Game Theoretic Modelling of a Ransom and Extortion
Attack on Ethereum Validators

Alpesh Bhudia
Royal Holloway, University of London
Egham, United Kingdom
alpesh.bhudia.2018@live.rhul.ac.uk

Darren Hurley-Smith
Royal Holloway, University of London
Egham, United Kingdom
darren.hurley-smith@rhul.ac.uk

ABSTRACT

Consensus algorithms facilitate agreement on and resolution of
blockchain functions, such as smart contracts and transactions.
Ethereum uses a Proof-of-Stake (PoS) consensus mechanism,
which depends on financial incentives to ensure that validators
perform certain duties and do not act maliciously. Should a val-
idator attempt to defraud the system, legitimate validators will
identify this and then staked cryptocurrency is ‘burned’ through
a process of slashing.

In this paper, we show that an attacker who has compromised
a set of validators could threaten to perform malicious actions
that would result in slashing and thus, hold those validators
to ransom. We use game theory to study how an attacker can
coerce payment from a victim, for example by deploying a smart
contract to provide a root of trust shared between attacker and
victim during the extortion process. Our game theoretic model
finds that it is in the interests of the validators to fully pay
the ransom due to a lack of systemic protections for validators.
Financial risk is solely placed on the victim during such an attack,
with no mitigations available to them aside from capitulation
(payment of ransom) in many scenarios. Such attacks could be
disruptive to Ethereum and, likely, to many other PoS networks,
if public trust in the validator system is eroded. We also discuss
and evaluate potential mitigation measures arising from our
analysis of the game theoretic model.

1 INTRODUCTION

Ethereum 2.0 differentiates itself from previous versions of Ethereum

and most other cryptocurrencies, including Bitcoin, by departing
from the Proof-of-Work (PoW) consensus mechanism. Proof-of-
Stake (PoS) has become the de facto mode of Ethereum (eth), and
so the 2.0 label has been retired and Ethereum now refers to the
current PoS version of the protocol [17]. It uses a non-delegated
proof-of-stake scheme to confirm transactions and add blocks
to the chain. Proof-of-Stake requires that validators are selected
to agree on valid blocks of transactions, with a probability that
is based on the amount they have staked in the network [18].
Validators are incentivized to perform useful tasks by appropri-
ate rewards and punishments.! An advantage of PoS systems
is reduced energy demands, as complex calculations (i.e. the
cryptographic proof-of-work) are reduced, with the additional
benefit of avoiding duplication of effort [38]. Proof-of-stake (or
a hybrid approach) can significantly reduce these energy costs
!Cardano technically implemented full proof-of-stake and full decentralisation of

PosS first, however, it is significantly different to Ethereum’s implementation, and
there are some concerns about the integrity of the Delegated proof of stake [27].

Anna Cartwright
Oxford Brookes University
Oxford, United Kingdom
a.cartwright@brookes.ac.uk

Edward Cartwright
De Montfort University
Leicester, United Kingdom
edward.cartwright@dmu.ac.uk

Julio Hernandez-Castro
University of Kent
Canterbury, United Kingdom
j.c.hernandez-castro@kent.ac.uk

and also potentially increase reliability and security by ruling
out the ability for attackers to reduce their ‘cost of work’, by
stipulating a specific price of participation [30, 36, 39].

Crucial to any blockchain is resilience to manipulation and
fraud. To quote from the Ethereum Foundation blog, ‘eth2 as-
sumes validators will be lazy, take bribes, and that they will try
to attack the system unless they are otherwise incentivised not
to. Furthermore, the network is assumed not to be entirely reli-
able and that catastrophic events could force large numbers of
validators to go offline’ [19]. Where information is not reliant on
centralised infrastructure, it is possible to add resilience through
mass duplication [6]. It is, however, extraordinarily difficult for
any system design process to predict and pre-empt all the pos-
sible attack scenarios, especially those defrauding consensus
protocols. Some studies have, thus, explored a small number of
vulnerabilities and attack vectors [13, 14, 26, 35, 37].

This work evaluates the impact of extortion attacks against
the Ethereum validators. We use game theoretic modelling to de-
termine the key decisions which shape the likelihood of payment
of the ransom by the victim (validator owner). The purpose of
this is to identify the specific systems and support mechanisms
of Ethereum and the pressures that the attacker can apply. This
allows us to map the decision flows between the attacker, vic-
tim, and Ethereum blockchain in the proposed extortion attack
scenarios. Finally, this approach allows us to identify the con-
tributing factors towards victims deciding to pay the ransom and
the point in the decision making process at which such a decision
becomes likely. This helps in identifying potential mitigations
that could be implemented in future versions of Ethereum, with
the aim of minimising damages to validators and the likelihood of
ransom payment. This work has been undertaken as an indepen-
dent study of Ethereum validator security, working closely with
the Ethereum Foundation, who have been responsibly informed
of all our findings.

1.1 Background

Ethereum (eth) validators each have two keys: a signing key to
perform a variety of duties, and a withdrawal key to access the
resource staked [1, 30]. An attacker who compromises both the
signing and withdrawal key of a validator (via either known or
zero-day vulnerabilities, e.g. [3, 33]) can directly access and ‘steal’
the validator’s stake. This, however, can be avoided relatively
easily if the validator keeps the withdrawal key fully secure,
particularly since it only needs to be used for withdrawal and
therefore isn’t required (or advised) to be stored locally on the
node. The signing key, by contrast, must be in constant use online

and so is inevitably more vulnerable as it is stored locally on
the validator. We focus here, therefore, on the more plausible
scenario in which the attacker has compromised the signing key
but not the withdrawal key of the validator.

A criminal who has compromised the signing key could at-
tempt along range attack aimed at directly corrupting the blockchain
consensus mechanism [14]. Eth, and other crypto-currencies, are,
however, actively designed to thwart this kind of attack. Such
an attack is highly unlikely to succeed as it requires achieving
control of an infeasibly large number (>50% total population) of
validators (by exploitation of vulnerable validators or expendi-
ture of Eth to create attacker-controlled validators). As we shall
show, extortion is a far more viable route to financial gain. Slash-
ing is a process whereby a validator, who has seemingly acted
maliciously against the eth network, is punished and incurs a
significant loss of their committed resources, of at least 1/32 of
the stake [2, 23]. An attacker who has access to the signing key of
a validator can force slashing and, therefore, can threaten to force
slashing unless a ransom is paid. In this paper, we demonstrate
that a validator who faces losing money through slashing may,
under certain conditions, rationally choose to pay the ransom.
The validator can, thus, be extorted.

In formally evaluating the possibility of a ransom attack we
need to consider incentive compatibility, in a game theoretic
sense, for both the attacker (i.e. the criminal or insider acting
maliciously) and the victim (i.e. the staker > whose validator(s)
have been compromised) [11]. Specifically, it will only be in the
interest of the victim to pay a ransom if doing so will result (with
sufficiently high probability) in a reduced financial loss and/or
the return of control over the signing keys. The attackers, how-
ever, have incentives to renege on a deal by extracting ransom
but then not returning control of the keys, allowing them to
make a second or successive ransom demand. This incentive to
renege means that, in order to adequately incentivize ransom
payments, trust must be established between both victim and
attacker. [10, 11, 31].

