
PERFECT FACTORS FROM CYCLIC CODES AND INTERLEAVINGCHRIS J. MITCHELL� AND KENNETH G. PATERSONyAbstract. In this paper we introduce new constructionmethods for Perfect Factors. These arebased on the theory of cyclic codes, interleaving techniques and the Lempel homomorphism. Theconstructions enable us to settle the existence question for Perfect Factors for window sizes at mostsix.Key words. de Bruijn sequence, de Bruijn graph, window sequence, perfect factor, cyclic code,Lempel homomorphism, interleavingAMS subject classi�cations. 05C70, 05C38, 94A99, 68R10, 94A551. Introduction. In this paper we address the existence question for PerfectFactors. Perfect Factors, i.e. sets of uniformly long cycles whose elements are drawnfrom an alphabet of size c and in which every possible v-tuple (or `window') of elementsoccurs exactly once, are of signi�cance for two main reasons (apart from combinatorialinterest in their own right).� They can be used to construct Perfect Maps (or two-dimensional de Bruijnarrays), see for example, [1, 3, 10, 11], which are of practical importance incertain position-location applications.� They are special cases of Perfect Maps themselves, and hence their existenceis of signi�cance in deciding whether Perfect Maps exist for all parameter setssatisfying certain simple necessary conditions (it has recently been establishedthat these necessary conditions are su�cient for prime power size alphabets,[13, 14]).It has been conjectured, [7], that the simple necessary conditions for the existenceof a Perfect Factor (Lemma 1.3 below) are su�cient for all �nite alphabets and forall window sizes. Work towards a proof of this conjecture has progressed along twofronts: �rstly, the conjecture has been shown to be true for speci�c classes of alphabetsize c (for every v) and secondly, the conjecture has been shown to be true for smallvalues of v regardless of the alphabet size.The truth of the conjecture was established by Etzion [1] for c = 2 and by Paterson[12] in the case where c is a prime power. Further progress was made by Mitchell,who introduced two auxiliary classes of combinatorial objects: Perfect Multi-Factors(PMFs) [7] and Generalized Perfect Factors (GPFs) [8], which can be combined invarious ways to yield Perfect Factors. Powerful constructions for PMFs and GPFshave been given in [7, 8]. An important consequence of this latter work is thatthe existence question for any particular v can be reduced to an existence questionconcerning a �nite number of `small' parameter sets (see x7.1 below). In [7, 8] theseideas were used to settle the existence question for v � 4.In this paper we continue to attack the existence question for Perfect Factors. Weintroduce three new construction methods for PMFs and GPFs. The �rst of theseuses cyclic codes to construct sequences (x2), the second is based on interleaving (x3�Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW200EX, U.K. (cjm@dcs.rhbnc.ac.uk).yHewlett-Packard Laboratories, Filton Road, Stoke Gi�ord, Bristol BS12 6QZ, U.K.(kp@hplb.hpl.hp.com). This author's research supported by Lloyd's of London Tercentenary Foun-dation whilst a Research Fellow at the Department of Mathematics, Royal Holloway, University ofLondon. 1



2 C. J. MITCHELL AND K. G. PATERSONand 4) and the third uses a generalisation of the Lempel homomorphism (x5). Weshow how these methods can be combined to e�ciently analyse the parameter setsrequired to settle the existence question for v � 6 (x7). We also apply our methodsto the cases v = 7 and v = 8, resolving the existence question in all but two cases.1.1. Notation. We �rst set up some notation which we will use throughout thepaper.We are concerned here with c-ary periodic sequences, where by c-ary we meansequences whose elements are drawn from the set Zc = f0; 1; : : : ; c � 1g. We referthroughout to c-ary cycles of period n, by which we mean periodic sequences s =[s0; s1; : : : ; sn�1] where si 2 f0; 1; : : : ; c � 1g for every i, (0 � i < n). The leastperiod of such a cycle is de�ned to be the least positive integer such that si = si+tfor all 0 � i < n (subscripts modulo n).If t = (t0; t1; : : : ; tv�1) is a c-ary v-tuple, i.e. ti 2 f0; 1; : : : ; c � 1g for every i,(0 � i < v), and s = [s0; s1; : : : ; sn�1] is a c-ary cycle of period n (n � v), then wesay that t occurs in s at position j if and only ifti = si+jfor every i, (0 � i < v), where i+ j is computed modulo n.If s and s0 are two v-tuples, then we write s + s0 for the v-tuple obtained byelement-wise adding together the two tuples. Similarly, if a is any integer, we writeas for the tuple obtained by element-wise multiplying the tuple s by a. Again, if wewrite t = s mod k, then t is the tuple obtained by reducing every element in s modulok. An exactly analogous interpretation should be used for arithmetic operations oncycles.If s0; s1; : : : ; st�1 are t cycles all of period n, and if si = [si0; si1; : : : ; si(n�1)](0 � i < t), then I(s0; s1; : : : ; st�1) denotes the t-fold interleaving of these cycles, i.e.I(s0; s1; : : : ; st�1) = [s00; s10; : : : ; s(t�1)0; s01; s11; : : : ; s(t�1)(n�1)], a cycle of periodnt. We de�ne the left shift operator E acting on cycles of period n as follows. Theaction of E on s, denoted Es, is the cycle whose i-th term is si+1 (subscripts beingcomputed modulo n). For m � 2, we de�ne the action of Em on s by writingEms = E(Em�1s). For any polynomial f(X) =Pmi=0 aiXi with coe�cients in Zc, wede�ne the action of the operator f(E) on s to be the cycle a0s+a1Es+ � � �+amEms.We de�ne a truncation operator operating on cycles. Let s = [s0; s1; : : : ; snt�1]be a cycle, and t be the least positive integer such that Et(s) = s, i.e. t is the leastperiod of s. Then let T (s) = [s0; s1; : : : ; st�1]. Any cycle s of period n and leastperiod t is equally well represented by the cycle T (s).The weight of a period n cycle is de�ned to be the sum of its n elements evaluatedin Zc. Notice thatEn � 1E � 1 s = (En�1 + � � �+ E + 1)s = [n�1Xi=0 si; n�1Xi=0 si; : : : ; n�1Xi=0 si]so that En�1E�1 s is a constant cycle whose terms equal the weight of s. We say thata set of period n cycles over Zc is a constant weight set if each of the cycles in theset has the same weight. We de�ne the total weight of the set to be the sum of theweights of the cycles in the set.In addition, we use the notation (m;n) to represent the Greatest Common Divisorof m and n (given that m;n are a pair of positive integers or a pair of polynomialsover some �eld). By convention, (0; n) = n.



PERFECT FACTORS FROM CYCLIC CODES 31.2. Fundamental De�nitions and Results.1.2.1. De Bruijn Sequences. We �rst have:Definition 1.1. A c-ary de Bruijn sequence of span v is a c-ary cycle of period cvwhich contains cv distinct v-tuples in a period of the cycle; equivalently every possiblec-ary v-tuple occurs precisely once in a period of a de Bruijn sequence.It has long been known that c-ary span v de Bruijn sequences exist for all valuesof c > 1 and v > 0 (see [2] for a proof of this result and a comprehensive survey ofthe long and interesting history of de Bruijn sequences).1.2.2. Perfect Factors. We next de�ne a generalisation of de Bruijn sequences,the construction of which is the main theme of this paper.Definition 1.2. Suppose n, c and v are positive integers (where we also assumethat c � 2). An (n; c; v){Perfect Factor, or simply an (n; c; v){PF, is a collection ofcv=n c-ary cycles of period n with the property that every c-ary v-tuple occurs in oneof these cycles.Note that, because a Perfect Factor contains exactly cv=n cycles, and becausethere are clearly cv di�erent c-ary v-tuples, each v-tuple will actually occur exactlyonce somewhere in the collection of cycles (and hence all the cycles are distinct). Alsoobserve that a (cv; c; v){PF is simply a c-ary span v de Bruijn sequence.The following necessary conditions for the existence of a Perfect Factor are trivialto establish.Lemma 1.3. Suppose A is a (n; c; v){PF. Then1. njcv, and2. v < n (or n = v = 1).Conjecture 1.4. [7, Conjecture 1.4] The conditions of Lemma 1.3 are su�cientfor the existence of an (n; c; v){PF.We next give a simple but useful construction for Perfect Factors.Construction 1.5. Suppose n and c are integers greater than 1, where njcn�1.Let A� be the set of all c-ary cycles of period n with the property that the sum of theelements in each cycle is congruent to 1 modulo c. If a; a0 2 A�, then de�ne a � a0 ifand only if a = Esa0 for some s. It is simple to see that � is an equivalence relationon the elements of A�, and hence de�ne A to be a set of �-representatives from A�.Lemma 1.6. If n, c and A are as in Construction 1.5, then A is an (n; c; n� 1){PF.Proof. Consider any c-ary (n�1)-tuple. It clearly occurs at position 0 in a uniquecycle in A�, and can only occur once in any cycle of A�. Hence it occurs once withina unique cycle in A, and the result follows.Corollary 1.7. The conditions of Lemma 1.3 are su�cient for the existence ofan (n; c; v){PF when v = n � 1.In view of the �rst condition in Lemma 1.3, we can assume that the prime fac-torisations of c and n are c = tYi=1 piri and n = tYi=1 pisiwhere 0 � si � riv for each i.We discuss next the extent to which Conjecture 1.4 is known to be true. Thecase where v = 1 is clearly trivial, and we have dealt with the case v = n � 1 inCorollary 1.7. The conditions of Result 1.3 are known to be su�cient when c = 2 [1]and when c is a power of a prime [12]. It was also proved in [12] that the conditions



