger
and adversary A = (AI ,AII) defined as above. Adversary A must distinguish the
underlying message that has been encrypted, given only access to the relevant oracles
and a challenge ciphertext. Thus, possession of a challenge ciphertext should not give an
adversary an advantage in determining the underlying message in the CLUE-IND-RCCA
security experiment.

94

Init(1λ)

(pp, msk) $← Setup(1λ)
D0 ← Partial-SK-Extract(pp, msk, ID0)
for a valid ID0 ∈ IDSP

x0
$← Set-Secret-Value(pp, 0)

sk0 ← Set-SK(pp, D0, x0)
pk0 ← Set-PK(pp, x0)
∆0 ← ⊥
e← 0
L ∈ ∅ for the set of lists L :=
{L,M∗, T ,K, C∗}
return GS
GS := (pp, sk0, pk0, ∆0, L, 0)
ODec(Ce)

m← Dec(pp, Ce, ske)
if (m ∈ M∗) ∨ (isChallenge(ke, Ce) =
true) then

return test
else

return m

OUpd(Cei
)

for ej = {ei+1, . . . , e} do
Cej
←Upd(pp, Cei

, ∆ej
)

Ce ← Cej

return Ce

L ← L ∪ {(e, Ce)}
if (Dec(pp, Ce, ske) = m ∈ M∗) ∨
(isChallenge(ke, Ce) = true) then
C∗ ← C∗ ∪ {e}

ONext(e)

xe+1
$← Set-Secret-Value(pp, e + 1)

ske+1 ← Set-SK(pp, De, xe+1)
pke+1 ← Set-PK(pp, xe+1)
∆e+1 ← Set-Token(pp, ske, xe+1)
Update GS
(pp, ske+1, pke+1, ∆e+1, L, e + 1)
if (e ∈ K) ∨ ((C, e) ∈ L) then

(C ′, e + 1)←Upd(pp, ∆e+1, C)
L ← L ∪ {(e + 1, C ′)}
OCorrupt-Token(e∗)

if e∗ ≥ e then
return ⊥

else
return ∆e∗

T ← T ∪ {e∗}
OCorrupt-key(e∗)

if e∗ ≥ e then
return ⊥

else
return ske∗

K ← K ∪ {e∗}
OPSKE(e∗)

if ((e∗ ≥ e) ∨ (e∗ ∈ K)) then
return ⊥

else
return De

K ← K ∪ {e∗}

Fig. 4.1 Details of the initialisation phase run by the challenger and the oracles
adversary A has access to during the security experiment of Definition 47.

In more words, in Figure 4.2, the initialisation process is first run by the challenger.
Using the current epoch public key, the adversary proceeds to query the detailed
oracles in Figure 4.1 with their relevant restrictions, outputting two challenge messages
(m0, m1) ∈ M∗ alongside some state information s. The challenger must check that

95

the given messages are of the same length and belong to the message space MSP of
the scheme before proceeding, else the challenger aborts the game and returns ⊥.

Next the challenger encrypts one of the messages mb for chosen bit b ∈ {0, 1}, outputting
a challenge ciphertext C. The challenger sends C to A and updates the current epoch
to the challenge epoch ẽ as well as the lists {M∗, C∗}. Given the challenge ciphertext
and state information, the adversary proceeds to the second phase of calls to accessible
oracles before outputting a guess bit b′ ∈ {0, 1}. The adversary succeeds in the security
experiment if they satisfy the winning conditions and successfully guess the correct bit
(b′ = b).

ExpCLUE-IND-RCCA,b
ΠCLUE,A (1λ)

Initialise Global State
GS $← Init(1λ); GS = (pp, sk0, pk0, ∆0, L, 0);
De ← Partial-SK-Extract(pp, msk, IDe) for epoch identity IDe ∈ IDSP
xe

$← Set-Secret-Value(pp, e)
ske ← Set-SK(pp, De, xe)
pke ← Set-PK(pp, xe)
(m0, m1, s)← AO(pp)
Some state information s
if |m0| ≠ |m1| ∨ {m0, m1} ̸∈ MSP ∨ (m0 = m1) then

return ⊥
else

b
$← {0, 1},

C
$← Enc(pp, mb, pke, IDe),

M∗ ←M∗ ∪ (m0, m1); C∗ ← C∗ ∪ {e}; ẽ← {e}
b′ ← AO(pp, C, s),
if (K ∩ C∗ = ∅) then

return b′

Else abort.

Fig. 4.2 The security experiment for CLUE-IND-RCCA security of a CLUE scheme,
where the set of lists is L := {L,M∗, T ,K, C∗} is initially empty, s defines some state
information output by the adversary and O denotes the oracles an adversary has access
to, depending on whether they are a type I or type II adversary.

Definition 47 (CLUE-IND-RCCA Security). A CLUE scheme following Definition 45
is CLUE-IND-RCCA secure if an adversary A participating in the security game of
Figure 4.2 has a negligible advantage in 1λ, defined as follows:

96

AdvCLUE-IND-RCCA
ΠCLUE,A (1λ) = |Pr[ExpCLUE-IND-RCCA,0

ΠCLUE,A (1λ) = 1]− ExpCLUE-IND-RCCA,1
ΠCLUE,A (1λ) = 1]| <

negl(1λ).

Preventing Trivial Wins and Ciphertext Updates Similarly to security mod-
elling in Chapter 3, the winning condition of the security experiment in Figure 4.2
requires the intersection of epochs contained within lists K and C∗ to be empty. Recall
that this condition prevents an adversary from winning trivially through inference
using information obtained during oracle queries across multiple epochs.

That is, the challenge epoch of the experiment cannot belong to the set of epochs in
which an update token has been learned or inferred, nor can there exist a single epoch
where the adversary knows both the epoch key (public and secret key components)
and the (updated) challenge-ciphertext. To see this, if the adversary A corrupts token
∆e+1 in an epoch after which A has obtained the challenge ciphertext C̃ during epoch
e, either by inference or via an update, then the adversary is capable of updating the
ciphertext into the next epoch (e + 1).

Remark 4. The security game for the CLUE-IND-RCCA notion satisfies indistinguisha-
bility for ciphertexts generated from updates, as well as from fresh encryption, despite
the security game only incorporating encryption. We capture the indistinguishabil-
ity of both types of ciphertext for our CLUE construction, detailed in the security
analysis (Section 4.7), assuming certain properties hold. Namely, our scheme satisfies
randomness-preserving re-encryption and simulatable tokens alongside standard indis-
tinguishable security notions (see Section 4.5). This simplified method of proving fresh
and updated ciphertexts are indistinguishable against an adaptive adversary follows
from a core contribution given in [80]. Namely, a generic transformation demonstrating
that it is sufficient to consider the underlying encryption and key-rotation capabilities
of a scheme (almost) separately and therefore reduce proving to the standard-setting.

4.5 Construction Preliminaries

In this Section, we start by presenting a definition of key-homomorphic pseudorandom
functions since we use this mechanism in our construction. Next, we define and present
a notion of RCCA security for a CL-PKE scheme, upon which the security of our
CLUE construction will rely. Further, we define the updatable security assumptions
necessary for the security analysis of our CLUE scheme.

97

4.5.1 Key-Homomorphic Pseudorandom Functions

Key-homomorphic PRFs are useful tools for many cryptographic applications as their
homomorphic property provides a simple way in which to rotate cryptographic keys
that encrypt stored information, typically in an outsourced environment. KH-PRFs
have previously been employed in updatable encryption [21] for this reason, and in
the context of this Thesis, we make use of this primitive in Chapter 4 to construct
a concrete certificateless updatable encryption scheme. The following is a formal
definition of a KH-PRF.

Definition 48 (KH-PRF). Consider an efficiently computable function F : K×X → Y
such that (K,⊕) and (Y ,⊗) are groups. Then (F,⊕,⊗) is a key-homomorphic PRF if
the following properties hold,

1. F is a secure pseudorandom function.

2. For every k1, k2 ∈ K and every x ∈ X : F(k1, x)⊗ F(k2, x) = F((k1 ⊕ k2), x).

4.5.2 CL-PKE Security

First, we detail the security model for a CL-PKE scheme (Definition 44, Section 4.2)
secure against replayable chosen ciphertext attacks, as the proof of security for our
CLUE scheme reduces to the standard (non-updatable) setting.

Replayable CCA-security for PKE schemes was a notion first introduced by [28] as a
relaxed version of CCA-security since some encryption schemes are not CCA secure
and yet they are sufficiently secure for most practical purposes. A CL-PKE scheme
secure against replayable CCA-attacks is modelled in the security experiment for
CL-PKE-IND-RCCA-security given in Figure 4.3.

In more words, we use the Definition 49 presented below in the security analysis for
the CLUE construction (Section 4.6) following the proof technique given in [80]. That
is, we first prove the security of the underlying certificateless encryption scheme (in
Lemma 11). Next, we prove updatable security using a so-called key-insulation method
to reduce the security proof of CLUE to an isolated epoch, which is provably secure in
the standard encryption setting. We will provide an intuition of the security experiment
before formalising this security notion.

98

Just like the experiment run for updatable security in Section 4.4.3, the experiment in
Figure 4.3 starts with the initialisation of public parameters and the list M∗ which
records messages output by the adversary. Note that the adversary only has access to a
decryption oracle. The first phase of adversary queries to the decryption oracle follows.
Next, the adversary outputs two messages (m0, m1) ∈MSP . The challenger proceeds
to encrypt message mb using public key pke given a randomly chosen bit b ∈ {0, 1}.
Security is captured by the adversary’s success in the game which corresponds to
distinguishing the underlying message, without knowledge of the corresponding secret
epoch key, given the challenge ciphertext. List M∗ is kept by the challenger to record
the challenge messages (m0, m1), and it is maintained for use when calls are made
to the decryption oracle. We present the formal security definition and model of
CL-PKE-IND-RCCA as follows:

ExpCL-PKE-IND-RCCA,b
ΠCL-PKE,A (1λ)

GS $← Init(1λ);
GS := (pp,M∗)
De ← Partial-SK-Extract(pp, msk, IDe)
xe

$← Set-Secret-Value(pp, e)
ske ← Set-SK(pp, De, xe)
pke ← Set-PK(pp, xe)
(m0, m1, s)← AODec(pp)
if |m0| ≠ |m1| ∨ {m0, m1} ̸∈ MSP ∨
(m0 = m1) then

return ⊥

else
b

$← {0, 1}
C

$← Enc(pp, mb, pke, IDe)
M∗ ←M∗ ∪ {m0, m1}

b′ ← AODec(pp, C, s)
return b′

ODec(pp, C)
m←Dec(pp, ske, C)
if (m ∈M∗) ∨ (C ̸∈ CSP) then

return test
else

return m

Fig. 4.3 Indistinguishability experiment for security a CL-PKE scheme ΠCL-PKE with s
as some state information in this figure.

Definition 49 (CL-PKE-IND-RCCA Security). Scheme ΠCL-PKE is CL-PKE-IND-RCCA
secure if for every efficient PPT adversary A, the advantage the adversary has in the
security experiments detailed in Figure 4.3 is negligible as a function of the security
parameter 1λ.

AdvCL-PKE-IND-RCCA
ΠCL-PKE,A (1λ) =|Pr[ExpCL-PKE-IND-RCCA,0

ΠCL-PKE,A (1λ) = 1]−
Pr[ExpCL-PKE-IND-RCCA,1

ΠCL-PKE,A (1λ) = 1]| ≤ negl(1λ).

99

4.5.3 Updatable Encryption Security Assumptions

Our construction is designed with deterministic ciphertext updates, therefore, the
security of ΠCLUE assumes the properties of randomness-preserving re-encryption; the
underlying CL-PKE scheme ΠCL-PKE is tidy and satisfies simulatable token genera-
tion. We utilise these properties in the security proof of Theorem 4 to argue that
the indistinguishability of ciphertexts is satisfied. First, we present the notion of
randomness-preserving re-encryption.

Definition 50 (Randomness-Preserving Re-Encryption). Given the updatable scheme
CLUE is designed for deterministic updates, an updated ciphertext is randomness-
preserving assuming CLUE encrypts with uniformly chosen randomness (Enc(pp, m, pke, IDe)
and Enc(pp, m, pke, IDe; r) for uniformly chosen r are identically distributed). If for all
(pp, msk) $← Setup(1λ); for all old and new epoch key pairs ke := (pke, ske), ke+1 :=
(pke+1, ske+1) generated from running the Partial-SK-Extract, Set-Secret-Value, Set-SK,

Set-PK algorithms in epoch e and (e+1) respectively; for all valid ciphertexts C ∈ CSP
and for all tokens ∆e+1←Set-Token(pp, ske, xe+1), we then have the following:

Enc(pp, Dec(pp, Ce, ske), pke+1, IDe) = Upd(pp, Ce, ∆e+1).

Tidy encryption informally means that decryption is randomness-recoverable. That
is, a ciphertext is uniquely determined by the underlying message and randomness
used. Therefore, a PKUE scheme is tidy if encryption and decryption algorithms are
bijections (one-to-one correspondence for a fixed key) between the message-randomness
pairs and valid ciphertexts. Formally,

Definition 51 (Randomness-Recoverable Tidy Encryption Scheme). A public-key cer-
tificateless encryption scheme is called randomness-recoverable if there is an associated
efficient deterministic algorithm RDec(pp, Ce, ske) for epoch e such that ∀ke = (pke, ske),
m, r : RDec(pp, ske, Enc(pp, pke, IDe, m; r)) = (m, r). We call a randomness-recoverable
public-key encryption scheme tidy if ∀(pke, ske, Ce) :

RDec(pp, Ce, ske) = (m, r) =⇒ Enc(pp, pke, IDe, m; r) = Ce.

Note that encryption ⊥ also yields ⊥, therefore, Definition 51 of randomness recoverable
tidy encryption is also satisfied for invalid ciphertexts [80].

In the ensuing, the simulating reversible update tokens assumption is used for the security
analysis of Theorem 4. We use the notation supp(x) given in [80] to denote the set of

100

outcomes of positive probabilities. Second is a definition that formalises simulatable
token generation which informally defines the indistinguishability of simulated versus
honestly generated update tokens. More formally,

Assumption 2 (Reversible Update Tokens). Update token ∆−1 is called a reverse
token of ∆ if for every pair of epoch keys (keold = (pkeold , skeold), kenew = (pkenew , skenew))
in key-space KSP such that ∆ ∈ supp(Set-Token(pp, skeold , xenew)), we have reversible
token ∆−1 ∈ supp(Set-Token(pp, skenew , xeold)).

Definition 52 (Simulatable Token Generation). The CLUE scheme ΠCLUE defined in
Section 4.6 has simulatable token generation if the following properties hold:

1. There exists a PPT algorithm denoted Sim-Set-Token(pp) which samples a pair
of update tokens (∆, ∆−1) of the token and reverse token respectively.

2. For arbitrary (fixed) keold := (pkeold , skeold) which is generated from running
the Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK algorithms, the following
token (∆) distributions are the same:

• Distribution induced by running (∆, ·) $← Sim-Set-Token(pp);

• For epoch key kenew := (pkenew , skenew) the distribution is induced by running
(∆, ·) $← Set-Token(pp, skeold , xenew).

4.6 A Concrete CLUE Construction

In this Section, we present a concrete pairing-based CLUE scheme (ΠCLUE) which uses
key-homomorphic pseudorandom functions to achieve the update feature. Primarily, we
presented a concrete CLUE scheme to demonstrate that ΠCLUE is comparably efficient
to other certificateless updatable PKE schemes such as the CL-PRE scheme from [68].

At a high level, Definition 45 formalised the CLUE primitive to be ciphertext-
independent, therefore, the update feature is attained using tokens generated by
the data owner comprised of old and new epoch keys alone. That is, tokens are
generated by the data owner and contain the new epoch public key merged with a
sum ∆′ of the old and new secret values, which are portions of the old and new epoch
secret keys respectively. The ciphertext update is achieved using only the update token
(∆e+1) and the old epoch ciphertext (Ce) such that the untrusted host updating the
ciphertext to the epoch (e + 1) learns nothing about the underlying message.

101

Informally, the foundations of our CLUE scheme are a concrete CL-PKE scheme and
some update mechanism to enable the server to rotate keys in the update procedure
without needing to decrypt the ciphertext.

Our choice of the underlying CL-PKE scheme is a modified version of the pairing-based
NewFullCLE scheme proposed by [93]. Firstly, we deemed the construction from [93] to
be a worthy candidate for the underlying CL-PKE scheme used in our construction
due to the level of security satisfied. In particular, the authors of [93] utilise a modified
Fujisaki-Okamoto-Transform (FOT) [57] which in essence, is a transform to lift an
IND-CPA secure CL-PKE scheme to an IND-CCA secure one. In other words, an FOT
is used to construct CCA-secure hybrid encryption schemes, and hybrid encryption
usefully combines symmetric and asymmetric encryption to benefit from increased
efficiency and more robust security guarantees respectively.

Secondly, we chose a pairing-based CL-PKE scheme for the same reasons as [93].
Namely, regarding CL-PKE literature all concrete schemes generated without pairings
are supported by weaker security assumptions in the random oracle model. Whilst
schemes without pairings are typically more efficient computationally speaking, the
authors of [93] demonstrated that their NewFullCLE scheme attained comparable
efficiency to some non-pairing schemes. We discuss efficiency in greater detail at the
end of Section 4.7, Table 4.1.

Our choice for the update mechanism is a key-homomorphic pseudorandom function
(KH-PRF) FDDH. We chose this KH-PRF, not only for its desired homomorphic
properties but also for its use in previous UE schemes [21, 52, 92]. To be clear,
we necessitate the use of a KH-PRF building block (FDDH) to support the update
functionality in our CLUE construction and we note that the use of this mechanism is
a key differentiator of our construction concerning that of [93].

Necessary to security, we require that the KH-PRF is proven secure in the random oracle
model, assuming the hardness of the decisional Diffie-Hellman problem (Definition 4) in
some finite cyclic group. We defer the reader to the formal definition of a KH-PRF and
security of FDDH in Section 4.5.1. We denote the concrete KH-PRF as FDDH : Zq×G2 →
G1 whereby K = (Zq,⊕) and X = (G2,⊗) are additive and multiplicative groups
respectively. Note that (G1,G2) are cyclic (multiplicative) groups of prime order q.
Evaluation of the KH-PRF is FDDH(k, x) = H2(x)k (see Definition 48) for cryptographic
hash function H2 : G2 → G1, and FDDH(k1 + k2, x) = FDDH(k1, x) · FDDH(k1, x) holds.

102

Now we present the formal definition of our concrete CLUE scheme and prove that
the correctness property from Definition 46 is satisfied. We note that Section 4.7,
proceeding this section, demonstrates our construction is provably secure in terms of
the CLUE-IND-RCCA security notion.

Definition 53 (CLUE Construction). Given security parameter λ ∈ N, n epochs, iden-
tity space IDSP = {0, 1}∗, message space MSP = G1 and ciphertext space CSP =
G1×G1, let groups (G1,G2) be cyclic (multiplicative) groups of prime order q (a 1λ-bit
prime). We define the CLUE scheme ΠCLUE = (Setup, Partial-SK-Extract, Set-Secret-Value,

Set-SK, Set-PK, Set-Token, Enc, Dec, Upd) as follows,

• Setup(1λ) $→ (pp, msk) :

1. Given the security parameter λ as input, the setup algorithm defines a
symmetric bilinear map ê : (G1 ×G1)→ G2 which is a Type I pairing in
Definition 5, Section 2.3.

2. Choose an arbitrary value P ∈ G1 to be the generator of G1 such that we
have the element g = ê(P, P) ∈ G2.

3. Given s
$← Z∗

q chosen uniformly at random, set the master secret key
msk = s and set P ′ = P s ∈ G1.

4. Choose three cryptographic hash functions used are as follows5:

- H1 : {0, 1}∗ → Z∗
q;

- H2 : G2 → G1;
- H3 : {0, 1}∗ → Z∗

q.

Set pp = (q, 1λ,G1,G2, P, P ′, ê,H1,H2,H3, n,MSP , CSP) to be the public pa-
rameters and master secret key msk = s ∈ Z∗

q.

• Partial-SK-Extract(pp, msk, IDe)→ De : Given IDe ∈ {0, 1}∗ input as an epoch e

identifier, set the partial secret key as De = (P (s+H1(IDe))−1) ∈ G1. Securely send
De to the server over a secure broadcast channel.6

5Importantly, hash function H2 differs from the CL-PKE scheme in [93] to suit the needs of our
construction. That is, we require the homomorphic property from the KH-PRF to satisfy updatability,
and H2 is used in the definition of FDDH.

6Note that a server possessing partial secret key De and update token ∆e+1 is incapable of
decrypting the ciphertext without corrupting either of the secret keys (ske+1,ske), which we assume
impossible in our security model.

103

• Set-Secret-Value(pp, e) $→ xe ∈ Zq : the data owner randomly selects set secret
value xe for epoch e.

• Set-SK(pp, De, xe) → ske : for epoch e the data owner sets secret key ske :=
(xe, De) ∈ (Zq ×G1).

• Set-PK(pp, xe) → pke : for epoch e the data owner computes the public key
pke := ye = gxe ∈ G2.

• Set-Token(pp, ske, xe+1) → ∆e+1 : Using ske := (xe, De) and new epoch secret
value xe+1, we set the token ∆′

e+1 := (−xe + xe+1) ∈ Zq; secret key ske+1 =
(xe+1, De) and compute pke+1 = gxe+1 . Set ∆e+1 := (∆′

e+1, pke+1) ∈ (Zq ×G2).

• Enc(pp, m, pke, IDe) $→ {Ce,⊥} : the data owner performs the following three
steps.

1. Select uniform randomness σ
$← Z∗

q.

2. Set r = H3(< mσ||pke||IDe >) ∈ Z∗
q.7

3. Set Ce = (c1
e, c2

e) = (P rH1(IDe) · (P ′)r, mσ · FDDH(xe, gr)).

• Dec(pp, Ce, ske)→ {m,⊥} : parse ciphertext Ce = (c1
e, c2

e) and secret key ske =
(xe, De) and go through the following steps,

1. Compute ω = ê(c1
e, De) such that

ω = ê(c1
e, De) = ê(P rH1(IDe) · P rs, P (s+H1(IDe))−1)

= ê(P r(H1(IDe)+s), P (s+H1(IDe))−1)
(∗)= ê(P, P)r(H1(IDe)+s)·(H1(IDe)+s)−1 = gr,

where equality (∗) holds due to the bilinearity property of ê (Definition 5,
Section 2.3).

2. In order for the data owner to compute r in the next step, mσ needs to
be determined. Given step 1 in which it is determined that ω = gr, the
following can be computed c2

e · FDDH(−xe, ω) = mσ ∈ G1. Correctness holds
as follows,8

7Let < · > denote an encoding of the bracket contents to a string {0, 1}∗.
8To see the penultimate equation differently, given the definition of the KH-PRF: FDDH(xe −

xe, gr) = H2(gr)xe−xe = H2(gr)0 = idG1 .

104

c2
e · FDDH(−xe, ω) = mσ · FDDH(xe, gr) · FDDH(−xe, ω)
= mσ · FDDH(xe − xe, gr) = mσ.

Note that the data owner randomly chose σ during encryption, so knowledge
of this enables the computation of the message (mσ)−σ := m.9

3. Use the epoch secret-key and public parameters (ske, pp) in addition to the
previous two steps to compute r = H3(< mσ||pke||IDe >) ∈ Z∗

q. Message m

is accepted iff c1
e = (P H1(IDe) · P ′)r from the computed r value, else failure

(⊥) is output.

• Upd(pp, Ce, ∆e+1)→ {Ce+1,⊥} : recall the update token and ciphertext ∆e+1 :=
(∆′

e+1, pke+1), Ce = (c1
e, c2

e) respectively. The server must perform the following
steps:

1. Check pkq
e+1 = 1G2 . Abort the update and output failure symbol ⊥ if this

does not hold. Note, validity holds with an honestly generated epoch public
key: pkq

e+1 = (gxe+1)q = (gq)xe+1 = (1G2)xe+1 .

2. Compute ω = ê(c1
e, De) = gr ∈ G2. See step 1 of the decryption algorithm

for correctness. Set c1
e+1 := c1

e.

3. Use step 2 and the given public key pke+1 to compute c2
e+1 := c2

e·FDDH(∆′
e+1, ω)

and output Ce+1 = (c1
e+1, c2

e+1). Consistency is upheld using ω as follows:

c2
e+1 = c2

e · FDDH(∆′
e+1, ω)

= mσ · FDDH(xe, gr) · FDDH(−xe + xe+1, ω)
= mσ · FDDH(xe − xe + xe+1, gr)
= mσ · FDDH(xe+1, gr).

Remark 5. Note that only the second component (c2
e) of the ciphertext gets updated

and the first component (c1
e) remains the same, in line with previous identity-based

approaches used in CL-PKE literature [125, 18]. The first component contains a secure
signature of an identifier for the epoch in which the ciphertext was created and is
crucial for computing the value ω in the decryption and update process.10

9The technique of using the corresponding randomness for a given epoch to decrypt the ciphertext
is utilised in various UE schemes including [21, 92].

10For the sake of continuity within this Thesis, we note that the pairing notation used for Definition
53 is multiplicative, following Definition 5 from Section 2.3. This differs from the additive notation
used in the published work [82] on which this Chapter is based.

105

The fact that c1
e remains unchanged is the reason why we do not achieve the stronger

notion of full ciphertext unlinkability (IND-UPD), and instead, our construction only
achieves encrypted and updated ciphertext indistinguishability (IND-ENC).

Correctness In the following, we show that our construction ΠCLUE presented in
Definition 53 satisfies correctness (Definition 46).

Theorem 3 (Correctness of CLUE Construction). Construction ΠCLUE from Definition
53 is correct assuming the KH-PRF FDDH satisfies Definition 48.

Proof. Intuitively ΠCLUE is correct, following Definition 46 from Section 4.3, if the
decryption algorithm Dec outputs message m in the final epoch emax given honest
inputs (pp, skemax) and correctly updated ciphertext Cemax . In other words, assuming
that the final ciphertext has been correctly updated to encryption of m under honestly
generated epoch public key pkemax , it follows that decryption of Cemax will return m with
overwhelming probability.

Observe step 3 of Upd which demonstrates the consistency of the updated ciphertext
to valid encryption under the new epoch public key. Consistency is supported by
the homomorphic property of FDDH, under the assumption that the KH-PRF satisfies
Definition 48. Given the aforementioned ciphertext update consistency, step 2 of Dec
illustrates the correctness of decryption assuming honest inputs.

4.7 Security Analysis

In this Section, we analyse the security of our construction ΠCLUE. Recall from Section
4.4, Remark 4 - in proving CLUE-IND-RCCA security of ΠCLUE to achieve ciphertext
indistinguishability, we assume that ΠCLUE satisfies the randomness-preserving re-
encryption (Definition 50); simulatable- token generation (Definition 52) and the
underlying CL-PKE scheme ΠCL-PKE satisfies tidy encryption (defined in Section 4.2).
First, in Section 4.7.1 we prove several statements hold, proceeded by a formal statement
and analysis of security in Section 4.7.2.

4.7.1 Assumptions

To start, we demonstrate the security of the KH-PRF used in our construction ΠCLUE.
Formally,

106

Lemma 7. Given the KH-PRF used in ΠCLUE defined as FDDH : Zq×G2 → G1 with K =
(Zq,⊕), X = (G2,⊗) the additive and multiplicative groups of prime order q respectively
such that (G1,G2) are cyclic (multiplicative) groups of prime order q, evaluation of the
KH-PRF is FDDH(k, x) = H2(x)k. Further, FDDH(k1 +k2, x) = FDDH(k1, x) ·FDDH(k2, x)
(that is, FDDH satisfies Definition 48, Section 4.5.1). Then FDDH is a secure KH-PRF
in the random oracle model assuming the hardness of the decisional Diffie-Hellman
problem in G1.

Informally, Naor-Reingold [101] first demonstrated security in the random oracle
model of a so-called fully-fledged (large domain) KH-PRF. Further, the authors of
[47] proposed a new framework to construct any bounded (small domain) KH-PRFs,
like the one used in our construction for ΠCLUE, to a large domain PRF as in [101].
The authors of [47] were able to demonstrate the security of the bounded KH-PRF
by reduction to the standard DDH problem with an almost tight security proof by
exploiting the algebraic properties of underlying number theoretic assumptions. In
the case of our KH-PRF, we assume the hardness of the DDH problem (Definition 4,
Section 2.3). We defer the reader to [47] for more detail. More formally,

Sketch Proof. We denote the Naor-Reingold [101] PRF as NRn : Kn × {0, 1}n → G1

in line with the notation of [47], for some n ∈ N whereby {0, 1}n is a large domain,
elements from key space Kn are randomly chosen from Zq, and G1 a cyclic group of
prime order q with generator g. Evaluation is as follows: NRn(k, x) = gaΠn−1

j=0 s
xj
j , for any

x ∈ {0, 1}n, and (a, s0, . . . , sn−1) $← Kn. The framework of [47] takes multiple steps.

