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Abstract
The modeling of out-of-equilibrium many-body quantum systems requires to go beyond
low-energy physics and single or few bodies densities of states. Many-body localization, presence or
lack of thermalization and quantum chaos are examples of phenomena in which states at different
energy scales, including highly excited ones, contribute to dynamics and therefore affect the
system’s properties. Quantifying these contributions requires the many-body density of states
(MBDoS), a function whose calculation becomes challenging even for non-interacting identical
particles due to the difficulty to enumerate accessible states while enforcing the exchange
symmetry. In the present work, we introduce a new approach to evaluate the MBDoS in the general
case of non-interacting systems of identical quantum particles. The starting point of our method is
the principal component analysis of a filling matrix F describing howN particles can be distributed
into L single-particle energy levels. We show that the many body spectrum can be expanded as a
weighted sum of singular vectors of the filling matrix. The weighting coefficients only involve
renormalized energies obtained from the single body spectrum. We illustrate our method in two
classes of problems that are mapped into spinless fermions : (i) non-interacting electrons in a
homogeneous tight-binding model in 1D and 2D, and (ii) interacting spins in a chain under a
transverse field.

1. Introduction

The concept of density of states (DoS) is at the heart of statistical physics where it defines both partition
function and temperature. In nuclear physics, quantifying the level density is necessary to describe nuclear
reactions involving excited states [1]. No less importantly, it is one of the most appealing quantity in
condensed matter physics, where one is interested in investigating how electrons and holes populate energy
bands to give rise to materials properties [2]. In all these fields, the DoS is crucial to characterize a
many-body system and determine which states are accessible at energy scales of interest.

For a long time, the success of mean field theories and the quasi-particle picture to describe a highly
degenerate Fermi liquid has made the single-body density of states (SBDoSs) and its local counterpart the
focus of investigations in electronic systems. In the presence of interactions, efforts have been concentrated
in the physics at low temperatures, such that the SBDoS around the Fermi level suffices to obtain most of
their properties. Nonetheless, the quest for calculating amany-body density of states (MBDoS) has become
arguably necessary in the context of isolated quantum systems undergoing out-of-equilibrium dynamics [3].
In such systems, contributions from different parts of the spectrum prevent one from relying on a
description solely based on low-lying states and the SBDoS. Quantifying these contributions is crucial to
shed light on phenomena such as quantum chaos [4], thermalization (or the lack of) [5–8], many-body
localization [9], and more generally unconventional stationary states [10, 11] and phase transitions [12].

In this respect, a MBDoS provides useful information, as it allows to quantify how interactions between
individual constituents lead to complex many-body dynamics, with coexisting single-particle and collective
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effects. Even non-interacting systems pose a challenge due to the combinatorial nature of the problem of how
single-body levels can be populated to define a distribution of many-body energy levels. For both
non-interacting and interacting systems, a direct numerical approach only allows to compute the full
spectrum of energies and eigenstates for system sizes that do not exceed a dozen of particles.

Symmetries can improve this computation by allowing one to split the total Hilbert space into blocks,
associated with conserved quantum numbers. This idea has led to exact diagonalization methods [13] and is
also implemented in well-established numerical methods such as kernel polynomial methods (KPMs)
[14, 15] (see also the review in [16]) which can benefit from tensor network techniques to approximate states
[8, 17, 18]. It is also worth noticing that the Fourier transformation of the temporal evolution of the fidelity
(or survival probability) is connected to the local counterpart of the MBDoS [19, 20]. On the analytical side,
methods to compute the MBDoS started in nuclear physics with a Fermi gas approximation derived by Bethe
[21], which inspired approaches such as constant temperature or continuum shell models (see e.g. reviews in
[1, 22]). More involved methods using exact combinatorial counting [23, 24], recursive relations [25], or
saddle approximations [26] provided some approximate results. Finally, it is also possible to use quantum
fields to obtain an analytical expression of the spectral density expressed in terms of 2-point Green’s
functions [27].

Exact computation of the MBDoS of systems of non-interacting identical particles is the focus of the
present paper. We propose a new approach based on the symmetries of a rectangular filling matrix describing
how N particles can be distributed into L single-particle energy levels to generate many-body states. The core
of our method relies on the singular value decomposition (SVD) of the filling matrix, which allows to expand
the many-body spectrum as a weighted sum of singular vectors. These ‘principal components’ only depend
on the combinatorics of how a given number of identical particles can be dispatched over a given number of
single body states. Weighting factors will be given by a discrete Fourier transform of the single body
spectrum. This separation is of crucial importance for numerical computations since the expensive
combinatorics can be computed once and for all then applied to any system with the same L and N values.
Moreover, as we will see, we can take advantage of several symmetries which allow the very large set of
configurations to be represented in a highly compressed form, suitable for efficient computation.
System-dependent quantities only require a small O(L) inner product to compute.

