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In a one-dimensional Heisenberg chain, we show that there are no sets of coupling strengths
such that the evolution perfectly transfers a quantum state between the two ends of the chain
without the addition of magnetic fields. In lieu of perfect transfer, we consider a range of options
for achieving high quality transfer, whether in finite time, or via “pretty good” transfer where one
waits long times in the hope of getting arbitrarily close to perfect transfer. In attempting to engineer
arbitrarily accurate transfer, we explore a new paradigm that facilitates time estimates for achieving
any target accuracy ε for the transfer.

I. INTRODUCTION

True mastery of a physical theory is demonstrated
when we transition from observing physical phenomena
to explaining them, and ultimately to controlling them,
seeking to induce particular behaviour for a practical pur-
pose. This is the aim for the burgeoning field of quantum
technologies. The myriad challenges, with decoherence
taking centre stage, are apparent in the fact that we still
remain some distance from a fully operational, universal,
scalable quantum computer. Many quantum technolo-
gists are thus focussed on simpler, short-term applica-
tions with more limited scope. Nevertheless, achieving
control of multiple quantum bits and maintaining coher-
ence remains a challenge.

Reduced complexity of control sequences, and imple-
mentation time, can have a huge impact on the practical-
ity of any given protocol. In scenarios such as the transfer
of a quantum state [1–3], the generation of GHZ states
[4, 5] and optimal cloning [5], it is possible to almost
entirely dispense with time varying control of a system
by relying upon the evolution of a carefully tuned, fixed,
Hamiltonian. These protocols even demonstrate a re-
duction in implementation time, and hence decoherence,
compared to the traditional gate model. The underlying
theory is broadly applicable, including the Heisenberg
and exchange models, which in turn translate to a wide
range of experimental scenarios including the solid state
[6, 7], trapped ions [8], or even photonic systems [9, 10].

What are the ultimate limits of these restrictions? We
will primarily focus on state transfer, as it is the best un-
derstood, but other state synthesis tasks [5, 11, 12] could
be considered. Perfect transfer for uniformly coupled sys-
tems is impossible in all but the shortest chains [1, 13].
Magnetic fields can be added that enhance the quality of
state transfer [14], but perfect transfer remains impossi-
ble [15] without engineering the coupling strengths.

In this paper, we take the counterpoint of that ap-
proach, using engineered couplings, but ‘field-free’, i.e.
with no (or uniform) magnetic fields. This would further
reduce the experimental control required in synthesising
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the Hamiltonian. Such a restriction creates a distinction
between different Hamiltonian models, such as the ex-
change and Heisenberg models. In Section II, we shall
see that although the field-free restriction is largely irrel-
evant to the exchange Hamiltonian, perfect state transfer
is impossible with a field-free Heisenberg model.

In the absence of perfect transfer, we consider the po-
tential for high quality state transfer in Sec. III and give
estimates on the minimum time to achieve this, draw-
ing negative comparisons with the field-full case. Sec. IV
considers another possibility that remains: arbitrarily ac-
curate transfer. One possible definition of this, “pretty
good transfer”, has been studied for uniformly coupled
systems of both the Heisenberg and exchange variety [16–
18]. However, no time estimates have been forthcoming.
Here, we define a new paradigm that is appropriate to
engineered systems. Although our best time estimates
are comparable to the age of the Universe, and consis-
tent with extrapolations from previous studies of perfect
recurrences [19–21], there are good prospects for improve-
ment; we discuss some options in Sec. IV B and assess the
potential that they engender.

A. Perfect State Transfer

We start by reviewing the context and requirements for
perfect state transfer. For excitation preserving Hamil-
tonians, i.e. where the Hamiltonian satisfies[

H,

N∑
n=1

Zn

]
= 0,

and Zn is the Pauli-Z matrix applied to qubit n of N , it
is sufficient for us to focus on the problem of excitation
transfer for a single excitation, which must evolve within
the single excitation subspace, i.e. the space in which
there is always exactly one qubit in state |1〉, and the
others in |0〉. If an evolution of the form

e−iHt0 |1000 . . . 0〉 = eiφ |00 . . . 01〉

can be achieved for some phase φ, then when an unknown
state |ψ〉 is placed on the first qubit of a chain that is
otherwise in the state |0〉⊗(N−1), that state is perfectly
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transferred to the final spin, up to a corrective phase
gate. The time t0 is known as the state transfer time.

Two standard Hamiltonian forms, Heisenberg and ex-
change, model a wide variety of experimental systems.

HEx =1
2

N−1∑
n=1

Jn(XnXn+1 + YnYn+1) + 1
2

N∑
n=1

BnZn

(1)

HHeis =HEx + 1
2

N−1∑
n=1

JnZnZn+1 (2)

(Here we consider a one-dimensional geometry.) The two
are equivalent from the perspective of the single excita-
tion subspace, both mapping to an arbitrary real, sym-
metric, tridiagonal matrix. For that reason, the literature
often hasn’t needed to distinguish between which under-
lying model is chosen: any difference can be absorbed
into the {Bn}. One exception is studies of transfer in
uniformly coupled systems, Jn = 1, Bn = 0 [1, 16–18],
where choice of model is crucial1.

