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We describe a method to use measure-
ments and correction operations in order
to implement the Clifford group in a sta-
bilizer code, generalising a result from [1]
for topological subsystem colour codes. In
subsystem stabilizer codes of distance at
least 3 the process can be implemented
fault-tolerantly. In particular this pro-
vides a method to implement a logical
Hadamard-type gate within the 15-qubit
Reed-Muller quantum code by measur-
ing and correcting only three observables.
This is an alternative to the method pro-
posed by [2] to generate a set of gates
which is universal for quantum comput-
ing for this code. The construction is in-
spired by the description of code rewiring
from [3], and may have some application to
quantum low density parity check codes.

1 Introduction

Quantum computation offers the prospect of a
new approach to computing, with the potential
to be much more efficient than classical comput-
ers for certain problems (as exemplified in [4]
and [5]). However, in practice a major limita-
tion of current quantum computing hardware is
its susceptibility to various physical sources of
errors. These errors create noise in the calcu-
lations which, if left unchecked, can affect and
damage the output of any computation. Much
current research is aimed at correcting for these
errors as they occur, which should allow experi-
mentalists to implement large-scale reliable com-
putations and help quantum computers achieve
their potential (see for instance [6–8]).

Research has focused on overcoming the er-
rors by using a quantum error-correcting code to
encode the data from a single (“logical”) qubit
in a block consisting of multiple physical qubits.
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Quantum gates are performed on these blocks of
qubits, in such a way as to induce the desired log-
ical operation on the corresponding logical qubit.
If these gates are constructed carefully then, by
repeatedly encoding blocks of physical qubits, cir-
cuits can be designed to achieve any desired accu-
racy as long as the physical error rate is below an
error threshold. Such a construction is said to be
fault-tolerant. Given the prevalence of errors, it
is desirable that this threshold be as high as pos-
sible; one active area of research is in developing
codes which have a high threshold [9, 10].

If all logical gates could be implemented
transversally, so that each qubit interacts only
with its corresponding qubit in any block, then
fault-tolerance would be easily achieved. It is also
likely that transversal gates would lead to a high
error threshold. However, in [11] Eastin and Knill
show that it is not possible to construct a univer-
sal gate set for a quantum error-correcting code
using only transversal unitary gates.

Various authors ([1, 3, 12–15]) have developed
ways to circumvent this issue, by using two codes
which between them permit transversal imple-
mentations of a universal set of gates. Switch-
ing between these two codes allows transversal
gates to be used at all times. These switches
may be achieved by a process called code rewiring
(or code deformation) which involves repeatedly
performing a measurement followed by a correc-
tion based upon the measurement outcome. Each
round of measurement and correction can change
the code, and the aim of the process is to switch
between two given codes.

The code switching process can induce a log-
ical operation on the code space. Colladay and
Mueller [3] proved that these operations are Clif-
ford. Here, by restricting to the case where the
initial and final codes are the same, we investi-
gate which logical operators can be induced by
rewiring. We show in Section 3 that the whole
Clifford group can be induced in this way. Fur-
thermore we show in Section 4 that if a code re-
sults from a non-trivial gauge fixing of a subsys-
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tem code with distance d, then these operators
can be induced using intermediate codes whose
distance is at least d.

This result is particularly interesting for codes
that do not have transversal Clifford gates. In
particular, our result applies to the 15-qubit
Reed-Muller code and we show that the Clif-
ford group can be generated fault-tolerantly using
only measurements and corrections in this code.
It is shown in [16] that this is the smallest stabi-
lizer code which admits a transversal implemen-
tation of the T gate. This provides an alternative
method to [2] to generate a set of gates which is
universal for quantum computation for the Reed-
Muller code, since the only additional gate re-
quired for universality is T , which is transversal.

Recently, there has been much interest in quan-
tum low density parity check codes (LDPC codes
- see [17] for an overview). We provide some com-
ments in Section 5 on the applicability of this
code rewiring approach to logical gates within
these quantum LDPC codes.

