
BinAlign: Alignment Padding based Compiler
Provenance Recovery

Abstract. Compiler provenance is significant in investigating the source-
level indicators of binary code, like development-environment, source
compiler, and optimization settings. Not only does compiler provenance
analysis have important security applications in malware and vulnera-
bility analysis, but it is also very challenging to extract useful artifacts
from binary when high-level language constructs are missing. Previous
works applied machine-learning techniques to predict the source compiler
of binaries. However, most of the work is done on the binaries compiled
on Linux operating system. We highlight the importance and need to
explore Windows compilers and the complicated binaries compiled on
the latest versions of these compilers. Therefore, we construct a large
dataset of real-world binaries compiled with four major compilers on
Windows and four most common optimization settings. The complexity
of the optimized program leads us to identify specific patterns in the bi-
naries that contribute to source compiler and specific optimization level.
To address these observations, we propose an improved model based
upon the state-of-the-art, o-glassesX, and incorporate streamlined align-
ment padding features in the existing model. Thus, our improved model
learns alignment instructions from binary code of portable executables
and libraries using the attention mechanism. We conduct an extensive
experimentation on a dataset of 296,169 unique and complex binary code
generated from C/C++ applications. We show that our improved model
surpasses state-of-the-art by a large margin in predicting source compiler
and optimization flag of complex compiled code.

Keywords: compiler provenance, alignment padding, Windows binaries, binary
code similarity

1 Introduction

Microsoft Windows, the most popular desktop operating system, holds a huge
percentage of the market share [7]. Not only that, it is one of the most attractive
platforms for hackers and attackers to launch malicious activities. According
to Statista [6], 91% of newly developed ransomware in 2022 intends to attack
Windows operating system. Therefore, researchers and security analysts are in-
terested to unleash all those methods that can help identify characteristics of
the binary code available in the wild.

When compiling a C/C++ source application, several flags are passed to the
compiler, signaling the developer’s intention to keep or drop some information or
to modify the original code in a more optimized version. The executable binary

2

does not need to have knowledge of the compilation flags once it is compiled,
as this information is no more required to execute the binary. However, these
flags are useful during analysis to investigate whether a file was compiled with a
specific flag that could expose vulnerabilities [13,41]. They are also useful, when
compiler-optimization-specific security policies are applied on applications at the
binary level for efficient CFI enforcement [24,25]. Thus, the security policies are
applied varyingly for different compiler-optimization settings.

Compiler provenance answers fundamental questions of malware analysis and
software forensics, to know whether binaries are generated by similar toolchains
[11,12,19,23,34,37–40]. It also aids the development of binary tools and analysis
capabilities targeted at specific compilers or source languages [13, 37, 41]. Fur-
thermore, the source compiler, version and development environment of binaries
are amongst the most fundamental artifacts required for analysis at binary level.

There are various studies involved in the development of compiler provenance
analysis techniques for the identification of source compilers and optimization
flags [18,19,21,27,28,35,43,49]. However, the accuracy of these techniques may
reduce with the evolving developments in the modern C/C++ optimizing com-
pilers. Thus, with the advent of latest optimization strategies and newer Intel
architectural extensions, the compiler provenance analysis approaches may be-
come outdated [16,32]. Certainly, past researches in compiler provenance analysis
techniques [11,34,37,39,40,42] show promising results with high accuracy, how-
ever, the study of compiler provenance on Windows platform is limited. Thus,
we analyzed the executables and libraries compiled with Windows compilers and
found significant patterns in the binary that could be a good indicator of the
compiler and optimization levels.

Alignment padding [16, 32] is a prominent feature of Windows binaries gen-
erated by modern compilers to align the addresses for faster memory access and
to avoid processor fault. Since compilers optimize the code for speed or size, the
choice of instructions and the preference of keeping data in the data section or
in-line within code is a decision that results in alignment padding to vary from
compiler-to-compiler at different optimization settings. The interesting thing
about alignment padding is the form and the number of bytes emitted by the
compiler with respect to the optimization [16, 32]. We, therefore, indicate four
distinguishing patterns of alignment padding and integrate them into state-of-
the-art model for learning and classifying the source compiler and optimization
level.

With this observation, we propose BinAlign, that leverages alignment paddings
in the binary code to help predict source compiler and optimization flags of the
compiled code with improved accuracy. We train our proposed model to map
the alignment paddings in order to classify the source compiler and optimization
flag of the target binaries. This classification task identifies the toolchain used to
generate unknown binaries and produces information that is required by binary
analysis tools (i.e., for CFI enforcement and security patching) [24].

In order to evaluate the performance of o-glassesX and our improved model,
we mainly focus on answering the following research questions:

BinAlign: Alignment Padding based Compiler Provenance Recovery 3

– RQ1. How effective is BinAlign in identifying the source compiler of a binary?
– RQ2. How effective is BinAlign in identifying two- (i.e., Od/O0 and Ox/O3)

and four-levels1 (i.e., Od/O0, O1, O2 and Ox/O3) of compiler optimization
settings?

– RQ3. How effective is BinAlign in identifying the joint source compiler and
optimization settings?

Hence, we base our study on a set of 296,169 real-world binaries compiled
with four major compilers, i.e., Microsoft Visual C++ (MSVC) [30], Clang-
cl (Clangcl) [2], Intel C Compiler (ICC) [1], and Minimalist GNU Compiler
Collection for Windows (MinGW) [4], in two- and four-levels of varying compiler
optimization settings. We achieved an overall f-measure of 0.978 when predicting
the source compiler among four compilers and two compiler optimization levels.

The main contributions of our paper are as follows:

– An in-depth study on compiler provenance of binary code: We in-
vestigate the characteristics of Windows binaries with the perspective of
alignment bytes generated by modern compilers at four-levels of compiler
optimization settings.

– Alignment padding based compiler provenance model: We propose
an improved convolutional neural network (CNN) that learns the special
characteristics of alignment paddings in the binaries and results in an im-
proved performance.

– Generality of our approach: To test the generality of our approach, we
compile a set of real-world benign and malicious binaries on various ver-
sions of the MSVC compiler to achieve improved accuracy on the obfuscated
malware binaries.

The remainder of this paper is structured as follows: Section 2 briefs the back-
ground of alignment padding in the binary code, and related work on compiler
provenance. Section 3 explains our motivation to study the alignment patterns.
Section 4 explains the state-of-the-art and our improved model. Section 5 details
the experimental design and dataset. Section 6 explains our evaluation results
and findings. Section 7 and Section 8 conclude our work with future directions.

2 Background and Related Work

2.1 Alignment Paddings

In this section, we revisit the alignment paddings generated by compilers in
the binaries for aligning data and code. Alignment padding is referred to as
the padding code placed as trailing sequence next to a control-flow transfer, or
padding bytes to align data and instructions in the binary [1]. Alignment padding

1 For MSVC, Clangcl and ICC compilers, Od and Ox refer to none and extreme level
of optimization, whereas for MinGW it is O0 and O3, respectively.

4

Table 1 – Alignment paddings frequently found in common sections of the PE binary.

Category Section Content Paddings

Code section .text Executable code INT3, NOP

.data Read-write Initialized data ZERO, DB

Data .pdata Exception information ZERO, DB

Sections .rdata Read-only initialized data ZERO, DB

.idata Import tables none

Table 2 – The usage of each type of alignment padding with respect to their placement
in the binary code.

