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We clarify the mathematical structure underlyingunitary t-designs. These are sets of unitary matrices, evenly
distributed in the sense that the average of anyt-th order polynomial over the design equals the average over
the entire unitary group. We present a simple necessary and sufficient criterion for deciding if a set of matrices
constitutes a design. Lower bounds for the number of elements of 2-designs are derived. We show how to
turn mutually unbiased bases into approximate 2-designs whose cardinality is optimal in leading order. Designs
of higher order are discussed and an example of a unitary 5-design is presented. We comment on the relation
between unitary and spherical designs and outline methods for finding designs numerically or by searching
character tables of finite groups. Further, we sketch connections to problems in linear optics and questions
regarding typical entanglement.

I. INTRODUCTION

Before introducing the notion of a unitary design it is
worthwhile to look at the analogue structure on spheres inRn. Imagine one is interested in the average value of a real
functionf defined on ann-dimensional real sphereSn. That
value might be hard to compute in general so it could be sensi-
ble to estimate it by averaging over a finite set of unit vectors
D = {|ψ1〉, . . . , |ψK〉}. Of course, for any such finite set,
there are functions whose true average value deviates arbitrar-
ily much from the one approximated by summing overD; but
the more points the test set includes and the more “even” these
vectors are distributed, the more “exotic” such functions have
to be. The following notion aims to quantitatively capture the
quality of a set of points for these purposes: a finite subset
D of Sn is called asphericalt-designif the average of ev-
ery t-th order polynomialp overSn equalsp’s average taken
overD. A large body of literature has been devoted to the
construction and exploration of designs. Many of the relevant
references can be found in the accessible article Ref. [3].

One can adapt the definition of spherical designs to com-
plex vector spaces (simply by substituting the real sphere by
the set of complex unit vectors) with obvious applications
in quantum mechanics. In the context of quantum informa-
tion theory,2-designs appeared in Refs. [4, 5, 6, 7, 8, 9],
to name a few. Two prominent examples of complex spher-
ical 2-designs are here known by the names ofmutually unbi-
ased bases[3, 8, 10] andsymmetric informationally complete
POVMs[3, 5, 8] respectively.

Quite recently, Dankert et al. introduced the notion of auni-
tary t-designby replacing the real sphereSn by the set of uni-
tary matricesU(d) in the definition of spherical designs [1, 2].
Averages are here to be taken with respect to the Haar mea-
sure. In the sense made precise above, the theory of unitary
designs thus aims to identify finite nets of unitaries, which
cover the entire group as tightly as possible.

Such nets are interesting for various reasons. Abstractly,
unitary designs can serve as testbeds for examining conjec-
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tures concerning the unitary group: their even distribution
here means that they “cover many complementary aspects”
of U(d). Also, spherical designs naturally appear in optimal
solutions to several physical problems, ranging from quantum
state tomography and optimal estimation using finite ensem-
bles to quantum key distribution [5, 6, 7, 11] – it is sensibleto
assume that similar applications for their unitary counterpart
can be found. More concretely, unitary designs have been ap-
plied to quantum process estimation and fidelity estimationof
channels using random states [1, 2]; quantum cryptography
[12] and data hiding protocols [13]. Naturally, designs canbe
used to estimate Haar averages using classical computers. For
the case of averages of polynomial functions, the results are
guaranteed to be correct (there are, however, other methods
for tackling this specific problem; see Appendix VIII A and
Ref. [14]). For non-polynomial functions one obtains at least
an educated guess. Going beyond finite-dimensional quantum
systems, Haar averages overU(d) appear in the context of
energy-preserving transformations ofd bosonic modes. Such
transformations are notably relevant as passive linear optical
transformations of states of light modes [15, 16]. Lastly, we
believe the problem to be of inherent geometrical interest.

As most of the present work is concerned with unitary2-
designs, we now state the precise definition for this special
case (see, however, Section V A):

Definition 1 (Unitary design [1, 2]). A setD = {Uk}k=1,...,K

of unitary matrices onH = Cd is a unitary 2-designif it
fulfills the equivalent conditions:

1. (Averages)Let p be a polynomial in2d2 variables. We
can conceivep as a function onU(d) by evaluating it on
the matrix elements and their complex conjugates of a
given matrix:p(U) := p(U i

j , Ū i
j). One now demands

that for anyp which is homogeneous of degree two in
each variable, the relation

1

K

∑

Uk∈D

p(Uk) =

∫

U(d)

p(U)dU (1)

be fulfilled.
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2. (Twirling of states)For all ρ ∈ B(H⊗H)

1

K

∑

Uk∈D

(Uk ⊗ Uk) ρ (Uk ⊗ Uk)† (2)

=

∫

U(d)

(U ⊗ U) ρ (U ⊗ U)†dU. (3)

3. (Twirling of channels)For any quantum channelΛ

1

K

∑

Uk∈D

U †
kΛ(UkρU

†
k)Uk (4)

=

∫

U(d)

U †Λ(UρU †)UdU.

The problem has a long history, which is formulated mostly
in the second of the three equivalent guises listed above. The
“twirling” operation originates from invariant theory (where
it is sometimes called “transfer homomorphism”) and has, to
our knowledge, first been introduced to quantum information
theory in Ref. [17], giving rise to the concept of a “Werner
state”. Later, it was noted that ind = 2 (i.e., for single qubits),
it suffices to average over a finite set of unitaries [18]. A
construction for general dimensions – employing non-evenly
weighted unitaries – appeared in Ref. [19]. DiVincenzo et al.
[13] realized that theClifford group[20, 23] for qubit systems
exhibits the property given in Eq. (2); a fact which was later
generalized to systems of prime-power dimensions by Chau
[12]. Similar ideas appeared in Ref. [21]. A first concise
treatment was given in a master thesis by Dankert [1] (where
the term of aunitary t-designhas been coined) and in a later
paper by Dankert et al. [2]. In these publications, the equiva-
lence of the criteria in Definition 1 has been made explicit and
the question of how to efficiently implement the unitaries of
certain designs was addressed.

Despite the large amount of interest paid to the problem,
the following natural questions have been left open and will
partly be answered in this paper:

1. In which dimensions do unitary2-designs exist and
when can they be explicitly constructed?While we do
not have a general answer to this question, a host of
examples is provided in Sections III and IV C. [Note
added in revised version: After this article had been
submitted, A. Scott made us aware of Ref. [45]. This
extremely general paper proves – among other things
– the existence of unitary designs for everyt andd (it
does not provide an explicitly way for constructing the
designs). Thus, the question posed above can partly be
answered affirmatively.]

2. What is the minimal number of elements needed for a
2-design? See Section II C for a lower bound, which
we conjecture to be tight in leading order.

3. Is there an easy criterion to decide whether a given set
of matrices constitutes a design?This question is an-
swered affirmatively in Section II B. We transfer the
concept of aframe potential[3, 31] from spherical to

(a) (b)

FIG. 1: Visualization of the 12-element Clifford 2-design described
in Section IV C. As up to phasesSU(2) ≃ SO(3), every qubit uni-
tary corresponds to a three-dimensional rotation. The group SO(3),
in turn, can be pictured as a ball with radiusπ, where antipodes on the
boundary are identified. This is done by associating to everyrotation
by an angleφ ∈ [0, π] about the unit-vector̂n the pointφ n̂ ∈ R3.
Figure (a) shows the four Pauli matrices1, σx, σy, σz in this rep-
resentation. The non-trivial Pauli operations lie on the boundary of
the ball and hence appear twice:σx, e.g., at±(π, 0, 0)T . Adding
eight further Clifford operations, which correspond to thevertices
2π/

√
27(±1,±1,±1)T of a cube, we arrive at the 2-design pictured

in Figure (b).

unitary designs. The frame potential is a simple poly-
nomial expression in the matrix elements, which is min-
imized exactly for designs. This criterion even allows
for numerical searches in spaces of small dimensions.

4. Can one find designs among matrix groups?Section III
treats this special case. It turns out that the theory is
especially clear when one restricts attention to groups.
The frame potential will be re-interpreted in terms of
basic character theory.