• Take a small domain of size l (NRlog(l)), we can adapt this PRF into an l-
bounded PRF with large input domain G2, that is, Fl : Kn ×G2 → G1 such that
Fl(k, x) = gaΠlog(l)−1

j=0 (sj−x2j), for any x ∈ G2.

• The security of Fl tightly reduces to that of NRlog(l) by looking at the exponent,
following the reduction technique of [47]. Essentially, Fl can be written in terms
of NRlog(l) which itself can be replaced by a random function (recall the latter is
secure assuming the intractability of the DDH problem), provided l ≤ poly(λ),
whereby λ is the security parameter. Thus Fl can be written in terms of a random
function.

• The final step is to demonstrate that Fl can be embedded into our KH-PRF
FDDH and which itself can be replaced by a random function. Choosing t =
ω(log(λ)) and given l ≤ poly(λ), we can write our KH-PRF as follows: FDDH =

107

[
gaΠlog(l)−1

j=0 (sj+x2j)
]Πt−1

j=log(l)(sj+x2j)
= (Fl(k, x))Πt−1

j=log(l)(sj+x2j). The remainder of the

proof is to show that the exponent Πt−1
j=log(l)(sj + x2j) only produces a negligible

error, and as a consequence, security of FDDH in Lemma 7 reduces to the security
of large domain PRF NRlog(l) which is proven to be secure.

Now we present the proofs that essential properties related to the update functionality
of ΠCLUE are satisfied.

Lemma 8. The scheme ΠCLUE satisfies randomness preserving re-encryption given in
Definition 50.

Proof. In honestly running the construction ΠCLUE we have public parameters pp;
master secret key s; epoch public and secret keys ke = (pke, ske) := (gxe , (xe, De))
for epoch e with partial secret key De (for epoch identifier IDe); update token
∆e+1 := (∆′

e+1, pke+1) ∈ (Z∗
q ×G1) such that ∆′

e+1 := (−xe + xe+1) and pke+1 = gxe+1 .
Definition 50 is satisfied as follows:

Enc(pp, Dec(pp, Ce, ske), pke+1, IDe) = Enc(pp, m, pke+1, IDe)
= Ce+1 := (P rH1(IDe) · (P ′)r

, mσ · FDDH(xe+1, gr))
= (c1

e+1, c2
e+1) = (c1

e, mσ · FDDH(xe, gr) · FDDH(∆′
e+1, gr))

= (c1
e, mσ · FDDH(xe+1, gr)).

Where the final equality is the output of Upd(pp, Ce, ∆e+1). The correctness of the
scheme is further detailed in the construction itself.

Due to the deterministic nature of ciphertext updates in ΠCLUE, the scheme must satisfy
tidy encryption. We note that the construction presented in Section 4.6 demonstrates
that randomness-recoverable tidy encryption holds in the sense of Definition 51 using
uniformly chosen σ

$← Z∗
q randomness detailed in the construction.

Lemma 9. The CLUE scheme ΠCLUE satisfies the and tidy encryption and randomness
preserving updates properties given in Definition 51 and Definition 25 respectively.

Proof. Firstly, CLUE encrypts with uniformly chosen randomness σ ∈ Z∗
q, so the

outputs of Enc(pp, pke, m, IDe) and Enc(pp, pke, m, IDe; σ) are identically distributed.
Thus, there exists an efficient deterministic algorithm RDec(pp, ske, Ce) = (m, σ) such
that construction ΠCLUE satisfies the notion of tidy encryption:

108

RDec(pp, Ce, ske) = (m, σ) =⇒ Enc(pp, pke+1, m, IDe; σ) = Ce+1.

Given this fact, ∀(pp, msk) $← Setup(1λ), ∀(pke, pke+1), (ske, ske+1) generated from
Set-SK, Set-PK respectively, ∀∆e+1 ← Set-Token(pp, ske, xe+1) and all valid ciphertexts
C ∈ CSP encrypted under pke, we have:

Enc(pp, pke+1, IDe, RDec(pp, ske, Ce)) = Enc(pp, pke+1, IDe, (m, σ)) = Ce+1,

and,

Enc(pp, pke+1, IDe, Dec(pp, ske, Ce)) = Enc(pp, pke+1, IDe, m) = Ce+1
dist=

Upd(pp, Ce, ∆e+1).

The first equation is for randomness recoverable, tidy encryption and the second
equation demonstrates that randomness-preserving updates are satisfied. Note that
the ciphertexts obtained from both equations are identically distributed.

The following statement focuses on the update token ∆ generated from running
Set-Token in Definition 45.

Lemma 10. The CLUE scheme ΠCLUE defined in Section 4.6 satisfies simulatable
token and reversible token generation given in Definition 52.

Proof. Given epoch public and secret keys ke = (pke, ske) := (gxe , (xe, De)) for epoch
e and epoch identifier IDe and update token ∆e+1 := (∆′

e+1, pke+1) ∈ (Z∗
q × G1) for

old epoch e updated to the new epoch (e + 1), we have (−xe + xe+1) := ∆′
e+1

$← Zq

such that pke+1 can be generated from the previous epoch as pke+1 ← pke · g∆.
This holds since the CLUE construction derives the epoch public key as pke :=
gxe . We define a reversible token (∆e+1)−1 := ((∆′

e+1)−1, pke+1 · g(∆′
e+1)−1

). Given
invert(∆′

e+1) = (∆′
e+1)−1 = (xe − xe+1) for some invertible function invert, we can show

that (∆e+1)−1 := ((xe − xe+1), gxe+1 · g(xe−xe+1)) = ((xe − xe+1), gxe). Therefore, we can
use downgraded ciphertexts by applying this reversible token as follows:

Upd(pp, Ce+1, (∆e+1)−1) = (c1
e+1, c2

e+1 · FDDH((∆′
e+1)−1, ω))

= (c1
e, mσ · FDDH(xe+1, gr) · FDDH((xe − xe+1), gr)

= (c1
e, mσ · FDDH(xe, gr)) = Ce.

Therefore, simulatable token generation given in Definition 52 is satisfied.

109

4.7.2 Proving Security

Theorem 4. Given ΠCLUE is a deterministic updatable encryption scheme satisfy-
ing randomness-preserving tidy updates (Lemma 8); simulatable token generations
(Lemma 10) and the underlying certificateless encryption scheme ΠCL-PKE satisfies
CL-PKE-IND-RCCA security (Lemma 11), then the construction ΠCLUE satisfies security
notion CLUE-IND-RCCA assuming the intractability of the p-BDHI problem formalised
in Definition 8 (Section 2.3).

Similarly to Chapter 3, Section 3.8, we take a two-step modular approach in proving
Theorem 4 to reduce the proof of security from the updatable setting (CLUE) to the stan-
dard setting. That is, we provide proof of the security of the underlying CL-PKE scheme
ΠCL-PKE := (Setup, Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Enc, Dec) used
to construct ΠCLUE.

The first step of the proof demonstrates that ΠCL-PKE satisfies CL-PKE-IND-RCCA
security in an isolated epoch of ΠCLUE against the adaptive adversary A = (AI,AII),
which we defined in Section 4.4. To do so we use the CL-PKE-IND-RCCA security
model presented in Section 4.5.2, which is designed over a singular epoch of CLUE.
We observe that the authors of [93] demonstrated that their CL-PKE scheme, on
which ours is based, satisfies the strictly stronger notion of CL-PKE-IND-CCA security
against adversary A in the random oracle model assuming the hardness of Definition
8 from Section 2.3. Following the implication from [28, 68] that satisfaction of CCA
security implies that the same construction will also satisfy CL-PKE-IND-RCCA security,
intuitively one can see that our construction will satisfy RCCA security.

In the second step of the proof we look at proving the security of the updatable
construction ΠCLUE over multiple epochs. This part of the proof sees a series of hybrid
games Hl built for epochs el ∈ {0, . . . , emax + 1} of ΠCLUE where emax is the maximum
number of epochs in which an adversary A can query oracles (Figure 4.1). Suppose
we have adversary A against ΠCLUE, defined in Section 4.4. We use A to construct
an adversary Bl against the standard CL-PKE construction ΠCL-PKE which is proven
CL-PKE-IND-RCCA secure in the first part of our proof. Constructing adversaries in
this way enables us to demonstrate the indistinguishability of games Hl−1, Hl for the
epochs of the CLUE scheme el ∈ {0, . . . , emax + 1}. Thus, updatable security can be
reduced to the static security of ΠCL-PKE in an isolated epoch of the CLUE scheme.

110

At a high level, Bl guesses the set of challenge-equal epochs for A, embeds their
PKE challenge into epoch el and simulates the challenger in A’s game (Figure 4.2).
As a result, game Hl behaves exactly like the CLUE-IND-RCCA game in Figure 4.2
up to epoch el−1 and from epoch el onwards, Bl will randomly determine challenge
ciphertexts. As a consequence, we can show that game H0 is run independently of the
challenge bit b, meaning there does not exist an adversary with a non-trivial advantage
against H0. Lastly, one can view Hemax+1, the game in the final challenge epoch, as the
CLUE-IND-RCCA-game.

In summary, the above technique sees an adversary Bl guess a window of epochs;
embed a PKE challenge into the CLUE security game; simulate challenger responses
of the game in Figure 4.2 for the window of epochs and the challenge epoch, then
randomly determine the challenge ciphertext when simulating responses to A after the
challenge epoch. This method allows us to prove that A has a negligible advantage in
distinguishing between games Hl−1, Hl for epochs el ∈ {0, . . . , emax + 1}, thus proving
that Theorem 4 holds. Observe that we achieve this final result using a key insulation
method formalised in [80]. More formally,

Lemma 11. Given a secure KH-PRF FDDH, if the underlying deterministic encryption
scheme ΠCL-PKE of ΠCLUE satisfies randomness-recoverable tidy encryption (Lemma 9)
then ΠCL-PKE := (Setup, Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Enc, Dec),
the underlying encryption scheme of the construction ΠCLUE in Section 4.6, satisfies
CL-PKE-IND-RCCA-security (Definition 49) assuming the hardness of the p-BDHI
problem.

Sketch Proof. Informally, the underlying CL-PKE scheme ΠCL-PKE of ΠCLUE is a
modified version of the CL-PKE scheme defined by the authors of [93], excluding the
update algorithms. In [93] it is proven that their construction satisfies the strictly
stronger notion of CL-PKE-IND-CCA security against an adversary A = (AI,AII),
in the random oracle model, assuming the hardness of Definition 8. The proof of
CL-PKE-IND-CCA follows similarly for scheme ΠCL-PKE.

Proof. The security experiment presented in Figure 4.3 asks an adversary to distin-
guish bit b ∈ {0, 1} from challenge ciphertext C = (c1

e,b, c2
e,b) = ((P H1(IDe) · P ′)r, mσ

b ·
FDDH(xe, gr)). Intuitively, this means A needs to distinguish c2

e,b to win the game.
Recall Lemmas 7 and 9, in which we proved the KH-PRF FDDH used in ΠCLUE is
secure assuming the hardness of the DDH problem and that ΠCLUE satisfies randomness

111

recoverable tidy re-encryption respectively. The consequence of these Lemmas means
adversary A has no means to compute r = H3(< mσ

b ||pke||IDe >) given uniform
randomness σ ∈ Z∗

q, nor is A capable of computing gr := ê(c1
e,b, De) without knowledge

of randomness σ, identity IDe and partial secret key De (see construction encryption
and decryption details of ΠCLUE). The second phase of the experiment presented in
Figure 4.3 essentially asks A to guess the input and output of the KH-PRF as well
as the uniform randomness σ to distinguish whether the challenge ciphertext is an
encryption of challenge message m0 or m1.

To conclude, adversary A in the CL-PKE-IND-RCCA security game detailed in Figure
4.3 is reduced to guessing the bit b ∈ {0, 1} of the game. Therefore, the security
of the scheme ΠCL-PKE (which is the standard encryption scheme of our construction
ΠCLUE) is reduced to solving the p-BDHI problem (Definition 8) which is assumed to
be intractable in polynomial time.

The second step of the proof of Theorem 4 is as follows.

Claim 1. Hybrid games Hl−1, Hl following Figure 4.2 for the construction ΠCLUE are
indistinguishable.

Sketch Proof. Recall that adversary Bl will embed a static challenge in the security
experiment CL-PKE-IND-RCCA into the CLUE-IND-RCCA game in response to adversary
A’s challenge in epoch e under given public key pke. Note that asides from key pke,
other epoch keys and update tokens are unknown to Bl which means that responding
to decryption queries from A calls for Bl to use its decryption oracle in addition to
simulating update tokens (Definition 52).

The simplified method described above is extended to the in-depth proof, in which we
require Bl to guess a window of epochs that will contain the correct challenge epoch
and embeds their static challenge there. More formally,

Proof. The indistinguishability of consecutive hybrid game pairs sees an adversary
A against the CLUE construction ΠCLUE in games Hl−1, Hl for the CLUE-IND-RCCA
security experiment (Figure 4.2), such that el ∈ {0, . . . , emax + 1} with emax being the
final epoch in which A = (AI,AII) can make queries to oracles detailed in Figure 4.1.
We use A to construct an adversary Bl against the underlying CL-PKE scheme ΠCL-PKE

of ΠCLUE in the CL-PKE-IND-RCCA game (Figure 4.3 in Section 4.5.2).

112

The reduction Bl attempts to simulate the challenger in A’s game using a technique
known as key-insulation, such that game Hl behaves exactly like the CLUE-IND-RCCA
security experiment in Figure 4.2 up to epoch el−1 and the game randomly determines
challenge ciphertexts after el−1. Observe that game H0 is run independently of the
challenge bit b, so A’s advantage of winning is negligible against H0 and game Hemax+1

represents the CLUE-IND-RCCA game. The idea is for adversary Bl to correctly guess
the boundaries of the set of challenge-equal epochs {e, . . . , e} containing the challenge-
epoch, such that A does not corrupt the epoch keys in this set nor will they corrupt
update tokens ∆e, ∆e+1. Adversary Bl proceeds to embed their CL-PKE-IND-RCCA
challenge in epoch el, without knowledge of the corresponding epoch secret-key skel

.

In more detail, Bl receives challenge epoch public key pke = gxe from the challenger
(C) in the CL-PKE-IND-RCCA game. After updating K ← K ∪ {e}, they proceed to
sample e

$← {0, . . . , el} , e
$← {el+1, . . . , emax}. Observe, reduction Bl has access to

the CL-PKE decryption oracle only and they will attempt to simulate responses in
time-frame {e, . . . , e}, without knowledge of the corresponding epoch secret-key and
in turn without the capability of deriving the update tokens manually from epochs
{e, . . . , e}. Instead, Bl must simulate the update tokens within this region (Lemma
10). The real challenge is in Bl simulating the remaining oracles in ExpCLUE-IND-RCCA

ΠCLUE,A

which we will describe in the ensuing paragraphs, including the time after which A
outputs challenge messages (m0, m1) ∈M∗ and receives a challenge-ciphertext.

ONext(e): if the call is made by A in epoch e < (e− 1) or e > e, then Bl generates a
new epoch public and secret keys ke+1 := (pke+1, ske+1) such that ske+1 derives from
sampling xe+1

$← Z∗
q, De

$← G1 and setting ske+1 := (xe+1, De) followed by computing
pke+1 = gxe+1 . Then Bl generates an update token ∆e+1 = ((−xe + xe+1), pke+1). For
query epoch e = e− 1, Bl can simply set ∆e+1 = ⊥, since A is assumed not to query
the token in this epoch and set pke+1 = g. For query epoch e = e, again Bl sets
∆e+1 = ⊥ and the epoch key ke+1 = (gxe+1 , (xe+1, De)) for randomly sampled secret
key components (xe+1, De).

For query epochs e ≤ e ≤ e , Bl must sample a random value αe+1
$← Z∗

q, setting
the new epoch key as ke+1 ← (pkαe+1

e , (xe+1 · αe+1, De)) and update token as ∆e+1 =
((−xe + (xe+1 · αe+1)), pke+1). Finally, Bl must deal with the instance that A queries
ONext in an epoch proceeding the challenge epoch (e > ẽ), by updating the list L as
follows: if e = e − 1, choose r′ $← Z∗

q and set Ce+1 = ((c1
e)r′

, (mb)σ · FDDH(xe, ωr′))

113

where ω = gr (see the CLUE construction in the main text); if e = e − 1, sample
α′ := {αe+1, . . . , αe}

$← Z∗
q and set Ce+1 = ((c1

e)α′
, (mb′)σ · FDDH(xe, ωα′)); if e ≥ e,

choose Ce+1 to be two random group elements. Otherwise, Ce+1 is determined by
regular updates. In all cases Bl updates L ← L ∪ {(Ce+1, e + 1)} and the global state
is updated to epoch (e + 1).

ODec(Cei
): if the call is made by A for epoch ei ̸∈ {e, . . . , e}, Bl can simply run

Dec(pp, Cei
, skei

) → m by first deriving the epoch key kei
:= (pkei

, skei
). If however

ei ∈ {e, . . . , e}, as Bl does not know the corresponding secret key for these epochs, they
have to manually update Cei

to epoch e by iteratively running Cej
←Upd(pp, Cei

, ∆−1
j),

for j = {i− 1, . . . , l}, such that ei > el, or Cej
←Upd(pp, Cei

, ∆j), for j = {i + 1, . . . , l}
such that ei < el. This is achieved using simulated reverse or forward tokens to down
or up-grade the ciphertext respectively, assuming the existence of simulatable tokens
(Definition 52, Lemma 10). Next, Bl queries their own challenger C on the CL-PKE
decryption oracle ODec(Cel

) to obtain the message m. The adversary has to do so, as
they do not know the secret epoch key skel

to manually decrypt. Note, the queried
ciphertext does not need to appear ‘fresh’ to A once downgraded by a reversible token
since A does not see the downgraded version of the ciphertext. Provided the output
m ̸∈ M∗, Bl responds to A with the decryption m.

OCorrupt-Token(ei): if the call is made by A for epoch ei < e, Bl returns ∆ei
provided

ei ̸= {e, e} and they return ⊥ otherwise. Note that the OCorrupt-Token returns ⊥ for
ei ≥ e and for ei ∈ {e, e} which is important as the ciphertext update functionality is
deterministic, therefore, corruption of an update token for such an epoch would allow
an adversary to trivially update ciphertext Ce to Cei

themself and compare the results
with the output of OUpd(Cei

). This would allow the adversary to distinguish between
hybrid games by checking for inconsistencies between the two games.

OPSKE(ei) : if the call is made by A for epoch ei ≥ e or ei ∈ K then Bl returns ⊥.
Otherwise, Bl returns DA provided e ̸= {e, e}.

OCorrupt-Key(ei): Similarly, if the call is made by A for an epoch ei < e, Bl can return
key skei

provided ei ̸∈ {e, . . . , e} and ei < e. Else, output ⊥.

OUpd(Cei
) : for some epoch ei < e, adversary Bl first checks if ei ̸∈ {e, . . . , e + 1} then

they can run Ce←Upd(pp, Ce, ∆e) itself using simulated token ∆e. If ei ∈ {e, e + 1}
then Bl can call the CL-PKE decryption oracle ODec(Cei

), obtaining a message m and

114

proceed to encrypt for epoch e by running Ce
$← Enc(pp, m, pke, IDe). Ciphertext Ce

satisfies randomness-preserving re-encryption following Lemma 8, so A is unable to
detect whether the ciphertext is a fresh or updated ciphertext.

If A queries an update of the challenge ciphertext C̃ (challenge epoch ẽ) to current
epoch e, then Bl proceeds as follows: if e ̸= {el, e + 1} then simulated tokens can
be used in the normal manner of ciphertext updates. If e = el, Bl proceeds by
decrypting m ← Dec(pp, C̃, ske−1) then sending (m0, m) to C to receive a challenge
ciphertext C̃e.11 This is possible as Bl can retrieve previous challenge ciphertexts since
they’re acting as the challenger to adversary A. Finally, if e = e + 1 then Bl can run
C̃e

$← Enc(pp, m0, pke, IDe) which is compliant with both hybrid games Hl−1, Hl.

Assuming Bl correctly guesses the boundaries plus challenge-epoch el and following the
above reduction, the view of A is that they are playing game Hl−b. Following the proof
of Claim 11 if Bl chooses b = 0 in the CL-PKE-IND-RCCA game, then A is against
the security experiment for CLUE-IND-RCCA up until epoch el−1, which translates to
game Hl (similarly if b = 1 then A plays Hl−1). Thus, A’s guess b′ a guess of bit-b
and so if we label the event that b′ = b as Succ, we have that 1

emax+1 Pr[Succ]ΠCLUE,A ≤
PrΠCL-PKE,Bl

[Succ] ≤ negl(1λ), where the second inequality derives from the proof of
Claim 11.

4.7.3 Efficiency

In Table 4.1 we make explicit the cost of encryption, decryption and ciphertext updates
of our CLUE scheme (ΠCLUE). To be precise, the encryption algorithm only has one
exponentiation in both G2 and a multi-exponentiation in G1. Decryption requires the
computation of a pairing, one exponentiation in G2 and a multi-exponentiation in G1.
In addition, the token generation algorithm Set-Token requires one exponentiation in
G2; the Upd algorithm requires the computation of a pairing and one exponentiation in
both G1 and G2 respectively. The size of an updated ciphertext in ΠCLUE is the same
as from encryption, that is, 2|G1|. One can see that running the ciphertext update
algorithm is more efficient than decryption, albeit both require a pairing computation.

Nevertheless, the encryption in our construction has comparable efficiency to a pairing-
free CL-PKE scheme [7]. The underlying CL-PKE scheme in ΠCLUE from Section 4.6

11That is, due to updates being deterministic in construction ΠCLUE, Bl will update a challenge
ciphertext from A by decrypting the message and sending this message alongside the fixed challenge
message m0 (which has consistent randomness) as it’s own challenge to C.

115

Efficiency
Encryption Decryption Update

Our Construc-
tion

1 multi-exp (G1),
1 exp (G2)

1 pairing, 1
multi-exp (G1),
1 exp (G2)

1 pairing, 1 exp
(G1,G2)

[93] -
NewFullCLE

1 multi-exp (G1),
2 exp (G2)

1 pairing, 1
multi-exp (G1),
1 exp (G2)

N/A

[7] - CLPKE (No
pairings)

3 exp in group G 3 exp in group G N/A

[2] - FullCL-PKE 1 pairing, 2 exp
(G1), 1 exp (G2)

1 pairing, 2 exp
(G1)

N/A

[68] - CL-PRE 2 pairings, 3 exp
(G1), 1 exp (G2)

1 pairing, 1 exp
(G1), 2 exp (G2)

6 pairings

Table 4.1 Efficiency comparisons for algorithms (Enc, Dec, Upd) of our construction
against the literature.

slightly improves upon the efficiency of the CL-PKE scheme given in [93] as one less
exponentiation is G2 is required for encryption.

Additionally, we observe that the data owner may pre-compute and store (P H1(IDe) ·P ′),
which is part of the first component of the ciphertext (c1), so that validation of the
ciphertext in the decryption process only requires a scalar multiplication in G1. This
pre-computation also speeds up the encryption operation for the data owner if they
encrypt several messages using the same public-key [93].12 We note the following
observations made by the authors of [93]. With pre-computation, our construction is
comparably efficient to the pairing-based CL-PKE scheme from [2]. However, with the
removal of pre-computation both the CL-PKE scheme from [93], and by extension in
our construction, are more efficient than the scheme from [2] due to the fact encryption
has no pairing computation.

Importantly, our final comparison of efficiency is against the most similar updatable
CL-PKE scheme that satisfies CL-PKE-IND-RCCA security. Namely, the CL-PRE
scheme proposed in [68] requires three exponentiations in G2 for the re-encryption
key; the computation of six pairings in their ciphertext re-encryption process and the
re-encrypted ciphertext is of size (|G2|+ l) for l ∈ N which differs in size compared to

12In the case of ΠCLUE, encrypting several messages under the same public-key translates to
encryption of messages in a single epoch of the scheme.

116

a ciphertext generated from fresh encryption. In comparison to [68], one can therefore
see that our construction ΠCLUE in Section 4.6 is more efficient with regards to the
update feature. In summary, Table 4.1 provides explicit efficiency details for the works
mentioned, and in the Table, we detail the cost of encryption, decryption and update
algorithms (if applicable) of the aforementioned schemes.

4.8 Summary and Outlook

In our first contribution of this Chapter, we formally defined a novel certificateless
public-key updatable encryption primitive CLUE to mitigate the risk of a malicious
key generation centre, when considering applications of a PKUE primitive in a public
key infrastructure. In our second contribution, we provided a security framework to
model the first notion of ciphertext indistinguishability in certificateless public key
updatable schemes. In particular, security against replayable chosen-ciphertext attacks
from an adaptive adversary. Our third contribution was to propose a concrete CLUE
scheme (ΠCLUE) derived from a modified pairing-based CL-PKE scheme [93], which we
used as the underlying PKE scheme, and KH-PRFs applied to support the necessary
update mechanism in CLUE. In doing so, we were able to demonstrate an efficiency
improvement compared to other certificateless updatable schemes and provide proof
that our construction satisfies ciphertext indistinguishability.

Generally speaking, it is of interest to extend the security framework of CLUE and
realise a more efficient scheme, especially one that does not rely on pairings, to limit
the cost of computation. Additionally, for future work, we believe it is important
to define a concrete CLUE scheme that achieves the stronger notion of ciphertext
unlinkability, meaning an adversary cannot determine whether a ciphertext derives
from an update or fresh encryption. Currently, our proposed construction ΠCLUE only
achieves ciphertext indistinguishability since the first component of the ciphertext does
not evolve with ciphertext updates. In terms of security, we would also like to construct
a secure scheme from post-quantum assumptions.

Moving forwards, it is of interest to explore different methods to reduce trust in the
KGC which plays a role in a CLUE scheme. That is, instead of taking the certificateless
approach to mitigate the key escrow problem, we believe it would be interesting to
apply methods similar to [20] which employ multiple KGCs. Alternatively, we could
consider the accountable authority IBE (A-IBE) primitive first proposed by the authors

117

of [63], which is a primitive in which there is some type of penalty imposed on a singular
malicious KGC.

118

Chapter 5

Dynamic Multi-Server Updatable
Encryption

Contents
5.1 Introduction . 120
5.2 Dynamic Multi-Server Updatable Encryption 123
5.3 Security Modelling . 126
5.4 Integrity . 131
5.5 Our Construction . 135
5.6 Security Analysis . 142
5.7 Summary and Outlook . 146

In this Chapter we focus on mitigating a problem inherent in the design of public-key
updatable encryption. Concretely, a PKUE scheme lacks resilience due to a single point
of failure if the server performing ciphertext updates becomes corrupted. Our solution
is a multi-server definition of a PKUE primitive (DMUE) which supports dynamic
changes in the participating servers from one epoch to the next. We model security for
a DMUE scheme, generically define a DMUE construction and prove the construction
satisfies our notion of security. Additionally, we consider the practicalities of DMUE
in the real world, which leads us to use dynamic secret sharing as a building block in
order to achieve a concrete scheme.

5.1 Introduction

5.1.1 Motivation

Standard encryption schemes required a secure solution to so-called encrypted ‘data at
rest’ due to the increased usage of outsourced data storage. To mitigate the risk of
long-term cryptographic key exposure, the authors of [24] introduced the symmetric
updatable encryption primitive. Recollect, from Chapters 3 of this Thesis, that we
extended the UE primitive to the public-key setting (PKUE from Section 3.3). We
will continue to extend PKUE in this Chapter to support additional features.

We emphasise that the core purpose of UE is to reduce the impact of key exposure and,
in turn, token exposure, preserving standard encryption security such as confidentiality
and the updatable security notion of ciphertext unlinkability. Consequently, the
primitive is an essential tool for privacy preservation in multiple applications such as
storage on the cloud, retention of online medical information, and storing information
on the blockchain. Despite efforts to increase the security of UE schemes, there remain
risks to the security and resilience of a system in which we rely on a single server to
perform ciphertext updates. That is, there is a single point of failure if the server is
corrupted by an external adversary or acts dishonestly. As a consequence, the server
could fail to update the ciphertext correctly, if at all.

In more detail, if the corrupted server fails to update the ciphertext, then the data
owner’s encrypted data will remain encrypted under the same key. As such, the scheme
is effectively reduced to a standard encryption scheme which defeats the core purpose
of UE since an adversary has more time in which to corrupt the cryptographic key and
learn the underlying message. The other cause for concern is if the corrupted server
incorrectly updates the ciphertext, which will compromise the integrity of the data
and potentially prevent the retrieval of the original data. In the real world, if the data
owner is storing encrypted financial information, and it is updated incorrectly, they
may be misinformed about their assets upon decryption. In summary, it is vitally
important that the chance of either scenario occurring is reduced to protect the privacy
and integrity of the information. Especially given the highly sensitive nature of the
information outsourced in applications of UE.