Align Purpose Usage

1 NOP Program execution continues
with the next instruction

Function-entry alignment in ICC and
MinGW

2 INT3 Single-byte instruction for
setting breakpoints for the
debugger

Function-entry alignment in MSVC,
Clangcl, ICC

3 DB Reserve space for data Data alignment in .text and data sec-
tions for MSVC, Clangcl, ICC, whereas
data alignment in data sections only for
MinGW

4 ZERO ADD instruction with zero
opcode and zero operand

Align code and data; may also update
memory location, set carry, overflow, and
zero flags

5 Filler Pseudo NOPs MOV RAX,RAX; LEA RBX,[RBX+0]; XCHG

RAX,RAX

consists of an opcode and optionally an operand, similar to binary instructions
on any architecture or platform [9].
Alignment Padding in PE Sections. Portable Executable (PE) is a file for-
mat for executables, object code, and dynamic link libraries on Windows. Table 1
shows the sections commonly found in a PE binary and the types of alignment
paddings2 that are most frequently found in each section. As described in Mi-
crosoft developer documentation [30], each section comprises of different types
of program data. The .text section contains executable code, while the data
sections maintain data to execute the binary (i.e., .data, .pdata, .rdata, and
.idata). Alignment paddings are found in both the text and data sections ex-
cept for the .idata section, which contains the import directory and import
address table (IAT). Table 2 shows the placement of four major types of align-
ment paddings and filler instructions in the binary.

2 We used the names of instructions to represent alignment paddings except ZERO as
the type of alignment padding.

BinAlign: Alignment Padding based Compiler Provenance Recovery 5

2.2 Machine Learning Approaches for Compiler Provenance

This section revisits the previous research conducted on compiler provenance and
introduces the relevance of alignment paddings for provenance recovery. Previous
works utilized machine learning (ML) methods to perform compiler provenance
recovery, since signature-based methods depend on signatures database [3,5,15]
to report the source compiler. On the other hand, ML-based methods learn the
compiler-specific patterns and features to predict the source compiler of previ-
ously unseen binaries. Rosenblum et al. [39] were the first to extract syntactic and
structural features from the binaries based on instruction idioms and graphlets.
This work was followed by Chaki et al. [12], Xue et al. [48], and Rahimian et
al. [36] that used various machine learning classifiers to identify similar chunks of
code in the binary. Moreover, the past works [27,28,35,39,40,42,43] used binary-
level control flow features and functions to predict program provenance. More
recent works such as Ding et al. [14] proposed an Asm2Vec model for assembly
code learning based on functions.

Although, past research acknowledged the alignment padding patterns in
the binary [10, 40, 45, 46], the significance of these patterns in relevance to pro-
gram provenance has not been considered earlier. Rosenblum et al. [40] named
the alignment bytes as gaps within the functions, whereas Andriesse et al. [10]
considered these patterns as inline data within the code. Wang et al. [45, 46]
corroborated the reassembly of binary, while considering the memory alignment
of data and function pointers. While considering all the past efforts, the com-
piler provenance recovery models [27,28,35,39,42,43] that take the control-flow
features of the binary ignore the alignment paddings that lie outside the control
flow graph of the program such as function-entry and loop-entry alignment.

In this work, we chose o-glassesX as our evaluation baseline to recover the
compiler provenance, leveraging alignment paddings. This is because o-glassesX
is state-of-the-art model with 97% accuracy, while utilizing short binary code
from C/C++ object files. However, on recent compiler versions and more com-
plex set of hand-crafted binaries, o-glassesX does not maintain to achieve the
claimed accuracy. Therefore, we propose BinAlign to predict the source compiler
and optimization level with better prediction accuracy.

3 Motivation

Our motivation for this study is the observation of alignment paddings and
their placement in the binary with respect to different compilers and optimiza-
tion settings. To motivate the idea of leveraging alignment paddings for com-
piler provenance recovery, we analyze the binary code of the following function
compiled with three compilers and optimization settings, and see if the corre-
sponding alignment padding presents unique patterns. Listing 1 shows different
snippets of the binary code disassembled at the entry of a variadic function,
sqlite3 str vappendf in sqlite3 C application.

6

Clangcl (/O1)

1 0x242c jmpq 0x180002279
2 0x2431 int3
3 0x2432 int3
4 0x2433 int3
5 0x2434 push %r15
6 0x2436 push %r14
7 0x2438 push %r13
8 0x243a push %r12
9 0x243c push %rsi

10 0x243d push %rdi

MSVC (/Od)

1 0x152f3 retq
2 0x152f4 int3
3 0x152f5 int3
4 0x152f6 int3
5 0x152f7 int3
6 0x152f8 int3
7 0x152f9 int3
8 0x152fa int3
9 0x152fb int3

10 0x152fc int3
11 0x152fd int3
12 0x152fe int3
13 0x152ff int3
14 0x15300 mov %r8,0x18(%rsp)
15 0x15305 mov %rdx,0x10(%rsp)
16 0x1530a mov %rcx,0x8(%rsp)

MSVC (/O1)

1 0xe69c retq
2 0xe69d int3
3 0xe69e int3
4 0xe69f int3
5 0xe6a0 mov %rsp,%rax
6 0xe6a3 mov %rbx,0x20(%rax)
7 0xe6a7 push %rbp
8 0xe6a8 push %rsi
9 0xe6a9 push %rdi

10 0xe6aa push %r12
11 0xe6ac push %r13
12 0xe6ae push %r14
13 0xe6b0 push %r15
14 0xe6b2 lea -0x58(%rax),%rbp
15 0xe6b6 sub $0x120,%rsp
16 0xe6bd movaps %xmm6,-0x48(%rax)

Clangcl (/O2, /Ox)

1 0x360a jmpq 0x180003410
2 0x360f int3
3 0x3610 push %r15
4 0x3612 push %r14
5 0x3614 push %r13
6 0x3616 push %r12
7 0x3618 push %rsi
8 0x3619 push %rdi
9 0x361a push %rbp

10 0x361b push %rbx

Clangcl (/Od)

1 0x2f07 retq
2 0x2f08 int3
3 0x2f09 int3
4 0x2f0a int3
5 0x2f0b int3
6 0x2f0c int3
7 0x2f0d int3
8 0x2f0e int3
9 0x2f0f int3

10 0x2f10 push %rsi

MSVC (/O2, /Ox)

1 0x1a0d1 retq
2 0x1a0d2 int3
3 0x1a0d3 int3
4 0x1a0d4 int3
5 0x1a0d5 int3
6 0x1a0d6 int3
7 0x1a0d7 int3
8 0x1a0d8 int3
9 0x1a0d9 int3

10 0x1a0da int3
11 0x1a0db int3
12 0x1a0dc int3
13 0x1a0dd int3
14 0x1a0de int3
15 0x1a0df int3
16 0x1a0e0 rex push %rbp

ICC (/Od)

1 0x8436 retq
2 0x8437 nop
3 0x8439 push %rbp
4 0x8439 sub $0x4d0,%rsp
5 0x8439 lea 0x20(%rsp),%rbp

ICC (/O1)

1 0x38f5 retq
2 0x38f6 nop
3 0x38f7 nop
4 0x38f8 push %rbx
5 0x38f9 push %rsi

ICC (/O2, /Ox)

1 0x7560 retq
2 0x7561 nopl 0x0(%rax,%rax,1)
3 0x7568
4 0x7569 nopl 0x0(%rax)
5 0x7570 push %rbx

Listing 1 – Alignment padding at the entry of a variadic function sqlite3 vtr vappendf
in sqlite3 application.