5. Is it possible to explicitly construct approximate unitary
designs?In Section IV B we give an explicit construc-
tion for turning mutually unbiased bases (MUBs) into
unitary matrices which asymptotically approximate 2-
designs. More precisely, the prescription yields a set
of unitaries for every prime-power dimensiond. These
sets approximate 2-designs asd → ∞. Also, the car-
dinality of suchasymptotic designsis of the same order
as the lower bound derived earlier.

6. The set of operatorsB(Cd) on Cd form a d2-
dimensional Hilbert space.What is the connection be-
tween the unitary designs inU(d) and spherical designs
in Cd2

? The relation can be made rather explicit in
terms of the Jamiołkowski isomorphism and the frame
potential. Both spherical and unitary designs corre-
spond to minima of the potential – yet under different
constraints. This statement is made precise in Section
II B.

7. What about more general concepts such ast-designs for
t > 2 or substitutingU(d) by other groups?We will
discuss this general scenario in Section V A and present
an example of a qubit 5-design.
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II. GENERAL THEORY

A. Preliminaries

In this section we are going to derive a simple criterion for
identifying 2-designs as well as lower bounds for the number
of elementsK they need to contain. Before stating these re-
sults, let us shortly recall some general facts abouttwirling
channelsandcompletely positive mapswhich will be needed
in the sequel.

Let {Ug}g∈G be a unitary representation of some groupG
on a Hilbert spaceH. Thetwirling channelinduced byG and
the representationUg is

T (A) =

∫

g

UgAU
†
g dg, (5)

wheredg stands for the Haar measure of the groupG. De-
note the projection operators onto the irreducible subspaces
of {Ug}g by {Pi}i. For simplicity we assume that the repre-
sentation is a direct sum ofinequivalentirreducible ones (see
Appendix VIII A for the general case). By Schur’s Lemma
T (A) = A if and only ifA is a linear combination of thePi’s.
Indeed, settingP ′

i := Pi/trPi, one easily checks that

T (A) =
∑

i

tr(P ′
iA)Pi. (6)

SettingH = Cd ⊗ Cd, G = U(d) represented asU 7→
U ⊗ U , we arrive at theUU -twirling channelTUU defined
in Eq. (3), which has played a prominent role in quantum
information theory. In order to identify the irreducible sub-
spaces, define theflip operatorF which acts by permuting
the tensor factors:F|i〉 ⊗ |j〉 = |j〉 ⊗ |i〉. Its eigenspaces are
the sets ofsymmetricandanti-symmetricvectors respectively.
The projection operators onto these spaces will be denoted
by PS = (1 + F)/2 andPA = (1 − F)/2. We have that
dimPS = d(d+ 1)/2 anddimPA = d(d− 1)/2.

Moving on, we recall the well-known correspondence be-
tween completely positive maps (cp maps) sendingB(Cd) →
B(Cd) and states onCd ⊗Cd. Let Λ be such a map. Choose
a basis{|i〉}i in Cd and let|Ψ〉 :=

∑d
i |i〉 ⊗ |i〉 be an (un-

normalized) maximally entangled vector inCd ⊗ Cd. The
object

CΛ := (1⊗ Λ)|Ψ〉〈Ψ| =
∑

i,j

|i〉〈j| ⊗ Λ(|i〉〈j|) (7)

is called theChoi matrixof Λ. It is also known as theprocess
matrixand the correspondence in Eq. (7) goes by the name of
Jamiołkowski isomorphism. The name is justified asΛ 7→ CΛ

is invertible:

Λ(|i〉〈j|) = 〈i|1 CΛ |j〉1. (8)

In what follows, we will writeTD for the channel induced by
a set of unitariesD via Eq. (2) and denote the correspond-
ing Choi matrix byCD. Likewise,CUU designates the Choi
matrix ofTUU .

B. The frame potential

The various∀-quantifiers in Definition 1 make it hard to
identify a given set of matrices as a design. Any exploration
of this structure would thus greatly benefit from a simple cri-
terion for the property of “being a design”. Indeed, for the
case of spherical designs such a tool is well-known (see Ref.
[3] and references therein): a set of vectors{|ψ1〉, . . . , |ψK〉}
is a spherical2-design inCd if and only if

∑

k,k′

|〈ψk|ψk′〉|4/K2 = 2/(d4 + d2). (9)

The expression on the left-hand side has been linked in Ref.
[5] to a concept which appeared in the context offrame theory
in an equally insightful and enjoyable paper by Benedetto and
Fickus [31]. The authors considered a physical model to in-
troduce a notion of “evenly distributed” vectors: if we assume
thatK particles on the unit-sphere with respective coordinates
|ψk〉 are subject to a repulsive force proportional to〈ψk|ψk′ 〉2,
then the left-hand-side of Eq. (9) gives thepotential of the
configuration. Consequently, the quantity is referred to asthe
(spherical)frame potential[46]. It turns out that2/(d4+d2) is
the lowest value the frame potential can possibly attain andso
there is a one-one correspondence between global minimizers
of the frame energy and spherical 2-designs.

Our first result transfers this nice concept to the setting of
unitary designs.

Theorem 2 (Frame potential). Let D = {Uk}k=1,...,K be a
set of unitaries. Define theframe potentialof D to be

P(D) =
∑

Uk,Uk′∈D

| trU †
kUk′ |4/K2. (10)

The setD is a unitary 2-design if and only ifP(D) = 2, which
is a lower bound to the global minimum of the potential.

Theorem 2 allows us to discuss the connection between
unitary and spherical designs quite explicitly. Recall that
the Hilbert-Schmidt inner producton B(Cd) is defined as
〈A|B〉HS := tr(A†B)/d. In the spirit of the Jamiołkowski
map, we can establish an isomorphism betweenB(Cd) as a
vector space andCd ⊗ Cd. Explicitly, we mapU to |vU 〉
where

vij
U = U i

j /
√
d. (11)

Here, we have used the notationvij = (〈i| ⊗ 〈j|) |v〉 and
U i

j = 〈i|U |j〉 for the respective matrix elements [47]. One
checks that|vU 〉 is a normalized maximally entangled vector
if and only ifU is unitary. Hence, we can re-phrase Theorem
2 as:D is a unitary 2-design if and only if

∑

Uk,Uk′∈D

|〈vUk
|vUk′ 〉|4/K2 = 2/d4, (12)

which is the global minimum of the spherical frame potential
for K maximally entangledvectors. Note the close similarity
to Eq. (9).
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The relation between unitary designs inU(d) and spheri-
cal designs inCd ⊗ Cd now becomes apparent: both corre-
spond to minima of the frame potential, yet under different
constraints. For spherical designs the minimum is taken in the
set of all normalized vectors; whereas in the unitary case one
demands that the vectors are also maximally entangled.

Theorem 2 also facilitates numerical searches for designs
on low dimensional spaces. Indeed, the authors have writtena
program for the MatLab computer system, which numerically
minimizes the frame potential of a set of operators onC2. If
the set hasK ≥ 12 elements, a multitude of unitary 2-designs
is found, while there seem to be no solutions forK < 12.
These findings support Conjecture 4.

Proof. (of Theorem 2)Using the notation introduced in Sec-
tion II A, let ∆ := CD − CUU . Obviously,D is a 2-design if
and only if||∆||22 := tr |∆|2 = 0. We compute

tr(∆†∆) = tr(C†
UUCUU − C†

UUCD − C†
DCUU + C†

DCD)

and treat the terms in turn. To that end introduce a basis{|i〉}
in Cd ⊗ Cd such that the firstds := dimPS = d(d + 1)/2
vectors are symmetric and the lastda := dimPA = d(d −
1)/2 ones anti-symmetric with respect toF. In the formulas
below, we will sometimes write|iS〉 or |iA〉 to indicate the
subset a given vector belongs to. Note that the vector|Ψ〉
introduced in Section II A can be written as|Ψ〉 =

∑

is
|iS〉⊗

|iS〉 +
∑

iA
|iA〉 ⊗ |iA〉. One then finds

CUU =
∑

iS ,jS

|iS〉〈jS | ⊗ tr(|iS〉〈jS |PS)P ′
S + S ↔ A

= PA ⊗ P ′
A + PS ⊗ P ′

S .

