
A Curved Path to Post-Quantum:
Cryptanalysis and Design of
Isogeny-based Cryptography

Simon-Philipp Merz

Information Security Group
Royal Holloway, University of London

This dissertation is submitted for the degree of
Doctor of Philosophy

April 2023

Declaration

These doctoral studies were conducted under the supervision of Prof. Simon R. Blackburn
and Prof. Christophe Petit.

The work presented in this thesis is the result of original research carried out by myself,
in collaboration with others, whilst enrolled in the Information Security Group as a
candidate for the degree of Doctor of Philosophy. This work has not been submitted for
any other degree or award in any other university or educational establishment.

Simon-Philipp Merz
April 2023

Acknowledgements

This thesis is one of the products of studying and doing research in isogeny-based
cryptography during the last four years. Many people have contributed in some way to
making this not only a productive and interesting but also a very delightful, enjoyable
and adventurous time.

First and foremost, I would like to thank my supervisors Simon Blackburn and
Christophe Petit. Thank you, Simon, for taking me on as a PhD student, for regular
meetings and helpful advice, and for often ending a meeting with a comment that left
me with a smile for the rest of the day. Thank you, Christophe, for first introducing
me to the field of cryptography during my master’s degree and for including me in your
research group despite administrative issues, for sharing your research ideas that have
led to some papers included in this thesis and for sharing your contacts to enable other
collaborations.

I am grateful to all of my coauthors for their effort and work during our collaborations.
A particular thanks to Péter Kutas for patiently answering many of my questions,
discussing new projects and becoming a friend over the duration of the PhD. Thank
you to everyone in the isogeny reading group for studying recent papers together, in
particular to Boris Fouotsa and Andrea Basso for interesting discussions during and after
the reading groups. Further, thanks to all the friends I have made and the acquaintances
which I had the pleasure to meet at various conferences and workshops.

I would like to thank Luca De Feo for hosting me as an intern at IBM Research Zürich
during the last summer of my studies. Thanks to Luca and Ward for interesting research
discussions and thanks to all of the members of the Foundations of Cryptography group
for the welcoming atmosphere, interesting conversations and superb leisure activities.

Thank you to Wouter Castryck and Frederik Vercauteren for inviting me to Leuven
for a research visit. The stimulating work and the very warm welcome by all the members
of COSIC made the time fly by very quickly.

Thanks to Chloe Martindale and James McKee for agreeing to be my examiners and
for reading this document in detail. I thank Claire Hudson for being the most reliable
point of contact to guide me through the university’s administrative jungle. I would like
to thank Martin Albrecht for acting as my advisor in the annual reviews, for keeping
different cryptography reading groups alive and for a pint or two at the Crown.

iv

Thanks to my friends from Royal Holloway – Alpesh Bhudia, Ben Phillips and Erin
Hales, Balázs Mezei, Eamonn Postlethwaite, Fernando Virdia, Jeroen Pijnenburg, Jodie
Knapp, Joe Rowell, Liam Medley, Rob Markiewicz – for great conversations during
countless tea breaks, for nice wedding parties, for our running competitions, for many
dinners and movie nights, for the Card Club and Egham hill bets, for various trips before
the pandemic, for making the lockdowns more bearable and for our sociable gatherings
in many different places.

Thank you to all of the fellow students who accompanied my mathematical devel-
opment over the years. In particular, thanks to Lelia Hanslik from my undergraduate
studies for keeping me up to date with the gossip of our Berlin student group after I left,
whenever I needed it; thanks to Alexander Schell for strolls with engaging conversations
about much more than maths that made time always pass so quickly; thanks to Sivert
Aesnæss, Hector Papoulias and Alec Letcher for sharing so much of your enthusiasm
with me, spending holidays together and inviting me to your homes all over Europe; and
thanks to Wieland Goetzke for enjoying many Burger Mondays at the Rickety Press
with me, treating me with home-cooked food and having a place for me to stay at New
College whenever I came back to Oxford.

I would like to thank my brother, Julian, for many discussions that had absolutely
nothing to do with my work and the regular reminders that it is always a good time for
an adventure, and my parents for being supportive from the start and always trusting
me with my life choices.

Thanks to everyone not mentioned here, but who, in some way, contributed actively
or passively to the PhD journey.

Finally, thank you to Lenka for her affection, relentless support and everything else!

Publications

The content of this thesis is based on the following publications:

1. Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Charlotte Weitkämper.
One-way functions and malleability oracles: Hidden shift attacks on isogeny-based
protocols. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 242–271. Springer, Heidelberg,
October 2021.

2. Simon-Philipp Merz, Romy Minko, and Christophe Petit. Another look at some
isogeny hardness assumptions. In Stanislaw Jarecki, editor, CT-RSA 2020, volume
12006 of LNCS, pages 496–511. Springer, Heidelberg, February 2020.

3. Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Antonio
Sanso. Cryptanalysis of an oblivious PRF from supersingular isogenies. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090
of LNCS, pages 160–184. Springer, Heidelberg, December 2021.

4. Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, and Yan Bo Ti. On the
isogeny problem with torsion point information. In Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS, pages
142–161. Springer, Heidelberg, March 2022.

5. Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp
Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: Scaling the CSI-FiSh.
In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I,
volume 13940 of LNCS, pages 345–375. Springer, Heidelberg, May 2023.

The following works were also written (or completed) during the author’s PhD studies
at Royal Holloway, University of London:

6. Simon-Philipp Merz and Christophe Petit. Factoring products of braids via garside
normal form. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 646–678. Springer, Heidelberg, April 2019.

vi

7. Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Charlotte
Weitkämper. On adaptive attacks against Jao-Urbanik’s isogeny-based protocol.
In Progress in Cryptology-AFRICACRYPT 2020: 12th International Conference
on Cryptology in Africa, Cairo, Egypt, July 20–22, 2020, Proceedings 12, pages
195–213. Springer, 2020.

8. Steven D. Galbraith, Robert Granger, Simon-Philipp Merz, and Christophe Petit.
On index calculus algorithms for subfield curves. In Orr Dunkelman, Michael
J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020, volume 12804 of LNCS,
pages 115–138. Springer, Heidelberg, October 2020.

9. Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D.
Galbraith, Sabrina Kunzweiler, Simon-Philipp Merz, Christophe Petit, Benjamin
Smith, Katherine E. Stange, Yan Bo Ti, Christelle Vincent, José Felipe Voloch,
Charlotte Weitkämper, and Lukas Zobernig. Failing to hash into supersingular
isogeny graphs. Cryptology ePrint Archive, Report 2022/518, 2022. https://
eprint.iacr.org/2022/518.

10. Wouter Castryck, Marc Houben, Simon-Philipp Merz, Marzio Mula, Sam van
Buuren, and Frederik Vercauteren. Weak instances of class group action based
cryptography via self-pairings. To appear at CRYPTO 2023. Preprint available at
https://eprint.iacr.org/2023/549, 2023

All of this research was supported by the EPSRC and the UK government as part of the
Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London
(Grant EP/P009301/1).

Abstract
This thesis presents multiple results concerning the cryptanalysis and design of isogeny-
based primitives and advanced protocols which aim to provide security in the presence
of classical and quantum adversaries. The problems underlying these cryptographic
protocols often provide additional information to the adversary such as the degree of
a secret isogeny or the evaluation of the isogeny on given points. We study the impact
of this additional information on the security of protocols at different levels, spanning
from foundational key agreement to more advanced cryptographic constructions with
real-world applications.
First, we consider different attacks on the foundational problem underlying (variants of)
the Supersingular Isogeny Diffie–Hellman key exchange (SIDH), which reveals torsion
point images under a secret isogeny. We extend previous torsion point attacks to
slightly less imbalanced parameter sets and we present a reduction of the problem
underlying certain overstretched and imbalanced SIDH variants to an abelian hidden shift
problem that can be solved in subexponential time on a quantum computer. We briefly
summarise the idea of a recent series of devastating attacks on SIDH due to Castryck
and Decru [CD22], Maino and Martindale [MM22], and Robert [Rob22a].
Second, we cryptanalyse multiple isogeny-based hardness assumptions used in the security
proofs of more advanced cryptographic constructions such as undeniable signatures by
Jao and Soukharev and an OPRF by Boneh, Kogan and Woo. We provide efficient attacks
against the hardness assumptions and we show how the attacks extend to breaking the
advanced cryptographic protocols themselves. For the suggested parameters, the attacks
allow us to forge undeniable signatures and break the pseudorandomness of the OPRF.
These attacks predate the aforementioned papers attacking SIDH.
Third, we provide an efficient algorithm to compute a secret isogeny of a specific degree
between supersingular elliptic curves given their endomorphism rings and some torsion
point images under the secret isogeny. This reduction of the problem underlying SIDH-
like protocols to the problem of computing endomorphism rings provides a new lower
bound on the size of the finite field the supersingular curves need to be defined over.
Finally, we present a new group action of an imaginary quadratic order’s class group
on the set of oriented supersingular curves, such that the class group structure is easily
computable. This data is required to uniquely represent and efficiently act by arbitrary
group elements, which is necessary for example in the CSI-FiSh signature scheme. The
index-calculus algorithm used in CSI-FiSh to compute the class group structure of the
acting class group in CSIDH-512 rules out much larger parameters, a limitation that is
particularly problematic in light of the ongoing debate regarding the quantum security
of cryptographic group actions. A careful choice of parameters allows us to instantiate
our group action in practice for a security level equivalent to CSIDH-1024, a security
level currently out of reach using the index-calculus-based methods.

Table of contents

1 Introduction 1

2 Preliminaries 7
2.1 Notation and terminology . 8
2.2 Mathematical background . 9

2.2.1 Elliptic curves . 9
2.2.2 Isogenies . 13
2.2.3 Endomorphism rings . 18
2.2.4 Orientations of elliptic curves . 20
2.2.5 Class group actions on oriented elliptic curves 22
2.2.6 Deuring’s correspondence . 24
2.2.7 Isogeny graphs . 25

2.3 Isogeny-based key exchange protocols . 29
2.3.1 CRS and CSIDH . 29
2.3.2 SIDH . 33

2.4 Problems underlying isogeny-based cryptography 36

3 SIDH Attacks Using Torsion Point Images 40
3.1 Introduction . 41
3.2 Active GPST attack on semi-static SIDH 42
3.3 Classical torsion point attacks . 44

3.3.1 Endomorphisms for classical torsion point attacks 44
3.3.2 Solving norm equations . 46

3.4 Improving torsion point attacks by using precomputation 47
3.4.1 Algorithm . 48
3.4.2 Analysis . 50
3.4.3 Experiments . 54

3.5 Quantum hidden shift attacks on SIDH 55
3.5.1 Quantum algorithms to solve hidden shift problems 56
3.5.2 Malleability oracles and hidden shift attacks 57
3.5.3 Quantum subexponential time attack on overstretched SIDH . . . 59

Table of contents ix

3.5.4 An effective free and transitive group action 62
3.5.5 Lifting θ ∈ πZ[ι] to an endomorphism of norm eN2 71
3.5.6 Algorithm summary . 76
3.5.7 Childs–Jao–Soukharev attack on HHS 78

3.6 Castryck–Decru attack on SIDH . 79

4 Two More One-More Assumptions 81
4.1 Introduction . 82
4.2 Cryptanalysis of undeniable signatures based on SIDH 83

4.2.1 Modified supersingular CDH problems 84
4.2.2 Attacking OMSSCDH and 1MSSCDH 85
4.2.3 Application to the construction by Jao and Soukharev 87
4.2.4 Srinath and Chandrasekaran undeniable blind signatures 92

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 92
4.3.1 OPRFs and their applications . 93
4.3.2 Security properties of (V)OPRFs 95
4.3.3 An isogeny-based OPRF by Boneh, Kogan and Woo 96
4.3.4 The auxiliary one-more SIDH assumption 97
4.3.5 Attacks on the auxiliary one-more SIDH assumption 99
4.3.6 Analysis of the attack . 105
4.3.7 Attack on the SIDH-based OPRF 107
4.3.8 Proof of concept implementation 110
4.3.9 Trusted setup of the starting curve 111

4.4 Conclusion . 113

5 On the Isogeny Problem with Torsion Point Information 116
5.1 Introduction . 117
5.2 Preliminaries . 119

5.2.1 Connecting ideals and the KLPT algorithm 119
5.2.2 LLL lattice reduction . 121
5.2.3 The reduction by GPST . 122

5.3 Reducing isogeny finding to endomorphism ring computation 123
5.3.1 Evaluating non-smooth degree isogenies 123
5.3.2 Computing isogenies using torsion information 125
5.3.3 Computational example . 130

5.4 Reduction in the presence of countermeasures against SIDH attacks . . . 132
5.5 Relevance to isogeny-based cryptography 134

Table of contents x

6 SCALLOP: Scaling the CSI-Fish 136
6.1 Introduction . 137

6.1.1 Technical overview . 139
6.2 Orientations of supersingular curves . 142
6.3 The generic group action . 144

6.3.1 Factorisation of ideals and decomposition of isogenies 144
6.3.2 Effective orientation . 145
6.3.3 Computation of the group action from the effective orientation . . 146

6.4 Security of a group action . 148
6.5 SCALLOP: a secure and efficient group action 150

6.5.1 Parameter choice and precomputation 150
6.5.2 The group action computation . 157

6.6 Concrete instantiation . 160
6.6.1 Parameter selection . 161
6.6.2 Concrete parameters . 162
6.6.3 Performance . 164

6.7 Security discussion: evaluating the descending isogeny 165

References 168

CHAPTER 1

Introduction
Cryptography is the research of techniques for secure communication and storage in the
presence of adversaries, allowing to reduce trust in third parties. For instance, securing
communication takes the form of guaranteeing the confidentiality, integrity or authenticity
of messages.

The invention of methods to keep written messages out of the view of prying eyes
can be traced almost as far back as writing itself. Early examples of cryptography
include ciphers that rearrange or substitute letters systematically. In the 20th century,
cryptography as a discipline, which until then was often thought of as a linguistic
exercise, started changing radically. The development of rotor cipher machines and the
revolutionary arrival of computers increased the complexity of cryptographic methods
and placed the discipline somewhere at the intersection of mathematics, computer science
and electrical engineering.

Another groundbreaking revolution happened to cryptography in 1976, when Diffie
and Hellman introduced public key cryptography [DH76]. Public key cryptography allows
multiple parties to establish secure communication over insecure channels without prior
agreement on shared key material. Nowadays, public key cryptography is used by billions
of people on a daily basis, enabling for instance modern digital communication and
crucial services of contemporary society such as electronic payment systems.

The security of public key cryptographic constructions in turn relies on the hardness
of certain computational mathematical problems. The most prominent systems currently
deployed are based on the hardness of the computational problems of factoring large
integers and computing discrete logarithms (either over finite fields or on elliptic curves
defined over finite fields). Unfortunately, there is no proof that these computational
problems are actually hard to solve. Our belief that these problems are indeed hard
relies entirely on several decades of cryptanalytic efforts by experts from computational
mathematics that did not lead to fundamental progress in solving these problems efficiently
on classical computers processing binary information.

However, when taking into account machines with a different computational model,
this may no longer be true. In fact, using (variants of) an algorithm due to Shor [Sho94]
and access to a quantum computer with sufficient processing power and error correction,

2

the mathematical problems underlying the cryptosystems widely deployed today (such
as the factorisation of integers, or discrete logarithm problems) can be solved efficiently.

Independent of the views on the plausibility or the concrete timeline of the development
of large-scale quantum computers, the danger of “harvest now, decrypt later” attacks
as well as the long time it takes to develop and deploy new cryptographic standards
means that it is crucial to understand quantum-secure cryptography now. Post-quantum
cryptography is the subject area which is concerned with cryptographic algorithms
that remain secure in the presence of quantum computers. To this end, many new
computational problems are being proposed and protocols based on these new problems
are suggested for real-world use.

To further encourage research in post-quantum cryptography and to standardise the
first promising candidates, the National Institute of Standards and Technology (NIST)
launched a standardisation process in 2016 [NIS16]. While this process concluded in 2022
and the winning proposals were put forward for standardisation, the area of post-quantum
cryptography has greatly advanced in recent years and another standardisation process
for quantum-resistant digital signatures is going to start in 2023 [NIS22].

The work exhibited in this thesis contributes to the analysis and further development
of isogeny-based cryptography, one branch of post-quantum cryptography. Isogenies are
non-constant rational maps between elliptic curves that are also group homomorphisms.
For readers not familiar with this terminology we introduce it in more detail in Section 2.2.
The central hard problem underlying isogeny-based cryptography is to compute an isogeny
between two given elliptic curves, when it exists. This can be seen as a natural analogue
to the classical discrete logarithm problem on elliptic curves, as scalar multiplication
corresponds to an isogeny from one curve to itself. Further, isogenies were used for
cryptanalysis of the classical discrete logarithm problem on elliptic curves [GHS02]. As
such, cryptographers have been familiar with some aspects of isogeny-based cryptography
for a while.

In 2006, Stolbunov and Rostovtsev were the first to see the potential for a quantum-
secure key exchange using a group action on a set of ordinary elliptic curves computed by
the means of isogenies [RS06]. A very similar construction had previously been presented
by Couveignes [Cou06]. Yet, without noticing the selling point of quantum-resistance,
the rather inefficient construction, which did not seem to offer any practical advantages
over other competitors in classical cryptography, was not published until after the work
by Stolbunov and Rostovtsev.

The problem underlying the Couveignes–Rostovtsev–Stolbunov (CRS) key exchange
was originally conjectured to take exponential time to solve on a quantum computer.

3

However, Childs, Jao and Soukharev showed that it reduces to a hidden shift prob-
lem [CJS14], which can be solved in quantum subexponential time using an algorithm
due to Kuperberg [Kup05], further adding to the inefficiency of CRS.

Supersingular elliptic curves were first used in cryptography in a proposal for hash
functions [CLG09]. A few years later, Jao and De Feo constructed the supersingular
isogeny Diffie–Hellman (SIDH) key exchange [JD11]. Trying to avoid the commutative
structure giving rise to the quantum subexponential attack by Childs–Jao–Soukharev on
the CRS key exchange, the SIDH key exchange takes place in the much less structured
full supersingular isogeny graph. To complete the key exchange despite the lack of
commutative structure, Jao and De Feo suggested to send some auxiliary information
with the supersingular elliptic curves in the key exchange. However, this additional
information enabled active attacks on SIDH [GPST16] and for imbalanced parameters
was shown to lead to a break of the problem underlying SIDH [Pet17, dQKL+21].
Multiple chapters of this thesis are concerned with improvements of these attacks and
new reductions between different computational problems in isogeny-based cryptography
in the presence of the additional information.

The only isogeny-based submission to NIST’s post-quantum standardisation process,
SIKE [JAC+17], which is a variant of SIDH using balanced parameters, made it all the
way to the final round of the process, convincing the community with its very compact
keys and reasonable speed. Unfortunately, an attack due to Castryck and Decru exploiting
SIDH’s auxiliary information broke SIKE efficiently in a spectacular way [CD22]. Related
work followed soon after, showing that there is little hope to salvage SIDH in its most
efficient form [MM22, Rob22a]. Countermeasures against the attacks were proposed,
however they lead to larger keys and a slower key exchange [Mor22, Fou22].

Building upon several ideas from an improvement to CRS by De Feo, Kieffer and
Smith [DKS18], a cryptographic group action of a class group of an imaginary quadratic
order on the set of supersingular elliptic curves defined over a prime field was introduced
in [CLM+18]. This group action is at the base of the scheme CSIDH, which seems
unaffected by the SIDH attacks, keeps being improved and gives rise to an efficient
non-interactive key exchange. Further schemes such as SQISign [DKL+20], a very
compact isogeny-based signature scheme, and a new isogeny-based group action called
SCALLOP [DFK+23a], which we will introduce in Chapter 6 of this thesis, are both
based on new hardness assumptions. Additionally, there are plentiful new applications
built on top of isogeny-based primitives. All of this shows that the area is still gaining
more traction. Thus, the break of SIDH was not the end of isogeny-based cryptography,
but just the start of another chapter.

4

Outline of the thesis

In this thesis, we present research carried out as part of multiple publications in collabo-
ration with other authors. We present multiple attacks on SIDH variants, cryptanalyse
advanced protocols based on SIDH variants, provide a new reduction between isogeny-
based problems, and finally introduce a new isogeny-based group action.

In the following, we give a brief description of each chapter of the rest of this thesis.

Chapter 2 provides the mathematical background of isogeny-based cryptography nec-
essary to follow the technical contributions of the subsequent chapters. Moreover, it
briefly introduces the main isogeny-based key exchange protocols, and presents some
computational hardness assumptions underlying their security. We point towards further
work for interested readers.

Chapter 3 surveys multiple attacks on balanced and imbalanced SIDH variants using
the provided torsion point information. We briefly recall so-called torsion point attacks
from a line of work started by Petit [Pet17]. We present an unpublished improvement to
these ideas reducing the imbalance of SIDH parameters required for the attacks to work.
Next, we include a reduction of the problem underlying imbalanced SIDH to a hidden
shift problem. This reduction was previously published as

Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Charlotte Weitkämper. One-
way functions and malleability oracles: Hidden shift attacks on isogeny-based protocols.
In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I,
volume 12696 of LNCS, pages 242–271. Springer, Heidelberg, October 2021.

For the sake of completeness, we sketch the idea behind the recent efficient attacks on
(balanced) SIDH due to Castryck and Decru [CD22] and discuss the impact of related
work that followed shortly after, e.g. a more direct attack which uses tools from our work
presented in Chapter 5 and a generalisation to general starting curves [MM22, Rob22a].

The author of this thesis contributed to all aspects of the improved torsion point
attacks and the reduction of imbalanced SIDH to a hidden shift problem.

Chapter 4 discusses multiple hardness assumptions underlying advanced protocols built
from the SIDH key exchange. More precisely, the assumptions were introduced in the
context of SIDH-based undeniable signatures and oblivious pseudorandom functions.
First, we present an efficient attack on the hardness assumptions underlying an undeniable
signature by Jao and Soukharev [JS14]. Further, we describe how our attack extends

5

to an (exponential time) attack on the undeniable signature scheme itself, breaking the
recommended parameter sets. This cryptanalysis was previously published as

Simon-Philipp Merz, Romy Minko, and Christophe Petit. Another look at some
isogeny hardness assumptions. In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006
of LNCS, pages 496–511. Springer, Heidelberg, February 2020.

Further, we cryptanalyse an oblivious pseudorandom function (OPRF) proposed by
Boneh, Kogan and Woo [BKW20]. While parameters for the OPRF were chosen to
defend against our previously mentioned attack on undeniable signatures, we provide
new attacks on the so-called auxiliary one-more assumption introduced by Boneh, Kogan
and Woo to argue the security of their SIDH-based OPRF. We propose multiple attacks
that not only break the assumption but also the pseudorandomness of the OPRF. First,
we give a polynomial-time attack for which we present a simple countermeasure that
can be included in the OPRF protocol. Second, we present a subexponential attack
that succeeds in the presence of this countermeasure. The attacks break all security
parameters suggested by Boneh, Kogan and Woo. Finally, we show that one of the OPRF
parameters needs to be generated using a trusted third party to avoid further attacks.
This work was previously published as

Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Antonio Sanso.
Cryptanalysis of an oblivious PRF from supersingular isogenies. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages
160–184. Springer, Heidelberg, December 2021.

The author of this thesis contributed to all aspects of both of the papers.

Chapter 5 presents a new reduction from the problem of recovering isogenies of a
specific degree between two supersingular elliptic curves to the problem of computing
their endomorphism rings, assuming certain torsion point images under the sought isogeny
are provided. The reduction applies for balanced parameters and for arbitrary fixed
degrees. This work was previously published as

Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, and Yan Bo Ti. On the isogeny
problem with torsion point information. In Goichiro Hanaoka, Junji Shikata, and Yohei
Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS, pages 142–161. Springer,
Heidelberg, March 2022.

One consequence of this chapter is a new lower bound for the size of the finite field
used to define the curves in SIDH-like schemes such as B-SIDH. Further, we introduced a
subroutine that allows us to evaluate non-smooth degree isogenies if the endomorphism

6

rings of the domain and codomain are known. This has found application for example to
generalise recent direct attacks on SIDH [Wes22c]. Compared to the published version
mentioned above, the chapter explains how the reduction for SIDH-like schemes still
applies in the presence of countermeasures against the recent SIDH attacks such as
masking the degree or masking the torsion point images by multiplication with a scalar.

The author of this thesis contributed to all aspects of the paper.