SQLITE_API void sqlite3_str_vappendf(sqlite3_str *pAccum, const char

*fmt, va_list ap) {...}

From Listing 1, our first observation is that MSVC and Clangcl compilers prefer
to insert INT3 bytes at the entry of a function, whereas ICC emits NOP in-place of
INT3 for the function-entry alignment. In this particular example, the alignment
padding at the function-entry in O2 and Ox does not differentiate from each
other. This is because the compilers will generate different binary code in the
corresponding optimization levels, when there exist duplicate copies of constant
data elements and function definitions in the binary [29].

To demonstrate the frequency of alignment paddings in binary executables
and dlls, we look at another example, which is one of the compiled applications
among the complex set of C projects in our database (i.e., openssl), as listed
in Table 3. Here, we observe that the alignment padding in O2 and O3 vary in
the MinGW compiler as compared to the other three compilers. This is because

BinAlign: Alignment Padding based Compiler Provenance Recovery 7

Table 3 – Number of Alignment paddings in the .text and .data sections of openssl
application, compiled with four compilers at four different optimization levels.
Section .text .data

Padding Opt MSVC ICC Clangcl MinGW MSVC ICC Clangcl MinGW

#NOP

Od/O0 52 648 140 12,109 156 67 85 124
O1 15 564 70 6,630 126 90 75 124
O2 433 871 597 25,499 142 99 56 127

Ox/O3 433 871 597 26,481 142 99 56 138

#DB

Od/O0 264 0 1,419 15 2,710 2,594 3,635 2,665
O1 58 0 1,347 16 1,855 1,829 2,129 2,685
O2 269 98 2,644 14 1,817 3,825 2,092 2,656

Ox/O3 269 98 2,644 16 1,817 3,825 2,092 4,260

#INT3

Od/O0 3,438 117 15,146 0 47 48 55 64
O1 671 144 12,156 0 49 66 50 66
O2 2,608 188 14,125 0 58 53 62 51

Ox/O3 2,608 188 14,125 0 58 53 62 69

#ZERO

Od/O0 164 0 2 9 11,726 15,388 14,710 17,477
O1 150 0 6 9 13,646 16,422 13,322 17,492
O2 222 9,682 4 9 12,454 18,714 11,120 17,283

Ox/O3 222 9,682 4 9 12,454 18,714 11,120 16,263

the MinGW compiler in O3 applies aggressive optimization strategies, like func-
tion inlining and loop unrolling, as compared to O2. Moreover, the frequency
of alignment in .text section highlights that INT3 is the most frequently used
alignment padding for the functions compiled with MSVC and Clangcl compil-
ers. The reason for this is that these compilers emit INT3 instruction as debugger
trap to gracefully handle the execution in case of any exception [29]. Moreover,
MinGW emits the most NOPs for the alignment of optimized instructions. Inter-
estingly, we found that DB and ZERO are frequently generated alignment bytes
in the data sections at high optimization levels of compiled binaries. Whereas
to favor the small size of optimized binaries, compilers allocate data sections
for alignment padding and emit reduced code in the .text section, respectively.
Overall, all compilers emit frequent ZERO alignment paddings in the data sec-
tions of the binaries, including the end-of-section alignment padding [29]. Thus,
we can say that there is a significant variation of alignment paddings found in
binaries compiled with various compilers and at varying optimization settings
on Windows.

Generally, on all platforms compilers enforce data and code to be naturally
aligned for optimal performance [2,4,17,29,31]. However the compiler’s strategy
for alignment padding varies from platform to platform. To compare Windows
and Linux, Windows specify additional alignment options to align the sections
and pages of portable executables and dlls on 4K byte boundary [29]. Whereas,
the sections on Linux are aligned on 4-byte boundary [31, 32]. These specifica-
tions are additional to the data alignment for optimized code constructs and
transfer operations [31,44]. Moreover, the ELF x86-64 ABI does not require the
virtual and physical address to be page-aligned. Though different from Linux,
the alignment padding on Windows shows interesting patterns in the compiled
binary which is significant for compiler provenance. We thus emphasize that
alignment padding on Windows is more useful for compiler provenance.

8

Binary file

1. Binary slicing 2. Tokenization

…

Alignment padding
instructions

Tokenization of
instructions with

Alignment Padding

3. Convolutional neural network

Binary as image vector 4
. S

el
f-

a
tt

en
ti

o
n…

Source
compiler and
optimization

level

weights

Positional
encoding *Max

pooling *dropout

Batch
normalization

Fully
connected

layer

*Adam optimizer

Fig. 1 – Design overview of BinAlign and improved BinAlign architecture

4 Compiler Provenance Recovery Model

In Section 3, we saw that different compilers and optimization levels emit unique
signatures in the binary code compiled with different settings. In this section,
we will review the state-of-the-art deep learning model, o-glassesX and present
our enhanced model, BinAlign. A deep neural network trained completely on
data without domain knowledge might be non-explainable [47], whereas a sys-
tem based entirely on expert knowledge may have limitations due to insufficient
inference logic [37]. Xu et al. state that by adding node embeddings to control
flow graph (CFG) of binary functions, resultantly enhances the performance of
the underlying binary similarity model [47]. With this background, we improve
the existing compiler provenance model, o-glassesX, and embed expert knowl-
edge of alignment paddings into the CNN based deep learning model. A brief
description of o-glassesX architecture is given in Appendix.

4.1 BinAlign

The architecture of BinAlign is illustrated in Figure 1. BinAlign follows the
same approach as o-glassesX for classifying the binary instructions into different
classes of compiler provenance. It comprises of the following three major com-
ponents,3 i.e., 1) binary slicing, 2) padding tokenization, 3) CNN. The neural
network comprises of the following core layers, i.e., i) positional encoding (PE),
ii) attention block, iii) batch normalization, and iv) fully connected layer.

The input to the network is a sequence of 128-bit fixed-length instructions.
These instructions are embedded with alignment padding information. To embed
alignment padding in the underlying CNN architecture, we first slice the binary
code and identify the patterns related to alignment paddings. Algorithm 1 shows
the step-by-step working of tokenization process. We assign the tokens (TOK) to
particular category of alignment padding instructions as shown in line no. 6, 8,
10, and 12 of Algorithm 1. These tokens are encoded with the instructions and

3 The improvements (i.e., additional layers and optimization algorithm) marked with
* in Figure 1, belong to the improved BinAlign design.

BinAlign: Alignment Padding based Compiler Provenance Recovery 9

Algorithm 1 : Binary Slicing and Instruction Tokenization

1: procedure FetchAlignmentPaddings(bnry)
2: foreach Insn in binaryCode
3: if instruction == AlignmentPadding then
4: Do foreach {Insn} in the AlignmentPadding
5: if opcodensn == DATA then
6: Assign TOK of “DB” instructions
7: else if opcodensn == ZERO then
8: Assign TOK of “ZERO” instructions
9: else if opcodensn == INT3 then
10: Assign TOK of “CC” instructions
11: else if opcodensn == NOP then
12: Assign TOK of “NOP” instructions

13: else if instruction ∈ Filler then
14: Assign TOK of “Filler” instructions
15: else if instruction ∈ non-Alignment then
16: Assign TOK of “non-padding” instruction

Table 4 – Different variations of the Multi-byte NOP alignment paddings are listed.
The opcode of all the variations is NOP, whereas the operand varies depending upon
the length of instruction.