4 C. J. MITCHELL AND K. G. PATERSONof Lemma 1.3 are su�cient when psii > v for every index i. In [7] this result has beenimproved to establish the su�ciency of the conditions of Lemma 1.3 whenever psii > vfor at least one index i:Theorem 1.8 (Theorem 7.1 of [7]). An (n; c; v){PF can be constructed for anyn, c and v satisfying v < njcv and c > 1, as long as v < ps and psjn for some primep and some positive integer s.This immediately implies that Conjecture 1.4 holds for v = 2 and that the conjec-ture remains open only for periods n = Qti=1 pisi for which psii � v for each 1 � i � t.The truth of Conjecture 1.4 has also been established for every c when v � 4 [8].Certain other cases for v = 6 and larger composite v have recently been dealt with in[9]. 1.2.3. PerfectMulti-Factors. We de�ne a related set of combinatorial objects,�rst introduced in [7].Definition 1.9. Suppose m, n, c and v are positive integers satisfying mjcvand c � 2. An (m;n; c; v){Perfect Multi-factor, or simply a (m;n; c; v){PMF, is acollection of cv=m c-ary cycles of period mn with the property that for every c-aryv-tuple t and for every integer j in the range 0 � j < n, t occurs at a position p � j(mod n) in one of these cycles.Note that, because a PMF contains cv=m cycles (each of period mn and hence`containing' mn v-tuples), and because there are clearly cv di�erent c-ary v-tuples,each v-tuple will actually occur exactly n times in the collection of cycles, once ineach of the possible position congruency classes (mod n). This also implies that allthe cycles are distinct.Remark 1.10. It should be clear that an (m; 1; c; v){PMF is precisely equivalentto an (m; c; v){PF. In addition, observe that a (1; n; c; v){PMF is simply a collectionof cv c-ary cycles of period n with the property that every c-ary v-tuple occurs at everypossible position in one of the cycles.The following necessary conditions for the existence of a Perfect Multi-factor aretrivial to establish.Lemma 1.11 ([7]). Suppose A is an (m;n; c; v){PMF. Then(i) mjcv, and(ii) v < mn (or m = 1 and v = n).It has been conjectured in [7] that the above necessary conditions are su�cient forthe existence of a Perfect Multi-Factor. The following result establishes the existenceconjecture whenever n � v (and in particular for the special case m = 1).Theorem 1.12 ([7]). Suppose n; c; v are positive integers (c � 2 and n � v).Then there exists a (m;n; c; v){PMF for every positive integer m satisfying mjcv.We next show how an established construction technique can be used to producePerfect Multi-Factors. A slightly di�erent formulation of the following method waspreviously given as Construction E in [8].Construction 1.13. Suppose c; d; �; �; � are positive integers where c � 2 andd � 2, and let A = fai : 0 � i < �gbe a set of � c-ary cycles of period �, andB = fbi : 0 � i < �gbe a set of � d-ary cycles also of period �. Now letC = fsij : 0 � i < �; 0 � j < �g



PERFECT FACTORS FROM CYCLIC CODES 5be the set of cd-ary cycles of period � de�ned bysij = ai + cbj:Theorem 1.14. Suppose c; d; �; �; �, A and B satisfy the conditions of Con-struction 1.13. Suppose also that, for some v � 1, A is an (m;n; c; v){PMF and Bis a (1;mn; d; v){PMF. If C is derived from A and B (with � = cv=m, � = dv and� = mn) using Construction 1.13, then C is an (m;n; cd; v){PMF.Proof. Suppose t is a (cd)-ary v-tuple. Let u = t mod c, and let w = (t � u)=c.Then u is a c-ary v-tuple and w is a d-ary v-tuple and we havet = u+ cw:Now suppose 0 � i < n; then we need to show that t occurs at a position congruentto i modulo n in some cycle of C. Now, since A is an (m;n; c; v){PMF, u occurs at aposition congruent to i modulo n in some cycle of A; say s occurs at position i + `nin cycle aj for some ` and j. In addition, since B is a (1;mn; d; v){PMF, t occurs atposition i+ `n in some cycle, say bk, of A0. It is then immediate to see that t occursat position i+ `n in sjk, and the result follows.Next observe that, by Theorem 1.12, a (1;mn; d; v){PMF exists whenever mn � v,and hence by combining Theorem 1.14 with Theorem 6.5 of [7], we have:Theorem 1.15. Suppose there exists an (m;n; c; v){PMF. Then, for every � � 1and every d � 1, there exists an (m;�n; cd; v){PMF, given that (�;m) = 1.1.2.4. Generalised Perfect Factors. We now de�ne yet another class of com-binatorial objects, the de�nition of which is a generalisation of the notion of PerfectFactor (as is the de�nition of PMF). We subsequently use these objects to help con-struct new Perfect Factors.Definition 1.16. Suppose m, n, c and v are positive integers satisfying mjcvand c � 2. An (m;n; c; v){Generalised Perfect Factor, or simply an (m;n; c; v){GPF,is a collection of cv=m c-ary cycles of period mn with the following property. Forevery c-ary v-tuple t, there exists an integer j in the range 0 � j < m such that forevery i (0 � i < n) t occurs at position j + im in one of these cycles.Note that, because a GPF contains exactly cv=m cycles (each `containing' mnv-tuples), and because there are clearly cv di�erent c-ary v-tuples, each v-tuple willactually occur exactly n times in the set of cycles, once in each position j + im(0 � i < n). This immediately implies that all the cycles are distinct.Remark 1.17. It should be clear that(i) an (m; 1; c; v){GPF is precisely equivalent to an (m; c; v){PF, and(ii) a (1; n; c; v){GPF is precisely equivalent to a (1; n; c; v){PMF.The following result is also straightforward to prove:Theorem 1.18 ([8]). Suppose A is an (m;n; c; v){GPF, where (m;n) = 1. ThenA is also an (m;n; c; v){PMF.The following necessary conditions for the existence of a Generalised Perfect Fac-tor are trivial to establish.Lemma 1.19 ([8]). Suppose A is an (m;n; c; v){GPF. Then(i) mjcv, and(ii) v < mn (or m = 1 and v = n).It is tempting at this point to conjecture that the necessary conditions speci�edin Lemma 1.19 for the existence of an (m;n; c; v){GPF are su�cient. However, as



6 C. J. MITCHELL AND K. G. PATERSONestablished in [8], this is not true. Nevertheless we do have the following (constructive)existence results for GPFs.Theorem 1.20 ([8], Theorems 19 and 21). Suppose there exists an (m;n; c; v){GPF. Then, for every � � 1 and every d � 1, there exists an (m;�n; cd; v){GPF.This result provides a useful analogue to Theorem 1.15.We also have the following result, which we use repeatedly below.Theorem 1.21 (Theorem 16 of [8]). Suppose m, n, c and v are positive integerssatisfying mjcv and c � 2, and A = fa0; a1; : : : ; at�1gis a set of c-ary cycles of least periods `0; `1; : : : ; `t�1 respectively, with the propertythat mj`ijmn for every i, 0 � i < t, and with the property that every c-ary v-tupleoccurs precisely once in the set of cycles. Then, for every i (0 � i < t) let wi bede�ned as ai concatenated with itself mn=`i times. Next letbij = Ejm(wi)for every j, (0 � j < `i=m). Finally letB = fbij : 0 � i < t; 0 � j < `i=mg:Then B is an (m;n; c; v){GPF.We next observe that Construction 1.13 can also be used to produce new GPFs:Theorem 1.22. Suppose c; d; �; �; �, A and B satisfy the conditions of Construc-tion 1.13. Suppose also that, for some v � 1, A is an (m1; n1; c; v){GPF and B is an(m2; n2; d; v){GPF, where m1n1 = m2n2 and (m1;m2) = 1 (and hence m2jn1). If Cis derived from A and B (with � = cv=m1, � = dv=m2 and � = m1n1 = m2n2) usingConstruction 1.13, then C is an (m1m2; n1=m2; cd; v){GPF.Proof. Suppose t is a (cd)-ary v-tuple. We need to exhibit an integer j with0 � j < m1m2 such that for every i (0 � i < n1=m2), t occurs at position j + im1m2in one of the cycles sij of C. Let u = t mod c, and let w = (t � u)=c. Then u is ac-ary v-tuple and w is a d-ary v-tuple and we havet = u+ cw:Now there exists an integer j1 with 0 � j1 < m1 such that for every i (0 � i < n1),u occurs at position j1 + im1 in a cycle of A. There also exists an integer j2 with0 � j2 < m2 such that for every i (0 � i < n2), w occurs at position j2 + im2 in acycle of B. Since (m1;m2) = 1, by the Chinese Remainder Theorem there is a uniquej with 0 � j < m1m2 that satis�es the pair of congruences:j � j1 (mod m1)j � j2 (mod m2):Suppose i with 0 � i < n1=m2 is �xed. It is certainly true that there is a cycleai 2 A and a cycle bj 2 B such that u appears in ai and w appears in bj at positionj + im1m2. The v-tuple t then appears at position j + im1m2 in the cycle sij. Itfollows that the set of cycles C forms an (m1m2; n1=m2; cd; v){GPF.Remark 1.23. Observe that, in the case m2 = n1 (and hence m1 = n2 and theconstructed GPF is actually a PF), by Theorem 1.18 the above result coincides withTheorem 23 of [8].