We organize the paper as follows. In section 2, we introduce the SVD of the filling matrix and explain
how it allows to access the non-interacting many body spectrum. In section 3, we develop the method in the
case of spinless fermions by introducing the various symmetries which can be exploited before giving a
summary of the complete procedure. We then give some numerical values to emphasize on the
computational improvements provided. In section 5. we explain how the whole method can be extended to
the general case, when additional conserved quantum numbers are present or when dealing with bosons.
Applications to tight-binding models and Ising chains are discussed in section 4. Finally, our main findings
are summarized in section 6.

2. Principal components analysis

We start by considering a system for which we know the single-body spectrum given by the energies
{ϵ0, . . ., ϵL−1}. Our goal is to construct the many-body spectrum, which has energies Ep =

∑L−1
k=0 F

k
pϵk, where

Fkp is the occupation number of the kth single body level for the pth many-body state. Our first step is to
rewrite this expression in matrix form by collecting all single-body energies εk into a column vector ϵ, all
many body energies Ep into a column vector E, and finally construct the filling rectangular matrix F with
matrix elements Fkp, each row of size L containing a configuration. We rewrite the relation between many
body and single body energies in matrix form :

E= F · ϵ, (1)

where · denotes the matrix product.
The SVD of the filling matrix is defined as F= U ·Σ ·V† where U,V are square unitary matrices and Σ is

a rectangular diagonal matrix. The principal component expansion of F follows:

F=
L−1∑
ℓ=0

σℓ Uℓ ·V†
ℓ (2)

where Uℓ is the ℓth left-singular vector (i.e. the ℓth column of U), σℓ are the singular values (i.e. the main
diagonal of Σ), and Vℓ is the ℓth right-singular vector (i.e. the ℓth column of V).
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To ease notations, in the following we will incorporate the singular value σℓ into the definition of Uℓ such
that the left-singular vectors are orthogonal but not normalized anymore. With this convention, Uℓ and Vℓ

are simply related by Uℓ = F ·Vℓ. By combining equations (1) and (2), we obtain :

E=
L−1∑
ℓ=0

Uℓ(V
†
ℓ · ϵ) =

L−1∑
ℓ=0

ϵ̃ℓ Uℓ (3)

where we defined the scalars ϵ̃ℓ = V†
ℓ · ϵ.

The many body spectrum now appears as a weighted sum of principal components, the Uℓ vectors. These
spectral components are weighted by new effective energies ϵ̃ℓ of a renormalized single-body spectrum. In
particular, each Vℓ defines which single-body energies will contribute to each component Uℓ of the
many-body spectrum. As we will see later, those Vℓ take a very simple form and simply contain Fourier
modes. Note that ϵ̃ℓ are the only system-dependent quantities here. Depending on the dispersion relation of
the system (i.e. the relation between the index k and the energy εk), it is possible that some of those will
vanish which allows the associated Uℓ vectors to be discarded.

The problem of computing the many body spectrum is now split in two parts. The first part is to
compute the renormalized single body spectrum only depending on the right-singular part of the SVD
(i.e. the Vℓ’s) which only require a small computational cost linear in L. The second part depends on the
left-singular part of the SVD (i.e. the Uℓ’s) which only contains information about the universal properties of
many-body systems encoded in the combinatoric structure of the F matrix.

Since the number of configurations scales exponentially with the number of levels L and particles N
considered, so does the height of the F matrix and thus the size of the Uℓ vectors. We will use a combinatorial
approach to avoid using the F matrix explicitly and allow computations to be done for large systems. It
should be noted that F is a real matrix, and so are its singular values σℓ, however its left and right singular
vectors will be chosen in a complex basis. Therefore, renormalized energies ϵ̃ℓ will also be complex.

In the following, we focus on the simplest case of non-interacting fermions with no other quantum
number in order to describe our framework to compute the singular decomposition of F.

3. Spinless fermions

In the case of fermions without any additional quantum number, occupation numbers can only be 0 or 1,
which are the possible matrix elements of F. Each row of the filling matrix F (i.e. some configuration of a
many body state) is a binary string. All rows share the same amount of 1’s to account for the fixed number of
particles N, there are a total of CN

L many body state configurations and the filling matrix F has dimensions
L×CN

L .