Opcode Operand no. of Bytes Hex representation

NOP <no operand> 1 90
NOP <no operand> 2 6690
NOP WORD [RAX+RAX+0x0] 9 660f1f840000000000
NOP WORD [RAX+RAX+0x0] 10 662e0f1f840000000000
NOP DWORD [RAX] 3 0f1f00
NOP DWORD [RAX+0x0] 4 0f1f4000
NOP DWORD [RAX+RAX+0x0] 5 0f1f440000

input as vectors to the PE preceding the attention layer, as shown in Figure 1.
Similar to previous work [33], all the instructions are padded with zeros to form
a unified length of 16-byte instruction each. With our approach, we incorporate
all of the variations of NOP (see Table 4) into our model.

The PE layer of BinAlign captures the relationship between two adjacent
instructions. The positional encodings are learnt by the attention layer that
utilizes self-attention to generate weights and focuses on a portion of the input
information to classify binary sequences.

Finally, the output of the attention block is passed through batch normal-
ization layer to stabilize the network. The final layer of CNN (i.e., the fully
connected layer) classifies the network into various output classes. RELU [34]
is the activation function in each intermediate layer, whereas the final layer
uses softmax for classification. In the model’s back-propagation algorithm, the
stochastic gradient descent (SGD) [34] method is used to minimize the error
function.

4.2 Improved BinAlign

Due to added attributes in the form of alignment padding tokens (see Figure 1)
in the core architecture of state-of-the-art model [34], we need to enhance the
underlying architecture with additional layers. This is because the alignment

10

padding bytes are not uniformly distributed in the binary. For example, at one
point the compiler may align the end-of-section with a large number of recur-
ring padding bytes, whereas at another location, a multi-byte instruction may be
generated to enforce the instruction alignment. The Appendix presents different
locations in the binary where the compiler emits alignment padding instructions
to enforce data and code alignment. Therefore, it becomes necessary for BinAlign
to include additional layers in the underlying architecture to enhance its perfor-
mance. Thus, we add maxpooling, dropout and adam optimizer to enhance the
basic architecture of BinAlign and name it as the improved BinAlign as shown
in Figure 1. We briefly explain the additional layers and optimization in this
section.

(1) Pooling [22] is a regularization technique to reduce overfitting and max
pooling decreases the computational cost by reducing the number of parameters
to learn the features. We add a max-pooling layer after the convolution layer to
extract shallow features from binary code with K as 96, and stride length as 128.
Pooling assists deep learning architectures to reduce computational cost caused
by the dimensionality reduction problem [22].

(2) Dropout [22] also assists the neural network in achieving high-quality
performance on the test set and prevents the model from overfitting. We ap-
ply dropout to the fully connected layer of the neural network. By utilizing
max-pooling and dropout, we aim to achieve the stochastic pooling in terms of
activation picking, inspired by dropout regularization approach [22]. Thus, we
add a dropout layer with a rate of 0.5.

(3) Adam optimization [20] is an extension to classical stochastic gradient
descent (SGD) to update network weights iteratively based on training data.
SGD algorithm maintains a single learning rate (i.e., α) for weight updates
which does not change during training. It has two more extensions, i.e., AdaGrad
[50] and RMSProp [50]. Thus, Adam optimizer combines the benefits of both
extensions of SGD. In order to optimize for better accuracy, we replace SGD
with Adam optimizer with the following parameters, i.e., a) α as the coefficient
for learning rate is set to 0.001, b) β1 and β2 as the exponential decay rates are
set to 0.9 and 0.999, respectively, and c) ε is initialized as 1e-08. Thus, we train
the improved BinAlign over all the unoptimized and optimized binaries to learn
the source compiler and optimization level classification. Similar to o-glassesX,
we parsed the binaries with distorm34 disassembler and get x86-64 assembly
instructions.

5 Experimental Design

In this section, we explain our experimental design to evaluate the precision,
recall and f-measure of inferring the source compiler, and optimization level
for o-glassesX, BinAlign (i.e., the state-of-the-art with alignment padding), and
improved BinAlign (i.e., the state-of-the-art with alignment padding and addi-
tional layers in the CNN architecture). Our evaluation is performed on a server

4 https://pypi.org/project/distorm3

BinAlign: Alignment Padding based Compiler Provenance Recovery 11

Table 5 – The number of compiled binaries and linked executables and dlls in our
dataset

Compiler Ver.
number of executables and dlls number of binaries
Od/O0 O1 O2 Ox/O3 Od/O0 O1 O2 Ox/O3

MSVC 19.28.29 2,792 2,813 2,879 2,810 28,359 23,201 21,982 32,705
Clangcl 10.0.0 2,446 2,421 2,430 2,389 18,834 9,938 11,512 19,354
ICC 2021.1.2 2,275 2,281 2,331 2,345 14,475 10,193 11,816 14,798
MinGW 10.3.0 2,296 2,298 2,210 2,212 22,606 17,573 16,325 22,498

Total 9,809 9,813 9,850 9,756 84,274 60,905 61,635 89,355

machine having Ubuntu 22.04.1 LTS OS with 3.5 GHz and upto 64 CPU core
processors with 132 GB RAM and 4 GeForce RTX2080 Ti GPUs having 12GB
of memory. We perform evaluation on a large collection of binaries compiled on
latest Windows compilers, as they implement the latest compiler optimization
strategies. Note that this also means that we are not replicating the experiments
in the o-glassesX paper. We focus on compiler provenance inference in x86-64
architecture for benign code and x86 for malicious code. The dataset is compiled
from a set of 457 well-known C/C++ open-source projects using four commonly
used compilers, i.e., MSVC-19, Clangcl-10, ICC-2021 and MinGW-10.

The C/C++ applications in our dataset comprise of the highest number of
stars in the github repository5. We ensure that these applications are widely used
in binary analysis research. Our resulting dataset comprises of 296,169 different
binaries compiled with four major compiler optimization settings (see Table 5).
We record the source compiler and the optimization level as the ground truth
label with which we compile the applications. We compile all the application
programs and generate release builds with debugging symbols enabled. These
symbols provide us information about the function-entry addresses in the re-
sulting binary code. We study the differences in the alignment padding at the
function start locations using the information extracted from symbols. We gen-
erate a variety of executables and dynamic link libraries whose sizes range from
12KB to 93MB. For each project, the dependent libraries and programs are built
separately. The Appendix details the descriptions of some of the projects in our
dataset. We publish our compiled dataset and program source code for further
study and research6.

We used 4-fold cross-validation to perform training and testing of data for
four tasks, i.e., source compiler inference, compiler optimization inference, and
joint source compiler with two- and four-level compiler optimization inference,
respectively. The average results are shown in Tables 6 to 10.

5.1 Research Questions

We formulate three research questions to evaluate the effectiveness of the three
models, i.e., i) o-glassesX, ii) BinAlign, and iii) Improved BinAlign.

5 https://github.com/
6 https://anonymous.4open.science/r/CompProv Feb2023/

12

RQ1. How effective is BinAlign in identifying the source compiler of
binary? This RQ aims to evaluate the effectiveness of BinAlign in determining
the source compiler (i.e., MSVC, Clangcl, ICC, and MinGW) used to compile
the programs.