PERFECT FACTORS FROM CYCLIC CODES 71.3. Using PMFs and GPFs to construct Perfect Factors. We concludethese introductory remarks by showing how PMFs and GPFs can be used to constructPerfect Factors. We start with an existence result for Perfect Factors from [8] (The-orem 23). This result, which derives from a simple application of Construction 1.13,is central to the work in this paper.Theorem 1.24. Suppose there exists an (�; �; c; v){GPF and a (�; �; d; v){PMF.Then there exists a (��; cd; v){PF.Now, from Remark 1.17(i) and Theorem 1.20, it should be clear that if thereexists an (n; c; v){PF then we can construct an (n;m; c; v){GPF for every positiveinteger m. Combining this observation with Theorem 1.24 we obtain as an immediatecorollary the following result, �rst given as Theorem 5.2 of [7].Theorem 1.25. If there exists an (n; c; v){PF and an (m;n; d; v){PMF thenthere exists an (mn; cd; v){PF.Since, by Theorem 1.12, a (1; n; d; v){PMF exists for every n, d and v (n � v andd > 1), we immediately have:Corollary 1.26. If there exists an (n; c; v){PF then there exists an (n; cd; v){PFfor every d � 1.2. Sequence Sets from Cyclic Codes. In this section we will give construc-tions for GPFs and PMFs that are based on the theory of cyclic codes. We refer to[6, Chapter 7] for the necessary background information that we assume here.Throughout, we assume that n is an integer and p is a prime with n = pls,(p; s) = 1. We work with p-ary cycles and codes of length n. We de�ne a cycliccode of length n over Zp to be an ideal C in the ring Zp[X]=(Xn � 1). This ringis a principal ideal domain and so C has a generator g. We can associate with g apolynomial g(X) 2 Zp[X] with deg g(X) � n and g(X)jXn � 1. Let k = deg g(X).We can then writeC = fc(X)g(X) modXn � 1 : c(X) 2 Zp[X]; deg c(X) < n� kg:and regard C as a set of polynomials of degree at most n � 1. The code C is alinear code with dimension n � k. We can associate with each polynomial a(X) =a0 + a1X + � � �+ an�1Xn�1 the p-ary n-tuple a = [a0; a1; : : : ; an�1]. We call the setof tuples obtained from the elements of C in this way the codewords of C. We canregard the codewords as a set of cycles. Then it is easy to see that the action of Eon a cycle is equivalent to that of multiplication of the corresponding polynomial byXn�1 modXn�1. Notice also that the weight of a cycle a is equal to a(1), the valueof a(X) evaluated at 1.We need to examine the tuples appearing in the cycles obtained from C. Becauseof the linearity of C, there is a (n� k)� n matrix G (called the generator matrix ofC) such that every codeword of C is a linear combination of the rows of G. We canassume that G is of the form [In�kjA] where In�k denotes the (n�k)�(n�k) identitymatrix and A is an (n � k) � k matrix. Thus if the n � k values a0; a1; : : : ; an�k�1are speci�ed, then there is a unique n-tuple a = [a0; a1; : : : ; an�k�1; an�k; : : : ; an�1]such that a 2 C. This shows that every p-ary (n � k)-tuple occurs exactly once inposition zero of a codeword of C. Since the set C is closed under cyclic shifting, thesame is true of any position i with 0 � i < n. This immediately shows that the set ofcycles obtained from any cyclic code C form a (1; n; p; n� k){PMF.2.1. Some Preliminaries. We will use cosets of cyclic codes to obtain GPFsand PMFs. The coset of C de�ned by polynomial b(X) is de�ned to be the setC + b(X) (addition modulo Xn � 1). We have the following lemmas:



8 C. J. MITCHELL AND K. G. PATERSONLemma 2.1. Let C be a length n cyclic code with generator polynomial g(X).Then the coset C + b(X) is closed under cyclic shifting by all multiples of t positionsif and only if a(X)g(X) � b(X)(Xt � 1) (mod Xn � 1) for some a(X).Proof. The elements of C + b(X) are the polynomials c(x)g(X) + b(X), wheredeg c(X) < n � k, and a set S of polynomials is closed under cyclic shifting by allmultiples of t positions if and only if XtS � S (mod Xn � 1). Now Xt(c(X)g(X) +b(X)) = Xtc(X)g(X)+Xtb(X) lies in C+ b(X) if and only if Xtb(X) � a(X)g(X)+b(X) (mod Xn� 1) for some polynomial a(X), which in turn is equivalent to writingb(X)(Xt � 1) � a(X)g(X) (mod Xn � 1).Lemma 2.2. Suppose that r � l and that for every t with tjn and (t; pl)jpr�1, wehave that the polynomial �g(X); Xn � 1Xt � 1�does not divide b(X). Then every cycle derived from the coset C + b(X) has leastperiod divisible by pr.Proof. Suppose that the condition in the statement of the lemma holds. Thenfor any t with tjn and (t; pl)jpr�1, we have that (g(X); Xn�1Xt�1 ) does not divide thepolynomial c(X)g(X) + b(X) for any c(X). Hence, for every s(X) 2 C + b(X),((Xt � 1)g(X); Xn � 1) does not divide s(X)(Xt � 1). Hences(X)(Xt � 1) 6= 0 modXn � 1; for every s(X) 2 C + b(X):It follows from this that no cycle from C + b(X) has least period divisible by t. Sinceevery such cycle has least period dividing n = pls, we deduce that pr must divide theperiod of every cycle from C + b(X).Lemma 2.3. Suppose that, for every t with tjn (t 6= n), the polynomial�g(X); Xn � 1Xt � 1�does not divide b(X). Then every cycle derived from the coset C + b(X) has leastperiod n.Proof. Using exactly the same argument as in the proof of Lemma 2.2, no cyclefrom C + b(X) has least period divisible by t for any tjn (t 6= n). But every cycle hasleast period dividing n and the lemma follows.2.2. A Cyclic Code Construction for GPFs. We now have a constructionfor GPFs:Construction 2.4. Let n be an integer and p a prime with n = pls, (p; s) = 1.Suppose 1 � r � l. Let g(X) be a polynomial of degree k in Zp[X] with g(X)jXn � 1and suppose X�1 divides g(X) exactly � times, where 1 � � � pl�pr�1. Let C denotethe length n p-ary code with generator polynomial g(X). Let b(X) = g(X)=(X � 1)and de�ne S = C + b(X). We regard S as a set of p-ary cycles of period n. De�nean equivalence relation � on S by writing x � y if and only if x = Et(y) for some t.Let R be a set of �-class representatives. Finally, let A = fT (a) : a 2 Rg.Theorem 2.5. Let A be constructed as in Construction 2.4. Then A is a collec-tion of cycles such that� every p-ary (n � k)-tuple occurs exactly once in a cycle of A,� every cycle of A has a least period t satisfying prjtjn.



PERFECT FACTORS FROM CYCLIC CODES 9The result of applying Theorem 1.21 to A is a (pr; n=pr; p; n� k){GPF in which eachcycle has weight equal to b(1).Proof. De�ne g(X) and the sets S and A as in Construction 2.4. Notice thateach cycle in S has weight equal to c(1)g(1) + b(1) for some polynomial c(X). Butg(1) = 0 (because X � 1jg(X)), so S has constant weight equal to b(1).Suppose tjn and (t; pl)jpr�1. Then in Zp[X], Xt� 1 is divisible by X � 1 at mostpr�1 times, while Xn � 1 is divisible by X � 1 exactly pl times. It follows that thepolynomial (g(X); Xn�1Xt�1 ) is divisible byX�1 exactly � times. But b(X) = g(X)=X�1is divisible by X�1 exactly ��1 times, so (g(X); Xn�1Xt�1 ) does not divide b(X). FromLemma 2.2, each cycle in S has least period divisible by pr. Therefore the cycles inA all have periods that are divisible by pr.We also know that every (n� k)-tuple appears exactly once in position 0 of somecycle derived from the code C, and so the same is true of S = C + b(X). Moreover,because of the choice for b(X), by Lemma 2.1 S is closed under cyclic shifting. Itfollows that the (n�k)-tuples occurring in a cycle a of R are exactly the (n�k)-tuplesthat occur in position 0 of the cycles in the �-class containing a. Thus the set A,derived from R by truncation, has the property that every p-ary (n� k)-tuple occursexactly once as a subsequence of a cycle in A.Theorem 1.21 guarantees that A can be used to produce a (pr; n=pr; p; n � k){GPF. Each cycle of this GPF is obtained from a cycle of A by concatenation andshifting, and so in fact is a cycle of S. Since the cycles of S all have weight b(1), sodo the cycles of the GPF.The parameters of the GPFs that can be obtained from Construction 2.4 dependheavily on the degrees of the factors of Xn � 1 in Zp[X] (since we require a degreek polynomial g(X) with X � 1jg(X)jXn � 1). The complete factorisation of Xn � 1in Zp[X] is known [5, Theorems 2.45 and 2.47]: if n = pls with (s; p) = 1, thenXn � 1 = (Xs � 1)pl and Xs � 1 =Ydjs Cd(X)where Cd(X) of degree �(d) is the d-th cyclotomic polynomial over Zp[X]. The poly-nomial Cd(X) has �(d)=e irreducible factors of degree e, where e is the least positiveinteger such that pe � 1 mod d.Example 2.6. We aim to construct a (2; 3; 2; 3){GPF and a (3; 2; 3; 3){GPF.By Theorem 1.22, if these are combined using Construction 1.13, then we obtain a(6; 6; 3){PF.We take n = 6, p = 2 and �nd that X6 � 1 = (X + 1)2(X2 +X + 1)2 in Z2[X].We take r = 1 and g(X) = (X + 1)(X2 + X + 1) in Construction 2.4 to obtain a(2; 3; 2; 3){GPF in which each cycle has weight 1.Similarly, X6 � 1 = (X � 1)3(X + 1)3 in Z3[X]. We take r = 1 and g(X) =(X � 1)(X + 1)2 in Construction 2.4 to obtain a (3; 2; 3; 3){GPF in which each cyclehas weight 1.Combining these two GPFs using Construction 1.13, we obtain a (6; 6; 3){PF.We now have the following theorem, whose proof gives a constructive method forobtaining Perfect Factors having prime window size v. This theorem will be usefulwhen we come to analyze parameter sets for small v in x7.Theorem 2.7. Suppose that p is a prime with pjc and p divides n exactly once.Suppose further that the parameters (n; c; p) satisfy the necessary conditions of Lemma



