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Abstract—Semantic segmentation is vital for many emerging
surveillance applications, but current models cannot be relied
upon to meet the required tolerance, particularly in complex
tasks that involve multiple classes and varied environments. To
improve performance, we propose a novel algorithm, Neural In-
ference Search (NIS), for hyperparameter optimisation pertaining
to established deep learning segmentation models in conjunction
with a new multi-loss function. It incorporates three novel
search behaviours, i.e. Maximised Standard Deviation Velocity
Prediction, Local Best Velocity Prediction, and n-dimensional
Whirlpool Search. The first two behaviours are exploratory,
leveraging Long Short-Term Memory (LSTM)-(Convolutional
Neural Network) CNN based velocity predictions, while the third
employs n-dimensional matrix rotation for local exploitation. A
scheduling mechanism is also introduced in NIS to manage the
contributions of these three novel search behaviours in stages.
NIS optimises learning and multi-loss parameters simultane-
ously. Compared with state-of-the-art segmentation methods and
those optimised with other well-known search algorithms, NIS-
optimised models show significant improvements across multiple
performance metrics on five segmentation datasets. NIS also
reliably yields better solutions as compared with a variety of
search methods for solving numerical benchmark functions.

Index Terms—Convolutional Neural Network, Hyperparame-
ter Optimisation, Multi-loss Function, Semantic Segmentation.

I. INTRODUCTION

SEGMENTATION methods form a key component in many
vision related tasks, e.g. automated medical diagnosis,

autonomous driving and robotic navigation, all of which stand
to revolutionise many industrial sectors. Poor segmentation
performance causes incorrect medical diagnosis and dangerous
course trajectories leaving apprehension in the uptake of these
innovations. Consistently accurate segmentation algorithms
are required to meet the stringent safety standards of these
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systems. Unfortunately, no existing methods can satisfy this
requirement.

The existing segmentation techniques range from traditional
methods such as k-means clustering [1] to modern deep
learning methods [2] [3]. Convolutional Neural Networks
(CNNs) appear to be very successful for tackling segmentation
problems with multiple semantic classes and complex shapes.
Critically, this success depends upon selecting an appropriate
loss function that sensibly measures the error and choosing
appropriate hyperparameters for the gradient optimisation al-
gorithm and loss function. If these factors are not met, then
CNN training is unlikely to produce well-generalised models.
Acknowledging this, we seek to enhance accuracy of CNN and
transformer architectures through automated hyperparameter
selection and appropriate loss function construction.

This research proposes a new search algorithm namely
Neural Inference Search (NIS) for fine-tuning hyperparam-
eters of CNN and transformer based segmentation models.
Our research motivations are as follows. Swarm intelligence
algorithms such as Particle Swarm Optimisation (PSO) employ
fixed search parameters and do not adaptively adjust local
and global search behaviours according to different search
stages, therefore it constrains model capabilities in balancing
between local exploitation and global exploration. By adopting
global best solutions as the guiding signals, most swarm
intelligence algorithms tend to converge prematurely. To tackle
such limitations, NIS uses a neural network-based velocity
updating strategy to dynamically predict optimal directions
and magnitudes of velocities for updates, allowing for a better
balance between diversification and exploitation. Such effects
are further strengthened using an adaptive scheduler function.
The neural network-based velocity prediction process also em-
ploys diverse local and global optimal signals for new velocity
generation to overcome local optima traps. NIS introduces
three new search strategies, namely (1) Maximised Standard
Deviation Velocity Prediction, (2) Local Best Velocity Predic-
tion, and (3) n-dimensional Whirlpool Search, along with a
Staged Discrete Adaptive Wave Function to schedule these
behaviours. The first search action maximizes the standard
deviation of the swarm to increase search territory and avoid
repeatedly searching the same regions. The second operation
moves particles to local optimal regions for faster convergence
while diversifying the search process. The third strategy fine-
tunes optimal regions around the global best solution using
angle-driven whirlpool-style granular movements. The Staged
Discrete Adaptive Wave Function dynamically adapts the
contribution of each search behaviour based on different search
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stages, emphasizing diversification and intensification in early
and final search stages, respectively.

Our proposed solution enhances CNN-based models’ seg-
mentation performance by integrating several error measures
into a loss function. This approach increases the availability
of various information and facilitates the selection of optimal
hyperparameters for training. Additionally, our solution, NIS,
addresses attention and expert knowledge issues that arise
in manual searches while improving convergence rates and
avoiding local optima traps. The prescribed search behaviours
and staged scheduling method enable these benefits. The
research’s key contributions are summarized as follows.

1) A new multi-loss function is proposed to capture multi-
ple error measurements with respect to semantic seg-
mentation, enhancing feedback during CNN training.
Specifically, the combination of the mean of Cross
Entropy, Focal, and Dice losses is exploited. Cross
Entropy loss provides measurement of the overall pixel-
wise class accuracy. Focal loss introduces the term α to
apply a weighting factor to the classes that are present
or non-present in the ground truth (GT) masks, in order
to prevent over-fitting. Additionally, it adds a γ term
to weight the contribution of well classified examples,
contrasting the error contribution of poorly classified
ones. The Dice loss calculates a soft version of the mean
Intersection over Union (mIoU) measurement, which can
provide more insight into the discrepancy in shape and
consistency of the classification. By combining these
loss functions, multiple aspects of the error signal can
be leveraged to design more effective training strategies.

2) To automate hyperparameter tuning, NIS is proposed.
In particular, NIS incorporates three novel behaviours:
(1) Maximised Standard Deviation Velocity Prediction,
which employs a Long Short-Term Memory (LSTM)-
CNN network to predict the velocity vectors that in-
crease standard deviation of the particle positions, en-
suring agents do not search in the same local areas;
(2) Local Best Velocity Prediction, which predicts the
velocity vectors that point to local areas of best fitness;
(3) n-dimensional Whirlpool Search, which produces the
velocity vectors via a dot product of an n-dimensional
rotation matrix at a defined angle with a vector pointing
toward the global best position. As such, the particles
are forced to explore multiple dimensions of the search
space. The contribution of these three behaviours are
adjusted at every iteration with a novel scheduling
function, namely the Staged Discrete Adaptive Wave
formula ensuring a better trade-off between exploration
and exploitation. This is achieved by leveraging discrete
stages factored with a slowly decreasing or increasing
sinusoidal function, allowing each behaviour to be dis-
abled or emphasized whilst approaching global optimal-
ity. The scheduling function, in conjunction with these
three innovative behaviours, operates synchronously to
automate hyperparameter selection and address the issue
of stagnation. To the best of our knowledge, we are
the very first few works that use LSTM-CNN to predict

optimal velocities to guide the search process.
The remaining of this paper is structured as follows. Section

II presents state-of-the-art related studies on image segmenta-
tion and optimisation techniques. In Section III, the details of
NIS are explained, including diverse proposed strategies and
multiple loss functions. Following this, Section IV presents the
evaluation of the proposed NIS algorithm for hyperparameter
fine-tuning in semantic segmentation as well as solving bench-
mark functions. Finally, Section V presents the conclusions
and suggestions for future work.

II. RELATED WORK

State-of-the-art related studies on image segmentation and
PSO variants are discussed in this section.

A. Segmentation

Many research studies on semantic segmentation methods
are available in the literature, e.g. [4] [5] [6], for autonomous
driving and robotic navigation. Zhang et al. [7] investigated the
effect of early and late fusion of multi-modal deep learning
architectures to solve semantic segmentation for automated
robotic navigation. They proposed a Complex Modality net-
work (CMnet) which utilised a late fusion of two processing
streams to handle both RGB images and supplementary fea-
tures such as near-infrared images. Performance gains were
obtained by using such dual stream architectures for diverse
image segmentation tasks. Saire et al. [8] explored multi-
task learning with deep learning for semantic segmentation
by introducing three related auxiliary tasks to be solved
simultaneously by a single CNN model. A standard encoder-
decoder network was adopted with predictive branches, one
for the main segmentation task, while the others for distinct
contour prediction tasks. Each branch used a combination of
Cross Entropy and soft IoU loss, which were weighted to
control the contribution of the error signals.

Islam et al. [9] proposed a Gated Feedback Refinement
Network (G-FRNet) for dense image labeling. Processing
branches were inserted between spatially distinct encoding
and decoding layers. Each branch contained a Gate block
linked to a refinement block, providing spatially relevant
features for the decoder stages. Each stage was supervised by
spatially matching GT images. Jègou et al. [10] developed FC-
DenseNet by appending DenseNet with upsampling blocks,
while SegNet was proposed by Badrinarayanan et al. [11]
which used the pooling indices of the maxpooling steps from
a VGG16 encoder to perform non-linear upsampling, for
semantic segmentation.