Requiring a field-free Hamiltonian, in which {Bn} = 0,
similarly separates the two models. For the exchange
model, this imposes that eigenvalues must occur in ±λ
pairs (with a 0 if the chain length is odd), while for the
Heisenberg model, one of the eigenvalues must be 0, and
the null vector must be the uniform superposition of all
sites. How do these restrictions impact upon perfect and
pretty good state transfer protocols?

When the single excitation subspace can be described
by a real symmetric tridiagonal N×N matrix, the condi-
tions for perfect state transfer within the 0/1 excitation
subspaces are well understood [3]:

Lemma 1. End-to-end perfect state transfer can be
achieved in a nearest-neighbour coupled chain with pos-
itive couplings Jn > 0 in time t0 if and only if (i)
the system is centrosymmetric (Jn = JN−n and Bn =
BN+1−n); and (ii) the ordered eigenvalues {λn} satisfy
(λn − λn+1)t0/π ∈ 2N− 1.

Select any spectrum that satisfies those properties and
you can reverse engineer the couplings that yield that
spectrum via an inverse eigenvalue problem [22, 23].
Thus, it is simple to specify appropriate spectra and de-
sign corresponding chains. Indeed, the standard choice
[2] uses a spectrum 0,±1,±2,±3, . . . and is consequently
field-free for the exchange model.

Since all perfect state transfer systems have a perfect
revival, wherein the excitation reappears perfectly on the
input site, at time 2t0, it is often helpful to consider the
conditions for a perfect revival/recurrence.

1 Another notable exception is when multiple excitations are con-
sidered, where analysis of the exchange Hamiltonian is facilitated
by the Jordan-Wigner transformation.

Lemma 2. The first site on a nearest-neighbour coupled
chain with positive couplings Jn > 0 exhibits a perfect
revival in time tr if and only if the ordered eigenvalues
{λn} satisfy (λn − λn+1)tr/π ∈ 2N.

B. Pretty Good Transfer

In most scenarios where coupling strengths can be en-
gineered, perfect transfer is possible, and the only discus-
sion that can remain is whether high quality transfer can
be realised at shorter times. However, we will see that
perfect transfer for the field-free Heisenberg model is im-
possible, which leaves a broad spectrum of possibilities.
Is high quality transfer possible? How long does it take?
A limiting case is arbitrarily accurate state transfer. This
has been formalised as ‘pretty good transfer’, wherein it
is required that for any error ε > 0, there should exist a
time tε > 0 such that the fidelity satisfies

F := | 〈00 . . . 01| e−iHtε |1000 . . . 0〉 |2 > 1− ε.

A characterisation of pretty good transfer was given in
[18], and is here adapted to the specific scenario:

Lemma 3. End-to-end pretty good state transfer can be
achieved in a nearest-neighbour coupled chain with posi-
tive couplings Jn > 0 if and only if (i) the matrix describ-
ing the single excitation subspace is centrosymmetric; and
(ii) for all sets of integers {li} such that

∑
i liλi = 0 and∑

i l2i is odd,
∑
i li 6= 0.

For the field-free Heisenberg model, the second con-
dition simplifies to the requirement that if

∑
i liλi = 0,∑

i l2i must be even because λ1 = 0, so l1 can be chosen
arbitrarily. We also note that the analysis here is closely
related to the idea of perfect revivals (we shall make this
connection more explicit later). In the case where there
are no sets of integers {li} such that

∑
i liλi = 0, there

are useful estimates on the times at which perfect revivals
occur [19–21]. However, the point that these estimates
make is that even for modest sized systems, the recur-
rence time is longer than the age of the Universe, and
that this is not a useful phenomenon.

II. THE IMPOSSIBILITY OF PERFECT
TRANSFER

We will now prove our main claim – that with the ex-
ception of N = 2, there are no end-to-end perfect trans-
fer chains for the field-free Heisenberg model. Our proof
strategy is reminiscent of one used in [24]. First, we ob-
serve that if h is the restriction ofH on the first excitation
subspace, then in the field-free case it must satisfy

h

N∑
n=1
|n〉 = 0,
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and h is non-positive. Here we are using {|n〉} as a basis
of the N -dimensional space. One can think of |n〉 as
specifying that there is a |1〉 on qubit n, and |0〉 on all
other qubits. This tells us that the matrix must have a
specific null vector |λ1〉 as well as the desired spectrum.
This is closely connected with recent studies of quantum
state synthesis [11] which also tried to fix a spectrum and
a null vector. In particular, this imposes

〈λ1|1〉2 = 1
N
.

It is this which we shall show is impossible by virtue
of the fact that the denominator contains no more than
blog2(N)c factors of two. Since the chain is centrosym-
metric, as required by Lemma 1, if we know the eigen-
values, we can write down the first elements of the eigen-
vectors. In particular,

〈1|λn〉2 = R
(−1)n+1

N∏
m=1
m 6=n

(λn − λm)
(3)

for some constant of proportionality R such that∑
n 〈1|λn〉

2 = 1 [23]. Without loss of generality, we can
take the λn to be integers pn of alternating parity. Any
constant of proportionality would simply be incorporated
into the R and hence cancelled.