3.1. Right part of the SVD
We first focus on the right-singular vectors Vℓ and the singular values σℓ. Both can be computed by
considering the eigen decomposition of the square matrix F† · F which has dimensions (L× L). Each matrix
element (F† · F)i,j is the scalar product between the ith and jth columns of F, each encoding the occupation
number of the ith and jth single body level across all many body states. If i= j, simple combinatorics
considerations indicate there are CN−1

L−1 many body levels with the ith single body level filled with one particle.
If i ̸= j, similarly, there are CN−2

L−2 many body levels with both the ith and jth single body levels filled with a
particle. From this reasoning we deduce that the F†Fmatrix has the form of a circulant matrix with only two
possible entry values:

F†F=


a b . . . b

b
. . .

...
...

. . . b
b . . . b a


L×L

where a= CN−1
L−1 and b= CN−2

L−2 . Circulant matrices are well known and can be diagonalized by using Fourier
modes. Let ωL = ei2π/L, then eigenvectors of F† · F, which are the right-singular vectors Vℓ of F, are given by:

Vℓ =
1√
L

(
1,ωℓ

L,ω
2ℓ
L , . . . ,ω

(L−1)ℓ
L

)
L
. (4)
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The eigenvalues of F† · F take the following form:

λℓ = CN−1
L−1 +CN−2

L−2

L−1∑
k=1

ωkℓ
L ,

which can only take two distinct values since:

L−1∑
k=1

ωkℓ
L = (L− 1) if ℓ= 0,

=−1 if ℓ⩾ 1.

Taking the square root, we obtain the singular values of F :

σ0 =
√

NCN−1
L−1 with multiplicity 1,

σℓ⩾1 =
√

CN−1
L−2 with multiplicity L− 1. (5)

One can easily check that the Vℓ vectors form an orthonormal basis associated to these eigenspaces, the
ℓ= 0 case matching the 1-dimensional eigenspace spanned by V0 and the ℓ⩾ 1 case matching the
L− 1-dimensional eigenspace spanned by Vℓ⩾1.

3.2. Left part of the SVD
In order to compute the left-singular vectors Uℓ, we avoid dealing directly with the matrix F · F† which is
CN
L ×CN

L , and prefer using the identity Uℓ = F ·Vℓ to write the components of Uℓ as follows:

Un
ℓ =

1√
L

L−1∑
k=0

Fknω
kℓ
L .

In other words, each component of the Uℓ vector is the ℓth Fourier series coefficient of each binary string
representing a many body state. The ℓ= 0 case simplifies to Un

0 = N√
L
and is connected to the filling factor

N/L which is identical for each many body state. In addition, since the occupation numbers Fkn are all real
numbers, one has Uℓ = U∗

L−ℓ, which provides a first symmetry simplifying the calculation.
For ℓ⩾ 1, we will investigate two symmetries which provide insight on the universal properties of F and

allow to reduce the very large set of configurations to a more manageable size for numerical applications.

3.3. The k-Symmetry
The first symmetry we observe is on the Vℓ vectors containing Fourier modes based on Lth-roots of unity.
Since they contain components of the form ωkℓ

L , when computing the inner product of Vℓ against a
configuration represented by a binary string, a circular permutation of those bits by r positions to the right
will multiply the Fourier modes by ωrℓ

L , i.e. it will rotate the result U
n
ℓ in the complex plane. We will denote

the angle associated to a circular permutation by 1 position θstep = 2πℓ/L. Note that this angle does not
depend on N and remains valid for all components of a given Uℓ.

It follows that all the components Un
ℓ lie on various circles in the complex plane, and are located at

relative angles which are multiples of θstep. We call this structure the k-symmetry, which is illustrated on
figure 1.

The k-symmetry suggests to group configurations together in equivalence classes defined by the
underlying relation of circular permutations. Each class contains configurations that can be transformed into
each other by circular permutation, we choose the lowest of them in lexicographic order as class
representatives which we will refer to as seeds. All members of such an equivalence class, when taking the
inner product with Vℓ, will produce Un

ℓ components which lie on the same circle in the complex plane, for
any fixed given ℓ. Note that two distinct classes can still map to the same circle by having the same radius.

There will be two kinds of such equivalence classes: non-degenerate classes contain exactly L binary
strings where bits do not provide any additional symmetry, while degenerate classes contain less than L
strings as their bits expose a shorter pattern that repeats under circular permutation, for instance
(0,0,1,1,0,0,1,1) is an 8-bits sequence but loops back early with a circular permutation by 4 positions. This
distinction will become important later on.

