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ABSTRACT
Biological evidence suggests that adaptation of synaptic delays on
short to medium timescales plays an important role in learning in
the brain. Inspired by biology, we explore the feasibility and power
of using synaptic delays to solve challenging tasks even when the
synaptic weights are not trained but kept at randomly chosen fixed
values. We show that training ONLY the delays in feed-forward
spiking networks using backpropagation can achieve performance
comparable to themore conventionalweight training.Moreover, fur-
ther constraining theweights to ternary values does not significantly
affect the networks’ ability to solve the tasks using only the synaptic
delays.We demonstrate the task performance of delay-only training
onMNIST and Fashion-MNIST datasets in preliminary experiments.
This demonstrates a new paradigm for training spiking neural net-
works and sets the stage for models that can be more efficient than
the ones that use weights for computation.

CCS CONCEPTS
•Theoryof computation→Designandanalysis of algorithms;
•Computingmethodologies→ Supervised learning;Artificial
intelligence.
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1 INTRODUCTION
Spiking neural networks (SNNs) [12] are biologically inspired neu-
ronmodels that have recently become increasingly popular for deep
learninguse cases due to their potential for extremeenergyefficiency
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on neuromorphic hardware. In these models, the complex electro-
chemical dynamics of a biological synapse are modelled in the con-
nection between neurons and (typically) weights parameters. Neuro-
scientific literature classically concentratedon theneuronand synap-
tic strength as the only factor of learning; this was because of several
factors, the most trivial of which is that electrical activity is a rela-
tively easy measurement of cellular and brain activity. Recent litera-
ture [2] suggests, however, that other types of cells could contribute
to computations and learning in the brain.Glia cells, especiallyOligo-
dendrocytes, have been shown to be activated through learning pro-
cesses [8, 11].At a veryhigh level, theyworkbywrapping the axon in
amyelin sheathwhich can control the electrical signal speed through
synapses and as a consequence, the time of the spike reception. The
importance of time in computations is also considered in many stud-
ies that suggest how the exact timing of spikes plays an important
role in the information processing of the biological brain [1, 4, 18],
and the hypothesis is also reinforced by simulative studies [6].

In this work, we explore the potential of computations being a
direct consequence of synaptic delays in a network of spiking neu-
rons. Although the idea of computations through delays comes from
nature, our techniques come from the current technical literature in
spiking neural networks, andwe train ourmodels through backprop-
agation. More precisely, we use an SNN based on the SLAYER [16]
architecture and compare training only the synaptic delays with the
conventional procedure of trainingweights of the network.We show
that training just the synaptic delays can lead to competitive task
performance on deep learning benchmarks – specifically MNIST
and Fashion-MNIST.

2 RELATEDWORK
Many previous works explore the possibility of using time coding
schemes and precise spike time learning in spiking neural networks
as well as training the delays in an SNN. Examples include [5, 13, 14]
that combines timeencodingandbackpropagation fordifferent types
of neurons (IF, LIF). DL-ReSuMe [17], as an extension of ReSuMe [19]
introduces the concept of delay training to improve performance
and reduce weight adjustments, utilizing a supervised learning rule
that is not backpropagation based. Hazan et al. [7] is perhaps the
most closely related work to ours, where only the delays of a weight-
less spiking neural network are trained using an STDP unsuper-
vised learning rule to create latent representations of the MNIST
dataset, which are then classified using a linear classifier. SLAYER
[16] uses pseudo-derivatives to train axonal delays and weights us-
ing backpropagation with a spike response model (SRM) of spiking
neurons. Our work was heavily influenced by SLAYER, although we
train synaptic rather than axonal delays and explore the case where
weightsaren’t trained.Toourknowledge,weare thefirst to showthat
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pure delay training using backpropagation with surrogate gradient
method can achieve comparable performance to weight training.

3 METHODS
3.1 Spike responsemodel (SRM)
We utilize the spike response model (SRM) and all the parameters
were trained using surrogate gradients as in [16]. This includes the
synaptic weights and delays. For the convenience of the reader, we
describe the notation necessary for the comprehension of our work.