RQ2. How effective is BinAlign in identifying the two-level and four-
level optimized binary code in the dataset? This RQ measures the effec-
tiveness of BinAlign in classifying two- and four levels of compiler optimizations,
respectively.

RQ3. How effective is BinAlign in identifying the joint source compiler
and optimization settings? This RQ measures the effectiveness of BinAlign
to classify 8 classes for four compilers with two-optimization levels and 16 classes
for four compilers and four-compiler optimization settings, respectively.

5.2 Model Fine-Tuning

We fine-tune the evaluation models to get the best results from state-of-the-
art o-glassesX, BinAlign and Improved BinAlign. o-glassesX utilizes four main
hyperparameters that are tuned to achieve the best results in each model. All
models achieve the best average accuracy at the same hyperparameter setting
with i) batch size as 1000, ii) instruction length as 64, iii) sample size as 100,000,
and, iv) epoch as 50.

6 Results

In this section, we present our experimental results in the form of answers to
the RQs presented in Section 5.1. For a fair comparison of the results with the
earlier work, we used average values of the test results for each model to get the
inference for the source compiler, optimization levels, and joint source compiler
and optimization levels.

6.1 RQ1. How effective is BinAlign in identifying the source
compiler of binaries?

Table 6 measures our models’ recall (R), precision (P) and f-measure (F) while
inferring the source compiler for the three models. Overall, our improved Bi-
nAlign model shows increased performance while inferring the source compiler
of the test binaries. One of the reasons for improved performance on MSVC
compiled binaries is the inference of NOP bytes to align the data for compiler-
specific intrinsic functions. which the model learns to correctly infer the compiler
specific alignment. For ICC compiled binaries, the improved BinAlign performs
much better than o-glassesX for classifying the NOP bytes embedded before
every Call to the internal compiler functions.

BinAlign: Alignment Padding based Compiler Provenance Recovery 13

Table 6 – The result of source compiler prediction.
o-glassesX BinAlign Improved BinAlign

Class label R F F1 R P F1 R P F1
MSVC 0.9729 0.9797 0.9763 0.9953 0.9934 0.9943 0.9938 0.9972 0.9955
Clangcl 0.9465 0.9470 0.9467 0.9787 0.9809 0.9798 0.9739 0.9890 0.9814
ICC 0.9662 0.9697 0.9679 0.9890 0.9907 0.9899 0.9944 0.9862 0.9903
MinGW 0.9216 0.8988 0.9100 0.9643 0.9613 0.9628 0.9812 0.9646 0.9728
Overall 0.9576 0.9576 0.9576 0.9850 0.9850 0.9850 0.9873 0.9873 0.9873

Table 7 – The result of two-levels of compiler optimization level prediction. The two
levels refer to none optimization (Od/O0) and maximum optimization (Ox/O3) as
mentioned in o-glassesX, respectively.

o-glassesX BinAlign Improved BinAlign
Class label R P F1 R P F1 R P F1
Od 0.9783 0.9736 0.9764 0.9888 0.9896 0.9892 0.9914 0.9902 0.9908
Ox 0.9696 0.9750 0.9723 0.9883 0.9874 0.9879 0.9890 0.9903 0.9897
Overall 0.9739 0.9743 0.9743 0.9886 0.9886 0.9886 0.9902 0.9902 0.9902

6.2 RQ2. How effective is BinAlign in identifying the Compiler
Optimization level of a binary?

Tables 7 and 8 present the results on the classification of two- and four-level
of compiler optimizations, respectively. For the two-level optimization inference
task, we can see that in Table 7 the improved BinAlign model is able to infer
the optimization level of most optimized binaries with almost the same precision
as for the unoptimized binaries. However, Table 8 shows that the least correctly
inferred compiler optimization setting is O2 for BinAlign. This is because of
the optimization strategy followed by compiler that maintains a single copy
for the common data and functions in the binary (i.e., COMDATs [29]). The
optimization confines the alignment paddings, thereby affecting the inference of
the highly optimized binaries.

However, the improved BinAlign infers the class label for O1 and Ox opti-
mized binaries with a reasonably better score due to the reason that the optimiz-
ing compilers on Windows maintain separate copies of the multiple definitions
of the aligned functions and data at Ox. The code generated by O1 optimiza-
tion level remains consistent throughout all the compilers. This is because the
compilers maintain most of the alignment padding in the data sections to favor
the reduced size of the binary code.

Overall, our evaluation results show that optimizations performed by com-
pilers generate variant and complex code, making it difficult for the compiler
prediction neural network based models to learn the consistent patterns. How-
ever, the improved BinAlign significantly improves the existing state-of-the-art
model in recovering the compiler optimization of real-world binaries.

14

Table 8 – The result of four-levels of compiler optimization prediction.
o-glassesX BinAlign Improved BinAlign

Class label R P F1 R P F1 R P F1
Od/O0 0.9839 0.9838 0.9838 0.9873 0.9885 0.9879 0.9915 0.9874 0.9894
O1 0.7365 0.7275 0.7320 0.7313 0.8078 0.7676 0.8002 0.8375 0.8184
O2 0.6971 0.6011 0.6456 0.6316 0.6701 0.6503 0.8248 0.8217 0.8232
Ox/O3 0.6371 0.6276 0.6323 0.7198 0.8714 0.7884 0.7495 0.9083 0.8213
Overall 0.7678 0.7472 0.7562 0.7730 0.8298 0.7995 0.8318 0.8811 0.8547

Table 9 – The result of Joint source compiler with two-levels of compiler optimization
prediction.

o-glassesX BinAlign Improved BinAlign
Class label R P F1 R P F1 R P F1
MSVC-Od 0.9667 0.9643 0.9655 0.9886 0.9743 0.9814 0.9991 0.9925 0.9958
MSVC-Ox 0.9357 0.9535 0.9445 0.9651 0.9795 0.9722 0.9735 0.9808 0.9772
Clangcl-Od 0.9779 0.9744 0.9761 0.9885 0.9888 0.9886 0.9985 0.9998 0.9992
Clangcl-Ox 0.9088 0.9212 0.9150 0.9599 0.9508 0.9553 0.9508 0.9618 0.9563
ICC-Od 0.9831 0.9905 0.9868 0.9945 0.9971 0.9958 0.9932 0.9995 0.9963
ICC-Ox 0.9519 0.9423 0.9471 0.9777 0.9840 0.9808 0.9732 0.9815 0.9773
MinGW-O0 0.9711 0.9668 0.9690 0.9949 0.9868 0.9908 0.9993 0.9942 0.9967
MinGW-O3 0.8438 0.7975 0.8200 0.9085 0.9164 0.9124 0.9367 0.9194 0.9279
Overall 0.9515 0.9515 0.9515 0.9772 0.9772 0.9772 0.9781 0.9787 0.9785

6.3 RQ3. How effective is BinAlign in identifying the joint source
compiler and optimization level of a Windows binary?

Tables 9 and 10 show the performance of three compiler provenance models,
while predicting the joint source compiler and optimization level of the compiled
binaries with two and four levels of optimization, respectively. For the two-
level joint source compiler and optimization level inference as shown in Table 9,
our improved BinAlign performs the best on compiler provenance recovery of
MSVC and ICC compiled binaries with better inference on unoptimized binaries
as compared to the highly optimized ones.