Chapter 6 proposes a new isogeny-based group action called SCALLOP. Similar to
CSIDH, it is the action of the class group of an imaginary quadratic order on a set of
supersingular elliptic curves. In SCALLOP, the quadratic order used has a large prime
conductor inside an imaginary quadratic field of small discriminant. In this case, one has
easy formulas to compute the structure of the class group. For a certain type of signature
schemes this data is required as it is pivotal to uniquely represent, and efficiently act by
arbitrary group elements of the class group. This chapter is for all practical purposes
identical to the paper previously published as

Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp
Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: Scaling the CSI-FiSh. In
Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940
of LNCS, pages 345–375. Springer, Heidelberg, May 2023.

The author of this thesis contributed primarily to the parameter generation for the
SCALLOP group action.

CHAPTER 2

Preliminaries
2.1 Notation and terminology . 8
2.2 Mathematical background. 9

2.2.1 Elliptic curves . 9
2.2.2 Isogenies . 13
2.2.3 Endomorphism rings . 18
2.2.4 Orientations of elliptic curves . 20
2.2.5 Class group actions on oriented elliptic curves. 22
2.2.6 Deuring’s correspondence . 24
2.2.7 Isogeny graphs . 25

2.3 Isogeny-based key exchange protocols . 29
2.3.1 CRS and CSIDH . 29
2.3.2 SIDH . 33

2.4 Problems underlying isogeny-based cryptography 36

In this chapter, we introduce the necessary mathematical background to enable the
reader to follow the rest of this thesis. Our account should be sufficient for this purpose,
though it only scratches the surface of the rich mathematical theory underlying and
relating to isogeny-based cryptography. For a more complete introduction and to get a
better understanding of the objects treated in this work, we refer to Silverman [Sil09]
on the topic of elliptic curves and to Voight [Voi21] for quaternion algebras. For basic
notions such as morphisms and varieties, we refer to any introductory textbook on
algebraic geometry, e.g. [Sha94]. For a brief introduction to isogeny-based cryptography,
we recommend De Feo’s article [DF17] or the more computational introduction to SIDH
by Costello [Cos19].

Apart from the mathematical background, we will use this chapter to fix some notation,
recall the core ideas underlying the most prominent isogeny-based key exchange protocols
and survey some of the hardness assumptions used in isogeny-based cryptography.

2.1 Notation and terminology 8

2.1 Notation and terminology

Below, we provide a list of notation and terminology that will be used without further
explanation throughout the thesis.

• For a field k, the algebraic closure of k is denoted by k.

• For a field k, we denote the projective space of dimension n by Pn(k), which is
the quotient set of kn+1\0 by the equivalence relation of componentwise scalar
multiplication.

• By
(
n
p

)
we denote the Legendre symbol, equal to 0 if p divides n, 1 if n is a non-zero

square modulo p, and −1 otherwise.

• Let f and g be functions N→ R. We use the standard Landau notation f ∈ O(g)
to mean that f grows at most as fast as g, i.e. lim supn→∞

∣∣∣f(n)
g(n)

∣∣∣ <∞.

• We write O(poly(x)) for quantities asymptotically upper bounded by a polynomial
in x. Sometimes, we may want to omit factors polynomial in log p, where p is the
characteristic of the finite field we are working with. In this case, we will abbreviate
O(g · poly(log(p))) by O∗(g). Polynomial time without explicitly mentioning the
variables means “polynomial in the representation size of the input”.

• An algorithm is called efficient if the execution time is in O(poly(λ)), where λ
denotes the security parameter of the underlying cryptographic scheme.

• We call a function f : N→ R negligible, if f ∈ O(x−c) for every positive integer c.
For probabilistic algorithms, we say that something happens with overwhelming
probability if the probability of its complement is given by a negligible function of
the input length.

• A B-smooth integer n only has prime factors smaller than B, where B is called
the smoothness bound. We sometimes say that n is smooth, meaning that the
smoothness bound B of n is in O(poly(log(n))).

• We call an integer B-powersmooth when all its prime power divisors are smaller
than B. As for smooth numbers, we may refer to an integer n as powersmooth
when B ∈ O(poly(log(n))).

• We call a function f : {0, 1}∗ → {0, 1}∗ one-way if f can be computed efficiently,
but any polynomial-time randomised algorithm trying to compute a preimage,

2.2 Mathematical background 9

i.e. an element in the domain that evaluates to a given element in the codomain,
succeeds with negligible probability.

• Given any function, by having oracle access to this function we mean that it is
feasible to evaluate the function at any possible element efficiently. We assume
that the oracle acts like a black box such that one query with an element from the
domain outputs the corresponding value of the function.

• log refers to the logarithm in base 2.

2.2 Mathematical background

First, we introduce the mathematical preliminaries necessary to describe the main
isogeny-based primitives.

2.2.1 Elliptic curves

Elliptic curves have been studied in their full generality in mathematics for many years.
Since the start of the 21st century, they played a ubiquitous role in cryptography as
they could be used to build faster and more compact cryptosystems. After defining
elliptic curves in general, we will move towards the more special cases that are relevant
for isogeny-based cryptography.

Definition 2.2.1. An elliptic curve over a field k is a pair (E,OE), where E is a smooth
projective curve over k of genus 1 and OE a distinguished base point on E defined over k.

This means an elliptic curve is a projective variety and all of its k-rational points are
given by the solutions over k to a homogeneous equation in three variables. Throughout
the thesis, we will denote the points of an elliptic curve E over some extension kext

by E(kext). It turns out that the equations defining elliptic curves can be transformed
to be of a very specific form. Different families of polynomials of such a specific form
describing elliptic curves are called elliptic curve models.

Elliptic curve models. For simplicity, we will henceforth assume that the field k has
characteristic different from 2 or 3. This assumption ensures that every elliptic curve
is birationally equivalent to an elliptic curve in the short Weierstraß model given in
the following definition. For the general equation and the transformations to get the
simplified Weierstraß form, we refer to [Sil09, III].

2.2 Mathematical background 10

Definition 2.2.2. The Weierstraß model of an elliptic curve E over a field k is given by
an equation of the form

Y 2Z = X3 + aXZ2 + bZ3,

with a, b ∈ k and 4a3 + 27b2 ̸= 0, with the base point at (0 : 1 : 0).

When the field of definition is not implicit, we may write E/k to mean the curve E
over the field k. The point (0 : 1 : 0), denoted by OE and called the point at infinity, is
the only point with Z = 0 on the curve. Rewriting the coordinates with x := X/Z and
y := Y/Z, we can equivalently consider the affine form of the Weierstraß equation

y2 = x3 + ax+ b (2.1)

with the additional point at infinity. Since every elliptic curve over k with char(k) ̸= 2, 3
can be written in the Weierstraß model [Sil09, III], it is often used as a canonical way of
representing elliptic curves or to prove theoretical results.

For the purpose of exposition, we will stick to the Weierstraß model. However, for
practical implementations of cryptographic algorithms discussed in this thesis, usually
the Montgomery or Edwards models of elliptic curves are used. While not every curve
admits a rational Montgomery or Edwards model, the arithmetic on elliptic curves can
be executed very efficiently on these curves. In particular, Montgomery curves come
with efficient x-only arithmetic and the celebrated Montgomery ladder for fast scalar
multiplication [Mon87]. A helpful overview on the efficient algorithms for Montgomery
curves is given in [CS18]. Similar practical advantages come with curves in the Edwards
model and they have complete addition formulas, meaning the same formula can be used
for point doubling and point addition [BL07].

The group law. Elliptic curves have been interesting in cryptography and, much
earlier, in pure mathematics because points on an elliptic curve form an abelian group.
This mathematical structure can be visualised by the so-called chord and tangent rule:
By Bézout’s theorem, we know that an elliptic curve, defined by a cubic equation, and
any line in P2 intersect in exactly three points, counting with multiplicities. The group
law can be defined by requiring any three co-linear points to sum to the neutral element
given by the point at infinity OE. (See [Sil09, III.2] for a proof that this indeed defines a
group.) The group law is depicted in Fig. 2.1 with all vertical lines converging at OE.

By adding points to themselves, the group law gives rise to scalar multiplication.

2.2 Mathematical background 11

P

Q

−(P +Q)

P +Q

Fig. 2.1 Group law on the elliptic curve y2 = x3 − 2x+ 1 defined over R

Definition 2.2.3. For any n ∈ Z, we write [n] : E → E for the scalar multiplication by
n on an elliptic curve E/k, which adds n copies of a point together. The kernel of this
map considered over k is called the n-torsion subgroup of E, denoted by E[n].

The following proposition describes the structure of E[n].

Proposition 2.2.4. Let E/k be an elliptic curve and n ∈ Z.

• E[n] ∼= Z/nZ× Z/nZ, if the characteristic of k does not divide n

• If k is of characteristic p > 0, then

E[pi] ∼=

Z/p
iZ for any i ≥ 0, or

OE for any i ≥ 0
(2.2)

Proof. [Sil09, III, Cor. 6.4].

The behaviour of an elliptic curve on the pi-torsion impacts the general structural
properties of the curve, justifying a name for the two alternatives above.

Definition 2.2.5. An elliptic curve E/k is called supersingular if char(k) = p > 0 and
E[pr] ∼= OE for one/all r ∈ Z>0. Otherwise, we say E is ordinary.

There are alternative characterisations of supersingular elliptic curves, see for in-
stance [Sil09, V, Thm. 3.1] and Proposition 2.2.9.

2.2 Mathematical background 12

Isomorphisms of elliptic curves. Two elliptic curves E, E ′ are said to be isomorphic
over a field k if there exists a rational isomorphism whose coefficients are defined over k
from one curve to the other. Clearly, this creates an equivalence relation on the set of
elliptic curves over k. In this thesis, we will usually be interested in isomorphism classes
of elliptic curves over k. Isomorphisms preserving the Weierstraß form of an equation
are linear changes of coordinates, and looking at Eq. (2.1) allows us to verify that the
only such maps are

(x, y) 7→ (u2x′, u3y′) (2.3)

for some u ∈ k. Note that linear transformations preserve the co-linearity of points and
thus the map in Eq. (2.3) preserves the group law. The map defines an isomorphism
between the two elliptic curves with Weierstraß equations y2 = x3 + au4x + bu6 and
(y′)2 = (x′)3 + ax′ + b respectively. These isomorphism classes of elliptic curves over k
are encoded by the following invariant.

Definition 2.2.6. Let E/k be an elliptic curve given in its Weierstraß model by the
affine equation y2 = x3 + ax+ b. The j-invariant is defined as

j(E) := 1728 4a3

4a3 + 27b2 .

Considering the transformations given by Eq. (2.3) and noting that they are are
isomorphisms between elliptic curves with Weierstraß equations y2 = x3 + au4x + bu6

and (y′)2 = (x′)3 + ax′ + b one sees that the j-invariant is indeed invariant under these
transformations.

Proposition 2.2.7 ([Sil09, III.1, Prop. 1.4]). Two elliptic curves E/k and E ′/k are
isomorphic over k if and only if they have the same j-invariant.

A twist between curves defined over k is an isomorphism that is defined over the
algebraic closure of k but not over k itself. For a finite field k, choosing u in Eq. (2.3)
such that u ̸∈ k and u2 ∈ k shows that every curve over k has a quadratic twist.

The hard problem underlying classical elliptic curve based cryptography is the problem
of computing discrete logarithms for carefully chosen elliptic curves over finite fields.
That is, given two points P,Q := [n]P on some elliptic curve, the task is to recover the
integer n. Assuming P is chosen such that ⟨P ⟩ contains most of the curve’s points, the
number of points on such an elliptic curve is one important parameter when estimating
the hardness of this problem.

2.2 Mathematical background 13

Theorem 2.2.8 (Hasse bound). Let E/Fq be an elliptic curve, then

#E(Fq) = q + 1− t with |t| ≤ 2√q.

The integer t in Theorem 2.2.8 is called the trace (of Frobenius) of the curve E/Fq.
The trace, and thus the precise number of points, can be computed efficiently using
Schoof’s algorithm [Sch85]. By the following result, this allows us to decide efficiently
whether a curve is supersingular or not.

Proposition 2.2.9 ([Was08, Prop. 4.31]). Let E/Fq be an elliptic curve, where q is the
power of a prime p. Then #E(Fq) = q + 1 − t and E is supersingular if and only if
t ≡ 0 mod p, i.e. E is supersingular if #E(Fq) ≡ 1 mod p. In particular, if q = p ≥ 5
then #E(Fp) = p+ 1.

By choosing a certain prime field, we can thus control the number of points on a
supersingular elliptic curve. This is one of the reasons why they are used in isogeny-
based cryptography. Further practical considerations are that isomorphism classes of
supersingular elliptic curves can be efficiently represented and the existence of the
following explicit formula to compute the number of such isomorphism classes.

Proposition 2.2.10 ([Sil09, V.Thm. 4.1]). Let S(p) denote the set of j-invariants of
supersingular elliptic curves defined over a field of characteristic p ≥ 5. Then S(p) ⊂ Fp2

and

#S(p) =
⌊
p

12

⌋
+

0, if p ≡ 1 mod 12
1, if p ≡ 5 or 7 mod 12
2, if p ≡ 11 mod 12.

2.2.2 Isogenies

Next, we introduce the protagonist of this thesis: isogenies between elliptic curves.

Definition 2.2.11. Let φ : E → E ′ be a map between two elliptic curves E,E ′ defined
over k. The map φ is called isogeny if it is a non-constant morphism of projective
varieties mapping OE to OE′ defined over an extension of k. Two curves E,E ′ are said to
be isogenous if there exists an isogeny between them. We denote the set of all isogenies
over k from E to E ′ together with the zero-map by Homk(E,E ′).

Note that any set Homk(E,E ′) inherits the structure of an abelian group through
the sum of two isogenies given by

(φ+ ψ)(P) = φ(P) + ψ(P). (2.4)

2.2 Mathematical background 14

For isogenies defined over k, we will sometimes skip the subscript and we write Hom(E,E ′)
for Homk(E,E ′).

We may equivalently define isogenies as non-constant rational maps between the
elliptic curves E and E ′ that are also group homomorphisms [Sil09, Sect. III.4]. We say
that an isogeny is defined over k if its expression as a rational map can be defined with
coefficients in k.

Let E be an elliptic curve defined by the equation f(X, Y) = 0 over k. The ring of
regular functions on E is defined as k[E] := k[X, Y]/⟨f⟩. Its field of fractions is called
the function field of E, which we denote by k(E).

Definition 2.2.12. An isogeny φ : E → E ′ induces an embedding of the function field
k(E ′) in k(E) by composition,

φ∗ : k(E ′)→ k(E), f 7→ f ◦ φ,

which we call the pullback.

Definition 2.2.13. Let φ : E → E ′ be an isogeny over k, and let k(E), k(E ′) be
the function fields of E,E ′. The degree of φ, denoted by degφ, is the degree of the
extension k(E)/φ∗(k(E ′)). The isogeny φ is called separable (respectively inseparable) if
the extension of function fields is separable (respectively inseparable).

If φ : E → E ′ is an isogeny of degree D, we will often say that φ is a D-isogeny and
that E and E ′ are D-isogenous.

Note that degrees of field extensions are multiplicative and therefore we have

deg(φ ◦ ψ) = deg(φ) · deg(ψ).

Frobenius. Let E be an elliptic curve over a finite field of characteristic p. The
pr-power Frobenius is the map

πr : (x, y) 7→ (xpr

, yp
r), (2.5)

which is a morphism of degree pr from E to Epr . One can easily check that the equation
of the curve Epr is obtained by raising all coefficients of the equation of E to the power
of pr. In particular, we have Epr = E whenever E is defined over Fpr .

In cryptography, we will always work over finite fields, say of characteristic p. In those
cases, any isogeny of degree coprime to p is separable of degree equal to the cardinality
of its kernel, and the only inseparable isogenies are of the form πr for some r ∈ Z (up

2.2 Mathematical background 15

to composition with an isomorphism) of degree equal to pr. Further, every isogeny can
be written as a composition of a separable isogeny and πr for some r ∈ Z (see [Sil09,
II.2.12]).

By the following proposition, every finite subgroup of the domain curve gives rise to
an isogeny with this subgroup as its kernel.

Proposition 2.2.14 ([Sil09, III.4.12]). Let E/k be an elliptic curve and G ⊂ E(k) be a
finite subgroup that is Gal(k/k)-invariant. Up to k-isomorphism, there is a unique elliptic
curve E ′/k and a separable isogeny φ : E → E ′ over k satisfying ker(φ) = G.

This justifies the notation E/G for the codomain of an isogeny from E with kernel G.
Since every isogeny is a group homomorphism, we have a bijection between separable
isogenies up to k-isomorphism and finite subgroups of E defined over k. Because of this
correspondence, we sometimes call an isogeny cyclic if its kernel is a cyclic subgroup.

Moreover, a chain of proper subgroups corresponds to a chain of isogenies.

Corollary 2.2.15. Let E be an elliptic curve and G ⊂ E(k) be a finite subgroup. For
every subgroup of G′ ⊂ G, the isogeny φ : E → E/G can be decomposed as

φ : E ϕ1−→ E/G′ ϕ2−→ E/G,

where ker(ϕ1) = G′ and ker(ϕ2) = ϕ1(G).

Pushforward and pullback. Let A,B be coprime integers. Any isogeny E → E ′

of degree AB can be decomposed in two ways as φ′
A ◦ φB or φ′

B ◦ φA, where φA, φ′
A

(resp. φB, φ′
B) have degree A (resp. B). This creates a commutative diagram depicted

in Fig. 2.2, where kerφ′
A = φB(kerφA) and kerφ′

B = φA(kerφB). Given φA and φB

we define φ′
A (resp. φ′

B) as the pushforward of φA through φB (resp. φB through φA),
which we denote by φ′

A = [φB]∗φA (resp. φ′
B = [φA]∗φB). This is the dual notion of the

pullback, [·]∗·, introduced in Definition 2.2.12, where φA = [φB]∗φ′
A and φB = [φA]∗φ′

B.

EA

E E ′

EB

φ′
B=[φA]∗φBφA

φB φ′
A=[φB]∗φA

Fig. 2.2 Commutative diagram depicting the decomposition of an isogeny of degree AB.

Finally, it turns out that being isogenous is an equivalence relation.

2.2 Mathematical background 16

Proposition 2.2.16. Let φ : E → E ′ be an isogeny. Then, there is a unique isogeny
φ̂ : E ′ → E such that φ̂ ◦ φ = [degφ]E called the dual of φ. The dual has the following
properties:

• degφ = deg φ̂

• φ̂+ ψ = φ̂+ ψ̂ for any isogeny ψ : E → E ′

• ψ̂ ◦ φ = φ̂ ◦ ψ̂ for any isogeny ψ : E ′ → E ′′

• ̂̂φ = φ and [̂m] = [m] for all m ∈ Z.

Proof. See Theorems III.6.1 and III.6.2 in [Sil09].

From this it is easy to see that ker(φ̂) is the subgroup φ(E[degφ]) of E ′ using the
notation of the proposition.

While the problem of computing isogenies between two given curves over finite fields is
considered hard and at the heart of isogeny-based cryptography, Schoof’s point counting
algorithm [Sch85] and the following theorem due to Tate allow us to efficiently decide
whether two elliptic curves are isogenous.

Theorem 2.2.17 (Tate [Tat66]). Two elliptic curves E/Fq, E ′/Fq are isogenous over
Fq if and only if #E(Fq) = #E ′(Fq).

By Proposition 2.2.9, one implication of this theorem is that elliptic curves connected
by isogenies will either all be ordinary or all be supersingular.

Computing isogenies. After Proposition 2.2.14 established the correspondence be-
tween kernels and isogenies, a natural question is whether one can explicitly compute an
isogeny given a starting curve and a kernel. This was answered by Vélu [Vél71].

Proposition 2.2.18 (Vélu’s formulae). Let E : y2 = x3 +ax+ b be an elliptic curve over
a field k in Weierstraß form and let H ⊂ E(k) be a finite subgroup. For any function
τ ∈ k(E) and point P ∈ E, define

fτ (P) := τ(P) +
∑
Q∈H
Q ̸=OE

(τ(P +Q)− τ(Q)) .

Let x, y ∈ k(E) be the projections to the Weierstraß coordinates on E. Then the map

φ : E → E/H,P 7→ (fx(P), fy(P)) ,

2.2 Mathematical background 17

where poles of fx, fy are mapped to the point at infinity, is a separable isogeny with kernel
H to an elliptic curve in Weierstraß form.

Remark 2.2.19. Given three points on E/H computed using Vélu’s formulae, we can
easily retrieve the curve’s Weierstraß model.

For the remainder of the thesis, we will only be interested in computing and repre-
senting isogenies between elliptic curves defined over finite fields.

An explicit computational example can be found in the section about Vélu’s formulae
in Galbraith’s book [Gal12]. Since the degree of a separable isogeny is equal to the
cardinality of its kernel, we see that naïvely evaluating Vélu’s formulae for an isogeny φ
of degree D has complexity O(D). By now there are different algorithms to compute a
separable isogeny, but they are all based on Vélu’s formulae. Recently, Bernstein, De Feo,
Leroux and Smith designed a variant, called

√
élu, which can evaluate an isogeny φ of

degree D asymptotically with complexity O∗(
√
D) operations over the field of definition

of kerφ. Due to the constants, this new variant outperforms classical Vélu’s formulae
only for D ≥ 113 [BDLS20, Appx. A.3].

By Corollary 2.2.15, we can decompose any isogeny into prime-degree isogenies
and apply Vélu’s formulae to each step separately. Thus the efficiency of any isogeny
computation mainly depends on the largest prime factor ℓ dividing the degree of the
isogeny and the size of the field extension containing E[ℓ] ∩ kerφ.

Representing isogenies. In practice, we represent cyclic D-isogenies φ with domain E,
i.e. isogenies where the kernel is a cyclic subgroup of cardinality D of E, as tuples (E,P),
where P generates kerφ. We call this a kernel representation.

In general, for an elliptic curve E/k, a subgroup of E(k) of size ℓ will only be defined
over a field extension of exponential degree in log(ℓ) over k. To write down the kernel of
large degree isogenies efficiently, one variant is to choose isogenies that are of powersmooth
degree and thus their kernel can be written as a direct product of subgroups of coprime
cardinality each represented by a generator defined over a small enough extension field.
The isogeny can then be computed using Corollary 2.2.15, pushing each subgroup used
as the kernel of the following step through all the previously computed isogenies. This
ensures that we will only need to work over a field big enough to contain the direct
product of any pairs of subgroups instead of the entire kernel at once. Another variant
more commonly used in isogeny-based cryptography is to work with elliptic curves with
a large enough smooth subgroup over a small extension field. For example, taking a
supersingular curve defined over Fp2 , where the prime p is of the form p = s− 1 for some
smooth s, ensures the s-torsion is defined over Fp2 by Proposition 2.2.9.

2.2 Mathematical background 18

Using techniques similar to compression in the SIDH key exchange [AJK+16, CJL+17,
ZSP+18, NR19], which we will introduce in Section 2.3.2, this representation can be
compressed to O(log(p) + log(D)) bits, even when the generator P is defined over a
large field extension of Fp2 . This compression is relevant when large degree isogenies
are exchanged as part of a cryptographic protocol such as a key exchange or a digital
signature.

2.2.3 Endomorphism rings

Next, we introduce a mathematical object that plays an important role in isogeny-based
cryptography as it carries a lot of information about an elliptic curve.

Definition 2.2.20. An isogeny from a curve to itself is called an endomorphism. Let
End(E) := Hom(E,E) ∪ {[0]} be the set of all isogenies from E to itself together with
the multiplication-by-zero map. With addition inherited from pointwise addition of
endomorphisms (see Eq. (2.4)) and multiplication being composition, this set has the
structure of a ring, called the endomorphism ring.

Since scalar multiplication exists on every elliptic curve, we can embed Z as a subring
of End(E) for any elliptic curve E. We will often identify Z with scalar multiplication
and just write m instead of [m] in the following. Mapping the non-zero endomorphisms
to their dual and the zero-map to itself defines an involution ¯ : End(E) → End(E),
usually referred to as conjugation.

Identifying scalar multiplication [m] with m ∈ Z, we know from Proposition 2.2.16
that for all θ ∈ End(E), we have θθ = deg(θ) ∈ Z. Further, using

deg(θ) = θθ̂

deg(θ + [1]) = (θ + [1])(θ̂ + [1]) = θθ̂ + θ + θ̂ + [1],

where [1] denotes the identity map and using that conjugates correspond to duals, one
can verify that

deg(θ + 1)− deg(θ)− 1 = (θ + θ) ∈ Z.