Let 𝑠𝑖 (𝑡) =
∑

𝑓 𝛿 (𝑡 − 𝑡
(𝑓 )
𝑖

) be one of a series of spike trains that
reaches a neuron; 𝑡 (𝑓 )

𝑖
is the time of the 𝑓 𝑡ℎ spike of the 𝑖𝑡ℎ input. Let

𝜖 (·)𝑑 be a spike response kernel that also takes into consideration
the axonal delay. Then the membrane potential of the neuron that
we are taking into consideration is:

𝑢 (𝑡)=
∑︁
𝑖

𝑤𝑖 (𝜖𝑑 ∗𝑠𝑖 ) (𝑡)+(𝜈∗𝑠)=𝒘⊤𝒂(𝑡)+(𝜈∗𝑠) (𝑡)

=
∑︁
𝑖

𝑤𝑖 (𝜖 (𝑡−𝑑)∗𝑠𝑖 ) (𝑡)+(𝜈∗𝑠)=𝒘⊤𝒂(𝑡)+(𝜈∗𝑠) (𝑡),

where ∗ represents the convolution operation and 𝜖 (·) is a spike
response kernel that does not take into account delays. Let 𝜗 be the
spiking threshold: an output spike is generated when the membrane
potential𝑢 (𝑡) reaches 𝜗 , more formally:

𝑓𝑠 (𝑢) :𝑢→𝑠, 𝑠 (𝑡) :=𝑠 (𝑡)+𝛿 (𝑡−𝑡 (𝑓 +1) )

where 𝑡 (𝑓 +1) =min{𝑡 :𝑢 (𝑡)=𝜗,𝑡 > 𝑡 (𝑓 ) }.

3.2 Synaptic delays
To achieve pure delay-training, axonal delays are not sufficient (this
was experimentally attempted and failed) since they lack expressiv-
ity due to the problem becoming combinatorial. So an extension of
the formulation is needed in order to include the synaptic delays:

𝑢 (𝑡)=
∑︁
𝑖

𝑤𝑖 (𝜖𝑑𝑖 ∗𝑠𝑖 ) (𝑡)+(𝜈∗𝑠)=
∑︁
𝑖

𝑤𝑖 (𝜖 (𝑡−𝑑𝑖 )∗𝑠𝑖 ) (𝑡)+(𝜈∗𝑠).

In all our experiments, the spike response kernels were:

𝜖 (𝑡)= 𝑡

𝜏𝑠
exp(1− 𝑡

𝜏𝑠
)Θ(𝑡),

𝜈 (𝑡)=2𝜗exp(1− 𝑡

𝜏𝑟
)Θ(𝑡),

whereΘ(𝑡) is the Heaviside step function, although the formulation
is independent of the chosen kernel. Real-valued delays were stored
for each synapse during training, but only the quantised values were
used during inference. With simulation timestep of 1ms, this meant
that if we had a synaptic delay of, say, 4.421𝑚𝑠 , the spike will be
delayed by 4𝑚𝑠 .

3.3 Loss and spike target
For all the experiments, a spike time-based loss was used. For a tar-
get spike train 𝑠 (𝑡), for a time interval [0,𝑇 ], the loss function was
defined as:

𝐸=

∫ 𝑇

0
𝐿(𝑠 (𝑛𝑙 ) ,𝑠 (𝑡))𝑑𝑡 = 1

2

∫ 𝑇

0
(𝑒𝑛𝑙 (𝑠 (𝑛𝑙 ) (𝑡),𝑠 (𝑡)))2𝑑𝑡,

where𝐿(𝑠 (𝑛𝑙 ) (𝑡),𝑠 (𝑡)) is the lossat time instance𝑡 and𝑒 (𝑛𝑙 ) (𝑠 (𝑛𝑙 ) ,𝑠 (𝑡))
is the error signal at the final layer.

Finally, the error signal was:

𝑒 (𝑛𝑙 ) (𝑠 (𝑛𝑙 ) ,𝑠 (𝑡))=𝜖∗(𝑠 (𝑛𝑙 ) (𝑡)−𝑠 (𝑡))=𝑎 (𝑛𝑙 ) (𝑡)−𝑎(𝑡) .

For the classification tasks, the target spike train was specified as
the neuron corresponding to the correct class, spiking for the whole
simulation period. The class was inferred by looking at the first neu-
ron that spikes; in the case where more than one neuron spikes, we
infer the class of the neuron that, at parity of arrival time, has the
most spikes.