We have used the abbreviationS ↔ A to denote the term
which follows from the preceding one by a straight-forward
substitution of symmetric by anti-symmetric expressions,and
as beforeP ′

S = PS/ trPS , P ′
A = PA/ trPA. Further:

CD =
∑

i,j

|i〉〈j| ⊗
(

∑

k

U⊗2
k |i〉〈j|(U †

k)⊗2/K

)

.

Hence,

tr(C†
UUCUU ) = d−2

S tr(PS ⊗ PS) + d−2
A tr(PA ⊗ PA) = 2

and

tr(C†
UUCD)

= K−1
∑

i,j

tr(PS |i〉〈j|) tr

(

P ′
S

∑

k

U⊗2
k |i〉〈j|(U †

k)⊗2

)

+S ↔ A

= K−1
∑

iS

tr

(

∑

k

U⊗2
k P ′

S |iS〉〈iS |(U †
k)⊗2

)

+ S ↔ A

=
∑

iS

tr(P ′
S |iS〉〈iS |) + S ↔ A

= 2 = tr(C†
DCUU ).

Lastly:

tr(C†
DCD)

= K−2
∑

i,j

∑

k,k′

tr
(

U⊗2
k |j〉〈i|(U †

k)⊗2 U⊗2
k′ |i〉〈j|(U †

k′)
⊗2
)

= K−2
∑

k,k′

| tr U †
kUk′ |4 = P(D).

The claim is now immediate.

For the construction of approximate unitary designs in Sec-
tion IV B, we record the following corollary.

Corollary 3. LetD be a set of unitary matrices,CUU andCD

as defined in Section II A. Then

||CUU − CD||22 = P(D) − 2.

C. A lower bound

Intuitively it is clear that constructing unitary designs be-
comes more challenging the fewer elementsK one allows for
(c.f. Theorem 6.6). This section is devoted to finding a lower
bound forK as a function of the dimensiond.

What is the situation to date? Before the present paper,
all known families of 2-designs were subgroups of the Clif-
ford groupCd in prime-power dimensionsd. In the context
of quantum information, the Clifford group is the set of uni-
taries mapping the set of Weyl operators (also known as: gen-
eralized Pauli operators) to itself under conjugation [20]. An
introduction into this theory will be given in Section IV C,
where all claims made in this paragraph will be elaborated
on. References [1, 2, 13, 21] use the fact that the full Clifford
groupCd constitutes a 2-design. However, as the cardinal-
ity of Cd grows exponentially ind (c.f. Eq. (50)), one might
hope for the existence of more optimal designs. Fortunately,
in Ref. [12] it has been realized that a particular subgroup of
the Clifford group already possesses the 2-design property.
The group’s order scales asO(d5). What is more, the exis-
tence of Clifford 2-designs withd2(d2−1) = O(d4) elements
has been established for several dimensions [12]. As will be
explained in Section IV C,d2(d2 − 1) is in fact the smallest
value a design based on the Clifford group can possibly have
and that value will subsequently be referred to as theClifford
bound. For various reasons to be explained later, we believe
this to be a general lower bound for the cardinality of any
2-design, even for constructions which are not based on the
Clifford group.

Conjecture 4. The Clifford bound

d4 − d2 (13)

is a lower bound for the cardinality of any unitary 2-design.

While we were not able to prove this conjecture, an estimate
which equals the Clifford bound in leading order is established
below.
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Theorem 5 (Lower bound onK). A unitary 2-design in di-
mensiond has no fewer than

d4 − 2d2 + 2 (14)

elements.

Note that a spherical 2-design inCd ⊗ Cd has at leastd4

elements – so the slightly higher frame potential characteristic
for unitary 2-designs might allow one to save a few elements
as compared to spherical 2-designs.

Proof. We follow an idea from Ref. [5]. Let|vU 〉 := U ⊗1 |v0〉 for some maximally entangled vector|v0〉. Define a
homogeneous polynomialp of degree2, 2 in U by

p(U) := 〈vU |A|vU 〉 tr(|vU 〉〈vU |B). (15)

Certainly, Eq. (1) holds and hence, asA andB are arbitrary,
the relation

∑

U∈D

〈vU |A|vU 〉 |vU 〉〈vU |/K (16)

=

∫

〈vU |A|vU 〉 |vU 〉〈vU | dU =: Λ(A)

must hold and defines a channelA 7→ Λ(A). We want to
compute the kernel ofΛ.

The channelΛ is clearlyU ⊗ 1-covariant:

Λ((U ⊗ 1)A(U ⊗ 1)†) = (U ⊗ 1) Λ(A) (U ⊗ 1)†. (17)

But because for any maximally entangled state(1⊗ V )|v〉 =
(V ′ ⊗ 1)|v〉 for someV ′, Λ is also1 ⊗ V and hence even
U ⊗ V -covariant, for all unitariesU, V . Invoking Schur’s
Lemma one concludes thatΛ must be a mixture of projec-
tions onto theU ⊗ V -invariant subspaces ofB(H). What are
these spaces? Let us first identify the irreducible components
of U · U †. The multiples of the identity (M1 for short) clearly
form an irreducible component by themselves. Its comple-
ment is the space of trace-less operators (M2). Now,U · U †

must act irreducibly onM2, because there exists bases of mu-
tually conjugate trace-less operators [48].

Surely then,M1 ⊗ M1 (multiples of the identity),M1 ⊗
M2,M2⊗M1 (the local observables of the form1⊗X,X⊗1)
andM2⊗M2 are invariant underU⊗V · U †⊗V †. A moment
of thought reveals that they are irreducible (think of cyclic
vectors). Clearly,M1 ⊗ M1 has no non-trivial intersection
with ker(Λ), while M1 ⊗ M2,M2 ⊗ M1 ⊂ ker(Λ). What
aboutM2⊗M2? Because ofΛ’s structure, either any element
of M2 ⊗M2 is in the kernel or else, none is. SettingB = A†

and evaluating Eq. (15) we see that

p(U) = |〈vU |A|vU 〉|2 ≥ 0, (18)

so Λ(A) = 0 if and only if 〈v|A|v〉 = 0 for all maxi-
mally entangled vectors|v〉. To conclude thatM2 ⊗M2 has
no intersection withkerΛ, we only need to assure the exis-
tence of a single traceless observableX and a single maxi-
mally entangled state|v〉 such that〈v|X ⊗X |v〉 6= 0, which
is trivially possible. HencerankΛ = d4 − dimkerΛ =
d4 − dim(M1 ⊗M2) − dim(M2 ⊗M1) = d4 − 2(d2 − 1).
But the rank ofΛ cannot be larger thanK, by Eq. (16).

III. GROUP DESIGNS

When searching for unitary designs, it might prove helpful
to assume some additional structure in order to narrow down
the search space and simplify the proofs. Indeed, sets of uni-
tary matrices appear most naturally as representations of finite
groups and (except for our numerical findings), all known de-
signs are matrix groups. It will turn out that the concept of
unitary designs has a very natural interpretation in terms of
representation theory.

A. Irreducible constituents

We will be concerned with setsD of unitaries which form
a finite matrix group onCd. It will prove convenient to con-
ceiveD as the image of a representationU : g 7→ Ug of
some finite groupG. Recalling the notions of Section II A, it
is clear that the channelTD is nothing but the twirling chan-
nel associated with the representationU . By Eq. (5),TD will
project onto the irreducible subspaces of this representation.
As any operator of the formUg ⊗ Ug commutes with the flip
operatorF, we know that the symmetric and anti-symmetric
subspaces ofCd ⊗Cd will be among the invariant subspaces
of {Ug ⊗ Ug | g ∈ G}. In general, these spaces are not going
to be irreducible. We now see what makes representationsU
which induce a 2-design special:TD = TUU (and henceD
is a design) if and only if the representationg 7→ Ug ⊗Ug has
exactly two irreducible components.

Simple as this observation may be, it must not be underes-
timated: it allows us to understand designs from a group the-
oretical point of view. The next section will further elaborate
on this approach.

