PERFECT FACTORS FROM CYCLIC CODES AND INTERLEAVING
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Abstract. In this paper we introduce new construction methods for Perfect Factors. These are
based on the theory of cyclic codes, interleaving techniques and the Lempel homomorphism. The
constructions enable us to settle the existence question for Perfect Factors for window sizes at most
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1. Introduction. In this paper we address the existence question for Perfect
Factors. Perfect Factors, i.e. sets of uniformly long cycles whose elements are drawn
from an alphabet of size ¢ and in which every possible v-tuple (or ‘window’) of elements
occurs exactly once, are of significance for two main reasons (apart from combinatorial
interest in their own right).

e They can be used to construct Perfect Maps (or two-dimensional de Bruijn
arrays), see for example, [1, 3, 10, 11], which are of practical importance in
certain position-location applications.

e They are special cases of Perfect Maps themselves, and hence their existence
1s of significance in deciding whether Perfect Maps exist for all parameter sets
satisfying certain simple necessary conditions (it has recently been established
that these necessary conditions are sufficient for prime power size alphabets,
[13, 14]).

It has been conjectured, [7], that the simple necessary conditions for the existence
of a Perfect Factor (Lemma 1.3 below) are sufficient for all finite alphabets and for
all window sizes. Work towards a proof of this conjecture has progressed along two
fronts: firstly, the conjecture has been shown to be true for specific classes of alphabet
size ¢ (for every v) and secondly, the conjecture has been shown to be true for small
values of v regardless of the alphabet size.

The truth of the conjecture was established by Etzion [1] for ¢ = 2 and by Paterson
[12] in the case where ¢ is a prime power. Further progress was made by Mitchell,
who introduced two auxiliary classes of combinatorial objects: Perfect Multi-Factors
(PMFs) [7] and Generalized Perfect Factors (GPFs) [8], which can be combined in
various ways to yield Perfect Factors. Powerful constructions for PMFs and GPFs
have been given in [7, 8]. An important consequence of this latter work is that
the existence question for any particular v can be reduced to an existence question
concerning a finite number of ‘small’ parameter sets (see §7.1 below). In [7, 8] these
ideas were used to settle the existence question for v < 4.

In this paper we continue to attack the existence question for Perfect Factors. We
introduce three new construction methods for PMFs and GPFs. The first of these
uses cyclic codes to construct sequences (§2), the second is based on interleaving (§3
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and 4) and the third uses a generalisation of the Lempel homomorphism (§5). We
show how these methods can be combined to efficiently analyse the parameter sets
required to settle the existence question for v < 6 (§7). We also apply our methods
to the cases v = 7 and v = 8, resolving the existence question in all but two cases.

1.1. Notation. We first set up some notation which we will use throughout the
paper.

We are concerned here with c-ary periodic sequences, where by c-ary we mean
sequences whose elements are drawn from the set 7. = {0,1,...,¢— 1}. We refer
throughout to c-ary cycles of period n, by which we mean periodic sequences s =
[$0,81,-..,8n—1] where s; € {0,1,...,¢— 1} for every ¢, (0 < i < n). The least
period of such a cycle is defined to be the least positive integer such that s; = s;4+
for all 0 <4 < n (subscripts modulo n).

If t = (to,t1,... ,ty—1) is a c-ary v-tuple, i.e. ¢; € {0,1,... ¢ — 1} for every ¢,
(0 <i<w),and s = [sg,s1,...,8p—1] is a c-ary cycle of period n (n > v), then we
say that t occurs in s at position j if and only if

ti = Siy;
for every i, (0 < ¢ < v), where i + j is computed modulo n.

If s and s’ are two v-tuples, then we write s + s’ for the v-tuple obtained by
element-wise adding together the two tuples. Similarly, if @ is any integer, we write
as for the tuple obtained by element-wise multiplying the tuple s by a. Again, if we
write t = s mod k, then t is the tuple obtained by reducing every element in s modulo
k. An exactly analogous interpretation should be used for arithmetic operations on
cycles.

If sg,81,...,8,-1 are t cycles all of period n, and if s; = [si0, i1, ..., Si(n-1)]
(0 < i< t), then Z(sg,81,...,8;—1) denotes the ¢- fold interleaving of these cycles, i.e.
I(SO,Sl,... ast—l) = [500a510a"' a5(t—1)0a501a511,~~~ as(t—l)(n—l)]a a CyCIG of perlOd

nt.

We define the left shift operator E acting on cycles of period n as follows. The
action of F on s, denoted Fs, is the cycle whose i-th term is s;41 (subscripts being
computed modulo n). For m > 2, we define the action of E™ on s by writing
Ems = E(E™~!'s). For any polynomial f(X) = > i~ a; X® with coefficients in Z,, we
define the action of the operator f(E) on s to be the cycle ags+ a1 Fs+- -+ am E™s.

We define a truncation operator operating on cycles. Let s = [50, S1y.et Snii)
be a cycle, and t be the least positive integer such that E'(s) = s, i.e. ¢ is the least
period of s. Then let 7(s) = [so,81,...,8t—1]. Any cycle s of period n and least
period t is equally well represented by the cycle 7 (s).

The weight of a period n cycle is defined to be the sum of its n elements evaluated
in Z.. Notice that

n—1

’ Si]
0

£gr -1
r—-1

s=(E" 4. -+ E+1)s Z

||M|

)

so that £ yomY ls is a constant cycle whose terms equal the weight of s. We say that
a set of period n cycles over Z. is a constant weight set if each of the cycles in the
set has the same weight. We define the total weight of the set to be the sum of the
weights of the cycles in the set.

In addition, we use the notation (m, n) to represent the Greatest Common Divisor
of m and n (given that m,n are a pair of positive integers or a pair of polynomials
over some field). By convention, (0,n) =n
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1.2. Fundamental Definitions and Results.

1.2.1. De Bruijn Sequences. We first have:

DEFINITION 1.1. A c¢-ary de Bruijn sequence of span v is a c-ary cycle of period c¥
which contains c¥ distinct v-tuples in a period of the cycle; equivalently every possible
c-ary v-tuple occurs precisely once in a period of a de Bruiyn sequence.

It has long been known that c-ary span v de Bruijn sequences exist for all values
of ¢ > 1 and v > 0 (see [2] for a proof of this result and a comprehensive survey of
the long and interesting history of de Bruijn sequences).

1.2.2. Perfect Factors. We next define a generalisation of de Bruijn sequences,
the construction of which is the main theme of this paper.

DEFINITION 1.2. Suppose n, ¢ and v are positive integers (where we also assume
that ¢ > 2). An (n,c,v)-Perfect Factor, or simply an (n,c,v)-PF, is a collection of
e’ /n c-ary cycles of period n with the property that every c-ary v-tuple occurs in one
of these cycles.

Note that, because a Perfect Factor contains exactly ¢”/n cycles; and because
there are clearly ¢? different c-ary v-tuples, each v-tuple will actually occur exactly
once somewhere in the collection of cycles (and hence all the cycles are distinct). Also
observe that a (¢V, ¢, v)-PF is simply a c-ary span v de Bruijn sequence.

The following necessary conditions for the existence of a Perfect Factor are trivial
to establish.

LEMMA 1.3. Suppose A is a (n,c,v)-PF. Then

1. n|e?, and
2.v<n (orn=v=1).

CoNJECTURE 1.4. [7, Conjecture 1.4] The conditions of Lemma 1.3 are sufficient
for the existence of an (n,c,v)-PF.

We next give a simple but useful construction for Perfect Factors.

CONSTRUCTION 1.5. Suppose n and c are integers greater than 1, where n|c® 1.
Let A* be the set of all c-ary cycles of period n with the property that the sum of the
elements in each cycle is congruent to 1 modulo c. If a,a’ € A*, then define a ~ a’ if
and only if a = E*a’ for some s. It is simple to see that ~ is an equivalence relation
on the elements of A*, and hence define A to be a set of ~-representatives from A*.

LEMMA 1.6. Ifn, ¢ and A are as in Construction 1.5, then A is an (n,e,n—1)-
PF.

Proof. Consider any c-ary (n—1)-tuple. It clearly occurs at position 0 in a unique
cycle in A*, and can only occur once in any cycle of A*. Hence it occurs once within
a unique cycle in A, and the result follows. O

COROLLARY 1.7. The conditions of Lemma 1.3 are sufficient for the existence of
an (n,c,v)-PF when v =n — 1.

In view of the first condition in Lemma 1.3, we can assume that the prime fac-
torisations of ¢ and n are

¢ ¢
c= pr’ and n= Hpis’
i=1 i=1

where 0 < s; < r;v for each i.

We discuss next the extent to which Conjecture 1.4 is known to be true. The
case where v = 1 is clearly trivial, and we have dealt with the case v = n — 1 in
Corollary 1.7. The conditions of Result 1.3 are known to be sufficient when ¢ = 2 [1]
and when ¢ is a power of a prime [12]. Tt was also proved in [12] that the conditions
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of Lemma 1.3 are sufficient when p;* > v for every index ¢. In [7] this result has been
improved to establish the sufficiency of the conditions of Lemma 1.3 whenever p;* > v
for at least one index ¢:

THEOREM 1.8 (Theorem 7.1 of [7]). An (n,c,v)-PF can be constructed for any
n, ¢ and v salisfying v < n|c¥ and ¢ > 1, as long as v < p* and p*|n for some prime
p and some positive integer s.