Li et al. [12] introduced CTNet, a context-based tandem
network for semantic segmentation. It made use of context
information in both the channel and spatial dimensions of
images through the use of the Channel Contextual Model
(CCM) and the Spatial Contextual Model (SCM). The two
models were connected for interactive training to exchange
context information, where CCM acted as a prior knowledge
for SCM. The SCM also introduced a self-attention mechanism
for improved efficiency. CTNet outperformed the current state-
of-the-art models on diverse segmentation tasks.
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Cheng et al. [13] proposed a revolutionary deep learning-
based image segmentation model, i.e. Masked-attention Mask
Transformer (Mask2Former), which utilized a transformer
decoder with masked attention. Their architecture was capable
of addressing image segmentation tasks, such as panoptic,
instance, and semantic segmentation, effectively. The masked
attention component of the model restricted cross-attention
within predicted mask regions, resulting in improved localized
feature extraction. The model also included a multi-scale
strategy and optimisation improvements, leading to superior
performance compared to other state-of-the-art architectures.
Strudel et al. [14] proposed a fully transformer-based encoder-
decoder architecture, namely Segmenter, for semantic segmen-
tation in images. The algorithm split the input image into
patches, which were transformed into patch embeddings by
a transformer encoder. These embeddings were then decoded
by either a linear decoder or a mask transformer to produce
pixel-level class annotations. The model was trained end-to-
end and outputted a single class per pixel at inference time
by applying the argmax to the upsampled output. The mask
transformer decoder generated K masks by computing the
scalar product between the L2-normalized patch embeddings
and class embeddings from the decoder. Qualitative results
showed that Segmenter provided more consistent labels on
large object instances and handled partial occlusions better
compared to DeepLabv3+.

Sun and Li [15] introduced a new method called Semantic
Structure Aware Inference (SSA) for object localization and
multi-label tasks. It aimed to expand Class Activation Maps
(CAMs) to capture semantic structure information in images
by incorporating the Semantic Structure Modeling (SSM)
module, which consisted of two self-affinity (SA) blocks and
a smooth gate. The SSM module used feature maps from
different stages of a CNN to expand the seed CAM, which
was obtained by weighting the last convolution layer’s feature
map with the last classification layer’s weights. The final
CAM was created by combining the expanded CAMs from
various stages of the network. SSA outperformed baseline
state-of-the-art methods for diverse object localization tasks.
Sun et al. [16] introduced a novel approach to few-shot
segmentation (FSS) named Singular Value Fine-tuning (SVF),
which addressed the overfitting issue in FSS. In FSS, the task
is to segment novel class objects with only a few densely
annotated samples. Existing methods froze the pre-trained
backbone to prevent overfitting, but this leads to suboptimal
performances. SVF fine-tuned a small part of the backbone
parameters, instead of freezing the entire pre-trained model,
by decomposing the backbone parameters via Singular Value
Decomposition (SVD). The results showed the superiority of
SVF over traditional fine-tuning methods in FSS. Du et al.
[17] developed a SwinPA-Net with Swin Transformer as the
backbone for medical image segmentation. Multiplicative fea-
ture fusion and multi-scale attention aggregation were adopted
to increase feature learning capabilities of their network. It
employed a Swin Transformer as the encoder to extract multi-
scale feature maps, which were subsequently concatenated
via a dense multiplicative connection (DMC) component. A
local pyramid attention (LPA) module was exploited to extract

discriminative spatial features from the multiplicative fused
feature representations of DMC. A CNN was adopted as the
decoder to upsample feature maps to generate the mask output.

Zhou et al. [18] developed multi-objective evolutionary
schemes, genetic operators and filter elimination techniques
for deep architecture compression for image segmentation.
Their work employed multi-objective optimisation algorithms
to balance between multiple conflicting goals to yield a set of
Pareto pruned networks. Li et al. [19] exploited a dual teacher-
student architecture for semi-supervised image segmentation,
where an exponential moving average of the student network
trained using both labeled and unlabeled samples was used
to construct the teacher model. Konar et al. [20] developed
a shallow self-supervised quantum neural network for lesion
segmentation, while a contextual learning network with auto-
focus and panorama embedding was studied by Wang et al.
[21] for fine-grained lung infection segmentation.

B. Optimisation Algorithms

As a popular swarm intelligence algorithm, the PSO model
simulates the flocking behaviours of birds. It initialises a
number of agents with each occupying a position x⃗ti in the
search space. Each agent is updated in each iteration t via
calculating the velocity v⃗t+1

i and subsequent position x⃗t+1
i

using Equations 1 and 2. The velocity contains two key terms
that affect the general search behaviours of the particles,
i.e. the cognitive term r1c1(p⃗besti − x⃗ti) and the social term
r2c2(g⃗

t
best − x⃗ti). The cognitive term encourages each agent

to search around its personal best solution p⃗besti , while the
social term directs each agent to move towards the global best
position g⃗best. The contributions of these terms are determined
by the acceleration coefficients c1 and c2, randomized by
r1 and r2 sampled from a uniform distribution U(0, 1). In
addition, the influence of the current velocity v⃗ti to the new
one is signified by w.

v⃗t+1
i = wv⃗ti + r1c1(p⃗

t
besti − x⃗ti) + r2c2(g⃗

t
best − x⃗ti) (1)

x⃗t+1
i = x⃗ti + v⃗t+1

i (2)

PSO shows great efficiency in identifying optimal CNN
architectures and hyperparameters for vision and signal pro-
cessing tasks. A PSO model embedded with multi-surrogate
schemes was proposed by Hu et al. [22] for feature selection,
while an environmental PSO with probability-based fitness
surface prediction was developed by Slade et al. [23] for
human action recognition. Zhang et al. [24] exploited a PSO
variant with super-ellipse formulae inspired hybrid leaders
and root-finding algorithm based local exploitation for audio
respiratory abnormality classification. A swarm intelligence
algorithm with crossover operators based on sine, cosine and
tanh functions was also utilized by Zhang et al. [25] for bidi-
rectional LSTM network generation pertaining to video action
recognition. Lawrence et al. [26] developed a PSO variant with
a residual group-based encoding mechanism for residual CNN
generation. PSO with population aggregation measurement
was integrated with generative adversarial networks (GANs)
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for facial image generation in Zhang and Zhao [27]. A multi-
objective PSO combined with reinforcement learning was used
by Zhang et al. [28] for multi-UAV path planning.

III. NIS-OPTIMISED MULTI-LOSS CNN MODEL FOR
SEMANTIC SEGMENTATION

We propose an NIS-optimised CNN model for image seg-
mentation. It includes NIS and a multi-loss function for CNN
training. We use NIS to select optimal hyperparameters, such
as learning rate, momentum, and loss coefficients α and γ.
The hyperparameters α and γ respectively balance the effects
of loss on present and absent classes in the GT masks and
weigh the contributions of well/poorly classified examples.
Using the identified hyperparameters, we train a new optimised
CNN model for pixel-wise probabilistic class predictions for
semantic segmentation. Moreover, the optimisation of hyper-
parameters such as learning rate and weight decay has also
been conducted for state-of-the-art transformer architectures to
tackle more complex segmentation tasks. We present details on
these components in the following subsections (III-A, III-B).

A. The Proposed Search Algorithm

The proposed NIS algorithm encompasses three unique
search behaviours, i.e. LSTM-CNN based Maximised Stan-
dard Deviation Velocity Prediction for global exploration,
LSTM-CNN based Local Best Velocity Prediction for search
diversification and n-Dimensional Whirlpool search for local
exploitation of the optimal regions. These innovative methods
for velocity vector generation incorporate machine learning
techniques to better estimate/interpret different search spaces
so that it can generate more effective velocity vectors, with
the goal of improving both exploration and exploitation in
the optimisation process. A Discrete Adaptive Wave function
is formulated to provide different emphasis of these three
search behaviours at different search stages. The proposed
velocity and position operations combining the above three
search mechanisms scheduled by the Discrete Adaptive Wave
function are defined in Equations 3 and 4, respectively.

v⃗′
t+1

i = r1cd1(t)u⃗
t
σi

+ r2cd2(t)u⃗
t
βi

+ r3cu1(t)u⃗
t
θi (3)

x⃗t+1
i = x⃗ti + v⃗′

t+1

i (4)

where v⃗′
t+1

i and x⃗t+1
i define the velocity and position vectors

of the i-th particle in the t + 1-th iteration, respectively. In
Equation 3, the velocity update operation consists of three
behavioural terms as mentioned above. Specifically, the first
component, i.e. r1cd1(t)u⃗tσi

, deals with exploration led by
Maximised Standard Deviation Velocity u⃗tσi

to increase search
territory. The second term, r2cd2(t)u⃗tβi

, manages local ex-
ploration/exploitation of promising optimal regions guided by
Local Best Velocity u⃗tβi

, while the third term, i.e. r3cu1(t)u⃗tθi ,
provides an exploitation mechanism to emphasize search inten-
sification of well-established optimal regions using an angle-
driven search velocity u⃗tθi .