Since every θ ∈ End(E) satisfies the quadratic equation θ2 = (θ+ θ)θ− θθ, which is over
the integers by the above, θ can be viewed as an algebraic integer.

Definition 2.2.21. Let θ ∈ End(E). Then N(θ) := θθ and tr(θ) := θ + θ are called the
norm and trace of θ, respectively.

2.2 Mathematical background 19

We have already mentioned that we can embed Z as a subring of End(E) for any
elliptic curve E via scalar multiplication. If E is defined over a field of characteristic zero,
then this may already be the entire endomorphism ring. On the other hand, we always
have non-scalar endomorphisms if we look at elliptic curves defined over finite fields.

Let E be an elliptic curve defined over a finite field Fpr of characteristic p. Then, we
know the pr-power Frobenius (2.5) is an isogeny from E to E, i.e. an endomorphism. Let
#E(Fpr) = pr+1−t, then the characteristic polynomial of πr is (πr)2−tπr+pr. If πr acts
like a non-scalar endomorphism, which is typically the case, then Z[πr] ∼= Z[

√
t2 − 4pr].

For some curves over finite fields, this is already the entire endomorphism ring.
However, the endomorphism ring could be larger, e.g. if some d divides πr − c ∈ Z[πr]
for c, d ∈ Z, then Z[πr] ⊊ Z[πr−c

d
] is contained in the endomorphism ring, or if the

endomorphism ring has rank larger than 2. In the cases where we deal with endomorphism
rings of larger rank, the following algebraic object will play an important role.

Definition 2.2.22. Let p be a prime number and let

(a, b) =

(−1,−1), if p = 2
(−1,−p), if p ≡ 3 mod 4
(−q,−p), if p ≡ 1 mod 4

where q ≡ 3 mod 4 is a prime that is not a square modulo p, guaranteed to exist by
Dirichlet’s theorem on primes in arithmetic progressions. The four-dimensional Q-algebra
spanned by 1, i, j, ij with multiplication rules

i2 = a, j2 = b, and ij = −ji,

is called the quaternion algebra ramified at p and ∞, denoted Bp,∞. Up to isomorphism
Bp,∞ is independent of the choice made for (a, b).

For more background on quaternion algebras, we refer to Voight’s book [Voi21].
Further, throughout the thesis we will use the following definition for an order (in
quadratic fields or in quaternion algebras).

Definition 2.2.23. Let A be a finite-dimensional algebra over Q. An order in A is a
subring of A that is a free abelian group generated over Z by a Q-basis for A. The orders
in A are partially ordered by inclusion. Let O, O′ be orders in A, then O′ is called a
superorder of O, if O ⊊ O′. An order in A is called maximal if it has no superorder.

Now, we can state a theorem that classifies all possible structures that can appear for
an endomorphism ring of an elliptic curve.

2.2 Mathematical background 20

Theorem 2.2.24. Let E/k be an elliptic curve.

• If char(k) = 0, then End(E) ∼= Z or End(E) is isomorphic to an order in an
imaginary quadratic field.

• If char(k) = p > 0 and E is an ordinary curve, then End(E) is isomorphic to an
order in an imaginary quadratic field.

• If char(k) = p > 0 and E is a supersingular curve, then End(E) is isomorphic to a
maximal order in a quaternion algebra ramified at p and at infinity.

Proof. See e.g. [Sil09, III. Cor. 9.4 and Rem. 9.4.1] for a proof that End(E) is Z, an
order in an imaginary quadratic field or an order in the quaternion algebra ramified
at p and at infinity. The distinction in the case of positive characteristic is due to
Deuring [Deu41].

Example 2.2.25. Let p ≡ 3 mod 4 be a prime and let E be the elliptic curve over Fp given
by the affine equation y2 = x3 +x. Clearly, the Frobenius π : E → E, (x, y) 7→ (xp, yp) lies
in the endomorphism ring. Note that we have

√
−1 ∈ Fp2 \ Fp for p ≡ 3 mod 4. Looking

at morphisms defined over Fp2 , we can then check that ι : E → E, (x, y) 7→ (−x,
√
−1 · y)

is an automorphism of order four.
We have ι2 = −1, π2 = −p, and ιπ = −πι as

√
−1p = −

√
−1. The Z-module

generated by 1, ι, π, ιπ is contained in End(E), and thus E must be supersingular. While
this Z-module is not isomorphic to a maximal order in the quaternion algebra, the
full endomorphism ring is only slightly larger and generated by 1, ι, ι+π2 , and 1+ιπ

2 (see
e.g. [Sil09]).

The endomorphism ring carries not only a lot of information about the elliptic curve,
but it also reveals information about its location in the isogeny graph, which we will
introduce shortly. Further, the correspondence between ideals of the endomorphism ring
and isogenies that we will describe in Section 2.2.5 is crucial for some constructions in
isogeny-based cryptography.

2.2.4 Orientations of elliptic curves

Next, we introduce the concept of orientations of elliptic curves, which was introduced by
Colò and Kohel [CK19]. Orientations provide a convenient framework to unify different
group actions on ordinary and supersingular elliptic curves that were previously treated
separately. For the definition, it is convenient to consider a slightly coarser object than

2.2 Mathematical background 21

End(E), namely End(E)⊗Z Q, which is usually referred to as the endomorphism algebra.
It consists of elements of the form θ/d, where θ ∈ End(E) and d ∈ Z \ {0}.

Definition 2.2.26. Let k be an algebraically closed field and O an order in an imagi-
nary quadratic field K. A K-orientation on an elliptic curve E/k is an injective ring
homomorphism ι : K ↪→ End(E)⊗ZQ. For an order O ⊂ K, we say that a K-orientation
is an O-orientation, if ι(O) ⊂ End(E), i.e. ι : O ↪→ End(E). If ι cannot be extended to
a strict superorder O′ ⊋ O in K then the O-orientation is called primitive.

If ι is a K-orientation on E (resp. primitive O-orientation), a pair (E, ι) is called a
K-oriented (resp. primitive O-oriented) elliptic curve.

It is easy to see that every K-orientation ι induces a primitive O-orientation for
a unique order O ⊂ K, namely for O = ι−1(End(E)). Further, every non-scalar
endomorphism θ ∈ End(E) naturally gives rise to an orientation. Indeed, we know from
Section 2.2.3 that θ2 − tr(θ) +N(θ) = 0. Fixing

σ :=
tr(θ) +

√
tr(θ)2 − 4N(θ)

2 ∈ C (2.6)

we obtain an orientation ι : Z[σ] ↪→ End(E), which is unique if we impose that ι(σ) = θ.
Conversely, every orientation arises in this way. The orientation ι extends uniquely to a
primitive orientation ι′ : O′ ↪→ End(E), under which the superorder O′ ⊆ Q(σ) of O is
mapped isomorphically to the subring

End(E) ∩Q(θ) := {ω ∈ End(E) | ∃ r ∈ Z \ {0} : rω ∈ Z[θ] } ⊂ End(E).

Example 2.2.27. Let E be an ordinary elliptic curve over a finite field Fpr . Then we
can apply (2.6) to the Frobenius endomorphism πr, which yields an orientation

ι : Z[σ]→ End(E), σ 7→ πr, with σ = t+
√
t2 − 4pr
2

where t is the trace of Frobenius. Since End(E)∩Q(πr) = End(E), the induced primitive
orientation is an isomorphism.

Example 2.2.28. If E is a supersingular elliptic curve over a finite prime field Fp with
p > 3, then we have π2 = −p. So in this case we obtain an orientation

ι : Z[
√
−p]→ End(E),

√
−p 7→ π.

2.2 Mathematical background 22

The image End(E) ∩ Q(π) of this primitive orientation equals Endp(E), the ring of
Fp-rational endomorphisms of E.

Supersingular elliptic curves have endomorphism rings isomorphic to an order in
a quaternion algebra by Theorem 2.2.24. Thus, they admit infinitely many primitive
orientations. At the other extreme, an elliptic curve defined over a field of characteristic
zero does not admit any orientations at all, unless it has complex multiplication, i.e. its
endomorphism ring is larger than Z.

Definition 2.2.29. Let (E, ι) be an O-oriented elliptic curve and let φ : E → F be an
isogeny. We can define an O-orientation φ∗(ι) on F by

φ∗(ι)(α) := 1
deg(φ)φ ◦ ι(α) ◦ φ̂, ∀α ∈ O.

Given two O-oriented elliptic curves (E, ιE) and (F, ιF), we call an isogeny φ : E → F

O-oriented, if ιF = φ∗(ιE). In this case, we write φ : (E, ιE) → (F, ιF). We call
two O-oriented curves (E, ιE) and (F, ιF) isomorphic, if there exists an isomorphism
φ : E → F such that φ∗(ιE) = ιF .

2.2.5 Class group actions on oriented elliptic curves

Let O be an order in an imaginary quadratic field. The set of invertible fractional
O-ideals quotiented by the subgroup of principal fractional ideals is an abelian group
under ideal multiplication that is called the class group of O, denote by Cl(O). Let

Ellall
k

(O) := { (E, ι) |E ell. curve over k, ι primitive O-orientation on E }/ ∼=

be the set of all primitively O-oriented elliptic curves over a field k up to isomorphism
as defined in Definition 2.2.29. This set comes equipped with a group action by the
ideal class group of O. For k = C, this is a classical result from the theory of complex
multiplication. The case where k is the algebraic closure of a finite field is treated in
detail in [Wat69]. Next, we describe this action.

Let (E, ι) be a primitively O-oriented elliptic curve and a ⊂ O an invertible ideal of
norm coprime to max{1, char(k)}. One defines the a-torsion subgroup as

E[a] =
⋂
α∈a

ker ι(α). (2.7)

There exists an elliptic curve F and a separable isogeny φ : E → F with ker(φ) = E[a],
which is unique up to k-isomorphism. We denote the k-isomorphism class of (F, φ∗(ι))

2.2 Mathematical background 23

by [a](E, ι). For a proof that E[a] is indeed a finite subgroup of E, see [Wat69]. We may
sometimes write φι(a) for the isogeny E → F , or just φa if the orientation is implicit.

To compute E[a], note that it suffices to compute the intersection given in Eq. (2.7)
on a set of generators of a.

Consider (2.7) again for a primitively O-oriented elliptic curve (E, ι) and let θ ∈ O.
Then, E[aθ] = ι(θ)−1E[a] contains ker(ι(θ)) by construction. Thus, φaθ decomposes as
the endomorphism ker(ι(θ)) and φa. Hence, the isogenies with kernels E[a] and E[aθ]
have codomains that are isomorphic. Similarly one sees that both isogenies induce the
same orientation up to isomorphism.

Proposition 2.2.30. Let (E, ι) be an oriented elliptic curve over k with primitive
O-orientation, a ⊂ O an integral ideal and θ ∈ O. Then

[a](E, ι) ∼=k [aθ](E, ι).

In particular, the k-isomorphism class of [a](E, ι) depends only on the ideal class of
a ∈ Cl(O), where Cl(O) denotes the ideal class group of O.

This gives rise to a group action by the ideal class group Cl(O) on the set of primitively
O-oriented elliptic curves. This group action is free, i.e. no two ideal classes act the
same on any primitive oriented elliptic curve (see e.g. [Wat69] for the case of ordinary
elliptic curves over finite fields naturally oriented by Frobenius or [Onu21] for the general
oriented case). However, in general it will not be transitive on the set of all primitively
O-oriented elliptic curves, see e.g. [Sch87, Thm. 4.5] and [Onu21, Prop. 3.3] for some
specific examples with two orbits. However, we have the following result [CK19, Onu21].

Theorem 2.2.31. Let k be a field of characteristic p ≥ 0, and let O be an order in an
imaginary quadratic field K such that Ell all

k
(O) is non-empty. Then

Cl(O)× Ell all
k

(O)→ Ell all
k

(O)
([a], (E, ι)) 7→ [a](E, ι),

where a ⊂ O is an integral representative of its ideal class, is a well-defined and free
group action with at most two orbits.

In isogeny-based cryptography, we are typically in the case where we want to find an
isogeny between two primitively O-oriented curves knowing that such an isogeny exists.
Hence, we can assume that the oriented elliptic curves we are dealing with are located in
the same orbit of the class group action. Restricting the group action to one orbit, say
Ellk(O) ⊂ Ell all

k
(O), simplifies our exposition and allows us to assume transitivity.

2.2 Mathematical background 24

2.2.6 Deuring’s correspondence

By Theorem 2.2.24, we know that the endomorphism ring of a supersingular elliptic curve
is a maximal order in a quaternion algebra. One may wonder whether every maximal
order in a quaternion algebra appears as an endomorphism ring of a supersingular elliptic
curve, or how many supersingular elliptic curves correspond to the same maximal order.
This question was answered by a seminal paper due to Deuring [Deu41], which also
provides the proofs for all of the remaining statements in this section.

Theorem 2.2.32 (The Deuring correspondence). There is a one-to-one correspondence
between j-invariants over Fp2 of supersingular elliptic curves up to Galois conjugacy and
maximal orders O of Bp,∞ up to isomorphism. Hereby, {j(E), j(E)p}, where E/Fp2 is a
supersingular elliptic curve, corresponds to End(E).

Note that when E is defined over Fp2 , then the Frobenius π : E → Ep is an isogeny
such that j(E)p = j(Ep). By the Deuring correspondence, there are at most two
supersingular elliptic curves having isomorphic endomorphism rings. If this is the case,
their j-invariants are conjugates in Fp2/Fp and both curves are connected by the Frobenius
isogeny π : E → Ep.

The correspondence is even more explicit, as it allows us to translate isogenies to
ideals and vice versa. We get something similar to the class group action on the set of
elliptic curves with a certain primtive orientation described in the previous section. To
make this more precise, we define the following.

Definition 2.2.33. We call two fractional left ideals of an order O ⊂ Bp,∞ equivalent, if
there exists a unit α ∈ Bp,∞ such that J = Iα. We denote the set of all fractional left
ideals in O equivalent to I by [I] and we call it the class of I.

For any ideal, we can further define a non-commutative analogue of (2.7).

Proposition 2.2.34. Let E be a supersingular elliptic curve and End(E) ∼= O ⊂ Bp,∞.
Any non-zero left ideal I of O defines the following finite subgroup of E:

E[I] :=
⋂
α∈I

ker(α).

We will sometimes denote the isogeny E → E/E[I] by φI . If I is a principal ideal,
then φI : E → E/E[I] is an endomorphism. Further, when taking two equivalent ideals
I, J in the same ideal class, we have E/E[I] ∼= E/E[J], since E → E[J] can be factored
as the isogeny E → E[I] precomposed with an endomorphism. Theorem 2.2.31 has the
following non-commutative analogue.

2.2 Mathematical background 25

Proposition 2.2.35. Let E0 be a supersingular elliptic curve over Fp and let End(E0)
be isomorphic to O0 ⊂ Bp,∞. For every supersingular elliptic curve E/Fp, there exists a
unique left ideal class [I] ⊂ O0 such that E is isomorphic to the codomain of the isogeny
with kernel E0[J], as defined in Proposition 2.2.34, for any representative J ∈ [I]. The
endomorphism ring of the codomain E is isomorphic to the right order of J in Bp,∞.

Remark 2.2.36. Proposition 2.2.35 also provides one way to see that all supersingular
elliptic curves over the same field are isogenous.

Note that while the codomains of isogenies corresponding to equivalent ideals are
isomorphic, the isogenies will in general not be the same. In fact, one can show that
the degree of the isogeny equals the norm of the corresponding ideal. Further, the dual
isogeny corresponds to the conjugate of an ideal and composition of isogenies corresponds
to the product of ideals [Deu41].

2.2.7 Isogeny graphs

We know that we can easily determine whether two elliptic curves are isogenous by
Theorem 2.2.17. However, for many applications one wants to know how the curves are
connected. To gather more information about this, it is natural to study the structure of
the following objects.

Definition 2.2.37 (ℓ-isogeny graphs). Let k be a field and ℓ be a prime not divisible by
the characteristic of k. The ℓ-isogeny graph is the graph where vertices are k-isomorphism
classes of elliptic curves over k. The edges represent isogenies over k of degree ℓ between
curves in the corresponding isomorphism classes. Let K be an imaginary quadratic field.
The K-oriented ℓ-isogeny graph is defined analogously with vertices being k-isomorphism
classes of K-oriented elliptic curves and edges being K-oriented isogenies of degree ℓ.

Note that the existence of dual isogenies justifies the viewing of isogeny graphs as
undirected graphs. Concerning the multiplicity of edges, one has to be a little careful
when considering graphs containing the isomorphism class of curves with j-invariant 0 or
1728 due to additional non-trivial automorphisms of these curves, see e.g. [Sil09, Appx. A,
Prop. 1.2].

Typically, we will restrict ourselves to a subgraph containing curves of a given order,
which is a disconnected component of the full ℓ-isogeny graph by Theorem 2.2.17. Away
from the two special vertices mentioned above, the connected components of the ℓ-isogeny
graph turn out to have two possible shapes: the structured shape of a volcano or a less
structured expander graph which we refer to as the full supersingular isogeny graph. We

2.2 Mathematical background 26

describe these graphs and in which context they occur in more detail next. For a nice
illustration how the volcanoes containing the class of curves with j-invariant 0 or 1728
look like, we refer to Panny’s thesis [Pan21, Fig. 2.3].

Volcanoes of oriented elliptic curves

Most of the results on isogeny volcanoes were developed for the special case of ordinary
elliptic curves defined over a finite field using the Frobenius endomorphism to define an
orientation as described in Example 2.2.27. Many of the results in this case originate
from Kohel’s thesis [Koh96] and for an overview of volcanoes of ordinary elliptic curves,
we refer to [Sut13]. However, a lot of the theory generalises to the setting of oriented
elliptic curves in general [CK19, Onu21].

Let K be an imaginary quadratic number field with maximal order OK and let
φ : (E1, ι1)→ (E2, ι2) be a K-oriented ℓ-isogeny of K-oriented elliptic curves such that
the domain and codomain are primitively oriented by O and O′, respectively. Then one
of the following is true [CK19]:

• O ⊂ O′ and [O′ : O] = ℓ, in this case φ is called ascending.

• O = O′, in this case φ is called horizontal.

• O′ ⊂ O and [O : O′] = ℓ, in this case φ is called descending.

We use the following definition for volcanoes.

Definition 2.2.38. An ℓ-volcano is a connected undirected graph with vertices parti-
tioned into levels V0, V1 . . . , in which the subgraph on V0, called the crater, is a regular
graph of degree at most 2 and

a) For i > 0, each vertex in Vi has exactly one edge leading to a vertex in Vi−1, and
every edge not on the crater is of this form.

b) Each vertex has degree ℓ+ 1, except for the vertices on the last level Vd in case the
number of levels is finite (in which case Vd is called the floor and d is called the
depth of the volcano).

The K-oriented ℓ-isogeny graph is the disjoint union of ℓ-volcanoes (see [CK19,
Onu21]). For simplicity, assume we have only one ℓ-volcano. The crater consists of the
finite set of primitive O0-oriented elliptic curves, where O0 ⊆ K is locally primitive at ℓ,
i.e. the index [OK : O0] is coprime to ℓ. From elliptic curves with primitive O0-orientation,
there cannot be an ascending isogeny. Descending in the volcano, the vertices on level Vi
correspond to primitively Oi-oriented elliptic curves such that [Oi : Oi+1] = ℓ.

2.2 Mathematical background 27

Fig. 2.3 2-volcano of O-oriented curves (E, ι) for some O ⊂ K where [OK : O] has
2-adic valuation equal to 3. Curves on the crater have primitive O0-orientation, where
O0 is locally primitive at ℓ = 2, the ones on the floor are primitively O3-oriented and
[O0 : O3] = 23.

Finite volcanoes. Instead of considering the full, infinite volcano of K-oriented curves,
choosing a fixed order O ⊂ K, we can consider the volcano consisting only of K-oriented
curves (E, ι) with ι(O) ⊂ End(E). This restriction truncates the volcano of K-oriented
curves at the level equal to the ℓ-adic valuation of the conductor of O. That is, the
resulting volcanoes are finite. Fig. 2.3 depicts such a finite volcano.

Isogeny volcanoes have found multiple applications such as the computation of
endomorphism ring of ordinary elliptic curves [BS11] or the computation of Hilbert
class polynomials [Sut11, BBEL08]. The “classical” isogeny volcanoes studied there
arise as components of the ℓ-isogeny graph of curves defined over Fpr with Frobenius
orientation as in Example 2.2.27 truncated to those curves which contain Z[πr] in their
endomorphism ring.

For cryptography, however, a single volcano for a single fixed ℓ may not seem to be
very useful on its own. Assuming that ℓ-isogenies can be computed efficiently, one can
navigate the volcanoes and walk to the surface as described by Kohel [Koh96]. See [IJ13]
for an alternative approach using the relation between the group structure of the rational
ℓ-torsion on ordinary elliptic curves and the level in the volcano to navigate between
different levels by the means of pairings. Being left with the crater, a single cycle or
even disconnected, there is no distinction between walking a path between two vertices
or retrieving it and thus the setting does not appear to be promising for public key
cryptography.

2.2 Mathematical background 28

Instead of considering just a single volcano for a fixed ℓ, a more common approach in
cryptography is to consider a union of multiple volcanoes for different ℓ on the same set
of vertices, as we will see in Section 2.3.1.

A different approach using oriented supersingular curves was taken in OSIDH [CK19],
where the authors tried to reveal less information to make sure an adversary cannot recover
an isogeny to the crater from a given oriented curve. Yet, Dartois and De Feo showed
that the information provided was still too much for a wide range of parameters [DD22].

In Chapter 6, we present another idea where working in an ℓ-volcano with large
prime ℓ prevents an adversary from efficiently computing the isogenies to the crater.

The full supersingular isogeny graph

Another graph important for cryptography, in particular for those cryptographic schemes
that will play a major role in this thesis, is the supersingular ℓ-isogeny graph, where
vertices are isomorphism classes of supersingular elliptic curves over Fp, which can be
represented by a j-invariant in Fp2 (see Proposition 2.2.10). Given that the number
of supersingular curves over Fp up to isomorphism is roughly p/12, these graphs are
interesting for cryptographic purposes only for large p, which we will assume to be the
case in the following. Considering the torsion structure for the supersingular elliptic
curves (Proposition 2.2.4) and that every subgroup of order ℓ of the elliptic curve defines
an isogeny (Proposition 2.2.14) one can see that the ℓ-isogeny graph is (ℓ+ 1)-regular
(away from curves with j-invariants 0 or 1728 where the additional automorphism might
change the edge’s multiplicities).

Using the following proposition together with Proposition 2.2.35, one can further see
that the supersingular ℓ-isogeny graphs form a connected component for every ℓ ̸= p.

Proposition 2.2.39. [Voi21, Thm. 28.5.3] Let O be a maximal order in Bp,∞ and let
I ⊂ O be a non-zero left ideal. For any prime ℓ ̸= p, there exists an equivalent left ideal
J ∈ [I] whose norm is a power of ℓ.

A heuristic polynomial time algorithm that makes Proposition 2.2.39 effective was
provided by Kohel, Lauter, Petit and Tignol (KLPT) [KLPT14]. Later, Wesolowski
gave a variant which relies only on the Generalised Riemann Hypothesis [Wes22b]. In
Section 5.2.1, we give a brief sketch of the KLPT algorithm, but we refer to [KLPT14,
DKL+20] for the technical details.

The fast mixing property of supersingular ℓ-isogeny graphs makes them interesting for
cryptographic purposes. Indeed, Pizer showed that that ℓ-isogeny graphs are Ramanujan.

2.3 Isogeny-based key exchange protocols 29

Theorem 2.2.40. [Piz90, Thm. 1] Let p and ℓ be distinct primes with ℓ < p/4. Then,
the supersingular ℓ-isogeny graph over Fp is a Ramanujan graph. Ramanujan means that
all eigenvalues λ of the adjacency matrix satisfy λ ≤ 2

√
ℓ which is asymptotically the best

possible. In particular, the diameter of the graph is between log p and 2 log p.

Therefore, after taking only relatively few random steps in the ℓ-isogeny graph one
can reach every vertex of the graph with roughly equal probability.

Despite containing all of the oriented ℓ-volcanoes of supersingular elliptic curves, the
full supersingular ℓ-isogeny graph appears to be rather unstructured. Indeed, given a
random supersingular elliptic curve it seems to be a hard problem to determine whether
and where it lies on a specific volcano without first computing endomorphisms of this
curve. At the time of writing this thesis, this is considered to be a computationally hard
problem for supersingular elliptic curves defined over a finite field of sufficiently large
characteristic p.