This immediately implies that Conjecture 1.4 holds for v = 2 and that the conjec-
ture remains open only for periods n = szl pi®t for which pi* < v foreach 1 <i <t.

The truth of Conjecture 1.4 has also been established for every ¢ when v < 4 [8].
Certain other cases for v = 6 and larger composite v have recently been dealt with in
[9].

1.2.3. Perfect Multi-Factors. We define a related set of combinatorial objects,
first introduced in [7].

DEFINITION 1.9. Suppose m, n, ¢ and v are posilive inlegers salisfying m|c
and ¢ > 2. An (m,n,c,v)-Perfect Multi-factor, or simply a (m,n,c,v)-PMF, is a
collection of ¢V /m c-ary cycles of period mn with the property that for every c-ary
v-tuple t and for every integer j in the range 0 < j < n, t occurs at a position p = j
(mod n) in one of these cycles.

Note that, because a PMF contains ¢’ /m cycles (each of period mn and hence
‘containing’ mn v-tuples), and because there are clearly ¢¥ different c-ary v-tuples,
each v-tuple will actually occur exactly n times in the collection of cycles, once in
each of the possible position congruency classes (mod n). This also implies that all
the cycles are distinct.

REMARK 1.10. It should be clear that an (m,1,¢c,v)-PMF is precisely equivalent
to an (m,c,v)-PF. In addition, observe that a (1,n,c,v)-PMF is simply a collection
of ¢V c-ary cycles of period n with the property that every c-ary v-tuple occurs at every
possible position in one of the cycles.

The following necessary conditions for the existence of a Perfect Multi-factor are
trivial to establish.

LEmMaA 1.11 ([7]). Suppose A is an (m,n,c,v)-PMF. Then

(i) m|c¥, and

(ii) v<mn (orm=1and v=mn).

It has been conjectured in [7] that the above necessary conditions are sufficient for
the existence of a Perfect Multi-Factor. The following result establishes the existence
conjecture whenever n > v (and in particular for the special case m = 1).

THEOREM 1.12 ([7]). Suppose n,c,v are positive integers (¢ > 2 and n > v).
Then there exists a (m,n,e,v)-PMF for every positive integer m satisfying m|c?.

We next show how an established construction technique can be used to produce
Perfect Multi-Factors. A slightly different formulation of the following method was
previously given as Construction E in [8].

CONSTRUCTION 1.13. Suppose c¢,d, o, T, pu are positive integers where ¢ > 2 and
d> 2, and let

A={a;:0<i< o}
be a set of o c-ary cycles of period pu, and
B={b;:0<i< 7}
be a set of T d-ary cycles also of period p. Now let
C={s;;:0<i<o 0<j<T}
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be the set of ed-ary cycles of period p defined by

Si; = a; + Cb]'.

THEOREM 1.14. Suppose ¢,d,o, 7,1, A and B satisfy the conditions of Con-
struction 1.13. Suppose also that, for some v > 1, A is an (m,n,ec,v)-PMF and B
is a (1,mn,d,v)-PMF. If C is derived from A and B (with o = ¢/m, 7 = d" and
= mn) using Construction 1.13, then C is an (m,n,cd,v)-PMF.

Proof. Suppose t is a (cd)-ary v-tuple. Let u = t mod ¢, and let w = (t —u)/ec.
Then u is a c-ary v-tuple and w is a d-ary v-tuple and we have

t=u+cw.

Now suppose 0 < ¢ < n; then we need to show that t occurs at a position congruent
to ¢ modulo n in some cycle of C'. Now, since A4 is an (m, n, ¢, v)-PMF, u occurs at a
position congruent to ¢ modulo n in some cycle of A; say s occurs at position ¢ + fn
in cycle a; for some ¢ and j. In addition, since B is a (1, mn,d, v)-PMF, t occurs at
position 7 + fn in some cycle, say by, of A’. It is then immediate to see that t occurs
at position ¢ + £n in s;z, and the result follows. O

Next observe that, by Theorem 1.12, a (1, mn, d, v)-PMF exists whenever mn > v,
and hence by combining Theorem 1.14 with Theorem 6.5 of [7], we have:

THEOREM 1.15. Suppose there exists an (m,n,c,v)-PMF. Then, for every 8 > 1
and every d > 1, there exists an (m, fn,cd,v)-PMF, given that (8, m) = 1.

1.2.4. Generalised Perfect Factors. We now define yet another class of com-
binatorial objects, the definition of which is a generalisation of the notion of Perfect
Factor (as is the definition of PMF). We subsequently use these objects to help con-
struct new Perfect Factors.

DEFINITION 1.16. Suppose m, n, ¢ and v are posilive inlegers salisfying m|c
and ¢ > 2. An (m,n,c,v)-Generalised Perfect Factor, or simply an (m,n,c,v)-GPF,
is a collection of ¢'/m c-ary cycles of period mn with the following property. For
every c-ary v-tuple t, there exists an integer j in the range 0 < j < m such that for
every ¢ (0 < i< n)t occurs at position j + im in one of these cycles.

Note that, because a GPF contains exactly ¢”/m cycles (each ‘containing’ mn
v-tuples), and because there are clearly ¢V different c-ary v-tuples, each v-tuple will
actually occur exactly n times in the set of cycles, once in each position j + im
(0 < i < n). This immediately implies that all the cycles are distinct.

REMARK 1.17. It should be clear that

(i) an (m,1,¢c,v)-GPF is precisely equivalent to an (m,c,v)-PF, and

(ii) a (1,n,e,v)-GPF is precisely equivalent to a (1,n,c,v)-PMF.

The following result is also straightforward to prove:

THEOREM 1.18 ([8]). Suppose A is an (m,n,e,v)-GPF, where (m,n) = 1. Then
A is also an (m,n,c,v)-PMF.

The following necessary conditions for the existence of a Generalised Perfect Fac-
tor are trivial to establish.

LEmMMA 1.19 ([8]). Suppose A is an (m,n,e,v)-GPF. Then

(i) m|c¥, and

(ii) v<mn (orm=1and v=mn).

It is tempting at this point to conjecture that the necessary conditions specified
in Lemma 1.19 for the existence of an (m, n, ¢, v)-GPF are sufficient. However, as
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established in [8], this is not true. Nevertheless we do have the following (constructive)
existence results for GPFs.

THEOREM 1.20 ([8], Theorems 19 and 21). Suppose there exists an (m,n,c,v)-
GPF. Then, for every X > 1 and every d > 1, there exists an (m, An,ed,v)-GPF.
This result provides a useful analogue to Theorem 1.15.

We also have the following result, which we use repeatedly below.

THEOREM 1.21 (Theorem 16 of [8]). Suppose m, n, ¢ and v are positive integers
satisfying m|c¥ and ¢ > 2, and

A= {aOaala ce ,at—1}

15 a set of c-ary cycles of least periods €y, 0y, ..., L;_1 respectively, with the property
that m|l;\mn for every i, 0 < i < t, and with the property that every c-ary v-tuple
occurs precisely once in the set of cycles. Then, for every i (0 < i < t) let w; be
defined as a; concalenated with ilself mn/l; times. Next let

bij = E]m(wl)
for every j, (0 < j < £;/m). Finally let
BI{bZ']' : 0§Z<t,0§j<fz/m}

Then B is an (m,n,c,v)-GPF.

We next observe that Construction 1.13 can also be used to produce new GPFs:

THEOREM 1.22. Suppose ¢, d, o, T, i, A and B satisfy the conditions of Construc-
tion 1.13. Suppose also that, for some v > 1, A is an (m1,ny,¢,v)-GPF and B is an
(ma, na, d, v)-GPF, where myny = mang and (my, ms) = 1 (and hence ma|ny ). If C
is derived from A and B (with o = ¢V /my, 7 = d"/my and jt = miny = mans) using
Construction 1.13, then C' is an (mima, ny/ms, cd, v)-GPF.

Proof. Suppose t is a (cd)-ary v-tuple. We need to exhibit an integer j with
0 < j < myma such that for every ¢ (0 < i < ny/ms), t occurs at position j 4 imims
in one of the cycles s;; of C. Let u = t mod ¢, and let w = (t —u)/c. Then uis a
c-ary v-tuple and w is a d-ary v-tuple and we have

t=u+cw.

Now there exists an integer j; with 0 < j3 < my such that for every ¢ (0 < ¢ < ny),
u occurs at position j; + imy in a cycle of A. There also exists an integer j, with
0 < ja < mg such that for every ¢ (0 < ¢ < ny), w occurs at position j; + ém2 in a
cycle of B. Since (m1,ma) = 1, by the Chinese Remainder Theorem there is a unique
j with 0 < 7 < mymy that satisfies the pair of congruences:

J=j (modmy)

J=j2 (mod ma).