Smart contracts offer a way to potentially resolve the need
for trust between the victim and attacker [9, 15]. To fully resolve
the ‘trust problem’, however, a complete contract needs to be
devised [32] and it can be difficult to devise complete contracts
that resolve all uncertainty [4, 28]. We demonstrate that the
Ethereum validation process can be exploited by attackers in a
way that allows them to write a smart contract, that is complete
and incentivizes payment through mechanisms familiar to the
victim. The most realistic contract we envisage is illustrated in
Algorithm 1. Given smart contracts do not run automatically, an
attacker must use an Oracle to trigger the stateful functions to
execute the contract’s code [24].

If a ransom is not paid, then the criminal will provoke slashing.
If a ransom is deposited, then the validators will be voluntarily
(without penalty) signed to exit. Crucially, this exit is publicly
observable and restores control of the eth balance to the victim
upon finalisation. The victim would be willing to pay a ransom
if that guarantees the exit of their validator(s), and if the cost of
ransom is lower than the cost (direct and opportunity) of being
slashed. This, in turn, means criminals can exploit this desire to
minimise losses, for financial gain.

2Throughout this paper, we use staker to define a "unique eth wallet public key’
rather than the individual behind the wallet, who may own many wallets, each of
which may express different staking strategies.

while TRUE do
if setdeadline()=ethereumalarmclock then
if attackaddrs.value()<ransomvalue then

provoke_slashing()
break
else

sign.out(validator)
break

end

Algorithm 1: Logic implementation of a smart contract by
an attacker.

While the contract set out in Algorithm 1 may seem simple
there are a number of important nuances that would need to be
considered in writing and designing a fully watertight contract.
For instance, a validator can be slashed in Ethereum while in the
exit queue. The victim should, thus, refuse to sign a smart con-
tract that does not guarantee exit from the chain is fully resolved,
with no slashing, before the ransom is transferred to the attacker.
Such nuances mean that a malicious attacker could potentially
manipulate and misinform the victim by, for instance, getting
them to sign a smart contract where the ransom is transferred
to the attacker once the validators are signed to exit. In this
case, the attacker could extract a ransom and subsequently slash
the victim’s validators, imposing large costs on the victim. Our
results help inform on the potential pitfalls faced by the victim
so that they can avoid being manipulated by the attacker in this
and similar ways.

One should also note that the smart contract does not need
to be created or maintained by either party (attacker or victim)
involved in the extortion attempt. In fact, it may even be the case
that a third party, as an extension of Ransomware as a Service
(RaaS), may operate the contract as a form of neutral third party
mediation service (or escrow).

1.2 Ethical considerations

Our paper and analysis follow a process of responsible disclosure.
In particular, we highlight a form of attack that is viable and
likely, while omitting practical details that would assist crimi-
nals. We have disclosed our findings to the DevOps team at the
Ethereum Foundation. There are non-trivial integration tasks
that would be required for criminals to obtain signing keys, and
implement a fully-fledged smart contract to extort victims as en-
visaged from our model. Our paper does, however, offer practical
guidance for potential victims. We believe this form of extortion
can be highly damaging for victims and so it is vital to be ‘ahead
of the game’ and pre-empt attack. In §7 we discuss possible
mitigation measures in more detail.

2 MODEL OF ETHEREUM VALIDATION

In this section, we propose a simplified model of the Ethereum
(eth) validation process. The model is designed to capture the
most salient points relevant to modelling a ransom attack. The
notation used in the model is summarised in Table 1.

Table 1: Summary of notation used in the model.

Variable ‘ Description

t Time in epochs

T Time of special penatly

\%4 Set of validators (128 nodes in a slot)

V(t) Set of validators active at time ¢

N Set of stakers

p Mapping from stakers into a set of validators

y;j(t) Balance of validator j at time ¢

y J-(t) Effective balance of validator j at time ¢

Y(t) Total effective balance in period ¢

si(t) Stake of i at time ¢

Lj(t) Relative stake of validator j at time ¢

bj(t) Base reward of validator j at time ¢

a Scale factor reward for matching source, target and head

B Scale factor penalty for not matching source, target and head

Y Scale factor for offline penalty

Li(t) Dummy variable that takes value 1 if j performs a slashable offence in period t.
L(t) Set of recently slashed validators from period ¢

G(t) Recently slashed balances

VA Delay before slashed validators can exit

1 Scale factor for per-epoch penalty for slashing

A Scale factor for a special penalty for slashing

Pj(t) Special penalty for validator j if slashed in period ¢

1) Whistleblower reward

C Set of compromised validators

R Ransom demand

ty Ransom cut-off time

te Time for exit from chain

f Transaction cost for the victim of raising the ransom

4 Cost to an attacker for performing actions that force slashing

w The foregone gains from a victim having to wait for validators to exit by inactivity
Rg Maximum ransom victim is willing to pay in Ransom and Exit game
Rs Maximum ransom victim is willing to pay in the Slash and Ransom game
Rp Maximum ransom victim is willing to pay in the Pay or Slash game
H(ty) Total penalty if slashed at time ¢,

q Probability attacker has compromised additional validators

Q Size of the total balance of additional compromised validators

In eth blocks are added to the Beacon Chain through a system
of proposal and attestation by validators. Each validator is re-
quired to deposit an initial stake of 32ETH.® Validators are then
rewarded or punished, as we shall discuss below, depending on
their actions. Ethereum currently has over 500,000 validators,
the aim being to increase this number steadily [20]. This level of
decentralisation is managed by groups of at least 128 validators
called committees. Validators are randomly assigned to commit-
tees with the task of evaluating what is and isn’t part of the
beacon and shard chains. Committee votes are aggregated into
an attestation. This process of aggregation means the validity
of the Beacon Chain can be considered without continuously
evaluating the votes of many validators, increasing efficiency.

3A validator can stake more but the effective balance is capped at 32ETH. Encour-
aging those with > 32ETH to fund further validators to maximise returns.

The Beacon Chain is the core of Ethereum in that it manages
validators, their duties and the coordination of shards.* Validator
clients handle the logic of a validator. They communicate with the
beacon node to understand the state of the Beacon Chain, attest
to and propose blocks when appropriate, and ask the beacon
node to send the information. To operate on the Beacon Chain,
a validator uses a private signing key or validator key. Crucially,
anyone with the signing key can operate as if they were the
validator.

Alongside the signing key, a validator will have a separate
private withdrawal key. This key is required to withdraw funds
from Ethereum. The separation between the signing key and
withdrawal key is important because it means that an attacker
who accesses a validator’s signing key cannot directly access
the validator’s stake. Moreover, the withdrawal key, unlike the
signing key, does not need to be in active use online and so can

4A key feature of Ethereum is that it splits the chain into shards to limit the amount
of data that any node needs.

be kept more secure in offline storage. In this paper, we model
the most likely threat scenario in which an attacker has accessed
the validator’s signing key but not the withdrawal key.’