Lemma 4. In a chain capable of perfect end-to-end state
transfer, R must be rational and its irreducible form must
contain at least one factor of 2 in the denominator.

Proof. This has previously been proven in Lemma 4 of
[24]. However, we shall now give an alternative proof.

We henceforth focus on writing R with a common
denominator, and determining how many factors of
two are in the numerator. By symmetry 〈1|λn〉 =
(−1)n+1 〈N |λn〉 and

∑
n 〈1|λn〉 〈λn|N〉 = 〈1|H |N〉 = 0.

We can thus subtract the two conditions, leaving

2R
bN/2c∑
n=1

1∏N
m=1,m 6=2n(λ2n − λm)

= 1.

We put this all over a common denominator, which would
start as being

∏
n,m:2n 6=m(λ2n − λm). However, there

will be many factors in the numerator that will cancel.
We’re focussed on counting factors of two, which means
we’re only concerned with even terms, which only arise
as (λ2p − λ2q). Every term in the sum over n contains
the factor (λ2p− λ2q) except for two: n = p, q. However,
consider these terms which, up to a common factor, are

λ2q

N∏
m=2

n 6=2q,2p

(λ2q − λm) + (−1)2q−2p−1λ2p

N∏
m=2

m 6=2p,2q

(λ2p − λm).

(4)
Since 2q−2p−1 is always odd, Eq. (4) is an odd function
of (λ2q − λ2p). Hence, the entire numerator has this as

a factor, which can be cancelled from the denominator.
Repeating for all such factors cancels all even terms from
the denominator of 1/2R. R is a rational number with
an even denominator in the irreducible form.

Theorem 1. No field-free Heisenberg chains of length
N ≥ 3 are capable of perfect end-to-end state transfer.

Proof. For a Heisenberg chain with positive coupling
strengths, the largest eigenvalue is λ1 = 0. Thus,

〈1|λ1〉2 = R
(−1)N−1

N∏
m=2

λm

.

As before, it is sufficient to consider the λm being inte-
gers, such that R is rational with a factor of 2 in the de-
nominator. Moreover, the values λ2m are odd and λ2m−1

are even. Hence the product
N∏
m=2

λm contains at least

b(N −1)/2c factors of 2. Thus, any chain that is capable
of perfect end-to-end transfer must have a rational value
of 〈λ1|1〉2, with the denominator of the irreducible form
containing at least b(N + 1)/2c powers of two. Since the
field-free Heisenberg chain has 〈λ1|1〉2 = 1

N , this contains
at most blog2 Nc factors of 2.

The only instances in which we can reconcile
blog2 Nc ≥ b(N + 1)/2c are N = 2, 4. The first of
these is well known [1]. We eliminate N = 4 by re-
peating the proof and explicitly setting the spectrum to
(0, 2a+ 1, 2b, 2c+ 1). This fixes

〈1|λ1〉2 = − (2a+ 1− 2b)(2c+ 1− 2b)
8b(a+ c+ 1− b) .

Since the denominator contains a factor of 8 and the nu-
merator is odd, this cannot be 〈1|λ1〉2 6= 1

4 . We conclude
that, no matter how you choose the coupling strengths of
a chain, the only field-free Heisenberg model to exhibit
end-to-end perfect state transfer is the N = 2 case.

These results are consistent with previous results
[25, 26] on uniform weighted graphs with the Heisenberg
model (for which the Hamiltonian in the single excitation
subspace is just the Laplacian of the graph).

III. SPECTRAL CONSTRAINTS ON
FIELD-FREE HEISENBERG MODELS

In the absence of perfect state transfer, we are now on
a mission to see what properties we can recover. Are per-
fect revivals still possible? Is high fidelity transfer possi-
ble? What is the minimum required time (as a function
of chain length) to achieve a high transfer fidelity?

Our understanding of state transfer is intimately linked
with the spectral properties of the chain. As such, we
wish to understand some constraints on that spectrum.
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Lemma 5. If the maximum coupling strength of a field-
free Heisenberg model is constrained to Jmax, then the
ordered eigenvalues λn are bound by

λn ≥ 2Jmax

(
cos
(
π(n− 1)

N

)
− 1
)
.

Proof. Let E =
∑N−1
i=1 |i〉〈i| −

∑N−1
i=1 |i+ 1〉 〈i|, Ji =

JmaxJ̃i and J̃ =
∑N−1
i=1 J̃i |i〉〈i|. The matrix h =

−JmaxEJ̃E
T is similar to h̃ = −JmaxJ̃E

TE (two matri-
ces AB and BA are similar, so let A = E and B = J̃ET ).
For any two matrices A,B, their ordered singular values
satisfy σi(AB) ≤ σi(A)‖B‖ [27]. The singular values are
the absolute value of the eigenvalues, which are negative
for h and h̃. Since ‖J̃‖ = 1, it must be that

λn ≥ Jmaxηn

where ηn are the eigenvalues of −ETE [1]:

ηn = 2 cos
(
π(n− 1)

N

)
− 2.