Suppose ¢ with 0 < i < nj/ms is fixed. Tt is certainly true that there is a cycle
a; € A and a cycle b; € B such that u appears in a; and w appears in b; at position
J + tmimo. The v-tuple t then appears at position j 4 ¢mi;ms in the cycle s;;. It
follows that the set of cycles C' forms an (mymsz, ny/ma, cd, v)-GPF. O

REMARK 1.23. Observe that, in the case ma = ny (and hence my = ny and the
constructed GPF is actually a PF), by Theorem 1.18 the above result coincides with
Theorem 23 of [8].
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1.3. Using PMFs and GPFs to construct Perfect Factors. We conclude
these introductory remarks by showing how PMFs and GPFs can be used to construct
Perfect Factors. We start with an existence result for Perfect Factors from [8] (The-
orem 23). This result, which derives from a simple application of Construction 1.13,
is central to the work in this paper.

THEOREM 1.24. Suppose there exists an (v, p, ¢, v)-GPF and a (p,v,d,v)-PMF.
Then there exists a (pv, cd, v)-PF.

Now, from Remark 1.17(i) and Theorem 1.20, it should be clear that if there
exists an (n,e,v)-PF then we can construct an (n,m, e, v)-GPF for every positive
integer m. Combining this observation with Theorem 1.24 we obtain as an immediate
corollary the following result, first given as Theorem 5.2 of [7].

THEOREM 1.25. If there exists an (n,c,v)-PF and an (m,n,d,v)-PMF then
there exists an (mn,cd,v)-PF.

Since, by Theorem 1.12, a (1, n,d, v)-PMF exists for every n, d and v (n > v and
d > 1), we immediately have:

COROLLARY 1.26. Ifthere exists an (n,c,v)-PF then there exists an (n, cd,v)-PF
for every d > 1.

2. Sequence Sets from Cyclic Codes. In this section we will give construc-
tions for GPFs and PMFs that are based on the theory of cyclic codes. We refer to
[6, Chapter 7] for the necessary background information that we assume here.

Throughout, we assume that n is an integer and p is a prime with n = p's,
(p,s) = 1. We work with p-ary cycles and codes of length n. We define a cyclic
code of length n over Z, to be an ideal C' in the ring Z,[X]/(X" — 1). This ring
is a principal ideal domain and so C' has a generator g. We can associate with g a
polynomial ¢(X) € Z,[X] with deg¢(X) < n and ¢(X)|X" — 1. Let k£ = deg g(X).
We can then write

C={c(X)g(X)mod X" —1:¢(X) € Z,[X],degc(X) < n—k}.

and regard C' as a set of polynomials of degree at most n — 1. The code C is a
linear code with dimension n — k. We can associate with each polynomial a(X) =
ap+ a1 X + -+ ap_1 X! the p-ary n-tuple a = [ag, a1,...,a,_1]. We call the set
of tuples obtained from the elements of C' in this way the codewords of C'. We can
regard the codewords as a set of cycles. Then it is easy to see that the action of F
on a cycle is equivalent to that of multiplication of the corresponding polynomial by
X"=t mod X™ — 1. Notice also that the weight of a cycle a is equal to a(1), the value
of a(X) evaluated at 1.

We need to examine the tuples appearing in the cycles obtained from C'. Because
of the linearity of C, there is a (n — k) x n matrix G (called the generator matrix of
(') such that every codeword of C'is a linear combination of the rows of G. We can
assume that G is of the form [I,,_|A] where I,,_j denotes the (n—k) x (n—k) identity
matrix and A is an (n — k) x k matrix. Thus if the n — k values ap,a1,... ,dn_k-1
are specified, then there is a unique n-tuple a = [ag, a1, ... ,@n_k—1, Gn—k, .., An_1]
such that a € C'. This shows that every p-ary (n — k)-tuple occurs exactly once in
position zero of a codeword of C'. Since the set C' is closed under cyclic shifting, the
same is true of any position ¢ with 0 < i < n. This immediately shows that the set of
cycles obtained from any cyclic code C' form a (1,n,p,n — k)-PMF.

2.1. Some Preliminaries. We will use cosets of cyclic codes to obtain GPFs
and PMFs. The coset of C' defined by polynomial (X) is defined to be the set
C' + b(X) (addition modulo X™ — 1). We have the following lemmas:
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LEMMA 2.1. Let C be a length n cyclic code with generator polynomial g(X).
Then the coset C'+ b(X) is closed under cyclic shifting by all multiples of t positions
if and only if a(X)g(X) = b(X)(X* — 1) (mod X™ — 1) for some a(X).

Proof. The elements of C' 4+ b(X) are the polynomials ¢(x)g(X) + b(X), where
dege(X) < n—k, and a set S of polynomials is closed under cyclic shifting by all
multiples of ¢ positions if and only if X*S =S (mod X — 1). Now X'(c¢(X)g(X) +
b(X)) = Xte(X)g(X)+ X'b(X) lies in C'+b(X) if and only if X*b(X) = a(X)g(X)+
b(X) (mod X™ —1) for some polynomial a(X), which in turn is equivalent to writing
H(X) X' —1)=a(X)g(X) (mod X™ —1). 0O

LEMMA 2.2. Suppose that r < | and that for everyt with t|n and (t,p')|p"~?, we

have that the polynomial
X?—1
Xy -
(a0 51)

does not divide b(X). Then every cycle derived from the coset C' + b(X) has least
period divisible by p”.

Proof. Suppose that the condition in the statement of the lemma holds. Then
for any t with t|n and (¢,p")|p"~!, we have that (g(X), ))((7;:11) does not divide the
polynomial ¢(X)g(X) 4 b(X) for any ¢(X). Hence, for every s(X) € C + b(X),
(X' —1)g(X),X™ — 1) does not divide s(X)(X* — 1). Hence

s(X)(X* —1)#£0mod X" — 1, for every s(X) € C + b(X).

It follows from this that no cycle from C' 4 b(X) has least period divisible by ¢. Since
every such cycle has least period dividing n = p's, we deduce that p” must divide the
period of every cycle from C' 4+ 6(X). O

LEMMA 2.3. Suppose that, for everyt with t|n (t # n), the polynomial

(g(X), %)

does not divide b(X). Then every cycle derived from the coset C' + b(X) has least
period n.

Proof. Using exactly the same argument as in the proof of Lemma 2.2, no cycle
from C' + b(X) has least period divisible by ¢ for any ¢|n (¢t # n). But every cycle has
least period dividing n and the lemma follows. O

2.2. A Cyclic Code Construction for GPFs. We now have a construction
for GPFs:

CONSTRUCTION 2.4. Let n be an integer and p a prime with n = p's, (p,s) = 1.
Suppose 1 < r < 1. Let g(X) be a polynomial of degree k in Z,[X] with ¢(X)| X" — 1
and suppose X —1 divides g(X) evactly X times, where 1 < X < p'—p"~1. Let C denote
the length n p-ary code with generator polynomial ¢(X). Let b(X) = ¢(X)/(X = 1)
and define S = C' + b(X). We regard S as a set of p-ary cycles of period n. Define
an equivalence relation ~ on S by writing x ~ 'y if and only if x = E'(y) for some t.
Let R be a set of ~-class representatives. Finally, let A= {7 (a) : a€ R}.

THEOREM 2.5. Let A be constructed as in Construction 2.4. Then A is a collec-
tion of cycles such that

o cvery p-ary (n — k)-tuple occurs exactly once in a cycle of A,
o cvery cycle of A has a least period t satisfying p”|t|n.
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The result of applying Theorem 1.21 to A is a (p",n/p",p,n—k)-GPF in which each
cycle has weight equal to b(1).

Proof. Define g(X) and the sets S and A as in Construction 2.4. Notice that
each cycle in S has weight equal to ¢(1)g(1) + b(1) for some polynomial ¢(X). But
¢(1) = 0 (because X — 1]g(X)), so S has constant weight equal to 6(1).

Suppose t|n and (¢, p')|p"~!. Then in Z,[X], X* — 1 is divisible by X — 1 at most
p"~1 times, while X? — 1 is divisible by X — 1 exactly p' times. It follows that the
polynomial (g(X), ))((7;__11) is divisible by X —1 exactly A times. But b(X) = ¢(X)/X -1
is divisible by X — 1 exactly A — 1 times, so (g(X), %) does not divide b(X). From
Lemma 2.2, each cycle in .S has least period divisible by p”. Therefore the cycles in
A all have periods that are divisible by p”.

We also know that every (n — k)-tuple appears exactly once in position 0 of some
cycle derived from the code €', and so the same is true of S = C'+ b(X). Moreover,
because of the choice for H(X), by Lemma 2.1 S is closed under cyclic shifting. Tt
follows that the (n—k)-tuples occurring in a cycle a of R are exactly the (n—k)-tuples
that occur in position 0 of the cycles in the ~-class containing a. Thus the set A,
derived from R by truncation, has the property that every p-ary (n — k)-tuple occurs
exactly once as a subsequence of a cycle in A.