10 C. J. MITCHELL AND K. G. PATERSON1.3. Finally suppose that for some prime q with qj(n=p), we have p � 1 (mod q). Thenthere exists an (n; c; p){PF.Proof. Let n, c and p be as above. We aim to use Construction 2.4 to obtain a(p; n=p; p; p){GPF.Consider the factorisation of Xn�1 in Zp[X]. Because q satis�es p � 1 (mod q),the q-th cyclotomic polynomial Cq(X) over Zp[X] has q � 1 � 1 linear factors. LetX��, � 6= 1, be one of these. Since q � 2 divides n=p, C1(X)Cq(X) divides Xn=p�1.We deduce that Xn � 1 = (X � 1)p(X � �)ph(X) for some polynomial h(X) where(X � 1; h(X)) = 1. We take g(X) = (Xn � 1)(X � 1)p�1(X � �)so that X � 1 divides g(X) exactly once and g(X) has degree equal to n� p. Taking` = r = 1 in Construction 2.4, we can obtain a GPF with parameters (p; n=p; p; p).Now because the parameters (n; c; p) satisfy the necessary conditions of Lemma1.3 and p divides n exactly once, we have (n=p)j(c=p)p. We can use Theorem 1.12 todeduce that there exists an (n=p; p; c=p; p){PMF. Combining this PMF and the GPFconstructed above using Theorem 1.24, we obtain an (n; c; v){PF.2.3. A Cyclic Code Construction for PMFs. We now have a correspondingcode construction for PMFs:Construction 2.8. Let n, p and r be non-negative integers where p is prime,n > 0 and prjn. Let b(X); g(X) 2 Zp[X] (g(X)jXn � 1 and g(X) of degree k), andsuppose:(i) g(X)jb(X)(Xn=pr � 1), and(ii) (g(X); Xn�1Xt�1 ) does not divide b(X) for any tjn (t 6= n).Let C denote the length n p-ary code with generator polynomial g(X), and de�neS = C + b(X). We regard S as a set of p-ary cycles of period n. Finally de�ne anequivalence relation � on S by writing x � y if and only if x = Eun=pr (y) for someinteger u, and let A be a set of �-class representatives.Theorem 2.9. Let A be constructed as in Construction 2.8. Then A is a(pr; n=pr; p; n� k){PMF.Proof. De�ne g(X) and the sets S and A as in Construction 2.8.By Lemma 2.3, condition (ii) of the construction immediately implies that eachcycle in A has least period n.We also know that, for every i (1 � i < n), every (n � k)-tuple appears exactlyonce in position i of some cycle derived from the code C, and so the same is true ofS = C + b(X). Moreover, because of the choice for b(X), Lemma 2.1 implies thatS is closed under cyclic shifting by multiples of n=pr positions. Thus, for every i(1 � i < n=pr) every (n � k)-tuple appears exactly once at a position congruent to imodulo n=pr in some cycle from the set A.The result now follows.As previously, the parameters of the PMFs that Construction 2.8 allows us toobtain depend heavily on the degrees of the factors of Xn � 1 in Zp[X] (since werequire a degree k polynomial g(X) with g(X)jXn � 1).Example 2.10. We aim to construct a (2; 3; 2; 4){PMF and a (3; 2; 3; 4){GPF.By Theorem 1.24, these can be combined to obtain a (6; 6; 4){PF.Using Construction 2.8, we take r = 1, n = 6, p = 2 and �nd that X6 � 1 =(X + 1)2(X2 + X + 1)2 in Z2[X]. We take b(X) = 1 and g(X) = (X2 + X + 1) toobtain a (2; 3; 2; 4){PMF.



PERFECT FACTORS FROM CYCLIC CODES 11Now, X6 � 1 = (X � 1)3(X + 1)3 in Z3[X]. We take r = 1 and g(X) = (X �1)(X + 1) in Construction 2.4 to obtain a (3; 2; 3; 4){GPF.Applying Theorem 1.24, we obtain a (6; 6; 4){PF.3. An Interleaving Construction for Perfect Multi-Factors. We now de-scribe a method for constructing Perfect Multi-Factors by interleaving the cycles ofa (smaller) Perfect Factor. We subsequently use this construction method to helpconstruct Perfect Factors with `new' parameters.3.1. The Construction Method. Construction 3.1. Suppose c; n; t and vare positive integers where c � 2 and t � 2, and let A = fai : 0 � i < cv=ng be an(n; c; v){PF.Now de�ne a set B containing ctv=n c-ary cycles of period nt byB = fbij : i = (i0; i1; : : : ; it�1); (0 � is < cv=n); j = (j0; j1; : : : ; jt�2); (0 � js < n)gwhere bij = I(ai0 ; Ej0ai1 ; : : : ; Ejt�2ait�1 ):We then have the following result.Theorem 3.2. Suppose c; n; t; v and A satisfy the conditions of Construction 3.1.If B is constructed from A using Construction 3.1, then B is an (n; t; c; tv){PMF.Proof. Suppose y is any c-ary tv-tuple, and choose any r with 0 � r < t. Weneed to show that y occurs at a position congruent to r modulo t in a cycle of B.First let y = I(x0;x1; : : : ;xt�1)where xu is a c-ary v-tuple for every u. Now, y occurs at position r + st in bij (forsome s; i and j) if and only ifxu occurs at position8<: ss + 1s + 1 in8<: Eju+r�1aiu+r if 0 � u < t � rai0 if u = t� rEju+r�1�taiu+r�t if t� r + 1 � u < tNow, since A is an (n; c; v){PF, there exists a unique pair of values (s; i0) for whichxt�r occurs at position s + 1 in ai0 . Given this value of s, then there exist uniquepairs of values: (ju+r�1; iu+r) for whichxu occurs at position s in Eju+r�1aiu+r ; (0 � u < t� r);and also there exist unique pairs of values: (ju+r�1�t; iu+r�t) for whichxu occurs at position s + 1 in Eju+r�1�taiu+r�t ; (t � r + 1 � u < t):Thus y occurs at a position congruent to r modulo t in a unique cycle of B, andhence B is a (n; t; c; tv){PMF.Example 3.3. Let A be the following set of �ve 5-ary cycles of period 5, whichconstitute a (5; 5; 2){PF.a0 = [0 0 1 3 1 ]; a1 = [1 1 2 4 2 ]; a2 = [2 2 3 0 3 ]; a3 = [3 3 4 1 4 ]; a4 = [4 4 0 2 0 ]:



12 C. J. MITCHELL AND K. G. PATERSONThen, by applying Construction 3.1 with t = 2 we obtain the following (5; 2; 5; 4){PMF (a set of 125 cycles of period 10 in which every 5-ary 4-tuple occurs at positionscongruent to 0 and 1 modulo 2).b(00)(0) = [ 0 0 0 0 1 1 3 3 1 1 ]; b(00)(1) = [ 0 0 0 1 1 3 3 1 1 0 ]; b(00)(2) = [ 0 1 0 3 1 1 3 0 1 0 ];b(00)(3) = [ 0 3 0 1 1 0 3 0 1 1 ]; b(00)(4) = [ 0 1 0 0 1 0 3 1 1 3 ];b(01)(0) = [ 0 1 0 1 1 2 3 4 1 2 ]; b(01)(1) = [ 0 1 0 2 1 4 3 2 1 1 ]; b(01)(2) = [ 0 2 0 4 1 2 3 1 1 1 ];b(01)(3) = [ 0 4 0 2 1 1 3 1 1 2 ]; b(01)(4) = [ 0 2 0 1 1 1 3 2 1 4 ];b(02)(0) = [ 0 2 0 2 1 3 3 0 1 3 ]; b(02)(1) = [ 0 2 0 3 1 0 3 3 1 2 ]; b(02)(2) = [ 0 3 0 0 1 3 3 2 1 2 ];b(02)(3) = [ 0 0 0 3 1 2 3 2 1 3 ]; b(02)(4) = [ 0 3 0 2 1 2 3 3 1 0 ];b(03)(0) = [ 0 3 0 3 1 4 3 1 1 4 ]; b(03)(1) = [ 0 3 0 4 1 1 3 4 1 3 ]; b(03)(2) = [ 0 4 0 1 1 4 3 3 1 3 ];b(03)(3) = [ 0 1 0 4 1 3 3 3 1 4 ]; b(03)(4) = [ 0 4 0 3 1 3 3 4 1 1 ];b(04)(0) = [ 0 4 0 4 1 0 3 2 1 0 ]; b(04)(1) = [ 0 4 0 0 1 2 3 0 1 4 ]; b(04)(2) = [ 0 0 0 2 1 0 3 4 1 4 ];b(04)(3) = [ 0 2 0 0 1 4 3 4 1 0 ]; b(04)(4) = [ 0 0 0 4 1 4 3 0 1 2 ];b(10)(0) = [ 1 0 1 0 2 1 4 3 2 1 ]; b(10)(1) = [ 1 0 1 1 2 3 4 1 2 0 ]; b(10)(2) = [ 1 1 1 3 2 1 4 0 2 0 ];b(10)(3) = [ 1 3 1 1 2 0 4 0 2 1 ]; b(10)(4) = [ 1 1 1 0 2 0 4 1 2 3 ];b(11)(0) = [ 1 1 1 1 2 2 4 4 2 2 ]; b(11)(1) = [ 1 1 1 2 2 4 4 2 2 1 ]; b(11)(2) = [ 1 2 1 4 2 2 4 1 2 1 ];b(11)(3) = [ 1 4 1 2 2 1 4 1 2 2 ]; b(11)(4) = [ 1 2 1 1 2 1 4 2 2 4 ];b(12)(0) = [ 1 2 1 2 2 3 4 0 2 3 ]; b(12)(1) = [ 1 2 1 3 2 0 4 3 2 2 ]; b(12)(2) = [ 1 3 1 0 2 3 4 2 2 2 ];b(12)(3) = [ 1 0 1 3 2 2 4 2 2 3 ]; b(12)(4) = [ 1 3 1 2 2 2 4 3 2 0 ];b(13)(0) = [ 1 3 1 3 2 4 4 1 2 4 ]; b(13)(1) = [ 1 3 1 4 2 1 4 4 2 3 ]; b(13)(2) = [ 1 4 1 1 2 4 4 3 2 3 ];b(13)(3) = [ 1 1 1 4 2 3 4 3 2 4 ]; b(13)(4) = [ 1 4 1 3 2 3 4 4 2 1 ];b(14)(0) = [ 1 4 1 4 2 0 4 2 2 0 ]; b(14)(1) = [ 1 4 1 0 2 2 4 0 2 4 ]; b(14)(2) = [ 1 0 1 2 2 0 4 4 2 4 ];b(14)(3) = [ 1 2 1 0 2 4 4 4 2 0 ]; b(14)(4) = [ 1 0 1 4 2 4 4 0 2 2 ];b(20)(0) = [ 2 0 2 0 3 1 0 3 3 1 ]; b(20)(1) = [ 2 0 2 1 3 3 0 1 3 0 ]; b(20)(2) = [ 2 1 2 3 3 1 0 0 3 0 ];b(20)(3) = [ 2 3 2 1 3 0 0 0 3 1 ]; b(20)(4) = [ 2 1 2 0 3 0 0 1 3 3 ];b(21)(0) = [ 2 1 2 1 3 2 0 4 3 2 ]; b(21)(1) = [ 2 1 2 2 3 4 0 2 3 1 ]; b(21)(2) = [ 2 2 2 4 3 2 0 1 3 1 ];b(21)(3) = [ 2 4 2 2 3 1 0 1 3 2 ]; b(21)(4) = [ 2 2 2 1 3 1 0 2 3 4 ];b(22)(0) = [ 2 2 2 2 3 3 0 0 3 3 ]; b(22)(1) = [ 2 2 2 3 3 0 0 3 3 2 ]; b(22)(2) = [ 2 3 2 0 3 3 0 2 3 2 ];b(22)(3) = [ 2 0 2 3 3 2 0 2 3 3 ]; b(22)(4) = [ 2 3 2 2 3 2 0 3 3 0 ];b(23)(0) = [ 2 3 2 3 3 4 0 1 3 4 ]; b(23)(1) = [ 2 3 2 4 3 1 0 4 3 3 ]; b(23)(2) = [ 2 4 2 1 3 4 0 3 3 3 ];b(23)(3) = [ 2 1 2 4 3 3 0 3 3 4 ]; b(23)(4) = [ 2 4 2 3 3 3 0 4 3 1 ];b(24)(0) = [ 2 4 2 4 3 0 0 2 3 0 ]; b(24)(1) = [ 2 4 2 0 3 2 0 0 3 4 ]; b(24)(2) = [ 2 0 2 2 3 0 0 4 3 4 ];b(24)(3) = [ 2 2 2 0 3 4 0 4 3 0 ]; b(24)(4) = [ 2 0 2 4 3 4 0 0 3 2 ];b(30)(0) = [ 3 0 3 0 4 1 1 3 4 1 ]; b(30)(1) = [ 3 0 3 1 4 3 1 1 4 0 ]; b(30)(2) = [ 3 1 3 3 4 1 1 0 4 0 ];b(30)(3) = [ 3 3 3 1 4 0 1 0 4 1 ]; b(30)(4) = [ 3 1 3 0 4 0 1 1 4 3 ];b(31)(0) = [ 3 1 3 1 4 2 1 4 4 2 ]; b(31)(1) = [ 3 1 3 2 4 4 1 2 4 1 ]; b(31)(2) = [ 3 2 3 4 4 2 1 1 4 1 ];b(31)(3) = [ 3 4 3 2 4 1 1 1 4 2 ]; b(31)(4) = [ 3 2 3 1 4 1 1 2 4 4 ];b(32)(0) = [ 3 2 3 2 4 3 1 0 4 3 ]; b(32)(1) = [ 3 2 3 3 4 0 1 3 4 2 ]; b(32)(2) = [ 3 3 3 0 4 3 1 2 4 2 ];b(32)(3) = [ 3 0 3 3 4 2 1 2 4 3 ]; b(32)(4) = [ 3 3 3 2 4 2 1 3 4 0 ];b(33)(0) = [ 3 3 3 3 4 4 1 1 4 4 ]; b(33)(1) = [ 3 3 3 4 4 1 1 4 4 3 ]; b(33)(2) = [ 3 4 3 1 4 4 1 3 4 3 ];b(33)(3) = [ 3 1 3 4 4 3 1 3 4 4 ]; b(33)(4) = [ 3 4 3 3 4 3 1 4 4 1 ];b(34)(0) = [ 3 4 3 4 4 0 1 2 4 0 ]; b(34)(1) = [ 3 4 3 0 4 2 1 0 4 4 ]; b(34)(2) = [ 3 0 3 2 4 0 1 4 4 4 ];b(34)(3) = [ 3 2 3 0 4 4 1 4 4 0 ]; b(34)(4) = [ 3 0 3 4 4 4 1 0 4 2 ];b(40)(0) = [ 4 0 4 0 0 1 2 3 0 1 ]; b(40)(1) = [ 4 0 4 1 0 3 2 1 0 0 ]; b(40)(2) = [ 4 1 4 3 0 1 2 0 0 0 ];b(40)(3) = [ 4 3 4 1 0 0 2 0 0 1 ]; b(40)(4) = [ 4 1 4 0 0 0 2 1 0 3 ];b(41)(0) = [ 4 1 4 1 0 2 2 4 0 2 ]; b(41)(1) = [ 4 1 4 2 0 4 2 2 0 1 ]; b(41)(2) = [ 4 2 4 4 0 2 2 1 0 1 ];b(41)(3) = [ 4 4 4 2 0 1 2 1 0 2 ]; b(41)(4) = [ 4 2 4 1 0 1 2 2 0 4 ];b(42)(0) = [ 4 2 4 2 0 3 2 0 0 3 ]; b(42)(1) = [ 4 2 4 3 0 0 2 3 0 2 ]; b(42)(2) = [ 4 3 4 0 0 3 2 2 0 2 ];b(42)(3) = [ 4 0 4 3 0 2 2 2 0 3 ]; b(42)(4) = [ 4 3 4 2 0 2 2 3 0 0 ];b(43)(0) = [ 4 3 4 3 0 4 2 1 0 4 ]; b(43)(1) = [ 4 3 4 4 0 1 2 4 0 3 ]; b(43)(2) = [ 4 4 4 1 0 4 2 3 0 3 ];b(43)(3) = [ 4 1 4 4 0 3 2 3 0 4 ]; b(43)(4) = [ 4 4 4 3 0 3 2 4 0 1 ];b(44)(0) = [ 4 4 4 4 0 0 2 2 0 0 ]; b(44)(1) = [ 4 4 4 0 0 2 2 0 0 4 ]; b(44)(2) = [ 4 0 4 2 0 0 2 4 0 4 ];b(44)(3) = [ 4 2 4 0 0 4 2 4 0 0 ]; b(44)(4) = [ 4 0 4 4 0 4 2 0 0 2 ];4. An Interleaving Construction for GPFs. We now describe a methodwhich enables us to construct many new GPFs; it is similar to Construction 3.1, andis actually a generalisation of Construction 3.1 of [9].4.1. The Construction Method. Construction 4.1. Suppose c; n; t; v arepositive integers where c � 2. Suppose also thatA = fa0; a1; : : : ; acv=n�1gis an (n; c; v){PF. Consider the set S of all n-ary cycles x = [x0; x1; : : : ; xt�1] withthe property that t�1Xi=0 xi � 1 (mod n):



PERFECT FACTORS FROM CYCLIC CODES 13If x;y 2 S then write x � y if and only if x = Ei(y) for some i. It is simple to verifythat � is an equivalence relation on S which partitions S into q classes say. Now letX = fx0;x1; : : : ;xq�1gbe a set of �-class representatives. Next letAt = f(ai0 ; ai1; : : : ; ait�1) : ai0 ; ai1 ; : : : ; ait�1 2 Agbe the set of all t-tuples of elements of A. Now de�ne B0 to be the collection of allcycles of the formI(E0ai0 ; Ex0ai1 ; Ex0+x1ai2 ; : : : ; Ex0+x1+���+xt�2ait�1 );where (x0; x1; : : : ; xt�1) 2 X and (ai0 ; ai1 ; : : : ; ait�1) 2 At. Hence jB0j = qctv=nt.Finally put B = fT (z) : z 2 B0g. Note that whilst B0 may contain duplicatecycles, B (de�ned as a set) will not, i.e. duplicates are discarded.We can now state and prove the following result.Theorem 4.2. Suppose c; n; t; v and A satisfy the conditions of Construction 4.1.If B is constructed from A using Construction 4.1 then B is a collection of cycles withthe property that every c-ary (tv)-tuple occurs exactly once in a cycle of B. Everycycle b 2 B has least period `bn, for some positive integer `b satisfying `bjt and( t̀b ; n) = 1.Proof. Suppose y is any c-ary (tv)-tuple. We �rst show that y occurs in one ofthe cycles of B0. Suppose y = I(z0; z1; : : : ; zt�1)where z0; z1; : : : ; zt�1 are c-ary t-tuples. Now suppose that zi occurs in cycle a`i atposition ki, for every i satisfying 0 � i < t. In addition we de�ne a further n-aryt-tuple x = (x0; x1; : : : ; xt�1) where xi � ki+1 � ki (mod n), for every i satisfying0 � i < t� 1, and xt�1 � k0 � kt�1 + 1 (mod n). First observe that x 2 S, sincet�1Xi=0 xi � t�2Xi=0(ki+1 � ki) + (k0 � kt�1 + 1) � 1 (mod n):Hence there exists some cyclic shift of x, sayEu(x) = (xu; xu+1; : : : ; xt�1; x0; : : : ; xu�1);which is a member of X. Hence if we de�ne the n-ary t-tuple (v0; v1; : : : ; vt�1) byvi = � 0 if i = 0Pi+u�1j=u xj mod n (subscripts modulo t) if 0 < i � t� 1then the following cycle is a member of B0:w = I(Ev0a`u ; Ev1a`u+1 ; : : : ; Evt�u�1a`t�1 ; Evt�ua`0 ; : : : ; Evt�1a`u�1):Now zu+i occurs in Evi(a`u+i) at position ku+i� vi, (0 � i < t� u), and zi occurs inEvi+t�u(a`i) at position ki � vt�u+i, (0 � i � u � 1), where positions are calculatedmodulo n. By de�nition of x we also havevi =8<: 0 if i = 0ku+i � ku mod n if 0 < i < t � uku�t+i � ku + 1 mod n if t� u � i � t� 1