Time on Ethereum is subdivided into slots which last 12 sec-
onds each. A slot is the time period in which a new block is
expected to be added to the chain. An epoch consists of 32 slots
and hence lasts 6.4 minutes. This is the unit of time in which
each validator is called to make exactly one attestation [16]. It
is also the unit of time within which rewards and penalties are
issued. We measure time in our model with epochs, and denote
itby t = 0,1,2,..,T. We define a set of validators as a group
or a committee of at least 128 validators (randomly selected in
each slot) from which one validator is selected as a block pro-
poser. The remaining 127 validators vote on the proposal and
attest to the transactions. Once a majority consensus is reached,
the block is added to the blockchain and the block proposer re-
ceives a reward, i.e. variable amount of ETH based on a formulaic
calculation [21].

We take as given an initial set of v validators V = {1, ...,0} and
a set of n stakers N = {1, ..., n}. A single staker can own multiple
validators. Let p : N — V denote a correspondence mapping
from the set of stakers into the set of validators. An interpreta-
tion is that p(i) is the subset of validators owned by staker i. We
distinguish an active subset of validators. With a slight abuse of
notation, let V(¢) C V denote the subset of validators that are ac-
tive at time ¢. For each validator j € V we identify a balance y;(t)
and effective balance y/; (¢) in period t. The nuance of the effective
balance is not crucial here but we note that the effective balance
is capped at 32ETH and is always an integer amount slightly
less than the balance.® We denote by s;(t) = Zjep(i) Yj(t) the
stake of staker i at time . Let Y (¢) = X jev(s) Y;(£) be the total
effective balance in period t.

In every epoch, each validator is asked to perform either an
attestation or a block proposal. Rewards are given for actions that
help the network reach consensus. Minor penalties are given for
actions that hinder consensus. Slashing only occurs as a response
to malicious actions. The payoffs of validator j € N in period ¢
are calculated relative to a base reward [5]. The base reward of
validator j in period t is given by:

BaseRewardFactor 64
bj(t) =

=y;()
BaseRewardsPerEpoch+/Y(t) Ui 44/Y(t)

The base reward is given in Gwei, where 1ETH is equal to 10°
Gwei. Rewards and penalties are subtle but not crucial to our
model and so we model them approximately. In each epoch, we
assume a validator is asked to perform a task. If they perform
the task correctly, they receive a payoff of ab;(t) where « is a
scale factor, currently approximately 3. If they fail to match, they
receive a penalty of fb;(t) where f is a scale factor, currently
equal to 3. If validator j fails to perform duties because of being
offline or similar, then j receives a penalty of yb;(t) where y is
a scale factor, currently equal to 1.

(1)

5The signing key can be recovered from the withdrawal key and so the validator,
even if the signing key is compromised during an attack, can recover and still
operate.

To limit fluctuations in effective balance (which are computationally costly) a
number of rules are applied. The effective balance will only increase if the validator’s
balance is 1.25ETH higher than the current effective balance, e.g. if the effective
balance is 27ETH, it will only become 28ETH once the balance goes above 28.25ETH.
Effective balance only decreases if the validator’s balance falls 0.25ETH below the
current effective balance, e.g. if the effective balance is 27ETH, then it will only
become 26ETH when the balance drops below 25.75ETH.

2.1 Slashing

Of critical importance is the role of slashing. Let [; (¢) be a dummy
variable that takes value 1 if validator j performs a slashable
offence in period ¢ and 0 otherwise. If [;(¢) = 1 then j ¢ V(¢')
for all ¢’ > t. In other words, a validator who is slashed exits
the active set. If [;(¢) = 1 then j incurs a penalty in epoch ¢, and
each of the next Z = 213 = 8,192 epochs (approximately 36 days).
The penalty in epoch ¢ is §;(¢)/32. The penalty in subsequent
epochs is 8bj(t), where § is a parameter currently equal to 3.
Validator j also incurs a ‘special penalty’ in period 7 = ¢ + Z/2.
The size of the special penalty depends on the number of other
validators that have been recently slashed. Specifically, let L(7)
denote the set of validators that have been slashed in periods
T—Z+1,..,7. Thatis, j € L(r) if and only if [;(¢) = 1 for some
te{r—Z+1,.,t}.Let G(t) = Yjer(r) gj(t) be recently slashed
balances. The special penalty is:

@

P;j(t) = §(z)min [AG(T) 1]

Y(r)
where A is a scale factor currently equal to 3. The important
observation here is that the special penalty is based on effective
balance (not base reward) and can potentially be large or small
depending on the extent of slashing. In particular, if G(7) >
Y(t)/A, meaning a third of validators were slashed, then the
special penalty is equal to the effective balance. In other words
the validator can lose all their stake. Conversely, if G(r) is small,
meaning few validators were slashed, the special penalty can
become effectively zero.

A slashable offence needs to be caught and reported. This
occurs when a whistleblowing validator creates and propagates a
message containing the slashable offence. Both the whistleblower
and relevant proposer receive a small reward for reporting the
offence. We denote by « the whistleblower reward. The proposer
reward is currently set at w/7. The whistleblower reward is
offered on a first-come-first-served basis of reporting the offence.
To the best of our knowledge, there is no way that an attacker
who forces slashing upon a validator could guarantee being
the first validator (using another validator) to whistleblow that
slashable offence.

The final preliminary we need to consider is that of validator
exit. There are three ways in which a validator can exit the active
subset of validators. If the validator balance falls below 16ETH
(through inactivity or non-slashable punishment), then they are
forced to exit the validator set (without incurring any additional
penalties). This is likely to be very rare. If the validator performs
a slashable offence then, as discussed above, it exits the active set
(and incurs potentially significant penalties). Slashed validators
are forced to exit the network after a period of approximately
36 days. Finally, and crucially the validator can signal an intent
to stop validating by signing a voluntary exit message. Prior to
the Ethereum upgrade being rolled out, there were limits on the
withdrawal of funds. However, as part of the Shanghai upgrade
[34] released earlier this year, funds can now be withdrawn once
a validator has exited, so we assume that to be the case in our
model.

Voluntary exit is irreversible. A validator who exits would
need to withdraw the stake and restake in a new validator to
resume operating. Unslashed validators need to wait for at least
28 epochs (approximately 27 hours) to become withdrawable.
This wait is necessary to check if the validator should be slashed

and provide time for appropriate rewards and proof of custody
challenges. The wait, however, could be longer. In particular, in
order to guarantee continuity of the Beacon Chain the exit of
validators is controlled to avoid too many exiting at the same
time. If a large number of validators are in the exit queue, it can
take weeks or months to exit.