2.3 Isogeny-based key exchange protocols

In this section, we introduce the three main isogeny-based key exchange protocols and
touch on some of their variants. First, we introduce the Couveignes–Rostovtsev–Stolbunov
(CRS) and the CSIDH1 key exchange protocols as instantiations of Diffie–Hellman key
agreements from commutative group actions. The isogeny graphs that appear in this case
are volcanoes. Note that we describe the schemes in the unifying framework of oriented
elliptic curves which was not introduced until after CRS and CSIDH were proposed.

Second, we introduce the SIDH key exchange which uses isogeny walks in the full
supersingular isogeny graph. This is the foundation of Chapters 3 to 6 which will all be
concerned with various aspects of SIDH, its variants, or more advanced cryptographic
protocols built on top of it.

2.3.1 CRS and CSIDH

Couveignes proposed the first isogeny-based key exchange but did not publish it at
the time [Cou06]. The same idea was rediscovered independently by Rostovtsev and
Stolbunov [RS06]. Couveignes and Rostovtsev–Stolbunov (CRS) suggested a post-
quantum key exchange based on the group action of an ideal class group on a set of
ordinary elliptic curves, which can be seen as a special case of the group action described

1pronounced “seaside”

2.3 Isogeny-based key exchange protocols 30

in Section 2.2.5. We start by recalling how group actions can allow us to replace classical
group-based Diffie–Hellman [DH76] by a (potentially) quantum-resistant alternative.

Diffie–Hellman key exchange from group actions

The analogue of the Diffie–Hellman key exchange for commutative group actions is as
follows. Let · : G ×X → X be a group action of an abelian group G on a set X. To
agree on a shared secret over an insecure public channel, Alice and Bob first agree on a
(public) element E ∈ X. Then, Alice and Bob each choose their secret a ∈ G and b ∈ G,
respectively, and exchange a · E and b · E. Since a and b commute, both Alice and Bob
can compute (ab) · E which acts as the shared secret.

Note that the classical Diffie–Hellman key exchange can also be seen as one arising
from the action of Z/(p−1)Z on the multiplicative group X of units F∗

p. By removing the
inherent structure of a group from X, it is hoped that for carefully chosen group actions
the key exchange above remains secure even in the presence of quantum adversaries. For
the key exchange to be secure, we require the following two problems to be hard.

Definition 2.3.1. Let · : G × X → X be a commutative, free and transitive group
action. Given E,E ′ ∈ X, the vectorisation problem asks to recover a ∈ G such that
a · E = E ′.

The vectorisation problem seeks to invert the group action and thus can be seen as an
analogue of the classical discrete logarithm problem. The analogue to the computational
Diffie–Hellman problem is given by the following.

Definition 2.3.2. Let · : G × X → X be a commutative, free and transitive group
action. Given E, a · E, b · E, the parallelisation problem asks to compute (ab) · E.

For efficiently computable group actions, the vectorisation and the parallelisation prob-
lem were shown to be equivalent under a quantum polynomial time reduction [GPSV21].

A group action · : G×X → X is called a hard homogenous space if it can be computed
efficiently and the vectorisation and parallelisation problems are hard [Cou06]. A more
recent formalisation of properties to obtain cryptographically useful group actions was
given by Effective Group Actions (EGA) in [ADMP20].

CRS

In the CRS key exchange, the group action based Diffie–Hellman is instantiated with
the action of the ideal class group Cl(O) on the set of primitively O-oriented ordinary
elliptic curves defined over a finite field as described in Section 2.2.5 (restricting to one

2.3 Isogeny-based key exchange protocols 31

orbit if necessary). While the general notion of oriented elliptic curves did not exist when
CRS was proposed, the concrete orientation suggested was the Frobenius orientation on
ordinary elliptic curves presented in Example 2.2.27. Note that Cl(O) is an abelian group
which is necessary for the key exchange to work. Couveignes and Rostovtsev–Stolbunov
conjectured the vectorisation and parallelisation problems to be computationally hard
for this class group action.

Differences between Couveignes’ and Rostovtsev–Stolbunov’s proposals. For
a fixed public curve E0 with a primitive O-orientation, Couveignes suggested that Alice
and Bob sample their secrets a and b uniformly at random from Cl(O), respectively.
To compute the curves EA := E0/E0[a] and EB := E0/E0[b], i.e. the group action of a
and b on the starting curve, Couveignes suggested to translate the sampled ideals to an
equivalent product of small-norm ideals. To do so, he proposed to compute the structure
of Cl(O) using the Hafner–McCurley algorithm [HM89]. To avoid the expensive class
group computation, Rostovtsev and Stolbunov proposed to instead sample the ideals a

and b as products of small-norm prime ideals in the first place.
Next, we sketch the CRS key exchange following the approach suggested by Rostovtsev

and Stolbunov.

Public parameters. Let p be a prime and E0/Fp be an O-oriented ordinary elliptic
curve (with Z[π] ∈ O) and let ℓ1, . . . , ℓn be a set of primes that split in O. Let li be
fractional ideals above ℓi in O and let I ⊂ Z a set of possible exponents.

Key generation. Alice samples a secret exponent vector (ei)1≤i≤n ∈ In, sets
a = [∏i l

ei
i] ∈ Cl(O) and computes her public key EA := E0/E0[a]. Bob proceeds

mutatis mutandis computing his public key EB := E0/E0[b].

Key exchange. Upon exchanging their public keys, Alice and Bob compute the
curve EAB := E0/E0[ab] up to isomorphism as EB/EB[a] and EA/EA[b], respectively.
The shared secret is the (hash of the) j-invariant of EAB.

Fixing a set of small prime ideals above primes ℓ1, . . . , ℓn that split in O, one can
think of the isogeny graph underlying the CRS key exchange as the union of 2-regular
craters of ℓi-volcanoes all having the same set of vertices. A priori, it is not obvious that
the union of such graphs is better connected than each of its components. However, it
was shown that for sufficiently many ℓi and large finite fields the union is an expander
graph [JMV09]. Thus, after taking only a few random steps along the ideals li lying
above the ℓi, one can reach any of the vertices in the graph with similar probability after
only few steps.

2.3 Isogeny-based key exchange protocols 32

Unfortunately, the CRS key exchange is too slow for practical use despite some work
trying to accelerate it by De Feo, Kieffer and Smith [DKS18]. Their main goal was
to ensure that #E0(Fp) is divisible by as many small ℓi as possible. For the ideals li

lying above such primes, the class group action could then be computed efficiently by
evaluating Vélu’s formulae over a small extension field. However, since finding ordinary
elliptic curves with a specific number of points is considered a difficult problem, this
approach only had limited success. However, the ideas helped develop CSIDH - a much
faster version of a group action of a class group of an imaginary quadratic order on a set
of supersingular elliptic curves.

CSIDH

As we pointed out before, the number of points on a supersingular elliptic curve over a
finite field Fp is determined by the size of p. The core idea of CSIDH [CLM+18] is to use
supersingular elliptic curves defined over a finite field Fp for a specific choice of p. Let
O = Z[√−p]. Recall from Example 2.2.28, the p-power Frobenius, π, is an endomorphism
for a supersingular elliptic curve defined over Fp and we obtain an O-orientation on
supersingular elliptic curves defined over Fp by identifying √−p with π and Z with
scalar-multiplication.

Let p be a prime of the form 4ℓ1 · · · ℓn · f − 1, where ℓi are small primes that split
in O and f ∈ Z is a small cofactor, and let the starting curve E0 be a supersingular
elliptic curve over Fp. Then, the group action can be efficiently evaluated for all the
ideals li lying above the ℓi via Vélu’s formulae, as the kernel of the corresponding isogeny
is defined over Fp2 .

CSIDH simply instantiates the group action key exchange with the action of Cl(O)
(restricted to the ideals lying above the ℓi) on the set of O-oriented elliptic curves over
Fp, i.e. the supersingular ellptic curves defined over Fp. Apart from being a reasonably
performant key exchange which is conjectured to be post-quantum secure, public keys can
be verified efficiently in CSIDH. As such, CSIDH was the first post-quantum proposal
for a non-interactive (static-static) key exchange with reasonable performance. For the
formalisation of the non-interactive key exchange protocol and multiple examples of
real-world use cases of this protocol, we refer to [FHKP13].

Since its introduction, various works have further increased the performance of CSIDH.
For example, one can instantiate CSIDH on the crater of the volcanoes by using curves
oriented by the slightly larger order Z[1+

√
−p

2] for primes p = 3 mod 4 as suggested for
CSIDH [CD20]. Another improvement is to use so-called radical isogenies to accelerate
computing chains of d-isogenies in the CSIDH setting for small d. They allow us to avoid

2.3 Isogeny-based key exchange protocols 33

generating points of order d for Vélu’s formulae at each step and instead compute such
points with explicit formulas deterministically [CDV20].

CSI-FiSh signatures. As was already sketched by Stolbunov in his thesis [Sto12], the
class group action on oriented elliptic curves can be used to build a basic isogeny-based
identification scheme. This identification scheme works as follows: The public key of
the prover consists of an oriented curve (E1, ι1) = [a](E0, ι0) for some random element
a ∈ Cl(O) and (E0, ι0) a public starting curve. Now, assume Cl(O) is cyclic of order
N and g is a generator of Cl(O). To prove their identity, the prover first samples a
random element b ∈ Cl(O), by choosing b ∈ Z/NZ and setting b = gb, and then commits
to [b](E0, ι0). The verifier chooses a random bit c ∈ {0, 1} and sends it to the prover,
who replies with r := b − c · a mod N . Finally, the verifier checks whether [gr](Ec, ιc)
is equal to the commitment [b](E0, ι0). Using the Fiat–Shamir transform [FS87], the
identification scheme can be turned into a signature scheme.

Conducting a record class group computation, Beullens, Kleinjung and Vercauteren
computed the class group structure for the class group acting in CSIDH-512, the smallest
of the CSIDH parameter sets. Using this data, they instantiated the Fiat–Shamir
signature scheme sketched above for the class group action of CSIDH-512, which is called
CSI-FiSh2 [BKV19]. In Chapter 6, we will present a new isogeny-based group action
which allows us to compute the class group structure more easily giving rise to digital
signatures similar to CSI-FiSh for larger security levels.

2.3.2 SIDH

In 2011, Jao and De Feo introduced the supersingular isogeny Diffie–Hellman (SIDH)
key exchange [JD11]. Predating CSIDH, this was the first proposal for an efficient
isogeny-based key exchange at the time.

As a result of Proposition 2.2.39, we saw that for a fixed p the full supersingular
ℓ-isogeny graph of elliptic curves defined over Fp2 is a connected Ramanujan graph for
any ℓ ̸= p, where each ℓ-isogeny graph has the same set of vertices.

The idea behind the SIDH key exchange is for Alice and Bob to take a random walk
starting from a publicly known curve E0 in the full supersingular ℓ1- and ℓ2-isogeny
graph, respectively. These walks correspond to isogenies of degree a power of ℓ1 and ℓ2,
respectively. Alice then shares the codomain of her secret isogeny together with auxiliary
information that allows Bob to compute the pushforward of his secret isogeny under

2pronounced “seafish”

2.3 Isogeny-based key exchange protocols 34

Fig. 2.4 The full supersingular 2- and 3-isogeny graphs for F1272

Alice’s isogeny. Bob proceeds analogously. After computing the pushforward of their
respective secrets, both Alice and Bob arrive at isomorphic curves (see Fig. 2.2), whose
j-invariant serves as the shared secret.

The following is a more detailed and more general description of the SIDH key
exchange.

Public parameters. Let E0 be a supersingular elliptic curve defined over Fp2 , where
p is a prime of the form f ·N1N2± 1. Here, N1, N2 are two coprime smooth integers,
usually a power of 2 and 3, respectively, and f is a small cofactor. Furthermore, fix
points PA, QA, PB, QB such that E0[N1] = ⟨PA, QA⟩ and E0[N2] = ⟨PB, QB⟩.

Key generation.

• Alice chooses her secret as a random cyclic subgroup of E0[N1] generated by
a point A = PA + [xA]QA for some xA ∈ Z/N1Z. Similarly, Bob chooses his
secret as ⟨B⟩ := ⟨PB + [xB]QB⟩ ⊂ E0[N2] for some xB ∈ Z/N2Z.

• Alice computes the isogeny φA : E0 → EA := E0/⟨A⟩ and sets her public key
to be ((EA, φA(PB), φA(QB)). Bob evaluates φB : E0 → EB := E0/⟨B⟩ to
compute his public key (EB, φB(PA), φB(QA)).

Key exchange.

• Both Alice and Bob can compute the j-invariant of EAB := E0/⟨A,B⟩ as

EAB ∼= EB/⟨φB(PA) + [xA]φB(QA)⟩ ∼= EA/⟨φA(PB) + [xB]φA(QB)⟩.

2.3 Isogeny-based key exchange protocols 35

Note that the choice of p ensures the torsion subgroups E[N1] and E[N2] to be defined
over Fp2 for any supersingular elliptic curve over Fp2 . Thus, one has an efficient kernel
representation for all N1- and N2-isogenies. Since N1 and N2 are chosen to be smooth,
these isogenies can be evaluated efficiently using Vélu’s formulae. To ensure that both
Alice and Bob enjoy the same level of security, the recommended parameter sets for
SIDH suggest balanced parameters, in other words N1 ≈ N2.

In spite of its name, SIDH lacks certain features of the classical Diffie–Hellman key
exchange. For instance, the scheme does not come with an easy method to validate public
keys. By sending manipulated torsion point images in their public key, adversaries can
trick the other party into revealing information about their secret. In Section 3.2, we give
more details about this adaptive attack due to Galbraith, Petit, Shani and Ti [GPST16].

SIKE. SIDH is the basis of the only isogeny-based encryption scheme, called SIKE,
submitted to NIST’s post-quantum standardisation process started in 2017 [JAC+17].
To avoid adaptive attacks, a variant of the Fujisaki-Okamoto transformation [FO99] due
to Hofheinz, Hövelmanns and Kiltz [HHK17] is applied to SIDH resulting in SIKE.

B-SIDH. Choosing the prime p of the form N1N2f ± 1 with N1 ≈ N2 implies that the
curves EA, EB are connected to E0 by an isogeny of degree roughly √p. However, the
diameter of the full ℓ-isogeny graph is larger than logℓ(

√
p), where each step corresponds

to a degree ℓ-isogeny. In other words, two randomly chosen supersingular elliptic curves
over Fp in a full supersingular ℓ-isogeny graph will usually not be connected by an isogeny
of degree roughly √p.

In order to avoid walking only in a “small” subgraph (relative to the size of the full
isogeny graph) and to reduce the size of the prime p, Costello introduced the variant
B-SIDH [Cos20]. The main differences between SIDH and B-SIDH are

• N1 and N2 have to be divisors of p− 1 and p+ 1, respectively. Hence, p− 1 and
p+ 1 both need to have large smooth factors as opposed to just one of them.

• One has N1 ≈ N2 ≈ p as opposed to N1 ≈ N2 ≈
√
p in SIDH.

• Kernel generators are a priori Fp4-rational as opposed to Fp2-rational.

In B-SIDH, the curves E0 and EA are no longer closer than expected in the isogeny graph,
but parameter selection might be harder and it seems at first to come at the expense of
working over larger field extensions. However, for every supersingular elliptic curve E
defined over Fp2 , there exists a quadratic twist. If E has (p+ 1)2 rational points over Fp2 ,

2.4 Problems underlying isogeny-based cryptography 36

then its twist has (p− 1)2 rational points over Fp2 . Thus, when computing an isogeny of
degree N1 dividing p+ 1 one can work with the curves having p+ 1 rational points, and
before computing an isogeny of degree N2 dividing p− 1, one switches to twists that have
p− 1 rational points. Technically, the switch makes it possible to compute the isogenies
using only operations over Fp2 . For more details, we refer to [Cos20].

Attacks on SIDH. Unfortunately, the auxiliary information exchanged between Alice
and Bob to compute the pushforward of their isogenies turned out to be the Achilles
heel of SIDH leading to the downfall of the scheme in 2022. A series of recent attacks
breaks SIDH (and B-SIDH) efficiently, exploiting the torsion point images published in
the SIDH protocol [CD22, MM22, Rob22a]. We will discuss these attacks as well as the
previous so-called torsion point attacks in more detail in Chapter 3. Countermeasures
have been proposed to prevent the recent attacks, e.g. masking the degree of the secret
isogeny [Mor22] or the torsion point information [Fou22]. However, the resulting schemes
are less efficient and less practical than SIDH.

2.4 Problems underlying isogeny-based cryptography

In this section, we will briefly introduce some computational problems appearing in
isogeny-based cryptography, highlight several reductions between these problems and we
recall the complexity of solving these problems given algorithms known at present.

We start with the problem at the core of isogeny-based cryptography.

Definition 2.4.1. Let E/Fq, E ′/Fq be two isogenous elliptic curves. The pure isogeny
problem asks to compute an isogeny between E and E ′.

Usually, we implicitly require solutions to the pure isogeny problem to have an efficient
representation and to be able to evaluate the isogeny.

Computing isogenies between isogenous ordinary elliptic curves. The fastest
algorithms known to compute an isogeny between ordinary elliptic curves are variants of
an algorithm due to Galbraith [Gal99]. Recall from Example 2.2.27 that every ordinary
elliptic curve over Fq comes with a natural orientation induced by the q-power Frobenius,
say by Z[σ]. Let K be the imaginary quadratic field containing Z[σ] and let OK denote its
ring of integers. The idea of Galbraith’s algorithm is to consider every ℓ-isogeny volcano
for ℓ dividing the conductor of Z[π] in OK and to walk to the crater of every volcano
from both given curves. The two resulting curves (with isomorphic endomorphism rings)

2.4 Problems underlying isogeny-based cryptography 37

are connected by a horizontal isogeny. Computing this horizontal isogeny is the most
expensive step asymptotically. Classically, one finds the horizontal isogeny in exponential
time O∗(q1/4) using a meet-in-the-middle approach, i.e. by growing trees of random
isogenies from both curves until they collide. On a quantum computer, the isogeny can
be computed in subexponential time by reducing the problem of finding the isogeny to a
hidden shift problem [CJS14].

If enough information is provided to walk to the craters, the same idea can be applied
for oriented elliptic curves in general. Note that one could also apply the reduction to
the hidden shift problem directly whenever two curves are oriented by the same primitive
order.

Computing isogenies between isogenous supersingular elliptic curves. We
have seen that the full supersingular ℓ-isogeny graph is connected. Using Proposi-
tion 2.2.10, one can see that pathfinding in this graph using a meet-in-the-middle
approach takes O∗(p1/2) time and memory. The same time complexity but requiring
significantly less memory is achieved by an algorithm due to Delfs and Galbraith [DG16].
The idea behind the algorithm is to split the isogeny computation into parts. First, one
uses random walks to connect the given supersingular elliptic curves to the subgraph
of supersingular elliptic curves (isomorphic to one) defined over Fp, which is easily
recognisable as the j-invariant lies in Fp. Within this subgraph containing roughly √p
vertices, the remaining isogeny can be computed using a meet-in-the-middle approach.
Using a quantum computer, the first step of the algorithm by Delfs and Galbraith can
be accelerated using Grover’s search as shown by Biasse, Jao and Sankar, reducing the
complexity of the algorithm to O∗(p1/4) [BJS14]. Further, Tani’s quantum claw finding
algorithm [Tan09] is claimed to recover isogenies of smooth given degree faster than
a classical meet-in-the-middle approach. However, modelling the costs for accessing
memory in Tani’s algorithm differently leads to divergent complexity claims [JS19].

To recover horizontal isogenies between oriented supersingular elliptic curves such as
in the case of CSIDH, the subexponential quantum attack by Childs, Jao and Soukharev
also applies. Yet, the concrete complexity of this attack has been a matter of de-
bate. To solve the hidden shift problem, variants of Kuperberg’s collimation sieve are
used [Kup05]. Depending on the type of memory considered, different cost estimates
have been suggested [Pei20, BS20, CSCJR22].

2.4 Problems underlying isogeny-based cryptography 38

Computing endomorphism rings. As noted before, the endomorphism ring of an
elliptic curve carries a lot of information about the curve which makes the following
problem a natural one to consider.

Definition 2.4.2. Let E/Fq be an elliptic curve. The endomorphism ring computation
problem asks to compute End(E).

In the ordinary case, the endomorphism ring of an elliptic curve can be computed
classically in heuristic subexponential time [BS11, Bis12] and efficiently on quantum
computers [Rob22b].

The supersingular case is more interesting to us. It turns out that the problem
of solving the pure isogeny problem for supersingular elliptic curves is equivalent to
computing their endomorphism rings. This was first shown assuming some heuristics,
see for example [EHL+18], and later proven to be true by Wesolowski assuming only the
Generalised Riemann Hypothesis (GRH) [Wes22b].

The problem of computing endomorphism rings of supersingular elliptic curves was
first studied by Kohel in his thesis [Koh96]. To compute endomorphisms, loops in
the full supersingular ℓ-isogeny graph containing the curve are searched for some ℓ,
which is a special pathfinding problem. In particular, one can also use the algorithm
by Delfs and Galbraith to compute loops or its quantum version due to Biasse, Jao
and Sankar [DG16, BJS14]. The fastest classical algorithm known to date to compute
endomorphism rings of supersingular elliptic curves is due to Eisenträger, Hallgren,
Leonardi, Morrison and Park [EHL+20]. It uses a more direct approach to compute the
endomorphism ring and does not require to find isogeny paths, running heuristically in
time O(log(p)2p1/2) with polynomial storage requirements.

Additional constraints. For practical schemes in cryptography, usually variants of
the pure isogeny problem are used. To recover a secret one may, for instance, be required
to find an isogeny of a given degree or an isogeny which has a prescribed action on certain
points between two given elliptic curves. A priori it is not clear whether fixing additional
constraints would make the pure isogeny problem harder or easier to solve, as it provides
additional information and simultaneously reduces the number of possible solutions.

Clearly, computing an unknown isogeny of specific degree d between two d-isogenous
elliptic curves can always be done using an exhaustive search over all O(d) isogenies of
degree d (or equivalently their kernels). If d is a prime, this is in fact the best currently
known method.

When d is a smooth integer a meet-in-the-middle approach with O∗(
√
d) time and

memory complexity can be used. If d is large, the memory requirement becomes unrealistic.

2.4 Problems underlying isogeny-based cryptography 39

Bounding the available memory leads to the conclusion that a van Oorschot–Wiener
collision search whose concrete complexity depends on the amount of memory available
is more efficient to compute the isogeny in this case [CLN+20].

Note that computing the endomorphism rings of two d-isogenous supersingular elliptic
curves and then using the previously mentioned reduction by Wesolowski [Wes22b] to
compute a connecting isogeny will in general not return an isogeny of a specific degree.
However, when the endomorphism rings of the two supersingular curves are known (or
they have been precomputed), d does not need to be smooth but merely the product
of two factors of roughly the same size to make a meet-in-the-middle approach work
to compute an unknown isogeny of degree d. This is because isogenies corresponding
to factors of d too large to be computed using Vélu’s formulae can be replaced by an
isogeny of powersmooth degree using for instance the KLPT algorithm [KLPT14] briefly
sketched in Section 5.2.1. While replacing the large degree isogenies adds to the overhead
of the meet-in-the-middle approach, the isogenies of powersmooth degree can still be
computed in order to find a collision.

In Chapter 5, we give a reduction of the problem of recovering an isogeny of a specific
degree d between two given curves to the problem of computing their endomorphism ring,
if images of a group of roughly size d are known under the unknown isogeny.

The case of a fixed known degree and given torsion point images under the sought
isogeny is the setting which appears in SIDH and its variations. Due to its central
importance for this thesis, we state this variation of the pure isogeny problem explicitly
as follows.

Definition 2.4.3 (Supersingular Isogeny with Torsion (SSI-T)). Let p be a prime and
N1, N2 be smooth, coprime integers. Given two supersingular elliptic curves E0 and
EA over Fp2 connected by an isogeny φA : E0 → EA of known degree N1 and given the
restriction of φA to E0[N2], the SSI-T problem asks to find an isogeny φ : E0 → EA

matching these constraints.

It was first shown by Petit that the restriction of an isogeny of known degree N1 with
N4

1 > p to a sufficiently large subgroup of size N2 allows to retrieve such an isogeny [Pet17].
More recently, the required size of the subgroup was significantly reduced, breaking the
security of the SIDH key exchange [CD22, MM22, Rob22a]. We discuss these so-called
torsion point attacks in more detail in Chapter 3.