Theorem 1.21 guarantees that A can be used to produce a (p",n/p",p,n — k)-
GPF. Each cycle of this GPF is obtained from a cycle of A by concatenation and
shifting, and so in fact is a cycle of S. Since the cycles of S all have weight b(1), so
do the cycles of the GPF. O

The parameters of the GPFs that can be obtained from Construction 2.4 depend
heavily on the degrees of the factors of X" — 1 in Z,[X] (since we require a degree
k polynomial g(X) with X — 1|g(X)|X™ — 1). The complete factorisation of X" — 1
in Z,[X] is known [5, Theorems 2.45 and 2.47]: if n = p's with (s,p) = 1, then

X" —1=(X*=1) and

Xt —1=TJ]Ca(x)
d

where Cy(X) of degree ¢(d) is the d-th cyclotomic polynomial over Z,[X]. The poly-
nomial Cq(X) has ¢(d)/e irreducible factors of degree e, where e is the least positive
integer such that p® = 1 mod d.

EXAMPLE 2.6. We aim to construct a (2,3,2,3)-GPF and a (3,2,3,3)-GPF.
By Theorem 1.22, if these are combined using Construction 1.13, then we obtain a
(6,6,3)-PF.

We take n = 6, p= 2 and find that X° —1 = (X + 1)*(X? + X + 1)? in Z5[X].
We take r = 1 and g(X) = (X + 1)(X? + X + 1) in Construction 2.4 to obtain a
(2,3,2,3)-GPF in which each cycle has weight 1.

Similarly, X® —1 = (X — 1)3(X + 1)3 in Z3[X]. We take r = 1 and g(X) =
(X — 1)(X +1)? in Construction 2.4 to obtain a (3,2,3,3)-GPF in which each cycle
has weight 1.

Combining these two GPFs using Construction 1.13, we obtain a (6,6,3)-PF.

We now have the following theorem, whose proof gives a constructive method for
obtaining Perfect Factors having prime window size v. This theorem will be useful
when we come to analyze parameter sets for small v in §7.

THEOREM 2.7. Suppose thal p is a prime with p|c and p divides n exactly once.
Suppose further that the parameters (n, ¢, p) satisfy the necessary conditions of Lemma
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1.3. Finally suppose that for some prime q with q|(n/p), we have p =1 (mod q). Then
there exists an (n,c,p)-PF.

Proof. Let n, ¢ and p be as above. We aim to use Construction 2.4 to obtain a
(p,n/p,p, p)-GPF.

Consider the factorisation of X” —1 in Z,[X]. Because ¢ satisfies p =1 (mod ¢),
the ¢-th cyclotomic polynomial Cy(X) over Z,[X] has ¢ — 1 > 1 linear factors. Let
X —a, a # 1, be one of these. Since ¢ > 2 divides n/p, C1(X)Cy(X) divides xnlr 1.
We deduce that X? — 1 = (X — 1)?(X — «)Ph(X) for some polynomial h(X) where
(X = 1,h(X)) = 1. We take

(x" ~ 1)
(X~ (X —a)

9(X) =

so that X — 1 divides ¢g(X) exactly once and ¢(X) has degree equal to n — p. Taking
£ =7 =1in Construction 2.4, we can obtain a GPF with parameters (p, n/p, p,p).

Now because the parameters (n, ¢, p) satisfy the necessary conditions of Lemma
1.3 and p divides n exactly once, we have (n/p)|(¢/p)’. We can use Theorem 1.12 to
deduce that there exists an (n/p, p, ¢/p, p)-PMF. Combining this PMF and the GPF
constructed above using Theorem 1.24, we obtain an (n, ¢, v)-PF. O

2.3. A Cyclic Code Construction for PMFs. We now have a corresponding
code construction for PMFs:

CONSTRUCTION 2.8. Let n, p and r be non-negative integers where p is prime,
n >0 and p'|n. Let b(X), g(X) € Z,[X] (9(X)|X" — 1 and g(X) of degree k), and
suppose:

(i) 9K 1), and

(ii) (g(X), % S 1) does not divide b(X) for any t|n (t # n).

Let C' denote the length n p-ary code with generator polynomial ¢(X), and define
S =C+b(X). We regard S as a set of p-ary cycles of period n. Finally define an
equivalence relation ~ on S by writing x ~ y if and only 1f x = E“”/pr(y) for some
integer u, and let A be a set of ~-class representatives.

THEOREM 2.9. Let A be constructed as in Construction 2.8. Then A is a
(p"yn/p",p,n—k)-PMF.

Proof. Define ¢g(X) and the sets S and A as in Construction 2.8.

By Lemma 2.3, condition (ii) of the construction immediately implies that each
cycle in A has least period n.

We also know that, for every ¢ (1 < i < n), every (n — k)-tuple appears exactly
once in position ¢ of some cycle derived from the code €, and so the same is true of
S = C + b(X). Moreover, because of the choice for 6(X), Lemma 2.1 implies that
S is closed under cyclic shifting by multiples of n/p” positions. Thus, for every i
(1 <i<n/p")every (n— k)-tuple appears exactly once at a position congruent to ¢
modulo n/p" in some cycle from the set A.

The result now follows. O

As previously, the parameters of the PMFs that Construction 2.8 allows us to
obtain depend heavily on the degrees of the factors of X” — 1 in Z,[X] (since we
require a degree k polynomial g(X) with g(X)|X™ —1).

ExaMPLE 2.10. We aim to construct a (2,3,2,4)-PMF and a (3,2,3,4)-GPF.
By Theorem 1.24, these can be combined to obtain a (6,6, )

Using Construction 2.8, we take r = 1, n = 6, p = and ﬁnd that X6 — 1 =
(X + D2(X?2 + X +1)? in Z3[X]. We take b(X) =1 and ¢(X) = (X2 + X +1) to
obtain a (2,3,2,4)-PMF.
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Now, X —1 = (X —1)3(X +1)? in Z3[X]. We take r =1 and g(X) = (X —
(X 4+ 1) in Construction 2.4 to obtain a (3,2,3,4)-GPF.
Applying Theorem 1.24, we obtain a (6,6,4)-PF.

3. An Interleaving Construction for Perfect Multi-Factors. We now de-
scribe a method for constructing Perfect Multi-Factors by interleaving the cycles of
a (smaller) Perfect Factor. We subsequently use this construction method to help
construct Perfect Factors with ‘new’ parameters.

3.1. The Construction Method. CoNsSTRUCTION 3.1. Suppose ¢, n,t and v
are positive integers where ¢ > 2 and t > 2, and let A= {a; : 0 <i < c’/n} be an
(n,e,v)-PF.

Now define a set B containing 'V /n c-ary cycles of period nt by

B = {bIJ : i: (iOaila e ait—l)a (0 S is < cv/n); j = (jOajla e ajt—Z)a (0 S js < n)}
where

bij = I(aiu, E]Dail, .. ,E]’”ait_l).

We then have the following result.

THEOREM 3.2. Suppose ¢, n,t,v and A satisfy the conditions of Construction 3.1.
If B is constructed from A using Construction 3.1, then B is an (n,t,c,tv)-PMF.

Proof. Suppose y is any c-ary tv-tuple, and choose any r with 0 < r < ¢t. We
need to show that y occurs at a position congruent to » modulo ¢ in a cycle of B.

First let

Yy :I(XOaxla e axt—l)

where x,, is a c-ary v-tuple for every u. Now, y occurs at position r + st in by; (for
some s,1 and j) if and only if

s Ej"+T—1aiu+T fo<u<t—r
X, occurs at position< s+ 1 in< a;, fu=t—r
s+1 Blutr=i=ta; o, fti—r+1<u<t

Now, since A is an (n, ¢, v)-PF, there exists a unique pair of values (s,iy) for which
Xt occurs at position s + 1 in a;,. Given this value of s, then there exist unique
pairs of values: (jy4r—1,%utr) for which

Xy occurs at position s in EJutr—1a; (0<u<t—r),

wtr?

and also there exist unique pairs of values: (jyqr—1-¢, tutr—z) for which

x, occurs at position s+ 1in B/ =t=ta;, . . (t—r+1<u<t).