Next, we notice that equivalence classes are closely related to the factors of L. In particular, if L is a prime
number, all classes are non-degenerate. Degenerate classes can only have a cardinal which has a common

4
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Figure 1. Left-singular vector U1 of the filling matrix F for L= 10 single body levels and N= 5 particles. Each vertex is a distinct
value of the distribution of the components of U1 in the complex plane. The MB spectrum is constructed by combining real and
imaginary parts (i.e. quadratures) along with renormalized SB energies using equation (3). Circles relate components belonging
to one or more equivalence classes of MB configurations. Vertex colors indicate the number of occurrences of this particular
component (first color bar) while circle colors indicate the number of equivalence classes (second color bar). Notice the
yellow-sand circles where multiple equivalence classes are present with components that do not overlap by opposition to the
light-blue and red circles where all equivalence classes have all their components overlapped.

factor with L. The prime decomposition of L is a decisive feature for the symmetries of the filling matrix and
its SVD.

A counting argument can be made about those equivalence classes by using the Pólya enumeration
theorem [28], from which we can estimate the number of equivalence classes to be of the order of CN

L /L.
Generating seeds will be a bottleneck for numerical computations and is a known problem in the theory

of necklaces. For binary strings, enumerating 2-colors necklaces can be done using a simple algorithm given
in [29] which easily generalizes to ℓ-colors necklaces (required later on). A more involved algorithm is given
in [30].

3.4. The ℓ-Symmetry
On the other hand, we can look at what happens when we consider a different Fourier mode and go from
some ℓ to another ℓ ′. By definition, ωL is a primitive Lth-root of unity if ωL

L = 1 but ωk
L ̸= 1 for all k< L, each

Lth-root of unity is a distinct power of ωL. A well-known property is that ωℓ
L is a primitive rth-root of unity

for r= L/gcd(L, ℓ). Considering another value ℓ ′, if the condition

gcd(L, ℓ) = gcd(L, ℓ ′) (6)

is verified, then ωℓ ′

L is also a primitive rth-root of unity. In other words, each power of ωℓ
L is in a one to one

correspondence with a power of ωℓ ′

L , so the components of Vℓ ′ are just a permutation of the components of
Vℓ. In this case, since the permutation of Vℓ components is equivalent to the permutation of configurations
in the F matrix, then vectors Uℓ and Uℓ ′ are also the same up to a permutation, i.e. the distributions of their
components are identical that is, their pattern in the complex plane is identical. Moreover, since this is a one

5
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to one correspondence, the number of configurations (i.e. degeneracy) landing on a particular vertex in the
complex plane are also conserved. We call this property the ℓ-symmetry, verified when (6) is satisfied.

The ℓ-symmetry simplifies the study of Uℓ vectors, as only a small amount of ℓ values are required to
obtain the complete set of Uℓ distributions in the complex plane, namely the divisors of L. For any ℓ divisor
of L, we can define the integer q= L/ℓ and rewrite:

Un
ℓ =

1√
L

q−1∑
k=0

mke
i2π k

q with mk =
ℓ−1∑
s=0

Fsq+k
n ,

where a configuration represented by a binary string is folded into q parts. Each of these parts (i.e. eachmk)
can take any value between 0 and ℓ, and their sum still adds up to N. This is called a ℓ-restricted weak
q-composition of N (see [31]). In fact, binary strings themselves are 1-restricted weak L-compositions of N.
We redefine effective vectors Vℓ of size q, which now contain Fourier modes based on the qth-roots of unity
ωq = ei2π/q. Its components are of the form ωk

q with k ∈ {0,q− 1}.
This operation of folding is not injective, many binary configurations are mapped to a given composition.

The total number of binary strings mapped to the same composition is given by a winding factor :

Q=

q−1∏
k=0

Cmk
ℓ (7)

where one can observe that when ℓ increases, Q increases exponentially, meaning that each component Un
ℓ in

the complex plane will correspond to more and more configurations. Since the total number of
configurations does not change, the number of distinct vertices must decrease. This can be observed from
figures 2 and 3, where increasing ℓ values lead to a fast decreasing density of Un

ℓ components in the complex
plane, while the degeneracy of each point necessarily goes up : we transition from a spread distribution to a
clustered distribution.