3.4 Data encoding
For the image-basedclassificationtaskweconverted thenon-temporal
deep learning datasets to spiking encodings. In this case, because
the trained parameters (the delays) work intrinsically in a temporal
domain, we opt for temporal encoding. Although a temporal cod-
ing similar to what is done in [14] was tried (i.e. for each pixel, a
spike temporally placed in a proportional way to the pixel intensity),
we found that a simpler encoding was more effective in terms of
accuracy performance for our setup. The strategy that we used in
practice is one where, for each pixel, if the greyscale value is higher
than 127 we get a spike, and otherwise we don’t get a spike.

3.5 Training delays

Figure 1: Spiking neuron dynamics
As a neuron receives a spike, a change in the membrane potential is
obtained. As the membrane potential reaches a threshold 𝜗 a spike

is generated

Training delays is a fundamentally different operation, seman-
tically, than training weights. Here we attempt to give an intuitive
explanation at a high level, of what the neural dynamics can be. The
explanation applies generally to all neuronal models. The spikes
cause an increase of the membrane potential𝑢 (𝑡) in the receiving
neuron– seeFigure 1.As themembranepotential reaches a threshold
𝜗 , the receivingneuronwill output a spike.Training synapticweights
act on howmuch a spikewill impact themagnitude of themembrane
potential: this is a direct action on the amplitude of the receiving
spike [3]. Training delays, on the other hand, act on when (or if) a
spike is generated, following a different dynamics. Remembering
that generation of a spike is the consequence of a change in ampli-
tude,we consider the latter, as the rest follows naturally. Considering
Figure 2: (A) shows a possible dynamics of a neuron receiving two
spikes. Consider themagnitude𝑢 as themaximum value of themem-
brane potential𝑢 (𝑡) as the consequence of the spikes in this case, we
will show howwe can obtain a lower or highermaximummembrane
potential value compared to𝑢. If wewant to use delays to change the
amplitude of the membrane potential, in the case depicted, we have
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two possibilities, delay the first spike, or the second.We can see that,
delaying the second spike leads to the silhouette of the membrane
potential never reaching𝑢 (Figure 2.B). Delaying the first spike, leads
to a𝑢 (𝑡) function that surpasses𝑢 (Figure 2.A).

Figure 2: Delay dynamics
Demonstration of how changing the delay of a spike can change the

amplitude of the membrane potential of a receiving neuron

3.6 Training procedure
All our experiments were on a fully connected network with one
hidden layer of 800 neurons (784-800-10). The optimization was
done with the Adam [9], with an initial learning rate of 0.01 and a
batch size of 32. The training set was split to train and validation
with an 80%, 20% split, and we report the test set accuracy in the
tables. Weights were initialized following a normal distributions:
N(0.0571,0.5458) for the first layer andN(−0.5244,1.0490) for the
second layer and scaled by a factor of𝑥10 as in [16]. For the initializa-
tion of the quantized weights, the same strategy was used, with the
addition that, before applying the multiplicative factor, we apply the
following, simple rule: let𝑤 ∈R be a weight of the network. Let �̄�
be the quantized version of the weight. Then, �̄� =𝑟𝑜𝑢𝑛𝑑 (𝑤) where
𝑟𝑜𝑢𝑛𝑑 (·) rounds𝑤 to the nearest integer in the set {−1,0,1}.

Parameters of the simulation. All simulations have a duration of
10 ms, and time is quantized with 1 ms precision. The spiking thresh-
old was set to 𝜗 = 10mV, the time constant to 𝜏𝑠 = 1ms and the
refractory time constant to 𝜏𝑟 =1ms.

Weights were initialised randomly in one of two ways: (a) normal
distributed with mean and variance derived from hyper-parameter
optimisation as described above and refer to this type of initialisation
as “freeweights” initialisation, (b) eachweightwas randomly chosen
to be one of three values {−𝑥,0,+𝑥} for some scaling factor 𝑥 . We
used 𝑥 = 10 in all our experiments, chosen such that it was high
enough in magnitude to allow input spikes to reach the last network
layer. We refer to this type of initialisation as “constrained weights”
initialisation throughout the text. In the experiments, we measure
how the two initialization methods compare.

For thedelays initialisation,wekept the samestrategyused in [16]:
A uniform random initialisation between 0 and 1. In practice, this
means that initially, the applied delay will be 0 in the forward pass,
but non-zero initialization allows the avoidanceof gradient problems
in the backward pass. In some trials, a random delays initialisation
in [0,𝑛] with different values for 𝑛 ∈Rwas also tried, but it did not
lead to any performance improvements.