1.1 Notation

Suppose that C is a code in the Hilbert space H
of n physical qubits. If C has k logical qubits
with a code distance of d then we say that C is
an [[n, k, d]]-code.

Given an element λ = (λ1, . . . , λn) ∈ Fn2 we
will write Xλ to denote the operator

Xλ =
∏

j:λj=1
Xj . (1)

That is,Xλ is the operator which acts as the Pauli
X matrix on physical qubits j for which λj = 1.
We define the operator Zλ similarly.

Suppose that a [[n, k, d]] quantum stabilizer
code C has check matrix M =

(
MX MZ

)
, with

logical operators

L
(j)
X = XL

X(j),X
ZL

X(j),Z

L
(j)
Z = XL

Z(j),X
ZL

Z(j),Z

for j = 1, . . . , k. Furthermore let α1 and α2 be
two elements of Fn2 and α = (α1, α2). Then we

will write Λ(M,α,LX , LZ) to denote the matrix

MX MZ

α1 α2
LX(1),X LX(1),Z

LZ(1),X LZ(1),Z
...

...
LX(k),X LX(k),Z

LZ(k),X LZ(k),Z


. (2)

If the α component is missing then Λ(M,LX , LZ)
will denote the same matrix, but with the row re-
lating to α removed. Taken in context this should
be unambiguous.

We will have occasion to consider the commu-
tativity relationships between an observable and
the logical operators of a code. Suppose that g
is member of the Pauli group on n qubits which
is an observable, and that U is a logical operator
on C (also a member of the Pauli group). Two
members of the Pauli group either commute or
anti-commute, and we define c(g, U) such that

gU = (−1)c(g,U)Ug. (3)

That is, c(g, U) = 0 if U and g commute, and 1
otherwise.

We are able to prove stronger results in the case
that the stabilizer code is also a subsystem code.
We can consider the stabilizer code as an [[n, k, d]]
stabilizer code for some k > 1, but with a subset
of the k logical qubits fixed. The result is an
[[n, k′, d′]] stabilizer code which has fewer logical
qubits, but the same or greater code distance.
Selecting different subsets of the k logical qubits
and fixing these by adding additional stabilizers
can result in various distinct [[n, k′, d′]] stabilizer
codes for k′ < k and d′ ≥ d. For more details on
subsystem stabilizer codes, see [18].

2 Code Rewiring
The principle behind code rewiring is established
in Example 9 of [19], which we reformulate as the
following statement.

Lemma 1. Let C be a quantum stabilizer code
on the n-qubit state space H, and g1, . . . , gm a set
of generators for its stabilizer group S. Let g ∈
Gn, the Pauli group on H, be an observable which
anticommutes with gm. Suppose that we measure
g and apply the operator gm if the measurement
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outcome is −1. Then the stabilizer generators
and logical operators evolve as follows:

• gm is removed from the set of generators and
replaced with g.

• For every operator h where h is either an-
other generator of S or a logical operator, h
transforms to gc(g,h)

m h.

It is shown in [3] that the procedure in Lemma
1 has the net effect of applying the operator U =
(I + ggm)/

√
2 to the state space; moreover it is

shown in Appendix A of [3] that U is a Clifford
operator.

In [3], Colladay and Mueller use this procedure
to provide an algorithm to convert a state en-
coded in one stabilizer code C into a state en-
coded in a different stabilizer code C ′. Given a
set S of generators g1, . . . , gm for code C and a
set S′ of generators g′1, . . . , g′m for code C ′, the
authors find a sequence of measurements which
have the effect of converting each gj into a cor-
responding g′j . They provide an algorithm for
determining appropriate measurements.

In particular, in the context of this paper,
they apply this to map between the Steane code
and the 15-qubit Quantum Reed-Muller code
QRM(4). Earlier work in [12] had also provided
a map between these codes (and adjacent Quan-
tum Reed-Muller codes more generally) by con-
sidering both codes as different gauge-fixings of a
larger code. This is similar to the approach taken
in [2].