14 C. J. MITCHELL AND K. G. PATERSONThus zu+i occurs in Evi(a`u+i) at position ku, (0 � i < t � u), and zi occurs inEvi+t�u(a`i) at position ku + 1, (0 � i � u � 1). Hence y occurs in w at positionkut � u.Now since a (tv)-tuple y occurs in a cycle of B0, it follows (from the way in whichB was derived from B0) that y must occur in a cycle of B. Next suppose that yoccurs at two di�erent points in the cycles of B0. Now, because A is a PF, y canonly arise from one (t � 1)-tuple of `relative shifts' and one t-tuple from At. Hencey can only arise twice if the same (t � 1)-tuple of relative shifts occurs twice in thesame element of X (the same (t � 1)-tuple of relative shifts cannot arise in di�erentelements of X since X contains a unique element from each equivalence class under� and this class is uniquely determined by a (t� 1)-tuple of relative shifts). That is,the same (tv)-tuple can only occur multiple times in two ways:� within the same cycle of B0, or� in two distinct cycles of B0 generated by the same set of relative shifts x andby two di�erent cyclic shifts of the same t-tuple of elements of A.In both cases this can only happen when the t-tuple of relative shifts used to derivethe cycle(s) (x say) satis�es x = Eix for some i (0 < i < t). The second case is rathereasier to deal with, since in this case the resulting cycles of B0 will be identical to oneanother (except for a cyclic shift). Hence the duplication will be removed when B isderived from B0. We therefore need only consider the �rst case. If the same (tv)-tupleoccurs twice within the same cycle b of B0, say at positions i and j, then we musthave Eib = Ejb, and hence the (tv)-tuple will not be repeated within T (b). Henceall the (tv)-tuples in the cycles of B are distinct.We next consider the possible periods of the cycles in B. Suppose b = Eib forsome i (0 < i � nt). Note that we must have ijnt. Suppose also that i0 = i mod t, andhence if x 2 X is used to produce b, then x = Ei0x and so i0jt. Now, by de�nition ofS, if x = [x0; x1; : : : ; xt�1] then Pt�1j=0 xj � 1 mod n, and hence, since x = Ei0(x), wehave � ti0 � i0�1Xj=0 xj � 1 (mod n):Note that this implies that (t=i0; n) = 1 and also that (Pi0�1j=0 xj; n) = 1.Now, since i0jt and i � i0 (mod t), it follows that i0ji, say i = �i0. Hence, sinceb = Eib, we have � i0�1Xj=0 xj � 0 (mod n)(this follows since the total relative shift at a displacement of i in b must be zero).But we have already observed that (Pi0�1j=0 xj; n) = 1, and hence we must have nj�.Hence ni0ji and (t=i0; n) = 1. Since we have already observed that ijnt, the desiredresult on the periods of cycles in B follows.When we combine the above result with Theorem 1.21, we immediately have:Corollary 4.3. If an (n; c; v){PF exists, then there exists a (n; t; c; tv){GPFfor every positive integer t.Remark 4.4. In fact the cycles of the GPF in this corollary can be derived directlyfrom the cycles in the set B0 of Construction 4.1 merely by discarding duplicate cyclesfrom the set (that is, without truncating cycles as in the derivation of B from B0).



PERFECT FACTORS FROM CYCLIC CODES 15This means that each cycle in the GPF is obtained by t-fold interleaving of the cyclesof the (n; c; v){PF.Remark 4.5. It is straightforward to see that njtn�1 if and only if (t=`; n) 6= 1for every factor ` of t (except for ` = t). Hence if njtn�1, then Construction 4.1yields a set B of cycles of period exactly nt (in fact B = B0), and hence B is an(nt; c; tv){PF. This corresponds to Construction 3.1 of [9].4.2. Examples. Example 4.6. Let A be the (5; 5; 1){PF consisting of the singlecycle [01234]. Then, to apply Construction 4.1 to this cycle with t = 3, we �rst needto de�ne X = f[001]; [024]; [033]; [042]; [114]; [123]; [132]; [222]; [344]g:Using this choice for X we then obtain the following set B of nine cycles (of periods15 and 5) in which every 5-ary 3-tuple occurs exactly once.[0 0 0 1 1 1 2 2 2 3 3 3 4 4 4]; [0 0 2 1 1 3 2 2 4 3 3 0 4 4 1]; [0 0 3 1 1 4 2 2 0 3 3 1 4 4 2];[0 0 4 1 1 0 2 2 1 3 3 2 4 4 3]; [0 1 2 1 2 3 2 3 4 3 4 0 4 0 1]; [0 1 3 1 2 4 2 3 0 3 4 1 4 0 2];[0 1 4 1 2 0 2 3 1 3 4 2 4 0 3]; [0 2 4 1 3]; [0 3 2 1 4 3 2 0 4 3 1 0 4 2 1]:Using Theorem 1.21, the set B can be used to produce a (5; 3; 5; 3){GPF.Example 4.7. Let A be the following set of �ve 5-ary cycles of period 5, whichconstitute a (5; 5; 2){PF.a0 = [0 0 1 3 1 ]; a1 = [1 1 2 4 2 ]; a2 = [2 2 3 0 3 ]; a3 = [3 3 4 1 4 ]; a4 = [4 4 0 2 0 ]:Put t = 2 and X = f[33]; [01]; [42]g:In the table below, we give the set of 65 cycles resulting from applying Construction 4.1to A with t = 2. In each row we give the three cycles obtained by applying the three`shift tuples' of X to a pair of interleaved cycles from A, with indices as marked atthe start of the row. Note that the 10 duplicate cycles (which do not count as part ofthe 65 cycles) are preceded with an asterisk, and arise when the representative fromX has cyclic symmetry. Five of the cycles have period 5 and sixty have period 10,and hence we can use these cycles to produce a (5; 2; 5; 4){GPF.



16 C. J. MITCHELL AND K. G. PATERSON[33] [01] [42]00 [03011] [0000113311] [0100103113]01 [0402113112]; [0101123412]; [0201113214];02 [0003123213]; [0202133013]; [0302123310];03 [0104133314]; [0303143114]; [0403133411];04 [0200143410]; [0404103210]; [0004143012];10 �[1311204021]; [1010214321]; [1110204123];11 [14122]; [1111224022]; [1211214224];12 [1013224223]; [1212234023]; [1312224320];13 [1114234324]; [1313244124]; [1413234421];14 [1210244420]; [1414204220]; [1014244022];20 �[2321300031]; [2020310331]; [2120300133];21 �[2422310132]; [2121320032]; [2221310230];22 [20233]; [2222330033]; [2322320330];23 [2124330334]; [2323340134]; [2423330431];24 [2220340430]; [2424300230]; [2024340032];30 �[3331401041]; [3030411341]; [3130401143];31 �[3432411142]; [3131421442]; [3231411244];32 �[3033421243]; [3232431043]; [3332421340];33 [31344]; [3333441144]; [3433431441];34 [3230441440]; [3434401240]; [3034441042];40 �[4341002001]; [4040012301]; [4140002103];41 �[4442012102]; [4141022402]; [4241012204];42 �[4043022203]; [4242032003]; [4342022300];43 �[4144032304]; [4343042104]; [4443032401];44 [42400]; [4444002200]; [4044042002]:5. The Lempel Homomorphism and the Construction of PMFs andGPFs. The Lempel homomorphism [4] (and its generalisation to arbitrary �nite�elds), has been very widely applied in the construction of de Bruijn sequences [4],Perfect Factors [1, 12] and Perfect Maps [13]. We now briey show how it can beapplied to the construction of PMFs and GPFs over alphabets Zc.5.1. The Lempel Homomorphism. We �rst de�ne a version of the Lempelhomomorphism on c-ary cycles, where the elements of the c-ary alphabet are takenas the integers modulo c.Definition 5.1. We de�ne the Lempel homomorphism D acting on c-ary cyclesto be the operator E� 1 (we will usually write E� 1 for D). Thus if c; n are positiveintegers (c > 1), and a = [a0; a1; : : : ; an�1] is a c-ary cycle of period n, then Da isthe following c-ary cycle of period n:[a1 � a0; a2 � a1; : : : ; an�1 � an�2; a0 � an�1];where the arithmetic is computed modulo c.Definition 5.2. Suppose c; n are positive integers (c > 1), and leta = [a0; a1; : : : ; an�1]



PERFECT FACTORS FROM CYCLIC CODES 17be a c-ary cycle of period n and weight w. Then we de�ne the pre-image of a underD, denoted D�1a or (E�1)�1a, to be the following set of (w; c) c-ary cycles of periodnc=(w; c):f[s; s+ a0; s+ a0 + a1; : : : ; s+ n�2Xi=0 ai; s+ w; s+w + a0; s+w + a0 + a1; : : : ;s +w + n�2Xi=0 ai; s+ 2w; : : : ; s+ (c=(w; c)� 1)w + n�2Xi=0 ai] : 0 � s < (w; c)g:Clearly, a 2 D�1Da for any cycle a. We call the operator (E � 1)�1 the Lempelinverse homomorphism (LIH).Of course, given a cycle a as in the above de�nition, we can apply (E � 1)�1 tothe set (E � 1)�1a to obtain a second set of cycles, which we denote by (E � 1)�2a.Notice that the cycles of this set need not all have the same period (because the cyclesin (E � 1)�1a need not all have the same weight). We can continue in this way andwrite (E� 1)�ka for the set of cycles obtained by making k applications of (E� 1)�1to a.We also need to de�ne the action of the Lempel homomorphism and its inverseon c-ary tuples. For convenience we also denote these mappings by D and D�1 (thedomain of the mapping should always be clear from the context).Definition 5.3. Suppose c; v are positive integers (c > 1), and lets = (s0; s1; : : : ; sv�1)be a c-ary v-tuple. Then de�ne Ds to be the following c-ary (v � 1)-tuple:(s1 � s0; s2 � s1; : : : ; st�1 � st�2):On the other hand if w = (w0; w1; : : : ; wv�2) is a c-ary (v � 1)-tuple, then we de�neD�1w to be the following c-set of c-ary v-tuples:D�1w = f(s; s +w0; s + w0 +w1; : : : ; s+ v�2Xi=0 wi) : s 2 Zcg:We will also use E � 1 and (E � 1)�1 to denote D and D�1 acting on c-ary tuples.We can now state the following result which follows immediately from the de�ni-tions:Lemma 5.4. Let a be a c-ary cycle of period n, s a c-ary v-tuple and w a c-ary(v � 1)-tuple. Then� Ds = w if and only if s 2 D�1w,� if s appears in a at position p, then Ds appears in Da at position p, and� if s appears in a at position p, then any (v+1)-tuple of D�1s appears in somecycle of (E � 1)�1a at a position p0 with p0 � p mod n.We use the following construction method, which is based on the Lempel inversehomomorphism, to construct Perfect Factors, PMFs and GPFs.Construction 5.5. Suppose c; r are positive integers, where c > 1, and let A bea set of c-ary cycles fa0; a1; : : : ; at�1g



