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Entanglement witnesses provide tools to detect entangieimexperimental situations without the need of
having full tomographic knowledge about the state. If ornmestes in an experiment an expectation value
smaller than zero, one can directly infer that the state baa kntangled, or specifically multi-partite entangled,
in the first place. In this article, we emphasize that all ¢hests — based on the very same data — give rise to
guantitative estimates in terms of entanglement meastifesstest is strongly violated, one can also infer that
the state was quantitatively very much entangled”. We darsiarious measures of entanglement, including the
negativity, the entanglement of formation, and the robestrof entanglement, in the bipartite and multipartite
setting. As examples, we discuss several experiments iodhtext of quantum state preparation that have
recently been performed.

PACS numbers:

INTRODUCTION one should make use of the full information that can in fact be
extracted from the measurement data, including quanttati

. ssessments.
Entanglement witnesses have proven tremendously helﬁl—

ful in the experimental characterization of entanglement i
composite quantum systems [1-13]. They are observables
from the expectation values of which one can argue whether

a prepared state is indeed entangled: whenever its expecta-_l_he paradigm we describe is the following: imagine one

tion value takes a value smaller than zero, then one can unam- . liected data from a measurement ofeatanalement
biguously draw the conclusion that the state has been entan- . . g
. . : ) witness or a collection thereof. What is the worst case
gled in a particular fashion [1-4]: the entanglement has theSCenariO one could have had, conceming the degree of
been “witnessed”. This approach seems particularly féasib 5 . ' ; .
RN . : entanglement? Certainly, one should provide conservative
or helpful in situations where one would like to avoid to col-

lect sufficient data to arrive at full tomographic knowledge estimates in this cqnte.‘xt. This is typically the practigall
o . ) . . . ) most relevant question: one has prepared a state, and wants
Specifically in multi-partite settings when detecting rult

. . o to know to what degree one has succeeded in doing so. This
particle entanglement this can be costly. Also in instances o .
.test should make use of a minimal possible number of data,

can tolerate larger errors when estimating entanglement wi . .

- . or measurement settings, certainly less than full tomdgrap
nesses compared to the procedure where one first estlmatgs :
the full state 0 we aim for answers to

PARADIGM OF QUANTITATIVE TESTS

Originally, such a test for entanglement was thought to give
rise to an answer to a “yes-no-question”: the state is efgdng entanglement witness, which one is quantitatively
oritis not. Yet, in this way, one does not make use of valuable the least entangled state consistent with the
information that one has collected anyway. Actually, ong ha data?”
implicitly recorded data that are sufficient to makguanti-
tative statement: if a test is very much violated — so delivers.l_ , Lo .

; -This translates to aaptimization problemfor a given mea-
a value much smaller than zero — then one can infer that in

quantitative terms, the state was highly entangled. Thigqu ?ure_ of b|-part|t§ or multi-partite entanglemeif we aim at
o : . |Pd|ng the solution of

titative statement is then meant in terms of some measure o

entanglement. This is very useful information: One does not min  E(p) (1)
only know that the the specific entanglement property is con-

tained in the state. But one can also give an answer to the

question how useful a given state is, say, to perform a eertaigr 4t |east get reasonably good lower bounds. The general
task of quantum information. spirit of this paper will be to assume nothing more than the
This article emphasizes this fact, and advocates theartial information provided by expectation values of enta
paradigm of quantitative tests based on data from measuringlement witnesses. Based on this information, we aim at find-
witness operatorﬁim]. Needless to say, one should unider ahg good bounds to entanglement measures. We also comment
circumstances only make use of the data that have in fact beam the tightness of these bounds. In fact, the providedestrat
acquired in an experiment, and avoid hidden assumptions comgies often give rise to the best (tightest) possible bouads
cerning the nature of the involved states. But then, in turnpn this partial information. The “true state” of the systesn i

“Given measurement data from measuring an

subjectto p consistent with the data


http://arXiv.org/abs/quant-ph/0607167v3

tr[Wp] =c and at least for a single entangled statene finds that

tr[Wp] < 0. (5)