Colladay and Mueller leave open the question
of which Clifford operators can be implemented
such a sequence of measurements and error cor-
rections. We will show that any Clifford operator
can be implemented in this way.

Note that it is sufficient to consider the case
in which C = C ′. Suppose that any Clifford
operator can be induced by this method in the
case in which the original code and final code
are the same. Then from [3], there is a mea-
surement process mapping from C to C ′ which
induces some Clifford operator V , so the Clifford
operator U : C → C ′ can be induced by inducing
the Clifford operator UV † on C ′.

3 Generating the Clifford Group
We start by considering the case of a single log-
ical qubit. In section 3.3 we will extend to the

multiple qubit case.

Definition 1. Let C be a stabilizer code which
has stabilizer generators g1, g2, . . . , gm. We say
that a pair (g, g′) of observables is a code rewiring
pair if for one of the stabilizer generators gm,

1. c(g, gj) = 0 for j = 1, 2, . . . ,m − 1 and
c(g, gm) = 1 (that is, g commutes with all of
the stabilizer generators except for gm, with
which it anticommutes),

2. c(g,XL) = 0 = c(g, ZL),

3. c(g′, gj) = 0 for j = 1, 2, . . . ,m − 1 and
c(g′, gm) = 1, and

4. c(g, g′) = 1.

Our approach to implementing non-trivial Clif-
ford operators on the code space C involves
choosing a stabilizer generator gm and a corre-
sponding code rewiring pair (g, g′). Note that
the second condition in this definition is not nec-
essary, but it simplifies the discussion and impos-
ing this condition has no effect on the generality
of our results. (If more than one generator anti-
commutes, one can always redefine the generating
set such that there is only one anti-commuting
member.)

Definition 2. Given a code rewiring pair, an
elementary code rewiring consists of the following
set of measurements and corrections:

• Measure g and apply gm if the measurement
outcome is −1.

• Measure g′ and apply g if the measurement
outcome is −1.

• Measure gm and apply g′ if the measurement
outcome is −1.

Note that under this procedure, the stabi-
lizer gm is replaced by g in the first step, since
{gm, g} = 0. In the second step, because {g, g′} =
0, the new stabilizer g is replaced by g′. In the fi-
nal step, g′ is replaced by gm. Thus overall the ob-
servable gm evolves through the elementary code
rewiring as

gm 7→ g 7→ g′ 7→ gm.

The rest of the stabilizer generators are un-
changed, so that the code C is mapped to it-
self. This three-step process therefore maps the
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codespace to itself and hence induces a logical op-
erator on C (which is shown in [3] to be a Clifford
operator).

Note that at least three steps are required to
produce a non-trivial operator. Suppose instead
we were to apply the process of Lemma 1 to only
two measurements, of g and gm. Then condition 2
of Definition 1 implies that the induced operator
is trivial. Relaxing condition 2, so that say g and
XL anticommute, would mean that XL evolves
into gmXL = XL under the first operation. But
gm commutes with XL and so XL is unaffected
by the second measurement, and the induced op-
eration is trivial.

3.1 Logical Operators
The transformation of the logical operators un-
der an elementary code rewiring is determined
by the commutativity relationships between them
and g′. Let us write X ′L and Z ′L for the images
of the logical operators XL and ZL after the ele-
mentary code rewiring. If g′ commutes with both
XL and ZL then these operators are not affected
by the procedure, so X ′L = XL, Z ′L = ZL, and
the identity operator has been applied to C.

However, suppose that [g′, XL] = 0 while
{g′, ZL} = 0. Then when the measurement of
g′ is made, ZL is replaced by gZL. Observe that
ZL commutes with gm since gm is a stabilizer of
C, but g anticommutes with gm. Hence, when
the final measurement (that of gm) is made, the
operator gZL is replaced by g′gZL. Overall the
logical Z operator evolves as

ZL 7→ ZL 7→ gZL 7→ Z ′L := g′gZL.