The lemma reveals some crucial properties. For exam-
ple, the smallest eigenvalue gap can be no larger than
2Jmax(1 − cos π

N ) ∼ π2Jmax
N2 . Had perfect transfer been

possible, this indicates that the transfer time scales as
∼ N2/Jmax. This is O(N) worse than the fastest trans-
fer that was possible with the exchange model [28, 29]. It
also shows that in models where perfect revival is possi-
ble, the perfect revival time must scale in the same way.

Moreover, even in the case of imperfect state transfer,
this result strongly suggests that it will require a time
Ω(N2/Jmax) in order to achieve high fidelity. To see
this, recall Equation (3) – a large weight for | 〈1|λn〉 |2
is achieved for those eigenvectors with the closest eigen-
value spacings. Since one needs the eigenvalue conditions
of perfect state transfer to at least be approximately sat-
isfied on a subset of eigenvalues whose total weight is
large in order to get high quality transfer, it is strongly
indicated that the relevant gaps will be O(Jmax/N

2).
Again, since we can already perform vastly better with
the introduction of a magnetic field, the use of the ex-
change model, or a very minimal amount of control [30],
these use cases are largely eliminated. Nevertheless, for
completeness, we wish to enumerate some possibilities.

A. Perfect Revivals in a Field-Free Setting

Since perfect state transfer models all have a perfect
revival, it is natural to wonder whether any field-free
Heisenberg model can exhibit perfect revivals. We have
already seen that the minimal time for such a revival is
Jmaxt0 ∼ N2. We now report a set of couplings that sat-
urates this scaling. This model was first stated in [31],

although was not recognised as a field-free Heisenberg
model, and is based on the Hahn polynomials:

Jn = n(N − n). (5)

The spectrum is {−n(n− 1)}Nn=1. The eigenvectors |λn〉
are given in [31], including the final elements:

| 〈λn|N〉 |2 = (2n− 1)(N − 1)!2

(N + n− 1)!(N − n)! =
(2N−2
N−n

)
−
( 2N−2
N−n−1

)(2N−2
N−1

) .

(6)
Since every eigenvalue is an even integer, this chain has a
perfect revival at time t0 = π, with 0 phase (i.e. Jmaxt0 =
N2π/4, which is only a factor of π2/8 longer than the
predicted limit). While the matrix is centrosymmetric,
its eigenvalues are not compatible with perfect transfer
at time π/2 for N > 2.

B. Numerical Solutions for High Fidelity Transfer

We now wish to construct some high transfer fidelity
examples of Heisenberg chains, where the high fidelity is
achieved at close to the optimum time (rather than wait-
ing arbitrarily long times, as in Sec. IV). To do this, we
note that the similarity transforms of Lemma 5 hint at
a very close connection to the uniformly coupled case.
As such, we use this as our starting point and recall
the numerical perturbative strategy of [22]: we fix the
smallest eigenvalue gap, δ, and try to perturb the sys-
tem such that subsequent gaps are integer multiples of
δ. Since this would yield perfect transfer at t0 = π/δ
(which is O(N2)), Theorem 1 proves that it is impossi-
ble to achieve with all eigenvalues. Parameter counting
suggests that it should be possible with approximately
N/2 of the eigenvalues – we have bN/2c coupling param-
eters in a symmetric system, suggesting we can control
about this many eigenvalues. To maximise the fidelity,
we choose to fix the eigenvalues with the largest weights
of the eigenvectors on the first/last site.

Given the perturbative strategy, the eigenvector ele-
ments are close to those of the unperturbed system [1],

| 〈1|λn〉 |2 = 2− δn,1
N

cos2
(
π(n− 1)

2N

)
.

The total weight of the ‘good’ eigenvectors is then

W =
N/2∑
n=1

2− δn,1
N

cos2 π(n− 1)
2N = N − 1

2N + 1
2N tan π

2N
.

In the large N limit, we have W → 1
2 + 1

π ≈ 0.82. A
typical excitation fidelity can be expected to be about
Fex = W (all the ‘good’ eigenvalues aligning perfectly,
and the unfixed ones randomly distributed), yielding a
state transfer fidelity of F = 1

3 + (1 +
√
Fex)2/6 ≈ 0.94

while the excitation transfer fidelity should be no worse
than Fex = 2W − 1 (all the ‘good’ eigenvalues aligning
perfectly, and the others destructively interfering).
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FIG. 1. Time evolution of a field-free chain of 51 qubits, mod-
ified from a uniform coupling to ensure high quality transfer.

In terms of the perturbative strategy we require, we
can introduce a multiplicative change

JmaxJ̃
(n+1)2 = JmaxJ̃

(n)(1 + δJ). (7)

The new eigenvalues λ(n+1)
m can be written as an update

from the previous values up to O(δJ2),

λ
(n+1)
m − λ(n)

m

λ
(n)
m

=
〈
λ(n)
m

∣∣∣ δJ ∣∣∣λ(n)
m

〉
. (8)

Note that these eigenvectors
∣∣∣λ(n)
n

〉
are the eigenvectors

of J̃ETE, not our original matrix EJ̃ET . This is a linear
problem for the change in coupling strengths δJ that
we can solve and iterate towards improved values. In
practice, we achieve convergence to machine precision to
the target parameters within about 5 steps. For instance,
we created a chain of 51 qubits with an excitation transfer
fidelity of Fex = 0.749 by fixing the 25 largest non-zero
eigenvalues. The evolution is depicted in Fig. 1.