B. Characters

Let us devote one paragraph to recall some very basic no-
tions and results from representation theory [29]. To every
unitary representationU : g 7→ Ug of a finite group, one
associates itscharacterζ(g) = trUg. One says that the rep-
resentationaffordsζ. Denote the irreducible representations
(irreps) ofG by{V (i)}i and their associatedirreducible char-
actersby{χi}. One introduces a scalar product between char-
acters by setting

〈ζ, χ〉 := |G|−1
∑

g

ζ̄(g)χ(g). (19)

It is a well-known and fundamental relation that the irre-
ducible characters are ortho-normal:〈χi, χj〉 = δi,j . The
fact that any representation reduces to a direct sum of irreps
means that any character can be expanded in terms of the ir-
reducible ones and further that〈ζ, χi〉 gives the number of
times ni the i-th irrep occurs in the decomposition of the
representation affordingζ. Finally, if ζ =

∑

i niχi, then
||ζ||2 = 〈ζ, ζ〉 =

∑

i n
2
i .
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Now, let D, G, U be as in Section III A. We compute the
frame potential ofD:

P(D) =
∑

g,g′

| trUg−1g′ |4/|G|2 (20)

=
∑

g

| trUg|4/|G|

=
∑

g

(trUg ⊗ Ug)(trUg ⊗ Ug)/|G|

= 〈ζU(2) , ζU(2)〉 = ||ζU(2) ||2,

whereζU(2)(g) = tr(Ug ⊗ Ug) = ζU (g)2 is the character of
the representationU (2) : g 7→ Ug ⊗ Ug. In other words, the
frame potential of a group design is the squared norm of the
character ofU (2).

We can now rederive Theorem 2. By this section’s first
paragraph,||ζU(2) ||2 =

∑

i n
2
i , which equals2 if and only

if U (2) has exactly two irreducible components. This in turn
is equivalent toU inducing a 2-design, as has been shown in
Section III A. Note how much the group structure simplified
the proof.

It seems remarkable that the frame potential offers a very
natural interpretation in terms of two completely unrelated
structures: from the point of view of frame theory, it is a
purelygeometricallymotivated measure for the “eveness” of a
distribution. In terms of group representation theory, it seem-
lessly takes on analgebraicrole.

C. General results and properties

Consider a group designD = {Ug | g ∈ G}. The cen-
ter Z(U) of U are the elements ofD which commute with
anyUh. By Schur’s Lemma, ifU is irreducible, we have that
Ug ∈ Z(U) ⇔ Ug ∝ 1. Now choose one representative of
each cosetD/Z(U) and assemble these unitaries in a setD′

(D′ is called atransversalof D/Z(U)). Using Eq. (2), one
sees thatD′ is a 2-design of cardinality|D|/|Z(U)|. From
now on, we will restrict attention to such reduced sets. Con-
sequently, for any representationU of G, we will defineDU

to be a transversal of{Ug | g ∈ G}/Z(U) and refer toDU as
thegroup design induced byU .

Using this definition, let us collect and extend the results on
group designs in the following theorem.

Theorem 6(Group designs). LetG be a finite group andU a
unitary representation ofG onCd affording the characterζ.
The following are equivalent:

1. The setDU is a 2-design.

2. The representationU (2) : g 7→ Ug ⊗ Ug has no more
than two irreducible components.

3. It holds that||ζU(2) ||2 = 2.

4. The characters

χS(g) := (χ(g)2 + χ(g2))/2,

χA(g) := (χ(g)2 − χ(g2))/2

are irreducible.

Further:

5. The cardinalityK = |DU | is a multiple ofd and
1/2d(d± 1).

6. Let H be a finite group represented onCd by V. If
{Vh |h ∈ H} ⊃ {Ug | g ∈ G} thenF(DV ) ≤ F(DU ).

7. The frame potential of a matrix group is an integer.

8. A necessary condition forDU to be a 2-design is thatU
is irreducible.

9. For d > 2, there are no real-valued group representa-
tions which form a 2-design.

Statement 5 can be used in conjunction with Section II C
to derive bounds onK. For example, ford = 2, it holds
thatK ≥ 10 by Theorem 5. But we now know thatK must
be divisible by2 and3, so thatK ≥ 12. As unitary group
designs of order12 in dimension2 do indeed exist, we know
that the bound is tight. Unfortunately, this is the only case
where we can make lower and upper bounds match. Note
also, that12 is the value predicted by the Clifford bound for
d = 2, supporting our conjecture.

The 6-th point says that “supergroups have lower frame po-
tential than their subgroups”. Again, it is clear that construct-
ing designs is easier, the more elements one allows for. In gen-
eral, however, just adding further unitaries to an “almost de-
sign” is not going to improve the potential. For group-designs
the situation is different, as we now know.

Lastly, statement 7 says that the frame potential of matrix
group is “quantized”. In that sense,there are no “approximate
group designs”.

Proof. The equivalence1. ⇔ 2. ⇔ 3. has been established
in the discussion preceding the theorem. Claim4. is equiv-
alent to2., asχ2 = χS + χA. The fifth statement follows
from a well-known theorem in representation theory (see Ref.
[29]). Point6. holds true as the number of irreducible com-
ponents cannot decrease when passing from a subgroup to a
supergroup. Claims7. and8. should be obvious. Lastly,9. is
valid because for realζU

1 = 〈ζU , ζU 〉 = 〈ζU ζ̄U , 1G〉 = 〈ζU(2) , 1G〉,

where1G : g 7→ 1 is the trivial representation. Hence,1G

is a one-dimensional irreducible component ofU (2). But for
d > 2 we have thatds, da 6= 1.
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D. Harvesting character tables

The results of Section III B enable us to identify designs
by just looking at character tables of finite groups. Such ta-
bles have been the subject to intensive research and are digi-
tally available. We have employed the freely available GAP
computer system [32] to search the GAP Character Table Li-
brary version 1.1 [33] for unitary designs. Some findings are
compiled in Table I. For each dimensiond in which a uni-
tary design has been found, one example is included in the
table. To access the listed character tables, pass the name to
CharacterTableFromLibrary() . The column “Irred.
character no.” gives the position of the design within the list of
irreducible characters returned by theIrr() -function. E.g.,
the dialog

gap> t:=CharacterTableFromLibrary("J4");;
gap> chr:=Irr(t)[2];;
gap> Degree(chr);
1333
gap> Norm(chr * chr);
2
gap>

confirms that the last item in Table I does indeed belong to a
unitary group design in dimension1333.

IV. PHASE SPACE TECHNIQUES

The titlephase space techniquesrefers to any method em-
ploying the realted concepts of Weyl operators (also known as
generalized Pauli operators), stabilizer states and the Clifford
group. These structures have played a central role in the the-
ory of both spherical and group designs [2, 5, 10, 12, 13]. As
the following paragraphs require some rather technical prepa-
rations, we state a summary of the results at this point.

In Section IV B asymptoticunitary designs will be con-
structed. By this, we understand a family of sets of uni-
tariesDd, such that the matrices inDd ared-dimensional and
limd→∞ P(Dd) = 2. The intuition behind the construction
is as follows: in Section II B, we discussed the relation be-
tween the frame potential of operators onCd and vectors inCd2

. Hence it is natural to ask whether one can exploit this
relation to turn spherical designs into unitary ones. Obviously,
in order to obtainunitary matrices, we must require the vec-
tors in the spherical design to be maximally entangled. Recall
that a maximal set of MUBs is a 2-design and, moreover, that
such sets can be chosen to consist of stabilizer states [10].For
bi-partite systems, where each party has prime dimension, it
is known that stabilizer states are either maximally entangled
or not entangled at all [30]. It is thus reasonable to assume
that among the elements of a maximal set of MUBs, there are
“enough” maximally entangled ones to yield a set of unitaries
with a low frame potential. Fortunately, this intuition turns
out to be true and we will find sets ofO(d4) unitaries in di-
mensiond = pn, which approximate a 2-design asd→ ∞.