Now ZL anticommutes with XL, while both
g′ and g commute with XL so Z ′L anticommutes
with XL. Further, ZL commutes with itself and
with g but anticommutes with g′ and therefore
Z ′L anticommutes with ZL. From this we con-
clude that, as the induced map is a Clifford oper-
ator, Z ′L = ±YL. Since XL commutes with every
observable measured, it is unchanged by the pro-
cess. The elementary code rewiring thus maps

XL 7→ XL

ZL 7→ ±YL

and therefore the induced operation on C is either√
X or

√
X
† = X

√
X depending upon the sign

above.

Commutativity Image of Induced
c(g′, XL) c(g′, ZL) XL ZL type

0 0 XL ZL identity
0 1 XL ±YL

√
X

1 0 ±YL ZL
√
Z

1 1 ±ZL ±XL

√
Y

Table 1: Logical operators induced by the code rewiring
process. Here, c(g′, XL) and c(g′, ZL) denote commu-
tation of g′ and the relevant logical operator, as defined
in Equation (3).

To simplify notation, we make the following
definition.

Definition 3. For any t ∈ {X,Y, Z}, a logical
operator on a code C encoding one logical qubit
is said to be

√
t-type if it is either

√
t or t

√
t.

The example above induces a
√
X-type opera-

tion on C.
Repeating the analysis above with the remain-

ing two commutativity relationships gives the
middle two columns of Table 1. From these
columns we can deduce the final column, ex-
cept for the bottom entry: the analysis does not
rule out the possibility that the induced opera-
tor maps XL to λZL and ZL to λXL for some
λ ∈ {±1}. However, if this were the case then

λ2XL = λg′gZL = g′gg′gXL = −XL

which does not allow λ ∈ {±1}. Hence we con-
clude that if c(g′, XL) = c(g′, ZL) = 1 then the
induced operation is of type

√
Y .

The table shows that, depending on the com-
mutativity relationship between g′, XL and ZL,
an operator of any type

√
X,
√
Z or

√
Y can be

induced on C. Since our aim is to induce non-
trivial operators on C, we seek code rewiring pairs
for which g′ has each of the commutativity rela-
tionships with XL and ZL.

3.2 Single Logical Qubit
We have shown that if a suitable code rewiring
pair can be found, we can create a range of single-
qubit Clifford operations. We now need to prove
that such a pair always exists.

Proposition 2. Let C be a stabilizer code en-
coding one logical qubit. Then for any given
t ∈ {

√
X,
√
Y ,
√
Z} there exists an elementary

code rewiring such that the induced operator on
C is of t-type.
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Proof. We use the notation defined in Section
1.1: the code C has check matrix M and logical
operators XL = XLX,X

ZLX,Z
, and ZL, as defined

in Equation (1).
Consider the following equation over F2 (re-

calling the notation from Equation (2):

Λ(M,LX , LZ)
(
αTZ
αTX

)
= (0, . . . , 0, 1, 0, 0)T . (4)

The matrix has full rank because the stabilizer
generators are independent and the logical oper-
ators do not lie in the stabilizer group. So the
map F2n

2 → Fn+1
2 is surjective and there are solu-

tions to this equation. If (αZ , αX)T is one such
solution then let

g = i|αX .αZ |XαXZαZ

where the inner product in the factor is taken
over F2. By construction g commutes with the
logical operators XL and ZL, and with all sta-
bilizer generators except for the final one in the
representation M .
Now let α = (αX , αZ) and let (a, b) ∈ {0, 1}2.

Consider the equation

Λ(M,α,LX , LZ)
(
βTZ
βTX

)
= (0, . . . , 0, 1, 1, a, b)T .

(5)
Because XαXZαZ anticommutes with the stabi-
lizer gm, this matrix also has independent rows
and has full rank n + 2. Therefore just as for
Equation (4) there are solutions to Equation (5).
If (βZ , βX)T is one such solution then let

g′ = i|βX .βZ |XβX
ZβZ

.

As above, g′ commutes with every stabilizer gen-
erator except for the final one. It anticommutes
with g, and its commutativity relationship with
XL and ZL is determined by the pair (a, b), the
elements of the first two columns of Table 1:

c(g′, XL) = a, c(g′, ZL) = b.