The first two vectors, i.e. the Maximised Standard Deviation
Velocity u⃗tσi

and Local Best Velocity u⃗tβi
, are derived from the

Algorithm 1 The NIS algorithm
1: Initialise the swarm size S and particle positions
2: Initialise cd1 and cd2 using Equation 13
3: Initialise cu1 using Equation 14
4: Initialise Velocity Prediction Model (VPM)
5: Initialise training data array Adata

6: while t < T do
7: Update θt using Equations 11-12
8: Update Rθ using Equation 10
9: Collect input data from particle positions and fitnesses in array

Ainput

10: Get VPM predictions M from Ainput

11: Update u⃗t
σ from M0

12: Update u⃗t
β from M1

13: Initialise target data array Agt

14: for each particle i = 1, ..., S do
15: Update u⃗t

θ using Equation 7
16: Update velocity v⃗′

t+1

i using Equation 3
17: Update position x⃗t+1

i using Equation 4
18: if f(x⃗t+1

i ) < f(p⃗tbesti) then
19: p⃗tbesti = x⃗t+1

i

20: end if
21: if f(x⃗t+1

i ) < f(g⃗tbest) then
22: g⃗tbest = x⃗t+1

i

23: end if
24: Generate and append target velocity vectors to Agt

25: end for
26: Combine Ainput and Agt and append to Adata

27: Train VPM with Adata

28: end while
29: return g⃗tbest

LSTM-CNN predictions, with the third being determined by
a novel n-dimensional spatial spiral algorithm.

These behavioural terms also contain a scheduling factor
(cd1, cd2 or cu1) implemented by the Discrete Adaptive
Wave function. The aim is to determine the overall velocity
contributions of the associated behavioural terms in regard to
the current iteration. In addition, parameters r1, r2 and r3
contained in these terms are random scalar factors sampled
from the uniform distribution U(0.5, 1.5). They provide varia-
tions in the distance traveled between particles within the same
iteration. As indicated in Equation 4, after defining v⃗′

t+1

i , the
particle’s next position can be found by simply adding the
velocity to the current particle position.

Algorithm 1 depicts the proposed NIS algorithm, the details
of which are discussed in the following subsections.

1) Velocity Prediction Using a Neural Network Model: To
generate the velocity vectors u⃗σ and u⃗β , we employ an LSTM-
CNN style network, named the Velocity Prediction Model
(VPM), as shown in Figure 1. The key advantage of using
the LSTM-CNN in this manner is its ability to directly adapt
the velocity updates to the specific solution space. By learning
from all previously evaluated positions, the model can develop
an abstract representation of the search space, enabling the
prediction of velocity vectors that maximize both exploration
and exploitation.

Initially, the LSTM-CNN network employs two LSTM
modules to extract sequential information from the network
inputs, i.e. historical information of the particle position
and the associated fitness information defined as Ainput. A
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Fig. 1. The VPM predicts velocity vectors for a number of particles
(S) constrained within a D-dimensional search space. The Swarm Velocity
Predictions M are split into M0, i.e. the Maximised Standard Deviation
Velocity predictions at index 0 axis 0, and M1, i.e. the Local Best Velocity
predictions at index 1 axis 0.

convolutional layer is subsequently applied to tackle spatial
relationships between the particles. Fully connected linear
layers are used to make the final predictions through a sigmoid
layer to constrain the values between 0 and 1. By incorpo-
rating the LSTM-CNN design into the VPM, it enables the
simultaneous prediction of both the u⃗σ and u⃗β vectors for
individual particles. This is achieved by representing them as
M0 and M1, respectively, within a single matrix M of shape
(2,S,D), where S denotes the swarm size and D represents
the dimensionality of the search space.

VPM training for velocity prediction with respect to global
exploration is conducted from scratch, collecting and storing
data samples at every iteration as Adata. Initially, the training
data are sparse and the predictions rely on a few samples
to produce the velocity vectors. As the search progresses,
predictions improve since network training is conducted with
comparatively more data collected at each iteration. Specifi-
cally, Ainput is collected at the beginning of the loop where
the VPM’s input data consist of the previous particle positions
from the last four iterations with their associated fitness scores,
forming a tensor of shape (1, 4, (D+1)×S). GTs for the target
predictions of u⃗σ and u⃗β are stored in Agt. Once the GTs of
particle’s velocity vector have been collected, Ainput and Agt

are combined into a single data sample with shape (2,S,D)
and stored in Adata. This growing dataset serves to train the
VPM before velocity prediction starts in the next iteration.
The next two sections (III-A2 III-A3) detail the GT collection
processes for u⃗σ and u⃗β , respectively.

2) Maximised Standard Deviation Velocity: The main in-
tention of the Maximised Standard Deviation Velocity (u⃗tσi

)
in Equation 3 is to ensure the searched territory of the

Fig. 2. Since the standard deviation of the particle positions at t is higher
than those at t− 1, ∆x is taken for each particle as velocity vectors for the
Maximised Standard Deviation Velocity GT target prediction. By training on
the these GT targets, the VPM causes particles to spread out in the search
space (one-dimensional in this graph). ∆x is the difference between the
current particle position at iteration t and the most distant previous particle
position within t− 4 iterations.

swarm sufficiently encompasses the entire search space in
a distributed manner. As such, promising areas for future
exploitation can be identified. This is achieved by predicting
global and local search velocity vectors using the VPM. To
obtain the GT velocity vector required for prediction of u⃗tσ ,
we compare the standard deviation of the particle positions
in the current iteration with that from the previous iteration.
If the standard deviation of the current iteration is higher,
then a vector based on the difference between the particle’s
current position and its most distant previous position in the
last four iterations is generated. Otherwise, a mirrored vector
is yielded. This is repeated for each particle, yielding a GT
that corresponds to the predictions defined as M0 in Figure
1, providing a tensor of shape (S,D). The previous particle
positions from the last four iterations in conjunction with these
GT velocity vectors serve as inputs and outputs respectively to
train the VPM as described in the previous subsection (III-A1);
enabling Maximised Standard Deviation Velocity prediction.
To extract Maximised Standard Deviation Velocity predictions,
the VPM swarm prediction matrix M is indexed at 0 at
axis 0 (M0) yielding u⃗tσ , the predictions for every particle at
iteration t, as indicated in Equation 5. This LSTM-CNN based
Maximised Standard Deviation Velocity prediction guides the
global search process starting from scratch and generates
increasingly improved predictions to inform diversification of
the swarm. As the search progresses, the predictions result in
particles spreading out over the search space as indicated in
Figure 2.

u⃗tσ =M0 (5)

3) Local Best Velocity: The second proposed search oper-
ation is the VPM based Local Best Velocity prediction (u⃗tβi

).
This operation is conducted using the same VPM network,
thus employs the same input training data (i.e. the previous
particle positions from the last four iterations) as those used
for Maximised Standard Deviation Velocity Prediction. The
velocity vector target prediction aims to accelerate particle
movements towards local best historical positions, instead of
global exploration as indicated in the first proposed action.
The target prediction is the vector difference from the most
recent best particle position and the most recent worst particle
position. Target velocity vector predictions are collected for
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Fig. 3. The influence of the VPM accelerates the particles to move towards
personal best positions where t denotes the current iteration. The two boxes
show two particles searching independently and how the velocity vectors (∆x)
are collected and used as the training data in a one-dimensional search space.

each particle giving a shape of (S,D) and then used for Local
Best Velocity prediction training via the M1 output tensor
of the VPM. The rationale behind this method is that the
network can predict vectors that lead to the local optimal
position of each particle across the search space, allowing
the swarm to both explore and exploit distinct regions of the
search space independently. This process is shown in Figure 3.
Similar to Maximised Standardized Deviation Velocity, Local
Best Velocity predictions are taken from the VPM from the
second index of M at axis 0 (M1) yielding u⃗tβ , the Local Best
Velocity Prediction for every particle at iteration t, as indicated
in Equation 6.

u⃗tβ =M1 (6)

4) n-Dimensional Whirlpool search: The proposed
Whirlpool search is an n-dimensional spiral-like search. It
provides exploitation of promising areas in the search space
by applying an iteratively decreasing angular rotation about a
unit direction vector pointing toward the global best solution,
as indicated in Equation 7.

u⃗tθi = u⃗ti · R⊺
θ (7)

where R⊺
θ is a transposed rotation matrix for rotating vectors

by θ, u⃗ti is the non-rotated vector pointing from the i-th particle
position toward the global best position g⃗tbest at iteration t, and
u⃗tθi being the resultant rotated vector. An example resultant ro-
tation is displayed in Figure 4. To increment particle positions
towards the global best position, we define a direction vector,
ûti, with a variable magnitude which decreases over time to
perform finer movements towards the end of the search. The
largest possible movement is defined as the magnitude of the
vector spanning from opposite corners of the search space
(∥⃗bup− b⃗low∥). This magnitude is decreased by a cosine-based
factor dependent on the maximum and current iterations. When
combined with the direction vector ûti, the complete angular
rotation velocity vector (u⃗ti) is produced. This is formally
expressed in Equation 8.

u⃗ti = cos
( t

2T
π
)
ûti

∥∥∥⃗bup − b⃗low

∥∥∥ (8)

Fig. 4. gbest refers to the global best position and t represents the current
iteration. The angle θ slowly decreases from π

2
(green line) to 0 (black line).

u⃗ indicates the initial direction vector and u⃗θ is u⃗ rotated by θ. The magnitude
of u⃗ is defined in Equation 8. The two-dimensional case is displayed here but
Equations 7-12 show the generalisation to n dimensions.

where cos( t
2T π) is a decreasing factor. The direction vector

ûti is obtained from the initial vector u⃗ti by the division of its
magnitude as in Equation 9.