We believe a natural solution to the single point of failure issue, in the public-key
UE (PKUE) setting (Chapter 3), is to distribute the update of ciphertexts to multiple

120

servers such that some pre-defined threshold of servers can carry out the update process
in each epoch. An added benefit is the spreading of the computational load on the
server’s behalf.

Alas, a static set of servers (i.e the chosen set of servers at the advent of the scheme
does not change, as in single server UE) does not reflect the real world because servers
often change over long periods or possibly need to be removed from a scheme due to
dishonest behaviour. To illustrate, suppose we wish to store a secret on a public-key
blockchain such that nodes of the blockchain structure are considered to be the servers
in a multi-server UE scheme. The authors of [15] demonstrated that node churning
needs to be taken into consideration when designing a scheme for this application.
This led us to design a multi-server PKUE primitive supporting a so-called dynamic
committee of servers from one epoch to the next, labelled as dynamic multi-server UE
(DMUE). We note that the approach of having a dynamic committee of servers is
similar to previous works such as [9, 86, 98, 109].

Categorically, DMUE captures servers in specific epochs each possessing an update
token. Servers participate in updating the encrypted data, whereby the committee
of servers in consecutive epochs may differ and so a handover protocol is required.
Defining the security of a DMUE primitive will prove challenging and is nuanced.
Categorically, the inherent challenges in capturing security in the update setting due
to the pervasive leakage of information in UE schemes are only exacerbated in the
multi-server setting. At a high level, our security modelling approach stipulates that
an adversary can only succeed in their attack if they corrupt a threshold of server
tokens in any given time period, with the servers and threshold potentially evolving
with each epoch. We observe that the adversary modelled is assumed to be mobile
[109], which means they can dynamically and actively corrupt servers at any given
time in a DMUE scheme, provided their corruption capabilities are bounded.

5.1.2 Existing Work

We hark back to Chapters 3 and 4 which discuss the closely aligned proxy re-encryption
(PRE) primitive introduced by [17] as a symmetric primitive in which a proxy server
re-encrypts a ciphertext under a sender’s secret key and delegates decryption under
a recipient’s secret key. As noted throughout and detailed in Section 3.2 (Table 3.1),
extensions of PRE and UE such as DMUE, remain distinct as they do not affect the

121

fundamental differences between the underlying standard UE and PRE primitives.
However, it is important to observe the existence of threshold PRE [124, 33] schemes
which distribute the process of ciphertext re-encryption and decryption delegation using
secret sharing and standard PRE as building blocks. The concept of using threshold
techniques is similar to our DMUE primitive.

In the same vain as DMUE, which is a dynamic threshold updatable encryption
primitive, the authors of [74] propose an updatable oblivious key management system
(UOKMS) in the public-key setting, achieved using a distributed threshold implemen-
tation. Crucial differences between UOKMS and traditional UE are highlighted by
the authors of [74], including but not limited to the design in a UOKMS scheme for
the data owner to interact between two outsourced remote services, a KMS and a
storage server, whereas, UE literature only captures a server. Moreover, the UOKMS is
uniquely designed to have obliviousness of computation on the side of KMS, something
that is not considered in the design of UE schemes.

5.1.3 Our Contributions

To summarise, our contributions are threefold: we formalise a dynamic multi-server
updatable primitive called DMUE in Section 5.2, used to mitigate the problem of a
single point of failure in standard UE schemes. Importantly, the extension of PKUE to
the multi-server setting broadens the landscape in which updatable encryption can be
applied.

In Section 5.3 we present a new notion of security against update unlinkable chosen
ciphertext attacks (MUE-IND-CCA), which captures a mobile adversary attempting to
corrupt a threshold or more of secret update tokens. Recall, it is crucial to maintain
ciphertext update unlinkability as it guarantees a ciphertext generated by the update
algorithm is unlinkable from a ciphertext generated by fresh encryption, even when the
adversary sees many updated ciphertexts of chosen messages. We highlight that this
indistinguishability notion is the first CCA security definition defined in the PKUE
framework, as Chapters 3 and 4 captured the weaker notion of RCCA security. To be
clear, we choose to capture CCA security in this Chapter in line with the opinion of UE
literature which places emphasis on modelling strong security notions. Moreover, we
are able to do so, unlike Chapter 3, since the update mechanism of DMUE is designed
to be deterministic. Note that Chapter 4 is also designed with deterministic updates,

122

but we modelled an RCCA notion for a CLUE scheme to suit the security needs of a
PKUE and certificateless encryption, which does not need to be considered for DMUE
as it is not certificateless. We defer the reader to the aforementioned Chapters for
an in-depth discussion of RCCA security but we note that formalising MUE-IND-CCA
security, and proving this notion is satisfied by a DMUE scheme, directly implies a
notion of replayable security (RCCA) is also satisfied.

In Section 5.4 we present the first notion of integrity for a PKUE scheme. Specifi-
cally, we model and formalise a notion of security against ciphertext integrity attacks
(MUE-INT-CTXT). This security notion is important to consider when there are deter-
ministic ciphertext updates since it is easier for an adversary to successfully forge a
ciphertext that correctly decrypts to a valid message. Even more so, we are interested
in a notion of integrity for the multi-server setting assuming an adversary corrupting a
threshold of servers (or there is a collusion of servers) seeks to output forged ciphertexts
via the update process. Without guaranteeing ciphertext integrity, a forged ciphertext
could mislead the data owner (individual or organisation) which affects the reliability
and accuracy of the underlying data.

In Section 5.5 we present a generic construction of DMUE built from a single-server
public-key UE primitive and a dynamic threshold secret sharing scheme. The crux
of our generic construction is that the data owner acts as the dealer and distributes
a vector of n update tokens shares per epoch to the corresponding servers. Then
at least a threshold of t servers can honestly reconstruct an updated ciphertext to
encryption in epoch (e + 1) using standard PKUE and secret sharing techniques. Next,
we consider the practicalities of applying DMUE by providing an overview of a concrete
scheme built from dynamic proactive secret sharing, in which an old server committee
participates in a handover process to refresh and securely distribute update tokens to
the new epoch server committee. We conclude our work by proving the generic DMUE
scheme satisfies our ciphertext unlinkability and integrity security notions.

5.2 Dynamic Multi-Server Updatable Encryption

In this Section, we first introduce the syntax used for defining DMUE and the notation
used in the ensuing security modelling Sections. Second, we present the formal definition
of a DMUE primitive and define correctness.

123

5.2.1 Syntax

Recollect general syntax for UE from Section 3.2. In the dynamic multi-server setting,
we define for epoch ei a set of servers Sei

= {Sj}j∈[n] where Sei+1 may not be the same
set and update token ∆j

ei
pertains to the token server Sj ∈ Sei

possesses.

5.2.2 Formal Definition of DMUE

When extending the PKUE primitive to the dynamic multi-server setting (DMUE),
a data owner must distribute tokens to every qualified server for that epoch, who
respectively work together to update the ciphertext. Furthermore, the dynamic aspect
of this primitive enables different sets of servers, chosen by the data owner at the time
of token creation, to perform the ciphertext update in successive epochs. We define
the DMUE primitive as follows.

A DMUE primitive is defined as ΠDMUE = (Setup, KG, TG, Enc, Dec, Upd) whereby
algorithms (KG, Enc, Dec) are formalised as in standard PKUE and the data owner
runs all algorithms asides from Upd, the latter of which is run by the servers in a given
epoch. More formally,

Definition 54 (DMUE). Given a set of servers S of size n ∈ N and a threshold t ≤ n,
a dynamic multi-server updatable encryption scheme is defined by a tuple of six PPT
algorithms ΠDMUE = (Setup, KG, TG, Enc, Dec, Upd) as follows.

1. Setup(1λ) $→ pp : given security parameter 1λ, the setup algorithm randomly
outputs the public parameters pp.

2. KG(pp, ei) $→ kei
:= (pkei

, skei
) : given public parameters, the probabilistic key

generation algorithm outputs the public and private key pair (pkei
, skei

) for epoch
{ei}i∈[0,max].

3. TG(pp, skei
, kei+1 , Sei+1) → {∆j

ei+1
}j∈[n] : the token generation algorithm takes

as inputs the public parameters, the old epoch secret key skei
, the new epoch

public and secret key-pair kei+1 := (pkei+1 , skei+1) generated by the key generation
algorithm and the new set of servers Sei+1 = {Sj}j∈[n]. The deterministically
computed output is n update tokens {∆j

ei+1
}j∈[n], which are securely sent to the

chosen servers Sj ∈ Sei+1 .1

1In the definition of DMUE the data owner chooses the committee of servers {Sei+1}∀i∈N. In
Section 5.5 we design a generic DMUE scheme built from PKUE and threshold dynamic proactive

124

4. Enc(pp, pkei
, m) $→ Cei

: given public parameters and the epoch public key pkei
,

the data owner runs the probabilistic encryption algorithm on message m ∈MSP
and outputs the ciphertext Cei

.

5. Dec(pp, skei
, Cei

)→ {m,⊥} : given public parameters and the epoch secret key,
the owner is able to run the deterministic decryption algorithm in order to output
message m or abort (⊥).

6. Upd(pp, {∆k
ei+1
}k∈N, Cei

)→ Cei+1 : for some k ≥ t, the subset S ′ ∈ Sei+1 of servers,
such that |S ′| = k, can deterministically update ciphertext Cei

using their tokens
∆k

ei+1
to output an updated ciphertext Cei+1 .

Correctness Intuitively, defining the correctness of the DMUE primitive follows from
Definition 29 for the single server PKUE primitive. However, the multi-server setting
additionally has to encapsulate the concept of ciphertext updates from a threshold
number of tokens. The formal definition of correctness follows.

Definition 55 (Correctness). Given security parameter λ and threshold t ≤ k ≤ n,
dynamic multi-server updatable encryption scheme (ΠDMUE) for n servers, as formalised
in Definition 54, is correct if for any message m ∈MSP, for any l ∈ {0, . . . , max− 1}
such that max denotes the final epoch of the scheme, and i = (l + 1), there exists a
negligible function negl such that the following holds with overwhelming probability.

Pr



pp
$← Setup(1λ);

kei
= (pkei

, skei
) $← KG(pp, ei);

{∆j
ei
}j∈[n] ← TG(pp, skei−1 , kei

, Sei
);

Cel

$← Enc(pp, pkel
, m);

{Cei
← Upd(pp, {∆k

ei
}k∈N, Cei−1) :

i ∈ {l + 1, · · · , max} ∧ |k| ≥ t};
Dec(pp, skemax , Cemax) = m



≥ 1− negl(1λ).

secret sharing, such that each server in an epoch committee holds a share of the complete update
token for the next epoch. As a consequence, we require a threshold of servers from one epoch to the
next to be distinct, otherwise, the security of the scheme may be affected if a threshold or more servers
collude whilst possessing token shares from consecutive epochs. We defer the readers to Section 5.5
for a more in-depth discussion regarding this matter.

125

Remark 6. The multi-server aspect of DMUE affects the Setup, TG, and Upd algorithm
definitions compared to standard UE algorithms. We note that if t = n = 1 then
Definition 54 reduces to the single server, traditional UE definition.

5.3 Security Modelling

As in single server PKUE, security modelling in this Section must capture the inferable
information an adversary can learn from querying relevant oracles. We start by detailing
the lists recorded and tracked by the challenger, plus the oracles necessary to model
security of Definition 54 concerning the dynamic multi-server setting. For ease of
reading, we also recall the details of the remaining oracles required in security modelling
that are unchanged from the single-server PKUE.

Briefly, our security notion satisfies the benchmark level of security for confidential-
ity in deterministic PKUE schemes. More specifically, the experiment models our
MUE-IND-CCA notion capturing security against update unlinkable chosen ciphertext
attacks. Crucially, unlinkability needs modelling to ensure that a ciphertext generated
by the update algorithm is indistinguishable from a ciphertext generated by fresh
encryption. Recall our contributions discussion, from Section 5.1, in which we cited
the motivation for modelling the first CCA security notion of a PKUE scheme, rather
than RCCA security. Simply put, UE literature places utmost importance on satisfying
high levels of security, and given we are designing a generic DMUE scheme capable of
achieving CCA security we believe it is important to model the strongest notion of
security. Observe, should a different setting for DMUE need to be considered, such as
a scheme with probabilistic updates, we would have to relax security to a replayable
CCA (RCCA) notion as in Chapter 3.

We highlight that our security model defines an adversary A := {AI ,AII}, representing
a malicious outside adversary (AI) and dishonest server (AII). Typically, only adversary
AI is considered in single server UE, as the literature assumes the lone server is honest.
Given the main motivator of this Chapter, to tackle the issue of a single point of failure
regarding server updates, we have to consider adversary AII to capture the threat of
dishonesty or collusion of a threshold or more servers.

Observe that our security experiment and definition of ciphertext unlinkability will
use the notation A to capture both adversarial types simultaneously. Note that both

126

types of adversaries are encapsulated in the modelling of the lists and oracles we will
describe in the proceeding subsections. Informally, an outside adversary is modelled in
the usual manner of UE, through lists recording corrupted and inferable information.
Specific to a corrupt server, the token corruption oracle is crucial in recording any
epoch in which a threshold or more tokens have been corrupted.

5.3.1 Lists

We provide Figure 5.1 as a descriptive summary of the lists maintained by the challenger
(as part of the global state GS) in the ensuing security experiment. Observe that
intuition for these lists has previously been provided in Section 3.4 of PKUE security
modelling. Note, we do not require list M∗ to record challenge messages (a necessary
list in the RCCA setting as in Chapter 3) as we are modelling CCA security. Further,
the main deviation in the list description compared to the single server PKUE setting
is found in list T . This difference is necessary for the security of DMUE as we seek to
model schemes that tolerate up to a threshold of tokens being corrupted in any given
epoch. However, list T is incorporated into the recording of corruption epochs in list
C∗, therefore, the latter list is also modified to the multi-server setting in the same
manner.

Before presenting Figure 5.1, we briefly summarise our discussion of list C∗ and the
challenge-equal predicate (Definition 30 from Section 3.4). Recall, list C∗ is built
from Definition 30, and it is an essential list maintained by the challenger to prevent
trivial wins. Specifically, the list records all of the challenge-equal epochs in which the
adversary knows a version of the challenge ciphertext, either from calls to the update
oracle or through computation. The latter is possible since there are epochs in which
the adversary can infer information using corrupted ciphertexts and tokens, especially
epochs belonging to lists C and T .

5.3.2 Oracles

First, we describe the five oracles O = {ODec,ONext,OUpd,OCorrupt-Token,OCorrupt-Key} at
a high level before providing detail of how they run.

• ODec : to prevent an adversary from trivially winning by querying the decryption
of a queried challenge ciphertext, the following condition must be satisfied. The
predicate isChallenge (Definition 23, Section 3.2) must return false. In this case,

127

• L = {(e′, Ce′)e′∈[e]} : the list containing the epoch and corresponding cipher-
text in which the adversary learns (through queries to the update oracle
OUpd) an updated version of an honestly generated ciphertext.

• K = {e′ ∈ [e]} : the list of epoch(s) in which the adversary has obtained an
epoch secret key through calls to OCorrupt-Key(e′).

• T = {e′ ∈ [e]} : the list of epoch(s) in which the adversary has obtained at
least a threshold number of update tokens through calls to OCorrupt-Token(e′).

• C = {(e′, Ce′)e′∈[e]} : the list containing the epoch and corresponding cipher-
text in which the adversary learns (through queries to the update oracle
OUpd) an updated version of the challenge ciphertext.

• C∗ ← {e′ ∈ {0, . . . , emax}|challenge-equal(e′) = true} : the list of challenge-
equal ciphertexts, defined by a recursive predicate challenge-equal, such that
true ← challenge-equal(e′) iff : (e′ ∈ C) ∨ (challenge-equal(e′ − 1) ∧ e′ ∈ T) ∨
(challenge-equal(e′ + 1) ∧ (e′ + 1) ∈ T).

Fig. 5.1 The set of lists L := {L,K, T , C∗} the challenger maintains in the global state
(GS) as a record of during security games.

the decryption of a valid ciphertext under the current epoch secret key is returned.
Else, the failure symbol ⊥ is returned.

• OUpd : the update oracle only accepts and responds to calls regarding honestly
generated ciphertexts or derivations of the challenge ciphertext, by checking lists
{L, C∗} respectively. If this is the case, the output is an update of the queried
ciphertext to the current epoch. Next, the updated ciphertext and current epoch
are added to the list L. Moreover, if the isChallenge predicate returns true on
the input of the queried key and ciphertext, then the current epoch is added to
the challenge-equal epoch list C∗.

• ONext : queries to the next oracle in challenge epoch e result in an update of the
global state to the epoch (e + 1). This is achieved by running key and token
generation algorithms to output the epoch key pair ke+1 = (pke+1, ske+1) and
tokens ∆j

e+1,∀j ∈ [n], respectively. If the query is in an epoch such that the
adversary has corrupted the epoch key or the epoch belongs to list L, then the
current challenge ciphertext must be updated to the next epoch using a threshold

128

or more of the generated update tokens and the new ciphertext is added to the
list of honestly updated ciphertexts (L).

• OCorrupt-Token,OCorrupt-Key : queries to these oracles allows the corruption of a
threshold number of tokens and epoch secret key respectively. The restriction
for both oracles is that the adversary’s query must be from an epoch preceding
the challenge-epoch e. Additionally, if an adversary queries the corrupt-token
oracle for server Sj, not in the queried epoch server committee Se′ then the
corrupt-token oracle returns a failure symbol ⊥.

5.3.3 Security Game

After the initialisation phase which outputs a global state (see Figure 5.3) and with
challenge public key pke, the adversary queries the oracles in Figures 5.2 and 5.3.
They output a challenge message m′ and ciphertext C ′ in the queried epoch e. Before
proceeding, the challenger must check that the given message and ciphertext are valid
(belongs to MSP , CSP respectively). Otherwise, the challenger aborts the game and
returns ⊥.

Moving forwards the challenger randomly chooses bit b ∈ {0, 1} and outputs an
encryption of m′ or an update of ciphertext C ′ respectively. That is, the resulting
output is a challenge ciphertext C(b) such that for b = 0 the ciphertext is from fresh
encryption and for b = 1 the ciphertext is generated by a version of the update algorithm,
denoted UpdateCh.2 The global state must be updated by the challenger, especially
the set of lists L. Equipped with a challenge output C(b) and public parameters, the
adversary can query the oracles again before outputting a guess bit b′ ∈ {0, 1}. The
adversary succeeds in the security experiment if they satisfy certain winning conditions
and successfully guess the correct bit (b′ = b).

Preventing Trivial Wins and Ciphertext Updates Following Figure 5.4, we
demonstrate the importance of the challenger recording lists T in the corrupt-token
oracle, and list C∗ in the update oracle. Without restrictions of the corrupt-token
oracle: if an adversary A corrupts t or more tokens {∆k

e+1}k≥t from the corresponding
server committee Se+1, in an epoch proceeding the challenge epoch ẽ, then A is capable

2Algorithm UpdateCh is used as compact notation, following the notation of [34], to denote the
process of repeated application of the update algorithm from epoch {ei, . . . , e}.

129

OUpd(Cei
)

if ((ei, Cei
) ̸∈ L) ∨ (ei /∈ C∗) then

return ⊥
else

for el = {ei+1, . . . , e} do
Cel
←Upd(pp, {∆k

el
}t≤k≤n, Cei

)
Ce ← Cel

return Ce

L ← L ∪ {(e, Ce)}
if isChallenge(kei

, Cei
) = true then

C∗ ← C∗ ∪ {e}
ONext(e)

ke+1 := (pke+1, ske+1) $← KG(pp, e + 1)
{∆j

e+1}j∈[n] ← TG(pp, ske, ke+1, Se+1)
Update GS to (pp, ke+1, Te+1, L, e + 1)
if (e ∈ K) ∨ (e, C) ∈ L then

(e + 1, C ′)←Upd(pp, {∆k
e+1}|k|≥t, C)

L ← L ∪ {(e + 1, C ′)}
OCorrupt-Token(e′, j)

if (e′ ≥ e) ∨ (Sj ̸∈ Se′) then
return ⊥

else
return ∆j

e′ some j ∈ [n]
Store tokens in a list Te′

if |Te′ | ≥ t tokens have been corrupted in epoch e′ then
T ← T ∪ {e′}

Fig. 5.2 Details of oracles an adversary A has access to during the security experiment
of Definition 56 that are specific to the multi-server setting.

of trivially updating the ciphertext into the next epoch (e + 1) following Definition 54.
Consequently, we place restrictions on calls to OCorrupt-Token and impose the winning
condition in Figure 5.4. This condition states that the intersection of lists K and C∗

must be empty, thus, the challenge epoch cannot belong to the set of epochs in which
a threshold of update tokens have been obtained/inferred, and there doesn’t exist a
single epoch where the adversary knows both the epoch key (public and secret key
components) and the (updated) challenge-ciphertext [92]. The distinction of DMUE

130

Init(1λ)

pp
$← Setup(1λ)

k0 := (pk0, sk0) $← KG(pp, 0);
∆0 ← ⊥
T0 ← TG(pp, k0, S0) such that
T0 := {∆1

0, . . . , ∆n
0}

e← 0
L ∈ ∅
return GS
GS := (pp, k0, T0, L, 0)

ODec(Ce)
if isChallenge(kei

, Cei
) = true then

return ⊥
else

m← Dec(pp, ske, C)
return m

OCorrupt-Key(e′)
if (e′ ≥ e) then

return ⊥
else

return ske′

K ← K ∪ {e′}

Fig. 5.3 The oracles an adversary has access to for the experiment capturing Definition
56 that remain unchanged from the single-server setting of a PKUE scheme.

security modelling from single-server PKUE is that list T ∈ C∗ does not record epochs
in which token corruption occurred when the number of tokens corrupted is less than
some threshold. That is, DMUE security modelling tolerates a certain level (below
the threshold) of token corruption in any given epoch as less than the threshold of
corrupted tokens does not provide the adversary with meaningful information.

The formal notion of ciphertext unlinkability in a DMUE scheme is as follows,

Definition 56 (MUE-IND-CCA Security). A dynamic multi-server updatable encryption
scheme (ΠDMUE) as in Definition 54 is MUE-IND-CCA secure against update unlinkable
chosen ciphertext attacks if for any PPT adversary A the following advantage is
negligible over security parameter λ:

AdvMUE-IND-CCA
ΠDMUE,A (1λ) := |Pr[ExpMUE-IND-CCA,0

ΠDMUE,A (1λ) = 1]− Pr[ExpMUE-IND-CCA,1
ΠDMUE,A (1λ) = 1]| ≤

negl(1λ)

for some negligible function negl(·).

5.4 Integrity

In this Section, we define the security notion of ciphertext integrity (MUE-INT-CTXT)
for a DMUE primitive. Informally, ciphertext integrity seeks to ensure that an adversary

131

ExpMUE-IND-CCA,b
ΠDMUE,A (1λ)

GS $← Init(1λ); GS := (pp, k0, T0, L, 0);
L := {L,K, T , C∗}
ke−1

$← KG(pp, e− 1); ke
$← KG(pp, e) such that

ke−1 := (pke−1, ske−1), ke := (pke, ske)
{∆j

e}j∈[n] ← TG(pp, ske−1, ke, Se)
(m′, C ′) $← AO(pp, pke)
if (m′ ̸∈ MSP) ∨ (C ′ ̸∈ CSP) then

return ⊥
else

b
$← {0, 1}

C(0) $← Enc(pp, pke, m′) and
C(1) ← UpdCh(pp, {∆k

e}|k|≥t, C ′)
C∗ ← C∗ ∪ {e}; ẽ← {e}

b′ $← AO(pp, C(b))
if (K ∩ C∗ = ∅) then

return b′

Else abort.

Fig. 5.4 The security experiment for MUE-IND-CCA-security of a DMUE scheme.
Let O = {ODec,OCorrupt-Key,ONext,OUpd,OCorrupt-Token} denote the set of oracles that
adversary A calls during the experiment, where the latter three oracles capture the
multi-server aspect of a DMUE scheme.

cannot produce a ciphertext that correctly decrypts to a valid message, so an adversary
should be incapable of forging a ciphertext that will correctly decrypt to a message
m ̸= ⊥ for some m ∈ MSP. It is important that we model ciphertext integrity to
ward against possible collusion or corruption of t or more servers in a given epoch
committee, tasked with updating the ciphertext. This is especially important for the
DMUE setting where we do not trust servers and it is likely a number of servers in a
given committee may act dishonestly.

By design, DMUE is a deterministic update PKUE scheme, therefore, the stronger
notion of ciphertext integrity can be satisfied since a challenger is easily able to record
challenge-ciphertext updates and prevent decryption of these ciphertexts. Conversely,
probabilistic update UE schemes like ΠPKUE from Chapter 3 require ciphertexts to be
re-randomised when updated. Thus, an adversary can corrupt an update token and
simply create various valid ciphertexts by manually updating an old ciphertext into

132

the new epoch, in turn creating a forgery of a ciphertext. This trivial attack occurs
because the challenger has no way to track the updated ciphertext since it has been
re-randomised. As a consequence, probabilistic UE schemes can only attain a notion of
plaintext integrity, and ciphertext integrity is reserved for deterministic schemes [80].

The security experiment for ciphertext integrity (Definition 57), formally presented
in Figure 5.5, starts with an initial setup run by the challenger as in Figure 5.2.
Next, the challenger asks an adversary (A) to output a ciphertext after calls to the
oracles O := {ODec,ONext,OUpd,OCorrupt-Key,OCorrupt-Token} all of which are described in
Figure 5.2 and Figure 5.3. However, the update oracle requires slight adaptations.
In particular, an adversary is only allowed to query updates of honestly generated
ciphertexts to prevent trivial forgeries.

At a high level, the challenger is required to maintain an additional list L∗, itself an
extension of list L, which updates a ciphertext (C) contained in L to the next epoch
(e + 1) whenever an adversary has corrupted at least a threshold (t) number of update
token ∆k

e+1. That is, whenever (e + 1) ∈ T . More specifically,
L∗ ← L
for (e, C) ∈ L do
L∗ ← L∗ ∪ {(e, C)}; Cei−1 ← C; ei ← e + 1
if ei ∈ T then

Cei
← Upd(pp, {∆k

ei
}t≤k≤n, Cei−1)

L∗ ← L∗ ∪ {(ei, Cei
)}; ei ← ei+1

For concreteness, the adaptation to the update oracle is detailed as follows:

OUpd(Cei
)

if ((ei, Cei
) ̸∈ L) ∨ (ei /∈ C∗) then

return ⊥
else

for el = {ei+1, . . . , e} do
Cel
←Upd(pp, {∆k

el
}t≤k≤n, Cei

)

return Ce

L∗ ← L∗ ∪ {(e, Ce)}

Once an adversary queries the oracles and outputs a forgery attempt, the challenger
checks whether winning conditions are met. First, the challenger decrypts the output

133

ExpMUE-INT-CTXT
ΠDMUE,A (1λ)

GS $← Init(1λ); GS = (pp, k0, T0, L, 0); L := {L,L∗,K, T , C∗}
C ′ $← AO(pp)
if (Dec(pp, skemax , C ′) = m′ ≠ ⊥) ∧ ((emax, C ′) ̸∈ L∗) ∧ ((K ∩ T) =
∅ for epochs {e, . . . , emax}) then

return 1
Else abort.

Fig. 5.5 The security experiment for MUE-INT-CTXT-security of a DMUE scheme.
Let O = {ODec,OCorrupt-Key,ONext,OUpd,OCorrupt-Token} denote the set of oracles that
adversary A calls during the experiment.

ciphertext to some message m′, using the final secret epoch key (skemax) of the DMUE
scheme. Winning condition checks are made to see whether the output message is
valid (m′ ̸= ⊥), and if (emax, C ′) ̸∈ L∗. Lastly, there cannot exist an epoch (e) from the
challenge epoch of the security game to the final epoch (emax) inclusive, such that the
adversary has corrupted t or more update tokens and the corresponding epoch secret
key. The final condition is essential to prevent trivial forgeries, otherwise, an adversary
can exploit the sequential nature of update tokens, namely, tokens derived from the
old and new epoch keys alone.3 To see the attack, if the adversary corrupts a secret
key ske and a threshold or more tokens for each epoch {e + 1, . . . , emax}, then they are
capable of manually determining skemax and generating valid forgeries of a ciphertext.

Given the informal description of how the ciphertext integrity security notion is
captured for a DMUE scheme, we formally present the security experiment required in
the ensuing definition.

The formal notion of ciphertext integrity in a DMUE scheme is as follows.

Definition 57 (MUE-INT-CTXT Security). A multi-server public-key updatable en-
cryption scheme ΠDMUE as in Definition 54 is MUE-INT-CTXT secure if for any PPT
adversary A, there exists a negligible function negl over security parameter λ, such that
the adversary has the following advantage in winning,

AdvMUE-INT-CTXT
ΠDMUE,A (1λ) := Pr[ExpMUE-INT-CTXT

ΠDMUE,A (1λ) = 1] ≤ negl(1λ).
3Sequential update tokens are typical in ciphertext-independent update UE schemes such as DMUE.