Since there exist solutions to Equations (4) and
(5) for every pair (a, b), the rewiring pair (g, g′)
can be chosen to induce an operator of t-type for
any t =

√
X,
√
Z or

√
Y .

From the above analysis it is not possible to
determine whether the code rewiring pair (g, g′)
induces the operator

√
t or t

√
t: explicit calcu-

lation is needed. However, a simple observation
leads to the following.

Corollary 3. Let C be a stabilizer code encoding
one logical qubit. Then given any choice of opera-
tor W ∈ {

√
X,
√
Y ,
√
Z} there exists an elemen-

tary code rewiring such that the induced operator
on C is W .

Proof. Suppose that the code rewiring pair (g, g′)
induces an operator of

√
t-type for some t ∈

{X,Y, Z} and consider the effect of replacing g′
by −g′. This does not affect the commutativity
relationships and so (g,−g′) is a code rewiring
pair. If c(−g′, U) = 0 for some logical operator
U then U is unaffected by the elementary code
rewiring, but if c(−g′, U) = 1 then U evolves
into −g′gU . Table 1 shows that this is equiva-
lent to multiplying the operator induced by the
pair (g, g′) by a factor of t. Therefore if the
code rewiring pair (g, g′) incudes the operator
t
√
t, then the pair (g,−g′) induces the operator√
t.

3.3 Multiple Logical Qubits

We have proven our result for a single qubit. We
now generalise it to the case in which more than
one qubit is encoded.

Suppose now that C is a [[n, k, d]]-code where
k > 1, with logical operators X(j)

L and Z
(j)
L for

j = 1, 2, . . . , k (using the notation of Section 1.1).
Consider the following equation over F2:

Λ(M,LX , LZ)
(
αTZ
αTX

)
= (0, . . . , 0, 1, 0, . . . , 0)T (6)

where the 1 on the right-hand side appears in
position n − k. The n − k + 2k = n + k rows
of the matrix on the left-hand side are linearly
independent and so the matrix is of full rank n+
k < 2n; this means that there is a solution to
Equation (6).

As before, for a solution (αZ , αX)T , we write
α = (αX , αZ) and define

g = i|αX .αZ |XαXZαZ .

By construction g commutes with all logical op-
erators, and all stabilizers except for gn−k.

Since XαXZαZ anticommutes with the stabi-
lizer gn−k, the row (αX , αZ) does not lie in
the span of the rows of the matrix in the left-
hand side of Equation (6). Therefore for any
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(a1, b1, . . . , ak, bk) ∈ {0, 1}2k there is a solution
over F2 to the equation

Λ(M,α,LX , LZ)
(
βTZ
βTX

)
= (0, . . . , 0, 1, 1, a1, b1, . . . , ak, bk)T . (7)

Recalling the notation from Equation (3), the
operator g′ = i|βX .βZ |XβX

ZβZ
satisfies

c(g′, X(j)
L ) = aj c(g′, Z(j)

L ) = bj

and g′ commutes with all stabilizers except for
gn−k with which is anticommutes; g′ also anti-
commutes with g. This observation brings us to
our main result.

Theorem 4. Let C be an [[n, k, d]] stabilizer
code. Then any Clifford operator on C can be in-
duced by a sequence of elementary code rewirings.

Proof. Notice that if aj = bj = 0 for some j

then X
(j)
L and Z

(j)
L commute with both g and

g′, and hence are unaffected by the elementary
code rewiring. Proposition 2 therefore shows that
for any j we can obtain the logical operators
X

(j)
L and Z(j)

L (by applying the operators of type√
X and

√
Z twice) as well as either H(j)X

(j)
L or

H(j)Z
(j)
L . We can thus implement the Hadamard

gate H on any given logical qubit j. It is shown
in [20] that the Clifford group can be generated
by the H, S and cnot gates.
It remains to show that we can implement a

cnot gate between any two logical qubits, with
control qubit j and target qubit `.