18 C. J. MITCHELL AND K. G. PATERSONof periods `0; `1; : : : ; `t�1 and weights w0; w1; : : : ; wt�1 respectively. Then let B bethe following set of Pt�1i=0(wi; c) cycles:B = t�1[i=0(E � 1)�1ai:We now have:Theorem 5.6. Suppose c;m; n; v are positive integers (c > 1), and let A be aset of c-ary cycles of constant weight w. Suppose also that B is derived from A usingConstruction 5.5. Then� if A is an (n; c; v){PF, then B is a (nc=(w; c); c; v+ 1){PF,� if A is an (m;n; c; v){PMF, then B is a (mc=(w; c); n; c; v+ 1){PMF, and� if A is an (m;n; c; v){GPF, then B is a (mc=(w; c); n; c; v+ 1){GPF.Proof. This follows immediately from the de�nition of the Lempel inverse homo-morphism and Lemma 5.4.By considering the special case where w = 0, we immediately have:Corollary 5.7. Suppose c;m; n; v are positive integers (c > 1), and let A bea set of c-ary cycles of constant weight zero. Suppose also that B is derived from Ausing Construction 5.5. Then� if A is an (n; c; v){PF, then B is a (n; c; v + 1){PF,� if A is an (m;n; c; v){PMF then B is a (m;n; c; v+ 1){PMF, and� if A is an (m;n; c; v){GPF then B is a (m;n; c; v+ 1){GPF.Of course, if the set of cycles B in Theorem 5.6 or Corollary 5.7 has constantweight, then Construction 5.5 can be applied again to B to produce a new set of cycleswhich will again form a Perfect Factor/PMF/GPF. This process can be repeated toproduce a series of Perfect Factors/PMFs/GPFs with increasing window size, so longas the cycles in each set all have the same weight. In the next section we will seehow the interleaving constructions of x3 and 4 can be combined with repeated use ofConstruction 5.5 to produce a powerful set of construction methods.5.2. Examples. Example 5.8. The (5; 2; 5; 4){PMF constructed in Exam-ple 3.3 has constant weight zero. Hence, if we apply Construction 5.5 then, by Corol-lary 5.7, we obtain a (5; 2; 5; 5){PMF.Example 5.9. The (5; 2; 5; 4){GPF constructed in Example 4.7 has constantweight zero. Hence, if we apply Construction 5.5 then, by Corollary 5.7, we obtain a(5; 2; 5; 5){GPF.6. Combining Interleaving and the Lempel Homomorphism. Considerapplying one of Constructions 3.1 or 4.1 to an (n; c; v){PF A. The resulting set ofcycles B will be either a (n; t; c; tv){PMF, a (n; t; c; tv){GPF or a (tn; c; tv){PF. Weask: what is the maximum number of times that Construction 5.5 can be applied tothe cycles of B whilst yielding a set of cycles of period tn? In order for the constructionto be applicable � times, we require that the setf(E � 1)�(��1)b;b 2 Bgbe constant weight zero. By repeated use of Corollary 5.7, it follows that if � ap-plications are possible whilst maintaining zero weight, then we can obtain either an(n; t; c; tv+ �){PMF, an (n; t; c; tv+ �){GPF or a (tn; c; tv + �){PF.



PERFECT FACTORS FROM CYCLIC CODES 19The answer to our question depends on the maximum value of k such that theset f(E � 1)�ka; a 2 Agis constant weight, as well as on the prime factorisations of t and c. Before giving theanswer, we need some preliminary results.Lemma 6.1. Suppose that c does not divide t. Then in Zc[E], E � 1 dividesEt � 1 exactly once.Proof. In Zc[E], we have Et � 1 = (E � 1)gt(E) wheregt(E) := Et�1 +Et�2 + � � �+E + 1satis�es gt(1) = t. When c does not divide t, we have gt(1) 6= 0 mod c and so E � 1does not divide gt(E). The lemma follows.Lemma 6.2. Suppose that c is square-free (i.e. c is a product of distinct primes).Let t = Qi pi�i and c = Qi pi�i , where �i � 0 and �i = 0 or 1, be the primefactorisations of t and c. Then in Zc[E], E � 1 divides Et � 1 exactly �t;c times,where �t;c = min�i=1�pi�i	Proof. Consider �rst the case where c is a prime p and t = p�. Then in Zp[E],Et � 1 = Ep� � 1 = (E � 1)p�since �p�i � = 0 mod p for 1 � i � p� � 1. So in this case, E � 1 divides Et � 1 exactlyt = p� times.Now let t and c have prime factorisations as in the statement of the lemma.Suppose �i = 1. Then in Zpi [E],Et � 1 = (Epi�i � 1)(E(`�1)pi�i + � � �+ Epi�i + 1)where ` = t=pi�i is coprime to pi. So in Zpi [E],Et � 1 = (E � 1)pi�i g`(Epi�i ):But g`(1) = ` 6= 0 mod pi, so we deduce that in Zpi [E], E � 1 divides Et � 1 exactlypi�i times. But, by a Chinese Remainder Theorem argument, E� 1 divides Et� 1 atleast � times in Zc[E] if and only if it does so at least � times over each polynomialring Zpi [E] for which pi divides c. The result follows.Now suppose A is an (n; c; v){PF and that for some w 2 Zc, some k � 0 and foreach a 2 A, any cycle in (E � 1)�ka has period n and weight w. Then each a 2 Asatis�es En � 1E � 1 (E � 1)�k a = [w;w; : : : ; w]: (6.1)If w = 0, then this means that Theorem 5.7 can be applied up to k + 1 times to thecycles of A to produce (n; c; v+ �){PFs for each 1 � � � k+1. If w 6= 0, then we haveEn � 1E � 1 (E � 1)�(k�1) a = (E � 1)[w;w; : : : ; w] = [0; 0; : : : ; 0]



20 C. J. MITCHELL AND K. G. PATERSONand we see that up to k applications of Construction 5.5 to A are possible to produce(n; c; v + �){PFs for each 1 � � � k. Theorem 5.6 guarantees that a �nal applicationof Construction 5.5 can be used to yield a (nc=(w; c); c; v+ k + 1){PF.Now let B be obtained fromA by t-fold interleaving, either as in Construction 3.1(to obtain a PMF) or as in Construction 4.1 combined with Theorem 1.21 (to obtaina GPF). Then in either case (and by Remark 4.4 in the second case), each cycle of Bsatis�es relation (6.1) but with E replaced by Et, i.e. if b 2 B, thenEtn � 1(Et � 1)(k+1) b = [w;w; : : : ; w]:Writing Et � 1 = (E � 1)�t;cht;c(E) where ht;c(E) is not divisible by E � 1, we have,for each b 2 B: Etn � 1(E � 1)(k+1)�t;c � 1ht;c(E)k+1 b = [w;w; : : : ; w]:Multiplying by ht;c(E)k+1 and noting that ht;c(E)k+1[w] is also a constant cycle, wesee that for some w0 (where w0 = 0 if w = 0),Etn � 1E � 1 � (E � 1)�((k+1)�t;c�1) b = [w0; w0; : : : ; w0]; b 2 B:We can interpret this equation as follows. If w0 = 0 (in particular, if w = 0), thenthe sequences of the set f(E � 1)�((k+1)�t;c�1)b;b 2 Bghave zero weight and period tn, so that Construction 5.5 can be applied up to (k+1)�t;ctimes to the cycles of B. Similarly, if w0 6= 0, then Construction 5.5 can be appliedup to (k + 1)�t;c � 1 times to the cycles of B.We summarise with the following theorem:Theorem 6.3. Suppose c is square-free. Let B be a (tn; c; tv){PF/(n; t; c; tv){PMF/ (n; t; c; tv){GPF obtained from (n; c; v){PF A by t-fold interleaving. Supposethat Construction 5.5 applied k � 0 times to the cycles of A results in cycles of periodn all having weight w. We write ` = (k + 1)�t;c. If w = 0 then Construction 5.5 canbe applied up to ` times to the cycles of B, resulting in constant weight (tn; c; tv+ �){PFs/(n; t; c; tv + �){PMFs/ (n; t; c; tv + �){GPFs for each 1 � � � `. If w 6= 0 thenConstruction 5.5 can be applied up to ` � 1 times to the cycles of B, resulting inconstant weight (tn; c; tv + �){PFs/(n; t; c; tv + �){PMFs/ (n; t; c; tv + �){GPFs foreach 1 � � � `� 1.Example 6.4. Let A be the (5; 5; 2){PF of Example 3.3. It is easy to verify thatthe sequences of A satisfy (E � 1)2a = [1]; a 2 A:Over Z5, we have E5 � 1 = (E � 1)5 and so we can writeE5 � 1E � 1 (E � 1)�2a = (E � 1)2a = [1]; a 2 Aand we can take k = 2 and w = 1 in Theorem 6.3. Applying Theorem 3.2 with t = 2,we can construct a (5; 2; 5; 4){PMF B. Now �2;5 = 1, so according to Theorem 6.3,