See Section 3.2 for further details.

134

5.5 Our Construction

In this Section, we use Definition 54 as a basis for formalising a generic DMUE
construction. We achieve this using dynamic proactive secret sharing (DPSS) [9, 86, 98]
and single server PKUE (Definition 28 from Chapter 3) primitives as building blocks.
Before going into detail about our construction, we present the formal definition of a
DPSS protocol, as well as defining DPSS correctness and secrecy properties.

5.5.1 Construction Preliminaries

Dynamic proactive secret sharing (DPSS) [98] is an extension of traditional secret
sharing (see Section 2.4) such that shares belonging to a committee of parties are
refreshed after a while. This feature is important to security to support a key feature
of DPSS, namely, dynamic changes in the parties within a committee that possess
secret shares.

Definition 58 (DPSS Protocol). Given a dealer D, a secret s ∈ Sλ for security pa-
rameter λ, L ∈ N periods, and a set of {n(i)}i∈[L] authorised parties P i = {P i

1, . . . , P i
n},

a (t, n) dynamic proactive secret sharing scheme is a tuple of four PPT algorithms
ΠDPSS = (Setup, Share, Redistribute, Recon) defined as follows:

- Share Phase: D takes as input the secret s and performs the following steps
non-interactively:

1. Setup(1λ) $→ pp : a probabilistic algorithm that takes as input security
parameter 1λ and outputs public parameters pp, which are broadcast to all
parties in P .

2. Share(pp, s, i) $→ {si
1, . . . , si

n} : a probabilistic algorithm that takes as input
the secret s ∈ Sλ and period i, outputting n secret shares {si

j}j∈[n], one for
each party in P .

3. Distribute si
j to party P i

j ∈ P i for every i ∈ [L] over a secret, authenticated
channel.

- Redistribution Phase: the algorithm Redistribute takes as input consecutive
periods (i, i + 1) ≤ L, the set of parties (P i, P i+1) and the vector of secrets
{si

j}j∈[n] belonging to P i, such that P i need to refresh and communicate their
vector of secret shares to the potentially different set of parties P i+1. The output
is a vector of secrets {si+1

j′ }j′∈[n].

135

- Reconstruction Phase: In period i, any party in P i = {P i
1, . . . , P i

n}i∈[L] can
participate in the following steps.

1. Communication:

(a) Each party P i
j , j ∈ [n] sends their share si

j over a secure broadcast
channel to all other parties in P i.

(b) P i parties independently check that they have received (t− 1) or more
shares. If so, they proceed to the processing phase.

2. Processing: Once P i
j has a set of t′ shares labelled S ′, they independently

do the following:

(a) Recon(pp, S ′, i)→ {s,⊥} : a deterministic algorithm that takes as input
the set S ′ of t′ shares and outputs the secret s for period i ∈ [L] if t′ ≥ t

or outputs abort ⊥ otherwise.

The following two definitions are regarding the correctness and secrecy of a dynamic
proactive secret sharing scheme ΠDPSS. We assume these properties hold when proving
the correctness and security of a proposed construction presented in Chapter 5.

Definition 59 (DPSS Correctness). ΠDPSS is correct if ∀λ ∈ N and for all possible
sets of {n(i)}i∈[L] authorised parties P i, given Setup(1λ) $→ pp; for all secrets s ∈ Sλ

and any subset of t′ ≥ t shares S ′ from Share(pp, s, i) $→ {si
1, . . . , si

n} communicated by
parties in P i, there exists a negligible function negl(·) such that

Pr[Recon(pp, S ′, i) ̸= s] ≤ negl(1λ).

Definition 60 (DPSS Secrecy). ΠDPSS is secret if ∀λ ∈ N and for all possible sets of
{n(i)}i∈[L] authorised parties P i, given Setup(1λ) $→ pp; for all secrets s ∈ Sλ and any
subset of t′ < t shares S ′ from Share(pp, s, i) $→ {si

1, . . . , si
n} communicated by parties

in P , there exists a negligible function negl(·) such that

Pr[Recon(pp, S ′, i) ̸= ⊥] ≤ negl(1λ).

Remark 7. We chose to focus on building our DMUE scheme from dynamic threshold
secret sharing for continuity within this thesis (see Chapter 6). However, observe
that we can easily extend the construction of DMUE to be built from an alternative
multi-party functionality, namely, a version of multi-party computation (MPC) [37, 51].

136

5.5.2 Building DMUE

Recall, a DMUE primitive is designed for distributed ciphertext updates across multiple
untrusted servers. A threshold of servers can reconstruct the whole update token (∆e)
for a given epoch (e), using the corresponding server tokens. By design, the threshold
is necessary to correctly update the ciphertext into a new epoch. Moreover, the set of
servers in any given epoch is fluid to allow for the removal of corrupted servers and
support the realistic nature of long-term secret storage in which servers may need to
change. Critical to security in this setting, it is vital to prevent a threshold or more
servers overlapping in two consecutive epoch committees. Else, a collusion of these t

overlapping servers in epochs {e, e + 1} means tokens for both epochs can be manually
determined and further information can therefore be inferred regarding the sharing
process, which we discuss in more depth after presenting our generic construction. To
be clear, a DMUE scheme can tolerate l < t servers belonging to both epochs.

Intuitively, DPSS (Definition 58) is an ideal building block candidate since the tech-
niques used cater to changes in the shareholders, achieved via a handover process from
one epoch to the next. Additionally, it is required in a DPSS protocol that the secret
is re-shared in every period in such a way that the shares from different windows of
time cannot be combined to recover the secret. The only way to recover the secret is
to obtain enough shares from the same period, a task which the literature [71] assumes
is beyond the adversary’s grasp and the redundancy of sharing allows robustness in the
periods of the scheme. We incorporate the aforementioned techniques into the design
of our DMUE construction.

High-Level Idea The key idea of our construction is that we use a single-server
PKUE scheme and share the update token using a threshold secret sharing protocol.
Intuitively, the update token in our construction will be formed from the current and
preceding epoch keys, such that the data owner (D), taking the position of the dealer
in the DPSS scheme, distributes a vector of token shares {∆j

ei
}j∈[n] to the set of n

servers Sei
:= {S1

ei
, . . . , Sn

ei
} for current epoch ei,∀i ∈ N. Token share generation will

take place after UE.TG is run by D and this will occur for every epoch up to the final
epoch (emax).

The algorithm Upd will also be adapted to the multi-server setting in line with Definition
54, such that a threshold of t or more servers in set Sei+1 are required to reconstruct the
update token ∆ei+1 and then independently perform the update process in the classical

137

PKUE sense. Crucial to security, a key point clarified in Remark 8 is that the set of
servers in consecutive epochs may overlap, and so they should not be able to learn
the shares of the old or new epochs even though they participate in the redistribution
process.

For ease of defining a generic construction, we design the scheme such that the dynamic
feature is achieved in a trivial way, and does not use the DPSS techniques to evolve
server committees. In other words, we do not trust the servers and assume the server
committees for each epoch are selected by data owner D in some way. However, below
Definition 61 we will make practical considerations which allow for the servers in a
given epoch to participate in the redistribution process of token shares in order to
reduce the data owners’ computational cost. More formally, a generic DMUE scheme
is defined as follows:

Definition 61 (DMUE Generic Construction). Given a (t,n) dynamic secret sharing
scheme ΠSS = (SS.Setup, Share, Redistribute, Recon) from Definition 19 (Section 2.4)
and a standard public-key UE scheme ΠPKUE = (UE.Setup, UE.KG, UE.Next, UE.Enc,

UE.Dec, UE.Upd) from Definition 28 (Section 3.3), a dynamic public-key multi-server
updatable encryption scheme is defined by a tuple of six algorithms ΠDMUE = (Setup, KG,

TG, Enc, Dec, Upd) as follows,

1. Setup(1λ) $→ pp : run SS.Setup and UE.Setup on input security parameter 1λ to
randomly output the public parameters pp := (ppSS, ppUE) respectively.

2. KG(pp, ei) $→ kei
:= (pkei

, skei
) : given public parameters pp, run the probabilistic

key generation algorithm UE.KG to output the public and private key pair
kei

= (pkei
, skei

) for epoch ei, i ∈ N, i ≤ max.

3. TG(pp, skei
, kei+1 , Sei+1) → {∆j

ei+1
}j∈[n] : the data owner runs the PKUE to-

ken generation algorithm UE.TG to determine update token ∆ei+1 , followed by
Share(ppSS, Sei+1 , ∆ei+1)→ {∆j

ei+1
}j∈[n]. Next, the data owner securely distributes

∆j
ei+1

to server Sj ∈ Sei+1 , where Sei+1 is the committee of servers for new epoch
ei+1.

4. Enc(pp, pkei
, m) $→ Cei

: given public parameters and the epoch public key pkei
,

the data owner runs the probabilistic encryption algorithm UE.Enc on message
m ∈MSP and outputs the ciphertext Cei

.

138

5. Dec(pp, skei
, Cei

)→ {m,⊥} : given public parameters and the epoch secret key,
the owner is able to run the deterministic decryption algorithm UE.Dec in order
to output message m or abort (⊥).

6. Upd(pp, {∆k
ei+1
}k∈N,|k|≥t, Cei

) → Cei+1 : given any valid subset S ′ ⊆ Sei+1 of
the epoch ei+1 committee of servers, such that |S ′| ≥ t, shareholders in S ′

can reconstruct the update token by running Recon(ppSS, {∆k
ei+1
}k≥t) → ∆ei+1 .

Individually they can then update the ciphertext using the update algorithm
UE.Upd(ppUE, ∆ei+1 , Cei

)→ Cei+1 .

Correctness In the following, we show that our construction ΠDMUE presented in
Definition 61 satisfies correctness (Definition 55). Observe that by definition, the
DPSS scheme ΠDPSS secret reconstruction algorithm Recon used in step 6 of the update
process satisfies correctness following Definition 59. Moreover, the correctness of ΠPKUE

is defined in Definition 29, Section 3.3.

Theorem 5 (Correctness of Construction). ΠDMUE is correct assuming the underlying
public-key UE scheme ΠPKUE and the underlying secret sharing scheme ΠSS satisfy
their respective definitions of correctness.

Proof. Following Definition 55, ΠDMUE is correct if Dec(pp, skemax , Cemax) outputs m with
overwhelming probability, whereby Cemax has been generated iteratively by the update
algorithm Upd.

In fact, this means the decryption algorithm UE.Dec is run and outputs m on the same
honestly generated inputs. Note, one of the inputs is an update of the ciphertext to the
final epoch (Cemax). Therefore, we assume this ciphertext has been generated correctly by
entering a reconstruction phase of the SS scheme, that is, Recon(ppSS, {∆k

ei+1}k≥t) is run
to output token ∆ei+1. In turn, the resulting token is input into UE.Upd(ppUE, ∆ei+1, Cei

)
such that Cemax is output.

Let us assume instead that Recon and/or UE.Upd output ⊥, contradicting both correct-
ness assumptions, resulting in UE.Dec outputting ⊥. In turn, the DMUE decryption
algorithm Dec will also output ⊥ instead of m, which violates correctness in Definition
55. However, the assumptions that the failure symbol ⊥ is output by the reconstruction
phase or PKUE update algorithm contradict our assumption that the SS and PKUE
schemes satisfy correctness. Thus, using proof by contradiction we can conclude that
the DMUE scheme ΠDMUE also satisfies correctness.

139

Practical Considerations: In Definitions 54 and 61 the selection of epoch committees
and generation of their respective update tokens arise from the data owner (D). The
advent of every epoch calls for D to generate token shares for the newly selected server
committee. However, in Definition 61 we can consider the involvement of the epoch
server committee as a more elegant and practical solution to sharing the computational
cost of token generation. That is, we introduce a redistribution phase during the
running of token generation (TG), following Definition 58. The redistribution will
utilise the secret share handover techniques from DPSS literature to support changes
in the servers from one epoch to the next as well as a refresh of the secret token shares.
More formally,

TG(pp, skei
, kei+1 , Sei+1)→ {∆j

ei+1
}j∈[n] :

1. TG(pp, ske0 , ke1 , Se1)→ {∆j
e1}j∈[n] : the DMUE token generation algorithm is run

in epoch e0, as detailed in step 3 of Definition 61.

2. Redistribution Phase: To proactively redistribute token shares to a new epoch,
the redistribution phase is run by data owner D and the committee of servers
(Sei

) in epoch ei,∀i ∈ [1, max − 1]. The servers in Sei
proceed to mask their

individual secret token shares {∆j
ei
}j∈[n] and securely distribute each masked

share to the corresponding server Sj′ ∈ Sei+1 . The new epoch server committee
can proceed to refresh the masked token shares to obtain the updated vector to
tokens labelled {∆j′

ei+1
}j′∈[n].

The refresh of token shares can be achieved during the running of token share generation
described above, using a handover process in the underlying redistribution phase of
the chosen concrete DPSS scheme (recall Definition 58). For instance, secret shares are
refreshed in the Shamir-based [110] DPSS scheme of [9] in such a way that shareholders
from the current committee mask their polynomial P with some polynomial Q, such
that no party in this committee learns shares for new polynomial P ′ := P + Q given
to the next shareholder committee, and vice versa.

Consequently, care needs to be taken in the choice of DPSS scheme so as to preserve
security, especially if there is a crossover between the old and new server committees.
In line with the proposed DPSS scheme from the authors of [9], an overlap of one
server possessing the same share in both committees is not a security issue, since

140

the threshold of the scheme is not violated, however, if the threshold is violated then
security may be compromised.

To illustrate this process in the context of a concrete DMUE scheme (ΠDMUE), using
the techniques from the DPSS scheme from [9] to mask polynomials, we would define
the following reconstruction phase. Informally, given a degree t polynomial Pei

that
determines the token shares for server committee Sei

(in line with Shamir’s secret
sharing using polynomial interpolation from Section 2.4), the servers in Sei

collectively
produce a masking polynomial Q. This is used by the data owner to generate the new
epoch polynomial Pei+1 := Pei

+ Q. Crucial to security, no server in the old epoch ei

can determine shares of the polynomial Pei+1 for the new epoch ei+1 and vice versa for
servers in the new committee Sei+1 .

Observe, the following crossover committee problem can occur. If there is an overlap
of t or more servers Sj = Sj′ for some Sj ∈ Sei

, Sj′ ∈ Sei+1 , and the server shares
are the same (derived from polynomials Pei

, Pei+1 respectively) then the technique of
masking that we described does not work since the threshold of servers can collude to
determine polynomial Q manually. Therefore, we must make the following stipulation
if the crossover of servers is above the threshold to ensure the security (Definition 56,
Section 5.3) holds in Definition 61.

Remark 8. If a threshold t or more servers, Sj = Sj′ for Sj ∈ Sei
and Sj′ ∈ Sei+1

respectively, overlap in two consecutive server committees then we necessitate distinct
token shares (∆j

ei
̸= ∆j′

ei+1
).

Alternatively, if we were to consider a concrete DMUE scheme in the decentralised
setting (Blockchain technology), we could utilise techniques developed by the authors
of [98]. In [98] they propose a Shamir-based DPSS scheme, with low communication
complexity, that updates token shares with a masking method using asymmetric
bivariate polynomials. Informally, the redistribution phase is based on efficient (t, n)
bivariate 0-sharing and a dimension-switching technique in the handover process to
reduce shares.

At a high level, a degree t polynomial B(x, y) is generated by the data owner such
that an update token ∆ei

= B(0, 0) is shared with servers in committee Sei
. During

the handover to the next epoch server committee (Sei+1), committee Sei
switches their

sharing of ∆ei
to a 2t-degree version of B(x, y) to reduce their shares. An important

141

result here for security is that an adversary would have to corrupt over 2t token shares
across both epochs server committees. Masking of the reduced shares follows in the
same manner as [9], except the masking polynomial generated is bivariate (Q(x,y)).
Once the new epoch server committee Sei+1 have received their reduced shares of new
update token ∆ei+1 from the new 2t-degree polynomial B′(x, y) = B(x, y) + Q(x, y),
they can switch dimensions back to a t-degree version of B′(x, y) and receive their
corresponding full token shares for ∆ei+1 .

5.6 Security Analysis

In this Section, we present the formal statements of security of the DMUE generic
construction ΠDMUE from Definition 61. Namely, we demonstrate the ciphertext
unlinkability (MUE-IND-CCA) and ciphertext integrity security notions, formalised
in Definition 56 and Definition 57 respectively, are satisfied. Beforehand, we briefly
discuss the necessary assumptions made in Theorem 6 to support the final proofs of
security. The assumptions required are as follows.

Assumptions For the respective security definitions in ΠDMUE to hold we assume
that the DPSS construction satisfies the definition of secrecy given in Definition 60.
Secondly, we require the PKUE construction (that is, a single server DMUE scheme
such that t = n = 1) to satisfy MUE-IND-CCA security and MUE-INT-CTXT security
(Definitions 56 and 57 respectively). To be clear, security modelling with respect to a
single server DMUE scheme inherits the description of lists and the oracles in Section
5.3 and Section 5.4, such that k = t = n = 1.

5.6.1 Proof of Security

In the following, we prove the statements of security regarding our DMUE construction.
Namely, the ciphertext unlinkability notion (MUE-IND-CCA) formalised in Definition
56, and the ciphertext integrity notion (MUE-INT-CTXT) formalised in Definition 57.

Security Statements In general, we will separate our proofs into two cases: when an
adversary corrupts less than the threshold number of token shares, versus an adversary
that corrupts a threshold or more token shares. In each case, we can rely on the
security of the underlying building blocks. Now, we formally prove that ΠDMUE satisfies
ciphertext unlinkability and ciphertext integrity security notions, in that order.

142

Theorem 6. Assume that ΠDPSS satisfies secrecy and suppose that ΠPKUE is a public-key
updatable encryption scheme satisfying MUE-IND-CCA security for t = n = 1. Then
ΠDMUE is a MUE-IND-CCA secure scheme.

Proof. Following Definition 56, we want to show that there exists some negligible
function negl under security parameter λ such that

AdvMUE-IND-CCA,b
ΠDMUE,A (1λ) ≤ negl(1λ). (5.1)

given the security experiment detailed in Section 5.3, Figure 5.4. To prove Equation
5.1, we must focus on two separate cases: first when an adversary A has corrupted
l < t token shares in the corresponding security game epoch ẽ and second when A has
corrupted l ≥ t token shares. Following the assumptions in Theorem 6, we note that
for either scenario we also assume the adversary’s challenge message and ciphertext
(m′, C ′) were created in some epoch e < ẽ before the current epoch ẽ, otherwise, the
security experiment will output ⊥.

Case (l < t) : Recall that secrecy is satisfied in the DPSS scheme ΠDPSS, the formal
definition of which is detailed in Section 5.5. Consequently, an adversary has too few
token shares from epoch ẽ to reconstruct the secret update token ∆ẽ. In the case that
the challenger randomly chose bit b = 1 (for b = {0, 1}) A cannot manually update
their challenge ciphertext C ′ to ciphertext C ′

ẽ := C(1) due to the secrecy property.
Moreover, if A queries oracle OUpd(C ′) to update the challenge ciphertext iteratively
via epochs {e + 1, . . . , ẽ}, as detailed in Figure 5.2, A is still incapable of winning the
experiment as the update oracle will add ẽ to the list of challenge-equal epochs C∗ and
winning conditions (K ∩ C∗) = ∅ mean that ⊥ is output.

Therefore, A is reduced to guessing bit b (in this case b = 1) which results in the
advantage

AdvMUE-IND-CCA,1
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,1

ΠDMUE,A (1λ) = 1]− 1
2 | ≤ negl(1λ).

If the challenger randomly chose bit b = 0, A would either have to query the epoch
secret key corruption oracle to obtain skẽ to manually decrypt the ciphertext C(0), or
make calls to the decryption oracle. The assumed security of ΠPKUE is essential in this
instance to prevent trivial wins. We note that both of the named oracles are detailed in
Figure 5.3. The former scenario requires A query oracle OCorrupt-Key(ẽ) which results in
output ⊥ to prevent trivial wins. The latter scenario means A calls oracle ODec(C(0))

143

which will result in output ⊥ due to the decryption oracle conditions. Specifically, the
first condition of the isChallenge predicate (Definition 23, Section 3.2) is satisfied, since
C(0) is a challenge ciphertext and ⊥ is output. Note that the output (⊥) does not
inform the adversary whether or not the ciphertext is derived from fresh encryption in
epoch ẽ or an update from a prior epoch.

Therefore, A is reduced to guessing bit b (in this case b = 0) which results in the
advantage

AdvMUE-IND-CCA,0
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,0

ΠDMUE,A (1λ) = 1]− 1
2 | ≤ negl(1λ).

Consequently, Equation 5.1 holds when l < r.

Case (l ≥ t) : oracle OCorrupt-Token stipulates that the challenger needs to add the
challenge epoch ẽ to list T (Figure 5.2). Crucially, epochs in T are incorporated
into list C∗ which captures all challenge-equal epochs. Thus, epoch ẽ belongs to C∗

and winning conditions in our security experiment prevent trivial wins. That is, the
intersection of sets (K ∩ C∗) must be empty to prevent a trivial win from occurring.
See the end of Section 5.3 for more depth on trivial wins.

If t = n = 1 we can rely on the assumed security of ΠPKUE, namely, Definition 56 is
satisfied. Therefore, in the case of (l ≥ t) and for either choice of b = {0, 1}, A is
reduced to guessing bit b which results in the advantage

AdvMUE-IND-CCA,b
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,b

ΠDMUE,A (1λ) = 1]− 1
2 | ≤ negl(1λ).

Given the above, we can conclude that the Equation 5.1 is satisfied for any number (l)
of corrupted tokens.

Now we present a formal statement of security for ciphertext integrity.

Theorem 7. Assume the ΠDPSS satisfies secrecy and suppose that ΠPKUE is a public-key
updatable encryption scheme satisfying MUE-INT-CTXT security such that t = n = 1.
Then ΠDMUE is a MUE-INT-CTXT secure scheme.

Proof. Following Definition 57, we want to show that there exists some negligible
function negl under security parameter λ such that

AdvMUE-INT-CTXT
ΠDMUE,A (1λ) ≤ negl(1λ). (5.2)

144

given the security experiment detailed in Section 5.4, Figure 5.5.

Once again, to prove Equation 5.2 we must focus on instances where adversary A has
corrupted less than a threshold of token shares or at least a threshold of token shares.
Following the assumptions in Theorem 7, we note in proving both possibilities we also
assume the adversary’s challenge ciphertext (C ′) was created in some epoch e < emax.

Case (l < t) : Similarly to the ciphertext unlinkability proof, we rely on the assumption
that secrecy is satisfied in the DPSS scheme ΠDPSS. Therefore, in this instance whereby
an adversary has too few token shares for the final epoch emax, they are incapable
of reconstructing the secret update token ∆emax . Secrecy is important as it prevents
A from manually reconstructing the update token ∆emax and using it to update their
challenge ciphertext C ′ to a valid ciphertext for epoch emax.

Instead, A may query the update oracle OUpd(C ′), from Section 5.4, to update their
challenge ciphertext iteratively from {e + 1, . . . , emax}, as detailed in Figure 5.2. The
final epoch and updated ciphertext (emax, C ′

emax) will be added to the list L∗. This list
is incorporated into the winning conditions of Figure 5.5, detailed in Section 5.4. Thus,
the output will be ⊥ and A remains incapable of winning the experiment.

Furthermore, Amay attempt to corrupt the final epoch secret key skemax fromOCorrupt-Key

to manually decrypt a ciphertext encrypted under pkemax to determine if the resulting
message m′ = ⊥ or not. In the latter case, an adversary has found a valid ciphertext
forgery, however, the corrupt key oracle ensures that epoch emax has been added to list
K which violates the winning conditions. Therefore, for scenario (l < t) we have

AdvMUE-INT-CTXT
ΠDMUE,A (1λ) = Pr[ExpMUE-INT-CTXT

ΠDMUE,A (1λ) = 1] ≤ negl(1λ).

Case (l ≥ t) : oracle OCorrupt-Token stipulates that the challenger needs to add the
final/challenge epoch emax to list T (Figure 5.2). In turn, the final winning condition
in our security experiment is not satisfied, namely, the intersection of sets (K∩ T) ̸= ∅.
Consequently, for scenario (l ≥ t) we have

AdvMUE-INT-CTXT
ΠDMUE,A (1λ) = Pr[ExpMUE-INT-CTXT

ΠDMUE,A (1λ) = 1] ≤ negl(1λ).

Lastly, if t = n = 1 we can rely on the assumed security of ΠPKUE, namely, Definition
57 is satisfied. Given all of the possibilities mentioned above, we can conclude that
Equation 5.2 is satisfied for any number (l) of corrupted tokens.

145

5.7 Summary and Outlook

In summary, our first contribution was a novel definition for dynamic multi-server
updatable encryption (DMUE), designed to distribute the ciphertext update process
across multiple servers to cope with the single point of failure problem inherent in
standard PKUE.

Second, we modelled two new security notions for the DMUE primitive. First, a notion
capturing ciphertext unlinkability against chosen ciphertext attacks (MUE-IND-CCA).
In essence, unlinkability means that freshly generated and updated ciphertexts are
indistinguishable. Second, a notion capturing integrity against ciphertext forgery
attacks (MUE-INT-CTXT) which aims to prevent an adversary from forging a ciphertext
that decrypts to a valid message. Intuitively, ciphertext integrity is a notion of security
that guarantees the accuracy of the encrypted message.

Our third contribution was proposing a generic DMUE scheme constructed from single-
server PKUE and dynamic proactive secret-sharing building blocks. We extend the final
contribution further with a discussion regarding the practicalities of a concrete scheme.
Lastly, we analyse the security of the generic DMUE construction, demonstrating that
MUE-IND-CCA and MUE-INT-CTXT security is satisfied.

An exciting area of future work is to explore our DMUE use-case to store ciphertexts
using Blockchain technology, especially given there is a potential synergy with the
work of [100]. We believe it is worth exploring the gap between our contribution and
the work of [100] who introduced the first Blockchain-based long-term time-stamping
(BLTTS) scheme supporting cryptographic algorithm renewal on both the client (data
owner) and server sides. Informally, time-stamping services in the decentralised setting
are necessary when the time-stamping authority (TSA) is used to provide evidence of
the existence of data at a given time. For future work, we believe a BLTTS scheme
could be utilised to construct DMUE in the decentralised setting.

In general, we are of the opinion it is worthwhile to develop concrete DMUE schemes
to analyse the efficiency, costs and security levels attained in comparison to single
server PKUE. In light of our use of DPSS as a building block to construct a DMUE
scheme, it would be interesting to interpret the security framework defined in this
Chapter through a game-theory lens. That is, we would like to consider how we can
model rational servers, possessing token shares derived from a rational secret sharing

146

scheme (RSS [69]), that are incentivised to mislead or deviate from behaving honestly.
In doing so, we can further understand how practical it would be to apply DMUE in
the real world.

147

Chapter 6

Fair and Sound Secret Sharing from
Homomorphic Time-Lock Puzzles

Contents
6.1 Introduction . 148
6.2 Rational Secret Sharing . 150
6.3 A Generic Construction of an FRSS Scheme 158
6.4 Security Analysis . 164
6.5 A Concrete FRSS Construction . 178
6.6 Summary and Outlook . 186

This Chapter introduces a generic construction of a rational secret-sharing scheme
for non-simultaneous communication. Our construction, labelled FRSS, is built to
satisfy essential secret-sharing properties known as fairness and soundness. Crucial to
attain both properties at the same time, we employ a time-delay mechanism called a
homomorphic time-lock puzzle, and we can prove that this generic FRSS construction
satisfies desirable privacy-based properties. Additionally, we propose an instantiation
of FRSS which allows us to consider the efficiency of a concrete construction. Part of
this work appears in [83], which is joint work with Elizabeth A. Quaglia, published and
presented at ProvSec 2020.

6.1 Introduction

Recall from the Introduction that a key theme of this Thesis is time. The past three
Chapters have been related to extending the functionality and security of the time-

based primitive Updatable Encryption (UE), and in Chapter 5 we achieved a generic
construction of a multi-server variant of UE using secret-sharing as a building block.
Secret sharing (SS) protocols are used to distribute a secret among a set of authorised
parties such the parties can reconstruct the secret at a later time. Privacy preservation
is the main security goal, however, additional properties are desirable in secret sharing
such as fairness and soundness. Instead of time updates as in UE, time delay is a
useful functionality in the context of secret sharing to attain certain properties.

Overview of this Chapter

First, in Section 6.2 we introduce rational secret sharing (RSS) which is a SS protocol
assuming parties holding shares have strategies and behave in a way to benefit themself
above other parties in the scheme. We will formally define an RSS, followed by
definitions of the traditional SS properties of correctness and secrecy. Moreover, we
formally introduce two important notions known as fairness and soundness which are
the core focus of this Chapter.