This is very intuitive: the separable states form a convéx se
and the witness defines a hyperplane in state space that sep-
arates the separable states, see[Fig. 1. In the same way, one
can define entanglement witnesses for the various classes of
multi-particle entanglemenin a setting with Hilbert space
H=Ch ®-. @ C¥. For witnesses in infinite-dimensional
systems and relationships to entanglement measures, fee Re
FIG. 1: Schematic representation of state space. The sepafable ~ [23—26]. In this paper, we refrain from introducing these
states is depicted as the white region. The straight lineesgmts ~ Multi-partite entanglement classes, and refer for thatefs R
an experimental test, so the hyperplane characterized ntam-  [27-30].
glement witnessV and its expectation value[tiV] = c. Then, We should mention at this point that if one allows for wit-
one encounters a hierarchy of convex sets of states witeas@ly  aegses taking several identically prepared specimensgito
degree of entanglement, as quantified by any convex entarglte count, one can often improve the bounds to entanglement
monotone. ’ . . S .

measures. On the positive side, this gives rise to sharper or

tight bounds, often making use of few different types of mea-
not assumed to be known, or it is not even assumed that Burements, or indeed even single ones [31-35]. On the neg-
could in principle be measured, as full quantum tomographwtive side, one needs to implement collective operatiors, e
may be inaccessible. In turn, tbptimization of entanglement ther with quantum networks, or in optical settings, witmjoi
witnessesso the construction of tangent hyperplanes [11, 12pperations involving bringing together independent sesirc
16-19] is an interesting (and computationally provablydhar at beam splitters. Nonetheless, the first experimental mea-
problem in its own right, which we will not touch upon here. surements of a two-copy witness for arbitrary two qubit pure
Any known findings in this field can however immediately be states was recently report@[SS]. Although we make the pre-
applied to our setting, in that the entanglement witnessisha  sented ideas explicit for the most frequently applied appino
most violated will give rise to the best bound. We hence takesf measurements on individual specimens, it should be noted

the entanglement witness as such and the corresponding dakt many of the presented ideas are also applicable to this
for granted, and will provide good bounds for entanglementase of collective operations.

measures based on them. This is actually the situation one
faces when interpreting experimental data.

There is a body of work somewhat similar in spirit in the IMPLICATIONSTO ENTANGLEMENT MEASURES
literature. The need for conservative estimates, so foi-min
mizing the degree of entanglement in the context of a Jaynes Subsequently,
statistical inference scheme consistent with the data \as
ready noted in the early work ReﬂZO]. Also, conceptuall
this is related to a connection of violations of Bell ineqties
to entanglement measur@[Zl], and to quantum state esti
tion as in Ref.].

In this work we consider the bi-partite and multi-partite
setting. The system can hence be thought of consisting of a
number of subsystems, such that the Hilbert space is given by
H=Ch ®---® . We assume that we have collected
data that we can estimafe, . .., c,} based on a number of
entanglement witnesség; , . . . , W,,, meaning that

Separable
states

we will present a framework of quantitative
%ests, and discuss a number of bounds for different entangle
Y ment measures. We will also discuss several examples, taken
from the bi-partite and multi-partite context. The concept
Miie conjugate function will play a central role here.

Negativity

In this first part we consider bi-partitgplits of our sys-
tem: so the system is either naturally bi-partite, or we grou
the subsystems into two parts, with joint Hilbert spa&te=
(Wi) =tr[Wip] = ¢ (2)  CheC,with state spac(H). Thenegativityis a measure
of entanglement defined as

fori = 1,...,n, for example, for a single entanglement wit-
ness,n = 1. WitnessiW means in the bi-partite setting, T
N = 2, that for allseparable states En(p) =llp" Il =1, ©6)
p= Zpipz(-l) ® pt? (3) interms of the trace-normA||; = tr|A|. p" denotes the par-
7 tial transpose op. The negativity has been introduced in Ref.

d d B [@], compare also Ref. [37], and independently shown to be
onH = €% ® € we have that [1-4] an entanglement monotone in Refs)[38, 39]. The logarithmic
tr(Wp] > 0, (4)  versionlog, ||p" |1 of the negativity is also an entanglement
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monotone@O], and a useful upper bound to the distillable enas an optimization problem ovétvy, ..., a,+1}. Thisis an
tanglement@ﬂl]. For this measure of entanglement, weptimization problem we can run beforehand: it is actually

will indeed find very simple, yet tight and useful bounds.

a semi-definite optimization proble@], SO an optimization

What we are interested in here is the minimally entanglegroblem that can be efficiently solved, with certifiable erro
state consistent with what has been measured. So we seek theunds. But for the use of this criterion as such, one does no

solution of
EnN min = inf HPF”1 -1 (7)
subjectto  thW;] = ¢,
p =0,
trlp] =1,

which is the desired quantity. Now, this can also be written a

Enmin = inf maxtr[Pp'] — 1 (8)
subjectto  ||P]lec =1,
trpWi] = ¢,
p =0,
trlp] =1,

as||All; = maxtr[X A] with a maximation over all operators

longer have to solve any optimization problem.