Secondly, in Section IV C, we will revisit the technique of
Clifford twirling. Our main contribution to the theory willbe

a systematical reassessment of what is already known. Indeed,
reading the literature, one gets the impression that some con-
fusion has arisen due to the fact thatseveral distinct Clifford
groups exist. The one used in Refs. [1, 2, 13, 21] is differ-
ent from the one in Ref. [12]. Going on, we will review a
construction by Chau, which meets the Clifford bound in di-
mensions2, 3, 5, 7, 11, and outline a way for circumventing a
no-go theorem which asserts that for any other dimension the
bound cannot be met. In particular, ford = 9, we present a
subgroup of the Clifford group which is a 2-design of smaller
cardinality than Ref. [12] seems to suggest is possible.

Before presenting these results in detail, the reader must en-
dure the tour-de-force of technical preparations given in Sec-
tion IV A. It is a peculiarity of the theory to be presented that
it works much more smoothly in odd dimensionsd than in
even ones. While it can be checked that all results in the next
section also hold for the qubit case, the proofs are given only
for the case of oddd.

A. Introduction

This section contains a very brief outline of the general the-
ory. See Ref. [25, 26] and references therein for a more de-
tailed exposition.

1. Weyl operators, the Jacobi group & the Clifford group

Let us first gather some well-known facts on finite fields
[28]. If p is prime andr a positive integer,Fpm denotes the
unique finite field of orderpm. The simplest case occurs for
m = 1, whenFp ≃ Zp, i.e., the set of integersmodulop.
Now setd = pm and choose anr ∈ N. Out of thebase
field B := Fd, one can obtain the fieldsFdr by means of
a field extension. Extension fields contain the base field as
a subset. The extension field possesses the structure of anr-
dimensional vector space over the base field. A set of elements
of F is a basisif it spans the entire field under addition and
B-multiplication. The operation

TrF/B f =

r−1
∑

k=0

fdk

takes on values in the base field and isB-linear. Therefore,

〈f, g〉 7→ TrF/B(fg)

defines aB-bilinear form. For any basis{bi}, there exists
a dual basis{bi} fulfilling the relationTrF/B(bibj) = δi,j
(we do not use Einstein’s summation convention). Clearly, if
f ∈ F can be expanded asf =

∑

i f
ibi, with coefficients

f i ∈ B, then duality implies thatf i = Tr(fbi).
We will work in the d := pm-dimensional Hilbert space

H ≃ Cd spanned by the vectors{|a〉 | a ∈ Fd}. Define a
characterof Fd by χd(a) := exp(i 2π

p TrFpm/Fp
(a)). The

relations

x̂d(q)|x〉 = |x+ q〉, ẑd(p)|x〉 = χd(px)|x〉 (21)
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define theshift andboostoperators respectively. The Weyl
operators (also known asgeneralized Pauli operators) in di-
mensiond are given by

wd(p, q) = χd(−2−1pq) ẑd(p)x̂d(q), (22)

for p, q ∈ Fd. The phase factors in Eq. (22) have been in-
cluded to clean up some later formulas. Thephase spaceV
is defined asV := Fd × Fd. We introduce the standardsym-
plectic inner productonV by

[(

p
q

)

,

(

p′

q′

)]

:= pq′ − qp′. (23)

For elementsa = (p, q)T of V , we setwd(a) := wd(p, q).
Denote byWd := {wd(a) | a ∈ V } the collection of all Weyl
operators. Thecommutation relations

wd(a)wd(b) = χd([a, b])wd(b)wd(a), (24)

can be checked to hold.
LetS be a symplectic2×2 matrix with entries inFd. There

exists a unitary operatorµd(S) defined via

µd(S)wd(a)µd(S)† = wd(Sa) (25)

for all a ∈ V . We will call µd(S) themetaplectic representa-
tion of S. Up to phase factors, the set of unitaries of the form
µd(S)wd(a) constitute a group, which will be referred to as
theJacobi groupJd.

The preceding definition have been made with a single
d-dimensional particle in mind. We now consider the sit-
uation of n particles, each havingd = pm levels. The
Hilbert space becomesCdn

spanned by{|a〉 | a ∈ Fn
d}. Let

p = (p1, . . . , pn), q = (q1, . . . , qn). We define the Weyl oper-
ators as

wd,n(p, q) = wd(p1, q1) ⊗ · · · ⊗ wd(pn, qn). (26)

In this case, the phase space is set to beV = Fn
d × Fn

d and
Eqs. (23,24) continue to make sense if we perceive products
between elements ofp, q ∈ Fn

d as a canonical scalar product:
pq =

∑n
i piqi. In complete analogy to then = 1 case, one

finds that for any symplectic2n× 2nmatrixS with entries inFd, there exists an operatorµd,n(S) such that

µd,n(S)wd,n(a)µd,n(S)† = wd,n(Sa) (27)

holds for alla ∈ V . Denote the set of Weyl operators ac-
cording to Eq. (26) byWd,n and the Jacobi group spanned by
{wd,n(a)µd,n(S)}a,S byJd,n.

For a Hilbert space of prime-power dimensionps, we can
now construct an entire family of different Weyl operators and
Jacobi groups. Indeed, for anyn,m such thatnm = s, the
Weyl operatorswpm,n areps dimensional. Prominent choices
includen = 1,m = s (used in Ref. [12]) andn = s,m = 1
(used in Refs. [2, 13, 21]). It will turn out that all definitions of
theWeyl operatorscoincide, while the variousJacobi groups
differ. Proposition 7 makes these remarks precise. In orderto
state it, we need one final definition: theClifford groupCp,n

is the set of unitaries mapping the setWp,n onto itself under
conjugation. This definition reflects the general use of word
Clifford group in quantum information theory [23].

Proposition 7. Letps be a power of a prime. Letn < n′ and
m,m′ be such thatmn = m′n′ = s. Then

Wpm,n = Wpm′ ,n′ , (28)

Jpm,n ⊂ Jpm′ ,n′ . (29)

The inclusion in Eq. (29) is proper andJp,s = Cp,s.

For the construction in Section IV B, it will be necessary
to understand Eq. (28) in more detail. Indeed, it has been
realized before [25, 26, 27] that the Weyl operators inWpn,1

can be written as tensor products of those inWp,n. In what
follows, we will refine this picture.

Let d = pm be a power of a prime, letB = Fd. Let
F = Fdn be an extension field ofB. In F , choose a basis
{bi}i=1...n overB. Denote the dual basis by{bi}i. Having
general relativity conventions in mind, we will adopt the fol-
lowing notation: for an elementf ∈ F , we denote its expan-
sion coefficients with respect tobi by f i and the coefficients
for the dual bases byfi:

f =
∑

i

f ibi =
∑

i

fib
i. (30)

The Weyl operators inWd,1 act onH = Cdn ≃ (Cd)⊗n,
where we choose the isomorphism to be implemented by

|q〉 = |q1b1 + · · · + qnbn〉 7→ |q1〉 ⊗ · · · ⊗ |qn〉. (31)

Lemma 8 (Factoring Weyl operators). Using the notions in-
troduced above, the Weyl operators inWdn,1 factor as

wdn(p, q) = wd(p1, q
1) ⊗ · · · ⊗ wd(pn, q

n). (32)

Proof. Denote the commonprime fieldFp of B andF asP .
It is well-known [28] thatTrB/P ◦TrF/B = TrF/P . Hence

χF (pq) = χB

(

∑

i,j

pjq
i TrF/B(bib

j)
)

=
∏

i

χB(piq
i).

Similarly,

x̂F

(

∑

i

qibi
)

|
∑

j

xjbj〉 = |
∑

i

(qi + xi)bi〉

=
⊗

i

x̂B(qi)|xi〉,

ẑF

(

∑

i

pib
i
)

|
∑

j

xjbj〉 =
∏

i

χB(pix
i)|
∑

j

xjbj〉

=
⊗

i

ẑB(pi)|xi〉.

Using Eq. (22), the claim follows.

Proof. (of Proposition 7)Eq. (28) follows from the previous
lemma. Saying thatJp,r = Cp,r is just rephrasing the defini-
tion of the Clifford group. For Eq. (29) the reader is deferred
to Refs. [25, 26].
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2. Stabilizer states

Using the commutation relations Eq. (24) it is immediate
that to Weyl operatorsw(a), w(b) commute if and only if
[a, b] = 0. Now consider the image of an entire subspace
M of V underw:

w(M) = {w(m)|m ∈M}.