From the results, we can see that the neural network models do not perform
perfectly well, while inferring the joint source compiler and optimization level,
specifically for MSVC and ICC compiled test binaries, at O2 optimization level.
One of the challenges for deep learning model is the highly optimized code and
the inter-procedural optimization in optimized binaries. Moreover, we can see
that the performance of all neural network models for the unoptimized and the
most-speedy optimization is comparatively better for MSVC and ICC. This is be-
cause the optimizing compilers support advanced vector extension (AVX) archi-
tecture that generates over-aligned instructions for increased performance [17].
Also, our test set instances comprise of floating point instructions, for which
the ICC compiler emits alignment padding in the form of DB bytes to align the
instructions and data for vector operations.

On the other hand, for unoptimized binaries, the improved BinAlign model
learns the alignment padding patterns comparatively well, as the instructions
are padded with DB 90 and DB 0CC in the .text section of the compiled bi-
naries, whereas DB 0 in the data sections, respectively. One of the significant

BinAlign: Alignment Padding based Compiler Provenance Recovery 15

Table 10 – The result of Joint source compiler prediction with four-levels of compiler
optimization.

o-glassesX BinAlign Improved BinAlign
Class label R P F1 R P F1 R P F1
MSVC-Od 0.9715 0.9695 0.9705 0.9874 0.9718 0.9795 0.9826 0.9737 0.9781
MSVC-O1 0.7692 0.6615 0.7113 0.7732 0.7961 0.7845 0.888 0.7986 0.8409
MSVC-O2 0.4995 0.2488 0.3322 0.5806 0.0845 0.1476 0.5223 0.3005 0.3816
MSVC-Ox 0.7109 0.8602 0.7784 0.7113 0.9127 0.7995 0.7458 0.8791 0.807
Clangcl-Od 0.981 0.9808 0.9809 0.9883 0.985 0.9866 0.9932 0.9816 0.9874
Clangcl-O1 0.6215 0.4529 0.524 0.7532 0.5485 0.6348 0.7721 0.6354 0.6971
Clangcl-O2 0.3373 0.0696 0.1154 0.6477 0.5503 0.5951 0.6515 0.7314 0.6892
Clangcl-Ox 0.7392 0.8892 0.8073 0.6126 0.7292 0.6658 0.7023 0.6501 0.6752
ICC-Od 0.9888 0.9929 0.9909 0.995 0.9943 0.9947 0.9941 0.9979 0.996
ICC-O1 0.7487 0.5993 0.6657 0.7614 0.7666 0.764 0.8759 0.8062 0.8396
ICC-O2 0.3853 0.1187 0.1815 0.6586 0.089 0.1568 0.4455 0.2701 0.3363
ICC-Ox 0.7158 0.8959 0.7958 0.7243 0.9367 0.8169 0.7468 0.8624 0.8005
MinGW-O0 0.9782 0.9764 0.9773 0.9833 0.9917 0.9875 0.9928 0.9868 0.9898
MinGW-O1 0.9466 0.9372 0.9419 0.9736 0.9464 0.9598 0.964 0.9678 0.9659
MinGW-O2 0.6356 0.6345 0.6351 0.6123 0.7067 0.6561 0.7051 0.7541 0.7287
MinGW-O3 0.6363 0.6250 0.6306 0.6373 0.5674 0.6003 0.7715 0.6957 0.7316
Overall 0.7422 0.6979 0.7053 0.7869 0.7385 0.7357 0.8077 0.7806 0.7896

characteristics of the deep learning CNN models is its higher performance and
better accuracy for the zero-padded data bytes [22]. Hence, from our evaluation
results of joint prediction of source compiler and optimization level, we conclude
that the improved BinAlign recovers the compiler provenance of Clangcl, and
MSVC compiled binaries with a relatively better score.

6.4 Malware Case Study

To illustrate the generality of our approach for compiler prediction of real-world
malwares, we compile 113 C/C++ source code of Win32 malware downloaded
from theZoo7 repository. Since the malware source uses the core Windows APIs
which are incompatible with Clangcl, ICC and MinGW compilers, we therefore
compile the projects on three different versions of MSVC compiler, i.e., VS2015,
VS2017 and VS2019, at four different optimization levels. We train our models
on 64-bit benign programs and 32-bit malicious programs and test the models
on malicious binaries only. The benign programs are the same as mentioned
in Section 5, however for the current evaluation we compile them with MSVC
compiler and three different versions of the MSVC compiler.

Tables 11 and 12 show the malware attribution of the source programs and
the distribution of our malicious dataset, respectively. We gather seven different
families of malware programs in C/C++ language as shown in Table 11. The
malware programs are then compiled with three versions of MSVC compiler in
four different optimization settings as shown in Table 12, with the most success-
ful compilation in version 2019 that supports the most APIs. Table 13 shows
the overall classification result of compiler version prediction and compiler op-
timization prediction of our malware dataset. Our results demonstrate that the

7 https://github.com/ytisf/theZoo

16

Table 11 – The number and types of binaries belonging to different families of malware.

Family Malware Type #bins

Dexter Point of Sales Trojan 1
Rovnix Bootkit 1
Carberp Botnet 36
BJWJ Banking Trojan 6
Anti Rapport Banking Trojan 11
Trochilus Remote Access Trojan 40
ZeroAccess Rootkit 18

Total 113

Table 12 – The number of malware executables and dlls successfully compiled with
three different versions of MSVC compiler and at four different optimization levels.

Opt. VS2019 VS2017 VS2015 Total

Od 17 8 8 33
O1 13 5 5 23
O2 21 10 4 35
Ox 14 4 4 22

Total 65 27 21 113

improved BinAlign outperforms other models in predicting the compiler version
of malware binaries. This is because adversaries may introduce binary padding to
add junk data in the code and change the on-disk representation of the binaries.

Here, we acknowledge that despite the obfuscation implemented in a smaller
set of malicious binaries as compared to a larger set of benign programs, our
improved model is able to predict compiler version and optimization level with
a promising score.

6.5 Custom Alignment Padding

Considering another scenario when software developers or malware authors in-
tentionally modify the compiler’s default alignment settings, we conduct a case
study comprising of the binaries that enforce custom alignment paddings in the
compiled binaries. For that, we perform an extensive study of the compiler op-
tions that support aligning data within sections, structures, data packing and
section alignment. We found that MSVC, Clangcl and ICC support four major
alignment settings, defined as, i) ALIGN, ii) FILEALIGN, iii) Zc:alignedNew, and
iv) Zp16, corresponding to the section alignment in linear address space, align-
ment of sections to the output file, alignment of dynamically-allocated data and
the packing of structure member alignment, respectively [29]. On the other hand,
MinGW compiler supports alignment of c++17 data standard, aligning data
for functions, labels, jumps, and loops, respectively. Here, the compiler options
to achieve the respective alignment is -faligned-new, -falign-functions,
-falign-jumps, -falign-labels, and -falign-loops, respectively [4]. Thus,
we train the models with custom alignment of 8192 bytes for all the alignment
options discussed above.

BinAlign: Alignment Padding based Compiler Provenance Recovery 17

Table 13 – The overall result of malware compiler version prediction for MSVC com-
piler, and compiler optimization prediction at four different levels.

Compiler Version Compiler Optimization
Metrics o-glassesX BinAlign Improved BinAlign o-glassesX BinAlign Improved BinAlign
Prec. 0.8540 0.8713 0.9160 0.8718 0.8825 0.9287
Rec. 0.8548 0.8729 0.9170 0.8740 0.8827 0.9295
F 0.8542 0.8719 0.9162 0.8722 0.8822 0.9290

Table 14 – The overall prediction result of source compiler and compiler optimization
level of custom-aligned binaries.