At this point, a remark is in order concerning the tightness
of the constructed bounds. Lgt be the partial transpose of a
state onC% @ C2, N,, eigenvalues of which are strictly posi-
tive, N,, eigenvalues are strictly negative, aNg eigenvalues
take the valué. Then anyX satisfying

1p" [l = tr[Xp"] (13)
has a spectrum containing at ledgj times the value and
N, times the value-1. In our present context, this means that
for a given system dimensiofi?* @ €9, the above bound
Eqg. (I1) is tight whenever the there exist statesuch that
Sp > Np andS,, > N,, whereS, and.S,, are the number
of +1 eigenvalues ofX, respectively. Then the bound is just
saturated by actual physical states.

with || X||.c = 1, according to the variational characterisa- Example 1 (Bound to the negativity) As a very simple ex-

tion of the trace-norm. In turn, obviously, any su&hwith
|| X||oo = 1 givesrise to the lower bound

Enmin > inf t[Xpl] -1 9)
subjectto  thpW;] = ¢,
p =0,
trip] = 1.

We can now take an operator consisting only of the parti

transposes of the withesses we have measured,

X=> a;W +annl, (10)
=1

a; € Rfori =1,...,n+ 1, such that| X || = 1. Then,

there is nothing to minimize any more, aptrX'] = tr[pX]:

we arrive at

n
EN,min > Z o;ci + opyr — 1.
=1

(11)

This is indeed a very simple bound. Yet, it is a useful, an

tight one.
How can one find a suitable choice for, . .., a;, 11 ? Any
choice such that-1 < X < 1 as in Eq.[(ID) gives rise to

ample, consider states @i¥ ® C?. The witness we take is
Wl = |¢_><¢_|F7

which is an optimal entanglement witness, in that it is tarige
to the set of separable states. Here and in the followistg)
and|¢*) denotes the state vectors of the famildll states
for two qubits. Now consideX = —2W1F + 1,s0a1 = —2
aF\ndQQ = 1. The matrixX clearly satisfie§ X ||.. = 1. Then,
whenever we get a valugiV; p] = ¢, we can assert that

(14)

En(p) = 2]c|. (15)

It is also easy to see that this bound is tight: The spectrum of
X is given by{1,1,1,—1}. A family of states saturating the
bound is given by

p =AY F |+ (1= N7 ) (|

for which En(p) = 2|c| = |2\ — 1|. Forc = —1/2, the
only state consistent with this value is the maximally entan
Pled statdy ) (47|, yielding Ex (¢ (u+]) = 1.

In turn, we can see what we may gain from using two wit-
nesses:

(16)

a bound. In turn, one can also find the optimal choice in arExample 2 (Bound from two witnesses) Let us take the two

efficient manner: The problem we encounter is,

n
ZO@Q‘ + Ap41 — 1,
i=1

1< X <1,

max (12)
subject to

X = ZO@WZ-F + Op+1 ]].,

=1

entanglement witnesseég; = |¢;)(#;|", i = 1,2, where

1 1 1 a7\ '?

o) = 510,00+ golo.1)+ 10y + (57) L,
3 1 1 7\

= —|0,0) + —10,1 -11,0 — 1,1

o2 = 0.0+ 50+ 3L0)+ () LD,

(17)



ande; = —1/3 ande; = —1/6. Then, we may evaluate againS(H) denoting state space, which is
the optimal bound based on each witness separately, and the
best bound based on both simultaneously. From solving the fH(X) = sup {trlY)(|X] = f([¥)(0))}  (26)

semi-definite optimization problem, we find in casé/f, vyen
Enmin > 2/3, (18) for concave functiong. In turn, the conjgga_te function of the
conjugate is the convex hull of the function |ts[42]: liner
then foriv,, words, since the entanglement of formation is the convelx hul
of the reduced entropy function itself, we have that
Enmin > 1/3. (19) Py
Indeed, in the combined case usiig andiV,, we obtain the () = £(p), (27)
better bound
where
EN min > 0.7375. (20)