The latter set consists of commuting operators if for all
m1,m2 ∈ M , the symplectic inner product vanishes:
[m1,m2] = 0. If that condition is fulfilled,w(M) is called
a stabilizer group. Consider the operator

ρM :=
∑

m∈M

w(m)/|M |. (33)

One checks that

tr ρM =
∑

m

trw(m)/|M | (34)

=
∑

m

dδm,0/|M | = d/|M |.

and, using the fact thatM is a linear space,

ρMρM = |M |−2
∑

m,m′

w(m +m′) (35)

= |M |−1
∑

m

w(m) = ρM .

Hence, if |M | = d, thenρM = |ψM 〉〈ψM | is a rank-one
projector and|ψM 〉 is called thestabilizer stateassociated
with M . The preceding definition can be extended: choose
a characterζ of M (i.e., a functionM → C such that
ζ(m1 +m2) = ζ(m1)ζ(m2)) and set

ρM,ζ :=
∑

m

ζ(m)w(m)/|M |. (36)

The calculations Eqns. (34,35) can be repeated and one finds
that alsoρM,ζ projects onto a vector, which will be denoted
by |ψM,ζ〉.

3. Mutually unbiased bases

We will recall a well-known construction for MUBs [10].
Once again, letF = Fpm be a finite field andV = F 2 the
associated phase space. Let

va =

(

a
1

)

, Ma = {λva | a ∈ F}. (37)

Clearly,Ma is a one-dimensional subspace ofV and hence of
cardinality|Ma| = |F | = d. Because the symplectic form is
anti-symmetric[a, b] = −[b, a] it holds forλva, λ

′va ∈ Ma

that [λva, λ
′va] = λλ′[va, va] = 0 and hence the spacesMa

fulfill the requirements of the last section and define stabilizer

states. Further, setζ(a)
b (λva) := ζb(λ) := exp(i 2π

p Tr(bλ)).

Eachζ(a)
b is easily seen to be a character ofMa. Now define

the stabilizer states

B(a)
b := d−1

∑

λ

ζb(λ)w(λva). (38)

We claim that these states constitute a set of MUBs. Indeed

trB(a)
b B(a′)

b′ = d−2
∑

λλ′

ζb(λ)ζb′ (λ
′) trw(λva + λ′v′a)

= d−1
∑

λλ′

ζb(λ)ζb′ (λ
′)δλva,λ′v′

a
(39)

Now if a = a′ then Eq. (39) reduces to

trB(a)
b B(a′)

b′ = d−1
∑

λ

exp
(

i
2π

p
Tr(λ(b − b′))

)

= δb,b′ (40)

while for a 6= a′ we use the property of the finite planeF 2

that the two linesMa andMa′ intersect exactly atλ = 0 to
conclude

trB(a)
b B(a′)

b′ = d−1ζb(0)ζb′ (0) = d−1. (41)

Hence, for a fixeda, the set{B(a)
b }b forms a basis and all

d bases corresponding to different values ofa are mutually
unbiased. The computational basis corresponds to the set
M∞ = {λ(1, 0)T |λ ∈ F}. Repeating the reasoning em-
ployed above, one finds that it is unbiased with respect to all
the other ones; hence, we have constructed a maximal set of
d+ 1 MUBs.

B. Asymptotic designs from MUBs

This section revolves around the following definition.

Definition 9 (Asymptotic2-designs). Let I ⊂ N be an index
set. A family of sets of unitariesDd, d ∈ I is anasymptotic
2-designif the matrices inDd ared-dimensional and

lim
d→∞

P(Dd) = 2. (42)

A priori, it is not clear that this definition has any physi-
cal relevance. After all, it is conceivable that, even though
the frame potential ofDd converges, theDd-twirling chan-
nelsTDd

do not become close to theUU -twirling channel in
any sensible metric. Indeed, the question of whether asymp-
totic designs are “almost as good” as strict ones cannot be
answered in general, but depends on the application one has
in mind. One particular aspect of this question will be illumi-
nated in Lemma 10. We will show that the series of twirling
channelsTDd

does converge toTUU in Dpro-norm. The lat-
ter norm has been defined in Ref. [35], a well-readable ac-
count of the merits and perils of different metrics for quan-
tum channels. Specifically, letΛ and Λ′ be channels with
respective Choi matricesC,C′. If ∆ = C − C′, then
Dpro(Λ,Λ

′) := d−1 tr |∆|. Some physical interpretations of
Dpro-convergence are listed in Ref. [35].
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Lemma 10. LetDd be an asymptotic 2-design. Then theDd-
twirling channelsTDd

converge toTUU in Dpro-norm.

Proof. Let CDd
, CUU be the usual Choi matrices, let∆ =

CDd
− CUU . As quantum channels preserve Hermiticity, the

Choi matrices and hence∆ are Hermitian. Let{δi} be the set
of eigenvalues of∆. By Corollary 3, we know thattr |∆|2 →
0. Hence, for alli, |δi| < 1 eventually and therefore, for large
enoughd:

Dpro(Λd,ΛUU ) = d−1
∑

i

|δi| < d−1
∑

i

|δi|2

= d−1||∆||22 → 0.

The technically non-trivial part of this section is contained
in the next theorem.

Theorem 11 (Mutually unbiased bases). Let d = pm be a
power of a prime. Then inH = Cd ⊗Cd existd2 + 1 MUBs
of whichd2−d bases are maximally entangled andd+1 bases
factor.

Proof. (of Theorem 11)Let B = Fd, F = Fd2 . Using the
notation of Section IV A 1, we assume that a basis forF over
B has been chosen. Fora, b ∈ F , letB(a)

b be a projection onto
a stabilizer state inH, as defined in Section IV A 3. Hence

B(a)
b = d−2

∑

(p,q)∈Ma

ζ
(a)
b (p, q)wF (p, q)

= d−2
∑

(p,q)∈Ma

ζ
(a)
b (p, q)wB(p1, q

1) ⊗ wB(p2, q
2).

DefiningNa = {(p, q) ∈Ma | p2 = q2 = 0}, we get

tr2 B(a)
b = d−1

∑

(p,q)∈Na

ζ
(a)
b (p, q)wB(p1, q

1). (43)

Clearly,Na is aB-vector space, so it has cardinality|Na| =

dn for somen. If n = 0, thentr2 B(a)
b equals11, so the state

was maximally entangled. Ifn = 1, Eq. (43) is of the form
of Eq. (36) which makestr2 B(a)

b a pure state onCd. Further,

n = 2 would imply |Na| = |Ma| and henceB(a)
b = ρ1 ⊗ 12

for some density operatorρ1, which is impossible asB(a)
b is

pure. Lastly,n > 2 ⇒ |Na| > |Ma|, which is absurd. Hence
any vector in the standard set of MUBs is either a product or
else maximally entangled.

Now, (aλ, λ) ∈ Na if and only if TrF/B(aλe2) =

TrF/B(λe2) = 0 ⇔ λ = λ1e
1 ∧ aλ = (aλ)1e1. Assume

that

a = b
e1
e1

(44)

for someb ∈ B. Thenλ = λ1e
1 ⇒ λa = λ1be1 and hence

|Na| = d. Conversely, assume that|Na| = d. Then for all
λ = λ1e

1 we must have thatλa = be1 for someb ∈ B.
Solving fora shows that Eq. (44) must hold. Hence among
the d2 bases associated with the setsMa, there are exactly
|B| = d factoring ones. Taking the computational basis into
account, the assertion becomes immediate.

The validity of Theorem 11 implies the existence of asymp-
totic 2-designs.

Corollary 12 (Existence of asymptotic 2-designs). Let I be
the set of prime-power integers. Then there exists an asymp-
totic 2-designDd, for d ∈ I.

Proof. We compute the frame potential of thed2(d2 − d) =
d4 − d3 unitariesDd which can be constructed via Eq. (11)
from the maximally entangled MUB vectors of Theorem 11:

P(Dd) = d4
∑

a,a′

∑

b,b′

|〈ψ(a)
b |ψ(a′)

b′ 〉|4/K2

= d4
(

1 + (d2 − d− 1)d−2
)

/K

=
2d4 − (d−1 + d−2)

d4 − d3
→ 2 (d→ ∞).