Let aj = b` = 1 and bj = a` = 0, and set
as = bs = 0 for all s 6= j, `. The logical operators
evolve as follows

X
(j)
L 7→ X

(j)′

L := g′gX
(j)
L

Z
(j)
L 7→ Z

(j)
L

X
(`)
L 7→ X

(`)
L

Z
(`)
L 7→ Z

(`)′

L := g′gZ
(`)
L .

Since X(j)
L commutes with itself and g but anti-

commutes with g′ we have

{X(j)′

L , X
(j)
L } = 0.

Furthermore Z(1)
L commutes with g and g′ but

anticommutes with X(j)
L , and hence

{X(j)′

L , Z
(j)
L } = 0.

This is the same as in the case of a single logical
qubit. However now in addition Z

(`)
L anticom-

mutes with g′ and commutes with both g and
X

(j)
L , so that

{X(j)′

L , Z
(`)
L } = 0.

Because X(`)
L commutes with each of g, g′ and

X
(j)
L we have [X(j)′

L , X
(`)
L ] = 0. Overall this

means that

X
(j)
L 7→ X

(j)′

L = ±Y (j)
L X

(`)
L .

Similarly

Z
(`)
L 7→ Z

(`)′

L = ±Z(j)
L Y

(`)
L .

As required for a cnot gate controlled by logical
qubit j, the X(j)

L has been copied onto qubit `
and Z`L has been copied onto qubit j.
By applying logical S =

√
Z or S† as appro-

priate to logical qubit j, and logical
√
X or

√
X
†

as appropriate to qubit `, the overall evolution of
the operators becomes

X
(j)
L 7→ X

(j)
L X

(k)
L

Z
(j)
L 7→ Z

(j)
L

X
(`)
L 7→ X

(`)
L

Z
(`)
L 7→ Z

(j)
L Z

(`)
L

and cnot(j → `) has been implemented.
Together with

√
X,
√
Y and

√
Z this is suffi-

cient to generate the Clifford group.

This result generalises that of [1] which shows
that any Clifford operator can be implemented
using code deformation measurements within a
topological subsystem colour code.

4 Subsystem Codes
In seeking a fault-tolerant implementation of this
procedure, we make some observations:

• Given an appropriate code distance, the
measurement and error correction steps can
be implemented fault-tolerantly (see for in-
stance [21]).

• However, at least one code involved must be
a non-CSS code, even if the original code is
a CSS code (this can be seen by considering
the form of the solutions to the linear equa-
tions).
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• It is not, in general, easy to determine the
distance of the intermediate codes. They
are frequently lower than the distance of the
original code.

However, in the case of a subsystem stabilizer
code this final point can be overcome, and a fault
tolerant implementation is possible. In a subsys-
tem code (see for instance [18]) we may write the
Hilbert state space as Ĉ⊕ Ĉ⊥ where Ĉ = C⊗B.
The stabilizers of C are those of Ĉ together with
the set of operators IC ⊗ gB where gB is an oper-
ator acting only on the subsystem B. The code
C is obtained from Ĉ by fixing the gauge qubits,
which is to say treating the logical operators on
B as stabilizers of C.

Theorem 5. Suppose that Ĉ is a subsystem sta-
bilizer code with r ≥ 1 gauge qubits and with dis-
tance d, and that C is obtained from Ĉ by fixing
at least one gauge qubit. Then any Clifford oper-
ator on C may be implemented using a sequence
of elementary code rewirings such that the inter-
mediate codes all have distance at least d.
Proof. Since Ĉ has distance d, every subsystem
of Ĉ also has distance at least d.
We can write Ĉ = C ⊗ B for some subsystem

B of gauge qubits. The logical operators on B
which fix C are the gauge operators, and are sta-
bilizers of C. In particular we may choose gm to
be one of these gauge operators. Then for any
Clifford operator W , Theorem 4 says that there
is a sequence of elementary code rewirings which
induces the operator W on C. Each of the inter-
mediate codes arises from fixing different gauges
within the subsystem code Ĉ and therefore has
distance at least d.