_ _ _ _ F(p) = sup{tr[pX] — f*(X)}. (28)
This shows that the suitable processing of several witisesse X

the same time can give rise to optimized bounds. The boun —_ . .
arising from the data from two witnesses is stronger thah eacgy definition, f*(X + al) = f*(X) + o for any X. Now,
. . for any
bound resulting from either of them.
The presented bounds are based on simple witnesses for n
qubit systems, but it should be clear that the construcgon i X = Z a; Wi, (29)
general enough such that bounds can be identified in fact for i=1

arbitrary entanglement witnesses in any dimension. . .
y g Y we indeed arrive at the bound

n
Convex hull measures and the conjugate function Ermin > Zciai — (X)), (30)
i=1

Many entanglement measures are defined @snaex hull

of a function, so ag — cof. This is nothing but in terms of the conjugate functioff of f. In this way, we do

not have to evaluate the convex hull explicitly.
~ Moreover, the bounds constructed in this way are always
f(p) = min {Zpif (pi) > pipi = p} » (21)  tight. It follows from the duality of the convex hull of the
i i function and its Legendre transform that the bounds aré tigh

for statesp. The most familiar example of this sort is the when varying over alfa,...,a,}. There always exists a
entanglement of formatigrfor which this functionf is the  statep satisfying Emin = f**(p), so for exampleErmin =
reduced entropy function Er(p) for the entanglement of formation. In this sense, the
given bounds are the best possible bounds of this form.
f(p) = (S otra)(p), (22) In case a symmetry can be identified, the estimation of the

conjugate function of a given function can be simplified. To
bring the conjugate function into a form that is more aceessi
ble to numerical assessments, we can proceed as follows: If
f = (gotrg), andg is concave, we can define

where tp is the partial trace in a bi-partite system a$igh) =
—tr[plog, p] is thevon-Neumann entropy he convex hull of
a functionf can alternatively also be written in the form

flp) = sm)l{p{tr[Xp] V|Y) eH:

1] < £} 3 9(p) = wf{trYp] —g'(Y)}, (31)
trl[) (| X] < f(J0)(ap]) b 23 .
g'(Y) = mf{trYp] — g(p)}, (32)
Note that we have for consistency assigrféd) = oo in case r
of 2 < 0. Again, we aim for bounding the solution of and can write the above conjugate function as (assuming that
Emin = inf  f(p), (24) X andY; are Hermitian)
subjectto - tpWWi] = ci, J1(X) = supsup {[(X — (¥ @ 1))l +¢'(¥1)}
p =0, pM
. _ /
trlp] = 1, = s Pnax (X = (M9 1) +9'()} - (33)
i1 =1,...,n. We can make use of tonjugate functiofd2— - _
44], also known as thkeegendre transformThis is defined as Eg;jt:\geaf;tlr%pgnfgvr;ﬁtlga((jxgne fin:fj%gfz? for example, the
f1(X) = sup {tr[pX]— f(p)}, (25)

PES(H) g (Y1) = —log, trlexp(—Y; log 2)]. (34)
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In this form, the problem is in a suitable form for such numer-—xzlog, 2 — (1 — x)log,(1 — z) and the concave function

ical assessments. The resulting bound is then a combinatiof(z) = (z(1 — z))'/2,

of the numerically evaluated expression and the value:for

from the actual data. In practice, this numerical evalumtio FaaWh) = sup {—2a1wa(1 —a?)l?
amounts to a global optimization problem, which can, for a a€l0,1]

small number of parameters in typical problems in the quan-

tum information context, be solved for an arbitrary witness + a*logy a® + (1 — a®)logy(1 — az)}

Also, semi-definite relaxations as in Refs , 46] readie
rise to certifiable bounds.
As an example, let us look at teatanglement of formation
and a single witnesg/;. Then,
EF,min > ajc— f*(CYlWl)a (35)
with a; € IR, so any choice fory; delivers a bound. Obvi-
ously, an optimal bound is achieved using

EF,min > Supal {0410 - f*(alwl)} . (36)

= sup {—20qwg(p) — h(p)}. (42)

p€(0,1]

We can distinguish three regimes. Define the paranieter
—2a7w and the functiorz(p) = bg(p) — h(p). The second
derivative ofz is given by

1 b
“log(2)p(1—p)  4(p(1—p))*/2

The functionz is convex iff z” is non-negative for alp €
[0, 1], which occurs when

2" (p) (43)

Similarly, more than a single witness can be considered. So

one needs to find good upper boundg tda, W7 ).