Moving forwards, we provide a comprehensive background on SS protocols, in which we
differentiate between two distinct strains of SS depending on the communication between
parties holding shares. Namely, simultaneous versus non-simultaneous communication.
Furthermore, we explore the current tools used in the literature to achieve certain
security properties. In doing so, we motivate our work which studies non-simultaneous
RSS protocols seeking to attain the properties of fairness and soundness using tools
such as time delay and side information to do so.

In Section 6.3 we formally introduce a generic construction of a rational secret-sharing
scheme, designed for asynchronous communication between rational players, which
satisfies the important properties of soundness and fairness. Informally, soundness
ensures that players participating in the scheme can check that a reconstructed secret
is correct, and in doing so, they avoid being misled by deviant players. To ensure
soundness, we will use the common technique of introducing side information called a
checking share.

The property of fairness essentially means that no player learns of the secret during
reconstruction before other players, even if they deviate. Given that we are focusing
on non-simultaneous communication between players in an RSS, it is important to
note that fairness is more challenging to achieve. Even more of a challenge, the

149

side-information used to ensure soundness can provide an additional way for players
to reconstruct the secret before others. Therefore, in line with the literature, we will
incorporate a time delay to ensure information is not realised until a certain time. Our
novel choice of a time-delay tool is a homomorphic time-lock puzzle [97], which we will
discuss in greater detail before the formal presentation of our generic construction.

In Section 6.4 we analyse the security of our generic construction of an RSS scheme.
To prove our construction satisfies definitions of correctness, secrecy, fairness, and
soundness, we begin this Section with preliminary game theoretical notions essential
to proving our security statement. Categorically, we will discuss the concept of utility
functions which captures the preferences players have concerning the outcomes of a
game (in terms of real numbers). Moreover, we introduce a state of Nash equilibrium
with respect to utility functions, and a definition essential to proving the soundness of
an RSS construction in which players possess side information.

In Section 6.5, we present an instantiation of our generic construction using concrete
building blocks. That is, our concrete scheme uses a multiplicative variant of the HTLP
scheme proposed in [97]. Lastly, we conclude our work by discussing the efficiency
of our concrete construction, and we demonstrate that our result is more efficient in
comparison to the literature on RSS using time-delay functionalities.

6.2 Rational Secret Sharing

In this Section, we begin by recalling how secret sharing works. Next, we introduce
the syntax used in this Chapter, recalling Section 2.4 which details threshold secret
sharing. Further, we formally define a rational secret sharing (RSS) protocol plus
relevant properties including correctness, secrecy, fairness and soundness. Lastly, we
discuss the related work on RSS and the tools used in RSS literature to achieve fairness
and soundness.

Threshold secret sharing (SS) schemes are an important primitive used in a variety of
settings including multiparty computation [30, 37], attribute-based encryption [64, 121],
and threshold cryptography [11, 43]. Recall, we formally detailed threshold secret
sharing in Definition 19, Section 2.4. At a high level, secret sharing supports the
splitting of a secret into shares such that the secret can be reconstructed by a threshold
number of mutually distrustful parties. Crucially, knowledge of fewer than the threshold

150

number of shares reveals nothing about the secret [16, 110]. That is, a trusted dealer
splits the secret into shares and distributes one to each authorised party. Parties then
communicate and process their collective shares in a reconstruction phase. During the
communication phase, parties broadcast their shares in one of two ways: simultaneously
or non-simultaneously. That is, with or without synchronicity.

Properties of SS schemes are better understood and easier to guarantee in the simulta-
neous setting [40], however, such schemes are difficult to implement in practice. Hence,
our attention was drawn to researching how non-simultaneous schemes can attain a
desirable level of security.

Typically, non-simultaneous SS [56, 84, 85] protocols consist of rounds, whereby one
round of the reconstruction phase simply translates to a capped period in which parties
have the opportunity to communicate their share. Key to the design is that parties
learn the secret is reconstructed when they regenerate some publicly known value in a
so-called revelation round. It is assumed that the round before revelation is the one
in which the secret can be reconstructed, allowing parties to identify when they will
reconstruct the correct secret.

One of the biggest challenges in non-simultaneous construction design is to ensure the
final party in the communication process is incentivised to follow the protocol. The
approach taken to solve this problem is to re-frame the security modelling in terms of
the assumptions regarding parties holding shares. Note that there are two somewhat
independent research areas in secret sharing in terms of modelling shareholders:

• Traditional schemes that consider honest or malicious parties [10, 11, 35, 61, 70,
87, 88, 94, 106, 116].

• Game-theoretical SS schemes [5, 40, 56, 62, 69, 96] in which parties are modelled
as rational.

For applications of non-simultaneous secret sharing, we believe it is more suitable to
view parties as rational players in the game-theoretic sense. Rational secret sharing
(RSS) [69] is a protocol considering the problem of secret sharing assuming players
prefer to learn the secret over not learning it, and secondly, prefer that as few as
possible other players learn the secret. Categorically, we focus on game-theoretical
schemes to tackle the issue of incentivising parties.

151

6.2.1 Formal Definitions

In an RSS scheme, a player is considered to be rational if they have a preference for
the outcome of the reconstruction phase and a player’s strategy, is to maximise their
payoff from the outcome of the game. Depending on the scheme, the strategies of
players in P may be the same or different.

Syntax Throughout this Chapter, we assume an honest non-interactive dealer D, a set
of n ∈ N rational players P = {P1, . . . , Pn} communicating non-simultaneously, and
each round of the reconstruction phase is bounded by the time hardness parameter T .
The security parameter is labelled λ ∈ N. We use the following notation for a deviating
strategy σ′

i for player Pi, to signify when a player behaves differently from how they
are meant to. That is, they do not follow the protocol. In addition, P−i represents all
players in P excluding player Pi, and σ−i signifies the honest strategies of this set of
(n− 1) players, P−i.

Note, in Definition 19 (Section 2.4) players only participate in the reconstruction phase,
therefore, we formalise an RSS scheme by defining the reconstruction phase only in
the following definition.

Definition 62 (Rational Secret Sharing Reconstruction Phase). Let us define an
RSS scheme to be a tuple of three PPT algorithms ΠRSS = (Setup, Share, Recon). The
reconstruction phase Γt,n, in which Recon is run, is defined by Γt,n = (Γ,−→σ) where Γ is
the game to be played by players during the reconstruction phase and −→σ = (σ1, · · · , σn)
denotes the strategy profile of the players in P prescribed by the dealer D during the
sharing phase for that scheme.

The outcome of the phase for all players is defined by the n-dimensional vector
−→ω ((Γ,−→σ)t,n) = (ω1, . . . , ωn)

where ωi refers to the outcome of the phase for player Pi.

The outcome ωi alludes to whether player Pi learns the entirety of s, nothing of s, is
misled into learning a fake secret s′ or aborts the reconstruction phase altogether (⊥).
It is important to note that the outcome of the phase depends on the strategy of the
player.

Correctness and Secrecy Definitions for correctness and secrecy for an RSS scheme
(ΠRSS) directly follows from the SS definitions presented in Section 2.4 (Definitions

152

20 and 21 respectively). In essence, the correctness of ΠRSS ensures that players
reconstructing a secret from a threshold or more ((k−1) ≥ r for threshold r) of honestly
generated shares will reconstruct the correct secret with overwhelming probability.
Furthermore, an RSS scheme (ΠRSS) satisfies the secrecy property if players reconstruct
a secret from less than a threshold ((k − 1) < r for threshold r) of honestly generated
shares will reconstruct a value not equal to ⊥ with negligible probability.

Fairness and Soundness Properties In the ensuing, we define fairness and sound-
ness in the context of RSS literature [40]. One of the fundamental properties of secret
sharing is fairness [117], which guarantees that no player has an advantage in the
protocol over other players. More formally,

Definition 63 (Fairness). The reconstruction phase Γt,n is completely fair if for every
arbitrary alternative strategy σ′

i followed by player Pi for some i ∈ [n], there exists a
negligible function negl in the security parameter λ such that the following holds:

Pr[ωi(Γ, (σ′
i, σ−i)) = s] ≤ Pr[ω−i(Γ, (σ′

i, σ−i)) = s] + negl(1λ).

That is, the probability of player Pi learning the secret when they deviate from their
prescribed strategy in phase Γt,n (but all other players follow their prescribed strategies)
is only ever negligibly more than the probability of the other players learning the secret
too. Consequently, such a player has no real advantage in deviating from their strategy.

Another fundamental property of RSS is soundness. Simply put, the soundness of
the reconstruction phase output means that the probability of players following the
scheme outputting an incorrect secret when another player deviates from their strategy
is negligible.

Definition 64 (Soundness). Reconstruction phase Γt,n is sound if for every arbitrary
alternative strategy σ′

i followed by player Pi for i ∈ [n], there exists a negligible function
negl in the security parameter λ such that the following holds:

Pr[ω−i(Γ, (σ′
i, σ−i)) ̸∈ {s,⊥}] ≤ negl(1λ)

To re-emphasise, we believe that RSS is an excellent approach to capture more in-
teresting scenarios and outcomes, such as how to incentivise players to participate
honestly, and even how a scheme can penalise players for deviant play. Furthermore,
modelling players as rational is not limited to the perhaps unrealistic assumption that

153

players always want to learn the secret above all else. Indeed, we will explore an
emerging scenario in RSS that considers players with a preference to mislead others
above learning the secret.

6.2.2 A Background in Secret Sharing

In RSS the possible outcomes of the game influence the players’ strategies, as they
seek to maximise their payoff. Security of the game requires the strategies of players
to be in some form of equilibrium which motivates them to honestly communicate.
Notably, achieving an equilibrium between players’ strategies is the most natural way
to demonstrate a fundamental property of SS schemes, called fairness (Definition 63)
[46, 76].

A separate but equally important property in RSS literature is soundness [5, 40], which
ensures players never reconstruct an incorrect secret except with negligible probability.
In other words, honest players are guaranteed to output a correct value or a special
abort symbol ⊥. Soundness is becoming of emerging relevance in the non-simultaneous
setting, especially in instances where rational players obtain a greater payoff from
misleading other players compared to learning the secret.

Soundness (Definition 64) has been achieved in prior work [40] focusing on non-
simultaneous communication as follows: before reconstruction begins, all players are
given protocol-induced side information alongside their list of shares. They must assume
that when a player aborts communication, the previous round was the revelation round.
Even if a deviant player has aborted early, using this side information, honest players
can check that they have the correct value after reconstruction. If not, they terminate
the reconstruction altogether.

Unfortunately, achieving soundness this way can compromise fairness in the non-
simultaneous setting since a deviant player can use the side-information to check
whether they can abort early and learn the secret before honest players. That is, in
a (t, n) threshold RSS scheme, the last player out of t-players to communicate can
decide not to reveal their share and use all the other players’ shares to reconstruct the
secret. Thus, leaving the (t− 1) honest players with an insufficient number of shares
to reconstruct the secret. The rational behaviour of all parties would therefore be to
withhold their share.

154

To counteract this problem, and continue to ensure fairness, RSS literature suggests
incorporating a time-delay-based mechanism to prevent deviant players from utilising
the side information in the manner just described. As a consequence, players are
incentivised to honestly participate in the reconstruction phase. We will use the two
techniques mentioned, namely, protocol-induced side information and time delay, to
achieve the properties of soundness and fairness (respectively) in an RSS construction.
Before we formally define such a construction, we examine existing tools used, for the
aforementioned techniques, in the literature.

Existing Methods to Achieve Fairness and Soundness In the following, we pro-
vide an extended examination regarding secret-sharing literature seeking to achieve
soundness and fairness, separately focusing on the simultaneous and non-simultaneous
settings.

(Simultaneous) To achieve fairness, [94] proposed that in addition to obtaining a share
of the secret, each party possesses a check vector which they can use to verify the
validity of other parties’ shares, and a certificate vector, which is used to prove the
validity of their share in the reconstruction phase. The dealer in the scheme chooses an
indicator, which is a form of public information unrelated to the secret that must be
reconstructed. In their scheme, the secret is hidden in a sequence of elements, such that
the subsequent element of the sequence is the indicator and the rest of the elements
are dummy secrets.

The authors of [70] continued the work of [94]. The scheme in [94] works under the
assumption that all parties sharing is legitimate. In other words, their scheme only deals
with external adversaries. Whereas [70] protects the secret from inside adversaries as
well as unauthorised parties (outside adversaries) who are not legitimate shareholders.

In [88], a V -fair (t, n) SS scheme is proposed, where given n-parties, they have an
equal probability of obtaining the secret, even if V < (t/2) parties are dishonest. This
is achieved by the dealer dividing the secret into multiple sub-secrets with different
threshold values, and generating shares for each of the sub-secrets.

The authors of [35] showed that complete fairness cannot be achieved in general,
without an honest majority. Intuitively, complete fairness means that an adversary can
learn the output of secret reconstruction if, and only if, the honest parties learn the
output too [4]. In the setting of secure two-party computation, if just one of the parties

155

is dishonest, there is no longer an honest majority, and so it was believed that no
non-trivial function could be computed with complete fairness. However, the work of
[61] demonstrated the existence of some non-trivial functions, based on cryptographic
assumptions, which can be computed with complete fairness in the two-party setting.

In [61], the reconstruction phase is based on rounds, such that parties input a share of
the secret into some function in every round and the round in which the party learns
the secret depends on the value of their input (in contrast to standard protocols). If
one party aborts after learning the secret in a round, and the second party has not
yet received the function output, then the second party assumes the first learned the
secret in the round they aborted and reconstructs the function output for that round
independently.

The scheme of [116] extends the work in [61], achieving a more efficient scheme. At a
high level, their reconstruction scheme provides complete fairness by hiding the secret
in a sequence of secrets such that the validity of the shares can be verified and used to
detect deviant parties.

In the simultaneous setting, both [62, 69] use some form of publicly known indicator and
their respective protocols achieve fairness by demonstrating a form of Nash equilibrium
[103] has been satisfied.

(Non-Simultaneous) The authors of [84] sought to ensure no information about the
players’ inputs is revealed until the round in which the secret is recovered, in which
players are communicating non-simultaneously. They achieve this by introducing a
new cryptographic tool called meaningful/meaningless encryption, where players are
motivated to follow the scheme as they do not know whether a round of reconstruction
is meaningful or not.

Following on from [84], [56] propose a scheme that does not require simultaneous
broadcast channels or physical assumptions in both two-player and multi-player RSS
scheme instantiations. The protocol follows a series of fake rounds, followed by a real
round. That is, in the real round, every player learns the secret, and in the fake rounds,
no information about the secret is revealed.

Players cannot know whether a round is real or fake. They identify the real round
in the subsequent round, where they reconstruct public information in the form of a

156

flag/indicator (akin to the schemes of [70, 94] in the cryptographic model). Similarly,
the authors of [85] use the same idea of players reconstructing an indicator.

The authors of [96] were the first to propose a fair RSS scheme that can tolerate arbitrary
side-information, by proposing the use of time-delay encryption (TDE) [29, 99]. The
basic idea of a TDE scheme is to encrypt a message such that it can only be decrypted
after a specific amount of time has elapsed. We note that [96] works under the
assumption that players prefer everyone to obtain the correct output over misleading
others, therefore soundness is not an issue that needs to be addressed.

In more detail, the scheme in [96] employs a cryptographic memory-bound function1

(CMBF) [1, 48] as a way to achieve time delay in the recovery of an encrypted sub-share
of the secret. The fairness of their scheme is restored by setting the runtime of rounds
of the secret sharing scheme to be less than the time it takes to decrypt the encrypted
shares. Thus, there is no way for a deviant player to learn anything about the secret
during a reconstruction round before they must decide whether to abort communication.
In addition, proof of the sender’s work in computing their message is sent.

Subsequently, [40] build upon the work of [96] by using specific protocol-induced side
information to provide the first fair and sound RSS scheme in the non-simultaneous
setting, additionally achieving independence from the preference (utility) of misleading.

Critically, all non-simultaneous RSS schemes mentioned suffer from a computational
bottleneck as each player has to attempt to decrypt sub-share ciphertexts to reconstruct
a share before proceeding to reconstruct the secret in the revelation round. We believe
there is a more elegant approach to solving this problem if we employ a homomorphic
functionality. Thus, we propose a time-delay mechanism called a homomorphic time-
lock puzzle (HTLP) [97] which, when applied to an RSS construction, will enable
the compact evaluation of encrypted sub-shares into just one ciphertext that needs
decrypting to reveal the secret share for that round. Consequently, we can mitigate the
computational bottleneck issue inherent to previous RSS schemes seeking to achieve
soundness and fairness.

1A CMBF is a family of deterministic algorithms such that an efficiently generated key can decrypt
the encrypted input, with a lower-bound on the number of memory-access steps to do so.

157

6.3 A Generic Construction of an FRSS Scheme

In this Section, we start by defining the tools required to build a generic construction
of an RSS scheme satisfying fairness and soundness. Next, we formally present
our construction, labelled an FRSS scheme, and additionally provide definitions of
correctness and secrecy for the scheme.

To build a generic construction of a fair and sound RSS scheme (FRSS), we utilise a
time-delay mechanism known as a homomorphic time-lock puzzle (HTLP). Informally,
we aim to prevent a player, that chooses to deviate from their prescribed strategy
and quit communication, from deriving the secret before the end of the round. If this
occurs, then the other players should realise the deviant player has quit and output
the result of the previous rounds’ reconstruction.

That is, even if a player quits in a round and manages to learn the secret, the only case
in which they can do so results in the honest players also learning the secret. Therefore,
there is no advantage in a player deviating from their prescribed strategy.

High-Level Idea A trusted dealer splits the secret into shares and creates an additional
share which is broadcast to all players, named the checking share. The rest of the shares
are split into sub-shares, embedded into HTLPs and distributed to the corresponding
players in such a way that the HTLP scheme can reconstruct the ‘whole’ share from
them.

Intuitively, the checking share is used to verify the soundness of the secret that players
reconstruct, and the delay provided by the HTLP scheme is used to guarantee fairness
in the presence of a checking share for players communicating non-simultaneously.
More specifically, the HTLP scheme embeds the sub-shares into puzzles that cannot be
decrypted before a round of communication in the reconstruction phase has finished.
Fairness is achieved by setting each round of communication to have an upper time
bound less than the time to solve a puzzle. The formal definition of an HTLP is now
presented.

6.3.1 Tools Required

A time-lock puzzle (TLP) [108] is a primitive used to provide the feature of time delay
in a cryptographic scheme. Informally, TLPs embed a secret into a puzzle such that it

158

cannot be decrypted until a certain amount of time T has elapsed. The characteristics
of a TLP are,

• Fast puzzle generation: the time t required to generate a puzzle Z must be
t << T , for a given (time) hardness parameter T .

• Security against parallel algorithms: the encapsulated secret s is disguised within
the puzzle Z for circuits of depth < T , regardless of the size of the circuit.

A homomorphic time-lock puzzle (HTLP) scheme evaluates puzzles homomorphically
using some operation, without the evaluator knowing the secret shares encapsulated
within the corresponding puzzles. The resulting puzzle output contains the homomor-
phic evaluation of the input puzzles, enabling a more efficient way for decryptors to
obtain the final output solution, as they can solve just one puzzle rather than solving
all of the puzzles individually like in a standard TLPs and then evaluating a final
solution.

In more detail, HTLPs are augmented TLPs allowing anyone to evaluate a circuit C

over sets of puzzles (Z1, . . . ,Zn) homomorphically using operation Ψ. What Ψ depends
on the application the HTLP is being used for, such as addition, multiplication or XOR.
Essential to the purpose of an HTLP, the evaluator does not need to know the secret
values (s1, . . . , sn) encapsulated within the corresponding puzzles. The resulting output
(a puzzle Z) contains the circuit output C(s1, . . . , sn), and the hardness parameter
T does not depend on the size of the circuit C that was evaluated (this is called
compactness). More formally,

Definition 65 (HTLP). Let C = {Cλ}λ∈N be a class of circuits and let secret space Sλ

be a finite domain for security parameter λ. A homomorphic time-lock puzzle (HTLP)
with respect to C, Sλ, and time hardness parameter T is defined by a tuple of four
PPT algorithms ΠHTLP = (HP.Setup, HP.Gen, HP.Solve, HP.Eval) as follows:

1. HP.Setup(1λ, T) $→ pp : is a probabilistic algorithm that takes as input security
parameter 1λ and hardness parameter T and outputs public parameters pp.

2. HP.Gen(pp, s) $→ Z : a probabilistic algorithm that takes as input the public
parameters pp and a secret s ∈ Sλ and outputs a puzzle Z.

3. HP.Solve(pp,Z) → s : is a deterministic algorithm that takes as input public
parameters pp and puzzle Z, and outputs a solution s.

159

4. HP.Eval(pp, C, Ψ,Z1, . . . ,Zn) $→ Z̃ : is a probabilistic algorithm taking as input
a circuit C, public parameters, the homomorphic-operation Ψ and a set of n
puzzles (Z1, . . . ,Zn), and outputs a master puzzle Z̃.

Correctness The following are formal definitions of correctness, security and com-
pactness of an HTLP scheme in line with [97]. The following definition considers the
case when the evaluation algorithm is executed only once.

Definition 66 (HTLP Correctness). Let ΠHTLP from Definition 65 satisfy correctness
for the class of circuits C where C = {Cλ}λ∈N if ∀λ ∈ N, all polynomials T in λ, all
circuits C ∈ Cλ and respective inputs (s1, . . . , sn) ∈ Sn, all public parameters pp and for
all puzzles Zi in support of HP.Gen(pp, si), the following two conditions are satisfied:

1. There exists a negligible function negl such that
Pr[HP.Solve(pp, HP.Eval(C, pp, Ψ,Z1, . . . ,Zn)) ̸= C(s1, . . . , sn)] ≤ negl(1λ).

2. There exists a fixed polynomial p(·) such that HP.Solve(pp,Z) runtime is bounded
by p(1λ, T) for Z $← HP.Eval(C, pp, Ψ,Z1, . . . ,Zn).

Definition 67 (HTLP Security). ΠHTLP is secure with gap ϵ < 1 if there exists a
polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size
adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from above by
T ϵ(1λ), there exists a negligible function negl, such that for all λ ∈ N it holds that

Pr


b← A2(pp,Z, τ) :

(τ, s0, s1)← A1(1λ),

pp
$← HP.Setup(1λ, T (1λ)),

b
$← {0, 1},

Z $← HP.Gen(pp, sb)


≤ 1

2 + negl(1λ)

and (s0, s1) ∈ S2.

Definition 68 (HTLP Compactness). ΠHTLP is compact for the class of circuits
C = {Cλ}λ∈N if ∀λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and respective
inputs (s1, . . . , sn) ∈ Sn, all public parameters pp and for all puzzles Zi in support of
HP.Gen(pp, si), the following two conditions are satisfied:

160

1. There exists a fixed polynomial p(·) such that |Z| = p(1λ, |C(s1, . . . , sn)|), where
Z $← HP.Eval(C, pp,Z1, . . .Zn).

2. There exists a fixed polynomial p̃(·) such that the runtime
HP.Eval(C, pp, Ψ,Z1, . . . ,Zn) is bounded by p̃(1λ, |C|).

6.3.2 Building the FRSS Scheme

Equipped with our chosen building blocks of an HTLP and threshold RSS scheme
(given in Section 6.2, Definition 62), we now formally define our generic construction
of an RSS scheme, entitled FRSS.

Definition 69 (FRSS Construction). Given security parameter λ, time hardness pa-
rameter T , an efficiently samplable distribution of the set of secrets Sλ with operator Ψ,
secret s ∈ Sλ, efficiently samplable discrete distributions G,G ′, we construct an FRSS
scheme with reconstruction phase in the non-simultaneous setting as a tuple of three
PPT algorithms ΠFRSS = (Setup′, Share′, Recon′) from a secret sharing scheme ΠRSS =
(Setup, Share, Recon) and a HTLP scheme ΠHTLP = (HP.Setup, HP.Gen, HP.Solve, HP.Eval)
as follows:

• Sharing Phase: The honest dealer D takes as input the secret s ∈ Sλ and
performs the following steps non-interactively:

1. Setup′(1λ, T) $→ pp′ a probabilistic algorithm on inputs 1λ, T in which the
dealer runs:

(a) HP.Setup(1λ, T) $→ pp1 which outputs public parameters pp1.
(b) Setup(1λ, T) $→ pp2 which outputs the public parameters pp2. Addi-

tionally, let r
$← G be the sampled revelation value and d be a random

value d
$← G ′.

Outputs are sampled values r, d and public parameters {pp1, pp2}. Therefore,
pp′ := {r, d, pp1, pp2}.

2. Share′(pp′, s) $→ {s0, {list1, . . . , listn}}: a probabilistic algorithm that takes
as input the secret s ∈ Sλ and public parameters pp′. The output consists
of a checking share s0 and lists labelled listj for j ∈ [n], each composed of
m sub-puzzles for m = r + d.

161

(a) Run Share(pp2, s) $→ {s0, {s1, . . . , sr}} a probabilistic algorithm with
inputs the public parameters pp2 and secret s ∈ Sλ. The outputs are
(r + 1) shares of the secret; the checking share s0 and si for i ∈ [r].

(b) Sλ
$→ {sr+1, . . . , sm}, randomly sample d fake shares from Sλ.

(c) For every i ∈ [m], compute the list of sub-shares {si,1, . . . , si,n} such
that si = Ψ

j∈[n]
si,j.

(d) Run HP.Gen(pp1, si,j) $→ Zi,j a probabilistic algorithm that takes as
input sub-shares si,j and public parameters pp1, and outputs sub-puzzles
Zi,j, ∀i ∈ [m],∀j ∈ [n].

(e) D distributes listj = {Z1,j, · · · ,Zr,j,Zr+1,j, · · · ,Zm,j} to the corre-
sponding player Pj, for every j ∈ [n].

3. The dealer distributes the following:

(a) D broadcasts {pp′, s0} to all P the public parameters pp′ and checking
share s0.

(b) D distributes listj to Pj for every j ∈ [n].

• Reconstruction Phase: All players in P = {P1, . . . , Pn} independently take
part in this phase.

1. Communication: We are in the kth round of communication, for some
1 < k ≤ m.

(a) Pj sends to all of P the sub-puzzle Zk,j for every j ∈ [n] non-simultaneously.
(b) At the end of round k (after time T has elapsed), along with their

sub-puzzle, player Pj should have received {Zk,1, . . . ,Zk,n} from all of
P .

(c) Move to round (k + 1) of communication and round k of processing,
unless fewer than (n− 1) sub-puzzles have been received. In this case,
proceed to abort communication and move to the penultimate step of the
processing phase with previously reconstructed shares {s1, . . . , sk−1}.

2. Processing: We are in the round (k− 1) of processing, for some 1 < k ≤ m.2

For any j ∈ [n], Pj does the following:
2At least one round of communication is required before players can start processing.

162

(a) HP.Eval(pp1, T , Ψ,Zk−1,1, · · · ,Zk−1,n) $→ Zk−1: Run the probabilistic
algorithm HP.Eval with inputs the public parameters pp1, hardness
parameter T , and the list of n sub-puzzles for the (k − 1)th round,
a player homomorphically evaluates sub-puzzles with operator Ψ to
output share puzzle Zk−1.

(b) HP.Solve(pp1, T ,Zk−1)→ sk−1: Run the deterministic algorithm
HP.Solve that takes as input the public parameters pp1; hardness param-
eter T ; and puzzle share Zk−1 and outputs secret share sk−1. Output
the round share sk−1 and move to reconstruct s.

(c) Recon′(pp′, s0, {s1, . . . , sk−1})→ {s,⊥}: where the players run
Recon(pp2, {s1, . . . , sk−1}) → {s,⊥}, a deterministic algorithm that
inputs public parameters pp2 and (k − 1) reconstructed shares of the
secret {s1, . . . , sk−1}. Player Pj uses checking share s0 to confirm the
soundness of their reconstructed value and outputs either the correct
secret s or abort ⊥. If this is the final round of processing, stop here.
Else,

(d) If every player communicated in round k but Pj output ⊥ in the previous
step and every player Pj ∈ P has listj ̸= ∅, players go to (k + 1)th
round of the reconstruction phase. Otherwise, the protocol aborts and
outputs ⊥.

Correctness and Secrecy Now, we formally define correctness and secrecy for an
FRSS scheme (ΠFRSS), recalling the SS definitions presented in Section 2.4 (Definitions
20 and 21 respectively). Intuitively, the correctness of ΠFRSS means that players
reconstructing a secret from a threshold or more ((k−1) ≥ r for threshold r) of honestly
generated shares will reconstruct the correct secret with overwhelming probability.