It is fundamental to recognise that an attacker who has the
signing key of a compromised validator can impose slashing
penalties through misbehaviour. For example, an attacker could
run a compromised signing key in another validator client pro-
cess simultaneously, which would incur slashing. There is noth-
ing the victim can do to stop this happening. Moreover, during
the time between signing to exit and actually exiting, the val-
idator can still be subject to slashing. An attacker can credibly
threaten a victim that they will force slashing upon their valida-
tors if the victim signs to exit the validators. Indeed, the attacker
could set up an automatic ‘trip-switch’ to force slashing upon a
victim who signs to exit from the chain. Access to the signing
key, thus, affords the attacker significant control over the victim.

3 A CRIMINAL MOTIVATION FOR
EXTORTION

Our model takes as given that the attacker has obtained a signing
key (but not the withdrawal key). Recall that the signing key
is in constant use online while the withdrawal key can be kept
secure. We, thus, consider this the most plausible scenario. There
are a variety of standard threats and breaches that could result in
criminal access to the validator signing key. For instance, insider
threat in which an employee of a staking pool acts maliciously.
Indeed the relative infancy of the PoS mechanism, and conse-
quent inexperience of stakers and under-developed protocols
of staking pools, would suggest security may be relatively lax
providing ‘low hanging fruit’ for criminals.

An attacker holding a validator’s leaked key could mount
long range attacks [14]. This, however, has two major disadvan-
tages: (a) It is highly unlikely to succeed because the attacker
would need to control an implausibly large number of validators
to have any realistic chance of compromising the blockchain.
Ethereum, and other proof-of-stake mechanisms are set up to
defend against such long range attacks. (b) Criminals typically
like to ‘fly under the radar’ and profit without drawing undue
attention. Manipulating the blockchain, while it could be highly
profitable if pulled off, would draw considerable attention and
likely, fundamentally undermine the currency. Undermining a
currency is unlikely to be directly profitable to a criminal gang.

We will show that extorting validators or staking pools can
be highly profitable without attracting attention. Morevoer, it is
possible to profitably extort even a single validator (where there
would be no chance of a viable long range attack). Criminals
could, thus, target validators and staking pools, breach those with
the most lax security, and use profitable extortion techniques. In
the next section we outline one viable method of extortion.

4 PAY AND EXIT STRATEGY

In this section we set out a potential strategy a savvy attacker
could use to ransom a validator. We also show how the pay-
ment of a ransom could be fully incentivized through a smart
contract. We consider the case where an attacker has fully com-
promised the signing keys of a set of validators at time ¢ = 0

(the withdrawal key is not compromised). Let C C V denote
the set of validators that have been compromised. By that we
mean that: the attacker has the signing keys and so can perform
actions that would be expected to result in the validators being
slashed. It is simplest to consider the case in which the set of
compromised validators C is owned by a single staker i. In other
words C C p(i). We explore the extent to which the attacker
can ransom the staker. We take as given that an insider is acting
maliciously and/or a cyber breach has led to the signing key
becoming known to external actors.

To formally model the interaction between attacker and victim
we introduce the following dynamic game, which we refer to as
the Pay and Exit game. It is summarized in Figure 1 and can be
explained as follows:

e At time ¢t = 0 the attacker sets a ransom demand R and
a time ¢, by which the ransom must be paid. He also
initiates a self-enforced smart contract.

Attime t = 1,2, ..., t, the victim decides whether to pay or
not. If she decides to pay, then she deposits the required
ransom demand R and signs to exit the validators before
time t,. She incurs transaction costs f > 0 which reflect
the potential fees from raising and transferring funds.”
At time ¢, the attacker chooses whether to force slashing
upon the validators or not. If the victim deposits the ran-
som and the attacker does not slash then the validators
exit at time f,. If the attacker forces slashing, he incurs a
cost of { which is the cost of operating the validator net of
any expected whistleblowing reward. We allow that { < 0
meaning the expected whistleblowing reward fully offsets
the costs of the attack (smart contract/oracle execution)
and the criminal materially gains from slashing.

The smart contract dictates that if the ransom is deposited
by the victim, the validator(s) are signed to exit, and the
validator(s) exit without being slashed then the attacker
receives the ransom. If the validator(s) are not signed to
exit or slashed (either before or after exit), then the de-
posit is returned to the victim. This smart contract can be
enforced because signing to exit and slashing are observ-
able on the Beacon Chain by the Oracle, which can then
trigger appropriate smart contract code.

We omit other actions the victim and attacker could perform,
such as the victim signing to exit without paying the ransom, be-
cause they complicate analysis without affecting our conclusions.
In the case of the victim signing to exit, this will be observed by
the attacker, who can, within approximately 27 hours, provoke
slashing to punish the victim. This does not functionally alter
the outcome of the attack, as it is non-compliant behaviour that
the attacker is motivated to punish.

Critical to determining the payoff to each outcome is the total
penalty from slashing given by:

gt G
H(t) =)' TR t; bj(t) + Pj(ty) 3)

jec

Various components of this penalty cannot be known for
certain at time ¢, or before. For instance, P;(t,) depends on the
proportion of balances that will be slashed in the period after t,.
The attacker and victim can, though, approximate payoffs with

"These costs could depend on time, e.g. it is more expensive to raise funds quickly,
but we abstract from this here.

[R’ ZjeC yj(te) —f - R]

-4, ZjeC yj(tr) -H(ty) - f

[0, ZjeC yj(tr)]

[-4 ZjeC yi(tr) - H(tr)]

Figure 1: A reduced form game tree for the Pay and Exit game.

a reasonably high level of accuracy based on the history of the
Chain. Payoffs can be summarized as follows:

o If the victim deposits the ransom and the attacker does
not slash then the attacker has payoff:

II(Deposit, NotSlash) = R (4)
given by the ransom. The victim has payoff:
U (Deposit, NotSlash) = Z yj(te) = f—R (5)
jeC

given by the balance withdrawn at the time of exit t,
minus the transaction cost of the deposit and the ran-
som. The validator balance at time t, i.e. y;j(te), can be
approximated using y;(t.) = y;(0).

o If the victim deposits the ransom and the attacker forces
slashing, then the attacker has payoft:

I1(Deposit, Slash) = ¢ (6)

where { is the cost the attacker incurs from forcing slash-
ing. The victim has payoft:

U (Deposit, Slash) = Z yj(ty) —H(ty) = f (7)
jeC
to reflect the loss of balance from slashing. The smart
contract means the ransom is returned to the victim.
o If the victim does not deposit the ransom and the attacker
does not slash in period t < t, then we assume the at-
tacker’s and victim’s payoff are:®

I1(NotDeposit, NotSlash) = 0 (8)

8In this scenario the game continues because the validators are still not exited.
For now we abstract from this and assume that the fact the attacker did not force
slashing makes any future threat non-credible.

and
U (NotDeposit, Sign) = Z yj(tr) 9)
jeC
o If'the victim does not deposit the ransom and the attacker
forces slashing then the attacker has payoft:

IT(NotDeposit, Slash) = —{ (10)
The victim has payoff:
U (NotDeposit, Slash) = Z yj(tr) — H(t) (11)
jeC