Thus y occurs at a position congruent to » modulo ¢ in a unique cycle of B, and
hence B is a (n,t,¢,tv)-PMF. O

ExAMPLE 3.3. Let A be the following set of five 5-ary cycles of period 5, which
constitute a (5,5,2)-PF.

ap=[00131],a, =[11242],a,=[22303], a3 =[33414],a,=[44020].
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Then, by applying Construction 3.1 with t = 2 we obtain the following (5,2,5,4)-
PMF (a set of 125 cycles of period 10 in which every 5-ary {-tuple occurs at positions
congruent to 0 and 1 modulo 2).

booy(0y =[0000113311], bggy) =[0001133110], beggy) =[0103113010]
blooy(s) =[02301103011] biggys) =[0100103113]
bo1)(o) =[0101123412], b)) =[0102143211], begyyp) =[0204123111],
bioy(a) =[0402113112], brgyyyy =[0201113214]
boz)(0) =[0202133013], bgyyq) =[0203103312], begyp) =[030013321 2]
bloz)(s) =[0003123213] bigyyu)=[0302123310]
boz)(o) =[0303143114], bgg)q)=[0304113413], begyp) =[0401143313]
blogy(a) =[0104133314], bggyyy =[0403133411],
bog)(0) =[0404103210], bgyy) =[0400123014], bayyp) =[0002103414]
boa)(s) =[0200143410] biggyu)=[0004143012]
b1oyo) =[1010214321], bygy)=[1011234120], bygyp =[1113214020],
bioya) =[1811204021], bygyyy=[1110204123],
biiayo)y =[1111224422], byyyqy=[1112244221],byyp)=[1214224121],
bii1)(s) =[1412214122], b)) =[1211214224]
b12)(0) =[1212234023], biyoyn)=[1213204322] bgym =[1310234222],
biioya) =[10138224223], bgyyy=[13122243520],
biayo) =[1313244124], bygyq)=[1314214423], bygyp) =[1411244323]
bia)ys) =[1114234324] bgyu)=[1413234421]
bigyo) =[1414204220], bryyy;)=[1410224024], byyp) =[1012204424]
bigya) =[1210244420], by =[1014244022]
bia0)(0) =[2020310331], bygyq)=[2021330130], bggyp) =[2123310030],
bao)(s) =[232130003 1], biygyu)=[2120300133]
bia1yo) =[2121320432], b)) =[2122340231], bgyyp) =[2224320131],
biory(a) =[2422310132], bgyyyy=[2221310234],
biao)(0) =[2222330033], b)) =[2223300332], bggyp) =[2320330232],
baz)(s) =[2023320233], biyoyu)=[2322320330]
biaa)y(o) =[2323340134], bogyq)=[2324310433], bagyp) =[2421340333],
biogy(a) =[2124330334], bogyyy=[2423330431],
biaa)(o) =[2424300230], b)) =[2420320034], by =[2022300434]
bos)(s) =[2220340430] biayyu)=[202434003 2],
b(ao)y(0) =[3030411341], bggy)=[3031431140], beggyp =[3133411040],
biaoy(a) =[3331401041], brggyyy=[3130401143]
bgiyo) =[3131421442], brgyy)=[3132441241], bgyyp) =[3234421141],
bs1)(s) =[3432411142] ba)u)=[3231411244]
biag)(o) =[3232431043], brgyy)=[3233401342], bggyp =[3330431242]
biagy(a) =[3083421243] by =[33324213540],
biazyo) =[3333441144], brggy)=[3334411443], bggyp) =[3431441343]
bsa)y(s) =[3134431344] bagu)=[3433431441]
biag)(o) =[3434401240], brgyy)=[3430421044], bgyyp) =[3032401444]
biagy(a) =[3230441440] by =[3034441042]
b4o)(0) =[4040012301], b)) =[4041032100], brygyp) =[4143012000],
bso)(s) =[4241002001], bygyu)=[4140002103]
bgryo) =[4141022402], brygy)=[4142042201], bryyyp) =[4244022101],
biaya) =[4442012102], bryyyyy=[4241012204],
biaoy(o) =[4242082003], brygyq)=[424530023502], byyyg) =[4534003532202],
baz)(s) =[4043022203], byoyu)=[4342022300],
biyz)yo) =[4343042104], brygy;)=[4344012403], brygyp) =[4441042303]
biagy(a) =[41440323504], brygyyy=[44430532401],
blaa)(o) =[4444002200], b))y =[4440022004], by =[4042002404],
bas)(s) =[4240042400], by ) =[4044042002]

4. An Interleaving Construction for GPFs. We now describe a method
which enables us to construct many new GPFs; it is similar to Construction 3.1, and
is actually a generalisation of Construction 3.1 of [9].

4.1. The Construction Method. CoNsTRUCTION 4.1. Suppose ¢, n,t, v are
posttive integers where ¢ > 2. Suppose also that

A= {aOaala s aac”/n—l}

is an (n,c,v)-PF. Consider the set S of all n-ary cycles x = [wo, 21, ..., 2-1] with
the property that

t-1
in =1 (mod n).
i=0
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Ifx,y € S then write x ~ 'y if and only if x = E'(y) for some i. It is simple to verify
that ~ s an equivalence relation on S which partitions S into q classes say. Now let

X = {XO,X1,~~~,Xq—1}
be a set of ~-class representatives. Next let
At = {(aiuaaiu s aait—l) DG, 84, ..., G, € A}

be the set of all t-tuples of elements of A. Now define B’ to be the collection of all
cycles of the form

I(anio ’ El‘oail ’ El‘0+$1ai2’ o El‘0+l‘1+"'+l‘t—2ait_l)’

where (g, x1,...,2i-1) € X and (a;,,a;,,...,a;,_,) € A". Hence |B'| = qc'/n’.

Finally put B = {T(z) : z € B'}. Note that whilst B' may contain duplicate
cycles, B (defined as a set) will not, i.e. duplicates are discarded.

We can now state and prove the following result.

THEOREM 4.2. Suppose ¢, n,t,v and A satisfy the conditions of Construction 4.1.
If B is constructed from A using Construction 4.1 then B is a collection of cycles with
the property that every c-ary (tv)-tuple occurs exvactly once in a cycle of B. Fuvery
cycle b € B has least period lyn, for some posilive integer by, salisfying fy|t and
(ﬁ, n)=1.

Proof. Suppose y is any c-ary (tv)-tuple. We first show that y occurs in one of
the cycles of B’. Suppose

Y= I(ZO,Zl, e azt—l)
where zg,2z1,...,%:—1 are c-ary {-tuples. Now suppose that z; occurs in cycle a,, at
position k;, for every ¢ satisfying 0 < ¢ < {. In addition we define a further n-ary
t-tuple x = (wo,#1,...,24-1) where #; = k11 — k; (mod n), for every i satisfying

0<i<t—1,and #4_1 = ko — ks—1 + 1 (mod n). First observe that x € S, since

t—1 t—2

D = (kigr — ki) + (ko —kisi+1) =1 (mod n).

1=0 =0
Hence there exists some cyclic shift of x, say

EU(X) = (l‘u, LTydly ooy Tt—1,L0, - - axu—l)a
which is a member of X. Hence if we define the n-ary ¢-tuple (vg, v1,...,v4-1) by
[0 ifi=0
Vi = Z;-:;_l z; modn  (subscripts modulo ¢) if 0 <7 <¢—1

then the following cycle is a member of B’':

v v Vi Vi_w Vi
w=T(F"a,, A F"a o Evtetay, EUtray oo BV a ).

w1
Now z,4; occurs in EVi(ay, ) at position ky4; — vy, (0 <4 <t —u), and z; occurs in
Evitt=u(a,,) at position k; — v;_yti, (0 < ¢ < u — 1), where positions are calculated
modulo n. By definition of x we also have
0 ifi=0
v; = kuyi — ky mod n Hfo<i<t—u
ky—tyi—ky+1modn ift—u<i<t-—1
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Thus z,4; occurs in £V (ag,,,) at position k,, (0 < i < ¢ — u), and z; occurs in
Evitt=w(a,,) at position k, + 1, (0 < ¢ < v —1). Hence y occurs in w at position
kut — u.

Now since a (tv)-tuple y occurs in a cycle of B', it follows (from the way in which
B was derived from B’) that y must occur in a cycle of B. Next suppose that y
occurs at two different points in the cycles of B’. Now, because A is a PF, y can
only arise from one (¢ — 1)-tuple of ‘relative shifts’ and one ¢-tuple from A*. Hence
y can only arise twice if the same (¢t — 1)-tuple of relative shifts occurs twice in the
same element of X (the same (¢ — 1)-tuple of relative shifts cannot arise in different
elements of X since X contains a unique element from each equivalence class under
~ and this class is uniquely determined by a (¢t — 1)-tuple of relative shifts). That is,
the same (tv)-tuple can only occur multiple times in two ways:

e within the same cycle of B’ or
e in two distinct cycles of B’ generated by the same set of relative shifts x and
by two different cyclic shifts of the same t-tuple of elements of A.

In both cases this can only happen when the #-tuple of relative shifts used to derive
the cycle(s) (x say) satisfies x = E'x for some i (0 < i < t). The second case is rather
easier to deal with, since in this case the resulting cycles of B’ will be identical to one
another (except for a cyclic shift). Hence the duplication will be removed when B is
derived from B’. We therefore need only consider the first case. If the same (tv)-tuple
occurs twice within the same cycle b of B’ say at positions ¢ and j, then we must
have E'b = E'b, and hence the (tv)-tuple will not be repeated within 7 (b). Hence
all the (tv)-tuples in the cycles of B are distinct.