IV. PRETTY GOOD STATE TRANSFER

The impossibility of perfect transfer in a field-free set-
ting conveys nothing about what can be achieved in the
case of pretty good state transfer, where one assesses
whether arbitrarily accurate transfer can be achieved by
waiting long enough. This is because the eigenvalues are
no longer constrained to have the perfect integer spacing.
Indeed, pretty good transfer has been demonstrated in
some cases of uniform field-free Heisenberg models [18].
To date, these analyses lack an estimate of the time tε to
achieve a particular maximum error ε.

We might approach a rough estimate in the follow-
ing way. Firstly, we note that a pretty good transfer is
achieved by finding a tε and integers pn such that

|λntε/π − pn − γ| < ε

where e−ipnπ = (−1)n+1. Clearly, this means that

|2λntε/π − 2pn − 2γ| < 2ε.

In other words, a pretty good transfer of inaccuracy ε
in time tε will yield a pretty good revival (inaccuracy
2ε) in time 2tε. Since the converse need not be true,
estimating the length of time for perfect revivals gives a
lower bound on the length of time for perfect transfer.
There have been a number of such attempts [19–21], but
these all assume that the eigenvalues are independent
over the rationals, which is not the case (see, e.g. [18]).
They all estimate a time of order ε−N for system size N
and accuracy ε, and conclude that even for very modest
systems, this time is longer than the age of the Universe.
We conjecture that a good estimate on the time can be
determined by replacing the system size N in ε−N with
the number of independent eigenvalues. This suggests
that it would take highly exceptional cases to permit a
reasonable protocol based on pretty good transfer.

Can we construct pretty good transfer instances for
an engineered field-free Heisenberg chain? Obviously, we
would like to make the time tε as small as possible. One
promising strategy is to recognise that our chain, which
we now fix to be of length 2N , must possess mirror sym-
metry (must be centrosymmetric).

J1 J2 J3 J4 a J4 J3 J2 J1

Hence, we can decompose the chain into symmetric and
antisymmetric subspaces, each being an effective chain of
length N . The symmetric subspace can be depicted as

J1 J2 J3 J4

where each link corresponds to a Heisenberg coupling of
the indicated strength. The antisymmetric subspace is

J1 J2 J3 J4
2a

where the 2a term acts as an additional effective magnetic
field. In this picture, perfect state transfer is just the
process of transferring

(|1〉+ |2N〉) + (|1〉− |2N〉)→ (|1〉+ |2N〉)− (|1〉− |2N〉).

In other words, both effective chains want perfect revivals
at the same time, with a relative phase of π between the
two reviving states. Hence, if we can build the symmet-
ric chain so that it has perfect (rather than arbitrarily
accurate) revivals, that is half the challenge completed.
Indeed, it halves the number of rationally independent
eigenvalues, and the time estimate is essentially that of
the perfect revival for just the anti-symmetric chain (re-
inforcing our conjecture about the role of N).

For the sake of concreteness, we can use the analytic
solution specified in Sec. III A. We still have freedom to
select the parameter a in order to try and encourage that,
for the antisymmetric subspace: (i) a pretty good revival
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occurs at some integer multiple of t0, and (ii) the phase of
the reviving state is −1 relative to the symmetric space.
Since pretty good revivals are generic [32], we should con-
centrate on the relative phase. Let the eigenvalues of the
symmetric subspace be λn, and those of the antisymmet-
ric subspace be λ−n . They satisfy an interlacing property
λn > λ−n+1 > λn+1. The symmetric subspace has perfect
revivals at all times kt0 for k ∈ Z. Now, let’s assume
that, at time t1 = kt0, the antisymmetric subspace has a
perfect revival, but with phase φ. Since

(λ−n − λn)t1 = φ+ 2pπ,

it follows that∑
n

λ−n −
∑
n

λn = Nφ+ 2qπ
t1

.

The left-hand side is just Tr(H+)−Tr(H−) = 2a, where
H± are the anti/symmetric subspaces of the Hamilto-
nian in the single excitation subspace. If t1 = t0, q = 0
(different integer values can be chosen here) and φ = π,
then at every second opportunity of perfect revival on
the symmetric subspace, (2k+ 1)t0, the phase on the an-
tisymmetric subspace is −1. So, if its pretty good revival
coincides with that time, it will work. Hence, we would
set a = N/2. However, to date, we have not proven a
single case that satisfies Lemma 3.

A. Perturbative Approach

Instead, let us return to the basic construction of our
model for pretty good transfer, with Hamiltonian h(a)
based on the single parameter a coupling two copies of
the perfect revival chain that we introduced in Eq. (5),
so that we have perfect revivals on the symmetric sub-
space. We will take advantage of the possibility to change
coupling strengths, not available when studying uniform
coupling, to demonstrate a “pretty good route” towards
arbitrarily accurate state transfer.