As a solution concept we look for a sub-game perfect Nash
equilibrium [11]. This requires all actions on the equilibrium
path to be individually rational. We can solve for the sub-game
perfect Nash equilibrium using backward induction. If R > —{,
then it is optimal for the attacker to sign to exit if the ransom
is deposited. If the ransom is not deposited, then it is optimal
for the attacker to force slashing if —¢ > 0. The victim can, thus,
predict that their payoft if they deposit is U(Deposit, NotSlash)
and their payoft if they do not deposit is U(NotDeposit, Slash).
It is, therefore, optimal for the victim to deposit the ransom if:

D uilte) = f=R> > () — H(ty) (12)
jeC jeC
For simplicity we assume t, =~ t,. This, yields a maximum ransom
the victim is willing to pay of:
R<H(t)-f=Rg (13)

If Rg > —{ then the unique subgame perfect equilibrium of the
game is for the attacker to set ransom R = FE, the victim to
deposit the ransom and the attacker to sign the validator(s) to
exit. Thus, it can be fully incentive compatible for the victim
to pay the ransom with the smart contract giving confidence

that payment of the ransom will result in a positive gain. In
a standard ransomware attack it is unlikely the attacker can
accurately predict the willingness to pay off the victim [29]. By
contrast, in this setting, the willingness to pay can be predicted
with a much higher level of accuracy.

We highlight that the preceding equilibrium is based on the as-
sumption —¢ > 0, meaning that if the ransom is not paid it will be
optimal for the attacker to force slashing on the validators. If it is
costly, however small, for the attacker to go through the process
of forcing the validators to be slashed then there are incentives
for the attacker to do nothing (incurring no cost). The threat of
slashing may be non-credible under some circumstances. The
potential non-credibility of threats in ‘kidnapping’ scenarios is
well documented [11]. In this instance, credibility is maintained
by the attacker providing a cryptographic proof of ownership
for the validator(s) staking key. The attacker signs a mutually
known string with the private staking key, and allows the victim
to decrypt it using their public staking key. Obtaining a matching
copy of the known string, proves ownership of the private stak-
ing key. The attacker is also motivated to follow through on their
threat of slashing, as they may receive a whistleblower reward.
This motivates punishment of non-compliant victims, as this
may offset the direct cost of the attack (smart contract execution)
as well as the maintenance of global credibility through punish-
ing misbehaviour. Given that the costs incurred from forcing a
slash are likely to be small, any gains would likely overcome the
costs. This would imply { < 0 and, thus, slashing is a credible
threat.

The Pay and Exit game illustrates that an attacker can credi-
bly threaten a compromised validator in a way that incentivises
the victim to pay a ransom. Crucially, this strategy is fully in-
centive compatible and can be written into a smart contract.
The smart contract uses the fact that exit without slashing is
fully observable and exit is irreversible. Thus, the victim can
know that payment of the ransom will prevent losses in excess
of the ransom. In practice the optimal ransom will differ from
RE because of nuances in payoffs not modelled in the Pay and
Exit game, as well as the need to predict variables such as t,
and H(#,). But these are minor issues that do not challenge the
notion that the Pay and Exit strategy is effective for the attacker.
We also consider the Pay and Exit strategy to be an intuitive and
simple approach for the attacker.

5 PAY OR SLASH STRATEGY

In this section we briefly consider a strategy that may seem a
natural starting point for criminals but is unlikely to be optimal.
In this instance, the attacker claims that if a ransom is paid by
the victim then the attacker will not act maliciously against
the victim. If a ransom is not paid the attacker will act so as to
force slashing upon the compromised validators. This approach
has the advantage that the victim would not have to exit the
validators, as in the Pay and Exit strategy. This is advantageous
given that exit involves some costs and delays the victim wants
to avoid. The key question is whether the claim by the attacker
that they would not act maliciously, beyond the remit of the
smart contract, is credible.

In order to obtain a complete contract that could be enforce-
able in a smart contract, there must be some observable measure
of not acting maliciously. The only natural candidate is that the

validators are not slashed and operate as normal. To capture
this, we envisage a smart contract of the form: A ransom will be
transferred to the attacker if the validators are not slashed in the
next X epochs. We call this the Pay or Slash strategy. Crucially, a
time limit of X epochs is necessary in order to make this contract
workable. While the time limit is necessary, it creates an obvious
problem. On epoch X + 1 there is nothing to stop the attacker
from renewing a threat to slash unless a second ransom is paid.
We must model an extended game in which the threat to slash
is repeated until, ultimately, the compromised validators exit,
either voluntarily without slashing or with slashing or because
Ethereum stops operating.

A victim may be willing to pay a ransom to delay malicious
actions. We can put a cap on the cumulative amount of ransom
the victim would be willing to pay in any sub-game perfect Nash
equilibrium. Specifically, suppose the victim does not deposit
the ransom by the initial predefined time limit of ¢ and incurs
slashing as a consequence. This would result in a predicted loss
from the slashing penalty of H(t,). The cumulative ransom that
the victim would provision to pay in any equilibrium strategy
cannot, therefore, exceed H(t,). Otherwise, the victim would
have a higher expected payoff by signing to exit the validators,
in the hope they avoid slashing. Once we include the costs of
depositing the ransom we see that the cumulative ransom cannot
exceed that from the Pay and Exit strategy, Rg.

If in equilibrium, the cumulative ransom paid over successive
iterations of the ransom demand cannot exceed Rg we would
expect the ransom paid in each iteration to be well below Rg. The
more iterations of the game, the lower the ransom one would
expect in any one iteration along the equilibrium path. There is
also the issue of unchangeable cryptographic keys remaining in
the possession of the attacker. As the attacker can never provide
compelling proof that they have destroyed the private key(s)
in their possession, the victim must trust that they will honour
the X epoch limit between attacks. They must also trust that
the attacker will not disclose, sell, or otherwise share this key.
This is an unsustainable, one-sided trust relationship. Clearly,
it is preferable, from the perspective of both the victim and
attacker, to employ a Pay and Exit strategy. This resolves the
problem more quickly and means both parties have payoffs at
least as large as with the Pay or Slash strategy. It also implicitly
proves that the attacker cannot posses the new private key. The
Pay or Slash strategy is therefore inferior to the Pay and Exit
strategy, especially from the victim’s perspective, who onboards
additional risk and cost for a questionable degree of convenience.

That the Pay or Slash strategy is not optimal does not mean
it would not be tried by attackers. Indeed, once we account for
‘human factors’ the Pay or Slash strategy may be advantageous
for attackers. This is because victims may ‘mistakenly’ pay a
ransom near R, in the first iteration in the ‘hope’ this will make
the problem go away. Once that first ransom is paid the attack-
ers can renew their threat and secure subsequent ransoms. Our
analysis, therefore, offers some direct advice that can be given
to validator owners to avoid such eventualities. Specifically, any
victim considering paying a ransom to the attackers should re-
quest a Pay and Exit strategy. This secures the victims and allows
them to move on from the attack. While it involves payment of a
ransom and so is not ideal, it is better than alternative strategies
that would also result in paying a ransom.