We next consider the possible periods of the cycles in B. Suppose b = Eb for
some i (0 < i < nt). Note that we must have i|n¢. Suppose also that ' = 7 mod ¢, and
hence if x € X is used to produce b, then x = E'x and so i'|t. Now, by definition of

S, if x = [z, 21,...,2—1] then Z;;é z; = 1 mod n, and hence, since x = Eil(x), we
have
" i'—1
(Z—/) Z z; =1 (mod n).
j=0

Note that this implies that (¢/i’,n) = 1 and also that (Z;I:_Ol z;,n) = 1.
Now, since #|t and ¢ = ¢ (mod t), it follows that i’|¢, say ¢ = vé#’. Hence, since
b = E'b, we have

(this follows since the total relative shift at a displacement of ¢ in b must be zero).
But we have already observed that (Z;I:_Ol z;,n) = 1, and hence we must have n|v.
Hence ni’|i and (¢/i',n) = 1. Since we have already observed that i|nt, the desired
result on the periods of cycles in B follows. O

When we combine the above result with Theorem 1.21, we immediately have:

COROLLARY 4.3. If an (n,c,v)-PF exists, then there exists a (n,t,¢,tv)-GPF
for every positive integert.

REMARK 4.4. In fact the cycles of the GPF in this corollary can be derived directly
from the cycles in the set B’ of Construction 4.1 merely by discarding duplicate cycles

from the set (that is, without {runcating cycles as in the derivation of B from B').
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This means that each cycle in the GPF is obtained by t-fold interleaving of the cycles
of the (n,c,v)-PF.

REMARK 4.5. [t is straightforward to see that n|t"~1 if and only if (t/€,n) # 1
for every factor £ of t (except for £ = t). Hence if n|t"~L, then Construction 4.1
yields a set B of cycles of period exactly nt (in fact B = B'), and hence B is an
(nt,c,tv)-PF. This corresponds to Construction 3.1 of [9].

4.2. Examples. EXAMPLE 4.6. Let A be the (5,5, 1)-PF consisting of the single
cycle [01234]. Then, to apply Construction 4.1 to this cycle witht = 3, we first need
to define

X = {[001],[024], [033], [042], [114], [123], [132], [222], [344]}

Using this choice for X we then obtain the following set B of nine cycles (of periods
15 and 5) in which every 5-ary 3-tuple occurs exactly once.

[000111222333444], [002113224330441], [003114220331442],
[004110221332443], [012123234340401], [013124230341402],
[014120231342403], [02413], [032143204310421].

Using Theorem 1.21, the set B can be used to produce a (5,3,5,3)-GPF.

EXAMPLE 4.7. Let A be the following set of five 5-ary cycles of period 5, which
constitute a (5,5,2)-PF.

ap=[00131],a, =[11242],a,=[22303], a3 =[33414],a,=[44020].

Putt =2 and

X ={[33],[01],[42]}.

In the table below, we give the set of 65 cycles resulting from applying Construction 4.1
to A witht = 2. In each row we give the three cycles obtained by applying the three
‘shift tuples’ of X to a pair of interleaved cycles from A, with indices as marked at
the start of the row. Note that the 10 duplicate cycles (which do not count as part of
the 65 cycles) are preceded with an asterisk, and arise when the representative from
X has cyclic symmetry. Five of the cycles have period 5 and sizty have period 10,
and hence we can use these cycles to produce a (5,2,5,4)-GPF.
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[33] [01] [42]
00 [03011]  [0000113311][0100103113]
01 [0402113112],[0101123412],[0201113214],
02 [0003123213],[0202133013],[0302123310],
03 [0104133314], [0303143114],[0403133411],
04 [0200143410], [0404103210],[0004143012],
10 +[1311204021],[1010214321],[1110204123],
11 [14122], [1111224022],[1211214224],
12 [1013224223], [1212234023],[1312224320],
13 [1114234324], [1313244124],[1413234421],
14 [1210244420], [1414204220],[1014244022],
20 %[2321300031],[2020310331],[2120300133],
21 %[2422310132],[2121320032],[2221310230],
22 [20233], [2222330033],[2322320330],
23 [2124330334], [2323340134],[2423330431],
24 [2220340430], [2424300230],[2024340032],
30  %[3331401041],[3030411341],[3130401143],
31 %[3432411142),[3131421442][3231411244],
32 x[3033421243],[3232431043],[3332421340],
33 [31344], [3333441144],[3433431441],
34 [3230441440], [3434401240],[3034441042],
40  #[4341002001],[4040012301],[4140002103],
41 #[4442012102],[4141022402],[4241012204],
42 «[4043022203],[4242032003],[4342022300],
43 #[4144032304],[4343042104],[4443032401],
44 [42400],  [4444002200],[4044042002].

5. The Lempel Homomorphism and the Construction of PMFs and
GPFs. The Lempel homomorphism [4] (and its generalisation to arbitrary finite
fields), has been very widely applied in the construction of de Bruijn sequences [4],
Perfect Factors [1, 12] and Perfect Maps [13]. We now briefly show how it can be
applied to the construction of PMFs and GPFs over alphabets Z..

5.1. The Lempel Homomorphism. We first define a version of the Lempel
homomorphism on c-ary cycles, where the elements of the c-ary alphabet are taken
as the integers modulo c.

DEFINITION 5.1. We define the Lempel homomorphism D acting on c-ary cycles
to be the operator B — 1 (we will usually write E— 1 for D). Thus if ¢c,n are positive
integers (¢ > 1), and a = [ag, ay,...,an—1] is a c-ary cycle of period n, then Da is
the following c-ary cycle of period n:

[al —Qp,d2 —@1,...,0p-1 — Gp_2,00 — an—l]a

where the arithmetic ts computed modulo c.
DEFINITION 5.2. Suppose ¢,n are positive integers (¢ > 1), and let

a=lap,a,...,0,_1]
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be a c-ary cycle of period n and weight w. Then we define the pre-image of a under
D, denoted D™'a or (E—1)"1a, to be the following set of (w, c) c-ary cycles of period

ne/(w,c):

n—2
{[5,5+a0,5—|—a0+a1,...,5—1—Zai,s—l—w,s—i—w—i—ao,s—l—w—l—ao+a1,...,
i=0
n—2 n—2
5—|—w—|—2ai,5—|—2w,...,5+(c/(w,c)—1)w—|—2ai] 0<s<(w,e)}.
i=0 =0

Clearly, a € D™'Da for any cycle a. We call the operator (E — 1)~1 the Lempel
inverse homomorphism (LIH).

Of course, given a cycle a as in the above definition, we can apply (E — 1)~} to
the set (£ — 1)~!a to obtain a second set of cycles, which we denote by (E — 1)~ ?a.
Notice that the cycles of this set need not all have the same period (because the cycles
in (£ —1)71a need not all have the same weight). We can continue in this way and
write (£ — 1)~*a for the set of cycles obtained by making k applications of (F —1)~!
to a.

We also need to define the action of the Lempel homomorphism and its inverse
on c-ary tuples. For convenience we also denote these mappings by D and D~! (the
domain of the mapping should always be clear from the context).

DEFINITION 5.3. Suppose ¢, v are positive integers (¢ > 1), and let

s = (SOasla s aS’U—l)
be a c-ary v-tuple. Then define Ds to be the following c-ary (v — 1)-tuple:
(51 — 50,82 — S1,...,85t-1 — 5t—2)~

On the other hand if w = (wo, w1, ... ,wy_2) is ¢ c-ary (v — 1)-tuple, then we define
D=Yw to be the following c-set of c-ary v-tuples:

v—2
D_lw:{(5,5—|—w0,5+w0+w1,...,s—i—Zwi):SEZC}.
i=0

We will also use E —1 and (E —1)71 to denote D and D=1 acting on c-ary tuples.
We can now state the following result which follows immediately from the defini-
tions:
LEMMA 5.4. Let a be a c-ary cycle of period n, s a c-ary v-tuple and w a c-ary
(v — 1)-tuple. Then
e Ds=w if and only ifs € D™ 'w,
e if s appears in a at position p, then Ds appears in Da at position p, and
e ifs appears in a at position p, then any (v+1)-tuple of D™1s appears in some
cycle of (E — 1)~a at a position p’ with p’ = p mod n.
We use the following construction method, which is based on the Lempel inverse
homomorphism, to construct Perfect Factors, PMFs and GPFs.
CONSTRUCTION 5.5. Suppose c,r are positive integers, where ¢ > 1, and let A be
a set of c-ary cycles

{aOaala ce ,at—1}
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of periods £y, Ly, ... li_1 and weights wo,wy, ... ,wi_1 respectively. Then let B be
the following set of Zz;é(wi, ¢) cycles:

We now have:

THEOREM 5.6. Suppose ¢,m,n,v are positive integers (¢ > 1), and let A be a
set of c-ary cycles of constant weight w. Suppose also that B s derived from A using
Construction 5.5. Then

o if Ais an (n,e,v)-PF, then B is a (nc/(w,¢),c,v+ 1)-PF,
o if Ais an (m,n,c,v)-PMF, then B is a (me/(w,c),n,c,v+ 1)-PMF, and
o if Ais an (m,n,c,v)-GPF, then B is a (me/(w,c),n,c,v+ 1)-GPF.