In the general case, the number of ℓ-restricted weak q-compositions is given by the extended polynomial
coefficient defined as:

[xN]

(
ℓ∑

a=0

xa
)q

where [xN]means extracting the coefficient of the xN term in the polynomial. This becomes our effective set
of configurations and is much smaller than CN

L . There is no simple analytic form for such a number but it can
be shown that it decreases very fast when ℓ increases. This will be further divided by q when using
k-symmetry as we will see below. This is the symmetry that provides the most dramatic gain in performance
for numerical computations.

3.5. Enumeration
Both symmetries described above simplify the study of the problem. The last ingredient is to apply the
k-symmetry on top of compositions, by again noticing that any circular permutation of a composition is
only a multiplication of Vℓ by a power of ωk

q : we group compositions together in equivalence classes related
by circular permutations.

This is where the distinction between degenerate and non-degenerate classes is important. Let’s consider
a configuration C of a degenerate class. Then that configuration admits a repeating pattern of size N which is
repeated K times such that L=KN. If this is the case, then we can write the Uℓ component generated by this
configuration when the inner product with Vℓ is performed. For any ℓ⩾ 1 :

U(c)
ℓ =

L−1∑
p=0

Cpe
i 2πℓ

L p

=
N−1∑
n=0

Cn

K−1∑
k=0

ei
2πℓ
L (kN+n)

=
N−1∑
n=0

Cne
i 2πℓ

L n

(
K−1∑
k=0

ei2πℓ
k
K

)
= 0

where we can see on the last line that the term in parentheses vanishes. Therefore, any projection on Vℓ of a
member of a degenerate class is null. This means that degenerate classes all land at the origin on the circle of

6



New J. Phys. 25 (2023) 063004 R Lefèvre et al

Figure 2. Left-singular vector U1 of the filling matrix F for L= 18 at half-filling N= 9. Each graph represents components of the
U1 vector as vertices in the complex plane at various zoom levels. Colors represent the number of occurrences of each component.
In this case, the number of configurations is reduced from 48620 to only 2704 seeds: k-symmetry reduces the size of the set
roughly by a factor of L.

radius zero. Basically, we only need to count those classes using their winding factors to obtain the
occurrence count of zero Un

ℓ components.
We now have all the tools required for our framework. We can describe a simple recipe to obtain the exact

distribution of the components of all Uℓ vectors. First, we look at the value of L and construct the list of all its
divisors : this gives us the ℓ values we have to deal with. For each of them, we compute q= L/ℓ and proceed
by building the list of seeds : all ℓ-restricted weak q-compositions which are not related by circular
permutation. Each seed defines an equivalence class from which we can extract various quantities. We first

7
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Figure 3. Left-singular vectors of the filling matrix F for L= 18 at half-filling N= 9. Each graph represents components of the Uℓ

vector as vertices in the complex plane where colors represent the number of occurrences of each component Un
ℓ . The ℓ= 1

vector was shown previously in figure 2. All other ℓ > 1 values with distinct greatest common divisors with L are shown here.
Other ℓ values yield identical distributions through ℓ-symmetry, according to the criteria from equation (6). One can notice that
increasing values of ℓ yield more clustered distributions : ℓ-symmetry dramatically reduces the number of seeds required to
recover all spectral components needed to construct the MB spectrum.

look at the size of the equivalence class to check if it is degenerate or not. If it is degenerate, i.e. lower than q,
then the class lies on a 0-radius ‘circle’ i.e. the origin in the complex plane. In this case, we only need to
recover the occurrence count which is the winding factor Q from equation (7) times the degenerate class size.
Otherwise, the class has size q and is non-degenerate : we can extract some key quantities. The radius of the
circle in the complex plane where Un

ℓ values are located, an offset angle where the first vertex is located, the
previously defined θstep which gives the relative angle between vertices in this class, which allows to
reconstruct all Un

ℓ values and finally their winding factor Q given by equation (7). The total number of Un
ℓ

components belonging to this class is simply q times Q. Note the radius and offset angle are easily computed
from the inner product of the seed with Vℓ where the module needs to be normalized by 1/

√
ℓ to give the

radius of this class’s circle. We now know everything about that particular seed and its class. While processing
all unique seeds and classes, we can accumulate the ones found to lie on the same circle, i.e. having the same
radius, and simply add up occurrence counts accordingly. The end result is a list of all the circles, their
respective radiuses, angular positions of all vertices if needed, and occurrence numbers (by point or by circle,
whichever is needed). This gives the exact distribution of Un