CHAPTER 3

SIDH Attacks Using Torsion Point
Images

3.1 Introduction . 41
3.2 Active GPST attack on semi-static SIDH. 42
3.3 Classical torsion point attacks . 44

3.3.1 Endomorphisms for classical torsion point attacks 44
3.3.2 Solving norm equations . 46

3.4 Improving torsion point attacks by using precomputation 47
3.4.1 Algorithm . 48
3.4.2 Analysis . 50
3.4.3 Experiments . 54

3.5 Quantum hidden shift attacks on SIDH. 55
3.5.1 Quantum algorithms to solve hidden shift problems 56
3.5.2 Malleability oracles and hidden shift attacks . 57
3.5.3 Quantum subexponential time attack on overstretched SIDH 59
3.5.4 An effective free and transitive group action . 62
3.5.5 Lifting θ ∈ πZ[ι] to an endomorphism of norm eN2 71
3.5.6 Algorithm summary. 76
3.5.7 Childs–Jao–Soukharev attack on HHS . 78

3.6 Castryck–Decru attack on SIDH . 79

This chapter contains an improvement of torsion point attacks as first introduced by
Petit [Pet17, dQKL+21]. This improvement is unpublished joint work with Mingje Chen,
Péter Kutas, Christophe Petit and Yiming Tang. In Section 3.5, we present a reduction
from the problem underlying overstretched and imbalanced SIDH to an abelian hidden
shift problem previously published as

3.1 Introduction 41

Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Charlotte Weitkämper. One-
way functions and malleability oracles: Hidden shift attacks on isogeny-based protocols.
In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I,
volume 12696 of LNCS, pages 242–271. Springer, Heidelberg, October 2021.

For the sake of completeness, we finish the chapter with a brief sketch of the recent
devastating attacks against SIDH published by Castryck and Decru [CD22], Maino and
Martindale [MM22], and Robert [Rob22a] for which we do not claim any contributions.

3.1 Introduction

As modelled by the SSI-T problem, a malicious party trying to attack SIDH not only
gets two isogenous elliptic curves but also some torsion point images under the sought
isogeny and its degree. Originally, it was not clear whether this additional information
could be exploited to weaken the scheme. The first work exploiting this information for
an active attack was by Galbraith, Petit, Shani and Ti, using manipulated torsion point
information to iteratively recover static secret SIDH keys [GPST16]. We briefly recall
their attack in Section 3.2.

Another line of work shows that the provided torsion point information together with
the knowledge of the endomorphism ring of the starting curve can be used to mount a
passive attack on non-standard variants of SIDH. We use the notation from Section 2.3.2,
where we introduced the SIDH key exchange. Recall that the integers N1 and N2 are the
degrees of the secret isogenies of Alice and Bob, respectively, and p is the characteristic
of the finite field that the supersingular elliptic curves are defined over. Petit showed
that the secret isogeny of Alice can be recovered in classical polynomial time, whenever
N2 > N4

1 > p [Pet17]. However, SIDH and other SIDH-based schemes proposed in
the literature so far, for instance B-SIDH [Cos20], take N1 and N2 to be divisors of
p2 ± 1. This ensures that torsion points used in the schemes are defined over small field
extensions, making the resulting schemes more efficient. Thus, torsion point attacks with
overstretched parameters, i.e. N1, N2 > p, were often dismissed as unrealistic.

At Crypto 2021, improvements to the torsion point attacks were presented [dQKL+21].
The authors managed to extend Petit’s torsion point attacks to more practical parameter
sets where N1 and N2 are divisors of p ± 1 or p2 ± 1. They proposed two new attack
variants: the dual isogeny attack and the Frobenius isogeny attack. The dual isogeny
attack runs in polynomial time whenever the starting curve has j-invariant 1728 and
N2 > pN1. The Frobenius isogeny attack also requires a special starting curve with a
known endomorphism ring and runs in polynomial time whenever N2 >

√
pN2

1 . These

3.2 Active GPST attack on semi-static SIDH 42

results had an impact on imbalanced versions of SIDH and B-SIDH, where we do not have
N1 ≈ N2. One would get such parameter sets for example by extending SIDH to a group
key exchange in the most natural way. Finally, exponential time attacks that are faster
than the generic meet-in-the-middle algorithm are discussed in [dQKL+21]. Their main
conclusion was that for SIDH-like parameters one can do better than meet-in-the-middle
algorithms whenever N2 > N3

1 . In Section 3.3, we recall the details behind these torsion
point attacks. Then, we present improvements that allow us to further reduce the required
imbalance of parameters in Section 3.4. More precisely, we show how precomputation
may be used to do better than meet-in-the-middle algorithms also for N2 > N2.5

1 . Our
improvements to the attack stem from finding “better” solutions to a norm equation in
the quaternion algebra.

Considering certain SIDH variants with overstretched and imbalanced parameter
sets also allows us to give further reductions between hardness assumptions. In Sec-
tion 3.5, we provide a new quantum attack for SIDH variants using such parameters
by reducing the underlying computational problem to an injective abelian hidden shift
problem. This can be solved in quantum subexponential time by algorithms such as
Kuperberg’s [Kup05, Kup11]. While only valid for parameters that were already broken
classically by aforementioned torsion point attacks, this reduction disproved a widespread
belief amongst cryptographers that due to SIDH’s non-commutative nature, no reduction
to an abelian hidden shift problem would be possible. In particular, many believed that
no reasonable variant of Childs–Jao–Soukharev’s attack [CJS14] applies in the case of
SIDH [JD11, p. 18, Sect. 5].

Finally, attacks can only get better. In summer of 2022, a series of attacks by
Castryck and Decru [CD22], Maino and Martindale [MM22], and Robert [Rob22a] were
published that exploit the torsion point information provided to break (balanced) SIDH
and various related schemes completely. We briefly summarise these recent attacks and
their implications in Section 3.6.

3.2 Active GPST attack on semi-static SIDH

We briefly recall the adaptive attack due to Galbraith, Petit, Shani and Ti [GPST16]. For
the exposition, we further assume that the secret isogenies of Alice and Bob are of degree
N1 = 2eA and N2 = 3eB , respectively, as was typically suggested. The adaptive GPST
attack actively recovers a static SIDH key xA of a party, say Alice, where ⟨PA + [xA]QA⟩
is the subgroup corresponding to the kernel of her secret isogeny. The attacker uses the

3.2 Active GPST attack on semi-static SIDH 43

success of a key exchange as the following oracle which is used to recover Alice’s static
key bit-wise.

Definition 3.2.1 (Oracle in static SIDH). Upon receipt of an elliptic curve E0, two
linearly independent points R, S ∈ E0[2eA] of order 2eA and another elliptic curve E ′, the
oracle responds 1 if j(E0/⟨R + [xA]S⟩) = j(E ′) and 0 otherwise.

To recover Alice’s secret key, an attacker first generates their public key honestly as
(EB, R := φB(PA), S := φB(QA)) as specified by the SIDH key exchange. Then, they
query the oracle on (EB, R, S + [2eA−1]R,EAB), which reveals whether the elliptic curves
EB/⟨R + [xA](S + [2eA−1]R)⟩ and EB/⟨R + [xA]S⟩ are isomorphic. By the following
lemma, this reveals the least significant bit of the static secret xA.

Lemma 3.2.2. [GPST16, Lem. 2] For linearly independent R, S ∈ E[2eA] of order 2eA,
xA is even if and only if ⟨R + [xA](S + [2eA−1]R)⟩ = ⟨R + [xA]S⟩.

Afterwards, the attacker can proceed iteratively to recover further bits. Let Ki denote
the partial key corresponding to the least significant i bits of xA, i.e. Ki = xA mod 2i,
and assume the attacker has recovered Ki. To learn the next bit of xA, the attacker
simply queries the oracle on

(
EB, (R− [2eA−i−1][Ki]S), ([1 + 2eA−i−1]S), EAB

)
. (3.1)

The next bits of xA can be deduced from the oracle’s answer using the following
lemma, which concludes the active attack by Galbraith, Petit, Shani and Ti.

Lemma 3.2.3. Given the query (3.1), the oracle in static SIDH (Definition 3.2.1)
returns 1 if and only if the (i+ 1)-th least significant bit of xA is 0.

Proof. The curve computed by Alice is EB/G′ where

G′ = ⟨R′ + [xA]S ′⟩ = ⟨(R− [2eA−i−1][Ki]S) + [xA]([1 + 2eA−i−1]S)⟩
= ⟨R + [xA]S + [xA −Ki][2eA−i−1]S)⟩.

This equals ⟨R + [xA]S⟩ if and only if the (i+ 1)-th bit of xA is 0.

Remark 3.2.4. Using the exact queries as described in this section, the attack can be
detected by Alice using the Weil pairing. However, as described in [GPST16], an attacker
might choose a suitable scalar to scale both of the malicious torsion points in order to
evade this detection. This can be done for all but the two most significant bits for which
there would not be a suitable scalar, but that can be brute-forced easily. For further
details about the validation and the scaling, we refer to [GPST16].

3.3 Classical torsion point attacks 44

3.3 Classical torsion point attacks

Next, we briefly survey the so-called torsion point attacks due to Petit [Pet17] and the
later improvements from [dQKL+21]. These results target to solve the SSI-T problem
for certain parameters N1 and N2, given the endomorphism ring of the starting curve
E0/Fp2 . In the following, we will always assume that N1, N2 are smooth integers, the
prime p ≡ 3 mod 4 and that the N1N2-torsion of the elliptic curves involved can be
efficiently represented, as is the case for instance with SIDH parameters.

3.3.1 Endomorphisms for classical torsion point attacks

It is easy to see that the existence of one isogeny E0 → EA, e.g. the sought isogeny,
implies the embedding of a suborder of End(E0) in End(EA). The core tool behind
torsion point attacks is to use the provided torsion point information in the SSI-T problem
to compute one endomorphism of this embedding, depicted on the left of EA in Fig. 3.1
and sometimes referred to as a lollipop endomorphism.

The following Theorem explains why recovering one such endomorphism can help to
compute the secret isogeny in an SIDH variant [dQKL+21, Thm. 3].

Theorem 3.3.1 ([dQKL+21]). Let φ : E0 → EA be a secret isogeny of degree N1 between
two supersingular elliptic curves over Fp2, where N1 has log log p distinct prime factors.
Assume that E[N1] and E[N2] are efficiently representable for any supersingular curve
E and that the action of φ on E0[N2] is given. Further, suppose the restriction of a
trace-zero endomorphism θ ∈ End (E0) to E0[N2], an integer d coprime to N2, and a
smooth integer e such that

deg(φ ◦ θ ◦ φ̂+ [d]) = N2
2 e.

are given. Then, we can compute φ in time O∗(
√
e) = O(

√
e · poly(log(p))).

Proof. We briefly recall the main ideas of the proof here. Let τ = φ ◦ θ ◦ φ̂+ [d]. If ker(τ)
is cyclic, then τ = ψ̂′ ◦ η ◦ ψ, where deg(ψ) = deg

(
ψ̂′
)

= N2, deg(η) = e and the kernels
of ψ and ψ̂′ are both cyclic. See Fig. 3.1, for a depiction of the two decompositions.
In [dQKL+21], it is shown that ker(τ) is always cyclic if N2 is odd and if N2 is even, then
τ = ψ̂′ ◦ η ◦ ψ ◦ [m], where deg(ψ) = deg

(
ψ̂′
)

= N/m, deg(η) = e and m = 1 or m = 2.
Now ψ and m can be computed using the torsion point information and ψ̂′ using the

observation that ker
(
ψ̂′
)

= τ (EA[N2]). The isogeny η can be computed by a meet-in-
the-middle algorithm in time O∗(

√
e). Once τ is known, one can determine φ by looking

3.3 Classical torsion point attacks 45

at G = ker(φ ◦ θ ◦ φ̂)∩EA[N1]. If G is cyclic, it can be recomputed easily. If not, then τ
can be recovered using [Pet17, Sect. 4.3]. This last search is efficient by the condition
that N1 has O(log log p) distinct prime factors.

E1

E0 EA

E2

θ

φ

φ̂

ψ

ψ′

η

Fig. 3.1 Decomposing the (shifted) lollipop endomorphism φ ◦ θ ◦ φ̂+ [d] of degree N2
2 e

as ψ ◦ η ◦ ψ̂′, where deg(ψ) = deg(ψ′) = N2 and deg(η) = e as in Theorem 3.3.1.

Remark 3.3.2. More generally, let M be the largest divisor of N1 such that EA[M] is
contained in ker(φ ◦ θ ◦ φ̂) ∩EA[N1] and let k be the number of distinct prime factors of
M . Then the last step in the proof to recover τ using [Pet17, Sect. 4.3] takes time O∗(2k).
Thus, when dropping the condition on N1’s number of distinct prime factors, the algorithm
still works with a complexity of O∗(2k

√
e). Further, it can be easily verified that the

same theorem and proof carry over when the action of φ on E0[N2] is only known up to
a fixed but unknown scalar multiple coprime to N2.

Theorem 3.3.1 implies that one obtains an attack to solve the SSI-T problem improving
upon meet-in-the-middle isogeny search of the secret isogeny if one can find a suitable e
that is sufficiently small (and smooth). More precisely, one first tries to recover suitable
θ, d and e before invoking Theorem 3.3.1. In [dQKL+21] this attack was called the dual
isogeny attack. The paper further provided an alternative strategy, the Frobenius attack,
which requires slightly different θ, d and e and uses the Frobenius isogeny as follows.

Theorem 3.3.3 ([dQKL+21]). Let φ : E0 → EA be a secret isogeny of degree N1 between
two supersingular elliptic curves over Fp2, where N1 has log log p distinct prime factors.
Assume that E[N1] and E[N2] are efficiently representable for any supersingular curve
E and that the action of φ on E0[N2] is given. Further, suppose the restriction of a
trace-zero endomorphism θ ∈ End (E0) to E0[N2], an integer d coprime to N2, and a
smooth integer e such that

deg (φ ◦ θ ◦ φ̂+ [d]) = N2
2pe.

are given. Then, we can compute φ in time O∗ (
√
e) = O(

√
e · poly(log(p))).

3.3 Classical torsion point attacks 46

Proof. Let τ = φ ◦ θ ◦ φ̂+ [d]. As in the proof of Theorem 3.3.1, τ can be decomposed
as ψ̂′ ◦ η ◦ ψ ◦ [m], where ψ of degree N2 and m can be computed efficiently and η is of
degree pe. To recover η, we observe that η has inseparable degree p as we are in the
supersingular case. Let π denote the Frobenius isogeny, then η = π ◦ η′ and η′ can be
recovered using a generic meet-in-the-middle algorithm as before.

Theorems 3.3.1 and 3.3.3 provide a reduction from the SSI-T problem to the following
problem with B = N2

2 and B = N2
2p respectively.

Problem 3.3.4. Let p be a prime, N1 and N2 be smooth coprime integers, and E0/Fp2 a
supersingular elliptic curve. Given a positive integer B, find the restriction of a trace-zero
endomorphism θ ∈ End(E0) to E0[N2], an integer d coprime to N2, and a smooth (small)
integer 0 < e such that

deg(φ ◦ θ ◦ φ̂+ [d]) = N2
1 deg(θ) + d2 = Be.

Note, that the above problem only depends on (p,N1, N2, E0) and not on any unknown
isogeny specific to a particular instance of the SSI-T problem. Thus, if this problem is
solved, arbitrary instances of SIDH with these fixed parameters could be solved.

3.3.2 Solving norm equations

In this subsection, we recall the parameters given by [dQKL+21] under which a solution
to Problem 3.3.4 can be computed when the starting curve is E0 : y2 = x3 + x with
j-invariant 1728. Recall from Example 2.2.25 that every endomorphism of E0 is an
integer linear combination of 1, ι, (ι + π)/2, (1 + ιπ)/2. For simplicity, we drop the
denominators and we are looking for a suitable trace-zero endomorphism θ as a linear
combination of ι, π and ιπ. That is, there exist a, b, c ∈ Z such that θ = aιπ+ bπ+ cι, so
Norm(θ) = N2

1 (pa2 + pb2 + c2). Problem 3.3.4 thus motivates solving the Diophantine
equation

N2
1

(
pa2 + pb2 + c2

)
+ d2 = Be, (3.2)

where one is looking for integers a, b, c, d ∈ Z and a small and smooth positive integer e.
A strategy to solve Eq. (3.2) in the case of the dual isogeny attack, where B = N2

2 ,
was described in [Pet17]. First, one considers the equation modulo N2

1 assigning an
appropriate value to d. Then, one is left with solving pa2 + pb2 + c2 = N2e−d2

N2
1

which can
be accomplished by solving modulo p using Cornacchia’s algorithm, if

(
Be−d2

A2 − c2
)
p−1

is a sum of two squares. If this is not the case, then a new value for c is chosen.

3.4 Improving torsion point attacks by using precomputation 47

This method can be shown to work essentially whenever N2 > pN1 for B = N2
2 and

general e [dQKL+21].
Finally, the Frobenius attack by [dQKL+21] leads to the equation

N2
1

(
pa2 + pb2 + c2

)
+ d2 = N2

2pe,

i.e. with B = N2
2p. For this equation, one has to choose c, d to be divisible by p as there

would not be a solution modulo p otherwise. By invoking this change of variables and
dividing by p we obtain the following new equation

N2
1

(
a2 + b2 + pc2

)
+ pd2 = N2

2 e. (3.3)

Similarily to before, one sets e to be a value such that the above equation is solvable
moduloN2

1 . Then, one solves moduloN2
1 . For simplicity, set c = 0 (which is only necessary

when N2
2 e−pd

2

N2
1
≪ p) and check whether N2

2 e−pd
2

N2
1

is a sum of two squares. If not, then one
chooses a different d. This method was shown to work whenever N2 >

√
pN2

1 [dQKL+21].
Note that the two improvements work for different types of parameters. However,

when studying imbalanced but not overstretched SIDH variants, i.e. where N1N2 ≈ p,
the Frobenius attack is the one to choose. In this case, the method leads to a polynomial
time attack on SIDH-like schemes whenever N2 > N5

1 .
Instead of only considering attacks running in polynomial time, one can also consider

attacks which run asymptotically worse but that still perform better than generic meet-
in-the-middle attacks. This raises the question how balanced the parameters N1 and N2

can be for the known torsion point attacks to run with a time complexity lower than
O∗(
√
N1). There are two natural approaches to this question: increasing e and recovering

a larger isogeny in the end of torsion point attacks or guessing part of the secret isogeny.
Both approaches are analysed in [dQKL+21]. The main conclusion of their analysis is
that for SIDH-like parameters with N1N2 ≈ p one gets a classical attack outperforming
the meet-in-the-middle search whenever N2 > N3

1 .

3.4 Improving torsion point attacks by using pre-
computation

Next, we sketch an unpublished idea predating the devastating attacks on SIDH presented
in Section 3.6. This idea was jointly worked on with Mingje Chen, Péter Kutas, Christophe
Petit and Yiming Tang. We improve the Frobenius isogeny attack by [dQKL+21], recalled

3.4 Improving torsion point attacks by using precomputation 48

in the previous section, by extending it to slightly less imbalanced parameter sets. This
is achieved by a modification in the strategy to find solutions (a, b, c, d, e) to Eq. (3.3):

N2
1

(
a2 + b2 + pc2

)
+ pd2 = N2

2 e.

Recall that the cost of the torsion point attack depends on the size (and smoothness) of e,
as it ultimately requires from the attacker to find an isogeny of degree e. In particular,
we want e to be smaller than N1 and as smooth as possible to improve upon a generic
meet-in-the-middle attack. By looking for e of the form e0e

2
1, one can turn the problem

of finding a solution to the norm equation into a problem of finding a lattice vector in a
centrally symmetric rectangle as we will show in the following.

For a fixed e0 this view does not lead to asymptotic improvements over previous
attacks. However, if we loop through many choices for e0 and therefore different lattices,
we can find lattices with particularly short vectors, i.e. shorter than the ones guaranteed
to exist by Minkowski’s theorem for every single lattice. Under a few heuristics and using
techniques from [AEN19], we sketch an analysis for our approach.

The upshot is to iterate through lattices until we find one with a particularly short
vector in a precomputation. This lowers the required imbalance of parameters for the
torsion point attacks. Using this refinement of the attack, the torsion point attacks are
still faster than meet-in-the-middle algorithms when N2 > N2.5

1 using a precomputation
of time O∗(

√
N1). This should be compared to the attack of the previous section

which outperforms meet-in-the-middle algorithms whenever N2 > N3
1 without any

precomputation.

3.4.1 Algorithm

We are interested in torsion point attacks where N1N2 ≈ p and parameters are imbalanced.
In particular, we are interested in N3

1 > N2 > N2.5
1 as this will keep the (offline)

precomputation in the following lower than the cost of a direct attack. As before, we aim
to find integer solutions a, b, c, d to Eq. (3.3) with e ∈ Z as small and smooth as possible.
Once a solution is found, the complexity of the resulting torsion point attack depends on
the complexity of recovering an isogeny of degree e using a meet-in-the-middle algorithm
as was shown in Theorem 3.3.3.

First, we look at a relaxed version of Eq. (3.3), where we substitute f := a2 + b2 + pc2.

N2
1 f + pd2 = N2

2 e. (3.4)

3.4 Improving torsion point attacks by using precomputation 49

Note, that this simplification of the equation does not hide much information, since
for our imbalanced parameters (N2 > N2.5

1 and N1N2 ≈ p) the integer f is significantly
larger than p, as f ≈ N2

2 e/N
2
1 and e < N1. In this case, most integers f are of the form

a2 + b2 + pc2 and this representation can be computed efficiently. To see this, one can
guess values for c until f − pc2 is a prime congruent to 1 mod 4 and then compute the
decomposition of into the sum of two squares using Cornacchia’s algorithm [Cor08].

Considering Eq. (3.4) modulo N2
1 , we get N2

2 e− pd2 ≡ 0 (mod N2
1). We consider e

of the form e0e
2
1, with e0 chosen such that a solution to the congruence N2

2 e− pd2 ≡ 0
(mod N2

1) exists. Denote by τ0 a square root of N2
2 e0p

−1. Then (d, e1) = (τ0, 1) is a
solution to the congruence

N2
2 e0e

2
1 − pd2 ≡ 0 mod N2

1 . (3.5)

We consider the integer lattice L generated by (τ0, 1), (N2
1 , 0) in which every vector

corresponds to a solution for (d, e1) to Eq. (3.5).
Since f is a sum of squares, it needs to be positive, giving a condition on d. Further, for

the torsion point attacks we want to find a vector in this lattice whose second coordinate,
corresponding to e1, is sufficiently small. Both conditions yield the inequalities

N2
2 e0e

2
1 − pd2 > 0, √

e0e1 <
√
N1, (3.6)

which can be rewritten as

d <
N2
√
e0e1√
p

, e1 <

√
N1√
e0
. (3.7)

The bounds also imply that d < N2
√
N1√
p

. In summary, we are left looking for a vector
(d, e1) in L such that e1 <

√
N1√
e0

and d < N2
√
N1√
p

. If such vectors exist, they can be found by
a simple and efficient Lagrange–Gauss reduction using a weighted norm (or alternatively
by rescaling the lattice to Le0 generated by (√pN2

1 , 0) and (√pτ0, N2
√
e0) and just using

the standard euclidean norm).
A natural way of proving the existence of short vectors is by applying Minkowski’s

theorem. The bounds imply that a suitable vector is inside a rectangle centred around the
origin as we only care about e2

1 and d2 bounded by the two inequalities. The area of the
rectangle is N1N2√

e0p
and the determinant of the lattice L is N2

1 . This implies heuristically
that once N1N2 > C

√
e0pN

2
1 for some constant C, a suitable lattice vector should exist.

Unfortunately, some of these vectors will not lead to solutions of the original equation
due to the loss of information when combining the multiple inequalities. Yet, with several

3.4 Improving torsion point attacks by using precomputation 50

solutions available one heuristically expects to find a suitable one, which we confirmed
experimentally.

For a fixed e0 the bound given above does not improve upon previous state-of-the-art
torsion point attacks from [dQKL+21]. However, our idea is to instead iterate through
many different choices for e0. In each step, we fix an e0 and look at the resulting lattice
Le0 . For each of them, Minkowski’s theorem provides a bound for the shortest vector.
However, Minkowski’s theorem is not an equivalence statement and lattices with shorter
vectors than predicted by Minkowski’s theorem exist.

In Section 3.4.2, we sketch an analysis determining how many random lattices of a
fixed determinant need to be sampled to find vectors of unexpectedly short length that
will suffice for our purpose. Clearly, this depends on how much shorter than predicted
by Minkowski’s theorem we want the vectors to be. In our case, this depends on the
concrete imbalance of the given parameters N1 and N2 in the range N3

1 > N2 > N2.5
1 .