ûti =
g⃗tbest − x⃗ti

∥g⃗tbest − x⃗ti∥
(9)

where g⃗tbest and x⃗ti are the global best position and the
i-th particle position at iteration t respectively. Note that
∥g⃗tbest − x⃗ti∥ indicates the magnitude of the difference between
g⃗tbest and x⃗ti.

As mentioned previously, the transposed rotation matrix R⊺
θ

defined in Equation 7 enables n-dimensional rotation of the
initial vector u⃗ti by a given angle θ. A new rotation matrix Rθ

is created at each iteration using two orthonormal vectors (n̂1
and n̂2) obtained through Gram-Schmidt Orthogonalization,
as indicated in Equation 10.

Rθ = I + n̂2 ⊗ n̂1 − n̂1 ⊗ n̂2 sin θ

+ n̂1 ⊗ n̂1 + n̂2 ⊗ n̂2(cos θ − 1)
(10)

with I being an identity matrix whose rows and columns equal
to the dimensionality of the search space, and ⊗ is the outer
product operation. Besides that, θ is a dynamic angular value
moving from π

2 to 0 in decreasing steps as shown in Equation
11.

θt =
π

2

(
0.8− t

T

)
(11)

where T is the total number of iterations. The factor of 0.8
ensures that θ has negative values in the last few iterations.
This value is clipped to stay at 0 using Equation 12, ensuring
no rotation occurs toward the very end of the search leading
to a linear global best search.

θt+1 =

{
0, if θt

π < 0

θt, otherwise
(12)

This n-Dimensional Whirlpool search conducts angle-
driven granular movements to exploit optimal regions around
the global best solution to increase the chances of finding
global optima.

5) Staged Discrete Adaptive Wave function: To maximise
the exploration and exploitation capabilities of all three be-
havioural terms present in NIS (as defined in Equation 3),
we introduce a function which adapts the contribution of
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TABLE I
Φ SETTINGS

Coefficient Behaviour s1 s2 s3
cd1 u⃗t

σi
Maximised Standard Deviation

Velocity Prediction
1.0 0.5 0.0

cd2 u⃗t
βi

Local Best Velocity Prediction 0.5 1.0 0.0
cu1 u⃗t

θi
Whirlpool Search 0.0 0.5 1.0

each behavioural term based on sequential iteration ranges.
These ranges, referred to as stages, allow each behaviour
to be configured with a weighting factor in each stage to
increase or decrease its contribution. This enables bespoke
macro behaviours to be created in each defined stage. Ad-
ditionally, behavioural contributions to the overall velocity are
increased or decreased via a sinusoidal function according to
whether they are exploitative or exploratory, respectively. This
ensures exploratory behaviours have a high contribution at the
beginning of the search and no contribution near the end of
the search, whereas exploitative behaviours do the opposite.
Details of these mechanisms are shown in Equations 13 and
14.

cd =
1

2
(1 + cos(

t

T
π))Φ(t, T, s1, s2, s3) (13)

cu =
1

2
(1− cos(

t

T
π))Φ(t, T, s1, s2, s3) (14)

where cd and cu are the functions for producing the increasing
or decreasing behavioural coefficients cd1, cd2, and cu1 seen
in Equation 3. 1

2 (1 − cos( t
T π)) and 1

2 (1 + cos( t
T π)) are

the decreasing and increasing sinusoidal factors and Φ is
the Discrete Adaptive Wave Function. These equations are
displayed in Figure 5. The Discrete Adaptive Wave Function
Φ is constructed through the addition of nth summations of
ψ which produces a function with discrete weighted stages to
schedule NIS behaviours based on the current iteration t of
the search algorithm. In Equation 15, we define three stages
starting from 0 to the maximum iteration T in increments
of 1

3T . Each stage has a corresponding weighting coefficient
s1, s2 or s3, which can be adjusted to increase or decrease
the contribution of a particular behaviour depending on the
iterations falling within a given stage. The configurations of
these weightings for the proceeding sections (IV-E IV-C IV-A
IV-D) are displayed in Table I.

Φ(t, T, s1, s2, s3) =

1
3T∑
n=0

ψ(n, t, s1) +

2
3T∑

n= 1
3T+1

ψ(n, t, s2)

+

T∑
n= 2

3T+1

ψ(n, t, s3)

(15)
where ψ is a function built upon sinc, often found in

analogue to digital signal conversion. We adopt this function
as shown in Equation 16 for use with the discrete summation
to enable an iteration-based scheduling as shown in Equation
15.

ψ(n, t, s) = s× sinc(π(t− n))

= s× sin(π(t− n))

π(t− n)

(16)

As indicated in the velocity and position formulae in
Equations 3 and 4, the Scheduled Adaptive Coefficients (cd1,

(a) (b)

(c)

Fig. 5. (a) Equation 15 where s1 = 1, s2 = 2, s3 = 5 and T = 100. (b)
Factors (1 + cos( t

T
π)) (red) and (1− cos( t

T
π)) (blue) from Equations 13

and 14 respectively. (c) Equations 13 (red), and 14 (blue), i.e. the combination
of (a) and (b).

cd2, and cd3) are combined with the three previously defined
behaviours (u⃗tσi

, u⃗tβi
, and u⃗tθi ) from Equations 5, 6, and 7,

respectively. The full algorithm of NIS is indicated in Algo-
rithm 1. Owing to this Discrete Wave function, the proposed
algorithm employs an adaptive emphasis of the aforemen-
tioned three search behaviours driven by neural network based
velocity prediction and angle rotation-based search movement
to balance between diversification and intensification.

B. The Proposed Multi-Loss Function

Common loss functions for image segmentation include
Cross Entropy, Soft Dice, and Focal loss. Cross Entropy
measures the difference between ground truth and predicted
masks, Soft Dice uses Sørensen–Dice coefficient to measure
similarity, and Focal loss adjusts the impact of loss contri-
butions for well and poorly classified examples and classes
present and non-present in ground truth masks.

To take advantage of the loss information from the afore-
mentioned variants, we propose a new multi-loss function as
shown in Equation 17. It combines the complementary error
signals from Cross Entropy, Dice, and Focal Loss schemes.
Such a multi-loss mechanism is able to provide compound
loss indicators to advise the backpropagation process and
adjust performance. In particular, to balance the effects of
the well/poorly classified examples and contributions of the
classes present/non-present in the GT masks, we optimise
the γ and α coefficients in the focal loss function using the
proposed NIS algorithm.

ML = FL(γ, α) + SDS + CE (17)

Specifically, the α loss coefficient balances the influence
between the classes that are present and non-present in the
GT masks at the pixel level. A higher α emphasizes the
classes present in the GT mask, while a lower value shifts
the emphasis towards those that are not present. Each column
in Figure 6 indicates the impact of different α settings, where
the blue and red lines show the loss contributions of the classes
that are present and non-present in the GT masks, respectively.
In each row, the loss graphs are generated using a fixed γ value
(i.e. γ = 0, 1, or 5), with (a) α = 0.1, (b) α = 0.5, and (c)
α = 0.9. To be specific, (a) indicates higher contributions of
the classes that are not present in the GT masks, and (b) shows
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Fig. 6. The blue and red lines respectively show the loss contributions of the
classes that are present and non-present in the GT masks, respectively, for the
Focal Loss. The graphs are arranged into three columns with varied α values
and three rows with different γ values showing the resultant loss curves.

the balanced effects of both classes that are present and non-
present, while (c) implies higher impact of the classes that are
present.

The γ loss coefficient balances between pixels with true
positive/true negative predictions and those with false posi-
tive/false negative predictions. We refer to classes with con-
siderable true positive and true negative predictions as well
classified, and those with substantial false positive and false
negative predictions as poorly classified. A higher γ empha-
sizes the contribution of the well predicted classes at the pixel
level, whereas a lower γ setting increases the contribution of
the poorly classified classes by reducing the influence of well
classified ones. Each row in Figure 6 shows the effects of
different γ configurations.

As indicated in Figure 6, different settings of α and γ loss
coefficients play significant roles in the resultant loss function
behaviours defined in Equation 17. We optimise these two
hyperparameters along with the learning rate and momentum
settings using the proposed NIS algorithm to further fine-tune
model learning behaviours.

IV. EVALUATION

We employ five well-known semantic segmentation datasets,
as well as mathematical numerical test functions to evaluate
the proposed model against several baseline search methods.

A. Segmentation Datasets

We employ five datasets, i.e. CamVid, Freiburg Forest,
MESSIDOR, ADE20K and Cityscapes for evaluating segmen-
tation models. These datasets are detailed as follows.