Proof. This follows immediately from the definition of the Lempel inverse homo-
morphism and Lemma 5.4. O

By considering the special case where w = 0, we immediately have:

COROLLARY b5.7. Suppose ¢, m,n,v are positive integers (¢ > 1), and let A be
a set of c-ary cycles of constant weight zero. Suppose also that B is derived from A
using Construction 5.5. Then

o if Aisan (n,e,v)-PF, then B is a (n,c,v+ 1)-PF,
o if Aisan (m,n,c,v)-PMF then B is a (m,n,c,v+ 1)-PMF, and
o if Ais an (m,n,c,v)-GPF then B is a (m,n,c,v+ 1)-GPF.

Of course, if the set of cycles B in Theorem 5.6 or Corollary 5.7 has constant
weight, then Construction 5.5 can be applied again to B to produce a new set of cycles
which will again form a Perfect Factor/PMF/GPF. This process can be repeated to
produce a series of Perfect Factors/PMFs/GPFs with increasing window size, so long
as the cycles in each set all have the same weight. In the next section we will see
how the interleaving constructions of §3 and 4 can be combined with repeated use of
Construction 5.5 to produce a powerful set of construction methods.

5.2. Examples. ExamMpLE 5.8. The (5,2,5,4)-PMF constructed in FEram-
ple 3.3 has constant weight zero. Hence, if we apply Construction 5.5 then, by Corol-
lary 5.7, we obtain a (5,2,5,5)-PMF.

EXAMPLE 5.9. The (5,2,5,4)-GPF constructed in Example {.7 has constant
weight zero. Hence, if we apply Construction 5.5 then, by Corollary 5.7, we obtain a
(5,2,5,5)-GPF.

6. Combining Interleaving and the Lempel Homomorphism. Consider
applying one of Constructions 3.1 or 4.1 to an (n,e¢,v)-PF A. The resulting set of
cycles B will be either a (n,t,¢,tv)-PMF, a (n,t,¢,tv)-GPF or a (tn, ¢, tv)-PF. We
ask: what is the maximum number of times that Construction 5.5 can be applied to
the cycles of B whilst yielding a set of cycles of period tn? In order for the construction
to be applicable é times, we require that the set

{(E-1)"C"Yb be B}

be constant weight zero. By repeated use of Corollary 5.7, it follows that if é ap-
plications are possible whilst maintaining zero weight, then we can obtain either an
(n,t,c,tv+ 6)-PMF, an (n,t,¢,tv+ 6)-GPF or a (tn,c,tv + §)-PF.
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The answer to our question depends on the maximum value of £ such that the
set

{(E=1)%a,aec 4}

is constant weight, as well as on the prime factorisations of ¢ and ¢. Before giving the
answer, we need some preliminary results.

LEMMA 6.1. Suppose thatl ¢ does notl divide t. Then in Z.[E], E — 1 divides
E' —1 exactly once.

Proof. In Z.[F], we have E* —1 = (F — 1)g;(F) where

(B =FE" '+ B2 4 4 B4

satisfies ¢¢(1) = ¢. When ¢ does not divide ¢, we have g;(1) # 0 mod ¢ and so F — 1
does not divide g;(F). The lemma follows. O

LEMMA 6.2. Suppose that c is square-free (i.e. ¢ is a product of distinct primes).
Let t = [[;pi’* and ¢ = [[, pi®, where B; > 0 and o; = 0 or 1, be the prime
factorisations of t and c. Then in Z.[E], E — 1 divides E* — 1 ezactly & . times,
where

61, = min {pi"}

Proof. Consider first the case where ¢ is a prime p and ¢t = p”. Then in Z,|E],
B—1=p"—1=(E—-1)"

since (pf) =0mod pfor 1 <i<p’—1. Soin this case, £ — 1 divides E! — 1 exactly
t = p? times.

Now let ¢t and ¢ have prime factorisations as in the statement of the lemma.
Suppose «; = 1. Then in Z,,[E],

Et—1= (Ep’ﬂl - 1)(E(Z_1)Pzﬂ’ 4+t Epzﬂ’ + 1)
where ¢ = t/plﬂ’ is coprime to p;. So in Z,,[E],
B — 1= (E— 17" g (E»™).

But g¢(1) = £ # 0 mod p;, so we deduce that in Z,,[E], £ — 1 divides E* — 1 exactly
p;%¢ times. But, by a Chinese Remainder Theorem argument, £ — 1 divides £ — 1 at
least § times in Z.[F] if and only if it does so at least é times over each polynomial
ring Zp,[E] for which p; divides ¢. The result follows. O

Now suppose A is an (n, ¢, v)-PF and that for some w € Z., some k > 0 and for
each a € A, any cycle in (E — 1)"*a has period n and weight w. Then each a € A
satisfies

£gr -1
r—-1

(E-1)" a=[wuw,...,u] (6.1)

If w = 0, then this means that Theorem 5.7 can be applied up to k£ + 1 times to the
cycles of A to produce (n, ¢, v+ 8)-PFs for each 1 <8 < k+1. If w # 0, then we have

£gr -1

= (E-1)~% Y a=(E-Dw,w,... w=I00,...,0
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and we see that up to k applications of Construction 5.5 to A are possible to produce
(n,e,v+ 8)-PFs for each 1 < 8 < k. Theorem 5.6 guarantees that a final application
of Construction 5.5 can be used to yield a (ne/(w,¢),¢,v+ k+ 1)-PF.

Now let B be obtained from A by ¢-fold interleaving, either as in Construction 3.1
(to obtain a PMF) or as in Construction 4.1 combined with Theorem 1.21 (to obtain
a GPF). Then in either case (and by Remark 4.4 in the second case), each cycle of B
satisfies relation (6.1) but with E replaced by E*, i.e. if b € B, then

Etnr—1
(Et _ 1)(k+1)

b=[ww,...  uw].

Writing F' — 1 = (F — 1)5”Chtyc(E) where h; .(E) is not divisible by E — 1, we have,
for each b € B:

Ein—1 1
E— 1)F+Dbe " hy (E)FFT

b=[ww,...  uw].

(
Multiplying by k¢ .(E)*+1 and noting that hy .(E)*T1[w] is also a constant cycle, we
see that for some w’ (where w’ = 0 if w = 0),

B -1
r—-1

(B =1t b — [y W' ... w'], beB.

We can interpret this equation as follows. If w’ = 0 (in particular, if w = 0), then
the sequences of the set

{(B —1)~(+Dbe=D, 1 e BY

have zero weight and period tn, so that Construction 5.5 can be applied up to (k+1)é; .
times to the cycles of B. Similarly, if w’ # 0, then Construction 5.5 can be applied
up to (k4 1)é; . — 1 times to the cycles of B.

We summarise with the following theorem:

THEOREM 6.3. Suppose ¢ is square-free. Let B be a (tn,c,tv)-PF/(n,t, ¢, tv)-
PMF/ (n,t,c,tv)-GPF obtained from (n,c,v)-PF A by t-fold interleaving. Suppose
that Construction 5.5 applied k > 0 tumes to the cycles of A results in cycles of period
n all having weight w. We write £ = (k + 1)é; .. If w = 0 then Construction 5.5 can
be applied up to € times to the cycles of B, resulting in constant weight (tn,c,tv+6)—
PFs/(n,t,c,tv+ 8)-PMFs/ (n,t,c,tv + 8)-GPFs for each 1 < 6 < €. Ifw # 0 then
Construction 5.5 can be applied up to £ — 1 times to the cycles of B, resulting in
constant weight (tn,c,tv + §)-PFs/(n,t,c,tv + 8)-PMFs/ (n,t,c,tv + 6)-GPFs for
each 1 <6< /4—1.

EXAMPLE 6.4. Let A be the (5,5,2)-PF of Example 3.3. It is easy to verify that
the sequences of A satisfy

(F—1%a=[1], acA.
Ouer Zs, we have E® —1 = (E —1)® and so we can write

E5 -1
-1

(F—1"?a=(E-1)%a=][1], acA

and we can take k = 2 and w =1 in Theorem 6.3. Applying Theorem 3.2 witht = 2,
we can construct a (5,2,5,4)-PMF B. Now 635 = 1, so according to Theorem 6.3,
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Result 5.7 can be applied up to | — 1 = 2 times to the cycles of B, resulting in a
constant weight (5,2,5,5)-PMF and a constant weight (5,2,5,6)-PMF.

ExaMPLE 6.5. The (5,3,5,3)-GPF constructed in Example {.6 was obtained
from the (5,5, 1)-PF consisting of the single cycle [01234]. Arguing as in the above
example, we can take k =3 and w = 1 in Theorem 6.3 to see that Construction 5.5 can
be applied up tol—1 = 3 times to the cycles of the GPF, resulting in a constant weight
(5,3,5,4)-GPF, a constant weight (5,3,5,5)-GPF and a constant weight (5,3,5,6)—
GPF.

7. Perfect Factors for Small Windows.

7.1. A Reduction for the Existence Problem. Corollary 1.26 allows us to
make an important reduction in the sets of parameters for which we need to consider
the existence question for Perfect Factors.