Finally, note that increasing e0 comes at the cost of slightly decreasing the area of the
rectangle containing our potential solutions. Thus, we expect the probability of finding
lattices with suitable vectors to be slightly larger for smaller e0.

We summarise our idea to solve Eq. (3.3) in Algorithm 3.1 for the case where p = N1N2

and N2.5
1 ≈ N2, which we will analyse afterwards. Note that the algorithm generalises to

more imbalanced parameters, too.

3.4.2 Analysis

We give a brief sketch for the analysis of the algorithm here.

On the limits of using random lattices

Algorithm 3.1 raises the question of how many lattices one expects to sample to obtain a
lattice with a vector (e1, d) such that e1 < B1, d < B2 for fixed bounds B1, B2. Consider
the problem where one samples many lattices of a given fixed determinant in R2 randomly
and one looks for a particularly short vector in all the lattices sampled, where “short”
is with respect to a weighted inner product. Since a weighted inner product can also
be reduced to the usual euclidean norm by scaling the lattice appropriately, it suffices
to consider the euclidean case. We use the following result from [AEN19, Sect. 4.1] for
2-dimensional lattices.

Lemma 3.4.1. Let Z1, ...Zk be the length of the shortest vectors in k independent random
lattices of unit volume and Zmin := min{Z1, ..., Zk}, then E (Zmin) ≤ O

(
1√
k

)
for k ≥ 2.

3.4 Improving torsion point attacks by using precomputation 51

Algorithm 3.1: Solving Eq. (3.3) using a modification of [dQKL+21, Alg. 1]
Input: (Imbalanced) SIDH parameters p, N1, N2 with p = N1N2 and N2.5

1 ≈ N2.
Output: A solution (a, b, c, d, e) to Eq. (3.3).

1 Set e0 := 2.
2 if e0p

−1 is a quadratic non-residue mod N2
1 then

3 Set e0 := e0 + 1 and go to Step 2.
4 Compute τ0 such that τ 2

0 ≡ N2
2 e0p

−1 mod N2
1 .

5 Le0 := SpanZ((√pN2
1 , 0), (√pτ0, N2

√
e0)).

6 Set v = (v1, v2) to be the shortest vector of Le0 computed with Lagrange-Gauss.
7 if ∥v∥ ≤

√
N1N2 then

8 Set d := v1√
p
, e :=

(
v2
N2

)2
.

9 if eN2
2 > pd2 then

10 R := N2
2 e−pd

2

N2
1

.
11 Set c := 1.
12 if R− pc2 > 0, R− pc2 is prime, and R− pc2 ≡ 1 mod 4 then
13 Find (a, b) ∈ Z such that a2 + b2 = R− pc2.
14 return (a, b, c, d, e).
15 Set c := c+ 1 and go to Step 12.

16 Set e0 := e0 + 1 and go to Step 2.

Looking at Algorithm 3.1, we see that the determinant of the lattices we consider will
grow, since e0 increases in the algorithm. Thus, we have to be a little bit more careful
in the analysis. The analysis of the algorithm will rely on the heuristic that the set of
lattices sampled scaled by their determinant behaves like a random unit lattice in R2.

Lemma 3.4.2. Let k be the number of lattices sampled in Algorithm 3.1, Le0 be the
lattice defined in Step 5 of the algorithm and d0 its determinant. Assume the shortest
non-zero vectors of {Le0/

√
d0} for e0 as in Algorithm 3.1 behave like the one of a random

unit lattice in R2 and let λ1 denote the shortest non-zero vector of the lattices appearing
in Algorithm 3.1. Then

λ1 ≤ O∗
(
k− 1

4p
1
4N1

√
N2

)
.

Proof. According to Lemma 3.4.1 and the assumption that the shortest non-zero vectors
of {Le0/

√
d0} behave like the ones of a random unit lattice in R2, we expect that there

exists an e0 such that

λ1 ≤ O∗

√d0

k

 = O∗
(

1√
k
e

1
4
0 p

1
4N1

√
N2

)
= O∗

(
k− 1

4p
1
4N1

√
N2

)
,

3.4 Improving torsion point attacks by using precomputation 52

where the last step used that e0 is roughly a multiple of k determined by the proportion
of quadratic residues in N2

1 (e.g. this proportion is 1/8 if N1 is a power of 2).

Note that for the lattices considered in our algorithm, the second coordinate is always
a multiple of N2

√
e0. This gives an increasing lower bound for the shortest non-zero

vectors that could appear when sampling with increasing e0. We can enforce, again using
the fact that e0 ≈ C · k for a constant C, that

O∗(N2
√
e0) ≤ O∗

(
k− 1

4p
1
4N1

√
N2

)
by bounding the number of lattices we sample in Algorithm 3.1 by

k ≤ p1/3N
4/3
1 N

− 2
3

2 .

A rough estimate of the required precomputation

For the analysis of the algorithm, we will make use of the following heuristics.

1. For the first k lattices generated in Step 5 of Algorithm 3.1 with k ≤ p1/3N
4/3
1 N

− 2
3

2 ,
the shortest vector of all these lattices follows the same distribution as for lattices
of the same determinant sampled independently at random in R2.

2. The probability of R− pc2 in Step 12 to be a prime and congruent to 1 mod 4 is
expected to be the same as that of a random integer of the same size.

3. Half of the (e0, e1, d) with d < N2
√
N1√
p
, e1 <

√
N1√
e0

satisfy d < N2
√
e0e1√
p

, e1 <
√
N1√
e0

.

We discussed the first heuristic and why we impose the bound on k in the limitations
of the random lattice model. Further, we verified experimentally that for the number
of lattices sampled in testing our algorithm, no repetition of the lattices occurred. The
second heuristic assumption has been used previously in the analysis of torsion point
attacks [dQKL+21]. For the third heuristic, one can verify that the first inequalities
define a rectangle of area N2N1√

pe0
. The other inequalities can be rewritten as

e1 <

√
N1√
e0
, e1N2

√
e0 − d

√
p > 0.

This defines the area of a triangle with vertices:

(0, 0),
(√

N1√
e0
, 0
)
,

(√
N1√
e0
,
N2
√
N1√
p

)
.

3.4 Improving torsion point attacks by using precomputation 53

The area of the triangle is half of the one of the rectangle which is the rationale behind
our heuristic. Note that in both cases we consider ±e1 and ±d as only their squares e2

1

and d2 appear in the norm equation we wish to solve.

Proposition 3.4.3. Let p = N1N2 with N2.5
1 ≈ N2. Under the heuristics stated at the

beginning of this subsection, Algorithm 3.1 returns a solution (a, b, c, d, e) to Eq. (3.3)
such that e ≤ N1 in time O∗(

√
N1).

Proof. It is a straightforward calculation and follows from our previous discussion that
(a, b, c, d, e) as returned by Algorithm 3.1 is a solution to Eq. (3.3). In Step 7, since
v2 ≤ ∥v∥ ≤

√
N1N2, one has e =

(
v2
N2

)2
≤ N1 as claimed.

We can efficiently compute square roots modulo N2
1 and using the second heuristic,

we expect Step 9 to succeed half the time. Further, for a fixed d, e, Step 13 of the
algorithm is efficient as was shown by [dQKL+21], assuming R− pc2 in Step 12 to be a
prime congruent to 1 mod 4 with the same probability as a random integer of roughly
the same size. Thus, we are left to show how many lattices we need to sample until we
find a sufficiently short vector.

By Lemma 3.4.2, sampling k lattices below the bound given in the first heuristic, the
expected shortest non-zero vector of all these lattices is of size approximately

O∗
(
k− 1

4p
1
4N1

√
N2

)
.

In order for this vector to be smaller than N2
√
N1, one needs to sample roughly

k ∈ O∗(pN2
1N

−2
2) = O∗(

√
N1) lattices, using p = N1N2 and N2.5

1 ≈ N2. As this k is
below the bound given by Heuristic 1, this finishes the proof.

To execute the torsion point attacks, one would just apply the same strategy as
described in the previous section due to [dQKL+21], recovering an e-isogeny using a
meet-in-the-middle search to recover the sought secret isogeny.

Remark 3.4.4. For imbalanced parameters with N2 > N3
1 , torsion point attacks were

already known to be more efficient than plain meet-in-the-middle search due to [dQKL+21].
If the missing e-isogeny can be computed using meet-in-the-middle, then Proposition 3.4.3
shows how to extend these torsion attacks to N2 ≈ N2.5

1 . Note that for the range where
N3

1 > N2 > N2.5
1 the same algorithms outlined in this section still apply, however the

closer N2 is to N3
1 , the fewer lattices need to be sampled to obtain an e smaller than N1.

Sampling fewer lattices decreases the cost of the precomputation.

We have only discussed the size of e as an indicator for the hardness of recovering
an e-isogeny. However, in practice one needs to be slightly more careful since the

3.4 Improving torsion point attacks by using precomputation 54

computation of an isogeny of smooth degree is significantly more efficient. We leave a
more thorough theoretical analysis to future work, but the following example shows that
even for cryptographic sizes sufficiently smooth e can be generated.

3.4.3 Experiments

We implemented Algorithm 3.1 in magma [BCP97] and we tested the method for
imbalanced but not overstretched parameters, i.e. with p ≈ N1N2.

To show that the methods outlined in this section can be used to lower the required
imbalance for torsion point attacks we conducted experiments on the following toy
parameter set. We set N1 := 2108, N2 := 3195 and p = 79 ·N1N2 + 1. Note that in this
case N2 ≈ N2.8

1 . Among 231 lattices generated for different e0, 46 contained a vector
satisfying the bounds of (3.7). The smoothest of the solutions to the norm equation had
a 214-smooth e0 and a 210-smooth e1.

Taking parameters of cryptographic size, we chose N1 := 2216, N2 := 3400, and
p := 12N1N2− 1. Note that N1 is exactly the same as in SIKE434 (N2 and p are different
to obtain the imbalance). Assuming that 72 bits of the secret are known due to guessing
or due to leakage, we are left to recover an isogeny of degree 2144. We generated lattices
for 234 choices of e0, where we iterated through 7 + 8 · i for i ∈ {0, . . . , 234}. This choice
ensures that e0/p is a quadratic residue modulo 2144.

Among the corresponding lattices, we found 245 of them to contain a vector (d, e1)
lying in the rectangle specified by the bounds of (3.7). Of those lattice vectors, 122,
i.e. almost exactly half of them, corresponded to a solution to the norm equation as
predicted by Heuristic 3. Considering all of these solutions, we get multiple reasonably
smooth solutions to compute e0- and e1-isogenies. For example, we have a solution for
e0 := 69397070847, which is 212-smooth, with e1 := 240160, which is 27-smooth. These
values correspond to

d =109938314008420876788582150011114742914419905277898122931444689
43848641056.

For these parameters, the representation of

N2
2 e0e

2
1 − pd2

N2
1 2144

3.5 Quantum hidden shift attacks on SIDH 55

as a2 + b2 + pc2 is given with a, b, c as

a =132880500506080916067157689696337158029793203157847211213813676
785760952542816615608860981990355342628342192968099984853033469
769958347020505774418476866438933,

b =270983066069471723373308062006518956645082485600244801039294701
229191564605389477599195184657504714536853851005031121737777839
39281417143245657261941926174948,

c =829.

Isogenies of the given degree can still be computed efficiently using [BDLS20]. Note
that the parameters used for this example are still very imbalanced with N2 ≈ N2.93

1 ,
yet slightly less imbalanced than predicted by previous work. Further, we were far from
exhausting the search space for both of the examples given above and one would likely
be able to find smaller and smoother e.

3.5 Quantum hidden shift attacks on SIDH

Unlike other isogeny-based protocols, SIDH was widely believed to be immune to subexpo-
nential quantum attacks because of the non-commutative structure of the endomorphism
rings of supersingular curves. In particular, many believed that no reasonable variant of
Childs–Jao–Soukharev’s attack [CJS14] applies in the case of SIDH [JD11, p. 18, Sect. 5],
since it crucially relies on the commutativity of the ideal class group action.

In this section, we contradict this commonly believed misconception for SIDH with
overstretched and imbalanced parameters. We provide a new quantum attack on these
SIDH variants which uses a reduction of the underlying computational problem to an
injective abelian hidden shift problem. This can be solved in quantum subexponential
time using variants of an algorithm by Kuperberg [Kup05] and thus disproves the common
belief mentioned previously.

Let φ : E0 → E0/K be a secret isogeny that an attacker wishes to recover. As in SIDH,
let E0, E0/K, deg(φ), and certain torsion point images under the secret isogeny be known
publicly. The idea underlying our reduction is to construct an abelian group G ⊂ End(E0)
acting freely and transitively on certain cyclic subgroups of E0. These subgroups are
kernels of deg(φ)-isogenies, and therefore they can be mapped to supersingular elliptic
curves deg(φ)-isogenous to E0. The group action of G can then be understood as an

3.5 Quantum hidden shift attacks on SIDH 56

action on the curves themselves. Forcing the endomorphisms in G to be of a certain
degree, the public torsion point information allows an adversary to compute the action on
E0/K efficiently under some heuristics. Finally, solving an abelian hidden shift problem
of two functions mapping G to a set of curves deg(φ)-isogenous to E0 containing E0/K

enables an attacker to recover K and therefore φ. This is a different way of exploiting
torsion point information compared to the attacks outlined in previous sections.

While this attack does not threaten SIDH with balanced parameter sets as originally
proposed by Jao and De Feo [JD11], it shows that an attack using a hidden shift algorithm
is possible despite SIDH’s non-commutative nature.

We describe our new attack as a special instance in a more general setting which
might be of independent interest beyond isogeny-based cryptography. Further, it allows
us to unify this new reduction to a hidden shift problem with prior quantum attacks on
isogeny-based schemes such as the one due to Childs, Jao and Soukharev which constructs
isogenies between ordinary curves [CJS14], or similar applications of quantum hidden
shift algorithms to CSIDH [BS20, Pei20].

In Section 3.5.1, we briefly review the complexity of the quantum algorithms used
in our attack. In Section 3.5.2, we present our general framework, namely sufficient
conditions for computing preimages of one-way functions via reduction to a hidden shift
problem, and then present the general idea for our new attack on overstretched SIDH in
Section 3.5.3. We then make some modification to this general approach. We describe
explicitly the groups acting in Section 3.5.4 and how the group action can be computed
by lifting endomorphisms in Section 3.5.5. We summarise the resulting algorithm in
Section 3.5.6. Finally, we illustrate how our general framework can be instantiated with
the attack of Childs, Jao and Soukharev and its generalisation to CSIDH in Section 3.5.7.

3.5.1 Quantum algorithms to solve hidden shift problems

First, we recall what is meant when two functions are said to be shifts of each other, or
equivalently that these two functions hide a shift.

Definition 3.5.1. Let F0, F1 : G→ X be two functions from a group G to a set X such
that there exists some s ∈ G satisfying F0(g) = F1(g · s) for all g ∈ G. The hidden shift
problem is to find s given oracle access to the functions F0 and F1.

Multiple approaches utilizing quantum computation have been proposed to solve the
hidden shift problem. Some of these works have considered different group structures as
well as variations on the premise. We summarise some quantum algorithms solving the

3.5 Quantum hidden shift attacks on SIDH 57

injective abelian hidden shift problem, i.e., where the functions Fi are injective functions
and G is abelian.

The first quantum subexponential algorithm is due to Kuperberg [Kup05] and reduces
the hidden shift problem to the hidden subgroup problem in the dihedral group, i.e. to
finding a subgroup of the dihedral group such that a function (obtained from combining
the input functions of the hidden shift problem) is constant exactly on its cosets. It
requires 2O(

√
log |G|) quantum queries, for a finite abelian group G. A modification of

this method proposed by Regev [Reg04] reduces the memory required by Kuperberg’s
approach (from super-polynomial to polynomial) while keeping the running time quantum
subexponential. Another, slightly faster, algorithm is the collimation sieve proposed by
Kuperberg, which uses polynomial quantum space [Kup11]. In this variant, parameter
trade-offs between classical and quantum running time and quantum accessible memory
are possible.

These algorithms to solve the hidden shift problem when G is abelian generally begin
by producing some random quantum states, each with an associated classical “label”,
by evaluating the group action on a uniform superposition over the entire group G. For
this generation of states, oracle access to the two functions F0 and F1 is needed. Then,
the hidden shift s is extracted bitwise by performing measurements on specific quantum
states (i.e., ones with desirable labels) which are generated from the random states via a
sieve algorithm.

3.5.2 Malleability oracles and hidden shift attacks

In this section, we introduce the notion of a malleability oracle for a one-way function.
Under some conditions, such an oracle allows us to compute preimages in quantum
subexponential time via a reduction to the hidden shift problem.

First, we define an oracle capturing the main premise required for our strategy to
compute preimages of one-way functions.

Definition 3.5.2. Let f : I → J be an injective (one-way) function between sets and
let · be the action of a group G on I. A malleability oracle for G at o := f(i) provides
the value of f(g · i) for any input g ∈ G, i.e., the malleability oracle evaluates the map

g 7→ f(g · i).

We call the function f malleable if a malleability oracle is available at every o ∈ f(I).

3.5 Quantum hidden shift attacks on SIDH 58

To abstract away from the notion of group actions, it would be possible to define
malleability in terms of more general knowledge relating inputs and outputs of a one-way
function. Yet, in the following we concentrate on group actions as defined above.

In Section 3.5.3, we show how a polynomial-time malleability oracle can be constructed
in the context of SIDH with overstretched parameters, and in Section 3.5.7 we describe
other schemes where such oracles arise naturally.

Reduction to the hidden shift problem

Given a malleability oracle at o = f(i), computing a preimage of o reduces to a hidden
shift problem in the following case.

Proposition 3.5.3. Let f : I → J be an injective (one-way) function between sets and
let G be a group acting transitively on I. Given a malleability oracle for G at o := f(i),
the preimage of o can be computed by solving a hidden shift problem.

Proof. Let k be an arbitrary but fixed element in I and define

Fk : G→ J , θ 7→ f(θ · k).

Since f is an injective function, i = f−1(o) is unique and thus Fi is well-defined.
Moreover, the malleability oracle allows us to evaluate the function Fi on any θ ∈ G, as
Fi(θ) = f(θ · i).

Fix some arbitrary j ∈ I. Since we know j, we can evaluate Fj on any group element
θ by evaluating f(θ · j) via simply computing the group action. Due to the transitivity
of the group action of G, there exists σ ∈ G such that i = σ · j. Since for all θ ∈ G

Fi(θ) = f(θ · i) = f(θσ · j) = Fj(θσ),

the functions Fj and Fi are shifts of each other. Hence, solving the hidden shift problem
for Fi and Fj allows us to recover σ, and thus to compute i = σ · j.

The following corollary will be used in our attack on overstretched SIDH.

Corollary 3.5.4. Let f : I → J be an injective (one-way) function between sets and
let G be a finitely generated abelian group acting freely and transitively on I. Given a
malleability oracle for G at o := f(i), the preimage of o can be computed in quantum
subexponential time.

Proof. Given Proposition 3.5.3 and the discussion in Section 3.5.1, we only need to show
that for every k ∈ I the function Fk(θ) = f(θ · k) is injective. Then we are left with an

3.5 Quantum hidden shift attacks on SIDH 59

instance of the injective abelian hidden shift problem which can be solved in quantum
subexponential time with an algorithm such as Kuperberg’s.

Suppose that Fk(g) = f(g · k) = f(h · k) = Fk(h) for some g, h ∈ G. Since f is
injective and the group action is free, this implies g = h.

3.5.3 Quantum subexponential time attack on overstretched
SIDH

Despite the non-commutative nature of SIDH, we show in this section that one can find
an abelian group action on its private key space. Moreover for sufficiently overstretched
SIDH parameters, the torsion point information revealed in the protocol allows us to
build a malleability oracle for this group action. This gives rise to an attack using
quantum subexponential hidden shift algorithms as outlined in the previous subsection.

First, we give an overview of our approach to exploit the torsion point information.
We then solve some technical issues which require small tweaks to this general strategy
in the following two subsections.

Throughout this section, we use the following notation. Let p ≡ 3 (mod 4) be prime,
let E0 be the supersingular elliptic curve with j-invariant 1728 defined over Fp, given by
the equation y2 = x3 + x, and let O0 = End(E0) be its well known endomorphism ring
(see Example 2.2.25).

Remark 3.5.5. The attack we describe can be expanded to other curves that are close
to E0 by computing the isogeny to E0 and translating the problem to E0. This applies
for example to the curve

E6 : y2 = x3 + 6x2 + x,

the unique curve 2-isogenous to E0 which is used as the starting curve in the updated
parameters of SIKE for the second round of NIST’s post-quantum standardisation
effort [JAC+19].

Overview of the attack

Let I be the set of cyclic N1-order subgroups of E0, and let J be the set of j-invariants
of all supersingular curves that are N1-isogenous to E0. Let f be the function sending
any element of I to the j-invariant of the codomain of its corresponding isogeny, i.e.,

f : I → J, K 7→ j(E0/K). (3.8)

3.5 Quantum hidden shift attacks on SIDH 60

The function f can be efficiently computed on any input using Vélu’s formulae [Vél71],
provided N1 is sufficiently smooth and that the N1-torsion is defined over a sufficiently
small extension field of Fp. In SIDH, the latter is achieved by choosing N1|p − 1, but
this is true more generally for sufficiently powersmooth N1.

On the other hand, inverting f amounts to finding an isogeny of degree N1 from E0

to a curve in a given isomorphism class, or equivalently to finding the subgroup of E0

defining this isogeny, which is a variant of the pure isogeny problem with known degree.
As modelled by the SSI-T problem, the SIDH protocol provides additional torsion

point information. We restate solving this problem as the following task in the notation
we will use throughout this section.

Task 3.5.6. Let p be a large prime, let N1 and N2 be two smooth coprime integers such
that E0[N1] and E0[N2] can be represented efficiently, let K ∈ I be a cyclic subgroup
of order N1 of E0 chosen uniformly at random, and let φ : E0 → E0/K. Given the
supersingular elliptic curves E0 and E0/K together with the restriction of φ to E0[N2],
compute K.

Our attack will exploit the information provided by the restriction of the secret isogeny
to E0[N2] to construct a malleability oracle for f at the (unknown) secret. Following the
framework outlined in Section 3.5.2, this gives rise to an attack on overstretched SIDH.

Let G be a subgroup of (O0/N1O0)∗. Then G induces a group action on I given by

G× I → I , (θ,K) 7→ θ(K).

Indeed, the degree of any non-trivial representative θ is coprime to N1 and thus preserves
the order of any generator of K.

Note that the full group (O0/N1O0)∗ is not abelian. Our attack will require an abelian
subgroup G acting on I such that G acts freely and transitively on the orbit of an isogeny
kernel of an isogeny E0 → E0/K under this group action, as well as one element in this
orbit. This leads to the following task.

Task 3.5.7. Let K ∈ I be any cyclic subgroup of E0 of order N1 chosen uniformly at
random and let φ : E0 → EA := E0/K. Compute an element L ∈ I and an abelian
subgroup G of (O0/N1O0)∗ such that G acts freely and transitively on the orbit G · L, f
as defined in (3.8) is injective on G · L and j(EA) is contained in f(G · L) ⊂ J.

We will solve this task by finding three subsets of I restricted to which f is injective,
and we give abelian groups that induce the required action on these subsets. Furthermore,
the image of f restricted to one of these three subsets of I will always contain j(E0/K).

3.5 Quantum hidden shift attacks on SIDH 61

In order to apply our general framework from Section 3.5.2, it remains to construct a
malleability oracle for f at j(E0/K) for any secret K ∈ I. To construct this oracle, we
use both the torsion point information provided in the SIDH protocol and a solution to
the following task.

Task 3.5.8. Given an endomorphism θ ∈ G of degree coprime to N1 and an integer
N2 coprime to N1, compute an endomorphism θ′ of degree N2 such that θ and θ′ induce
the same action on the set I of cyclic subgroups of E0[N1] of order N1.

In [KMPW21, Appx. C], we give a direct solution to a variation of this task when
using sufficiently overstretched and imbalanced parameters, i.e. N2 > p2N4

1 . However, we
will show that using the Frobenius map it suffices to lift elements of πG, where π is the
Frobenius map. We describe a solution to Task 3.5.8 for these elements requiring only
N2 > pN4

1 to lift endomorphisms from πZ[ι] to an element of norm eN2 in Section 3.5.5.
Due to the coprimality of deg(θ) and N1, the following lemma, depicted in Fig. 3.2,

follows (see also Fig. 2.2).