C. Clifford designs

Let us review the technique employed in Ref. [1, 2, 13] to
construct a 2-design. The construction proceeds in two steps.
First one realizes that twirling an operatorρ by Weyl matri-
ces reducesρ to its “Weyl-diagonal” components (see below).
Secondly, twirling the resulting operator using the metaplectic
unitariesµ(S) “evens out” the coefficients to yield aU ⊗ U -
invariant state.

Denote byTW theWeyl twirl channel[1, 13]:

TW (ρ) = d−2
∑

a∈V

w(a) ⊗ w(a) ρw(a)† ⊗ w(a)†. (45)

Expandingρ =
∑

b,b′∈V ρb,b′ w(b) ⊗ w(b′), we compute:

TW (ρ)

= d−2
∑

a,b,b′

ρb,b′ w(a)w(b)w(a)† ⊗ w(a)w(b′)w(a)†

= d−2
∑

b,b′

ρb,b′ w(b) ⊗ w(b′)
∑

a

χ(−[b+ b′, a])

=
∑

b

ρb,−bw(b) ⊗ w(−b). (46)

The final transformation follows from the fact thatχ([b, · ]) is
a non-trivial character ofV for anyb 6= 0.

TheClifford twirl channel[1, 13] is given by

TC(ρ) (47)

= |JFn
p
|−1

∑

U∈JFn
p

(U ⊗ U) ρ (U ⊗ U)†

= |JFn
p
|−1

∑

S∈Sp(p,n)

(µ(S) ⊗ µ(S))TW (ρ) (µ(S) ⊗ µ(S))†,

whereSp(p, n) denotes the group of symplectic matrices on
V = F2n

p . Using the notation and results of Eq. (46), one
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concludes:

TC(ρ)

= | Sp(p, n)|−1
∑

b∈V

ρb,−b

∑

S∈Sp(p,n)

w(Sb) ⊗ w(−Sb)

= α1+ β
∑

06=b∈V

w(b) ⊗ w(−b), (48)

where the constants are given by

α = ρ0,0, β =
∑

06=b∈V

ρb,−b. (49)

Eq. (48) follows because the symplectic group acts transitively
onV ♯ := {a ∈ V | a 6= 0} and hence maps every element of
V ♯ equally often to every other element. It is evident thatTC
projects onto exactly two subspaces and is hence equal toTUU

by Section III.
Now let G be some subgroup ofSp(p, n) such thatG

acts transitively onV ♯. From the above argument it is clear
that Tµ(G) ◦ TW = TUU and hence that{w(v)µ(S) | v ∈
V, S ∈ G} is a unitary 2-design. An obvious choice is to set
G = Sp(pn, 1) which is the basis of Ref. [12]. The advantage
of going from the multi-particle picture to the single-particle
picture is an exponential reduction of the cardinality of the
design:

| Sp(p, n)| = pn2
n−1
∏

i=0

(p2(n−i) − 1) (50)

= O(p2n2+n) = O(d2(logp d)2+logp d),

| Sp(pn, 1)| = pn(p2n − 1) = O(p3n) = O(d3) (51)

(see Ref. [36] for a derivation). What possibilities are there
to further improve the cardinality? Clearly, any group act-
ing transitively onV ♯ must have orderk |V ♯| = k(d2 − 1)
for some integerk. The smallest value isk = 1 and hence
d2(d2 − 1) gives a lower bound to the number of elements
a Clifford design arising from such a construction can have
(c.f. Conjecture 4). In Ref. [12] Chau showed that for
d = 2, 3, 5, 7, 11, such minimal subgroups do exist. He goes
on to rule out the existence of any subgroupG of Sp(pn, 1)
which has cardinality a multiple ofV ♯. Hence no reduction
belowd2| Sp(d, 1)| = d5 − d3 seems to be possible in gen-
eral.

However, the argument leaves open the possibility of find-
ing subgroupsG of Sp(p, n) which act transitively on the
non-zero elements of the vector space and are smaller than
| Sp(pn, 1)|. While we do not know if such groups exist in
general, we know of one example ford = 9. In Table II
we list the generators of a transitively acting subgroupG of
Sp(3, 2) of order160 = 2|V ♯|. It yields a Clifford 2-design of
cardinality2(d4 − d2) = 12, 960, where the design induced
by Sp(9, 1) has58, 230 elements and the one associated with
Sp(3, 2) consists of4, 199, 040 unitaries. All claims made
about the generators can easily be tested by a computer alge-
bra system.

V. MISCELLANEOUS TOPICS

A. Higher orders and general groups

We saw in Section II A that the effect of the twirling chan-
nelT induced by some groupG and a corresponding unitary
representationUg depends only on the the decomposition of
Ug into irreducible constituents (see Appendix VIII A for a
version of Eq. (6) valid for general representations).

Based on this observation, the notion of a group design can
easily be generalized:

Definition 13 (General group designs). LetU be some group
of unitary matrices. Then a finite subgroupD of U is a U-
group design of ordert if the t-th tensor power ofD has
the same number of irreducible constituents as thet-th ten-
sor power ofU .

The most natural setting for applying the above definition
is given by unitary designsU = U(d) of higher ordert > 2.
How many irreducible constituents do we expect the represen-
tationU 7→ U⊗t to decompose into? The following lemma
answers this question by giving the frame potential for uni-
tary t-designs, at least in two special cases.

Lemma 14. The frame potential of a unitaryt-design in di-
mensiond is given by

t! for d ≥ t,

∑⌊n/2⌋
i=0

(n!(n−2i+1)
i!(n−i+1)

)2
for d = 2.

Once again, we can search the GAP library for examples.
Table III gives an example of a matrix groupG in d = 2,
whose 5th tensor power decomposes into 42 irreps, the re-
quired value for a 5-design. As a matter of fact,G is very close
to being a 6-design: its 6th tensor power has 133 irreducible
components, whereas the full unitary groupU(2) decomposes
into only 132 irreps. Note that the matrices in Table III are not
unitary in the standard basis. However, as is well-known [24],
any representation of a finite group is equivalent to a unitary
one: one can easily construct a similarity transformation map-
ping the given matrices to unitaries.

Proof. (of Lemma 14)The following facts are well-known
[24]: (i) there is a one-one correspondence between irre-
ducible components of thet-th tensor power ofU(d) and
young framesF partitioning the integert into no more thand
parts; (ii) the multiplicity of the irrep belonging to a specific
frameF is given by the dimensiondF of the corresponding
irrep ofSt.

If d ≥ t, the restriction “no more thand parts” becomes
irrelevant. Using the results of Section III B, we find that the
frame potential of at-design is

∑

F

d2
F = |St| = t!,

where the sum is over all young frames witht boxes. The
second claim follows in a similar fashion, using well-known
formulas fordF (which can be found, e.g., in Ref. [24]).
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B. Energy-preserving operations as in linear optics

We will briefly comment on a specific representation of the
unitary group, which plays a prominent role in linear optics.
General references for the introductory paragraphs are Refs.
[16, 37, 38, 39]. The most central mathematical object in the
description of physical systems ofd bosonic modes are the
creation and anihilation operatorsak, a

†
k. Recall that the set of

unitaries onL2(R) which keep the vector space spanned by
theak, a

†
k invariant under conjugation form a projective repre-

sentation of the real symplectic groupSp(2d). The represen-
tation is referred to as themetaplectic representation. Bosonic
systems are often thought about in terms of theirphase space
description, where these metaplectic operations appear in an
especially natural way.

The maximal compact subgroup ofSp(2d) is given by the
intersection ofSp(2d) with the set of orthogonal transforma-
tionsSpO(2d) := Sp(2d) ∩O(2d). Physically, the elements
of SpO(2d) correspond to energy-preserving orpassive op-
erations. These operations are exactly the ones which are
easily accessible in the laboratory using passive linear optical
elements (phase shifts and beam splitters, but no squeezers,
which correspond to elements inSp(2d) which are not con-
tained inO(2d)). It is a well-known fact thatSpO(2d) ≃
U(d), which might trigger some hope that our theory could be
applicable to these systems. However, the metaplectic repre-
sentation is infinite-dimensional and in this work we did not
develop the means to cope with such representations.