ℓ components. The distributions of all other Uℓ

vectors for which ℓ was not a divisor of L are recovered from ℓ-symmetry by the criteria from equation (6).
As an example, let us consider the case L= 8 at half-filling N = 4. There are a total of 70 possible many

body configurations written as binary strings. The divisors of L are {1,2,4}. For ℓ= 1 (i.e. binary strings),
the k-symmetry gives 8 non-degenerate classes of size 8 and 2 degenerate classes of sizes 4 and 2, for a total of
10 seeds. For ℓ= 2, applying both symmetries, we have 2-restricted weak 4-compositions, 4 non-degenerate
classes of size 4 and 2 degenerate classes of sizes 2 and 1, for a total of 6 seeds. For ℓ= 4, applying both
symmetries, we have 4-restricted weak 2-compositions, 2 non-degenerate classes of size 2 and 1 degenerate
class of size 1, for a total of 3 seeds. As one can see, the number of configurations to consider is significantly

8
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reduced. For larger systems, e.g. L= 20 at half-filling N = 10, the number of many body configurations
written as binary strings is 184756. In the worse case, ℓ= 1, this is reduced to 9252 binary seeds. In better
cases like ℓ= 4, using ℓ-symmetry leads to a much smaller set of 381 compositions which is further reduced
to only 77 seeds.

For even larger systems, i.e. L of the order of 100, the lower ℓ values still require significant computational
time, mostly for ℓ= 1, unless they are truncated or a statistical approach is added to sample the set of seeds.
However, it should be noted that those computations are independent of the single body spectrum : they
should be performed only once for relevant values of L and N (i.e. half-filling, quarter-filling, ....) and re-used
for many different systems. Once the distribution of Un

ℓ components is known, the many-body spectrum is
obtained from equation (3).

Finally, one should note that our procedure allows to relate any Uℓ component’s index n to the
configuration at the origin of its value. It is possible to provide a two-way mapping between configurations
and their indices in lexicographic order, in logarithmic time in the number of configurations, i.e. linear time
in L. Those indices are the indices n of Un

ℓ components inside an Uℓ vector. While requiring more
computational time due to the very large number of Un

ℓ components, this is very useful to partially
reconstruct the microscopic information which was lost when we chose to use a distribution of Un

ℓ

components to represent Uℓ vectors. This allows to obtain a fully exact local information for the MBDoS in a
desired energy interval, which becomes crucial in practice when one introduces dynamics and needs to
simulate time evolution.

4. Applications: spinless fermions

A variety of systems can be described in terms of spinless fermions, including hard core bosons [32], Mott
insulators in ladders [33], spin liquids [34], and, very recently, they served as the basis to study topological
phases [35] and systems supporting Majorana fermions [36, 37].

To illustrate our method, we will apply it to two classes of solvable Hamiltonians which can be formulated
in terms of a single-body spectrum. We first look at tight-binding of electrons in both one-dimensional chain
and two-dimensional square lattice then consider the transverse field Ising model which can be mapped using
the Jordan Wigner (JW) transformation. In both cases, we consider periodic boundary conditions (PBCs).

4.1. Tight-Binding 1D
The Hamiltonian for a chain of L sites reads:

H=−t
∑
⟨i,j⟩

(
c†i cj + cic

†
j

)
, (8)

where the sum ⟨i, j⟩ runs over nearest-neighbor sites, ci and c†i are the annihilation and creation operators,
and t is the hopping amplitude. In 1D, the single-body energies are:

ϵk =−2tcos(k), (9)

where the momentum k depends on the boundary conditions of the model. For PBC, k= 2π n
L , with

n ∈ {0, . . . ,L− 1}.
We can write the renormalized energies:

ϵ̃ℓ =
L−1∑
n=0

(
−2tcos

(
2πn

L

))
1√
L
ωℓn
L

=− t√
L

L−1∑
n=0

(
ei

2π n
L (ℓ+1) + ei

2π n
L (ℓ−1)

)
where one can note that the first term is equal to L when ℓ= L− 1 and 0 otherwise. Similarly, the second
term is equal to L when ℓ= 1 and 0 otherwise. We have ϵ̃1 = ϵ̃L−1 =−t

√
L and all other ϵ̃ℓ are zero. Using

equation (3), we obtain the MB spectrum:

E=−t
√
L(U1 +UL−1) =−2t

√
L Re[U1]

since U1 and UL−1 are conjugate to each other. The obtained MBDoS is displayed in figure 4.