Definition 1. The Hamiltonians h(a) present a pretty
good route to state transfer if, for any target accuracy ε
there exists a parameter aε such that h(aε) achieves a
state transfer fidelity of at least 1− ε in a time tε.

Instead of just adjusting t, we have the possibility to
adjust a as well, making the analysis much simpler.

In particular, let us take a � 1, permitting a pertur-
bative expansion in the antisymmetric subspace:

λ−n ≈ λn + 2a| 〈λn|N〉 |2 +O(a2).

Provided a is small enough, the O(a2) terms are negligi-
ble. At times kt0 for k ∈ N, we know that λnkt0/π is an
even integer. If 2a| 〈λn|N〉 |2kt0/π is an odd integer, we
have perfect transfer up to the accuracy of the pertur-
bative expansion, O(ka2). Eq. (6) identifies the values

| 〈λn|N〉 |2. Let a be a very small rational number, and

k = 1
2a

(
2N − 2
N − 1

)
= 1

2a | 〈λN |N〉 |
2.

In the special case of N = 2r, Kummer’s Theorem
conveys that

(2N−2
N−1

)
| 〈λn|N〉 |2 must be odd. Hence,

2a| 〈λn|N〉 |2k is an odd integer for all n, as required.
The only error in the state transfer process is the result
of the perturbative expansion. Thus, a → 0 yields a
pretty good route to state transfer. The fidelity is

F =

∣∣∣∣∣12 − 1
2

N∑
n=1

∣∣〈1∣∣λ̃n〉∣∣2 e−iλ−
n kt0

∣∣∣∣∣
2

=

∣∣∣∣∣12 + 1
2

N∑
n=1

∣∣〈1∣∣λ̃n〉∣∣2 e−iδλnkt0

∣∣∣∣∣
2

where
∣∣λ̃n〉 are the new eigenvectors and δλn ∼ a2 is the

error in the new eigenvalues not taken into account by
the first order approximation. This gives that F = 1 up
to a term O(k2a4). Hence, if we select

a ∼
√
ε

ka
=

√
ε(2N−2

N−1
) ,

any desired accuracy ε can be achieved for fixed N . The
state transfer time consequently scales as

T ∼ 1√
ε

(
2N − 2
N − 1

)2
∼ 4N

N
√
ε
. (9)

Note that, in particular, this gives an exponential im-
provement in dependence upon ε as N changes com-
pared to our rough predictions for the standard concept
of pretty good transfer. Nevertheless, times are still pro-
hibitive. Even for N = 4, a time of 12000t0 is required
in order to achieve an ε < 10−5, while for N = 16, we
already require a time > 1017t0. This is an inherent flaw
in our chosen route, being severely impacted by such a
small value of a and the corresponding time necessary to
acquire sufficient phase difference between the symmetric
and antisymmetric parts of the chain.

1. Scaling Improvement

Imagine that we want to achieve an ε that is larger than
2| 〈λN |1〉 |2 (for the sake of this argument, we will neglect
the difference between | 〈λN |1〉 |2 and |

〈
λ̃N
∣∣1〉 |2). This

already allows us to achieve the scale required for fault
tolerance, even at N = 8. In this case, it is not necessary
to get a phase of −1 from every eigenvalue. Even in the
worst case where the last eigenvector gives a phase of +1,
we can achieve the fidelity | 12 + 1

2 (1−2| 〈λN |1〉 |2)|2 > 1−ε.
In principle, this can be achieved for a smaller value of k
than used above, and hence the time can be shortened.
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Taking this as a serious proposition, we keep only the
largest M eigenvalues. The total weight of these terms is∑M

n=1
(2N−2
N−n

)
−
( 2N−2
N−n−1

)(2N−2
N−1

) = 1−
( 2N−2
N−M−1

)(2N−2
N−1

) ,

facilitating a fidelity

F ∼ 1− 2
( 2N−2
N−M−1

)(2N−2
N−1

) > 1− 2
(

N − 1
N −M − 1

)M
.

Assuming M � N , F ∼ 1 − 2e−M2/N . Thus, we are
motivated to select M ∼

√
N log 1

ε .
What improvement in k can be expected by using only

O(
√
N) eigenvectors instead of all N? The best time is

readily calculated for a particular case:

k = 1
2agcd

{(
2N − 2
N − n

)
−
(

2N − 2
N − n− 1

)}M
n=1

. (10)

Again, for N = 2r, we are already guaranteed that all
the integer values will be odd (it may be that by neglect-
ing some values, other N also become a possibility). To
proceed analytically, we assume k = 1

2a
(N+M)!
(N−1)! , as this is

certainly sufficient to remove the denominators from all
the {2a| 〈λn|1〉 |2}Mn=1, although it may not be the opti-
mum value. This means that the time scales like

T ∼ (N +M)2M ∼ e
√
N log 1

ε logN+log2 1
ε ,

which is a marked improvement over Eq. 9 (but cannot
be used to arbitrary ε). Nevertheless, the times remain
prohibitive for all but the shortest chains.