Example 3 (Bound to the entanglement of for mation)

_\1/2
b < min 4(p(1 —p))

=0.
P log(2)

(44)

This becomes particularly simple for witnesses of the formThe function is concave when’ is non-positive for allp,

W1 = |¢){s|" in C¢ @ €, for entangled state vectofs).
We consider the conjugate functigti, evaluated atv; W5 .

It is easily seen from Eg. (23) that, for any entanglement
measure, the conjugate function is invariant under local

unitaries. Then, without loss of generaljty) can be taken to
be of Schmidt form

d
|6) = &l i) (37)
i=1
The partial transpos@) (¢|" gives rise to the form
d
) (01" = D &ili k) (k, jl, (38)

J,k=1

so in a product basis a direct sumlok 1 and2 x 2 matrices.
We seek the maximal value af tr[IVy [¢) (¢b|] and a minimal

value for f(|¢)(¢]). Let

v z',je{lrfl.%);},i<j{§i§j}’ (39)
sow = && forsomek,l = 1,...,d. Itis not difficult to see
that then the optimal state vectar) takes the form

[0) = alk, 1) — (1~ a®)"/2|1, k) (40)
for somea € [0, 1]. This state vector gives rise to
tr=Wale) (¥l] = 2a(1 - a®)?w (41)

and f([)(y]) = —a*logya® — (1 — a®)logy(1 — a?),
defining the concave (classical entropy) functibfx) =

which occurs when

b > max4p(1 — p)'/?/log(2) = 2/ log(2) = 2.88539.
p

(45)

In between these valuesjs neither convex nor concave. Af

is convex p < 0), its supremum occurs at one of the extreme
points, eithep = 0 or p = 1. But of course, either one gives
the same value, namely If z is concave{ > 2/log(2)),

it has one supremum. By the even symmetryzadround

p = 1/2, the supremum must occur at= 1/2, yielding
as supremum valug — 2) /2. For determining the supremum
in the caseé) < b < 2/log(2), a transcendental equation has
to be solved. The supremum as functiorb@an be approxi-
mated from above by the polynomial

0.001876b + 0.008239b% + 0.019733b°
— 0.0056496* + 0.0014300°.

(46)

The average error of this approximatiordi®0017. We may
takea1 = —1/U), thenf*(()élWl) < ¢ with co = 0.14985.
Therefore, we obtain the bound

Ermin > |¢|/|w| = co. (47)
To emphasize that again, we do not assume the “true state”
to be detected to be known or accessible. For completeness,
we do elaborate on an example showing the tightness of the
bound. For example, for the family of states in Hq.l(16) for
A € [1/2,1], and for the witnes$V; = |¢~) (¢~ |" asin Eq.
(@4), we find2|c| = |2\ — 1], w = 1/2, and in fact

Er(p) =h (172401 -0)"2),  (48)



which has to be compared with for ¢ > 1, we get an upper bound (X ) as

Epmin > [2X — 1] — co. (49) fr(X) < Si};})@{“f[lw<¢|X] —gq(l0) (WD)} (57)

As can easily be seen, this is a very good lower bound (as a ) )
tangent the best possible affine bound), and the bound is tigl:rhe functiong, is no longer concave, but we nevertheless get

for A = 0.7056.

Example 4 (Second bound to the entanglement of formation)
Let us consider a witness of the common form

W1 = al — b|) (4] (50)

with a, b > 0. The conjugate function can be easily written as

fr(aaWh) = sup {ara — arbl(v)|* — f(|¥)(¥])}.(51)

lp)eH

We assumégp) to be in its Schmidt form, given by E4._(B7).
The state vecto/) might also be written as

d
) =" wild, i), (52)
1=1

where the basi$|i’) } is not necessarily equal to the Schmidt
basis{|:) } of |¢). One can thus minimize over the ba§jg) }
and the Schmidt coefficients. The last term in the right hand
side of Eq.[(BL) clearly does not depend gif)}. In turn,
given a fixed set of Schmidt coefficients, this implies that

an appropriate bound when optimizing over pure states. Par-
ticularly useful is the case af = 2, when we merely need to

evaluate titry 1) (1[]%].
Further bounds can, e.g., be found in Refs| , 48].