6 DISCUSSION

In this paper we have shown proof of concept that an attacker
could exploit the validation process of Ethereum for financial
gain. There are various methods an attacked could use to compro-
mise the signing key of a validator if the staker has lax security.
An attacker who has compromised the signing key of a val-
idator could hold the staker to ransom. We propose a simple
and effective strategy the criminal could use, called the pay and
exit strategy. The attacker threatens to force slashing upon the
validators unless a ransom is paid. If the ransom is paid then
the compromised validators will be allowed to voluntarily sign
to exit. Crucially, exit is irreversible and so returns control of
the stake to the victim. The ransom payment can be made con-
ditional, in a self-enforcing smart contract, on the validators
exiting without slashing.

A rational victim would be willing to pay a ransom to stop the
threat being carried out. Moreover, we have shown that a smart
contract could be enacted between the victim and attacker that
would make payment of the ransom incentive compatible for the
victim. Of the two strategies we have considered Pay or Slash is
the least effective (from an equilibrium perspective) because it
results in a lower ransom payment and a more prolonged process.
Arguably, it is the most likely to be first seen in the wild given
that it is an ‘obvious’ attack strategy. Moreover, ‘naive’ victims
may pay irrationally large ransoms in a process of ‘learning by
error’. Pay and Exit is intuitive and preferable for both attacker
and victim in that it leads to a straightforward resolution of the
problem without any slashing. Note, however, that here there is
still important nuance that an attacker could exploit, for instance
the potential for validators to be slashed between signing to exit
and actually exiting the Chain.

We make no claims that the two strategies outlined above are
the only ones that could be used by attackers. Our objective was
to highlight that a threat exists and that it could take various
forms that would result in a credible ransom that the victim is
motivated to pay. We have focused on games and smart contracts
that are built around easily observable and transparent outcomes
- e.g. a validator is signed to exit or the recently slashed balances
are below a pre-set threshold. It may be possible, to design smart
contracts around ‘less transparent’ actions, particularly with
the help of oracles such as Chainlink [12]. Relevant here is the
potential for an attacker to trade payment of the ransom for
handing back control of the signing keys. The problem with this
approach (familiar from the ransomware literature [15]) is how
to make sure the correct signing keys are returned and that the
attacker cannot re-corrupt the signing keys or otherwise retain
possession of those keys. An attacker signing for the validators
to exit is one simple way of overcoming this problem, but there
may be other potential solutions.

The modelling framework we have assumed is open to many
modifications and extensions. We assume that the attacker sets
up and initiates a smart contract with a ransom demand R. There
is, in principle, no reason why the victim could not set up a
similar smart contract with a ransom amount of less than R. A
negotiation and bargaining process is possible in which offers
and counter-offers can be made and enforced via a smart contract.
The attacker’s ability to extract the full amount that the victim is
willing to pay is not, therefore, guaranteed. This does not change
the main result that rational victims have an incentive to pay a

ransom and attackers have an incentive to attack validators. We
are merely clarifying that the attackers may not be able to fully
exploit the victims’ willingness to pay if negotiations ensue.

It is important to explore the extent to which ransom attacks
on validators could disrupt Ethereum. For the most part an at-
tack will have a little direct effect on Ethereum as a whole. For
instance, if a single validator is compromised then, at most, the
validator pays a ransom and exits or does not pay and is slashed.
This can be profitable for the attackers and disruptive for the
validator but is unlikely to significantly disrupt the Ethereum net-
work given that it has hundreds of thousands (and soon possibly
millions) of active validators. One can foresee a potentially larger
threat to Ethereum from extortion and ransom of much larger
sets of validators hosted in large providers. This is especially true
if validators owned by a single operator are hosted on shared
hardware (e.g., many validators on one server blade). Most, if not
all, other PoS networks which do not employ delegated staking,
would be exposed to a similar threat, even if the smart contract
design and the ransom amounts differ.

The direct threat is that an attack on a staker with a signif-
icant proportion of validators could be highly disruptive. This
is another reason to further encourage decentralisation and
client/software diversity. We remind that the penalty from slash-
ing is more than 3 times the ratio of recently slashed balance to
total balance. So, if say, a staker with a sixth of the validators is
compromised the potential impact on Ethereum is huge, both in
terms of disruption to activity and potential loss of assets. That
would clearly have a significant impact on Ethereum’s quality of
service, reputation, and future. In assessing whether or not this
scenario is realistic, we detail in Table 2 the current distribution
of the larger validators. As shown in Table 2, there is increasing
adoption of the new PoS Ethereum network.

Table 2: Distribution of Ethereum validators by deposits
as of March 2023 [22].

No. of validators | No. of stakers | No. of stakers
March 2023 Nov 2021

1 83,365 40,144

2-5 4,393 2,341

6-10 882 442

11-50 2,179 1,376

51-100 231 92

101-500 268 103

501-1000 47 28

>1000 approx 60 42

Though a significant proportion of stakers (representing unique
wallets) have funds staked against a single validator, a small
number of stakers (approximately 0.01% of the total population)
staked funds in over 1,000. This indicates a variety of strategies,
both for risk mitigation and the normalisation of gains. A wal-
let with only a single stake could be the sole (32ETH) staker
in a given validator, or they may have a lower net worth and
instead be attempting to gain interest on their <32ETH hold-
ings. Stakers putting funds into a great many validators may be
distributing their risk and/or attempting to ensure returns as
validator selection is effectively random, so a more diffuse stake
across all validators is a sound strategy if one seeks consistency

in returns. One can theoretically profile all such stakers and the
amounts they have staked against validators, but as attackers
(in most cases) lack personal or forensic information that would
tie multiple wallets to individual off-chain identities, Table 2
demonstrates that focusing on individual stakers, as opposed to
pool operators, is inefficient. As all validators have 32ETH, and
we are unable to extract funds directly in our model attack, the
game presented in this paper will always be played against the
owner of a validator, not the individual stakers. The diversity
of investment strategies and variable number of stakers asso-
ciated with a validator have no impact on the game presented
in this work - pool operators may interact with their stakers or
associates in various ways to decide whether they can or will
pay, but this is of no concern to the attacker, whose goals are
best served by exploiting any general features of all Ethereum
validators (dominant hosting strategies and uniform total funds)
assuming no prior knowledge of the target validator(s).

Ransom attacks may also disrupt Ethereum through the indi-
rect impact on stakers’ willingness to act as validators. A proof of
stake system relies on a large number of independent validators.
Hence, anything that discourages people or organisations from
acting as validators is a concern. If ransomware attacks become
prevalent or validators become easy targets for attackers, then
this discourages investment because it provides a clear downside
risk. Moreover, there is an inevitable element of competition be-
tween cryptocurrencies in trying to attract investment [25]. This
means that ‘bad publicity’ could have a particularly damaging
effect on efforts to attract a wide range of diverse validators. A
publicly reported and successful attack on a validator could be
the catalyst for a rapid escalation in the frequency, extent, and
sophistication of future attacks.