Definition 70 (FRSS Correctness). Rational secret sharing scheme ΠFRSS is correct
if ∀λ ∈ N and for all possible sets of n authorised players P = {P1, . . . , Pn}: given
any secret s ∈ Sλ, any r

$← G treated as the threshold, Setup′(1λ, T) $→ pp′ and shares
{s0, {s1, . . . , sm}} generated in the process of running Share′, if round 1 ≤ r ≤ (k − 1)
is the final round in which n sub-puzzles have been shared, resulting in the set S ′ =
{s1, . . . , sk−1} of shares evaluated during the processing phase, there exists a negligible
function negl(·) such that,

163

Pr[Recon′(pp′, s0, S ′) ̸= s] ≤ negl(1λ).

Informally, an FRSS scheme (ΠFRSS) satisfies the secrecy property if players recon-
structing a secret from less than a threshold ((k − 1) < r for threshold r) of honestly
generated shares will reconstruct a value not equal to ⊥ with negligible probability.
More formally,

Definition 71 (FRSS Secrecy). Rational secret sharing scheme ΠFRSS from Defini-
tion 62 satisfies secrecy if ∀λ ∈ N and for all possible sets of n authorised players
P = {P1, . . . , Pn}: given any secret s ∈ Sλ, any r

$← G treated as the threshold,
Setup′(1λ, T) $→ pp′ and shares {s0, {s1, . . . , sm}} generated in the process of running
Share′, if round 1 ≤ (k − 1) < r is the last round in which n sub-puzzles have been
shared, resulting in the set S ′ = {s1, . . . , sk−1} of shares evaluated during the processing
phase, there exists a negligible function negl(·) such that,

Pr[Recon′(pp′, s0, S ′) ̸= ⊥] ≤ negl(1λ).

6.4 Security Analysis

In this Section, we analyse the security of our generic construction ΠFRSS from Definition
69. Recall from Section 6.1, RSS typically adopts game theory to assess the behaviour
of participating rational players. Before our formal statement of security, we present
a preliminary subsection detailing game theoretical notions relevant to RSS schemes,
followed by definitions of necessary assumptions used to prove our statement of security.

6.4.1 Game Theory for Rational Secret Sharing

The key question in this Chapter is how we can ensure that players (despite any
preferences they may have) are motivated to follow a strategy in the non-simultaneous
setting. This is typically done by assuming that the strategies of players are in a state
of equilibrium. This assumption is necessary to make certain that if every player Pi ∈ P

believes all other players in P are following their prescribed strategy in the phase, then
they have nothing to gain in deviating from their strategy and are penalised in some
way by deviating.

To demonstrate the properties of fairness and soundness, we view our FRSS con-
struction, formalised in Definition 69, through a game-theoretic lens. Step-by-step

164

we will define the concept of utility functions, Nash equilibrium, and soundness with
checking shares. Precisely, to prove our statement of security (Theorem 8) our generic
construction ΠFRSS needs to ensure players’ strategies are in a computationally strict
Nash equilibrium when they additionally have access to side information related to
the secret. Moreover, we must prove that the checking share used in our construction
is sound protocol-induced side information. Observe, the notation and definitions
presented in this subsection follow the framework of [5, 40, 96, 56].

Utility Functions To describe the possible outcomes of an RSS game, the preferences
of players are represented by utility functions which are then used to define a Nash
Equilibrium [103], the latter of which is necessary for our security statement to hold.

Definition 72 (Utility Functions). The set Ui for each player Pi is defined as the set of
utility values resulting from the possible outcomes of the game, which are polynomial in
the security parameter (λ) of the protocol. These values are determined by the outcomes
−→o of the reconstruction phase, which depends on the strategies −→σ taken by the n rational
parties. The set consists of the following, Ui = {UT N

i , UT T
i , UNN

i , UNT
i , UF N

i , UNF
i }.

The parameters T, N , and F define the utility gained from the following actions of
players (in which the players may be honest or dishonest):

• T signifies the case where a player learns the secret.

• N signifies the case where a player does not learn the secret.

• F signifies the case where a player learns a fake secret (mislead).

For example, the utility UNF
i is the value Pi gains from not learning the secret, whilst

misleading the other (n− 1) parties into learning a fake (incorrect) secret. There are
two preference relation scenarios which are of importance in defining our games for
rational players, ∀i ∈ [n]:

1. UT N
i > UT T

i > UNN
i > UF N

i and UNF
i ≥ UT T

i ;

2. UT N
i > UT T

i > UNN
i > UF N

i and UNF
i < UT T

i .

Recall, the property of fairness is important to achieve (Definition 63) in RSS schemes
such as our construction (ΠFRSS). One way to satisfy fairness in the game-theory setting
is for the utility values gained from the outcome of the game to be independent of the
game itself. More formally,

165

Definition 73 (Utility Independence). Let Ũ ∈ U be a set for a specific utility function,
consisting of all the corresponding utility values for every player in P . Define the set of
polynomial utility functions U ′ = {UT N

i , UT T
i , UNN

i , UNT
i , UF N

i , UNF
i }n

i=1 \ Ũn
i=1 , as the

set excluding all Ũn
i=1 values. A mechanism (Γ,−→σ) is said to be Ũ -utility independent

if for all polynomial utility functions Ũn
i=1, the elements in U = U ′ ∪ Ũn

i=1 satisfy a
certain preference relationship R. Therefore, (Γ,−→σ) is a fair reconstruction mechanism
for preference relationship R among the elements of U .

Nash Equilibria An important consequence of an RSS attaining utility independence
is that the scheme reaches a state of Nash Equilibrium [103]. Informally, a Nash
equilibrium is a formalisation of what it means for players in a secret sharing scheme
to follow their strategies. Let Γr,r+1 = (Γ,−→σ) be the scheme that players in P are
following, where σi ∈ −→σ is a strategy for player Pi, for some i ∈ [n]. Thus, to
demonstrate the provable security of ΠFRSS, we must show that players’ strategies −→σ
are in a computationally strict Nash equilibrium [40].

Definition 74 (Computationally Strict Nash Equilibrium). Given reconstruction phase
Γr,r+1 = (Γ,−→σ), a strategy profile −→σ for Γ is said to be in a computationally strict
Nash Equilibrium if for every i ∈ [n] and every deviating strategy σ′

i ̸= σi that player
Pi uses, it holds that Ui(σi,

−→σ−i) > Ui(σ′
i,
−→σ−i).

To rephrase, the utility (gain) of Pi following an alternative strategy σ′
i is less than the

utility of Pi following their prescribed strategy σi from Γr,r+1, assuming all other players
are following their prescribed strategy −→σ−i. Therefore, a rational player will adopt the
strategy that results in them obtaining the highest utility value in the reconstruction
phase. Definition 74 is used to ensure that players choose to follow their prescribed
strategy, thus, ensuring that the property of fairness is achieved. We formalise a fair
reconstruction in the context of utility functions as follows,

Definition 75 (Fair reconstruction Mechanism). Let U = {U1, . . . , Un} be the set of
utility functions for players in P . The reconstruction phase Γr,r+1 = (Γ,−→σ) is fair for
utility functions U if −→σ is a computational Nash equilibrium, and the probability that
the outcome −→ω = ⊥ for players in P when they follow −→σ is negligible.

166

Soundness with Checking Shares

The notion of equivalent play (Nash Equilibrium) incorporates a scheme where players
have access to any side information related to the secret, like the checking share that
we defined in our generic FRSS construction from Definition 6.3.

Let Aux = {auxi}i∈[n] define the (protocol-induced) side information related to the
secret that players in P have access to during Γr,r+1. When deviant player Pi takes
alternative strategy σ′

i, then σ′
i

Aux≈ −→σ yields equivalent play if given the views of
all other players Pj ∈ P−i, including their side information auxj for player Pj, no
polynomial time algorithm can distinguish whether Pi is following prescribed strategy
σi ∈ −→σ or alternative strategy σ′

i. More formally,

Definition 76 (Computationally Strict Nash Equilibrium with Protocol-Induced
Side Information). Prescribed strategy −→σ in reconstruction phase Γr,r+1 = (Γ,−→σ) is a
computational Nash equilibrium in the presence of protocol-induced side-information
Aux = {auxi}i∈[n] if it is a Nash equilibrium with protocol-induced side information
such that, given security parameter λ, for every Pi ∈ P and any PPT alternative
strategy σ′

i

Aux
̸≈ −→σ , there exists a negligible function negl over the security parameter λ

such that,

Ui((σ′
i, σ−i), Aux) < Ui(−→σ , Aux) + negl(1λ).

The authors of [96] propose giving each player in P some arbitrary auxiliary information
or access to a membership oracle Os0

k,j. Either of these enables a player Pj ∈ P to
confirm whether the value s′ ∈ Sλ they reconstructed in the kth round of reconstruction
is the correct secret or not.

The work of [40] follows from [96] by introducing protocol-induced (i.e. chosen by the
protocol designer) auxiliary information in the form of an extra share of the secret,
known as the checking share. In line with the authors of [40], we first define what
a membership oracle is, to use specific protocol-induced side information to ensure
soundness.

Intuitively, a membership oracle should not reveal any information about the secret
itself, meaning that no player can learn anything important about s by simply observing
the oracle or querying it with arbitrary inputs. We present the following definitions
from [40].

167

Definition 77 (Membership Oracle). Given the secret s and reconstructed value
s′, both in secret space Sλ and checking share s0, we define a membership oracle
Os0

k,j : Sλ → {0, 1} queried by player Pj ∈ P in the kth round of the reconstruction
phase as follows:

Os0
k,j(s′) =

1 if s′ = s,

0 otherwise.

Note that the behaviour of the oracle may be dependent on the secret s. For example,
it may output 1 on s and 0 on all other inputs, or it may output 1 on input s′ if
f(s) = f(s′) for some function f, where the function depends on the reconstruction
process of the underlying SS scheme. Given this, in order to ensure the soundness
of the reconstruction phase with reconstructed value s′ ∈ Sλ, the oracle must always
output the correct decision on whether this is the secret or not. Similarly to [40], we
want to ensure soundness, therefore we must define a sound membership oracle.

Definition 78 (Sound Membership Oracle). Given input s′ ∈ Sλ, a correct membership
oracle Os0

k,j : Sλ → {0, 1} for player Pj ∈ P in the kth round of reconstruction with
access to checking share s0 has the following properties:

1. Pr[Os0
k,j(s′) = 1] ≤ negl(1λ) for any s′ ̸= s;

2. Pr[Os0
k,j(s′) = 0] ≤ negl(1λ) for s′ = s.

for a negligible function negl(1λ), over security parameter λ.

The next definition follows directly from the definition of a sound membership oracle.

Definition 79 (Protocol-Induced Membership Oracle). A sound membership oracle
Os0

k,j provided by the scheme ΠFRSS = (Setup′, Share′, Recon′), given to player Pj for
j ∈ [n] for the kth round of the reconstruction phase is called a protocol-induced
membership oracle.

For our construction ΠFRSS, the sound membership oracle can be modelled as protocol-
induced auxiliary information in the form of a checking share. Assuming players do
not have a preference to mislead, let (Γf ,

−→
σf) be a fair reconstruction phase (Definition

63, Section 6.2) where players follow their prescribed strategies of communicating
and reconstructing some function f to reconstruct the secret s. Note that function f

is the honestly constructed function created by the dealer during the sharing phase,

168

dependent on the underlying SS scheme and its assumed security, in which players
participating in the fair reconstruction phase (Γf ,−→σf) with a sufficient number of shares
can reconstruct to obtain the secret.

In our construction, similar to the work of [40], we propose a fair reconstruction phase
(Γfk

,−→σfk
) for players Pj ∈ P with k shares and access to protocol-induced auxiliary

information in the form of a checking share s0, assuming that some players may prefer
to mislead other players into outputting an incorrect secret. Informally, this works as
follows:

Let player Pi deviate with strategy σ′
i in the (k + 1)th round and the non-deviant

players P−i are following strategies −→σfk
throughout the reconstruction phase. Strategy

σfk,j for Pj instructs a player to follow their normal strategy σf,j of reconstructing a
value s′ ∈ Sλ or outputting ⊥ in the case that Pi quits communicating in the (k + 1)th
round. If a value s′ ∈ Sλ is reconstructed from reconstructed function fk, strategy σfk,j

instructs Pj to check the soundness of value s′ obtained in the kth round, by using the
checking share s0. Let s0 = (y0, f(y0)) for some input y0 computed by the dealer in the
sharing phase; if fk(y0) = f(y0), then Pj concludes that s′ = s, otherwise Pj concludes
that s′ ̸= s.

6.4.2 Proof of Security

Theorem 8. The generic construction of a non-simultaneous rational secret scheme
(Definition 69) ΠFRSS = (Setup′, Share′, Recon′) satisfies correctness, secrecy, fairness
and soundness in the presence of side information related to the secret, assuming the
following properties:

• correctness, security, and compactness of the HTLP scheme,

• correctness and secrecy of the SS scheme,

• the checking share side information is correct, protocol-induced auxiliary informa-
tion.

Proof Overview Informally, we prove Theorem 8 by demonstrating that our con-
struction satisfies correctness, and secrecy, achieves soundness in the non-simultaneous
setting using protocol-induced side information and achieves fairness despite the pres-
ence of this side information by using an HTLP to provide a time-delay to the scheme.

169

Specifically, in our security analysis, we summarise the scenarios in which a deviant
player attempts to mislead. In particular, we demonstrate that if a player aborts in
a round k with respect to revelation round r, regardless of the round that k is, the
outcome for all players is the same. Analysing the scenarios in which a player quits
communicating aids the proofs of fairness and soundness, by providing an intuition to
the outcome of the reconstruction phase.

Fairness of the scheme is proven as follows: we show that Definition 63, Section 6.2.1
is satisfied in our construction assuming the correctness and security of the HTLP
scheme [97] (definitions of which are provided in Section 6.3.1), which is employed to
implement a time-delay in the scheme. We use a reduction to break the correctness
and security of the HTLP scheme, contradicting our assumptions, to show that there
does not exist a deviant player with the ability to decrypt a puzzle in a time less than
T .

Furthermore, assuming the correctness and secrecy of the underlying SS scheme (Section
2.4), we show that the probability of a deviant player learning the secret, whilst other
players do not, is negligible in the security parameter λ. We additionally show that
the rational player’s strategies −→σ are in a computationally strict Nash equilibrium
(Section 6.4.1, Definition 76) following the proofs of [40, 96].

To prove soundness, we provide Section 6.4.1 preceding the analysis of Theorem 8,
to define the side information used to achieve soundness. We closely follow the proof
of [40] to define a membership oracle. Recall, this is an oracle queried by players in
reconstruction to check the soundness of their reconstructed value [96]. Following [40],
we claim and prove that the checking share in our construction can be used in place
of a sound membership oracle (see Definition 78, Section 6.4.1), as a specific form of
protocol-induced side information to ensure soundness. Finally, we prove that our
generic construction achieves soundness with a checking share.

Proof. First, we formally prove that the correctness property is satisfied.

Claim 2. The generic ΠFRSS scheme presented in Definition 69 satisfies correctness
(Definition 70) assuming the underlying RSS and HTLP schemes (ΠRSS and ΠHTLP

respectively) satisfy their respective correctness definitions.

Proof. Correctness of ΠFRSS translates to demonstrating that there is a negligible
probability of reconstructing a secret from honestly generated shares, which differs

170

from the correct secret. By design of our scheme, we, therefore, need to analyse the
reconstruction phase, given that (k − 1) shares were honestly generated in the sharing
phase for some 1 ≤ r ≤ k − 1 in which r is the threshold value. In more detail,
We begin by proving the correctness of our construction ΠFRSS, which follows from
the correctness of the SS and HTLP schemes underlying it. For all possible players
in P , ∀λ, T ∈ N and for all possible secrets s ∈ Sλ; given Setup′(1λ, T) → pp′ and
Share′(pp′, s)→ {s0, {list1, . . . , listn}} run as in our construction (Section 6.5) using
homomorphic operator Ψ, our scheme ΠFRSS = (Setup′, Share′, Recon′) is correct for
some negligible function negl(·) over the security parameter λ. Namely, at round r of
the reconstruction phase, players reconstruct s using the first r reconstructed shares.
Correctness holds except with negligible probability for the following reasons:

• The reconstruction phase starts with players evaluating sub-puzzles and then solv-
ing the output. Following the correctness of ΠHTLP = (HP.Setup, HP.Gen, HP.Eval,
HP.Solve), the HTLP scheme (recalled in Section 6.3.1, Definition 66) constructed
using operator Ψ such that for ∀i ∈ [r], and shares si = Ψ

j∈[n]
si,j, will satisfy the

ensuing equation for some negligible function negl′(·),

Pr[HP.Solve(pp, HP.Eval(pp1, T , Ψ,Zi,1, . . . ,Zi,n)) ̸= si] ≤ negl′(1λ).

• Assuming shares {s1, . . . , sk−1} were constructed correctly as we just described,
and following the assumed correctness of the underlying RSS scheme we have,
for some negligible function negl′′(·),

Pr[Recon(pp2, {s1, . . . , sk−1}) ̸= s] ≤ negl′′(1λ).

Therefore, the resulting equation follows assuming the existence of some negligible
function negl = negl′ + negl′′ over security parameter λ.

Pr[Recon′(pp′, s0, {s1, . . . , sk−1}) ̸= s] ≤ negl(1λ).

Consequently, Definition 70 of correctness is satisfied.

Second, we formally prove that the secrecy property is satisfied.

Claim 3. The generic construction ΠFRSS presented in Definition 69 satisfies secrecy
(Definition 71) assuming the underlying SS scheme (ΠRSS) satisfies a definition of
secrecy.

171

Proof. Secrecy of ΠFRSS translates to demonstrating that there is a negligible probability
of reconstructing anything other than the failure symbol (⊥) given less than a threshold
(r) of shares. Namely, reconstructing a meaningful value from set S ′ = {s1, . . . , sk−1}
such that 1 ≤ (k − 1) < r. By design of our scheme, we need to analyse the reconstruc-
tion phase (in which Recon′ is run), given that shares were honestly generated in the
sharing phase (Share′).

In more detail, given the correct execution of n sub-puzzle evaluation which outputs
a share for each round up to the final round (k − 1) < r, the secrecy property of the
underlying threshold RSS scheme holds since we have less than a threshold number
of shares. That is, following Definition 71, Section 6.3 we have, for some negligible
function negl(·),

Pr[Recon(pp2, {s1, . . . , sk−1}) ̸= ⊥] ≤ negl(1λ).

Therefore, the proceeding equation follows assuming the existence of some negligible
function negl(·) over security parameter λ.

Pr[Recon′(pp′, s0, S ′) ̸= ⊥] ≤ negl(1λ).

Consequently, Definition 71 of secrecy is satisfied.

Next, we analyse the fairness and soundness of our construction. We note that the
outcome of the reconstruction phase Γr,r+1 is the same for every player in P irrespective
of the round in which a deviant player quits in relation to the revelation round. To see
this we explain what happens when deviant player Pi quits and the resulting outcome.

We will only look at a player who is the last to communicate in a round. If a player
quits before every other player has sent their sub-share for that round, then they will
not be able to reconstruct the corresponding share for the round that they quit in. In
this case, the deviant player is in no better a position than other players.3

Suppose Pi follows the reconstruction phase with their prescribed strategy σi (that
is, to share the corresponding sub-puzzle) for the first k rounds, then follows the
alternative strategy σ′

i (quit communicating) in the (k + 1)th round.
3Notice that the non-deviant players will also be unable to reconstruct the share for that round.

172

The other players discounting Pi are labelled P−i and are assumed to be following the
same strategy, prescribed by the dealer, of communicating. This is represented by the
(n − 1) vector of strategies σ−i. To restore fairness, P−i must abort communication
after the (k + 1)th round has finished (bounded above by time T) when they realise
that Pi has not sent their sub-puzzle Zk+1,i, concluding that the previous round was the
revelation round r. P−i are not able to homomorphically evaluate (k + 1) sub-puzzles,
since Pi did not communicate Zk+1,i, so they cannot reconstruct the (k + 1)th share.

As a consequence, P−i move to reconstruct the secret from the k previously reconstructed
shares {s1, . . . , sk} by running Recon′. The checking shares s0, essential to ensuring
soundness, is used before P−i outputs a result to confirm whether their outcome from
reconstruction is the true secret.

As we have mentioned, the outcomes −→ω = (ω1, . . . , ωn) for every player depending
on the round that Pi quits relative to revelation value r. We denote the outcome of
deviant player Pi as ωi and the outcome for the other (n− 1) non-deviant players P−i

as ω−i in the following cases:

Case (k+1)<r : As Pi is last to communicate, they will be able to reconstruct the
(k + 1)th puzzle Zk+1 of share sk+1 using the sub-puzzles communicated by all other
players in the (k + 1)th round. Essential to ensuring fairness, intuitively, the time delay
is ensured by the correctness of the HTLP scheme (see Definition 66, Section 6.3.1).

Using the HTLP time-delay scheme in our construction prevents the deviant player Pi

from solving Zk+1 (by running HP.Solve) before time T has elapsed and other players
begin the reconstruction process. Thus, Pi has no time to reconstruct the secret before
players P−i begin reconstructing the secret. Indeed, by the property of compactness
in the HTLP scheme, the players P−i can evaluate the sub-puzzles to obtain the
corresponding share before the end of the reconstruction phase round.

Furthermore, the total number of shares that Pi possesses remains insufficient (< r) to
reconstruct the secret. As a consequence, Pi will be identified as a cheater when P−i

use the checking share to verify their reconstruction solution from shares {s1, . . . , sk},
as they too have an insufficient number of shares to reconstruct s. The output of the
phase will be ⊥. Outcome for all players: −→ω = ⊥.

Note that Pi could attempt to reconstruct the secret with previously reconstructed
shares plus the checking share s0. Whilst this means that Pi potentially has r shares

173

(as is the case if they quit when k + 1 = r − 1) and can reconstruct the correct secret,
the value of r remains unknown and the deviant player no longer has the checking
share to verify that they have reconstructed the correct secret. Even if Pi adopts this
strategy, the best Pi can do is correctly guess the value of r. Additionally, players P−i

will reconstruct an incorrect value and identify Pi as a cheater.

Case (k+1)=r : Whilst Pi has the correct number of shares to reconstruct s (they
do not know this at the time), by the design of our construction there is an upper
bound of time T for the length of a round in the phase, as in the first case, so Pi

cannot solve Zk+1 within this time limit of round (k + 1) to reconstruct the share sk+1.
Furthermore, other players will have started reconstruction of the secret as follows.

When the (k + 1)th round of communication has finished, P−i will abort after not
receiving sub-puzzle Zk+1,i from Pi, moving to output the result from the reconstruction
of the secret with the previous k = (r − 1) derived shares. As the other players have
an insufficient number of shares to reconstruct s, the checking share will demonstrate
that their output is incorrect, so ω−i = ⊥, identifying Pi as a cheater in the process.
Pi will not be able to reconstruct the secret s before players P−i have output ⊥.
Outcome for all players: −→ω = ⊥.

Case (k+1)>r : The non-deviant players P−i will have previously reconstructed k

shares from the phase. If k = r, P−i has the precise number of shares to reconstruct
s and can verify their output using checking share s0, that is ω−i = s. Despite Pi

quitting in the (k + 1)th round, all players will be able to reconstruct the secret s

when k = r. Our construction uses an (r, r + 1) secret sharing scheme such that one of
the (r + 1) shares is a checking share that cannot be used to reconstruct the secret
if soundness must be ensured. Pi can only deviate from their strategy up until the
(r + 1)th round of communication. Outcome for all players: −→ω = s.

Remark 9. Even if deviant players decide to send randomly generated sub-puzzles in
the communication phase, the soundness of our scheme ensures that their deviance
would be detected by honest players in the processing phase of reconstruction. This is
because honest players possess the checking share, which will confirm that they have
reconstructed an incorrect secret. As a result, the output of reconstruction from such
an attack would be ⊥.

174

Remark 10. For simplicity, we consider the case of one deviating player, however, we
note that the construction tolerates up to (r − 1) deviant players cooperating.

Now that we have explained the various outcomes of the reconstruction phase, we show
that fairness and soundness of our construction are ensured.

Fairness Following Definition 63 in Section 6.3, we want to show that there exists
some negligible function negl under security parameter λ such that

Pr[ωi(Γ, (σ′
i, σ−i)) = s] ≤ Pr[ω−i(Γ, (σ′

i, σ−i)) = s] + negl(1λ). (6.1)

Let us note that there are two, mutually exclusive scenarios in which Pi learns s when
deviating:

• When Pi takes strategy σ′
i in round (k + 1) = (r + 1), as in the third case.

Define this scenario as Event1, which has probability Pr[ωi(Γ, (σ′
i, σ−i)) = s] =

Pr[ω−i(Γ, (σ′
i, σ−i)) = s], or

• When Pi takes strategy σ′
i in the round (k + 1) = r, and P−i has an insufficient

number of shares to reconstruct s, by the secrecy of the underlying SS scheme.
Define Event2 to be the scenario in which Pi learns s but P−i does not learn s.

Firstly, the only way for Pi to learn s in this event is to evaluate the rth round
sub-puzzles to obtain puzzle share Zr, solve Zr to obtain share sr and then
reconstruct s from the r shares. The correctness of the HTLP states that the
runtime for solving the puzzle is bounded by a fixed, positive polynomial p(1λ, T)
and the security of the HTLP means that the solution of the puzzles is hidden for
all players that run in (parallel) time T ϵ(·) < T (·), for some ϵ < 1. The definition
of security follows the standard cryptographic security notion of indistinguishable
CPA security. Suppose Pi can do this, meaning that there exists some algorithm
able to solve a puzzle in time T ϵ(1λ). We can use this in a reduction to break the
correctness and security of the HTLP scheme, contradicting these assumptions
in our construction.

As a consequence, the probability that Pi solves Zr to reconstruct the share sr in
time T ϵ is Pr[HP.PSolve(pp1, T ϵ,Zr)→ sr] ≤ 1/2 + negl(1λ) for some negligible

175

function negl over the security parameter of the HTLP. In addition, assuming
the correctness of the underlying SS scheme, we have

Pr[ωi(Γ, (σ′
i, σ−i)) = s]

= Pr[(HP.PSolve(pp1, T ϵ,Zr)→ sr) ∩ (Recon(pp, {s1, . . . , sr}) ̸= ⊥])
≤ (1/2 + negl(1λ)) · negl′(1λ) ≤ negl′′(1λ),

for some negligible function negl′′.

Secondly, assuming the secrecy of the SS scheme, for players P−i with k < r

shares, the probability Pr[Recon(pp, {s1, . . . , sk}) ̸= ⊥] ≤ negl′(1λ). That is,
Pr[Recon(pp, {s1, . . . , sk}) = ⊥] ∈ [1− negl′(1λ), 1], and so
Pr[ω−i(Γ, (σ′

i, σ−i)) = ⊥] ∈ [1− negl′(1λ), 1]. Given this fact,

Pr[Event2] = Pr[(ωi(Γ, (σ′
i, σ−i)) = s) ∩ (ω−i(Γ, (σ′

i, σ−i)) = ⊥)]
≤ negl′′(1λ) · 1 = negl′′(1λ).

Given the two disjoint scenarios in which Pi can reconstruct and learn s, we have;

Pr[ωi(Γ, (σ′
i, σ−i)) = s] = Pr[Event1 ∪ Event2] = Pr[Event1] + Pr[Event2]

= Pr[ω−i(Γ, (σ′
i, σ−i)) = s] + Pr[Event2]

≤ Pr[ω−i(Γ, (σ′
i, σ−i)) = s] + negl′′(1λ).

Therefore Equation 6.1 is satisfied.

Soundness Following Definition 64 from Section 6.3, we want to show that there
exists some negligible function negl under security parameter λ such that

Pr[ω−i(Γ, (σ′
i, σ−i)) /∈ {s,⊥}] ≤ negl(1λ) (6.2)

Recall Section 6.4.1 which presented preliminary definitions related to soundness from
a checking share. Proving soundness is a two-step approach, the first step being to
demonstrate that the checking share in our construction can be used in place of the
sound membership oracle of Definition 78, as protocol-induced auxiliary-information
to ensure soundness.

176

Claim 4. Let (Γfk
,−→σfk

) be the reconstruction mechanism (Γf ,−→σf) with Pj ∈ P possess-
ing k shares, checking share s0, and reconstructed value s′ ∈ Sλ. Let s0 = (y0, f(y0))
for some input y0 computed by the dealer in the sharing phase; if fk(y0) = f(y0), then
Pj concludes that s′ = s, otherwise Pj concludes that s′ ̸= s.

Proof. By Definition 78, we can assume that the following conditions hold:

1. Pr[fk(y0) = f(y0)] ≤ negl(1λ) for s′ ̸= s.

2. Pr[fk(y0) ̸= f(y0)] ≤ negl(1λ) for s′ = s.

Function f is honestly constructed by the dealer during the sharing phase such that
the secret can be recovered from it. Due to the security of the underlying SS scheme,
which we assume in Theorem 8, the function f must be one-to-one. This uniqueness
property means that the function is unique and given some reconstructed value s′ ̸= s,
the probability of f and reconstructed function fk being equal for a specific input is
negligible. So the first inequality holds.