In particular the 15-qubit Reed-Muller code
QRM(4) can be viewed as a subsystem arising
from fixing six gauge qubits of a [[15, 7, 3]]-code,
as in [12, 15]. Thus Theorem 5 provides a method
to implement an operator of

√
Y -type using three

measurements and such that every intermediate
code has distance at least 3. This method can
therefore be implemented fault-tolerantly, provid-
ing the one extra gate required to elevate the
transversal gates to universal status.

5 Discussion
We have shown that code rewiring can be used to
generate any element of the Clifford group for a

stabilizer code C, and that under some mild con-
ditions this can be carried out fault-tolerantly.
This answers a question raised in [3]. While our
approach is efficient for certain non-trivial gates,
involving only elementary code rewirings, it is
unlikely that it will in general be the most effi-
cient. Combining two elementary code rewirings
involves returning back to the original code as an
intermediate step, and it is most likely that an
alternative set of rewirings would involve fewer
steps. It would be of interest to determine the
most efficient set of measurements. One simple
improvement would be to classically track the
measurement outcomes, and apply a single op-
erator after all measurements are made.

Our approach provides a method to generate a
set of gates which is universal for quantum cal-
culations in the 15-qubit quantum Reed-Muller
code QRM(4), which is the smallest code to have
a transversal T gate [16], using just three rounds
of measurements to implement non-basis pre-
serving Clifford operators, supplemented by the
transversal T gate. In contrast to the method in
[2] in which the authors implement the Hadamard
gate inQRM(4) by applying Hadamard transver-
sally to all physical qubits, take measurements
and correct, the code rewiring approach appears
to require fewer gates. However, this is not the
full picture when constructing a fault-tolerant im-
plementation. As mentioned in Section 4, each
elementary code rewiring requires the use of non-
CSS codes at some point, even if the code upon
which we are operating is a CSS code. This means
that the Steane method of error correction can-
not be used for all measurements [22] - indeed it
can only be used for at most one measurement
as in the other two, either the code is not CSS
or the observable is a mixture of X and Z oper-
ators. Hence at least two measurement must be
made at least three times and a total of at least
7 measurements is needed.

The method in [2] takes advantage of the fact
that the QRM(4) code is CSS and employs the
Steane approach to fault-tolerant error correc-
tion. This approach allows the ancilla qubits to
be measured in one round of measurements so
that all of the stabilizer measurements can be de-
termined classically. This means that the method
in [2] needs 15 measurements to implement the
Hadamard gate.

However, the measurement in [2] can be used
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to correct all X-type errors while the process pro-
posed here does not correct any errors. In both
procedures a further round of Steane measure-
ments is needed to correct for the Z errors.

In terms of overhead, the difference in the
two approaches reduces to applying a transver-
sal Hadamard gate in [2], or making seven (lower
weight) measurements as described here. A fuller
investigation of the accuracy thresholds would be
needed to determine the more efficient approach.
However the code rewiring approach may there-
fore be competitive in certain architectures.

In this paper we have considered only qubit
stabilizer codes. However, these ideas might be
extended to qudit codes, given an appropriate ex-
tension of the concept of stabilizers (as described
for instance in [23, 24]).

Quantum [[n, k, d]] LDPC codes are considered
good [17] if the parameters scale as k = Θ(n)
and d = Θ(n) while the weight of each stabiliser
is O(1). By using half of the encoded logical
qubits as gauge qubits, one can view these LDPC
codes as subsystems while retaining an appropri-
ate scaling of the distance and number of logi-
cal qubits. The code rewiring approach would
therefore allow implementation of logical Clifford
operators fault-tolerantly. There are two issues
with this approach. One is that it does not pro-
vide a method to implement a non-Clifford op-
erator. The other is that there is no immediate
guarantee that the intermediate codes will have
low-weight stabilizers. Nevertheless, further re-
search in this area may identify codes for one can
achieve stabilisers of low weight in the interme-
diate codes, which could raise the possibility of
using code rewiring with quantum LDPC codes.
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