Lemma 3.5.9. Let φ : E0 → EA be an isogeny of degree N1 and let θ ∈ End(E0) be of
degree coprime to N1. Then EA/φ(ker θ) is isomorphic to E0/θ(kerφ).

E0 EA

E0 E0/θ(kerφ) ∼= EA/φ(ker θ)

φ

θ

[θ]∗φ

[φ]∗θ

Fig. 3.2 The isogeny φ and the endomorphism θ have coprime degrees and thus the
diagram commutes.

Let N3 be the degree of θ. We cannot compute the curve E0/θ(kerφ) in general
without the knowledge of the isogeny φ or its action on the N3-torsion. However, we can
compute the curve if we find an endomorphism θ′ of degree N ′

3 such that θ and θ′ have
the same action on the N1-torsion and φ|E0[N ′

3] is known. This is the motivation behind
Task 3.5.8, as we know the action of φ on the N2-torsion. A solution to this task yields a
malleability oracle for f with respect to the previously described group action of G on I
in the SIDH setting.

We outline the construction of the malleability oracle in Algorithm 3.2. Correctness
will follow from the proof of Proposition 3.5.30 given a suitable choice of the acting group
G which we will discuss in Section 3.5.4.

3.5 Quantum hidden shift attacks on SIDH 62

Algorithm 3.2: Computation of f(θ(K)), given f(K) and θ ∈ G
Let φ : E0 → EA := E0/K be an isogeny of degree N1, let N2 be coprime to N1
and G ⊂ (O0/N1O0)∗ one of the abelian groups as in Task 3.5.7 that acts freely
and transitively on K.

Input: E0, f(K) = j(EA), φ|E0[N2] and θ ∈ G.
Output: f(θ(K)) = j(E0/θ(K)).

1 Compute endomorphism θ′ of degree N2 having the same action as θ on cyclic
N1-order subgroups of E0[N1] as provided by a solution to Task 3.5.8.

2 Determine φ(ker θ′), using the knowledge of φ on E0[N2].
3 Compute j(EA/φ(ker θ′)) = j(E0/θ(K)).
4 return f(θ(K)) = j(E0/θ(K)).

For parameters that allow us to construct a malleability oracle, we can then solve
Task 3.5.6 underlying SIDH-like protocols via a reduction to an injective abelian hidden
shift problem using the general reduction outlined in Section 3.5.2.

Informal result 3.5.10. Suppose the parameters allow the efficient solution of Task 3.5.8,
then Task 3.5.6 can be solved in quantum subexponential time.

We use the remainder of this section to prove this result formally under certain
assumptions. To this end, we first give a solution to Task 3.5.7. Then, for some
parameters, we provide a solution to a variant of Task 3.5.8. More precisely, we will show
using the Frobenius map that instead of lifting elements from G we can lift elements
from πG. For this case, we then give a lifting procedure requiring overstretched and
imbalanced parameters. We construct a malleability oracle using the torsion point
information provided in SIDH and the subroutine solving our variant of Task 3.5.8. Apart
from some technical details that we will address in the following, the informal result
follows from Corollary 3.5.4.

Algorithm 3.3 gives an overview over the attack and Fig. 3.3 depicts the intuition
behind it.

3.5.4 An effective free and transitive group action

Recall that E0 is a supersingular curve with j-invariant 1728. In this section, we provide
a solution to Task 3.5.7. For simplicity, we treat N1 as a power of 2, but the results
generalise to any power of a small prime. A generalisation to powers of 3 is sketched
in [KMPW21, Appx. B].

We provide the solution by identifying three subsets of I that are orbits under a free
and transitive action of abelian subgroups of (O0/N1O0)∗. More precisely, let P ∈ E0

3.5 Quantum hidden shift attacks on SIDH 63

Algorithm 3.3: Solving SIDH’s underlying hardness assumption via an abelian
hidden shift problem

Let φ : E0 → E0/K be an N1-isogeny and N2 ∈ Z such that gcd(N1, N2) = 1.
Input: E0, E0/K, φ(E0[N2]).
Output: Isogeny E0 → E, where j(E) = j(E0/K).

1 Compute an abelian group G ⊂ (O0/N1O0)∗ acting freely and transitively on the
orbit G(K) and some J ∈ G(K) ⊂ I.

2 Define FK : G→ J, g 7→ f(g(K)) and FJ : G→ J, g 7→ f(g(J)).
3 Compute injective abelian hidden shift θ ∈ G of FK and FJ , i.e., θ ∈ G such that

FK(g) = FJ(θg) for all g ∈ G, using a quantum algorithm such as Kuperberg’s.
To this end, evaluate FK using Algorithm 3.2 and FJ using the knowledge of J .

4 return Isogeny E0 → E0/θ(J).

such that ⟨P, ι(P)⟩ = E0[N1], where ι denotes the automorphism (x, y) 7→ (−x, iy) of E0.
Let Q := P + ι(P) and define the following three subsets of I.

I1 := {⟨P + [α]ι(P)⟩ | α even}

I2 :=
{
⟨Q+ αι(Q)⟩ | α even and α ∈

[
0, N1

2 − 1
]}

I3 :=
{
⟨Q+ αι(Q)⟩ | α even and α ∈

[
N1

2 , N1 − 1
]}

Recall the function f defined in (3.8), mapping cyclic subgroups of E0[N1] of order N1

to j-invariants of curves at distance N1 from E0,

f : I → J, K 7→ j(E0/K).

We will show that restricting the function f to any of the subsets I1, I2, or I3 yields an
injective function and we will prove that f(∪iIi) = f(I). Furthermore, we will see that

G0 := {a+ bι ∈ (Z[ι]/N1Z[ι])∗| a odd, b even}

acts transitively on I1. In order to ensure that the action is free, we identify two
endomorphisms a + bι and a′ + b′ι in G0 if there exists an odd λ ∈ Z/N1Z such that
a ≡ λa′ (mod N1) and b ≡ λb′ (mod N1). We denote the resulting group by G.

In order to obtain free and transitive group actions on I2, and I3, we define similarly

H0 := {a+ bι ∈ (Z[ι]/(N1/2)Z[ι])∗| a odd, b even} .

3.5 Quantum hidden shift attacks on SIDH 64

E0 E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

E0/⟨J⟩

E0/⟨K⟩

θ

Fig. 3.3 Intuition behind the hidden shift attack: The group induces an action on the
curves at distance N1 from E0. Finding the hidden shift θ allows us to shift a known
isogeny E0 → E0/⟨J⟩ to the secret path E0 → E0/⟨K⟩ and thus to recover K.

Again, we identify two endomorphisms a+ bι and a′ + b′ι in H0 if there exists an odd
λ ∈ Z/(N1/2)Z such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2), we obtain a
group H. The group H will act freely and transitively on I2 and I3.

In summary, one of these three options will always be a solution to Task 3.5.7.
The map f is based on the well-known correspondence between I and curves at

distance N1 from E0. However, this correspondence is not necessarily one-to-one. In
particular, if E0 has a non-scalar endomorphism of degree N2

1 , then that endomorphism
can be decomposed as τ̂1 ◦ τ2, where τ1 and τ2 are non-isomorphic isogenies of degree N1

from E0 to the same codomain E. However, for small enough N1 the following lemma
shows that two kernels correspond to the same curve if and only if they are linked by the
automorphism ι.

3.5 Quantum hidden shift attacks on SIDH 65

Lemma 3.5.11. Suppose that N2
1 <

p+1
4 . Then the only endomorphisms of degree N2

1

of E0 are [N1] and [N1] · ι, where ι : E0 → E0, (x, y) 7→ (−x, iy) is the non-trivial
automorphism on E0.

Proof. Due to the condition N2
1 <

p+1
4 , an endomorphism θ of degree N2

1 lies in Z[ι]. Let
θ = a+ bι for some a, b ∈ Z. Then the degree of θ is a2 + b2. We are left to prove that
the only ways to decompose N2

1 as a sum of two squares are trivial, i.e.,

N2
1 = N2

1 + 02 = 02 +N2
1 .

Let N1 = 2k. We prove the statement by induction on k. For k = 1 the statement is
trivial. Suppose that k > 1 and that N2

1 = a2+b2. Then a and b cannot both be odd as N2
1

is divisible by four. If they were both even, then dividing by four yields a decomposition
of (N1/2)2 = (a/2)2 + (b/2)2. By the induction hypothesis, this decomposition is trivial
implying that N2

1 can also only be decomposed in a trivial way.

Corollary 3.5.12. Suppose that N2
1 <

p+1
4 . Let ϕ and ϕ′ be two isogenies of degree N1

from E0 to a curve E. Then either kerϕ = kerϕ′ or kerϕ = ι(kerϕ′).

Proof. Consider the endomorphism τ = ϕ̂′ ◦ ϕ of E0. The degree of τ is N2
1 , so τ = [N1]

or τ = [N1] · ι by Lemma 3.5.11. In the former case, the isogenies ϕ and ϕ′ are identical
by the uniqueness of the dual. In the latter case, we have kerϕ = ι(kerϕ′).

Thus, an element in the image of f has precisely one preimage if the kernel of the
corresponding isogeny is fixed by the automorphism ι.

Identifying an abelian group with I1

Now, we will give the free and transitive group action on I1 and show that f restricted
to I1 is injective. Let P be a point such that ⟨P, ι(P)⟩ = E0[N1] and recall

I1 := {⟨P + [α]ι(P)⟩ | α even} .

We show that the restriction of f to I1 is injective.

Proposition 3.5.13. Let j(E0) = 1728 and suppose that N2
1 <

p+1
4 . The restriction of

f to I1 is injective.

Proof. We apply Corollary 3.5.12 to show that the codomains of isogenies with kernel in
I1 are pairwise non-isomorphic curves. It is clear that P + αι(P) and P + α′ι(P) are not
scalar multiples of each other if α ̸= α′ as P, ι(P) generate E0[N1]. It remains to show

3.5 Quantum hidden shift attacks on SIDH 66

that for any even α, α′, the points P + αι(P) and −α′P + ι(P) are not scalar multiples
of each other. Note that we can restrict to odd λ as the order of both points is N1 which
we assumed to be a power of 2 in this section. Suppose there exists an odd λ such that

P + αι(P) = λ(−α′P + ι(P)).

Since {P, ι(P)} is a basis of the N1-torsion, this implies that 1 ≡ −λα′ (mod N1). Since
α′ is even this is a contradiction, concluding the proof.

Clearly, f(I1) does not include all elliptic curves at distance N1 from E0, i.e., all
curves in f(I). Every curve at distance N1 from E0 is of the form E0/⟨P + αι(P)⟩ for
some α ∈ Z/N1Z, which follows from the observation that the curves E0/⟨β1P + β2ι(P)⟩
and E0/⟨−β2P + β1ι(P)⟩ are isomorphic since their kernels are linked by ι. We first
restrict ourselves to define a free and transitive group action on I1 and define the free
and transitive group action on the kernels corresponding to the remaining curves later.

Recall that E0 is a curve with a well-known endomorphism ring (Example 2.2.25), and
we are interested in the endomorphisms that are of degree coprime to N1. While there are
infinitely many such endomorphisms, we are only concerned with their action on E0[N1],
i.e., we are looking at the group (O0/N1O0)∗ which is isomorphic to GL2(Z/N1Z) [Voi21,
p. 676]. Furthermore, we are only concerned with the action of the endomorphisms on I,
i.e., on cyclic subgroups of E0[N1] of order N1, and we can therefore identify even more
endomorphisms with each other by the following lemma.

Lemma 3.5.14. Let (a, b, c, d) and (a′, b′, c′, d′) be the coefficients of θ and θ′ with respect
to some Z-basis of the endomorphism ring O0 of E0, and let I be the set of cyclic N1-order
subgroups of E0[N1]. Then θ(K) = θ′(K) for every K ∈ I if and only if there exists
some λ ∈ (Z/N1Z)∗ such that

(a, b, c, d) ≡ λ(a′, b′, c′, d′) (mod N1).

Proof. Considering the respective restrictions to E0[N1], two endomorphisms are equal
if they lie in the same class in (O0/N1O0)∗. Moreover, let θ1, θ2 be two endomorphisms
such that θ1 = [λ]θ2 for some integer λ, and let P be an element of order N1. Since scalar
multiplication commutes with any endomorphism, it is easy to see that θ1(P) and θ2(P)
generate the same subgroup in E0[N1] if and only if λ is coprime to N1.

Now, we are ready to give a solution to Task 3.5.7 if K ∈ I1.

3.5 Quantum hidden shift attacks on SIDH 67

Proposition 3.5.15. Let G be the group of equivalence classes of elements

{a+ bι | a odd, b even} ⊂ (Z[ι]/N1Z[ι])∗ ⊂ (O0/N1O0)∗,

where we identify two elements if and only if they differ by multiplication by an odd scalar
modulo N1. G is an abelian group and its action on I1 is free and transitive.

Proof. It is easy to see that the endomorphisms in Z[ι] of degree coprime to N1 form
an abelian subgroup of O0. Using any basis for E0[N1] of the form {P, ι(P)}, we can

write the elements of this subgroup as matrices of the form
 a b

−b a

 , where a is odd

and b is even. By identifying two endomorphisms a1 + b1ι and a2 + b2ι if there exists an
integer λ coprime to N1 and an endomorphism δ such that a1 − λa2 + (b1 − λb2)ι = N1δ,
which is possible by Lemma 3.5.14, we obtain G. As G is closed under multiplication and
reduction modulo N1, it is a subgroup of an abelian group and therefore abelian itself.
Note that G contains all equivalence classes under Lemma 3.5.14 of endomorphisms of
the form a+ bι for even b, independently of the chosen basis.

To examine the orbit of an element in I, which is a cyclic subgroup of order N1 of
E0[N1], under the action of G, it is sufficient to look at the orbit of a generator of this
cyclic group in I. We consider the orbit of P which has coordinates (1, 0) with respect

to our basis under the group action of G. The image of (1, 0) under an element
 1 b

−b 1

is (1, b) and thus inspecting the cyclic subgroups of E0 generated by these points, we get
G · ⟨P ⟩ = I1.

Free and transitive group action on I2 and I3

So far we have defined a free and transitive group action on I1 and thus for the curves in
f(I1). However, when the secret kernel is generated by P + αι(P) with α odd, the curve
E0/⟨P + αι(P)⟩ is not contained in f(I1). This is the case we handle next.

One can show that the action of the previously defined group G acting on curves at
distance N1 from E0 considered via f has three orbits. We have already seen that f(I1)
is one orbit, but the cases with odd α will split into two orbits. Clearly, G cannot be free
and transitive on both orbits, since the size of the orbits is smaller than the cardinality of
the group. We avoid this issue by choosing a different (but related) group of cardinality
N1/4, acting on the curves corresponding to an odd α.

3.5 Quantum hidden shift attacks on SIDH 68

Lemma 3.5.16. Let P be a point such that ⟨P, ι(P)⟩ = E0[N1] and let Q := P + ι(P).
Define

I2 :=
{
⟨Q+ αι(Q)⟩ | α even and α ∈

[
0, N1

2 − 1
]}

I3 :=
{
⟨Q+ αι(Q)⟩ | α even and α ∈

[
N1

2 , N1 − 1
]}
.

The restrictions f|I2 and f|I3 of f to I2 and I3 are injective.

Proof. We show that two distinct isogenies with kernel both in I2 (or both in I3) map
to two non-isomorphic curves. Let α, α′ be such that ⟨Q+ αι(Q)⟩ and ⟨Q+ α′ι(Q)⟩ are
both in I2, or I3, respectively. Suppose there exists an odd λ such that

Q+ αι(Q) = λ(Q+ α′ι(Q)).

This means 1− λ ≡ 0 (mod N1/2) and α− λα′ ≡ 0 (mod N1/2) which implies α ≡ α′

(mod N1/2). We are left to show that Q+αι(Q) is never an odd multiple of −αQ+ ι(Q).
Suppose there exists an odd λ such that

Q+ αι(Q) = λ(−α′Q+ ι(Q)).

This implies 1 + α′λ ≡ α− λ ≡ 0 (mod N1/2), which is a contradiction, since α− λ ≡ 0
(mod N1/2) implies that λ is even while 1 + α′λ ≡ 0 (mod N1/2) implies that λ is
odd. Therefore, the curves E0/⟨Q + αι(Q)⟩ and E0/⟨Q + α′ι(Q)⟩ are pairwise non-
isomorphic.

Finally, we give a free and transitive group action on I2 and I3. We start by defining
the acting group.

We identify two endomorphisms a+bι and a′+b′ι if there exists an odd λ ∈ Z/(N1/2)Z
such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2) and we call the resulting group
H0. Let H be the subgroup of H0 containing elements with even b.

Proposition 3.5.17. H acts freely and transitively on I2 and I3.

Proof. It is enough to show that H acts transitively on I2 and I3 because H, I2 and I3

have the same cardinality. From (1 + αι)Q = Q+ αι(Q) it follows that the orbit H · ⟨Q⟩
contains every element in I2. Similarly, H acts transitively on I3 as

(1 + αι)(Q+N1ι(Q)/2) = (1− αN1/2)Q+ (α +N1/2)ι(Q) = Q+ (α +N1/2)ι(Q),

where (αN1/2)Q = 0 as α is even.

3.5 Quantum hidden shift attacks on SIDH 69

The only thing left to show is that every curve E0/⟨P + αι(P)⟩ with odd α has a
j-invariant contained in f(I2) or f(I3).

Proposition 3.5.18. Let α be an odd integer. Then f(⟨P + αι(P)⟩) is contained in
f(I2) or f(I3).

Proof. Observe that

P + αι(P) = 1 + α

2 (P + ι(P)) + α− 1
2 (−P + ι(P)) = 1 + α

2 Q+ α− 1
2 ι(Q).

The sum of 1+α
2 and α−1

2 is odd and therefore one of the fractions is even while the other
one is odd. If α−1

2 is even, then it is clear that the curve is contained in f(I2) or f(I3). In
the case where 1+α

2 is even, E0/⟨1+α
2 Q+ α−1

2 ι(Q)⟩ is isomorphic to E0/⟨1−α
2 Q+ α+1

2 ι(Q)⟩,
as their kernels are related by ι, and thus the curve is contained in f(I2) or f(I3).

In this subsection, we have identified three subsets of I, restricted to which f is
injective. Moreover, we have seen that the union ∪3

i=1f(Ii) contains the j-invariants of all
curves at distance N1 from E0. Finally, we gave an abelian subgroup of (O0/N1O0)∗ for
each of these subsets of I that acts freely and transitively on it. Thus, we solve Task 3.5.7
as long as one determines or guesses which of the three f(Ii) contains j(E0/K).

Using the Frobenius map

We described how to choose suitable abelian subgroups of (O0/N1O0)∗ in order to solve
Task 3.5.7 after guessing whether j(E0/K) is a j-invariant in f(I1), f(I2), or f(I3).

The elements of the acting groups chosen as described in the previous section can
be trivially lifted to Z[ι] := Q[ι] ∩ O0. In [KMPW21, Appx. C], we showed how these
representatives can be lifted directly to elements of norm N2 or eN2, where e is a small
positive integer, whenever the SIDH parameters N1 and N2 are sufficiently overstretched
and imbalanced with N2 > p2N4

1 . For these parameters, this solves a variation of
Task 3.5.8.

In this section we reduce the required imbalance partially by proving that we can lift
elements from πZ[ι] instead. Assuming that N2 > pN4

1 , we will show how endomorphisms
from πZ[ι] can be lifted efficiently to another endomorphism of norm N2 or eN2, for
some small integer e, inducing the same action on I in Algorithm 3.4. Note that it
is not possible to choose a group generated by an element in πZ[ι] to solve Task 3.5.7
directly, acting freely and transitively on a large number of N1-isogeny kernels, as any
such element has multiplicative order at most 4.

3.5 Quantum hidden shift attacks on SIDH 70

As before, let φ : E0 → E0/K denote the secret N1-isogeny we want to compute.
Recall that to run our attack we need to be able to compute E0/θ(K) for every θ in the
groups G acting on I1, and H acting on I2 and I2. We have seen that we can represent
θ as an element in Z[ι].

Let π denote the Frobenius map. Assuming that we can lift πθ to an endomorphism
of degree N2 inducing the same action on I, we can compute E0/πθ(K) using knowledge
of φ(E0[N2]) as described in the overview of our attack. Now let B := θ(K). Given
E0/π(B), we can compute E0/B using the Frobenius map as follows.

Lemma 3.5.19. Let E be an elliptic curve defined over Fp, π the Frobenius map and
let B ⊂ E be a cyclic subgroup. The curve E/π(B) is isomorphic to the image of the
Frobenius map on E/B.

Proof. Let ϕ1 be the isogeny with kernel B and ϕ2 the isogeny with kernel π(B). The
isogeny ϕ1 is separable and its kernel is contained in the kernel of ϕ2◦π. Then, there exists
a unique isogeny ψ : E/B → E/π(B) satisfying ϕ2 ◦π = ψ ◦ϕ1 (see [Sil09, Cor. III. 4.11]),
i.e., the following diagram commutes.

E E/B

E E/π(B)

ϕ1

π

ϕ2

ψ

The degree of a composition of isogenies is the product of its factors which implies
deg(ψ) = p. Furthermore, ψ is not separable as the Frobenius map is not. As ψ can be
decomposed as a composition of the Frobenius map and a separable isogeny (see [Sil09,
Cor. II.2.12]), deg(ψ) = p implies that ψ must be a composition of Frobenius and an
automorphism. Hence, E0/B and E0/π(B) are connected by Frobenius.

Lemma 3.5.19 implies that we can compute E0/θ(K) by first computing E0/πθ(K)
and then applying the Frobenius map. This gives rise to the following strategy when
constructing the malleability oracle.

Assume we want to compute E0/θ(K) for some θ ∈ Z[ι] and unknown K, given the
image of the N2-torsion of the isogeny φ : E0 → E0/K. Using the lifting algorithm
we will describe in the following, we compute an endomorphism θ′ of degree N2 or eN2

for a small e that induces the same action on I as πθ. As described previously, the

3.5 Quantum hidden shift attacks on SIDH 71

torsion point information allows us to compute E0/θ
′(K) = E0/πθ(K). By Lemma 3.5.19,

applying the Frobenius map yields E0/πθ
′(K) = E0/θ(K).

3.5.5 Lifting θ ∈ πZ[ι] to an endomorphism of norm eN2

In this subsection, we present an efficient algorithm to lift an endomorphism from
πZ[ι] = π(Q[ι] ∩ End(E0)) to another endomorphism in End(E0) of degree N2 or eN2

that induces the same action on I, whenever N2 > pN4
1 . Here, e is the smallest

positive integer such that eN2/p(c2
0 + d2

0) is a quadratic residue modulo 2N1, where
π(c0 + d0ι) ∈ πZ[ι] is the endomorphism we want to lift.

This will solve the following task, which is a variant of Task 3.5.8, efficiently.

Task 3.5.20. Let N1, N2 be coprime integers such that N2 > pN4
1 , let θ := π(c0 +d0ι) ∈

πZ[ι] be an E0-endomorphism of degree coprime to N1 and let e denote the smallest
positive integer such that eN2/p (c2

0 + d2
0) (mod 2N1) is a quadratic residue. Compute

an endomorphism θ′ of degree N2 or eN2 such that θ(K) = θ′(K) for all K ∈ I.

We have discussed how to use Frobenius in order to lift π(c0 + d0ι) instead of c0 + d0ι.
Therefore, this task solves Task 3.5.8 up to the following two relaxations. First, we
require N2 to be sufficiently large and imbalanced compared to N1. Second, we allow θ′

to be either of degree N2 or eN2 for some small positive integer e.
We now describe an algorithm to solve Task 3.5.20. By Lemma 3.5.14, it suffices to

solve the following task, which is similar to the problem solved at the core of the KLPT
algorithm [KLPT14].

Task 3.5.21. Given θ = a0 + b0ι+ (c0 + d0ι)π, find θ′ = a1 + b1ι+ (c1 + d1ι)π of degree
N2 or eN2 with coefficients (a1, b1, c1, d1) ≡ λ(a0, b0, c0, d0) (mod N1) for some scalar
λ ∈ (Z/N1Z)∗.

In the following, we provide a solution to this task. Let

θ′ = λa0 +N1a1 + ι(λb0 +N1b1) + (λc0 +N1c1 + ι(λd0 +N1d1))π.