Recall from the discussion in §1.2.2 that to prove Conjecture 1.4 for any fixed v,
we need only construct Perfect Factors with parameters (n,c¢,v) (n > v+ 1), where

t t
c= Hpi“ and n= Hpis’
i=1 i=1

and both 0 < s; < r;v and p;** < v for each <.
For a particular choice of ¢ and v as above, we write

C/I Hpi.

s:i7#0

Now for each i, p;** < v < p;”. Hence s; < v and so n|(¢/)?. Thus the parameters

(n,c’,v) satisfy the necessary conditions of Result 1.3. Moreover, by Corollary 1.26,
the existence of such an (n, ¢/, v)-PF implies the existence of a (n, ¢, v)-PF. So to settle
Conjecture 1.4 for v, it is sufficient to construct Perfect Factors for all parameters
(n,e,v) where n > v+ 1, ¢ = py...p; is square-free, and where n = szlpis, with
1 < s; and p;®** < v for each 1.

Notice this means that every prime p; that divides ¢ must in turn divide n.
Moreover, each p; satisfies p; < v. So to settle the existence question for any particular
v, it is sufficient to consider Perfect Factors for a finite set of alphabets (whose sizes
are products of distinct primes) and for a small set of parameters for each of these
alphabets.

We summarise the above reduction formally as

LEMMA T7.1. Suppose v > 1 is fized and that there exist (n,c,v)-PFs for every
square-free ¢ = p1...p: and every n > v+ 1 with n = szlpis, where s; > 1 and
pi®t < w for each i. Then Conjecture 1.4 is true for v.

REMARK 7.2. Note that, because v < n, t is always at least 2 in the above lemma.

7.2. Perfect Factors for v < 6. We now show that Conjecture 1.4 1s true for
v < 6. This has already been shown for v < 4. However, in order to demonstrate the
power of our new construction methods, we consider anew all v up to v = 6.

7.2.1. Perfect Factors for v = 2. For v = 2, there is no parameter set satisfy-
ing the conditions of Lemma 7.1. We conclude that Conjecture 1.4 is true for v = 2.
In fact, this means that the methods of [7] are strong enough to settle the existence
problem in this case, as already noted in the introductory section.



22 C. J. MITCHELL AND K. G. PATERSON

7.2.2. Perfect Factors for v = 3. By Lemma 7.1, we need only consider the
existence of a (6,6,3)-PF. A Perfect Factor with these parameters was obtained in
Example 2.6.

7.2.3. Perfect Factors for v = 4. Again by Lemma 7.1, only the following two
parameter sets need to be considered: (6,6,4) and (12,6,4).

A PF for the first parameter set was obtained in Example 2.10. A (12,6,4)-PF
can be obtained by applying Construction 4.1 to a (6,6, 2)-PF with ¢t = 2 (see Remark
4.5).

7.2.4. Perfect Factors for v = 5. By Lemma 7.1, only the following six pa-
rameter sets need to be considered:

(10,10,5), (12,6,5), (15, 15,5), (20, 10,5), (30,30, 5) and (60, 30, 5).

The parameter sets (10,10,5), (20, 10,5), (30,30,5) and (60,30, 5) fall to Theorem
2.7.

Consider the parameters (12,6,5). The polynomial X2 — 1 factorises as (X +
D*(X?24+ X+ 1)*in Z3[X] and as (X — 1)3(X3 4+ X? + X + 1) in Z3[X]. We take
g(X) = (X +1)(X?2+ X +1)3, p=2and r = = 2 in Construction 2.4 to obtain a
(4,3,2,5)-GPF. Similarly, we take ¢(X) = (X — 1)(X® + X? + X +1)?, p = 3 and
r = | = 1 in Construction 2.4 to obtain a (3,4, 3,5)-GPF. Combining these GPFs
using Construction 1.13, we obtain (according to Theorem 1.22) a (12,6,5)-PF.

Finally, consider the parameters (15,15,5). By considering the factorisation of
X1 —1in Z3[X] and Zs[X] and following a similar procedure to that above, we can
obtain a (15,15,5)-PF. The polynomials ¢(X) can be taken to be (X — 1)?(X* +
X34 X2+ X +1)? in Zs[X] and (X — 1)2(X2 + X + 1)* in Z5[X].

7.2.5. Perfect Factors for v = 6. By Lemma 7.1, only the following six pa-
rameter sets need to be considered:

(10, 10,6), (12,6,6), (15, 15,6), (20, 10,6), (30,30, 6) and (60, 30, 6).

PFs with parameters (12,6, 6), (20,10,6) and (60, 30,6) can be obtained by ap-
plying Construction 4.1 with ¢ = 2 to PFs with parameters (6,6,3), (10,10, 3) and
(30, 30, 3) respectively (c.f. §3.4 of [9]).

Consider the parameters (10,10,6). A (5,2,5,6)-GPF can be obtained using
the polynomial (X — 1)(X + 1)? in Z5[X]. We can obtain a (2,5,2,6)-PMF using
Construction 2.8 by taking ¢(X) = X* 4+ X3+ X? + X + 1 and b(X) = 1 in Z5[X].
Combining these using Theorem 1.24, we obtain a (10, 10, 6)-PF.

A (15,15,6)-PF can be obtained by combining GPFs constructed using the poly-
nomials (X — 1)(X*+ X3+ X? + X 4+ 1)? in Z3[X] and (X — 1)(X? 4+ X +1)* in
Z5[X].

Finally, consider the parameters (30,30,6). It is easy to see from cyclotomic
factorisations how to obtain degree 24 factors g(X) of X3% — 1 in each of Z3[X] and
Z5[X]. These can be used to construct a (3,10,3,6)-GPF and a (5,6,5,6)-GPF.
Combining these using Construction 1.13, by Theorem 1.22 we obtain a (15,2, 15,6)—
GPF. By Theorem 1.12, there exists a (2, 15,2, 6)-PMF. Applying Theorem 1.24, we
can obtain a (30,30, 6)-PF.

7.3. Perfect Factors for v = 7 and v = 8. We finally consider the existence of
perfect factors for v = 7 and v = 8, and in doing so list the smallest undecided cases.
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By Lemma 7.1, for v = 7, the following 17 parameter sets need to be considered:

(10,10,7),  (12,6,7),  (14,14,7),  (15,15,7), (20,10,7), (21,21,7),
(28,14,7),  (30,30,7),  (35,35,7),  (42,42,7), (60,30,7), (70,70,7),
(84,42,7), (105,105,7), (140,70,7), (210,210,7),  and (420,210, 7).

All these parameter sets, except (10, 10,7), (12,6,7), (15,15,7), (20, 10, 7), (30, 30,7),
(35,35, 7) and (60, 60, 7), fall to Theorem 2.7. Constructions based on cyclic codes can
be used to build PFs for six out of these seven remaining sets (we omit the details),
the parameters (10,10, 7) resisting attack by such methods.

Similarly when v = 8, fourteen of the twenty-four parameter sets that remain
after applying Lemma 7.1 fall to Construction 4.1 with ¢ = 2. All but one of the
remaining ten sets then fall to constructions based on cyclic codes. The parameter
set (10,10, 8) remains undecided.

One reason for the difficulty with the sets (10,10, 7) and (10, 10, 8) is that X% —1
has no factors of degrees 2 or 3 in Z5[X] that are suitable for use in our cyclic code
constructions. If a (10,10, 7)-PF and a (10, 10, 8)-PF could be shown to exist, then
Conjecture 1.4 would also be true for v < 8. Such PFs would contain 10% and 107
cycles of period 10, respectively, and as such appear to be out of the reach of computer
search.

8. Conclusions. We have provided further evidence to support the conjecture
that the necessary conditions of Lemma 1.3 are sufficient for the existence of a Perfect
Factor. Indeed it is probably possible to extend our case by case analysis to cover
most parameter sets for v = 9 and beyond.

More importantly, we have provided new and powerful construction methods
which may have the potential to help establish the conjecture for general v. In this
direction it may be worthwhile examining in more detail the different ways in which
these methods can be combined to produce Perfect Factors. We have already done
this for interleaving combined with the Lempel inverse homomorphism in §6 of this
paper.

It 1s also worth noting that we have only used the coding-theoretic methods
developed here to attack the existence question for small v. However, even for small v,
these methods do have some limitations, as illustrated by our failure with parameters
(10,10,7) and (10, 10, 8). Indeed, it is not hard to show that if p > 5 is prime and 2 is
primitive modulo p, then X?” —1 has factorisation (X +1)*(XP~1 4+ XP=24... 4 1)? in
Z-[X]. So, in this case, X?P —1 has no factors of degrees 2,3, - - - , p—2 that can be used
in our cyclic code constructions. This means that the cyclic code techniques in this
paper cannot be used to help construct (2p, 2p, v)-PFs for any v with p4+2 < v < 2p—2.
These are examples of parameter sets for which no construction methods are currently
known.

9. Acknowledgement. We would like to thank an anonymous referee for valu-
able comments.
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