The second inequality holds by the correctness of our construction, proved in Theorem
8. This says that the players will always output s when they have reconstructed s′ = s,
except with negligible probability. Thus the checking share follows Definition 78 and
can be used to provide soundness in the reconstruction phase (Γfk

,−→σfk
).

Following Claim 4, we can now proceed to the second stage of proving soundness in
the following.

Claim 5 (Soundness with a Checking Share). Let Γr,r+1 = (Γfk
,−→σfk

) be the (r, r+1)
fair secret reconstruction phase of our construction (Section 6.5), assuming player
Pj ∈ P has k shares, access to protocol-induced auxiliary information in the form of a
checking share s0 = (y0, f(y0)), defined as above such that function f is determined by
the dealer to reconstruct the secret. Then, the reconstruction phase is sound.

Proof. By the assumptions of Theorem 8, the reconstruction phase of our construction
is fair despite every player having access to protocol-induced auxiliary information in
the form of a checking share s0 and satisfies correctness.

Suppose that deviant player Pi follows an alternative strategy σ′
i which sees player Pi

follow their normal strategy σi for the first k rounds, and then deviate in the round
(k + 1) by quitting communication.

177

Regardless of the round that Pi deviates in with respect to the value r, assuming
players have access to the checking share of the (r, r+1) such that Claim 4 holds,
the fair reconstruction phase (Γfk

,−→σfk
) for rational players satisfies soundness. More

precisely, given an value s′ ∈ Sλ, suppose Pi either reconstructs s′ /∈ {s,⊥} with r
shares or k < r shares:

Pr[ω−i(Γfk
, (σ′

i, σ−i,fk
)) /∈ {s,⊥}] = Pr[(ω−i(Γfk

, (σ′
i, σ−i,fk

)) = s′)]
= Pr[(Recon′(pp′, s0, {s1, . . . , sr}) = s′) ∪ (Recon′(pp′, s0, {s1, . . . , sk}) = s′)]
= Pr[Recon′(pp′, s0, {s1, . . . , sr}) ̸= s] + Pr[Recon′(pp′, s0, {s1, . . . , sk}) = s′]
≤ negl(1λ) + Pr[Recon′(pp′, s0, {s1, . . . , sk}) = s′] = negl(1λ) + Pr[fk(y0) = f(y0)]
≤ negl(1λ) + negl′(1λ) ≤ negl′′(1λ),

for some negligible function negl′′, where negligible function negl′ in the penultimate
inequality comes from the fact that Pr[fk(y0) = f(y0)] ≤ negl′(1λ) when s′ ̸= s.
Therefore Equation 6.2 is satisfied.

6.5 A Concrete FRSS Construction

In this Section, we propose a concrete construction of an FRSS scheme. First, we
present the building blocks used before formalising our construction.

6.5.1 Building Blocks

In our construction, we will use a multiplicative homomorphic time-lock puzzle (Defini-
tion 65). For construction ΠFRSS to satisfy Definition 69, the secret sharing scheme used
as a building block must be compatible with an MHTLP. Thus, we use a homomorphic
multiplicative threshold secret sharing scheme, formally presented in the ensuing.

Let P = {P1, . . . , Pn} be a group of n players, D be the honest dealer, Sλ the set of
secrets under security parameter λ. Assume the share for Pi, i ∈ [n] is selected from
the set Si

4. A (t, n) threshold scheme ΠSS consists of D running setup and sharing
algorithms and taking a secret input from Sλ, mapping Sλ → S1 × . . .× Sn to assign
shares to every player in P of the form (xi, si) for a (t− 1)-degree polynomial

f(x) = s + a1x + a2x
2 + . . . + at−1x

t−1

4We drop the λ in the set of shares for simplicity of notation.

178

such that {a1, . . . , at−1}
$← Sλ and {x1, . . . , xn} ∈ Sλ are distinct inputs, with outputs

si ∈ Si corresponding to xi, ∀i ∈ [n]. The reconstruction algorithm sees a subset of
the players, A ⊆ P either return the secret or the phase of reconstruction fails.

In multiplicative homomorphic threshold secret sharing [119] over groups [44, 42], the
secret space Sλ is a finite group with respect to the operation ⊗. For any t distinct
players Pi, secret space subset S ′ ⊆ Sλ such that |S ′| = t and S ′ = {si1 , . . . , sit}, there
exists a family of function for all l ∈ [t] such that

fil,S′ : Sil
→ S

with {i1, . . . , il} publicly ordered with the following property.

For any secret s ∈ Sλ and shares si1 , . . . , sit that have been distributed to Pi by the
dealer D on input s, the secret can be expressed as follows,

s = fi1,S′(si1)⊗ . . .⊗ fit,S′(sit)

such that, provided the share set Si is a group, the function fi,S′ : Si → Sλ is a group
homomorphism for ∀i,S ′; then ∀l ∈ [t], define

fil,S′(sil
) = f(xil

) ∏
j∈S′,j ̸=il

−xj

(xil
−xj) ,

assuming that (xil
− xj) ∈ Sλ with a multiplicative inverse. In other words, a unit of

Sλ.

6.5.2 Instantiation

Our final contribution is to provide a concrete, fair, and sound RSS construction. To
achieve this we use a specific variant of Shamir’s SS scheme (see above and Section
2.4) and a multiplicative HTLP scheme.

We chose to define a concrete scheme so we can demonstrate the improved efficiency of
the scheme versus if a standard TLP had been used. So far, we have detailed an HTLP
scheme (Definition 65) and provided our generic construction with a homomorphic
operation Ψ in Definition 69. For the concrete instantiation, we will make use of a
multiplicative HTLP (MHTLP) which is multiplicatively homomorphic over the ring
(JN , ·) using the operator ⊗ (see Section 2.3).

High Level Idea We instantiate our construction as follows:

179

• A multiplicative homomorphic threshold secret sharing scheme
ΠSS = (Setup, Share, Recon) (Section 2.4), for a secret space Sλ = JN over a finite
group with respect to multiplication, defined as in [119, 44, 42],

• A MHTLP scheme ΠMHTLP = (MHP.Setup, MHP.Gen, MHP.Eval, MHP.Solve) (Sec-
tion 6.5.1), which is multiplicatively homomorphic over a ring (JN , ·).

The multiplicative operator ⊗ enables the dealer to split the ith share, for some i ∈ [m],
of the secret into n sub-shares in the following way,

si,n = si ·
(

n−1∏
j=1

si,j

)−1

enabling players to homomorphically evaluate sub-puzzles by running MHP.Eval, and
MHP.Solve on the master puzzle output from evaluation to obtain the correctly re-
constructed share for the ith round. To ensure the soundness of the concrete instan-
tiation, the dealer distributes a checking share s0 to all players. This is computed
as s0 = f(y0) (mod N), for some polynomial f determined in the setup phase of the
scheme from a multiplicative homomorphic threshold SS scheme.

Our Concrete Construction To instantiate an FRSS construction with a multi-
plicative homomorphic operator, we use a concrete MHTLP scheme and a concrete SS
scheme, described in the preceding subsection. To do so, we consider an honest dealer
D, n rational players P = {P1, . . . , Pn} and efficiently samplable distribution Sλ = JN

(see Section 2.3 for further details5) under security parameter λ for secret s ∈ JN .
Here, we define N = p · q to be a strong RSA prime (See Section 2.3, Assumption 9,
[73]), time hardness parameter T , and efficiently samplable discrete distributions G,G ′

6. The multiplicative homomorphic SS scheme is an (r, r + 1) threshold scheme such
that, for value r

$← G = {1, . . . , N2}, given r + 1 shares of s, a threshold of r shares is
sufficient to reconstruct s. Observe, in the sharing phase, the honest dealer D takes as
input the secret s ∈ JN . We now present the formal definition.

Definition 80 (Concrete FRSS Construction). Given security parameter λ, time hard-
ness parameter T , an efficiently samplable distribution of the set of secrets Sλ = JN

5Recall, JN is the cyclic group of elements of Z∗
N with Jacobi symbol +1.

6We suggest geometric distributions over N, with the parameter dependent on players outcome
preferences (see Section 6.4.1), denoted β. Let β be the probability of the first success in a repeated
Bernoulli trial, that is, repeatedly tossing a biased coin until the first head appears [61].

180

with the operator ⊗, secret s ∈ Sλ, efficiently samplable discrete distributions G,G ′, we
construct a concrete FRSS scheme with reconstruction phase in the non-simultaneous
setting as a tuple of three PPT algorithms ΠFRSS = (Setup′, Share′, Recon′). Construc-
tion ΠFRSS is built from a multiplicative homomorphic secret sharing scheme ΠSS =
(Setup, Share, Recon) and an MHTLP scheme ΠMHTLP = (MHP.Setup, MHP.Gen, MHP.Solve,

MHP.Eval), and we define the scheme as follows:

1. Setup′(1λ, T) $→ pp′ : given the inputs 1λ, T , the dealer performs the following
steps:

(a) MHP.Setup(1λ, T) $→ pp1: Uniformly sample g̃
$← Z∗

N and set g := −g̃2(mod N)
such that g ∈ JN , where g is the generator of JN . Compute h := g2T .7

Define pp1 := (T , N, g, h).

(b) Setup(1λ, T) $→ pp2: Define pp2 := {p, {y0, . . . , yr}} with prime p > {s, n}
and with {y0, . . . , yr}

$← JN .

Additionally, let r
$← G be the sampled revelation value r and d

$← G ′ a random
value, and output r, d and public parameters pp′ := {pp1, pp2}.

2. Share′(pp′, s) $→ {s0, {list1, . . . , listn}}: takes as input the secret s ∈ JN and
public parameters pp′. The output consists of a checking share s0 and lists
labelled listj for j ∈ [n], each composed of m sub-puzzles for m = r + d.

(a) Share(pp2, s) $→ {s0, {s1, . . . , sr}}: inputs are the public parameters pp2 and
secret s ∈ JN . The dealer outputs (r + 1) shares si, determined as follows:
D chooses a random r degree polynomial f(x) = a0 +a1x+a2x

2 + . . .+arx
r

where a0 = s and {a1, . . . , ar}
$← JN. The dealer then determines shares si

for i ∈ {0, . . . , r}, computed as si = f(yi) (mod N) such that si ∈ JN .

(b) {sr+1, . . . , sm}
$← JN , randomly sample d fake shares from secret space JN .

(c) In our construction, shares {s1, . . . , sr} are split into n sub-shares so that
they can be distributed to P (along with other, fake sub-shares). The
checking share s0 is publicly broadcast and used to check soundness. Dis-
tributing sub-shares to P enables just one share to be reconstructed per
round, gradually releasing the secret to players in the reconstruction phase.

How are sub-shares created by the dealer during the setup phase?
7The dealer can optimise h by reducing the exponent modulo ϕ(N)/2 first, as suggested in [97].

181

Here, D creates n sub-shares for each of the m shares they have derived as
follows: for a fixed i ∈ [m], the dealer samples sub-puzzles si,j

$← QRN for
j ∈ {1, n− 1} and defines the nth sub-share to be

si,n = si ·
(

n−1∏
j=1

si,j

)−1

for every i ∈ [m]. The ith share is defined as

si = ∏
j∈[n]

si,j (mod N). (∗)

(d) Next, D generates sub-puzzles Zi,j to embed the sub-shares as follows. It
runs MHP.Gen(pp1, si,j) on input public parameters pp1 and sub-shares si,j:
∀i ∈ [m], ∀j ∈ [n], uniformly sample ri,j

$← {1, · · · , N2}, and generate the
elements ui,j := gri,j (mod N), vi,j := hri,j · si,j(mod N).
Define the n sub-puzzles for the ith share to be Zi,j := (ui,j, vi,j) ∈ J2

N .
The dealer outputs sub-puzzles Zi,j, ∀i ∈ [m],∀j ∈ [n].

(e) D distributes listj = {Z1,j, · · · ,Zr,j,Zr+1,j, · · · ,Zm,j} to the corresponding
player Pj, for every j ∈ [n].

3. The dealer distributes the following:

(a) D broadcasts {pp′, s0} to all P the public parameters pp′ and checking share
s0 = f(y0) (mod N), determined in the second step above.

(b) D distributes listj to Pj for every j ∈ [n].

In the reconstruction phase, whilst sending sub-puzzles for communication phase k,
for some 1 < k ≤ m, players simultaneously process the set of n sub-puzzles that they
obtained in the previous round. In the processing phase, assume that players are in
the round (k − 1) of processing. For any j ∈ [n], Pj does the following:

1. MHP.Eval(pp1, T ,⊗,Zk−1,1, · · · ,Zk−1,n)→Zk−1: input public parameters pp1, hard-
ness parameter T , and the list of n sub-puzzles for the (k− 1)th round. Compute
uk−1 := Πn

j=1uk−1,j(mod N), vk−1 := Πn
j=1vk−1,j(mod N) and output the homo-

morphic puzzle Zk−1 := (uk−1, vk−1) of share sk−1.

2. MHP.Solve(pp1, T ,Zk−1)→ sk−1: on input, the public parameters pp1, hardness
parameter T , and puzzle share Zk−1, compute wk−1 := u2T

k−1(mod N) by sequential
squaring. Output sk−1 := vk−1/wk−1 as the solution to the puzzle. Move to
reconstruct s from shares {s1, . . . , sk−1}.

182

The dealer in a SS scheme will have created sub-shares using (∗) for the concrete
instantiation of our construction using an MHTLP. As a consequence, following
the correctness of the MHTLP construction [97], sk−1 = Πj=nsi,j, which is
precisely the (k − 1)th share.

3. Recon′(pp′, s0, {s1, . . . , sk−1}) → {s,⊥}: from the secret sharing scheme, run
Recon(pp2, {s1, . . . , sk−1}) → {s,⊥} with inputs of the public parameters pp2

and (k − 1) reconstructed shares of the secret {s1, . . . , sk−1}.

Outputting the secret is done firstly by players using polynomial interpolation
(see Section 6.5.1):

f ′(x) = ∏
i∈[k−1]

[
f(yi) ·

∏
l∈[k−1],l ̸=i

(x−xl)
(xi−xl)

]
= a′

0 + a′
1x + a′

2x
2 + . . . + a′

k−1x
k−1

using the shares {s1, . . . , sk−1} such that a′
0 = s′.

4. Pj uses checking share s0 to see if f ′(s0) = f(s0). If this equality holds, it must
be the case that (k − 1) = r and so s′ = s is the output. If (k − 1) ̸= r, the
equality will not hold, which means that s′ ̸= s. The output may be ⊥ depending
on the following.

5. If Pj outputs ⊥, but no player quits in round k of communication and every player
Pj ∈ P has listj ̸= ∅, then players go to (k + 1)th round of the reconstruction
phase. Otherwise, the output ⊥ is the outcome of the reconstruction game.

The concrete instantiation of our scheme relies on standard cryptographic and number-
theoretic assumptions regarding the building blocks it is based on. Namely, Shamir’s
SS [110] and the MHTLP scheme from [97]. More specifically, letting the modulus N

be a strong RSA modulus; if the sequential squaring (Definition 10 in Section 2.3) and
Decisional Diffie-Hellman (Definition 4 in Section 2.3) assumptions hold over JN , then
the MHTLP scheme of [97] is proven secure.

In the proceeding, we will conclude by discussing the efficiency of our concrete con-
struction.

183

6.5.3 Efficiency Considerations

In general, our concrete construction (ΠFRSS) is less efficient than a standard SS scheme
(Definition 19, Section 2.4) like Shamir’s scheme [110]. This is due to the inclusion of
an MHTLP building block, which increases the computational burden on the players
participating in reconstruction as they need to evaluate and solve a puzzle in each
round. Nevertheless, we believe the time-delay feature of a TLP is essential to satisfying
fairness in schemes seeking to also satisfy soundness, and this is especially important
for rational SS schemes in which both properties are highly desirable.

However, in the context of RSS schemes utilising time-delay mechanisms, our scheme
is the first to use a time delay with a homomorphic property (recount Definition 65 of
an HTLP in Section 6.3). The consequence of this fact is that ΠFRSS is generally more
efficient in direct comparison to other SS schemes that incorporate a time delay. To
provide context, we will start by comparing the efficiency of ΠFRSS built from a HTLP
vs. TLP. Proceeding with this, we will compare the efficiency of our instantiation to a
closely aligned RSS scheme, proposed by the authors of [40], which utilises a different
type of time delay.

HTLPs vs. TLPs The homomorphic property of an HTLP scheme means that solving
a puzzle, the most computationally expensive step for the players, need only be run once
rather than n times in the processing phase of our scheme. Given puzzles have a time
hardness parameter of T , the computational cost of running HP.Solve is Ω(2T)-steps 8.

Indeed, if we were to use a standard TLP in the processing phase of our scheme, each
player would independently have to solve each of the n sub-puzzles using P.Solve, and
then evaluate the n sub-shares to obtain the share for that round. Conversely, by
using a HTLP in our scheme, players must run HP.Eval once over the n sub-puzzles,
outputting a master puzzle, and proceed to run HP.Solve once on this master puzzle to
obtain the corresponding share. Thus, HTLPs are more efficient by a linear factor of
n, where n corresponds to the number of players participating in the reconstruction
phase.

We highlight the importance of the homomorphic property in the HTLP scheme, which
is key to satisfying the property of compactness (Section 6.3.1, Definition 68). This

8The computational complexity of the puzzle-solving algorithm HP.Solve is the same as solving a
standard TLP scheme using algorithm P.Solve.

184

means that the runtime of homomorphically evaluating puzzles is bounded above
by a fixed polynomial that only depends on the security parameter λ and not the
time hardness parameter T . Otherwise, the trivial solution would be indeed to use a
standard TLP scheme.

In more detail, we use a multiplicative-homomorphic TLP rather than a standard
TLP to reduce the computational overhead for players by a linear factor. Recall, the
compactness property of the MHTLP scheme (Definition 68, Section 6.3.1) ensures,
informally, that the length of evaluated puzzle Zi of share si, only depends on the
security parameter λ.

As a consequence, in the context of our construction, it is more efficient for players to
solve the evaluated puzzle Zi than it is to solve individual sub-puzzles Zi,j for a fixed
i ∈ [m], ∀j ∈ [n], obtain sub-shares si,j and using (∗) as a function to evaluate the
share si. More succinctly, it is more efficient for the players to evaluate the function
of embedded sub-shares than it is for them to evaluate the function of the decrypted
sub-puzzles.

To be precise, ΠFRSS requires exactly one run of MHP.Eval, which translates to n

multiplications. This is followed by one run of MHP.Solve with complexity Ω(2T). If
we used a plain TLP in the instantiation instead, assuming the same parameters, we
require n runs of P.Solve of complexity Ω(2T), followed by n runs of P.Eval, which
means n multiplications.

Comparison to [40] It is important to highlight our scheme closely follows the work
of [40]. The authors of [40] achieve utility (preference of outcome) independence
by designing a scheme that encrypts shares (computed using Shamir’s SS scheme)
using memory-bounded functions (MBFs) and further splits the encrypted shares into
sub-shares, distributed to players.

During processing, players independently evaluate the encrypted sub-shares to obtain
the encrypted share, decrypt and then reconstruct the polynomial to obtain the secret.
They use a specific form of side-information, called a checking share, which is an
actual share of the secret that players can use to confirm they have reconstructed
the correct secret, thus achieving soundness. In other words, the construction of [40]
requires players to independently decrypt each share before they proceed to the secret
reconstruction using the Shamir SS scheme.

185

We believe our scheme is more efficient due to a distinction in design stemming from
the homomorphic property of an HTLP. First and foremost, following the preceding
discussion, the advantage of using HTLPs is an efficiency improvement for the honest
players evaluating puzzles in comparison to using standard TLPs or a time-delay
encryption mechanism. Recall those traditional time-delay methods can create a
so-called ‘computational bottleneck’.

Moreover, the [40] scheme involves linearly evaluating sub-shares encrypted using
memory-bound functions for the time-delay to ensure fairness of the scheme and
reconstructing the secret using Shamir’s SS scheme. In contrast, our generic construc-
tion uses CPU-bound HTLPs to ensure a time delay in rounds of the scheme. In
our opinion, basing the time-delay primitive on CPU-bound functions as opposed to
memory-bound functions captures a more realistic, inexpensive way to implement a SS
scheme construction.

In other words, a justification for using MBFs in [40, 96] is that disparities in the
computational power of players can cause unfairness when using standard TLPs for
the time delay. However, with reasonable assumptions on the CPU power of players,
this disparity is not significant. That is, we argue the efficiency improvement in
using an HTLP mitigates any disparities in CPU power between players. To see this,
evaluating several puzzles homomorphically, and then solving just one puzzle requires
fewer computational steps than solving individual puzzles and evaluating a function
over the outputs. Further, it holds that processors are faster than memory and scale
better; even more so, fast memory is considerably more expensive. We conjecture that
it is easier in practice to raise the computational requirements of a player than it is
memory accesses, up to a point, as adding more processors to a computer is more
accessible than making memory access faster.

6.6 Summary and Outlook

In this Chapter, we proposed a generic construction for a fair and sound rational
secret-sharing scheme in the non-simultaneous setting of communication, built from ho-
momorphic time-lock puzzles and any correct threshold secret-sharing scheme. Further,
we proposed a concrete scheme, whose security relied on standard assumptions, that
was built from multiplicative secret sharing and multiplicative HTLPs. In defining a
concrete FRSS scheme we were able to analyse efficiency and make comparisons to

186

existing RSS literature incorporating a time-delay mechanism. Lastly, we showed that
our generic construction of an FRSS provably satisfied the properties of correctness,
secrecy, fairness, and soundness.

Advances in HTLPs Recently, similar areas of research to our work in this Chapter
(related to our paper [83]) include contributions from the authors of [115, 95] whose
research focuses on the practicalities of time-based primitives like HTLPs, as well as
verifiable delay functions (VDFs) [23], and timed commitments [23, 78].

In particular, the authors of [115] propose a decentralised service called OpenSquare
which outsources the computation of repeated modular squaring, inherent to HTLPs,
via smart contracts. Their motivation is to address the practicalities of HTLPs for
large-scale application adoption. Specific concerns that the authors address are the
computational effort in performing the squaring operation and the prediction of the
time hardness parameter T in an HTLP scheme so that security holds in the real world.
Furthermore, the authors of [95] look at practical HTLPs in the sense of applications
and verifiability that is missing in current HTLP schemes. One of their proposed
solutions is a protocol allowing a puzzle solver to convince others of the solution’s
correctness or invalidity of the puzzle, to save unnecessary additional puzzle solvers
performing the computation.

Future Work In our opinion, an obvious avenue of future work for this Chapter is to
implement and optimise our instantiation of an FRSS construction. In line with our
previous Chapters (4 and 5), we also think it is important for the security of real-world
applications to consider an untrusted dealer of secret shares.

Moreover, we believe it is natural to extend the definition of utility functions (see
Section 6.4.1), and consequently, the definition of fairness of our FRSS scheme to
incorporate parameters of time. This idea is supported by the recent work by the
authors of [55] who investigated the relationship between the time versus monetary
gain of rational decision-making in the game-theoretical setting. They demonstrated
that individuals have similar preferences with respect to either type of gain resulting
from the outcome unless the gain in time or money is significant. In the context of
rational secret sharing, we leave this desirable extension for future work.

In addition, we think it is worthwhile to integrate the ideas and contributions from
follow-up work [78, 115, 95]. In particular, we think it is of interest to understand

187

how to incorporate the ideas proposed in [95] in which a so-called puzzle solver can
convince others of the correct output. This property may be usefully applied in our
work to attain soundness using alternative, more efficient methods to protocol-induced
side information. Moreover, the outsourced HTLP puzzle solution (OpenSquare) [115]
traverses research into HTLP and UE primitives featured in this Thesis. Thus, we
believe it worthwhile to consider how UE and time-delay primitives can be combined
to suit the application of outsourced solutions like OpenSquare.

Recall the contributions from Chapter 5, in which we proposed a generic dynamic multi-
server UE (DMUE) construction built from secret sharing. We think it is beneficial to
UE literature to explore the gap between the contributions in this Chapter and DMUE.
In particular, it would be interesting to explore whether we can build DMUE using an
FRSS construction. In doing so, we can model DMUE security using game theory to
demonstrate the satisfaction of desirable properties of fairness and soundness when
viewing servers are rational players.

188

Chapter 7

Concluding Remarks

In this Thesis, we explored the relationship between time and communication in the
context of the updatable encryption primitive and secret sharing protocols. First, we
lifted updatable encryption to the public key setting and considered different variations
of this primitive depending on the application, with an emphasis on security modelling.
In the second part of this Thesis, we utilised time delay as a tool to satisfy certain
properties in a rational secret-sharing scheme. We will briefly recount each Chapter,
followed by a discussion on the Chapters related to the PKUE primitive, and conclude
by remarking on future work.

In Chapter 3 we introduced a public-key definition (PKUE) of the updatable encryption
primitive [24, 52, 92] followed by a new security framework for the public key setting. We
defined a standard notion of security in UE literature known as ciphertext unlinkability,
which intuitively captured the advantage an adversary has in determining the origin
of the ciphertext, be it that it has been produced via fresh encryption or through
the update process. Our second security definition was a new notion called epoch
confidentiality formalised to encompass the leakage of metadata, such as the number
of key rotations of a ciphertext, which directly translates to the age of a ciphertext.

In Chapter 4 we extended our understanding of the PKUE primitive in the context of
public key infrastructures (PKI). Of primary concern, the key generation centre (KGC)
that generates the public and secret key pairs associated with an epoch could behave
dishonestly, thus, we sought a way to reduce trust in the KGC. The solution we settled
on was to incorporate the certificateless public key encryption primitive (CL-PKE),
introduced by [3], as the underlying encryption scheme used to build a PKUE scheme.
The result was a new certificateless public-key updatable encryption primitive labelled

189

CLUE, followed by a security framework and provably secure concrete construction
built from key-homomorphic pseudorandom functions (KH-PRFs) [24].

In Chapter 5 we chose to explore the assumed trust in the server performing PKUE
ciphertext updates. We believe a PKUE scheme would lack resilience if a lone server
was relied upon to update ciphertexts over a long period. Thus, we were motivated
to define a multi-server PKUE scheme. The primitive we settled on, labelled DMUE,
further extended this idea to support dynamic changes in the servers participating,
allowing for a change in a committee of servers at the start of each epoch. In addition
to providing a multi-server security framework capturing confidentiality and integrity
notions, we formalised a generic DMUE construction. Intuitively, the construction
was built from single-server PKUE and a dynamic-proactive secret sharing (DPSS)
protocol, such that a threshold number of servers participate to reconstruct the master
token for that epoch using token shares.

In Chapter 6 our attention turned to the role of time in communication between par-
ticipants of a rational secret sharing (RSS) protocol to satisfy two desirable properties.
Concretely, we were motivated to define a more efficient construction of an RSS scheme
that satisfied fairness and soundness when players communicate non-simultaneously.
Inspired by secret sharing literature [96, 40], we utilised the use of a time-delay mecha-
nism to mitigate the unfairness in an RSS scheme when side information is being used
to ensure soundness. We settled on a homomorphic time lock puzzle (HTLP) [97] time
delay mechanism to build a generic construction labelled FRSS, with the homomorphic
property of the HTLP being a new and essential feature to prevent the computational
bottleneck inherent in other time-delay mechanisms.

Discussions and Conclusions We wish to clarify the running themes and distinctions
of our PKUE contributions. To be clear, Chapters 4 and 5 build upon the foundational
Chapter 3 with respect to public-key updatable encryption (PKUE), but there are
clear adaptations and omissions regarding security notions as the reader progresses
through this Thesis. Specifically, the notion of epoch confidentiality from Chapter 3
is not modelled for CLUE or DMUE. This is an intentional decision as we focused
on mitigating issues outside of the leakage of metadata in the latter two Chapters.
Specifically, the problems created when epoch secret keys are held in escrow and a
single point of failure respectively. Whilst our focus turned to new concerns, we observe
that it should be possible to achieve instances of CLUE and DMUE satisfying epoch
confidentiality, but this has been reserved for future work.

190

Moreover, the contrast in security modelling for Chapters 3 and 4 versus Chapter 5 is
due to the choice of probabilistic versus deterministic ciphertext updates respectively.
In particular, the latter choice meant we could model a strictly stronger ciphertext
confidentiality notion compared to the previous Chapters, and more importantly, model
a new ciphertext integrity notion which is impossible to capture when ciphertexts are
re-randomised during the update process. We highlight that it is possible to design
deterministic PKUE and CLUE should a given application require ciphertext integrity
in future. Nevertheless, it was a purposeful decision to diversify the Definitions and
security modelling of PKUE with bi-directional key and ciphertext updates, to highlight
the PKUE primitives’ security capabilities and suit the many different scenarios for
which it can be applied.