4 RESULTS
We test pure delay training on two datasets, the MNIST [10] hand-
written digits dataset and the Fashion-MNIST [20] dataset. We com-
pare the results with weight training, and other similar methods in
literature.

Figure 3: MNIST learning curve
Learning curves (accuracy) for training and validation sets. Full
scale and zoomed version (inset). Without additional regularizers,

delay training is more resilient to overfitting.

Coding TrainingMethod Neuronmodel Accuracy (%)

S4NN [14] Temporal Backprop IF 97.4
Memories with delays [7] Temporal STDP LIF 93.5

ANN-fc (*) - Backprop ReLU 98.1±0.1
SLAYER weights baseline (*) Temporal Backprop SRM 96.1±0.1

Delay training
w/ random free weights (ours) Temporal Backprop SRM 95.6±0.1
Delay training
w/ constrained weights (ours) Temporal Backprop SRM 94.9±0.1

Table 1: MNIST results
Comparison with other related methods. All networks are fully
connected networks (no CNNs). The accuracy values for our

experiments correspond to the test evaluation on the model that
performed best on the validation set, reported as mean and standard
deviation values over 3 runs. (*) denotes runs done by us. For the

(non-spiking) ANN baseline, we used a fully-connected
architectures and the same number of neurons as our SNN

experiments without additional regularizers. Only [7] train delays
in the network directly.

4.1 MNIST
We show in Figure 3 the learning curves for our experiments. In
the case of MNIST, we can see how the weights baseline fits the
training dataset quickly, and our two methods do not achieve the
same training accuracy. However, viewing the validation accuracy
curve, we can see how, without additional regularizers, weights
training overfits, in contrast to our method. With both free and con-
strainedweights initialisation,we achieve an accuracy improvement
over [7], which is the only work that attempts a similar approach to
ours (albeit not fully supervised). Our goal here is to demonstrate a
proof-of-concept that pure delay training is competitive rather than
achieve state-of-the-art accuracy.

4.2 Fashion-MNIST
In Figure 4, we present the learning curves for the experiments on
the Fashion-MNIST dataset. In this case, we observe how the overfit-
ting on the training set for the weight training is even more evident
than the previous case; weight training achieves over 97% training
accuracy on the training set, delay training stops at 92%. We can see
from the validation curves how, as epochs pass, our delay training
method ismore robust to overfitting, indeed, at the 100th epochmark
the weights training baseline has lower accuracy values than both
our delay trainingmethods.We also notice that ourmethods get very
close to the weights training baseline for the best validation model,
and are not far behind the non-spiking and basic ANN baseline.
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Coding TrainingMethod Neuronmodel Accuracy (%)

HM2BP [21] Rate Backprop LIF 89.0

ANN-fc (*) - Backprop ReLU 89.3±0.2
SLAYER weights baseline (*) Temporal Backprop SRM 86.8±0.1

Delay training
w/ random free weights (ours) Temporal Backprop SRM 86.6±0.02
Delay training
w/ constrained weights (ours) Temporal Backprop SRM 86.23±0.1

Table 2: Fashion-MNIST
(*) see Table 1.

Figure 4: Fashion-MNIST learning curve
Weights training achieves high accuracy in the training set, but

delay training performs better in the validation set.

5 DISCUSSION
Wehavedemonstrated aproof of concept that training just the delays
in a spiking neural network canwork, aswell as trainingweights.We
showed that on both MNIST and Fashion-MNIST datasets, pure de-
lay training achieves task performance comparable to conventional
weight training, with delay training having a slight advantage in not
overfitting the dataset. Moreover, we demonstrated that even when
the weights are randomly initialised to ternary values ({+𝑥,0,−𝑥}),
the task performance of the networks remains good.

This is the first step toward understanding the computational
power of delays in spiking neural networks for biology andmachine
learning. Input and output encodings that use better temporal infor-
mation and more precise delay training methods are potential ways
to extend this in future work.

A forward pass in a spiking network using only delays with these
ternary weights can also be implemented significantly more effi-
ciently than a network that uses floating point weights. In software,
such a forward pass can use just matrix roll operations combined
with addition/subtraction instead of multiply-accumulate. In neu-
romorphic computing, our work suggests newways of configuring
the hardware to achieve extremely efficient inference. It might espe-
cially be relevant to analog and photonic [15] neuromorphic devices,
although significant savings can also be realised in other devices.
Overall, this work demonstrates a new paradigm of using time in
and training spiking neural networks.
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