Remarks on exploiting symmetry

If one has a witness which is invariant under a local sym-
metry group, one can in instances simplify the evaluation of
good bounds under the constraint provided by the entangle-
ment witness: One can take the Haar average with respect to
that group, which will always diminish the degree of entan-
glement. So a twirling with respect to a, for examplep U,

U & U*, or O ® O-symmetry, or one corresponding$d/(2)
or symmetric group representations, can only give a lower
bound ]: For any convex entanglement monotgne

f(p)
tiWi] = c1,
p IS a symmetric state

subject to

(58)

the optimal basis will be the one which maximizes the overlap
[{(¢|1)]2. It can be easily shown that the maximum is obtainedH€nce, we have to evaluate an entanglement measure under

when choosind|i’)} to be equal to the Schmidt basis|g¥.

Therefore, we are left with an easier maximization problem

over the Schmidt coefficients only, given by
2
faWr) = ?UI;{OHG - alb(z &‘Mi) (53)
223 i
+ Y u 10g2(uf)}-

Although it is not possible to solve Ed._{53) analytically in
terms ofay, a andb for all choices, it can be easily numeri-
cally evaluated. For example, let us consides «; = 1,

b=3/2,and
1\ /2 9\ 1/2
- 0,0 - 1,1
() wo+(3) n.

so&; = (1/3)1/2 andé, = (2/3)'/2. We then get the follow-
ing bound for the entanglement of formation

[ (54)

EFymin Z |C| — 0.5550. (55)

Example 5 (Bounds from Renyi entropies) Since for the
entropy functionf, we have that

f(@) = g4()

(56)

1
—q log, ()

symmetry [49-53], given the constraint.

Example 6 (Symmetry) To give a very simple example, let
us consider a witness of the form

Wi =al +bl¢") (¢~ |" (59)
for somea, b € R and for states oft’? ® C2. Since|¢~ ) (¢ |
is al @ U-symmetric state, this witnesslisz U *-symmetric.
Therefore, we can optimize the bound with respect toU*-
symmetric states, which is the one-dimensional convex set

p=AL/A+ (1 =N )T,

for A € [0, 1]. The entanglement of formatidfig (p) of such
symmetric stateg, in turn, is known|E|9].

(60)

Concurrence

An interesting example where the conjugate function can be
analytically calculated is the concurrence of two qu@]{S
Let us define the following basis fdi? @ C?,

1 7
W) = <7510, + 1,19, 1) = (10,0} ~ [1,1))61)
|w=£mwﬂmmw=%mwmmma



As is well-known, a general two-qubit pure state can then b&he optimal solution, as a function of, although this not
written as being a convex problem, can be readily evaluated with the hel
3 of a computer algebra prograEtSG].
|B(e)) = D el W), (63)
=0
Further convex roof measures

Theconcurrenceof a pure state is defined as
L, Note that we considered the entanglement of formation as
Z K an example for a “convex roof measure”. There are other im-
=0 portant measures of entanglement in the multi-partiteeodnt
and extended to mixed states by a convex hull constructionyhere the presented ideas can be applied. This applies-in par
The importance of the concurrence is twofold. On one handt,icu|ar to thegeometric measure of entang'ememﬂs is a
itis intimately related to the entanglement of formatiomed  measure for entanglement in the multi-partite case, which i
qubits. Indeed, given the concurrence of a two qubit state defined for pure states as [57]
its entanglement of formation rea®[54]
) Ec(l¥)(w]) = nf [|l¥) ] = pll2, (70)

Eele) =11 (5 (14 0= CEPI2)). (69 o |
where||A|2 = tr[A?] is the Hilbert-Schmidt norm, and the

On the other hand, an analytical expression for the concuinfimum is taken with respect to all pure product states. The
rence of a general two qubits mixed state is kndwh [54], whictextension to mixed states is done via a convex roof construc-
in turn implies an analytical formula for the entanglemeit o tion. Similarly, the global entanglement of Ref. [58] may be

Clp) () = : (64)

formation. considered. Both quantities are proper multi-partite egiex
The first interesting bound to the concurrence based on &ent monotones. For a survey on multi-partite entanglement
witness, derived in Refl_[55], is given by measures, see, e.g., Refs] [29, 59].