In an indirect approach, we can, however, nevertheless ex-
ploit the developed formalism: Fortunately, important prop-
erties of bosonic quantum states can be described entirely
in terms of objects on the2d-dimensional phase space. In-
deed, define thecanonical coordinatesor quadrature opera-
torsr = (x1, . . . , xd, p1, . . . , pd) by

xk := (ak + a†k)2−1/2, pk := i(a†k − ak)2−1/2. (52)

A much-studied object in particular in quantum optics are the
various second moments of the quadrature operators with re-
spect to a given state. Assuming that all first moments vanish,
the second moments can be conveniently assembled in a real
symmetric2d× 2d covariance matrixγ, defined as

γk
l = 2 (tr(rkrl) + tr(rlrk)) . (53)

An interaction process preserving the energy would then give
rise to a map

γ 7→ SγST =: γ′, (54)

whereS ∈ SpO(2d). The following proposition assures that
unitary designs can be used to tackle problems in this context.

Proposition 15(Averaging over passive operations). LetD ⊂
U(d) be a unitary group design of ordert. The image ofD in
SpO(2d) under the usual isomorphism is then aSpO(2d)-
group design of ordert.

A setting that can be studied using designs in this way is the
following: consider a system ofd interacting bosons. Hav-
ing a “microcanonical ensemble” in mind, we might be inter-
ested in the expected value of various quantities after random

energy-preserving interactions have been applied. Haar aver-
ages overSpO(d) would constitute a sensible model for such
a system (see also Ref. [15]).

Let us give a concrete example. Take{|i〉}i as a basis of the
vector complex space in which the complex moment matrices
are defined. It is straightforward to see that the mean energy
of the first mode is given byE = 〈1|ΩγΩ†|1〉. The quantity

∆E =

∫

U(n)

〈1|(U ⊕ Ū)ΩγΩ†(U ⊕ Ū)†|1〉2dU (55)

−
(
∫

U(n)

〈1|(U ⊕ Ū)ΩγΩ†(U ⊕ Ū)†|1〉dU
)2

.

gives theexpected energy fluctuationsof the first mode and is
directly amenable to evaluation using unitary 2-designs.

Proof (of Proposition 15).The usual isomorphism between
elementsU ∈ U(d) and elementsS ∈ SpO(2d) can be stated
as follows: IfU = X + iY , thenS is given by [38, 40]

S(U) =

(

X Y
−Y X

)

. (56)

Setting

Ω =

( 1 i11 −i1 ) /√2, (57)

one finds easily that

ΩS(U)Ω−1 = U ⊕ Ū . (58)

As D̄ is certainly a groupt-design ifD is, the statement fol-
lows.

C. Random entanglement

Originally posed by Lubkin and later popularized by Page,
the following questions has a long history: what is the av-
erage entanglement of a composite system in a pure state
[15, 41, 42, 43]. One motivation for studying such problems
is to justify the ad hoc “rule of minimal prejudice” employed
in statistical physics, which states that among the ensembles
compatible with macroscopic observables the one maximizing
the entropy is realized in nature. The problem was originally
stated in terms of the entropy of entanglement of subsystem
A: S(ρA) = − tr(ρA log ρA), but various other measures, for
example the puritytr(ρ2

A) = ||ρA||22 of ρA can be used. The
latter quantity has the advantage that its expectation value

∫

U(d)

‖ trB[UρU †] ‖2
2dU (59)

is a Haar integral of a second-order polynomial and can thus
be directly evaluated by averaging over a 2-design (above,ρ
projects onto an arbitrary 2-system state vector|ψ〉).

Based on this observation, we obtain a simple answer to a
special case of this problem as a corollary to Theorem 11 (c.f.
Ref. [44] for a much more general, but much longer proof).
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Corollary 16 (Average entanglement). Letd be the power of
a prime. The average entanglement of pure states onCd⊗Cd,
as measured by the purity, is2d/(d2 + 1).

Proof. We chooseρ = |0〉〈0| ⊗ |0〉〈0| and average over the
Clifford groupJd2,1. The image of|0〉 ⊗ |0〉 under the action
of Jd2,1 constitutes of the bases of Theorem 11. The purity
of a reduced density matrix of a product state equals 1, for a
maximally entangled state it isd−1. We can thus compute the
average by counting:

(d2 − d)d−1 + (d+ 1)

d2 + 1
=

2d

d2 + 1

as claimed.

Note that, while the question of finding the expected entan-
glement of a pure state is stated in terms of analysis, we could
answer this special case by purely combinatorial means.

VI. SUMMARY

In this work, we presented a first systematic analysis of the
mathematical structure of unitary designs. We pointed out
a connection to group representation theory, gave bounds on
the number of elements of a design, made the relationship to
spherical designs explicit, and used this connection to con-
struct approximate unitary designs. Foremost, the pivotalcon-
cept of a frame potential has been explored. Intriguingly, the
latter quantity appears very naturally in different, seemingly
unrelated areas.

While much insight into the structure of unitary designs has
been gained, many questions remain unresolved as interest-
ing open problems: finding a systematic way for construct-
ing designs for any choice of parameterst, d or improving the
bounds for their cardinalities, to name just two.
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VIII. APPENDIX

A. General twirling channels

Eq. (6) gives an explicit formula for a channel twirling over
an irreduciblerepresentationUg. In this section, we state the
relation for the general case. So assume thatg 7→ Ug de-
composes into a set of irrepsU (i), which have dimensiondi

and occur with multiplicityni respectively. The underlying
Hilbert spaceH then decomposes as

H =
⊕

i

Hi ⊗Cni , (60)

whereHi = Cdi (see, e.g., Ref. [24]). The representationUg

itself can be written as

Ug =
∑

i

U (i)
g ⊗ 1ni

. (61)

Now setPi = 1Hi
⊗ 1ni

. The twirling channel becomes

TA(ρ) =
∑

i

trHi
(P ′

iρ)Pi, (62)

as can be checked without difficulty.
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TABLE I: Some group designs found by the GAP system. The groupname and character number refer to the names used by the “ctllib”
package [33].

d K K/(d4 − d2) Group Irred. character no.

2 12 1 7ˆ2:(3x2A4) 10

3 72 1 2ˆ3.L3(2) 2

4 1920 8 2.HSM10 29

5 25920 43.2 2ˆ6:U4(2) 2

6 40320 32 6.L3(4).2_1 49

8 20160 5 4_1.L3(4) 19

9 19440 3 3.3ˆ(1+4):2S5 25

10 190080 19.2 2.M12.2 22

11 13685760 942. 6xU5(2) 3

12 448345497600 21772800 6.Suz 153

13 4585351680 161501. 2.S6(3) 2

14 87360 2.29 Sz(8).3 4

18 50232960 480 3.J3 22

21 9196830720 47397. 3.U6(2) 47

26 17971200 39. 2F4(2) 2

28 145926144000 237714. 2.Ru 37

41 6578475665448960023294225607. S8(3) 2

45 10200960 2.49 M23 3

342 460815505920 34. 3.0N 31

1333 86775571046077562880 27483822. J4 2

TABLE II: Generators of a subgroupG of Sp(3, 2) of order2(d2 − 1) = 160. The groupG acts transitively on the non-zero elements of the
phase spaceV = F4

3 and induces a unitary design, as described in Section IV C.

0

B

B

B

@

2 2 2 0

1 2 2 0

1 2 0 2

0 0 1 1

1

C

C

C

A

,

0

B

B

B

@

0 2 1 0

0 0 0 2

1 0 0 2

0 2 0 0

1

C

C

C

A

,

0

B

B

B

@

0 2 0 0

2 0 0 0

2 0 0 2

0 1 2 0

1

C

C

C

A

,

0

B

B

B

@

0 1 1 0

1 0 0 2

0 0 0 1

0 0 1 0

1

C

C

C

A

,

0

B

B

B

@

1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

1

C

C

C

A

,

0

B

B

B

@

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

1

C

C

C

A
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