The CamVid dataset has a total of 701 images in a resolution
of 960x720. An official data split is provided with 369 training,
100 validation and 232 test samples. To reduce the memory
requirements, we compressed the original 32 categories into
the following 12 semantically similar classes, i.e. Void, Sky,
Building, Pole, Road, Pavement, Tree, SignSymbol, Fence,
Car, Pedestrian, and Bicyclist. The Freiburg Forest dataset
contains 366 images in a resolution of 882x490. It contains
classes of object, trail, grass, tree, vegetation and sky. The
tree and vegetation classes are combined since the latter is

TABLE II
THE RESULTS FOR DICE SCORE, GLOBAL ACCURACY (GA), MIOU AND
MCA FOR MODELS TRAINED WITH DIFFERENT LOSSES ON THE CAMVID

DATASET WITH THE TOP 10 RESULTS HIGHLIGHTED
Model Cross Entropy Dice Focal Dice (%) GA (%) MIoU (%) MCA (%)

FCN

✓ × × 61.1 87.6 50.2 62.7
× ✓ × 62.0 86.8 51.3 62.4
× × ✓ 61.3 86.6 50.5 63.1

DeeplabV3

✓ × × 57.7 84.6 46.3 59.6
× ✓ × 63.0 87.5 52.4 63.3
× × ✓ 60.6 87.6 49.8 63.0

Unet++

✓ × × 54.3 81.4 43.5 57.8
× ✓ × 55.2 79.6 44.3 56.3
× × ✓ 55.0 83.8 44.8 58.1

Linknet

✓ × × 43.1 83.5 34.5 49.0
× ✓ × 33.4 79.3 27.5 38.2
× × ✓ 36.8 81.8 30.4 45.2

LR-ASPP

✓ × × 41.3 71.5 31.1 42.4
× ✓ × 41.6 78.2 32.6 42.5
× × ✓ 42.9 79.7 33.6 44.6

MAnet

✓ × × 47.0 84.1 38.1 53.2
× ✓ × 51.3 84.6 42.2 53.7∗
× × ✓ 47.9 85.5 38.8 53.7∗

PSPnet

✓ × × 39.7 58.4 28.5 37.8
× ✓ × 44.0 63.9 32.2 42.0
× × ✓ 39.8 58.7 28.7 38.0

* represents a shared tenth place result

not used in the test set. An official split of 230 training
and 136 test samples is provided. The MESSIDOR dataset
contains 1200 colour retinal images and binary segmentation
masks at multiple resolutions (1440x960, 2240x1488, and
2304x1536) for segmentation and detection of optic discs. This
study resizes GTs and images to 640x480 using an 80-20
train-test split. ADE20K contains 20,210 and 2,000 images
for training and validation respectively, with 150 semantic
categories. Cityscapes consists of 2,975 and 500 images for
training and validation respectively, with 19 semantic classes.

B. Loss Function Evaluations

We explore NIS-devised networks in combination with
different loss functions and indicate efficiency of the proposed
combined multi-loss scheme.

To be specific, each model was trained with one of the
existing three loss functions, i.e. Cross Entropy, Dice, and
Focal loss, commonly used for semantic segmentation tasks,
as well as a diverse combination of these loss functions,
including the newly proposed one. The performance of these
loss functions was evaluated across seven established seg-
mentation models, i.e. FCN [4], DeeplabV3 [3], Unet++ [5],
Linknet [29], LR-ASPP [6], MAnet [2], and PSPnet [30]. Each
model was trained for 50 epochs using the Stochastic Gradient
Descent (SGD) with a learning rate of 0.01 and a momentum
of 0.5. A train-validation split was taken from the original
training sets to preserve the true test data. Four commonly
used segmentation metrics were calculated from the test set
for comparison, i.e., Dice Score, Global Accuracy, mIoU and
Mean Class Accuracy (MCA). These results can be found in
Table II.

1) Loss Function Comparison: We present the segmenta-
tion results for the CamVid dataset using each of the three
loss functions in Table II. As indicated in Table II, the top ten
results for each metric for this dataset are mostly distributed
between FCN, DeeplabV3 and Unet++ with the remaining
good results being attained by MAnet. The top result (63%)
for the Dice score is obtained by DeeplabV3 using the Dice
loss function. For the global accuracy rates, the top result
(87.6%) is shared jointly between FCN with Cross Entropy
loss and DeeplabV3 with Focal loss. The DeeplabV3 with
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TABLE III
DICE SCORE, GLOBAL ACCURACY (GA), MIOU AND MCA FOR MODELS
TRAINED WITH DIFFERENT COMBINATIONS OF LOSSES ON THE CAMVID

DATASET
Model Cross Entropy Dice Focal Dice (%) GA (%) MIoU (%) MCA (%)

FCN

✓ × × 61.1 87.6 50.2 62.7
× ✓ × 62.0 86.8 51.3 62.4
× × ✓ 61.3 86.6 50.5 63.1
✓ ✓ × 63.6 87.6 52.8 64.5
✓ × ✓ 61.5 87.2 50.6 63.2
× ✓ ✓ 64.4 88.1 53.6 66.0
✓ ✓ ✓ 64.3 89.2 53.8 65.6

DeeplabV3

✓ × × 57.7 84.6 46.3 59.6
× ✓ × 63.0 87.5 52.4 63.3
× × ✓ 60.6 87.6 49.8 63.0
✓ ✓ × 63.5 87.8 52.6 65.7
✓ × ✓ 61.4 87.9 52.9 66.4
× ✓ ✓ 63.2 87.4 52.2 65.0
✓ ✓ ✓ 64.3 89.5 53.7 67.6

Unet++

✓ × × 54.3 81.4 43.5 57.8
× ✓ × 55.2 79.6 44.3 56.3
× × ✓ 55.0 83.8 44.8 58.1
✓ ✓ × 61.8 83.1 50.0 64.2
✓ × ✓ 57.7 84.3 46.4 60.5
× ✓ ✓ 60.0 81.4 47.6 61.4
✓ ✓ ✓ 62.3 86.2 51.0 64.2

Dice loss model achieves both the highest MIoU (52.4%) and
MCA (63.3%) scores. It is clear that the most consistently
accurate models are DeeplabV3, FCN and Unet++. Regarding
loss functions, models trained with Dice loss often provide
the highest results. To further assess the effectiveness of the
combination of different loss functions, we use the three best-
performing networks for subsequent experiments.

2) Multi-Loss Function Results: Since each of the previ-
ously used loss functions capture unique aspects of the error
present in the dataset, further investigation was conducted
to determine if the benefits provided by each loss function
can be exploited simultaneously. Toward this end, the three
best-performing networks, i.e., DeeplabV3, FCN, and Unet++,
were trained with every combination of loss functions on the
CamVid dataset using the same training regimen discussed
previously. These results are provided in Table III. The results
indicate that models trained with all three loss functions
typically produce the top results, otherwise yielding the sec-
ond best results. The lowest results are almost consistently
associated with models trained with single loss functions.
Of these models, DeeplabV3 and FCN networks typically
outperformed Unet++ with higher metric scores, leading to top
results. These observations justify using DeeplabV3 and FCN
and the combined multi-loss function for further evaluation of
NIS optimisation on CNN segmentation models.

C. CNN Segmentation Model Evaluation Using CamVid,
Freiburg Forest, and MESSIDOR

In this section, we employ the proposed NIS model for
hyperparameter identification of the best-performing networks,
i.e. DeeplabV3 and FCN. In particular, the multi-loss func-
tion identified earlier is used as the fitness function, which
integrates Cross Entropy, Dice, and Focal loss measures. The
Firefly Algorithm (FA) and PSO are utilized as the baseline
methods for optimal hyperparameter selection. The experi-
mental setup is firstly explained. We then analyze the results
and discuss notable patterns with respect to each dataset. A
summary of the combined results from all datasets is also
provided. The selected hyperparameters are presented and
discussed with regard to their effect on model performance.

To evaluate each segmentation network, NIS, PSO and FA
are employed to identify the optimal settings of learning rate,

TABLE IV
HYPERPARAMETERS TARGETED FOR OPTIMISATION

Hyper-Paremeter Lower Bound Upper Bound
Learning Rate 0.0001 0.01

Momentum 0.0 1.0
α (loss parameter balancing between the classes that

are present and non-present in the GT masks)
0.15 0.99

γ (loss coefficient weighting contributions of well and
poorly classified examples)

1.00 5.0

TABLE V
THE MEAN RESULTS OF FOUR COMMON METRICS OVER 5 RUNS FOR THE

NIS-OPTIMISED DEEPLABV3 MODEL ON THREE DATASETS

Dataset Search Dice (%) GA (%) MIoU (%) MCA (%)
CamVid Default 61.0 84.9 51.8 63.6

FA 72.8 85.1 59.7 70.2
PSO 78.5 90.0 66.7 74.8
NIS 79.8 90.5 68.3 76.3

Freiburg Default 85.3 93.4 73.0 83.2
FA 88.2 93.8 80.4 86.5

PSO 88.3 94.2 80.7 86.7
NIS 89.0 94.1 81.4 87.7

MESSIDOR Default 81.1 99.3 74.4 72.0
FA 92.5 99.7 87.6 90.5

PSO 83.6 99.5 76.6 77.7
NIS 95.6 99.8 92.1 93.9

momentum, γ and α in the multi-loss function. In particular,
γ and α are the loss coefficients for the Focal loss function, as
discussed earlier. The identified hyperparameters are then used
to train the model on the combined training and validation
sets, before being evaluated with the test set. The optimal
hyperparameter identification process is performed five times.
We present the mean results over five runs for DeeplabV3 and
FCN with respect to each dataset in Subsection IV-C1.