B. Future Prospects

The pressing question for the future is whether some
development of the current methodology could present
better run-times. Obviously, it would be better if we
could move out of the perturbative regime for a, as
this is one assumption that severely suppresses the rela-
tive dynamics between the symmetric and antisymmetric
subspaces. However, the other factor that has an even
stronger effect is the variation in values | 〈λn|1〉 |2. If
we could instead engineer a field-free Heisenberg chain
with perfect revivals and much more similar values of
| 〈λn|1〉 |2 (that, for example, have a smaller common
denominator), that would have a far greater impact on
the scaling time. Conceivably, the best that could be
achieved is with | 〈λn|1〉 |2 = 1

N for all n, which would
simply require ak = N . This would yield a time T ∼
N2/
√
ε. If such a scaling could be achieved, pretty good

transfer has a chance of being a relevant protocol. How-
ever, the conditions of perfect revival and | 〈λn|1〉 |2 = 1

N
cannot be realised even for N = 3 in a field-free model
(a spectrum 0,−1,

√
3−2 is required, up to scaling), and

for N = 4 there are no field-free Heisenberg models with

FIG. 2. Error ε in state transfer due to a mirror symmetric
chain of length 40 with couplings given by the N = 20 version
of Eq. (11), and a central coupling of a.

| 〈λn|1〉 |2 = 1
N (even without the imposition of perfect

revival). In the N = 4 case, we have succeeded in creat-
ing a number of perfect revival chains, but none of them
outperform the case specified in Eq. (5) for the purposes
for pretty good transfer families.

As an example, we can set aside the field-free require-
ment2, and use the solution given in [3] where h has off-
diagonal elements

J2
n = n2(N − n)(N + n)

(2n− 1)(2n+ 1)

and diagonal elements of 0. The system has a spectrum
{−(N−1),−(N−3), . . . , (N−3), (N−1)} with a perfect
revival time of π, and eigenvector elements 〈λn|1〉2 = 1

N .
One way that we could move away from the regime of

small a is to take the opposite limit of a being large. The
antisymmetric subspace can then essentially be decom-
posed as a single site (the one with the field on) and a
chain described by a Hamiltonian h′ that is the original
Hamiltonian with the last row and column removed. If
that h′ has perfect revivals at the same time, but with
a relative phase of π, compared to h, then we achieve
pretty good transfer up to the accuracy of the perturba-
tive expansion that allows us to separate the single site.
The larger a, the better the approximation: 1

a → 0 pro-
vides a pretty good route to state transfer. Building a
chain with a prescribed spectrum for both h (the sym-
metric subspace) and h′ (the perturbative expansion of
the antisymmetric subspace) is a standard form of inverse
eigenvalue problem. Another illustrative example, relax-
ing the field-free assumption, uses diagonal elements of 0
and off-diagonal elements

Jn =
{

2
√
N(N − 1) n = N − 1√

n(2N − n− 1) otherwise (11)

2 This example is purely for illustrative purposes. There are read-
ily available perfect transfer solutions which are preferable.
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In this case, both h and h′ have perfect revivals at a time
π/2, with a relative phase of π. The maximum eigenvalue
scales as N , meaning that a must be large compared to
N . We have performed some numerical tests with the
case N = 20, as shown in Fig. (2). Rescaling such that
all couplings and fields are bounded by a constant (e.g.
1), we get that the transfer time scales as O(N/

√
ε). This

is certainly optimal in terms of N , and indicates some of
the possibilities available.

Unfortunately, it will be impossible to apply such ideas
directly to field-free Heisenberg models because the proof
of Theorem 1 can be adapted to show that it is impos-
sible. When all the λn (eigenvalues of h) are even in-
tegers and all the µm (eigenvalues of h′ with the last
row/column removed) are odd integers,

| 〈λ1|1〉 |2 =
∏
m µm∏
n 6=1 λn

.

The denominator clearly contains at least N − 1 powers
of 2, rendering it impossible to be 1/N for anything other
than N = 2. Instead, one would have to rely on a scheme
in which most of the eigenvalues are chosen correctly.

V. CONCLUSIONS

In this paper, we have proven that there are no field-
free Heisenberg chains with perfect state transfer between
opposite ends of the chain. While this does not elimi-
nate the possibility of perfect transfer between internal
nodes3, it pushes one towards a consideration of both
high quality transfer and pretty good state transfer. We
have also argued that all solutions for high quality trans-

fer require at least a time O(N2). This must be con-
trasted with cases where we introduce magnetic fields
(thereby recovering solutions such as those for the ex-
change model [2]). When we have some limited control
over the system, what is the scaling of transfer time?
[30] used time control of magnetic fields, while we remain
interested in the field-free case. This was considered in
[33], but was non-committal on the scaling of the transfer
time. We believe it has O(N2) scaling as any perturba-
tive style approach must be perturbations relative to the
O(1/N2) energy gaps. [34] is more explicit about this,
operating in a similar regime but a different numerical
approach, and also achieves an O(N2) time scaling (with
a large multiplicative overhead).