7 MITIGATION

Having identified the extortion threat to validators we conclude
by discussing various mitigation measures that can be employed
by stakers and Ethereum to limit the threat of extortion. We
summarize these as follows:

(1) Security of the signing key is paramount in stopping ex-
tortion. Validators and staking pools should, thus, take
active measures to secure the signing key. This would
include counter-measures for external threat (virus pro-
tection etc.) and internal threat (restricted access and em-
ployee vetting etc.). While these measures would seem
standard, the relative infancy of the sector, and its conse-
quent lack of maturity, suggest that security may be lax.
A further consideration is the diversity of individuals who
run validators. The broad spectrum of technical ability and
understanding represented within the Ethereum staking
community leads to an unpredictable and heterogeneous
level of protection, on a per validator basis.

(2) Investors should be encouraged to check and verify the
security credentials of staking pools. In a competitive
market system, the security controls of staking pools will
reflect the preferences of investors, and their willingness
to pay for security measures. If investors fail to appreciate
the importance of security one can obtain a ‘race to the
bottom’ in which staking pools implement lax security
as a cost-cutting measure [7, 8]. Investors need education
on the importance of using secure staking pools and how

to appropriately quantify risk. This can put pressure on

staking pools to raise the level of security.

Compromised validators can be advised to not pay a ran-

som under any circumstances where they are not guaran-

teed to regain full control over their stake. The Pay and

Exit strategy, encapsulated in a smart contract, is an effec-

tive way for victims to fully resolve the problem (although

security issues may remain from the initial breach). This

is not to say that we would encourage victims to pay a

ransom under a Pay and Exit strategy. We can, however,

strongly discourage payment under any alternative cir-
cumstances that do not give similar guaranteed return of
control.

(4) The threat of slashing is most damaging if a staker with a
large number of validators is breached. The natural solu-
tion is for a staker to partition their validators (such that
lateral traversal is not possible) so that a breach can only
ever threaten a portion of the validators. Segmentation,
thus, limits the potential losses from extortion. It also has
the benefit of increasing the per-validator cost of attack,
in the pre-extortion phase for the attacker.

(5) The ‘attractiveness’ of validator extortion to criminals
will depend on how easily they can breach validators. The
harder it is to breach validators the less attractive the
crime will appear. Validator security, therefore, has a posi-
tive externality effect on other validators by discouraging
criminal activity. This means it is in the interests of staking
pools and investors to encourage good security in others,
reinforcing points (1) and (2). Community standards and
advice are critical to establishing minimum operational
security across the breadth of Ethereum validators.

(6) The amount that criminals can extort depends on the
slashing penalty. Lowering the slashing penalty would,
thus, lower the potential gains to criminals and reduce
the losses to victims. The slashing penalty is needed to
disincentivize malicious activity. The malicious activity
of small stakers would, though, have no material impact
on Ethereum because, realistically, it cannot corrupt the
blockchain. By lowering the fixed slashing penalty, while
retaining the special penalty, the extortion threat to small
stakers would be dramatically reduced, while malicious
activity by large stakers is still disincentivised. The pa-
rameters of Ethereum could, thus, be adjusted to reduce
the threat. The issue with this approach is that it may
also impact the real-terms security of the blockchain it-
self. It is likely that the Ethereum community would be
concerned by a reduction in slashing penalties on these
grounds. As an item of future work, we intend to study
the current security posture of the Ethereum blockchain,
and advise whether the current level of slashing can be
safely reduced.

=

3

8 CONCLUSION

In this paper, we have analysed how an attacker who has gained
access to the validator(s) signing key could threaten to perform
malicious actions, such as slashing and extract ransom from them.
We used game-theoretic modelling to determine the credible
threats that an attacker could exploit to perform extortion attacks.
In our study we observed that in all of the counter-measures

described in §7, there are trade-offs, e.g. partitioning of validators
is costly but reduces the losses from attack. Our analysis shows
significant downside risks from stakers not performing robust
security actions. In the future, could look at the cost-benefit
trade-off to identify the optimal security level and associated
level of risk. Another possibility would be to investigate the idea
of deploying insurance solutions to address attacks like those
described here, so that network disruption is minimised in all
circumstances and validator losses can be de-risked.

8.1 Future work

It may seem that one could simply implement a countermea-
sure against slashing-as-leverage for extortion, by allowing with-
drawal keys to be used to signal that a validator is compro-
mised, and appeal for slashing penalties to not be enforced. How-
ever, this fundamentally undermines the security model of the
Ethereum blockchain, and would result in all malicious validators
making such claims to reduce the cost of misbehaviour (mitigate
slashing). As a result, we are investigating new security mea-
sures that could be implemented at a protocol level to mitigate
extortion attacks through a key rotation mechanism. The results
of the analysis reported in this work have been shared with the
Ethereum Foundation, who have funded additional work (Grant
#FY22-0720 ‘REVOKE: Consensus-layer mitigations for validator
ransomware attacks’) to explore consensus protocol adaptations
to mitigate the impact of this novel extortion attack against proof
of stake validators.

ACKNOWLEDGMENTS

We thank Justin Drake from the Ethereum Foundation for his
support and feedback throughout this research. This project was
partly supported by Ethereum Foundation Grant #FY21-0378
‘Game theoretic modelling of a ransomware attack on validators
in Ethereum 2.0’. The research of Alpesh Bhudia is supported by
the EPSRC and the UK government as part of the Centre for Doc-
toral Training in Cyber Security at Royal Holloway, University
of London (EP/P009301/1).

REFERENCES

[1] Andreas M Antonopoulos and Gavin Wood. 2018. Mastering ethereum: build-
ing smart contracts and dapps. O’reilly Media.

[2] Jean-Philippe Aumasson, Denis Kolegov, and Evangelia Stathopoulou. 2021.
Security Review of Ethereum Beacon Clients. arXiv preprint arXiv:2109.11677
(2021).

[3] AWS. 2023. Apache Log4j2 Security Bulletin (CVE-2021-44228). Retrieved
2023-01-12 from https://aws.amazon.com/security/security-bulletins/ AWS-
2021-005/

[4] ScottBaker and Kimberly D Krawiec. 2005. Incomplete contracts in a complete
contract world. Fla. St. UL Rev. (2005).

[5] James Beck. 2020. Rewards and Penalties on Ethereum 2.0. Retrieved

2021-10-07 from https://consensys.net/blog/codefi/rewards-and-penalties-

on-ethereum- 20-phase- 0/

Carl Beekhuizen. 2019. Validated: Staking on eth2 #0 | Ethereum Foundation

Blog. Retrieved 2023-02-01 from https://blog.ethereum.org/2019/11/27/

validated- staking-on-eth2-0/

[7] Alpesh Bhudia, Anna Cartwright, Edward Cartwright, Julio Hernandez-
Castro, and Darren Hurley-Smith. 2022. Extortion of a Staking Pool in a
Proof-of-Stake Consensus Mechanism. In COINS '22. IEEE, 1-6.