As a reference, the default results of both DeeplabV3 and
FCN without hyperparameter optimisation are also provided.
In the default experimental settings, instead of the multi-loss
function, a standard Cross Entropy loss is used. The networks
are trained with an SGD optimiser with a default learning rate
of 0.01 and a default momentum of 0.5. The final results of
each network are obtained by taking the average of five runs.

The following settings remain constant throughout all ex-
periments. All algorithms use a population of 10, a maximum
iteration of 20 and a set of 5 runs. Each fitness evaluation
trains each CNN model for two epochs before evaluation.
Moreover, the VPM LSTM-CNN network is trained using
the SGD optimiser with the following settings: lr = 0.0001,
momentum = 0.9, and weight decay = 0.005, which are
determined using trial-and-error.

The search ranges for the optimisation targets are shown
in Table IV. The devised DeeplabV3 and FCN models with
optimal settings are both trained with SGD for 50 epochs,
along with a weight decay of 0.005 and a batch size of 4.

1) Results: The Dice score, Global Accuracy, MIoU and
MCA are used to measure the performance of the NIS op-
timised Multi-Loss CNN models. Evaluation results on the
CamVid, Freiburg Forest and MESSIDOR datasets for the de-
vised DeeplabV3 and FCN models are shown in Tables V and
VI, respectively. We also analyze the selected hyperparameters
in Section IV-C2.

Tables V and VI depict that NIS yields a superior perfor-
mance over the standard PSO and FA methods across all three
test datasets for both networks. The search strategies of NIS
contribute toward improved hyperparameter selection, thus
increase model prediction accuracy across all four metrics.
Furthermore, the models trained with optimised hyperparam-
eters perform better than those trained with typical default
configurations. Specifically, models trained with default set-
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TABLE VI
THE MEAN RESULTS OF FOUR COMMON METRICS OVER 5 RUNS FOR THE

NIS-OPTIMISED FCN MODEL ON THREE DATASETS
Dataset Search Dice (%) GA (%) MIoU (%) MCA (%)
CamVid Default 51.4 84.3 42.6 54.6

FA 70.6 83.6 57.4 67.3
PSO 74.9 87.6 62.5 71.3
NIS 79.5 90.5 68.1 76.4

Freiburg Default 62.8 90.1 55.7 62.2
FA 85.9 92.5 77.1 84.5

PSO 77.7 87.8 68.4 75.9
NIS 86.7 92.7 78.0 85.5

MESSIDOR Default 81.0 99.2 76.6 80.8
FA 90.6 99.7 86.5 90.3

PSO 85.8 99.6 80.2 82.4
NIS 94.6 99.8 90.3 94.8

tings use a single Cross Entropy loss function with default
learning settings, while our devised networks are equipped
with an optimised multi-loss function in combination with
more effective learning settings. As such, the latter shows great
efficiency in learning from the backpropagation process to
adjust the performance with customized learning behaviours.
These observations are empirically shown across all three
datasets, indicating that using NIS hyperparameter optimi-
sation together with a multi-loss function provides benefits
across multiple problems and model structures.

The improved performance gained from using a multi-loss
function results from the combination of diverse and unique
loss calculation mechanisms. Each constituent loss function
measures the error between the prediction and the GT differ-
ently making the error signal inherently more informative. This
leads to better error correction during training as compared
with using a single loss function, yielding improvements in
the predictive capability of the resulting model. In addition,
optimised parameters γ and α enable the multi-loss function
to strike a balance between the impact of well/poorly classified
instances and contributions of the classes present/non-present
in the GT masks, thus preventing overfitting.

2) Hyperparameter Selection: An overview of the hyper-
parameter selection results of each optimisation method across
all three datasets are provided in Tables VII and VIII for
the DeeplabV3 and FCN models, respectively. Each table
displays the optimised learning rate (Lr), momentum, α and
γ configurations.

By analyzing Tables V, VI, VII, and VIII, we found that
lower values of learning rate, γ and α, along with higher
momentum, lead to better accuracy for all models and datasets.
NIS efficiently identifies these favorable hyperparameters,
while FA and PSO are more affected by swarm initialization.

Most CNNs use high momentum and low learning rates as
typical hyperparameters. This trend is reflected in the results
of most algorithms. NIS identifies the importance of a low
average learning rate, in addition to a high mean momentum,
contributing to high accuracy in generated networks. A lower
learning rate allows for finer adjustments to network weights
during training, providing greater variation and granularity in
potential internal network representations, resulting in higher
accuracy. High momentum emphasizes the trajectory towards
a global optimum, reducing the likelihood of weights being
trapped in local optima or going beyond global optimum
solutions.

Low α loss coefficients configure the focal loss function
to enable CNN to concentrate on classes not present in GT
during training. Low γ loss settings adjust weights to reduce

TABLE VII
AVERAGE HYPERPARAMETERS IDENTIFIED OVER 5 RUNS USING SEARCH

METHODS BASED ON THE DEEPLABV3 MODEL ON THREE DATASETS
Dataset Search Lr Momentum α γ

CamVid FA 0.0093 0.8297 0.4625 3.9188
PSO 0.0093 0.8274 0.6043 3.4761
NIS 0.0059 0.8707 0.3786 1.9099

Freiburg FA 0.0072 0.8008 0.4230 1.5410
PSO 0.0067 0.8636 0.4866 2.8988
NIS 0.0054 0.7514 0.3506 2.0119

MESSIDOR FA 0.0079 0.8732 0.6860 2.1909
PSO 0.0083 0.9053 0.7007 3.1876
NIS 0.0036 0.8345 0.4448 2.4869

TABLE VIII
AVERAGE HYPERPARAMETERS IDENTIFIED OVER 5 RUNS USING SEARCH

METHODS BASED ON THE FCN MODEL ON THREE DATASETS
Dataset Search Lr Momentum α γ

CamVid FA 0.0077 0.5421 0.5848 3.9476
PSO 0.0084 0.6732 0.4753 3.2803
NIS 0.0065 0.8214 0.2815 2.6709

Freiburg FA 0.0052 0.7462 0.6782 2.7889
PSO 0.0052 0.4689 0.7493 3.7681
NIS 0.0030 0.8105 0.3356 1.5221

MESSIDOR FA 0.0073 0.6850 0.2335 2.5713
PSO 0.0076 0.6550 0.4807 3.6714
NIS 0.0024 0.8584 0.2420 2.3641

incorrect predictions instead of improving correct ones, which
can stabilize training in multi-class scenarios. For MESSIDOR
dataset, low α and γ values have a lesser impact due to the
foreground-background binary segmentation process resulting
in a lower number of classes. In such cases, the focus is on
finer weight adjustments with lower learning rates and higher
momentums to avoid local optima.

A detailed analysis of hyperparameters and results from
DeeplabV3 networks was conducted to further examine the
optimisation algorithms. Tables V and VII show the segmen-
tation results and hyperparameters identified using DeeplabV3.
Results for the CamVid dataset indicate that NIS outperforms
PSO and FA, as it selects high momentums with low α, γ,
and learning rate configurations, resulting in a Dice score of
79.8%. PSO and FA select moderate α and high γ coefficients.
Such a combination increases error signals from both correctly
and incorrectly classified examples, while reducing the error
signals for moderately classified examples. This leads to less
informative error signals, producing instability in the network
during training and encouraging under-fitting. High learning
rates and momentums identified by PSO and FA, when com-
bined with the above loss function settings, exacerbate the
under-fitting issue. However, the other two loss functions may
compensate for poor configurations identified by PSO and FA,
preventing the models from failing completely.

The results of DeeplabV3 trained on the Freiburg forest
dataset reveal that NIS prefers low α and γ values with high
momentums and low learning rates, yielding a Dice score
of 89%. PSO selects high learning rates, momentums, and
γ values with moderate α values, resulting in a Dice score of
88.3%. FA stands out with a Dice score of 88.2%, selecting
high learning rates, high momentums, moderate α, and low γ
values. However, the performance gain over PSO is minor be-
cause of the high learning rates and momentums. Nonetheless,
high momentums with low α and γ settings produce superior
results, with minimal variation across models.

The MESSIDOR dataset results show that high momentum,
low α, low γ, and low learning rate hyperparameters configu-
rations are preferred by NIS, resulting in a Dice score of 95.6%
for DeeplabV3 model. However, PSO chooses high values
for learning rate, momentum, γ, and α, leading to a Dice
score of 83.6%. FA selects high values for learning rate and
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TABLE IX
COMPARISON WITH OTHER REPORTED RESULTS

Method Dice (%) GA (%) MIoU (%) MCA (%)
MESSIDOR

Abdulla et al. [31] 93.39 99.89 87.9 -
Morales et al. [32] 89.50 99.49 82.28 -
Kumar et al. [33] 84.56 - - -

Rehman et al. [34] 85.1 98.8 74.7 -
Zahoor and Fraz [35] 90.3 99.1 84.4 -

Fan et al. [36] 91.96 97.7 86.3 -
NIS-Deeplabv3 95.6 99.8 92.1 93.9

Freiburg Forest
FC-DenseNet67 [8] - - 74.47 -

FCN8 [8] - - 80.05 -
ParseNet [8] - - 80.89 -
FastNet [8] - - 81.00 -
CGBNet [8] - - 81.04 -
SegNet [8] - - 81.12 -

Zhang et al. [7] - 92.07 79.87 -
NIS-Deeplabv3 89.0 94.1 81.4 87.7

CamVid
Segnet [11] - 90.40 60.10 71.20

Dilation + FSO [37] - - 66.12 -
LRN [38] - - 61.7 77.2

G-FRNet [9] - - 68.0 -
FC-DenseNet103 [10] - 91.5 66.9 -

DPDB-Net [39] - 85.2 54.7 -
TD2-PSP50 [40] - - 43.5 55.2

MSSA [41] - - 74.12 55.2
NIS-Deeplabv3 79.8 90.5 68.3 76.3

momentum and low values for γ resulting in a Dice score of
92.5%. Although FA selects high values for learning rate and
α, they are still lower than those selected by PSO. Whilst FA-
optimised configurations with reduced γ values improve the
performance compared to PSO, they have worse performance
than those of NIS.