Source Compiler Compiler Optimization
Metrics o-glassesX BinAlign Improved BinAlign o-glassesX BinAlign Improved BinAlign
Prec. 0.7923 0.8280 0.8557 0.6892 0.7708 0.7950
Rec. 0.7927 0.8294 0.8548 0.6729 0.7709 0.7920
F 0.7925 0.8287 0.8552 0.6811 0.7709 0.7935

To evaluate our models on custom-aligned compiled binaries, we train the
compiler provenance models with, i) default alignment compiler settings, and
ii) custom-alignment paddings on the same dataset as evaluated in Sections 6.1
to 6.3. We then test our trained models with custom-aligned binary code to
measure their evaluation performance. Therefore, we utilized 70% of our total
compiled data for training, while 30% of the custom-aligned binaries are evalu-
ated by the trained models.

Hence, our evaluation results show that the improved BinAlign infers the
source compiler and compiler optimization level of custom-aligned compiled bi-
naries with a fairly decent score as shown in Table 14.

7 Limitations

Based on our evaluation of compiler provenance models, we state a limitation in
our evaluation approach.

We evaluate BinAlign on selected options of custom alignment padding pro-
vided by the compiler. For example, the alignment options in MinGW compiler
for aligning data for the C++17 standard, functions, loops, jumps and labels
range from 22 to 216. Moreover, it would be interesting to assign labels to dif-
ferently padded binary code with varying alignment padding compiler settings.
BinAlign can thus be learnt on the padded binary data and evaluate it to predict
the class of the alignment option set by the developers. We leave this as future
work. Moreover for our current evaluation, we only considered the compiler spe-
cific alignment options. This work can further be extended to incorporate the
architecture-specific alignment padding options [4].

8 Conclusion

In this work, we evaluate state-of-the-art compiler provenance recovery model,
o-glassesX and propose BinAlign that incorporates compiler-optimization-specific

18

domain knowledge into the existing model. Thus, our proposed model explores
the alignment padding in the binary code and infers the source compiler and
optimization levels over a diverse set of real-world and complex binaries. Our
experimental results show that leveraging data and code alignment pattern in
binary code effectively improves the performance of state-of-the-art compiler
provenance model. Our evaluation results further show that BinAlign effectively
improves the compiler provenance analysis of a large set of 64-bit benign and
32-bit malicious binaries.

We believe that with the growing strategies followed by optimizing compilers,
new patterns of instructions may be generated to serve the purpose of alignment
padding. Hence this work can be extended to incorporate additional filler in-
structions in order to enhance the performance of compiler provenance analysis
in optimized binaries.

We sincerely thank the authors of o-glassesX (Otsubo et al.) for providing
us with the replication package along with the necessary guidance.

References

1. Intel compatability with msvc. https://support.alfasoft.com/hc/en-
us/articles/360002874938 (2019), accessed: 2021-07-01

2. Clangcl with msvc. https://clang.llvm.org/docs/MSVCCompatibility.html (2021),
accessed: 2021-07-01

3. Detect-it-easy. https://github.com/horsicq/Detect-It-Easy (2021), accessed: 2021-
07-01

4. Mingw-w64 compiler. https://www.mingw-w64.org/ (2021), accessed: 2021-11-19

5. Portabl executable identifier. https://www.aldeid.com/wiki/PEiD (2021), ac-
cessed: 2021-07-01

6. Ransomware. https://www.statista.com/statistics/701020/major-operating-
systems-targeted-by-ransomware/ (2022), accessed: 2022-03-09

7. Windows, the most popular desktop os. https://gs.statcounter.com/os-market-
share/desktop/worldwide (2022), accessed: 2022-03-08

8. BinAlign Appendix (2023), https://anonymous.4open.science/r/CompProv Feb2023

9. Andriesse, D.: Practical Binary Analysis: Build Your Own Linux Tools for Binary
Instrumentation, Analysis, and Disassembly. No Starch Press, Incorporated (2018),
https://books.google.com.sg/books?id=laWgswEACAAJ

10. Andriesse, D., Chen, X., van der Veen, V., Slowinska, A., Bos, H.: An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: 25th USENIX Security
Symposium (2016)

11. Benoit, T., Marion, J.Y., Bardin, S.: Binary level toolchain provenance identifi-
cation with graph neural networks. In: 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER) (2021)

12. Chaki, S., Cohen, C., Gurfinkel, A.: Supervised learning for provenance-similarity
of binaries. In: Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 15–23 (2011)

13. Cifuentes, C., Gough, K.J.: Decompilation of binary programs. Software: Practice
and Experience 25(7), 811–829 (1995)

BinAlign: Alignment Padding based Compiler Provenance Recovery 19

14. Ding, S.H., Fung, B.C., Charland, P.: Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler opti-
mization. In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 472–489.
IEEE (2019)

15. Eagle, C.: The IDA Pro Book: The Unofficial Guide to the World’s Most Popular
Disassembler. No Starch Press, USA (2011)

16. Grune, D., Van Reeuwijk, K., Bal, H.E., Jacobs, C.J., Langendoen, K.: Modern
compiler design. Springer Science & Business Media (2012)

17. Intel: Intel 64 Optimization Reference Manual. Intel Corporation (2016),
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-optimization-manual.pdf

18. Ji, Y., Cui, L., Huang, H.H.: BugGraph: Differentiating Source-Binary Code Sim-
ilarity with Graph Triplet-Loss Network, p. 702–715. New York, NY, USA (2021)

19. Ji, Y., Cui, L., Huang, H.H.: Vestige: Identifying binary code provenance for vul-
nerability detection. In: Applied Cryptography and Network Security (2021)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

21. Koo, H., Park, S., Choi, D., Kim, T.: Semantic-aware binary code representation
with bert. arXiv preprint arXiv:2106.05478 (2021)

22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Communications of the ACM 60(6), 84–90 (2017)

23. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: International Workshop
on Recent Advances in Intrusion Detection. pp. 207–226. Springer (2005)

24. Lin, Y., Gao, D.: When function signature recovery meets compiler optimization.
In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 36–52. IEEE (2021)

25. Lin, Y., Gao, D., Lo, D.: Resil: Revivifying function signature inference using deep
learning with domain-specific knowledge. In: Proceedings of the Twelveth ACM
Conference on Data and Application Security and Privacy. pp. 107–118 (2022)

26. LLVM: LLVM Documentation. LLVM Compiler Infrastucture (2020)
27. Massarelli, L., Di Luna, G.A., Petroni, F., Querzoni, L., Baldoni, R.: Investigating

graph embedding neural networks with unsupervised features extraction for binary
analysis. In: Proceedings of the 2nd Workshop on Binary Analysis Research (BAR)
(2019)

28. Massarelli, L., Di Luna, G.A., Petroni, F., Baldoni, R., Querzoni, L.: Safe: Self-
attentive function embeddings for binary similarity. In: Detection of Intrusions and
Malware, and Vulnerability Assessment (2019)

29. Microsoft: Visual C++ Compiler Optimization Documentation (2021),
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-options-listed-
alphabetically?view=msvc-160