[8] Alpesh Bhudia, Anna Cartwright, Edward Cartwright, Julio Hernandez-
Castro, and Darren Hurley-Smith. 2022. Identifying Incentives for Extortion
in Proof of Stake Consensus Protocols. In The International Conference on
Deep Learning, Big Data and Blockchain (DBB 2022). Springer, 109-118.

[9] Alpesh Bhudia, Daniel O’Keeffe, Daniele Sgandurra, and Darren Hurley-Smith.
2021. RansomClave: Ransomware Key Management using SGX. In The 16th
International Conference on Availability, Reliability and Security.

[10] Anna Cartwright and Edward Cartwright. 2019. Ransomware and Reputation.

Games (2019).

6

=

[11] Edward Cartwright, Julio Hernandez Castro, and Anna Cartwright. 2019. To
pay or not: game theoretic models of ransomware. Journal of Cybersecurity
(2019).

[12] Chainlink. 2023. Blockchain Oracles for Hybrid Smart Contracts. Retrieved
2023-03-16 from https://chain.link/

[13] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A
survey on ethereum systems security: Vulnerabilities, attacks, and defenses.
ACM Computing Surveys (CSUR) (2020).

[14] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos
Patsakis. 2019. A survey on long-range attacks for proof of stake protocols.
IEEE Access (2019).

[15] Oscar Delgado-Mohatar, Sierra-Camara, et al. 2020. Blockchain-based semi-
autonomous ransomware. Future Generation Computer Systems (2020).

[16] Ben Edgington. 2023. Upgrading Ethereum. Retrieved 2023-01-12 from
https://eth2book.info/bellatrix/

[17] Ethereum Foundation. 2023. The Merge. Retrieved 2023-06-09 from https:
//ethereum.org/en/roadmap/merge/

[18] Ethereum Foundation. 2023. Proof-of-stake (PoS) Transition. Retrieved 2023-
01-28 from https://ethereum.org/en/developers/docs/consensus-mechanisms/
pos/

[19] Ethereum Foundation. 2023. Validated, staking on eth2: Incentives. Retrieved
2023-02-20 from https://blog.ethereum.org/2020/01/13/validated-staking-on-
eth2-1-incentives

[20] Ethereum Foundation Blog. 2023. How to stake your ETH. Retrieved
2022-12-12 from https://ethereum.org/en/

[21] Ethereum Price. 2023. Validated, staking on eth2: Incentives. Retrieved
2023-01-10 from https://ethereumprice.org/staking/

[22] Etherscan.io. 2023. Breakdown of Eth2 Deposits. Re-
trieved 2023-03-16 from https://bi.etherscan.io/public/dashboards/
KH9jbP687szql AnHiNEfNictrwNhvdOEQIOPwB6m?org_slug=default

[23] Giulia Fanti, Leonid Kogan, and Pramod Viswanath. 2019. Economics of
proof-of-stake payment systems. In Working paper.

[24] Ethereum Foundation. 2023. Oracles. Retrieved 2023-03-16 from https:
//ethereum.org/en/developers/docs/oracles/

[25] Neil Gandal and Hanna Halaburda. 2016. Can we predict the winner in a
market with network effects? Competition in cryptocurrency market. Games
(2016).

[26] Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Stake-bleeding
attacks on proof-of-stake blockchains. In 2018 Crypto Valley conference on
Blockchain technology (CVCBT). IEEE.

[27] Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. 2019. Proof-of-stake
sidechains. In IEEE Symposium on Security and Privacy (SP) 2019. IEEE.

[28] Oliver Hart. 2017. Incomplete contracts and control. American Economic
Review (2017).

[29] J Hernandez-Castro, A Cartwright, and E Cartwright. 2020. An economic
analysis of ransomware and its welfare consequences. Royal Society open
science (2020).

[30] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Annual international cryptology conference. Springer, 357-388.

[31] Zhen Li and Qi Liao. 2020. Ransomware 2.0: to sell, or not to sell a game-
theoretical model of data-selling ransomware. In Proceedings of the 15th Inter-
national Conference on Availability, Reliability and Security.

[32] Olivier Meier and Aurélie Sannajust. 2021. The smart contract revolution: a
solution for the holdup problem? Small Business Economics (2021).

[33] Microsoft. 2022. CVE-2020-0955 - Security Update - Microsoft - Windows
Kernel Information Disclosure in CPU Memory Access. Retrieved 2022-12-
18 from https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-
2020-0955

[34] Juhi Mirza. 2023. Ethereum Shanghai Upgrade: What is it, and when is the
upgrade date? Retrieved 2022-02-20 from https://www.gfinityesports.com/
cryptocurrency/ethereum- shanghai-upgrade/

[35] Michael Neuder, Daniel] Moroz, et al. 2021. Low-cost attacks on Ethereum
2.0 by sub-1/3 stakeholders. arXiv preprint arXiv:2102.02247 (2021).

[36] Cong T Nguyen, Dinh Thai Hoang, Diep N Nguyen, et al. 2019. Proof-of-
stake consensus mechanisms for future blockchain networks: fundamentals,
applications and opportunities. IEEE Access (2019).

[37] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. 2021. Three Attacks on Proof-of-Stake
Ethereum. arXiv preprint arXiv:2110.10086 (2021).

[38] Harald Vranken. 2017. Sustainability of bitcoin and blockchains. Current
opinion in environmental sustainability (2017).

[39] Rong Zhang and Wai Kin Victor Chan. 2020. Evaluation of energy consump-
tion in block-chains with proof of work and proof of stake. In 7. of Physics:
Conference Series. IOP Publishing.

https://aws.amazon.com/security/security-bulletins/AWS-2021-005/
https://aws.amazon.com/security/security-bulletins/AWS-2021-005/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://blog.ethereum.org/2019/11/27/validated-staking-on-eth2-0/
https://blog.ethereum.org/2019/11/27/validated-staking-on-eth2-0/
https://chain.link/
https://eth2book.info/bellatrix/
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://blog.ethereum.org/2020/01/13/validated-staking-on-eth2-1-incentives
https://blog.ethereum.org/2020/01/13/validated-staking-on-eth2-1-incentives
https://ethereum.org/en/
https://ethereumprice.org/staking/
https://bi.etherscan.io/public/dashboards/KH9jbP687szqlAnHiNEfNictrwNhvdOEQl0PwB6m?org_slug=default
https://bi.etherscan.io/public/dashboards/KH9jbP687szqlAnHiNEfNictrwNhvdOEQl0PwB6m?org_slug=default
https://ethereum.org/en/developers/docs/oracles/
https://ethereum.org/en/developers/docs/oracles/
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0955
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0955
https://www.gfinityesports.com/cryptocurrency/ethereum-shanghai-upgrade/
https://www.gfinityesports.com/cryptocurrency/ethereum-shanghai-upgrade/

	Abstract
	1 Introduction
	1.1 Background
	1.2 Ethical considerations

	2 Model of Ethereum validation
	2.1 Slashing

	3 A criminal motivation for extortion
	4 Pay and Exit Strategy
	5 Pay or Slash Strategy
	6 Discussion
	7 Mitigation
	8 Conclusion
	8.1 Future work

	Acknowledgments
	References