Similar observations for hyperparameter selection for FCN
are also obtained from Tables VI and VIII. In summary, NIS
outperforms FA and PSO in optimising DeeplabV3 and FCN
networks across three segmentation datasets by selecting low
α, γ, learning rate parameters, and high momentum settings.

We notice that both FA and PSO lack of an adaptive balance
of exploration and exploitation search behaviours. FA also
struggles with search oscillations and slow convergence since
its agents are guided purely by local brighter individuals.
NIS addresses this issue by introducing an iteration-based
scheduling of novel diversification and intensification oper-
ations through the proposed Discrete Adaptive Wave Func-
tion. This function maximizes or minimizes different search
behaviours in three separate stages using heuristic coefficients.
The proposed search strategies, including LSTM-CNN based
optimal velocity prediction and Whirlpool search, effectively
avoid early stagnation, as indicated by experimental results.

In Table IX, we present a comparison of the NIS-
optimised DeeplabV3 network against state-of-the-art models
on the three datasets, owing to the efficiency of the devised
DeeplabV3 network. The empirical results indicate that our
optimised network yields improved performance in compari-
son with those of other deep networks across multiple metrics.

D. Evaluation Using ADE20K and Cityscapes

To further test model efficiency, two larger datasets, i.e.
ADE20K and Cityscapes, are also employed in our experi-
mental studies. A transformer network, i.e. Mask2Former [13],
is employed as the base segmenter, because of its superior
global feature learning capabilities in comparison with those of
CNN-based models. We use the source code of Mask2Former
released by its original study [13] in our experiments. Specifi-
cally, Mask2Former with Swin-Large (IN21k) as the backbone

is adopted in our experiments owing to its impressive perfor-
mance for semantic segmentation. Each search method is used
to optimise hyperparameters, i.e. the learning rate and weight
decay, of Mask2Former.

1) Evaluation Using ADE20K: For hypeparameter search, a
subset of 2,021 images (10%) is extracted from the training set
of ADE20K. A population size of 10 and a maximum iteration
number of 20 are employed for optimal parameter selection
using NIS. The resulting optimal learning configurations are
used to establish the optimised transformer network, which
is trained using the whole training set of ADE20K with a
large number of training iterations. The trained model is then
tested using the official validation set. The above process is
repeated 5 times for hyperparameter search. Besides imple-
menting the NIS/PSO/FA-optimised Mask2Former, a baseline
Mask2Former with the same backbone is also implemented
where it is loaded with the ADE20K pre-trained weights
provided by its original study and subsequently tested using
the validation set. This baseline model employs a learning rate
of 1e-04 and a weight decay of 5e-02, provided by the orig-
inal study. The optimised and baseline Mask2Former models
employ 160K training iterations to ensure a fair comparison.
Table X illustrates the mean results of the ADE20K validation
set over 5 runs for optimised and baseline Mask2Former
models based on a single-scale inference. The symbol ‘*’ in
Table X indicates that the results are obtained in our own
experiments. Recommended by [13], MIoU is used as the main
performance indicator. Four NVIDIA 1080ti GPUs are used in
our studies. As indicated in Table X, for ADE20K validation
set, the NIS-optimised transformer model achieves state-of-
the-art performance and outperforms the baseline, and PSO
and FA-optimised transformers, as well as other state-of-the-
art existing studies.

2) Evaluation Using Cityscapes: For Cityscapes, we sub-
sample 298 images (10%) from the training set for hyperpa-
rameter search. The same experimental settings of ADE20K
are also used in this experiment for parameter optimisation,
i.e. population=10, iteration=20 and trial=5. Each optimised
Mask2Former is evaluated using the official validation set. The
baseline transformer with pre-trained weights of Cityscapes
provided by its original study is also evaluated using the
validation set in our experiments. The mean performances
of the optimised and baseline networks for the Cityscapes
validation set over 5 runs based on single-scale inference
are also provided in Table X. As indicated in Table X, the
NIS-optimised transformer model also achieves state-of-the-
art performance and outperforms the baseline, and PSO and
FA-optimised transformers, as well as other existing studies.

3) Hyperparameter Selection: Table X also shows the mean
hyperparameter selection results over 5 runs for each search
method for both datasets. For ADE20K, as indicated in Table
X, NIS, PSO and FA identify comparatively smaller mean
learning rate settings in comparison with that of the baseline
model. Such smaller learning rate configurations compensate
well with the high loss from a large training set, which
leads to delicate weight updates for model training. On the
contrary, large learning rates as in the baseline model may
cause oscillations in gradient descent, therefore leading to less
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TABLE X
THE MEAN RESULTS OVER 5 RUNS FOR THE OPTIMISED AND BASELINE
MASK2FORMER MODELS ON ADE20K AND CITYSCAPES VALIDATION

SETS
Method MIoU (%)

ADE20K Validation
ISNet [42] 47.55

RegionContrast [43] 46.85
Seg-L-Mask [14] 51.30

CTNet [12] 45.94
TopFormer-B [44] 37.8

HRViT-b3 [45] 50.20
SegNeXt-L [46] 51.0
CSWin-L [47] 54

MaskFormer + FaPN [48] 55.2
SETR-PUP [49] 48.58

DFlatFormer [50] 45.9
Baseline Mask2Former* [13] (lr=1e-04, wd=5e-02) 55.76

PSO-optimised Mask2Former* (lr=1e-05, wd=2.783e-02) 56.16
FA-optimised Mask2Former* (lr=2.33e-05, wd=1e-04) 55.96

NIS-Optimised Mask2Former* (lr=1e-05, wd=3.698e-02) 57.39
Cityscapes Validation

ISNet [42] 81.10
RegionContrast [43] 81.3

CTNet [12] 82.2
SegFormer (MiT-B5) [51] 83.1

HRViT-b3 [45] 83.16
SegNeXt-L [46] 83.2

FaPN [48] 78.5
SETR-PUP [49] 79.34

TrSeg [52] 79.9
DFlatFormer [50] 80.6

Baseline Mask2Former* [13] (lr=1e-04, wd=5e-02) 83.3
PSO-optimised Mask2Former* (lr=1e-05, wd=1.67e-02) 83.34

FA-optimised Mask2Former* (lr=4.28e-05, wd=4.03e-03) 83.05
NIS-Optimised Mask2Former* (lr=2.09e-05, wd=3.28e-02) 83.67

* indicates results obtained through our own experiments.

competitive performance. Moreover, NIS identifies a moderate
mean weight decay in comparison with the default and those
obtained using PSO and FA, which applies a reasonable
penalty to the loss to maintain sufficient generalization capa-
bilities. Applying very small weight decays as in FA and PSO
may diminish the effects of the regularization term to cause
overfitting, while adopting very large weight decay settings
as in the baseline method may also squash the weights down
too much to incur underfitting or premature convergence. The
combination of a small mean learning rate and a moderate
mean weight decay in NIS leads to optimal performance. A
similar observation is also obtained for the hyperparameters
identified by NIS for Cityscapes, i.e. a smaller mean learning
rate and a moderate mean weight decay.

These experimental studies for ADE20K and Cityscapes
indicate that the proposed NIS algorithm embedding LSTM-
CNN based maximised standard deviation and local best
velocity prediction and whirlpool search-based local inten-
sification shows great efficiency in overcoming local optima
traps for optimal hyperparameter search. The NIS-optimised
transformer model is able to extract more precise long-range
global dependencies to inform pixel-wise probabilistic class
predictions for semantic segmentation.

4) Optimisation cost: The following analysis gives insight
into the extra cost incurred by the optimisation process
during training. Since fitness evaluation involving CNN or
transformer training and test is the most costly component
in comparison with the dataflow of each search algorithm,
and the same number of function evaluations is used as the
termination criterion for all optimisers, the computational cost
is mostly identical between different search methods. We
provide the mean cost of one function evaluation along with
one implementation of each search method over 5 runs in Table
XI, for cost comparison. Four NVIDIA 1080ti GPUs are used
in parallel to generate the costs shown in Table XI.