C(p) = max {0, —  min tr[|A><A|Fp]} , (66)

AeSL(2,0) Robustness

where|A) denotes the unnormalized state vedtdr® 1)|7) . . _ _ . _ _
with [I) = ]0,0) + |1,1) and A is any (in its determinant Given a bi-partite or multi-partite stafe, its enerallzed_
normalized)2 x 2 invertible matrix. It is thus seen that any robustness of entanglemenintroduced in Refs| [60, 61] - is

witnessW; of the form defined as the minimal > 0 such that the state
Wy = [A)A" (67) w=Lr (71)
1+s

provides a lower bound to the concurrence. Note that thiscla . . . .
: ) . . is separable, where is another arbitrary state. This measure
of withesses is exactly the class of optimal entanglemetat wi

. o can be interpreted as the minimum amount of noise neces-
nesses of two qubits, where optimality refers to the rolasstn . -
with respect to white noise (mixing with the identity) sary to wash out completely the quantum correlations ihjtia
Although Eq. [65) constitutes a useful tool to est'imé‘l;e present in the state. In addition, the generalized robustness
it has the drawback that only witnesses of the restricteah for also has the operational interpretation for bi-partitet@ys

given by Eq.[BY) can be used. On the other hand, the methc the usefulness of the state in question as an ancillaein tel
based on co.njugate functionsloulined in the previ’ous subse portation protocols|E2] and is a multi-partite entangleme

tion, can be applied to any entanglement witness. We now aimmonotonelj_gb]. : .
For our purposes, a very convenient representation of the

at showing that the conjugate function of the concurrence ca . .
. eneralized robustness, obtained asltagrange duaform
be evaluated analytically. ] of Eq. [72) @] is
The concurrence can be expressed as the convex-hull of t q: ’

function _ .
Er(p) = max {0, — mintr[Wp] } (72)

21\ 1/2
flo) = (2(1 triral] ])) ' (68) whereW is varied over the set of withesses with maximum

defined on states. Itis easy to check that is concave. This  ejgenvalue smaller than unityi{ < 1). Note that by con-
in turn implies that the supremum in EQ.[26) can be calcusidering different sets of witnesses, one can quantifyhel t
lated over pure states only. The conjugate funcffortan be  different kinds of multi-partite entanglement [27—29].
expressed as the following optimization problem, As discussed in Refs. [63,164], it follows directly from Eq.

N - N 2 (73) that the expectation value of any measured witri&ss

FX) = SHPZ@AX'\IWQ a9 |Z cil, (69) gives rise to a useful lower bound to the generalized robust-

“ ness. Then, when[#V p] = ¢ < 0,

Cif 4,5

subjectto  |¢) = » ¢;|¥;) is normalized.
; ER,min(P) > |C|//\maX(W)- (73)
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In full generality, this same approach can be applied to anyWhereas the witned§’y;, detects genuine tri-partite entangle-

entanglement measure which can be expressed as ment, having positive values on separable and bi-parttten
gled states, the operatbry ) witnesses genuine four-partite

E(p) = max {0’ — min tr[Wp]} : (74) e_ntanglement, being positive on separable, pi-separabtfe,
WeM tri-separable states. The measured expectation valuasnn t

. . : . are [5],
where M is the intersection of the sets of entanglement wit- B]
nesses with some other set (e.g., thelget< 1). Inter- tr{Wwp] = —0.197 £ 0.018, (81)
estingly, several other well-known entanglement quamnsifie _

L o tr[W, = —0.15140.010. 82
such as théest separable approxmatld@], the Rains fi- Wyl (82)

delity of teleportation[6€], and theconcurrence(see Eq.  Hence we readily have the following estimates on the robust-

(©4)), fit into this classification. Here for concreteness weness of the, a priori unknown, measured stateandp,, con-
focus on thegeneralized robustnesand on therandom ro-  siting of three and four parties respectively:

bustnesswhich we discuss in the sequel.
A source of noise often considered in experiments is S0£r min(p1) > 0.2955 4 0.027, E;. min(p1) > 0.360 £ 0.096,

called white noise, in which the initial stateis driven to a Egmin(p2) > 0.20140.013, Ey.min(p2) > 0.220 & 0.021.