Furthermore, we observe that there has been a recent trend in UE literature to move
towards designing no-directional tokens which are tokens independent from the epoch
secret keys [104, 112, 31]. As a result, the need for complex models to capture inferable
information in our PKUE setting can be removed. Alas, the no-directional setting
is in its infancy relative to bi-directional UE and only recently have constructions
been proposed from more standard cryptographic building blocks. In addition, there
is an ongoing challenge in no-directional literature to capture a notion of ciphertext
confidentiality stronger than chosen plaintext security. Given our emphasis on attaining
the strongest level of ciphertext confidentiality possible in the chosen setting of PKUE,
we decided to continue research in the bi-directional setting but we intend to consider
no-directional updates outside of the confines of this Thesis. For instance, it may be
desirable to omit epoch confidentiality to achieve more efficient PKUE schemes with
no-directional, probabilistic updates.

Future Work Globally, we are transitioning from cloud computing to the "ubiqui-
tous computing" phase of the digital revolution. As such, the threat landscape of
communication and storage of sensitive information is evolving. As a consequence,
new cryptographic schemes are required to continue guaranteeing desirable levels of
security balanced with the need for application-specific solutions. By way of illustra-
tion, internet-of-things (IoT) devices, vehicle-to-vehicle communication, and smart
cities are all scenarios currently being researched by the cryptographic community,
with each case necessitating the design of new protocols to support their complex
use-case architectures. We believe that privacy-enhancing technologies and time in
communication are essential components of such frameworks, for instance, there need

191

to be efficient, lightweight mechanisms for updating cryptographic keys in group key
management protocols after a new device has entered or left a network.

In the context of this Thesis, improving efficiency has continued to be an open challenge
for both updatable encryption and secret sharing primitives which we discussed in-depth
in the summary section of each Chapter. Moving forward, we believe an increased
effort into building and implementing more efficient time-based cryptographic schemes
is the direction future research should take in this field to be meaningful in light of the
current research mentioned above.

192

References

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard, memory-
bound functions. ACM Transactions on Internet Technology, 5:299–327, 2005.

[2] S. Al-Riyami and K. Paterson. Cbe from cl-pke: A generic construction and
efficient schemes. In Lecture Notes in Computer Science, volume 3386, pages
398–415. International Workshop on Public Key Cryptography - PKC 2005,
Springer, 2005.

[3] S.S Al-Riyami and K.G Paterson. Certificateless public key cryptography. In
Lecture Notes in Computer Science, volume 2894, pages 452–473. Advances in
Cryptology, ASIACRYPT 2003, Springer, 2003.

[4] G. Asharov. Towards characterizing complete fairness in secure two-party com-
putation. In Y. Lindell, editor, Lecture Notes in Computer Science, volume 8349,
pages 291–316. Theory of Cryptography Conference, TCC 2014, Springer, 2014.

[5] G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret
sharing. In S. Halevi, editor, Lecture Notes in Computer Science, volume 5677,
pages 559–576. Annual International Cryptology Conference, CRYPTO 2009,
Springer, 2009.

[6] G. Ateniese, K. Benson, and S. Hohenberger. Key-private proxy re-encryption.
In M. Fischlin, editor, Lecture Notes in Computer Science, volume 5473, pages
279–294. Cryptographers’ Track at the RSA Conference- CT-RSA 2009, Springer,
2009.

[7] J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption
without pairing. In Lecture Notes in Computer Science, volume 3650, pages
134–148. International conference on information security - ISC 2005, Springer,
2005.

[8] L. Ballard, M. Green, B. De Medeiros, and F. Monrose. Correlation-resistant
storage via keyword-searchable encryption. IACR Cryptol. ePrint Arch., 2005:417,
2005.

[9] J. Baron, K. El Defrawy, J. Lampkins, and R. Ostrovsky. Communication-
optimal proactive secret sharing for dynamic groups. In T. Malkin, V. Kolesnikov,
A. Lewko, and M. Polychronakis, editors, Lecture Notes in Computer Science,
volume 9092, pages 23–41. International Conference on Applied Cryptography
and Network Security, ACNS 2015, Springer, 2015.

193

[10] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis,
Technion-Israel Institute of technology, Faculty of computer science, 1996.

[11] A. Beimel. Secret-sharing schemes: A survey. In Y.M. Chee et al., editors,
Lecture Notes in Computer Science, volume 6639, pages 11–46. International
Conference on Coding and Cryptology, Springer, 2011.

[12] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In Lecture Notes in Computer Science, volume 2248, pages 566–582.
Advances in Cryptology- ASIACRYPT 2001, Springer, 2001.

[13] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Lecture Notes in Computer Science,
volume 1807, pages 259–274. Advances in Cryptology — EUROCRYPT 2000,
Springer, 2000.

[14] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 62–73. Association for Computing
Machinery, 1993.

[15] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin,
T. Rabin, and L. Reyzin. Can a blockchain keep a secret? IACR Cryptology
ePrint Archive, 2020:464, 2020.

[16] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the AFIPS Na-
tional Computer Conference, NCC 1979, volume 48, pages 313–318. International
Workshop on Managing Requirements Knowledge (MARK), IEEE, 1979.

[17] M. Blaze and M. Bleumer, G.and Strauss. Divertible protocols and atomic proxy
cryptography. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 127–144. Springer, 1998.

[18] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In J.L. Cachin, C. Camenisch, editor, Lecture Notes
in Computer Science, volume 3027, pages 223–238. Advances in Cryptology-
EUROCRYPT 2004, Springer, 2004.

[19] D. Boneh, S. Eskandarian, S. Kim, and M. Shih. Improving speed and security
in updatable encryption schemes. In S. Moriai and H. Wang, editors, Advances
in Cryptology – ASIACRYPT 2020, volume 12493. Lecture Notes in Computer
Science, Springer, 2020.

[20] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing.
In J. Kilian, editor, Lecture Notes in Computer Science, volume 2139, pages
213–229. Advances in Cryptology- CRYPTO 2001, Springer, 2001.

[21] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. Key homomorphic
prfs and their applications. Cryptology ePrint Archive, Report 2015/220, 2015.
https://eprint.iacr.org/2015/220.

194

https://eprint.iacr.org/2015/220

[22] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In
C. Boyd, editor, Lecture Notes in Computer Science, volume 2248, pages 514–532.
Advances in Cryptology- ASIACRYPT 2001, Springer, 2001.

[23] D. Boneh and M. Naor. Timed commitments. In Lecture Notes in Computer
Science, volume 1880, pages 236–254. Advances in Cryptology, CRYPTO 2000,
Springer, 2000.

[24] K. Boneh, D.and Lewi, H. Montgomery, and A. Raghunathan. Key homomorphic
prfs and their applications. In R. Canetti and Garay J.A., editors, Lecture Notes
in Computer Science, volume 8042, pages 410–428. Advances in Cryptology,
CRYPTO 2013, Springer, 2013.

[25] C. Boyd, Davies. G.T., K. Gjøsteen, and Y. Jiang. Fast and secure updatable
encryption†. Technical report, Cryptology ePrint Archive, Report 2019/1457,
2019. https://eprint.iacr.org/2019/1457.pdf, 2020.

[26] J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The
wonderful world of global random oracles. In Lecture Notes in Computer Science,
volume 10820, pages 280–312. Advances in Cryptology - EUROCRYPT 2018,
Springer, 2018.

[27] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

[28] R. Canetti, H. Krawczyk, and J.B. Nielsen. Relaxing chosen-ciphertext security.
In Lecture Notes in Computer Science, volume 2729, pages 565–582. Advances in
Cryptology- CRYPTO 2003, Springer, 2003.

[29] J. Cathalo, B. Libert, and J. Quisquater. Efficient and non-interactive timed-
release encryption. In S. Qing, W. Mao, J. Lopez, and G. Wang, editors, Lecture
Notes in Computer Science, volume 3783, pages 291–303. International Conference
on Information and Communications Security, ICICS 2005, Springer, 2005.

[30] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure
protocols. In C. Pomerance, editor, Lecture Notes in Computer Science, volume
293, pages 11–19. Advances in Cryptology- CRYPTO 1987, Springer, 1988.

[31] H. Chen, S. Fu, and K. Liang. No-directional and backward-leak uni-directional
updatable encryption are equivalent. In Lecture Notes in Computer Science,
volume 13554, pages 387–407. European Symposium on Research in Computer
Security - ESORICS 2022, Springer, 2022.

[32] L. Chen, Y. Li, and Q. Tang. Cca updatable encryption against malicious re-
encryption attacks. In Lecture Notes in Computer Science, volume 12493, pages
590–620. Advances in Cryptology - ASIACRYPT 2020, Springer, 2020.

[33] X. Chen, Y. Liu, Y. Li, and C. Lin. Threshold proxy re-encryption and its
application in blockchain. In X. Sun, Z. Pan, and E. Bertino, editors, Lecture
Notes in Computer Science, volume 11066, pages 16–25. Cloud Computing and
Security - ICCCS 2018, Springer, 2018.

195

[34] V. Cini, S. Ramacher, D. Slamanig, C. Striecks, and E. Tairi. Updatable
signatures and message authentication codes. In J.A. Garay, editor, Lecture Notes
in Computer Science, volume 12710, pages 691–723. Public Key Cryptography,
PKC 2021, Springer, 2021.

[35] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
page 364–369. STOC 1986, Association for Computing Machinery, 1986.

[36] PCI Security Standards Council. Data security standard (pci dss v4.0). Technical
report, https://www.pcisecuritystandards.org/, 2022.

[37] R. Cramer, I. Damgård, and U. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In B. Preneel, editor, Lecture Notes
in Computer Science, volume 1807, pages 316–334. Advances in Cryptology-
EUROCRYPT 2000, Springer, 2000.

[38] R. Cramer, I. Damgård, and J.B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Lecture Notes in Computer Science, volume 2045,
pages 280–300. Advances in Cryptology — EUROCRYPT 2001, Springer, 2001.

[39] A. Davidson, A. Deo, E. Lee, and K. Martin. Strong post-compromise secure
proxy re-encryption. In Australasian Conference on Information Security and
Privacy- ACISP 2019, volume 11547, pages 58–77. Lecture Notes in Computer
Science, Springer, 2019.

[40] S. J. De and Asim K. Pal. Achieving correctness in fair rational secret sharing. In
M. Abdalla, Cristina N. R., and R. Dahab, editors, Lecture Notes in Computer
Science, volume 8257, pages 139–161. International Conference on Cryptology
and Network Security, CANS 2013, Springer, 2013.

[41] A.W Dent. A survey of certificateless encryption schemes and security models.
International Journal of Information Security, 7(5):349–377, 2008.

[42] Y. Desmedt, G. Di Crescenzo, and M. Burmester. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography. In J. Pieprzyk
and R. Safavi-Naini, editors, Lecture Notes in Computer Science, volume 917,
pages 19–32. Advances in Cryptology, ASIACRYPT 1994, Springer, 1994.

[43] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures.
In J. Feigenbaum, editor, Lecture Notes in Computer Science, volume 576, pages
457–469. Advances in Cryptology- CRYPTO 1991, Springer, 1991.

[44] Y. G. Desmedt and Y. Frankel. Homomorphic zero-knowledge threshold schemes
over any finite abelian group. SIAM journal on Discrete Mathematics, 7(4):667–
679, 1994.

[45] Y. Dodis, H. Karthikeyan, and D. Wichs. Updatable public key encryption in
the standard model. In Lecture Notes in Computer Science, volume 13044, pages
254–285. Theory of Cryptography Conference - TCC 2021, Springer, 2021.

196

[46] Y. Dodis and T. Rabin. Cryptography and game theory. Algorithmic Game
Theory, pages 181–207, 2007.

[47] N. Döttling and D. Schröder. Efficient pseudorandom functions via on-the-fly
adaptation. In Lecture Notes in Computer Science, volume 9215, pages 329–350.
Annual Cryptology Conference, Springer, 2015.

[48] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting
spam. In D. Boneh, editor, Lecture Notes in Computer Science, volume 2729,
pages 426–444. Advances in Cryptology, CRYPTO 2003, Springer, 2003.

[49] E. Eaton, D. Jao, C. Komlo, and Y. Mokrani. Towards post-quantum key-
updatable public-key encryption via supersingular isogenies. In Lecture Notes in
Computer Science, volume 13203, pages 461–482. Selected Areas in Cryptography:
28th International Conference - SAC 2022, Springer, 2022.

[50] A. Escala and J. Groth. Fine-tuning groth-sahai proofs. In Lecture Notes in
Computer Science, volume 8383, pages 630–649. Public-Key Cryptography- PKC
2014, Springer, 2014.

[51] D. Evans, V. Kolesnikov, M. Rosulek, et al. A pragmatic introduction to secure
multi-party computation. Foundations and Trends® in Privacy and Security,
2(2-3):70–246, 2018.

[52] A. Everspaugh, K. Paterson, T. Ristenpart, and S. Scott. Key rotation for
authenticated encryption. In J. Katz and H. Shacham, editors, Lecture Note
in Computer Science, volume 10403, pages 98–129. Advances in Cryptology-
CRYPTO 2017, 2017.

[53] A. Fabrega, U. Maurer, and M. Mularczyk. A fresh approach to updatable
symmetric encryption. Cryptology ePrint Archive, 2021.

[54] A. Faonio, D. Hofheinz, and L. Russo. Almost tightly-secure re-randomizable and
replayable cca-secure public key encryption. Cryptology ePrint Archive, 2023.

[55] A. Festjens, S. Bruyneel, E. Diecidue, and S. Dewitte. Time-based versus money-
based decision making under risk: An experimental investigation. Journal of
Economic Psychology, 50:52–72, 2015.

[56] G. Fuchsbauer, J. Katz, and D. Naccache. Efficient rational secret sharing
in standard communication networks. In D. Micciancio, editor, Lecture Notes
in Computer Science, volume 5978, pages 419–436. Theory of Cryptography
Conference, TCC 2010, Springer, 2010.

[57] E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption
at minimum cost. In Lecture Notes in Computer Science, volume 1560, pages 53–
68. International Workshop on Public Key Cryptography - PKC 1999, Springer,
1999.

[58] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

197

[59] Y. J. Galteland and J. Pan. Backward-leak uni-directional updatable encryption
from (homomorphic) public key encryption. Cryptology ePrint Archive, 2022.

[60] C. Gentry. Certificate-based encryption and the certificate revocation problem.
In Lecture Notes in Computer Science, volume 2656, pages 272–293. Advances in
Cryptology - EUROCRYPT 2003, Springer, 2003.

[61] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure
two-party computation. Journal of the ACM (JACM), 58(6):1–37, 2011.

[62] S. D. Gordon and J. Katz. Rational secret sharing, revisited. In Lecture Notes
in Computer Science, volume 4116, pages 229–241. International Conference on
Security and Cryptography for Networks, SCN 2006, Springer, 2006.

[63] V. Goyal. Reducing trust in the pkg in identity based cryptosystems. In Lecture
Notes in Computer Science, volume 4622, pages 430–447. Advances in Cryptology:
27th Annual International Cryptology Conference - CRYPTO 2007, Springer,
2007.

[64] V. Goyal, O. Pandey, and B. Sahai, A.and Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, page 89–98. CCS 2006,
Association for Computing Machinery, 2006.

[65] J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack
secure cryptosystems. In Lecture Notes in Computer Science, volume 2951, pages
152–170. TCC, Springer, 2004.

[66] J. Groth. Simulation-sound nizk proofs for a practical language and constant
size group signatures. In Lecture Notes in Computer Science, volume 4284, pages
444–459. Advantages in Cryptology- ASIACRYPT 2006, Springer, 2006.

[67] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In N. Smart, editor, Lecture Notes in Computer Science, volume 4965, pages
415–432. Advances in Cryptology- EUROCRYPT 2008, Springer, 2008.

[68] Z. Guo, H.and Zhang, J. Zhang, and C. Chen. Towards a secure certificateless
proxy re-encryption scheme. In Lecture Notes in Computer Science, volume 8209,
pages 330–346. International Conference on Provable Security - ProvSec 2013,
Springer, 2013.

[69] J. Halpern and V. Teague. Rational secret sharing and multiparty computation:
Extended abstract. In Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing, page 623–632. STOC 2004, Association for Computing
Machinery, 2004.

[70] L. Harn, C. Lin, and Y. Li. Fair secret reconstruction in (t, n) secret sharing.
Journal of Information Security and Applications, 23:1–7, 2015.

198

[71] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. In Lecture Notes in Computer Science, vol-
ume 963, pages 339–352. Annual International Cryptology Conference, Springer,
1995.

[72] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key
encryption. In Lecture Notes in Computer Science, volume 7417, pages 590–607.
Advances in Cryptology- CRYPTO 2012, Springer, 2012.

[73] S. Hohenberger and B. Waters. Synchronized aggregate signatures from the rsa
assumption. In Lecture Notes in Computer Science, volume 10821, pages 197–229.
Advances in Crytology, EUROCRYPT 2018, Springer, 2018.

[74] S. Jarecki, H. Krawczyk, and J. Resch. Updatable oblivious key management
for storage systems. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 379–393. CCS 2019, Association
for Computing Machinery, 2019.

[75] Y Jiang. The direction of updatable encryption does not matter much. In
Lecture Notes in Computer Science, volume 12493, pages 529–558. Advances in
Cryptology - ASIACRYPT 2020, Springer, 2020.

[76] J. Katz. Bridging game theory and cryptography: Recent results and future
directions. In R. Canetti, editor, Lecture Notes in Computer Science, volume
4948, pages 251–272. Theory of Cryptography Conference, TCC 2008, Springer,
2008.

[77] J. Katz and Y. Lindell. Introduction to modern cryptography. CRC press, 2020.

[78] J. Katz, J. Loss, and J. Xu. On the security of time-lock puzzles and timed
commitments. In Lecture Notes in Computer Science, volume 12552, pages
390–413. Theory of Cryptography - TCC 2020, Springer, 2020.

[79] E. Kiltz, J. Pan, and H. Wee. Structure-preserving signatures from standard
assumptions, revisited. In Lecture Notes in Computer Science, volume 9216,
pages 275–295. Advances in Cryptology- CRYPT0 2015, Springer, 2015.

[80] M. Klooß, A. Lehmann, and A. Rupp. (r) cca secure updatable encryption
with integrity protection. In Y. Ishai and V. Rijmen, editors, Lecture Notes
in Computer Science, volume 11476, pages 68–99. Advances in Cryptology-
EUROCRYPT 2019, Springer, 2019.

[81] J. Knapp and E. A. Quaglia. Epoch confidentiality in updatable encryption. In
Lecture Notes in Computer Science, volume 13600, pages 60–67. International
Conference on Provable Security - ProvSec 2022, Springer, 2022.

[82] J. Knapp and E. A. Quaglia. Clue: Certificateless updatable encryption. Italian
Conference on Cybersecurity 2023 - ITASEC 2023, 2023.

[83] J. Knapp and E.A. Quaglia. Fair and sound secret sharing from homomorphic
time-lock puzzles. Cryptology ePrint Archive, Report 2020/1078, 2020. https:
//eprint.iacr.org/2020/1078.

199

https://eprint.iacr.org/2020/1078
https://eprint.iacr.org/2020/1078

[84] G. Kol and M. Naor. Cryptography and game theory: Designing protocols
for exchanging information. In R. Canetti, editor, Lecture Notes in Computer
Science, volume 4948, pages 320–339. Theory of Cryptography Conference, TCC
2008, Springer, 2008.

[85] G. Kol and M. Naor. Games for exchanging information. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, page
423–432. Association for Computing Machinery, 2008.

[86] I. Komargodski and A. Paskin-Cherniavsky. Evolving secret sharing: dynamic
thresholds and robustness. In Y. Kalai and L. Reyzin, editors, Lecture Notes
in Computer Science, volume 10678, pages 379–393. Theory of Cryptography
Conference- TCC 2017, Springer, 2017.

[87] H. Krawczyk. Secret sharing made short. In Lecture Notes in Computer Science,
volume 773, pages 136–146. Advances in Cryptology, CRYPTO 1993, Springer,
1993.

[88] C-S Laih and Y-C Lee. V-fairness (t, n) secret sharing scheme. IEE Proceedings-
Computers and Digital Techniques, 144(4):245–248, 1997.

[89] E. Lee. Improved security notions for proxy re-encryption to enforce access
control. In T. Lange and O. Dunkelman, editors, Lecture Notes in Computer
Science, volume 11368, pages 66–85. International Conference on Cryptology and
Information Security in Latin America- LATINCRYPT 2017, Springer, 2017.

[90] K. Lee. Self-updatable encryption with short public parameters and its extensions.
Designs, Codes and Cryptography, 79(1):121–161, 2016.

[91] K. Lee, S. G. Choi, D. H. Lee, J. H. Park, and M. Yung. Self-updatable encryption:
Time constrained access control with hidden attributes and better efficiency. In
K. Sako and P. Sarkar, editors, Lecture Notes in Computer Science, volume 8269,
pages 235–254. Advances in Cryptology- ASIACRYPT 2013, Springer, 2013.

[92] A. Lehmann and B. Tackmann. Updatable encryption with post-compromise
security. In J. Nielsen and V. Rijmen, editors, Lecture Notes in Computer
Science, volume 10822, pages 685–716. Advances in Cryptology, EUROCRYPT
2018, Springer, 2018.

[93] B. Libert and J. Quisquater. On constructing certificateless cryptosystems from
identity based encryption. In Lecture Notes in Computer Science, volume 3958,
pages 474–490. International Workshop on Public Key Cryptography - PKC 2006,
Springer, 2006.

[94] H-Y Lin and L. Harn. Fair reconstruction of a secret. Information Processing
Letters, 55(1):45–47, 1995.

[95] Y. Liu, Q. Wang, and S. Yiu. Towards practical homomorphic time-lock puzzles:
Applicability and verifiability. In Lecture Notes in Computer Science, volume
13554, pages 424–443. 27th European Symposium on Research in Computer
Security - ESORICS 2022, Springer, 2022.

200

[96] A. Lysyanskaya and A. Segal. Rational secret sharing with side information in
point-to-point networks via time-delayed encryption. IACR Cryptology ePrint
Archive, 2010:540, 2010.

[97] G. Malavolta and S. A. K. Thyagarajan. Homomorphic time-lock puzzles and
applications. In A. Boldyreva and D. Micciancio, editors, Lecture Notes in
Computer Science, volume 11692, pages 620–649. Annual International Cryptology
Conference, CRYPTO 2019, Springer, 2019.

[98] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. Song.
Churp: dynamic-committee proactive secret sharing. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pages
2369–2386. CCS 2019, Association for Computing Machinery, 2019.

[99] T. C. May. Time-release crypto. In Manuscript, 1993.

[100] L. Meng and L. Chen. A blockchain-based long-term time-stamping scheme.
In Lecture Notes in Computer Science, volume 13554, pages 3–24. Computer
Security - ESORICS 2022, Springer, 2022.

[101] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions
and kdcs. In Lecture Notes in Computer Science, volume 1592, pages 327–346.
Advances in Cryptology - EUROCRYPT 1999, Springer, 1999.

[102] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 427–437. Association for Computing Machinery,
ACM, 1990.

[103] J. Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

[104] R. Nishimaki. The direction of updatable encryption does matter. In Lecture Notes
in Computer Science, volume 13178, pages 194–224. Public-Key Cryptography -
PKC 2022, Springer, 2022.

[105] K.G. Paterson and E.A. Quaglia. Time-specific encryption. In J.A. Garay and
R. De Prisco, editors, Lecture Notes in Computer Science, volume 6280, pages
1–16. International Conference on Security and Cryptography for Networks- SCN
2010, Springer, 2010.

[106] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In J. Feigenbaum, editor, Lecture Notes in Computer Science, volume
576, pages 129–140. Advances in Cryptology, CRYPTO 1991, Springer, 1991.

[107] D. Pointcheval and O. Sanders. Short randomizable signatures. In Lecture
Notes in Computer Science, volume 9610, pages 111–126. Topics in Cryptology -
CT-RSA 2016, Springer, 2016.

[108] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report MIT/LCS/TR-684, 1996.

201

[109] D. Schultz, B. Liskov, and M. Liskov. Mpss: Mobile proactive secret sharing.
ACM Trans. Inf. Syst. Secur., 13, 2010.

[110] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[111] A. Shamir. Identity-based cryptosystems and signature schemes. In Lecture
Notes in Computer Science, volume 196, pages 47–53. Advances in Cryptology -
CRYPTO 1984, Springer, 1984.

[112] D. Slamanig and C. Striecks. Puncture’em all: Updatable encryption with
no-directional key updates and expiring ciphertexts. Cryptology ePrint Archive,
2021.

[113] A. Srinivasan and C.P. Rangan. Certificateless proxy re-encryption without
pairing: revisited. In Proceedings of the 3rd International Workshop on Security in
Cloud Computing, pages 41–52. SCC 2015, Association for Computing Machinery,
2015.

[114] Y. Sun, W. Susilo, F. Zhang, and A. Fu. Cca-secure revocable identity-based
encryption with ciphertext evolution in the cloud. IEEE Access, 6:56977–56983,
2018.

[115] S. A. K. Thyagarajan, T. Gong, A. Bhat, A. Kate, and D. Schröder. Opensquare:
Decentralized repeated modular squaring service. In Association for Computing
Machinery, pages 3447–3464. Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security - CCS 2021, ACM, 2021.

[116] Y. Tian, J. Ma, C. Peng, and J. Zhu. Secret sharing scheme with fairness. In
10th International Conference on Trust, Security and Privacy in Computing and
Communications, pages 494–500. IEEE, 2011.

[117] M. Tompa and H. Woll. How to share a secret with cheaters. Journal of
Cryptology, 1(3):133–138, 1989.

[118] O. Uzunkol and M. S. Kiraz. Still wrong use of pairings in cryptography. Applied
Mathematics and Computation, 333:467–479, 2018.

[119] H. Wang, K.Y. Lam, G.Z Xiao, and H. Zhao. On multiplicative secret sharing
schemes. In E.P. Dawson, A. Clark, and C. Boyd, editors, Lecture Notes on
Computer Science, volume 1841, pages 342–351. Information Security and Privacy,
ACISP 2000, Springer, 2000.

[120] Y. Wang, R. Chen, X. Huang, J. Ning, and M. Wang, B.and Yung. Identity-based
encryption for fair anonymity applications: Defining, implementing, and applying
rerandomizable rcca-secure ibe. Cryptology ePrint Archive, 2021.

[121] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In D. Catalano, N. Fazio, R. Gennaro, and
Nicolosi A., editors, Lecture Notes in Computer Science, volume 6571, pages 53–
70. International Workshop on Public Key Cryptography- PKC 2011, Springer,
2011.

202

[122] L. Xu, X. Wu, and X. Zhang. Cl-pre: A certificateless proxy re-encryption
scheme for secure data sharing with public cloud. In Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Security, page
87–88. ASIA-CCS 2012, Association for Computing Machinery, 2012.

[123] K. Yang, J. Xu, and Z. Zhang. Certificateless proxy re-encryption without
pairings. In Lecture Notes in Computer Science, volume 8565, pages 67–88.
International Conference on Information Security and Cryptology - ICISC 2013,
Springer, 2013.

[124] P. Yang, Z. Cao, and X. Dong. Threshold proxy re-signature. Journal of Systems
Science and Complexity, 24(4):816–824, 2011.

[125] F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from
bilinear pairings and its applications. In Lecture Notes in Computer Science,
volume 2947, pages 277–290. International Workshop on Public Key Cryptography
- PKC 2004, Springer, 2004.

[126] Z. Zhang, D. S. Wong, J. Xu, and D. Feng. Certificateless public-key signature:
security model and efficient construction. In Lecture Notes in Computer Science,
volume 3989, pages 293–308. Applied Cryptography and Network Security- ACNS
2006, Springer, 2006.

203

	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Chapter Summary
	1.3 Publications

	2 Preliminaries
	2.1 Notation
	2.2 Provable Security
	2.3 Cryptographic Hardness Assumptions
	2.4 Fundamental Building Blocks

	3 Epoch Confidentiality in Public-Key Updatable Encryption
	3.1 Introduction
	3.2 Chapter Preliminaries
	3.3 Public-Key Updatable Encryption
	3.4 Security Modelling
	3.5 Epoch Confidentiality
	3.6 Construction Preliminaries
	3.7 An Epoch Confidential Construction
	3.8 Security Analysis
	3.9 Summary and Outlook

	4 Certificateless Public-Key Updatable Encryption
	4.1 Introduction
	4.2 Chapter Preliminaries
	4.3 Certificateless Updatable Encryption
	4.4 Security modelling
	4.5 Construction Preliminaries
	4.6 A Concrete CLUE Construction
	4.7 Security Analysis
	4.8 Summary and Outlook

	5 Dynamic Multi-Server Updatable Encryption
	5.1 Introduction
	5.2 Dynamic Multi-Server Updatable Encryption
	5.3 Security Modelling
	5.4 Integrity
	5.5 Our Construction
	5.6 Security Analysis
	5.7 Summary and Outlook

	6 Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles
	6.1 Introduction
	6.2 Rational Secret Sharing
	6.3 A Generic Construction of an FRSS Scheme
	6.4 Security Analysis
	6.5 A Concrete FRSS Construction
	6.6 Summary and Outlook

	7 Concluding Remarks
	References