As indicated in Table XI, NIS shows a similar average cost

TABLE XI
COMPUTATIONAL COST (IN SECONDS) OF A SINGLE FUNCTION
EVALUATION FOR EACH OPTIMISATION METHOD AND DATASET

Method MESSIDOR Frieburg CamVid Cityscapes ADE20k
NIS 21.11 25.12 31.90 401.77 471.83

Firefly 18.80 22.19 26.80 137.07 231.05
PSO 19.74 24.06 29.57 333.93 397.87

to those of other search methods. Because of the adaptive
deployment of neural network-based velocity predictions and
the whirlpool search based local exploitation, NIS shows fast
convergence with comparable computational cost for hyper-
parameter search. NIS has a slightly higher cost owing to
machine learning based velocity prediction in comparison with
non-machine learning based operations in FA and PSO. These
extra costs are only incurred during the hyperparameter search
in the training stage for each search method.

E. NIS Evaluation using Benchmark Test Functions

To validate the contributions of the Discrete Adaptive Wave
Function scheduling and exploration/exploitation behaviours
of NIS, we evaluate it against a total of 12 search methods
in solving mathematical test functions, including PSO, FA
[53], Random Search (RA) [54], Memetic Algorithm (MA)
[55], Jaya [56], Gravitational Search Algorithm (GSA) [57],
Genetic Algorithm (GA) [58], Flower Pollination Algorithm
(FPA) [59], Cuckoo Search (CS) [60], Arithmetic Optimisation
Algorithm (AOA) [61], Adaptive Random Search (ARS) [62],
and Autonomous Particle Groups PSO (AGPSO) [63].

A total of nine benchmark functions are utilized, i.e. Ackley,
Dixon Price, Powell, Rastrigin, Rosenbrock, Rotated Hyper-
Ellipsoid, Sphere, Sum Squares, and Zakharov. Each bench-
mark function provides a unique challenge for optimisation
algorithms by defining various shapes intended to trap the
algorithm in local optima. The details of these numerical
optimisation functions are provided in Tan et al. [1]. We
adopt the following experimental configurations for evaluating
these test functions, i.e. 50 particles, 500 iterations and 30
dimensions. Each algorithm is executed for 30 trials. The mean
results are summarized in Table XII.

The results from Table XII indicate that NIS performs
better than all other methods for all the benchmark functions.
This further indicates the strength of the three behaviours and
the Discrete Adaptive Wave scheduling scheme. In particular,
the effectiveness is highlighted by the performance of NIS
as compared with those of PSO and AGPSO. To ensure
statistical validity of these results, the Wilcoxon rank sum test
is performed, and the results are presented in Table XIII. The
statistical test results confirm that the p-value is smaller than
0.05 for nearly all test functions. The only exception is the
Rastrigin function, where NIS and AGPSO achieve statistically
similar results.

1) Ablation Studies: Ablation studies have been conducted
to indicate the effectiveness of each proposed strategy in NIS
using the benchmark functions. NIS embeds four operations,
i.e. (1) Maximised Standard Deviation Velocity Prediction
for global exploration, (2) Local Best Velocity Prediction for
search diversification, (3) n-Dimensional Whirlpool search
for exploiting optimal regions, and (4) the Staged Discrete
Adaptive Wave formula for adjusting effects of the above
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TABLE XII
THE MEAN RESULTS FOR BENCHMARK FUNCTIONS OVER 30 RUNS WITH DIMENSION=30

RA MA Jaya GSA GA FPA CS AOA ARS PSO FA AGPSO NIS
Ackley 1.82E+01 1.73E+01 1.91E+01 1.61E+01 1.91E+01 1.59E+01 1.88E+01 1.96E+01 1.78E+01 1.81E+01 1.96E+01 1.54E+01 5.39E+00

DixonPrice 6.26E+05 3.13E+04 1.42E+06 1.69E+06 9.34E+04 6.28E+04 8.50E+05 1.62E+06 5.56E+05 4.13E+03 1.64E+06 5.26E+02 2.37E+01
Powell 7.78E+08 8.78E+08 1.44E+12 1.60E+13 1.60E-02 1.41E+06 3.04E+10 3.18E+13 5.36E+08 1.24E+03 2.97E+12 1.99E+01 2.78E-05

Rastrigin 3.37E+02 3.40E+02 4.01E+02 2.10E+02 3.80E+02 2.93E+02 3.61E+02 4.29E+02 3.31E+02 1.73E+02 4.22E+02 1.11E+02 7.16E+01
Rosenbrock 4.29E+05 8.25E+04 1.02E+06 1.43E+06 5.29E+04 5.50E+04 7.70E+05 1.32E+06 3.85E+05 1.66E+05 1.45E+06 9.22E+04 2.29E+02

Rotated Hyper Ellipsoid 2.23E+05 6.39E+04 3.47E+05 3.98E+05 2.66E+05 5.91E+04 2.54E+05 3.97E+05 2.12E+05 2.04E+04 3.89E+05 7.85E+03 6.06E+02
Sphere 1.03E+02 1.05E+02 1.51E+02 7.69E+00 1.40E+02 2.60E+01 1.19E+02 1.73E+02 1.01E+02 9.20E+00 1.71E+02 5.65E+00 2.09E-01

SumSquares 1.43E+03 1.30E+03 2.23E+03 7.88E+01 1.56E+03 3.59E+02 1.59E+03 2.43E+03 1.35E+03 1.34E+02 2.40E+03 7.60E+01 1.78E+00
Zakharov 4.12E+02 2.44E+02 7.18E+02 8.35E+08 3.59E+02 4.24E+02 5.39E+02 4.91E+08 3.71E+02 2.30E+08 5.11E+07 2.20E+02 6.71E+01

TABLE XIII
THE WILCOXON RANK SUM TEST RESULTS FOR THE BENCHMARK

FUNCTIONS OVER 30 RUNS
Ackley DixonPrice Powell Rastrigin Rosenbrock RotHyp Sphere SumSquares Zakharov

RA 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
MA 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
Jaya 9.06E-08 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
GSA 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
GA 8.35E-08 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
FPA 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
CS 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

AOA 1.55E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
ARS 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
PSO 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
FA 4.18E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

AGPSO 1.07E-07 3.02E-11 3.02E-11 7.73E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 7.22E-06

TABLE XIV
THE MEAN RESULTS OF ABLATION STUDIES ON BENCHMARK FUNCTIONS

OVER 30 RUNS WITH DIMENSION=30
M1 (1) M2 (1+2) M3 (1+2+3) M4 (1+2+3+4)

Ackley 1.88E+01 1.90E+01 1.12E+01 5.39E+00
DixonPrice 5.32E+05 4.51E+05 5.63E+02 2.37E+01

Powell 3.97E+12 2.17E+12 1.42E-01 2.78E-05
Rastrigin 3.89E+02 3.71E+02 2.81E+02 7.16E+01

Rosenbrock 1.02E+06 1.02E+06 1.03E+03 2.29E+02
RotatedHyperEllipsoid 1.81E+05 1.77E+05 5.92E+04 6.06E+02

Sphere 1.60E+02 1.49E+02 5.98E-01 2.09E-01
SumSquares 2.22E+03 2.21E+03 2.49E+01 1.78E+00

Zakharov 3.75E+06 7.71E+02 1.87E+02 6.71E+01

methods. We implement four versions of the model with
increasing numbers of operations, i.e. Model 1 (Operation 1),
Model 2 (Operations 1 and 2), Model 3 (Operations 1, 2, and
3), and Model 4 (all four operations).

These four models are tested using the above 9 benchmark
functions. Table XIV shows that all four models improve test
function results incrementally in the majority of the test cases.
Model 1 uses LSTM-CNN to maximize standard deviation
velocity prediction and shows great efficiency in exploring
the search space, but with limited capabilities in fine-tuning
optimal solutions. Model 2 improves the search by adding
LSTM-CNN based local best velocity prediction, to increase
search diversification while better exploiting local optimal
regions. Model 3 further enhances local exploitation by adding
an angle-driven whirlpool search mechanism to fine-tune the
global best solution. Model 4 uses a Staged Discrete Adaptive
Wave formula to emphasize local and global search behaviours
adaptively and achieves the best performance.

V. CONCLUSION

This research has proposed a novel NIS algorithm for op-
timising learning and multi-loss parameters for segmentation
models. Three new search behaviours have been formulated,
i.e. LSTM-CNN based Maximised Standard Deviation and
Local Best Velocity Prediction, as well as n-dimensional angle
rotation, to improve search diversity. A Staged Discrete Adap-
tive Wave function has also been exploited for implementing
a stage-based behaviour scheduling to precisely balance the
contribution of each behaviour pertaining to intensification and
diversification during the course of hyperparameter search.

The empirical results comparing NIS against PSO and FA
on the all five semantic segmentation datasets, in particular

for ADE20K and Cityscapes, reveal the effectiveness of the
proposed novel behaviours and new operation scheduling
regimen introduced in NIS. This has been further confirmed
by the notable performance of NIS against 12 well-known
and modern search methods on several multimodal and uni-
modal benchmark functions. The aforementioned novel neu-
ral network-based velocity prediction, angle-driven whirlpool
search and the adaptive wave scheduling function work in
tandem to further enhance performance.

Future work will investigate architecture generation for
transformer networks using the NIS algorithm. Hybrid archi-
tectures embedding CNN, LSTM and transformer models will
be exploited for semantic segmentation and other vision and
signal processing tasks.
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