state of the form (83)

p—p+ 8%7 (75)  Example 8 (Four-photon graph state) In Ref. [6], entangle-
ment witnesses have been employed to characterize optical

wheres is related to the amount of noise introduced in thefour-photon graph states[70-74] that have been prepaved fr
system. HereD stands for the dimension of the Hilbert space entangled photon pairs, followed by a controlled-phase gat
which p acts on. In this sense, it is interesting to ask whatcompare also Ref| [69]). For the four-photon cluster state
is the maximal tolerance of an entangled state to white noisg75], N = 4, the given witness is
before all its initially entanglement is transformed intermaly
classical correlations. Thandom robustnesi§d] is exactly Wew = 31— 1 (Z(l)Z(2) + ]l) (Z(2)X(3)X(4) n ]1)
such a quantity. In the framework of Ef.{74), we can express 2

it as the minimization over the set of entanglement witnesse 1 (X(l)X(2)Z(3) T ]1) (Z(S)Z(4) T ]1) . (84)
with trace equal td). Hence, every entanglement witnégs 2
can be used to lower bound it as The maximal theoretical value i§t, p] = —1, the mea-

D] sured value is

Er,min(ﬂ) > Wa (76)

W] tr[Wew p] = —0.299 + 0.050. (85)
again with tfip] = c. This gives rise to
Example 7 (Tri- and quadripartite photonic entanglement) Egrmin > 0.0997 + 0.0167, (86)
As an example, we consider two multi-partite withesses Eypin > 0.1120 % 0.020. (87)

which have been measured in the photonic parametric-down-
conversion experiment of Ret/[5], s¥ = 3 and N = 4. Example 9 (Quantum byte) In the recent spectacular exper-

Consider the following multi-partite pure states vectors iment of Ref. [7],8 ions have been prepared in a multi-particle
1 entangled state. The multi-particle entanglement hasrim tu
W) = ﬁqo,o, 1) +10,1,0) 4+ |1,0,0)) (77)  been demonstrated using the concept of entanglement wit-

nesses. In order to introduce the multi-partite entangféme
and witnesses that have been measured, we have to consider the
N-partiteWW states

1
vy = —(10,0,1,1) +[1,1,0,0 78
[T \/§(| ,0,1,1) +11,1,0,0) (78) W) = (0,...,0,0,1) +10,...,0,1,0) (88)
1 VN
— 5(0.1,1,0)+[1,0,0,1) +10,1,0,1) +[1,0,1,0))). 10100 4L, 0,0,0)/ V.

Define theN-qubit state vector§BS;) = |D;) ® [Wn_1),
which consist of|0) on thei-th qubit and the state vector
|Wx—1) on the remaining qubits, and the corresponding op-

Then the two associated multi-partite entanglement witees
which have been measured are given by

9 erators
Ww = 31— [W)(W], (79) N
3 = 10|Wn)(Wn| — BS;)(BS;|, 89
Wy = Z]1_|\1;(4>><\1,(4)|_ (80) Qn = 10|Wn ) (W | = By Y |BS:)(BS] (89)

=1
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whereSy is a fixed real number for each value. Next, definethe preprint server) is similar in its spirit, and stronglyda
YN = max|py—|ayep) (Y|Q|¥), where|¥) ranges over all nicely complements the present work in that the role of corre
possible bi-separable state vectors [27, 29] with resppealit  lation measurements is emphasized and studied in gredt deta

possible bi-partitions. The witnesses are then given by The semi-definite program was programmed using the pack-
agesSeDuMiandYalmip This work has been supported by
Weayte = Y1 — On. (90)  the DFG (SPP 1116, SPP 1078), the EU (QAP), the EPSRC,

o ) i the QIP-IRC, Microsoft Research, the Brazilian agency Con-
They hence classify tri-partite entanglement. As expline  selho Nacional de Desenvolvimento Cientifico e Tecnaiogi

Ref. 7], the expectation values reported refer to the nbrma (CNPq), and the EURY! Award Scheme.
ized versions oM/gye With tr{Weye] = 2N whereN is the

number of parties of the state. Therefore, we can readily rea
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