We have described a new paradigm for pretty good
transfer, making use of the facility to tune coupling
strengths, which appears to be more promising in terms
of analysing the state transfer time. However, as it
stands, the transfer times are prohibitive (as, we suspect,
they are for all prior pretty good transfer schemes, such
as [16–18]). We have outlined some future directions that
can reduce the recurrence times massively under this new
paradigm, towards O(N/

√
ε), but we are yet to success-

fully apply them to a field-free Heisenberg model.
This study initially arose from the consideration of

state synthesis questions [11], in which we searched for
systems with specific spectra, and had a particular null
vector, such as the uniform vector (which would require a
matrix of the field-free Heisenberg form). In the present
setting, we also imposed centro-symmetry in order to
generate the perfect state transfer. However, it is indica-
tive that it is generally difficult to craft matrices of this
form. A characterisation of which spectra are possible
for a field-free Heisenberg model would be useful. Some
partial steps in this direction are taken in the Appendix.
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Appendix: Systems with Tunable Spectra and
Ground States

Some of the results in this paper started life with a very
different purpose, which we summarise here for complete-
ness. In addition to state transfer, there are a number of
other protocols that one might be interested in accom-
plishing with a time-independent Hamiltonian. One of
these is the preparation of interesting quantum states,
particularly superpositions of a single excitation. A cou-
ple of methods have been considered for this [11, 12]. We
will focus on just one of those here [11]. The method
starts by creating a Hamiltonian with a particular null
state |ψ〉 =

∑N
n=1 αn |n〉 by fixing the diagonal elements,

h = −
N∑
n=1

αn−1Jn−1 + αn+1Jn
αn

|n〉〈n|+

N−1∑
n=1

Jn(|n〉 〈n+ 1|+ |n+ 1〉 〈n|),

where we interpret α0 = αN+1 = 0, and all others are
non-zero. If we can then set all other eigenvalues to be
(a multiplicative scaling of) an odd integer, then in the
time t = π, an initial state |k〉 can be transformed into

|k〉 7→ (2 |ψ〉〈ψ| − 1) |k〉 .

The required |ψ〉 can hence be reverse engineered from
the target state and the desired initial state.

With the {αn} fixed, the challenge is to find the {Jn}
such that the spectral conditions are satisfied. We can
now proceed just as we did in Sec. III B. If we introduce

E =
N−1∑
i=1

(√
αi+1

αi
|i〉 −

√
αi
αi+1

|i+ 1〉
)
〈i|

with J̃ as before, then we have h = −JmaxEJ̃E
T . For

simplicity, we shall assume that all the αn are positive,
as are the Jn, such that h is positive semi-definite. h
is similar to h̃ = −JmaxJ̃E

TE. Some of the spectral
properties follow from 5.

Corollary 1. The eigenvalues λn of h′ are related to the
eigenvalues ηn of −ETE by

λn ≥ Jmaxηn.

This should help us bound, for a given target state,
how long will be required to produce it via this method
— a time of at least π/(Jmaxη2) would be required to
realise it perfectly. In general, η2 is best calculated for

any specific instance, although we can apply some general
bounds. In particular, if we let

|Ψ〉 =
N−1∑
n=1

1
√
αnαn+1

|n〉 ,

then by design E |Ψ〉 = 1
α1
|1〉 + 1

αN
|N〉 and hence

〈Ψ|ETE |Ψ〉 = 1
α2

1
+ 1
α2

N

. Incorporating the normalisation
of |Ψ〉, this proves that the smallest eigenvalue is

η2 ≥ −
1
α2

1
+ 1

α2
N∑N−1

n=1
1

αnαn+1

.

This will typically be O(1/N), proving that at least a
linear time is required, although this bound is often quite
weak. We have already seen in the case that αn = 1

N ,
the true smallest eigenvalue is O(1/N2).

In principle, Eqs. (7,8) provide an iterative procedure
for fixing a target spectrum via linear relations. Pro-
vided this linear problem is invertible at every step, we
will rapidly converge on a good solution. The question
remains when this linear problem is invertible. This is
primarily governed by the number of eigenvalues one is
trying to fix. It looks like once we have fixed a particular
problem instance by specifying the {αn}, there are N−1
coupling strengths that are free to determine the N − 1
eigenvalues (since we know one is fixed to 0). However,
it is clear that this cannot be true in general.

Lemma 6. An ordered target spectrum {λn} is impossi-
ble for h′ unless λ1 = 0 and

λk
λN
≤ −ηk2

for all k = 2, . . . N − 1.

Proof. By construction of h′, λ1 = 0.
If we take a trial vector |ψ〉 = (|i〉 − |i+ 1〉)/

√
2 such

that Ji = Jmax, then this shows that

λN ≤ 〈ψ|h′ |ψ〉 = −1
2(4Jmax + Ji+1 + Ji−1) ≤ −2Jmax,

Contrast this with Jmax ≥ λk

ηk
. If there is a k such that

λk
ηk

> −λN2 ,

there cannot be a satisfying value of Jmax.

For example, imagine we wanted to create a Heisen-
berg chain, αi = 1/

√
N , with a linear spectrum

0,−1,−2, . . . , 1 − N . With k = 2, we are comparing
(N − 1) with 1− cos(π/N). Clearly the former is larger
than the latter for N > 2, and hence this choice is im-
possible (whether or not one tries to impose symmetry
on the coupling strengths).

Even when none of these conditions is violated, such
an iterative algorithm often struggles to find solutions.
We are far from a complete understanding as to why.
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