30. Microsoft Corporation: Developer Documentation (2021),
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

31. Mitchell, M., Oldham, J., Samuel, A.: Advanced linux programming. New riders
Berkeley, CA (2001)

32. Muchnick, S., et al.: Advanced compiler design implementation. Morgan kaufmann
(1997)

33. Otsubo, Y., Otsuka, A., Mimura, M., Sakaki, T.: o-glasses: Visualizing x86 code
from binary using a 1d-cnn. IEEE Access 8, 31753–31763 (2020)

34. Otsubo, Y., Otsuka, A., Mimura, M., Sakaki, T., Ukegawa, H.: o-glassesx: compiler
provenance recovery with attention mechanism from a short code fragment. In:
Proceedings of the 3rd Workshop on Binary Analysis Research (2020)

20

35. Pizzolotto, D., Inoue, K.: Identifying compiler and optimization options from bi-
nary code using deep learning approaches. In: 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME) (2020)

36. Rahimian, A., Nouh, L., Mouheb, D., Huang, H.: Binary code fingerprinting for
cybersecurity

37. Rahimian, A., Shirani, P., Alrbaee, S., Wang, L., Debbabi, M.: Bincomp: A strati-
fied approach to compiler provenance attribution. Digital Investigation (2015), the
Proceedings of the Fifteenth Annual DFRWS Conference

38. Ramshaw, M.J.: Establishing malware attribution and binary provenance using
multicompilation techniques (2017), https://www.osti.gov/biblio/1390004

39. Rosenblum, N., Miller, B.P., Zhu, X.: Recovering the toolchain provenance of bi-
nary code. In: Proceedings of the 2011 International Symposium on Software Test-
ing and Analysis. ISSTA ’11 (2011)

40. Rosenblum, N.E., Miller, B.P., Zhu, X.: Extracting compiler provenance from pro-
gram binaries. In: Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering. PASTE ’10 (2010)

41. Rosenblum, N.E., Zhu, X., Miller, B.P., Hunt, K.: Learning to analyze binary
computer code. In: AAAI. pp. 798–804 (2008)

42. Shirani, P., Wang, L., Debbabi, M.: Binshape: Scalable and robust binary library
function identification using function shape. In: Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (2017)

43. Tian, Z., Huang, Y., Xie, B., Chen, Y., Chen, L., Wu, D.: Fine-grained compiler
identification with sequence-oriented neural modeling. IEEE Access (2021)

44. TIS Committee: Executable and Linking Format (ELF) Specification (1995),
https://refspecs.linuxfoundation/elf/elf.pdf

45. Wang, R., Shoshitaishvili, Y., Bianchi, A., Machiry, A., Grosen, J., Grosen, P.,
Kruegel, C., Vigna, G.: Ramblr: Making reassembly great again. In: NDSS (2017)

46. Wang, S., Wang, P., Wu, D.: Reassembleable disassembling. In: 24th USENIX
Security Symposium. pp. 627–642. Washington D.C. (2015)

47. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of
the 2017 ACM SIGSAC. pp. 363–376 (2017)

48. Xue, H., Sun, S., Venkataramani, G., Lan, T.: Machine learning-based analysis of
program binaries: A comprehensive study. IEEE Access 7, 65889–65912 (2019)

49. Yang, S., Shi, Z., Zhang, G., Li, M., Ma, Y., Sun, L.: Understand code style:
Efficient cnn-based compiler optimization recognition system. In: ICC 2019 - 2019
IEEE International Conference on Communications (ICC) (2019)

50. Zou, F., Shen, L., Jie, Z., Zhang, W., Liu, W.: A sufficient condition for conver-
gences of adam and rmsprop. In: Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition. pp. 11127–11135 (2019)

Appendix

o-glassesX Architecture. o-glassesX uses natural language processing (NLP)
techniques called the attention mechanism with convolutional neural network
(CNN) to capture the characteristics of a single instruction by multiple local
receptive fields [34]. The input unit of CNN is the local receptive field (i.e.,
kernel), whereas the output unit is the volume of kernel size (K), depth, and
stride (S) length. The depth of the CNN refers to the number of filters, whereas

BinAlign: Alignment Padding based Compiler Provenance Recovery 21

stride is the step size of the kernel when traversing the width and height of the
input binary image. In the preprocessing stage, o-glassesX disassembles binary
into 128-bit fixed length instructions padded with zero’s to construct a 2048-
bit sequence of 16 instructions. The underlying architecture of neural network
comprises of the following CNN layers. (1) The first layer instructionCNN that
takes 2048 bits as input. Each unit is a single-dimension 128-unit kernel, with
the stride of 128 and having depth of 96. (2) The second layer is the positional
encoding (PE) layer with 256 filters to a 16 x 96 input volume with a stride
of 1. This layer captures the relationship between two adjacent instructions.
The instructions in positional feed-forward network (PFFN) in Transformer are
arranged in two dimensions by setting the stride and kernel size to 1. (3) The
third, fourth and fifth layers correspond to attention, batch normalization and
fully connected layers with K nodes as output classes to classify the network [34].
Different locations where compilers emit alignment padding. Ta-
ble 15 [8] lists nine scenarios in which compilers emit alignment padding at
different locations in the binary.
Github projects in our dataset. Table 16 [8] shows the description of some
of the projects in our dataset.

22

Table 15 – Placement of alignment padding in the binaries. We identified nine scenarios
in which compilers emits alignment padding at different locations in the binary

Placement in Binary Purpose and Location Impact of Optimization Align

1 Data interleaved in
Code

inline data in .text section increase with optimization DB

2 Import Functions before a branch instruction decrease with optimization NOP

3 Exception handling
functions

aligned jump tables less in MSVC & Clangcl,
intense in ICC at O2, Ox [17]

NOP

4 Intrinsic functions compiler’s inlined functions expansion of function vary
with compiler family &
optimization [26]

NOP, DB

5 Function-entry
alignment

before subroutine or EH
function

align code and data INT3, NOP

6 Common Runtime
(CRT) routines

handcoded assembly
routines

intense use of CRT at higher
optimization

ZERO, DB

7 End-of-segment
alignment

PE sections are aligned decrease with higher
optimization

ZERO, DB

8 Vector operations 128-bit multimedia
operands are aligned

MMX and SSE (XMM) instructions
aligned at 16 Byte address

NOP, DB

9 Branch Alignment align branch target to a
multiple of 16

increase with optimization NOP

Table 16 – The selected C/C++ projects from Github in our dataset
Project Description
ogg-vorbis audio encoder/decoder for lossy compression
cmake a cross-platform, open-source build system generator.
curl library for data transfer with url syntax
doxygen document generation tool from annotated C++ sources
eigen C++ template library for linear algebra, matrices, vectors, numerical solvers, etc.
gflags C++ library with command-line flags for strings, etc.
glm C++ openGL Mathematics library for graphics
glog C++ google logging (glog) module
libevent a library that provides asynchronous event notifications.
llvm an open source compiler and toolchain
onednn oneAPI deep neural network library optimized for Intel and Xe architectures.
opencl Open Computing Language for heterogeneous platforms like CPUs, GPUs, etc.
openssl library to secure communications over computer networks against eavesdropping.
Microsoft library C++ Standard Template Library (STL) for MSVC toolset and Visual Studio IDE.
sqlite a relational database management system contained in a C library.
vtk an image processing, 3D graphics, volume rendering, and visualization toolkit.
zlib data compression library used in gzip file compression programs.