PERFECT FACTORS FROM CYCLIC CODES 21Result 5.7 can be applied up to l � 1 = 2 times to the cycles of B, resulting in aconstant weight (5; 2; 5; 5){PMF and a constant weight (5; 2; 5; 6){PMF.Example 6.5. The (5; 3; 5; 3){GPF constructed in Example 4.6 was obtainedfrom the (5; 5; 1){PF consisting of the single cycle [01234]. Arguing as in the aboveexample, we can take k = 3 and w = 1 in Theorem 6.3 to see that Construction 5.5 canbe applied up to l�1 = 3 times to the cycles of the GPF, resulting in a constant weight(5; 3; 5; 4){GPF, a constant weight (5; 3; 5; 5){GPF and a constant weight (5; 3; 5; 6){GPF.7. Perfect Factors for Small Windows.7.1. A Reduction for the Existence Problem. Corollary 1.26 allows us tomake an important reduction in the sets of parameters for which we need to considerthe existence question for Perfect Factors.Recall from the discussion in x1.2.2 that to prove Conjecture 1.4 for any �xed v,we need only construct Perfect Factors with parameters (n; c; v) (n > v + 1), wherec = tYi=1 piri and n = tYi=1 pisiand both 0 � si � riv and pisi � v for each i.For a particular choice of c and v as above, we writec0 = Ysi 6=0 pi:Now for each i, pisi � v � piv. Hence si � v and so nj(c0)v. Thus the parameters(n; c0; v) satisfy the necessary conditions of Result 1.3. Moreover, by Corollary 1.26,the existence of such an (n; c0; v){PF implies the existence of a (n; c; v){PF. So to settleConjecture 1.4 for v, it is su�cient to construct Perfect Factors for all parameters(n; c; v) where n > v + 1, c = p1 : : : pt is square-free, and where n = Qti=1 pisi with1 � si and pisi � v for each i.Notice this means that every prime pi that divides c must in turn divide n.Moreover, each pi satis�es pi � v. So to settle the existence question for any particularv, it is su�cient to consider Perfect Factors for a �nite set of alphabets (whose sizesare products of distinct primes) and for a small set of parameters for each of thesealphabets.We summarise the above reduction formally asLemma 7.1. Suppose v � 1 is �xed and that there exist (n; c; v){PFs for everysquare-free c = p1 : : : pt and every n > v + 1 with n = Qti=1 pisi where si � 1 andpisi � v for each i. Then Conjecture 1.4 is true for v.Remark 7.2. Note that, because v < n, t is always at least 2 in the above lemma.7.2. Perfect Factors for v � 6. We now show that Conjecture 1.4 is true forv � 6. This has already been shown for v � 4. However, in order to demonstrate thepower of our new construction methods, we consider anew all v up to v = 6.7.2.1. Perfect Factors for v = 2. For v = 2, there is no parameter set satisfy-ing the conditions of Lemma 7.1. We conclude that Conjecture 1.4 is true for v = 2.In fact, this means that the methods of [7] are strong enough to settle the existenceproblem in this case, as already noted in the introductory section.



22 C. J. MITCHELL AND K. G. PATERSON7.2.2. Perfect Factors for v = 3. By Lemma 7.1, we need only consider theexistence of a (6; 6; 3){PF. A Perfect Factor with these parameters was obtained inExample 2.6.7.2.3. Perfect Factors for v = 4. Again by Lemma 7.1, only the following twoparameter sets need to be considered: (6; 6; 4) and (12; 6; 4).A PF for the �rst parameter set was obtained in Example 2.10. A (12; 6; 4){PFcan be obtained by applying Construction 4.1 to a (6; 6; 2){PF with t = 2 (see Remark4.5).7.2.4. Perfect Factors for v = 5. By Lemma 7.1, only the following six pa-rameter sets need to be considered:(10; 10; 5); (12; 6;5); (15;15;5); (20; 10; 5); (30;30;5) and (60; 30; 5):The parameter sets (10; 10; 5), (20; 10; 5), (30; 30; 5) and (60; 30; 5) fall to Theorem2.7. Consider the parameters (12; 6; 5). The polynomial X12 � 1 factorises as (X +1)4(X2 +X + 1)4 in Z2[X] and as (X � 1)3(X3 +X2 +X + 1)3 in Z3[X]. We takeg(X) = (X + 1)(X2 +X + 1)3, p = 2 and r = l = 2 in Construction 2.4 to obtain a(4; 3; 2; 5){GPF. Similarly, we take g(X) = (X � 1)(X3 +X2 + X + 1)2, p = 3 andr = l = 1 in Construction 2.4 to obtain a (3; 4; 3; 5){GPF. Combining these GPFsusing Construction 1.13, we obtain (according to Theorem 1.22) a (12; 6; 5){PF.Finally, consider the parameters (15; 15; 5). By considering the factorisation ofX15 � 1 in Z3[X] and Z5[X] and following a similar procedure to that above, we canobtain a (15; 15; 5){PF. The polynomials g(X) can be taken to be (X � 1)2(X4 +X3 +X2 +X + 1)2 in Z3[X] and (X � 1)2(X2 +X + 1)4 in Z5[X].7.2.5. Perfect Factors for v = 6. By Lemma 7.1, only the following six pa-rameter sets need to be considered:(10; 10; 6); (12; 6;6); (15;15;6); (20; 10; 6); (30;30;6) and (60; 30; 6):PFs with parameters (12; 6; 6), (20; 10; 6) and (60; 30; 6) can be obtained by ap-plying Construction 4.1 with t = 2 to PFs with parameters (6; 6; 3), (10; 10; 3) and(30; 30; 3) respectively (c.f. x3.4 of [9]).Consider the parameters (10; 10; 6). A (5; 2; 5; 6){GPF can be obtained usingthe polynomial (X � 1)(X + 1)3 in Z5[X]. We can obtain a (2; 5; 2; 6)-PMF usingConstruction 2.8 by taking g(X) = X4 +X3 +X2 +X + 1 and b(X) = 1 in Z2[X].Combining these using Theorem 1.24, we obtain a (10; 10; 6){PF.A (15; 15; 6){PF can be obtained by combining GPFs constructed using the poly-nomials (X � 1)(X4 + X3 + X2 + X + 1)2 in Z3[X] and (X � 1)(X2 + X + 1)4 inZ5[X].Finally, consider the parameters (30; 30; 6). It is easy to see from cyclotomicfactorisations how to obtain degree 24 factors g(X) of X30 � 1 in each of Z3[X] andZ5[X]. These can be used to construct a (3; 10; 3; 6){GPF and a (5; 6; 5; 6){GPF.Combining these using Construction 1.13, by Theorem 1.22 we obtain a (15; 2; 15; 6){GPF. By Theorem 1.12, there exists a (2; 15; 2; 6){PMF. Applying Theorem 1.24, wecan obtain a (30; 30; 6){PF.7.3. Perfect Factors for v = 7 and v = 8. We �nally consider the existence ofperfect factors for v = 7 and v = 8, and in doing so list the smallest undecided cases.



PERFECT FACTORS FROM CYCLIC CODES 23By Lemma 7.1, for v = 7, the following 17 parameter sets need to be considered:(10; 10; 7); (12; 6; 7); (14; 14; 7); (15; 15; 7); (20; 10; 7); (21; 21; 7);(28; 14; 7); (30; 30; 7); (35; 35; 7); (42; 42; 7); (60; 30; 7); (70; 70; 7);(84; 42; 7); (105; 105; 7); (140; 70; 7); (210; 210; 7); and (420; 210; 7):All these parameter sets, except (10; 10; 7), (12; 6; 7), (15; 15; 7), (20; 10; 7), (30; 30; 7),(35; 35; 7) and (60; 60; 7), fall to Theorem 2.7. Constructions based on cyclic codes canbe used to build PFs for six out of these seven remaining sets (we omit the details),the parameters (10; 10; 7) resisting attack by such methods.Similarly when v = 8, fourteen of the twenty-four parameter sets that remainafter applying Lemma 7.1 fall to Construction 4.1 with t = 2. All but one of theremaining ten sets then fall to constructions based on cyclic codes. The parameterset (10; 10; 8) remains undecided.One reason for the di�culty with the sets (10; 10; 7) and (10; 10; 8) is that X10�1has no factors of degrees 2 or 3 in Z2[X] that are suitable for use in our cyclic codeconstructions. If a (10; 10; 7){PF and a (10; 10; 8){PF could be shown to exist, thenConjecture 1.4 would also be true for v � 8. Such PFs would contain 106 and 107cycles of period 10, respectively, and as such appear to be out of the reach of computersearch.8. Conclusions. We have provided further evidence to support the conjecturethat the necessary conditions of Lemma 1.3 are su�cient for the existence of a PerfectFactor. Indeed it is probably possible to extend our case by case analysis to covermost parameter sets for v = 9 and beyond.More importantly, we have provided new and powerful construction methodswhich may have the potential to help establish the conjecture for general v. In thisdirection it may be worthwhile examining in more detail the di�erent ways in whichthese methods can be combined to produce Perfect Factors. We have already donethis for interleaving combined with the Lempel inverse homomorphism in x6 of thispaper.It is also worth noting that we have only used the coding-theoretic methodsdeveloped here to attack the existence question for small v. However, even for small v,these methods do have some limitations, as illustrated by our failure with parameters(10; 10; 7) and (10; 10; 8). Indeed, it is not hard to show that if p � 5 is prime and 2 isprimitive modulo p, then X2p�1 has factorisation (X+1)2(Xp�1+Xp�2+� � �+1)2 inZ2[X]. So, in this case, X2p�1 has no factors of degrees 2; 3; � � � ; p�2 that can be usedin our cyclic code constructions. This means that the cyclic code techniques in thispaper cannot be used to help construct (2p; 2p; v){PFs for any v with p+2 � v � 2p�2.These are examples of parameter sets for which no construction methods are currentlyknown.9. Acknowledgement. We would like to thank an anonymous referee for valu-able comments. REFERENCES[1] T. Etzion, Constructions for perfect maps and pseudo-random arrays, IEEE Trans. Inform.Theory, 34 (1988), pp. 1308{1316.[2] H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms, SIAM Re-view, 24 (1982), pp. 195{221.[3] G. Hurlbert and G. Isaak, On the de Bruijn torus problem, J. Combin. Theory Ser. A, 64(1993), pp. 50{62.
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