9
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Figure 4.MBDoS for a 1D tight-binding chain with L= 20 sites at half-filling N= 10 (a), or quarter-filling N= 5 (b). These
histograms of the many body energies are obtained by applying equation (3) where the only non-zero renormalized energies ϵ̃ℓ
are for ℓ= 1 and ℓ= L− 1 (see section 4) and with 80 bins from the lowest to the highest many body energies. The MBDoS is
then normalized to a probability density. Note that the particle-hole symmetry explains the even parity of the profile.

4.2. Tight-Binding 2D
For a 2D square lattice with S× S sites, the band structure contains L= S2 single-body energies given by:

ϵkx,ky =−2tcos(kx)− 2tcos(ky), (10)

where, under PBC, the momenta in each direction are kx =
2π nx
S and ky =

2π ny
S , with nx,ny ∈ {0, . . . ,S− 1}.

We can flatten this 2D array of energies row by row to obtain a 1D array of size L (indexed by nyS+ nx)
and re-use the 1D case method. After some manipulations, we obtain

ϵ̃nS±1 =−t
sin(πS )

sin(πL (nS± 1))
e−iπL ((n∓1)S±1),

ϵ̃1 = ϵ̃∗L−1 =−t
sin(πS )

sin(πL )
e−iπL (−S+1),

ϵ̃S = ϵ̃L−S =−tS,

10
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Figure 5. Band structure and renormalized energies of a homogeneous square lattice with S= 100 sites in each direction. Top
panels show the single-body band structure ϵkx,ky as both a 3D surface (left) and 2D contour (right). Bottom panels display the real
and imaginary parts of the renormalized energies ϵ̃ℓ. Note that only 2(S+ 1) renormalized energies do not vanish, see section 4.

where n ∈ {1, . . . ,S− 1} and all other ϵ̃ℓ are zero. As expected, they come in conjugate pairs. Interestingly, for
S large, ϵ̃1 ≈−tS and other renormalized energies ϵ̃nS±1 ≈− t

n are of order S
−1. In other words, there are two

dominant renormalized energies : ϵ̃1 and ϵ̃S which are almost equal (and their conjugate ϵ̃L−1 and ϵ̃L−S). As a
result, the many body energies in the large S limit are given by :

E≈−2tS(Re[U1] +Re[US]) .

Since all vectors Uℓ are centered (
∑

nU
n
ℓ = 0) and orthogonal (Uℓ ·Uℓ ′ = 0), the distributions of their

components can be considered as two uncorrelated random processes. In a first approximation, the
distribution of the sum will be the convolution of the two distributions. The band structure in equation (10)
and the non-vanishing renormalized energies ϵ̃ℓ for a square lattice with S= 100 sites are shown in figure 5.

4.3. Transverse Ising
We now consider the Hamiltonian for a 1D chain of spins of size S:

H=−J
S−1∑
j=0

σx
j σ

x
j+1 − h

S−1∑
j=0

σz
j (11)

11
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Figure 6. Band structure and renormalized single-particle energies ϵ̃ℓ for an Ising chain under a transverse field with strength h.
The number of sites and levels are S= 100 and L= 200 respectively. Top contour shows the band dispersion as a function of k and
h. Bottom panels display the real and imaginary parts of the ϵ̃ℓ’s for ℓ odd. All components with ℓ even vanish. The imaginary
part decays as a function of ℓ. Both real and imaginary parts are degenerate around hc = J, i.e. ϵ̃ℓ[h− hc < 0] = ϵ̃ℓ[h− hc > 0]. At
the critical point, the dominant renormalized energy is ϵ̃1, all other renormalized energies can be neglected in a first
approximation. As a result, the MBDoS will be similar to the one of the 1D tight binding model.

where σd are the Pauli matrices, J is the nearest neighbor coupling and h is the transverse field, and we set
σx
S = σx

0 for convenience in the notation.
After applying the JW transformation, we can obtain the dispersion relation of this model as follows:

ϵ±k =±2
√

h2 + J2 − 2hJcos(k)− 2h (12)

where k= 2π n
S is the momentum with PBC (n ∈ {0, . . . ,S− 1}). Note that now, two bands contribute to the

DoSs with a separating gap closing at the critical point for h= J (see figure 6.).
In this case, the dispersion relation is bi-valued : we have L= 2S single body energies which can be

arranged into a single vector. For instance, we can concatenate all ϵ+k followed by all ϵ−k :

ϵ⃗=
(
ϵ+0 , . . . , ϵ

+
S−1, ϵ

−
0 , . . . , ϵ

−
S−1

)
12
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which gives the following renormalized SB spectrum :

ϵ̃ℓ =
1√
L

S−1∑
k=0

(
ϵ+k +(−1)ℓϵ−k

)
ei

2πℓ
L k

where ϵ̃0 =−2h
√
L, all ϵ̃ℓ vanish for ℓ even and the real part for ℓ odd has a single fixed value

Re[ϵ̃ℓ] = 4|h− J|/
√
L independent of ℓ. For the imaginary part, Im[ϵ̃ℓ] is non-zero but decays very fast with

faster rate as the system size increases. The factor |h− J| in the real part introduces a symmetry around the
critical point hc = J where the only surviving energies are ϵ̃1 =−ϵ̃L−1 = i2J

√
L : we recover the same

renormalized single body energies as for the 1D tight binding model, up to a Wick rotation. Those features
can be observed in figure 6, where we show the real and imaginary parts of ϵ̃ℓ for h/J ∈ [0.5,1.5].

Using these previous results, we have all ingredients to compute the MBDoS for the applications
aforementioned. In particular, for the 1D tight binding model and the transverse Ising chain at the critical
point which have the same renormalized single body energies. As a result, they have the same MBDoS,
displayed on figure 4.

5. Generalization

Extending the method to additional quantum numbers and to bosons requires one additional step. The only
part in our method which is specific to spinless fermions is the very first step where we started from binary
strings to represent many body configurations. Suppose the set of conserved quantum numbers now allows
for K particles to occupy each single-body energy level, the representation of many body configurations is
simply changed from binary strings to K-restricted weak L-compositions of the number of particles N. We
already introduced how to fold binary strings into compositions and the winding factor Q is known, i.e. how
many binary strings were mapped to a given composition. This can also be done in the reverse way, that is,
unfolding compositions into binary strings. We are effectively duplicating single body energy levels and
assigning them new indices in the list of configurations and single body energies. This allows to encode
degeneracies in the single body spectrum. Once this additional preliminary step is done, the method can be
applied without further modification. The bosonic case is just a particular case where K =N, as long as the
number of particles is kept finite.

On a different aspect, we cannot generalize this approach to open quantum systems, we remain in the
context of a closed quantum system without environment and as such, there is a priori no concept of
temperature. However, one can assume a micro-canonical hypothesis and consider the derivative with
respect to energy of the Boltzmann entropy S= k logW whereW should be replaced by the MBDoS times an
energy interval defining the so called accessible states. Such logarithmic derivative of the MBDoS actually
defines an effective inverse temperature. The choice of the energy interval is crucial to define temperature and
entropy in a way that remains valid for small finite system sizes which are exactly diagonalizable in numerical
tests and has been recently investigated in [38].

Finally, regarding interactions between particles, it is worth noticing that the Uℓ vectors, through the
distributions of their components, provide an interesting classification of the many body states into
degenerate classes (i.e. states clustered on a single many body energy Un

l ). At first order in perturbation
theory, the effect of interactions should be considered on such states lying in a given class since degeneracies
might be partially lifted. This will be investigated in a further publication. In addition, in the case of a
random interaction like the Gaussian Unitary or Gaussian Orthogonal ensembles, the calculation of the
MBDoS with interactions can be done from the non interacting MBDoS, by considering the subordination
property between their Stieltjes transforms [11, 39]:mH0+W(z) =mH0(z+σ2

wmH(z)), with
mH(z) = Tr((H− z)−1)) where σ2

wmH(z) can be considered as a many body self energy.

6. Conclusion

In the present paper, we explored a new approach to compute the many-body density of states of
non-interacting systems of identical particles, and we focused on the case of spinless fermions.

We showed that the many-body spectrum can be expanded over the principal components of a filling
matrix encoding the allowed many body states. These principal components describe universal spectral
properties of quantum many body systems which only depend on the number of one body levels and the
number of particles. All system-specific quantities are represented as renormalized energies of the single
body spectrum which act by weighting those principal components.

For gapless systems, such as the tight-binding and the critical transverse field Ising chains, we
demonstrated that only two renormalized energies are non zero. Even in more general scenari, such as the

13
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square lattice or the Ising chain away from the critical point, many renormalized energies still vanish. In all
cases, this will significantly reduce the number of relevant spectral components of the filling matrix involved
in the calculation of the many body density of states.

Our framework allows efficient numerical computations that only need to be done once for all systems
sharing the same number of single body energies and particle counts, which is achieved by separating costly
combinatorial operations from system-dependent quantities. After a full description of the spinless
fermionic case, we gave a simple way to extend the method to include additional quantum numbers like spin,
and to handle bosonic systems.
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