As Norm(x+ yι) = x2 + y2, its norm equals

Norm(θ′) = (λa0 +N1a1)2 + (λb0 +N1b1)2 + p
(
(λc0 +N1c1)2 + (λd0 +N1d1)2

)
. (3.9)

Since θ ∈ πZ[ι] implies a0 = b0 = 0, Eq. (3.9) simplifies to

Norm(θ′) = N2
1 (a2

1 + b2
1) + p

(
(λc0 +N1c1)2 + (λd0 +N1d1)2

)
. (3.10)

3.5 Quantum hidden shift attacks on SIDH 72

Set e to be the smallest positive integer such that eN2/(p(c2
0 + d2

0)) is a quadratic residue
modulo 2N1.

Remark 3.5.22. If N1 were a prime, e could be chosen as the smallest quadratic non-
residue modulo N1. However, in our case N1 is a composite number. Thus, the product
of two quadratic non-residues might not be a quadratic residue if there are multiple
cosets of the subgroup of quadratic residues in the group of units modulo 2N1.

We are primarily interested in the case where N1 is a prime power ℓn. By Hensel’s
lemma, being a quadratic residue modulo ℓn is equivalent to being a quadratic residue
modulo ℓ, if ℓ is odd, and equivalent to being a quadratic residue modulo 8, if ℓ = 2.

Consequently, there is one coset of the quadratic residues in the group of units of 2N1

if ℓ is an odd prime. Therefore, e can be chosen to be the smallest quadratic non-residue
modulo ℓ. For example, if N1 is a power of 3 one can choose e = 2.

If ℓ = 2, then there are three cosets of the quadratic residues in the group of units,
i.e., the ones that contain 3, 5, and 7 respectively. Consequently, e can always be chosen
to be one of 3, 5, or 7 in this case.

In case N1 has distinct prime factors, for eN2/p(c2
0 + d2

0) to be a quadratic residue
it has to be a quadratic residue modulo the largest prime power dividing 2N1 for each
distinct prime factor. If the number of cosets grows, so do the possibilities for e and thus
the size of the smallest e that is guaranteed to work.

The goal is to compute θ′ such that Norm(θ′) = eN2. Considering Eq. (3.10) modulo
N1, we obtain

eN2 ≡ λ2p(c2
0 + d2

0) (mod N1). (3.11)

Since eN2/p(c2
0 + d2

0) is a quadratic residue modulo 2N1 by the choice of e, there exists a
solution for λ in Eq. (3.11) modulo 2N1. Compute any such solution, and lift it to the
integers in [1, 2N1 − 1]. Note that we do not lose generality by the lift as any other lift
of λ corresponds to a change in c1, d1 instead.

For fixed c0, d0 and λ, this gives an affine relation between c1 and d1 modulo N1, i.e.,

c0c1 + d0d1 ≡
Norm(θ′)− λ2p (c2

0 + d2
0)

2λpN1
(mod N1). (3.12)

Finally, one is left with the problem of representing an integer r as the sum of two
squares, namely to find a solution (a1, b1) for

a2
1 + b2

1 = r :=
Norm(θ′)− p

(
(λc0 +N1c1)2 + (λd0 +N1d1)2

)
N2

1
(3.13)

3.5 Quantum hidden shift attacks on SIDH 73

where λ, c0 and d0 are fixed, and c1, d1 satisfy an affine equation modulo N1.
The solution space to Eq. (3.12) is a translated lattice modulo N1. More precisely,

we know that c0 or d0 is coprime to N1. Without loss of generality, let d0 be coprime
to N1. Furthermore, let C denote the right hand side of Eq. (3.12). Then, (c1, d1) lies in
the lattice

⟨(c0/d0,−1), (N1, 0)⟩+ (C/d0, 0). (3.14)

Clearly, r from Eq. (3.13) can only be represented as a sum of two squares, if it is
positive. This happens when the parameters N1 and N2 are sufficiently overstretched
and imbalanced. To find a solution, one computes close vectors (c1, d1) to the target
vector (−λc0/N1,−λd0/N1) in the translated lattice.

Given the factorisation of r as defined in Eq. (3.13), Cornacchia’s algorithm [Cor08]
can then efficiently solve for a1, b1 or determine that no such solution exists. If no solution
exists, a different vector (c1, d1) is chosen.

Remark 3.5.23. Cornacchia’s algorithm requires the factorisation of r. This can be
done in classical subexponential time or in quantum polynomial time. To avoid such
computations, we apply Cornacchia’s algorithm only when r is a prime and otherwise
sample another close vector from the lattice.

Assuming the values of r behave like random values around pN3
1 for the close vectors,

one expects to choose log(pN3
1) different vectors (c1, d1) before finding a solution for a1,

b1 with Cornacchia’s algorithm. If we do not apply Cornacchia’s algorithm unless r is
prime, we expect to further sample roughly log(pN3

1) values for (c1, d1) until r is prime.
The volume of the translated lattice is N1. Thus, for a generic lattice for which

the Gaussian heuristic holds we expect to find a lattice point at distance N1 from
(λc0/N1, λd0/N1). Furthermore, we can use the Hermite constant for 2-dimensional lat-
tices to trivially bound the distance between this lattice point and the next 2 log(pN3

1) clos-
est lattice points by 8

3 log(pN3
1)
√
N1. Thus, heuristically r is positive for the expected num-

ber of vectors (c1, d1) that we need to sample, whenever eN2 > pN3
1 + 8/3 log(pN3

1)
√
N3

1 .

Remark 3.5.24. Note that for specific lattices, the Gaussian heuristic might be violated.
In the worst case, we can only expect to find a lattice point at distance N2

1 from
(λc0/N1, λd0/N1) in which case we require roughly eN2 > pN4

1 .

It is easy to see that a solution for (a1, b1, c1, d1) as computed with the routine described
above satisfies Eq. (3.10). The full lifting algorithm is summarised in Algorithm 3.4 and
we implemented it in magma [BCP97].1

1The code is available at https://github.com/SimonMerz/lifting-for-malleability-oracles

https://github.com/SimonMerz/lifting-for-malleability-oracles

3.5 Quantum hidden shift attacks on SIDH 74

Algorithm 3.4: Lift element from πZ[ι] to quaternion of norm N2 or eN2

Input: θ = π(c0 + d0ι) ∈ End(E0), and parameters p, ε, N1, N2
Output: θ′ = N1a1 +N1b1ι+ (λc0 +N1c1)π + (λd0 +N1d1)ιπ satisfying

Norm(θ′) = N2 or eN2 with probability 1− ε and ⊥ otherwise
1 Let e ∈ Z>0 smallest integer s.t. eN2/p(c2

0 + d2
0) (mod 2N1) is a quadratic

residue.
2 Compute λ in eN2 ≡ λ2p(c2

0 + d2
0) (mod 2N1).

3 Compute affine relation c0c1 + d0d1 ≡ C (mod N1).
4 Define translated lattice L containing all (c1, d1) satisfying the affine relation.
5 Set B to log(ε) log(pN3

1)/ log(1− log−1(pN3
1)) .

6 for m = 1, . . . , B do
7 Compute next closest vector (c1, d1) to (−λc0/N1,−λd0/N1) in L.
8 Set r to be Norm(θ′)−p((λc0+N1c1)2+(λd0+N1d1)2)

N2
1

.
9 if r prime then

10 Use Cornacchia’s algorithm to find a1, b1 such that a2
1 + b2

1 = r or
determine that no solution exists.

11 if solution found then
12 return θ′ = N1a1 +N1b1ι+ (λc0 +N1c1)π + (λd0 +N1d1)ιπ.

13 return ⊥

An examination of Algorithm 3.4 shows that it aborts after a fixed number of trials
for pairs (c1, d1) which leads to the following result.

Lemma 3.5.25. Algorithm 3.4 always terminates and is correct if it returns a solution.

We conclude this section by investigating the heuristic probability of the lifting
algorithm returning a solution or aborting unsuccessfully, as well as its complexity.

Lemma 3.5.26. Let 0 < ε < 1. Assume r in Line 8 of Algorithm 3.4 behaves like a
random value around pN3

1 . Then we expect Algorithm 3.4 heuristically to return a correct
lift with probability 1− ε and an error ⊥ otherwise.

Proof. If r in Line 8 of Algorithm 3.4 behaves like a random value around pN3
1 , we

expect it to be prime with probability roughly 1/ log(pN3
1) and Cornacchia’s algorithm to

provide a solution with probability approximately 1/(log(pN3
1)) due to Landau [Lan09]

and Ramanujan [Ram13]. Iterating over B short vectors (c1, d1) of the lattice as defined
in Step 6 of Algorithm 3.4, we therefore expect our algorithm to return ⊥ with probability

(
1− 1

log(pN3
1)

)B/ log(pN3
1)
.

3.5 Quantum hidden shift attacks on SIDH 75

Hence, iterating over B ≥ log(ε) log(pN3
1)/ log(1− log−1(pN3

1)) as in Algorithm 3.4, we
fail to find a solution with probability less than ε heuristically.

Remark 3.5.27. In Algorithm 3.3 the lifting of endomorphisms is used for every element
of the acting group G or H with cardinality N1/2 and N1/4, respectively. Since we
expect the lifting algorithm to fail heuristically with probability ε for every single group
element and the functions in Algorithm 3.3 are only exact shifts of each other when it
does not fail a single time, we need to choose ε sufficiently small. Assuming independence
between the different executions of the lifting algorithm, we expect to find two functions
satisfying the promise of a hidden shift with probability (1− ε)N1/2 ≈ 1− εN1/2 by first
order Taylor approximation. Thus, choosing ε < 1

N1
we expect our lifting to work with

probability roughly 1
2 on all endomorphisms of G and similarly ε < 2

N1
for the elements in

H. By the previous lemma, the lifting remains polynomial in log(N1) and log(p) for any
such ε. Choosing ε smaller allows us to heuristically achieve a larger success probability
of the algorithm. The worst-case complexity of the lifting increases linearly in | log(ε)|.

Lemma 3.5.28. Let 0 < ε < 1. Algorithm 3.4 runs in time polynomial in log p, logN1,
and | log(ε)|.

Proof. The worst-case runtime of the algorithm stems from sampling B (as defined in
Algorithm 3.4, Line 5) potential values of (c1, d1) from a lattice of dimension 2. In each
iteration one needs to run a primality test, and apply Cornacchia’s algorithm to a prime
of size polynomial in p and N1.

The main drawback of our lifting algorithm is the requirement of approximately
N2 > pN3

1 in case the Gaussian heuristic is satisfied for the lattice defined in Eq. (3.14),
and roughly N2 > pN4

1 otherwise (see Remark 3.5.24). This bound might be partially
caused by inefficiencies in the lifting algorithm. However, the following remark discusses
why we can a priori not expect to find a lifting algorithm for balanced parameters
that allows us to evaluate the resulting lifted endomorphism using the torsion point
information provided.

Remark 3.5.29. A randomly chosen non-homogeneous quadratic equation in two vari-
ables has in general no solution. Similarly, for arbitrary endomorphisms and any N1, N2,
we would not expect to find an endomorphism a1 + b1ι ∈ Z[ι] (in the variables a1, b1)
inducing the same action on I of degree N2. Yet, as soon as we lift an endomorphism θ

to an endomorphism θ′ = N1(a1 + b1ι+ c1π) + λθ with c1 ̸= 0, the degree of the lift will
be of degree larger than pN2

1 . For balanced parameters we have pN2
1 ≫ N2 and thus we

are not able to use the provided torsion point information to evaluate the endomorphism
as suggested by Algorithm 3.2.

3.5 Quantum hidden shift attacks on SIDH 76

3.5.6 Algorithm summary

We begin the summary of our attack by proving that a solution to Task 3.5.8 allows us
to construct a malleability oracle for f .

Proposition 3.5.30. Let f|I′ : I ′ → J be the function defined in (3.8) restricted to a
domain I ′ so it is injective, let G be an abelian subgroup of (O0/N1O0)∗ acting freely
and transitively on I ′ and let φ : E0 → E0/K, where K ∈ I ′ is chosen uniformly
at random and unknown. Suppose the public parameters allow us to solve Task 3.5.8
for endomorphisms in G efficiently. Given φ|E0[N2], we then have a polynomial-time
malleability oracle for G at f|I′(K).

Proof. We need to show that there exists an efficient algorithm that, on input f(K) =
f|I′(K) = j(E0/K) and θ ∈ G, computes f(θ(K)). Let φ be the isogeny corresponding
to the cyclic subgroup K ⊂ E0 of order N1.

The endomorphism θ has degree N2 coprime to N1 and using the efficient solution to
Task 3.5.8, we can compute some θ′ of degree N2 such that it has the same action on
the N1-torsion as θ. Therefore, f(θ(K)) = E0/θ(K) = E0/θ

′(K) up to isomorphism. By
Lemma 3.5.9, this equals (E0/K)/φ(ker θ′). Since ker θ′ lies in E0[N2], we can compute its
image under φ and therefore we can calculate f(θ(K)) = (E0/K)/φ(ker θ′) efficiently.

Proposition 3.5.30 calls for solutions to the Tasks 3.5.7 and 3.5.8. In Section 3.5.4 we
presented solutions to variants of these tasks. We use the remainder of this section to
summarise the impact of these variations on the success of our approach.

Restricting the function f : I → J to a subset I ′ such that f|I′ is injective and its
image contains j(E0/K) for the K one aspires to recover requires information on the
secret we do not posses. However, we gave three subsets I1, I2, I3 of I in Section 3.5.4
such that f restricted to any of these subsets is injective. The images of these sets
under f partition all curves at distance N1 from E0 up to isomorphism, i.e., one of the
three subsets will yield the desired result. Moreover, we provided abelian subgroups of
Q[ι]∩ (O0/N1O0)∗ acting freely and transitively on I1, I2, and I3. Thus, we can run the
attack for the different Ii and then verify whether we have found the correct solution.

We then supply an algorithm to solve Task 3.5.20, a variant of Task 3.5.8 when N1

and N2 are sufficiently imbalanced, lifting endomorphisms from πZ[ι] to ones with the
same action on I of degree N2 or eN2. Here, e is a small integer depending on the
parameters p,N1, N2 and the endomorphism. As a consequence, to use the torsion point
information of E0[eN2] under the secret isogeny given the image of E0[N2], we need to
guess the action on E0[e]. Furthermore, we lift all endomorphisms in the acting group

3.5 Quantum hidden shift attacks on SIDH 77

and thus we need to guess the action on E0[E], where E is the least common multiple of
all the e appearing for the different lifts. In Remark 3.5.22, we discuss which e might
appear depending on the factorisation of N1. For example, E is 2 if N1 is a power of 3, or
lcm(3, 5, 7) if N1 is a power of 2. Guessing the action of the secret isogeny on E0[E] takes
O(E3) trials. Finally, for efficiency reasons we lift endomorphisms from πZ[ι], whereas
the elements in the abelian groups acting on I1, I2, and I3 have representatives in Z[ι].
Further, we showed that this is no restriction via the computation of an action of the
Frobenius map.

For each combination of guesses of E0[E] under the secret isogeny and whether f
maps the secret K into f(I1), f(I2) or f(I3), we can use a subexponential quantum
algorithm such as Kuperberg’s [Kup11] to compute the hidden shift for the functions
FK and FJ as defined in Algorithm 3.3 and verify the output of the algorithm. Both
functions are injective and therefore the verification can be achieved by computing both
functions on a single element and its shift respectively. Once the premise of a hidden
shift is satisfied, Kuperberg’s algorithm [Kup11] recovers the (correct) solution to the
injective abelian hidden shift problem. Thus, we recover the secret isogeny as described
in Section 3.5.3. We can summarise our result as follows.

Theorem 3.5.31. Let N2 > pN4
1 . Under the heuristics used to lift endomorphisms in

Section 3.5.5, the SIDH problem can be solved in quantum subexponential time via a
reduction to the injective abelian hidden shift problem.

During this section, we have made some restrictions to simplify the presentation of
our cryptanalysis.

We assumed the starting curve E0 to be a supersingular curve with j-invariant 1728.
However, the attack also applies to other curves with known endomorphism rings that
are close enough to E0 that the problem can be translated there. In Section 3.5.4, we
described the required group action on I under the further assumption that N1 is a power
of 2, which can be generalised to powers of small primes. A sketch for powers of 3 can
be found in [KMPW21, Appx. B]. Finally, we assumed that N2

1 <
p+1

4 in Lemma 3.5.11.
However, to run our attack we can slightly ease this restriction. Namely, if N2

1 >
p+1

4 ,
then we choose a divisor N ′

1 of N1 such that N ′2
1 < p+1

4 and run the attack with N ′
1

instead. This will reveal the N ′
1-part of the isogeny and then we can guess the remaining

part. For sufficiently small N1
N ′

1
, this may be a feasible method.

More generally, if the parameters are not quite imbalanced enough, one can always
combine our attack with a step that guesses part of the secret isogeny (in exponential
time). Or alternatively, if for some reason part of the secret has been leaked, and we
are only interested in the remaining part of the secret. If the most significant k bits are

3.5 Quantum hidden shift attacks on SIDH 78

leaked/guessed, corresponding to the last steps of the secret isogeny, one can just run the
same attack on N1/2k, as long as the parameters are imbalanced with N2 > p(N1/2k)4.
On the other hand, if the least significant k bits are leaked, one can consider the action
of the smaller subgroup G′ ⊂ G consisting of {a+ bι | a odd, b divisible by 2k}, where
again we identify two endomorphisms with each other if they differ by multiplication by
an odd scalar modulo N1. The rest follows analogously.

3.5.7 Childs–Jao–Soukharev attack on HHS

We recall how the algorithm proposed by Childs, Jao and Soukharev [CJS14] succeeds to
construct a horizontal isogeny between two given ordinary elliptic curves in quantum
subexponential time (or similarly to retrieve a horizontal isogeny between oriented elliptic
curves such as the secret in CSIDH [CLM+18]). We phrase their attack such that it fits
into our framework using malleability oracles.

Let O be an order in an imaginary quadratic field. Recall from Section 2.2.5 that we
have a (free) group action of the class group Cl(O) on the set of primitively O-oriented
elliptic curves which can be computed via isogenies. Recall that the hard problem is the
following: given two curves connected by one (horizontal) isogeny, recover the horizontal
isogeny connecting them, or equivalently invert the action by the class group. Restricting
the class group action to one orbit Ellk(O) if necessary, we can further assume that this
action is transitive. Childs, Jao and Soukharev provide an algorithm that constructs the
sought isogeny in quantum subexponential time [CJS14] using a reduction to the hidden
shift problem. We summarise their core idea as another instance of our framework using
malleability oracles.

Let I := Cl(O) and J := Ellk(O) for some field k. We can look at the underlying
group action as a one-way function

f : I → J , [x] 7→ [x] · (E0, ι0).

Since the class group Cl(O) is a group and acts free and transitively on Ellk(O), f is
malleable with respect to the class group everywhere on the image.

Given (E0, ι0) and (E1, ι1) = [b] · (E0, ι0), one would like to compute the preimage of f
at (E1, ι1). Childs, Jao and Soukharev observed that the functions Fi : Cl(O)→ Ellk(O),
[x] 7→ [x] · (Ei, ιi) for i = 0, 1 are shifts of each other. Moreover, they are injective
functions since the action of the class group on Ellk(O) is free and transitive. The
injective abelian hidden shift problem can be solved in quantum subexponential time,
which allows one to recover [b] and therefore an O-oriented isogeny φ : (E0, ι0)→ (E1, ι1).

3.6 Castryck–Decru attack on SIDH 79

3.6 Castryck–Decru attack on SIDH

In this section, we want to briefly sketch the first efficient attack on SIDH with balanced
parameters due to Castryck and Decru [CD22]. Their attack spectacularly broke the only
isogeny-based submission to NIST’s first post-quantum standardisation process for the
recommended parameters, succeeding in a matter of minutes and hours for the different
parameter levels (with a magma implementation running on a single core). Following the
publication of their attack, improvements of the attack and related work emerged quickly.
In this section, we will sketch the attack as first described by Castryck and Decru. At
the end of the section, we will survey some of the related work. This section is only
included for the sake of completeness and we do not claim any contribution ourselves.
Rather than providing all the necessary mathematical background, we will only sketch
the core idea and refer to the relevant literature instead.

In this thesis, we have only discussed isogenies between elliptic curves, which are
one-dimensional abelian varieties. Similarly, one can consider isogenies between varieties
of larger dimension. The core ingredients of the attack due to Castryck and Decru is
to move the SSI-T problem to a decisional problem for abelian varieties of dimension 2,
which can be solved by invoking a theorem due to Kani [Kan97, Thm. 2.6].

Consider the following setup for SIDH with Alice’s and Bob’s secret isogenies being
of degree N1 = 2eA and N2 = 3eB , respectively, as is usually suggested for two integers
eA, eB ∈ Z. For ease of exposition, assume N1 − N2 > 0. Bob’s public key consists of
the curve EB together with the torsion point images φB(PA), φB(QA), where ⟨PA, QA⟩ =
E0[3eB]. Here, we use the same notation as when we introduced SIDH in Section 2.3.2.
To recover Bob’s secret isogeny, the attack by Castryck and Decru proceeds as follows.

First, the attacker computes any isogeny γ : E0 → C of degree N1 −N2. Then, the
(2eA , 2eA)-isogeny from the two-dimensional abelian variety C × EB, that is the product
of two elliptic curves, with kernel ((γ(PA), φB(PA)), (γ(QA), φB(QA))) lands again on a
product of two elliptic curves by Kani’s theorem [Kan97, Thm. 2.6]. However, only every
roughly 10/p-th vertex in the (2, 2)-isogeny graph between genus 2 surfaces is a product
of elliptic curves. This allows to build a distinguishing oracle which reveals (with high
probability) whether a public key is valid.

Note that similarly to isogenies between elliptic curves, the (2eA , 2eA)-isogenies between
genus 2 curves can be decomposed into (2, 2)-isogeny steps. The steps between Jacobians
of genus 2, which will likely be the case for all steps of the isogeny above apart from the
first and last steps, are Richelot isogenies which can be computed efficiently. For explicit
formulas, we refer to Smith’s thesis [Smi05, Ch. 8]. For the first step, which “glues” the

3.6 Castryck–Decru attack on SIDH 80

product of elliptic curves C ×EB into a genus 2 Jacobian, we refer to the formulas given
in [CD22]. To verify whether a public key is valid, one just needs to check in the final
step whether it is a Richelot isogeny, or whether the codomain is a product of two elliptic
curves.

Given this oracle to verify whether a public key is valid, an attacker can proceed with
a simple search to decision reduction, i.e. iteratively parts of Bob’s secret isogeny are
guessed and then verified using the oracle.

Related work. In the original attack by Castryck and Decru, the bottleneck was
computing the isogeny γ for each verification of the oracle. While very efficient for
suggested parameters, the asymptotic complexity was still subexponential. Using work we
will present in Chapter 5, Wesolowski showed how to compute the isogeny γ in polynomial
time as long as the endomorphism ring of the starting curve is known [Wes22c].

Maino and Martindale [MM22] had independently worked on breaking SIDH in a
way similar to Castryck and Decru. The resulting attack uses the theory developed by
Kani to directly compute private SIDH keys without using a decision to search reduction
which further accelerates the key recovery. Moreover, the attack and its presentation are
more reminiscent of previous torsion point attacks described earlier in this chapter.

Since all of the polynomial-time attacks mentioned so far use the knowledge of the
endomorphism ring of the starting curve, hope to salvage SIDH by instantiating it with
a trusted starting curve with unknown endomorphism ring existed for a brief period of
time. Yet, Robert showed how to get rid of all assumptions on the endomorphism ring
by moving to even larger dimensions [Rob22a].

Finally, we want to emphasise that all of the attacks on SIDH referred to in this
section rely on the knowledge of torsion point images. The pure isogeny problem is not
weakened by any of the attacks outlined in this section. Further, the attack requires
knowledge of the degree of the sought isogeny. To this end, it was suggested to mask the
degree or the torsion point images provided [Mor22, Fou22]. Unfortunately, the resulting
SIDH variants are not as efficient as the original scheme.

An interesting open problem is how to use the tools provided by Kani (or recent SIDH
attacks) constructively in isogeny-based cryptography. For example, Petit’s torsion point
attacks gave rise to a new family of trapdoor one-way functions that can be used for
encryption [DDF+21], and it would be interesting to find out whether one can similarly
obtain new cryptographic constructions from recent attacks. Further, can the tools
developed for the attacks be used to increase efficiency in isogeny-based constructions
that have not been broken such as SQISign [DKL+20]?

CHAPTER 4

Two More One-More Assumptions
4.1 Introduction . 82
4.2 Cryptanalysis of undeniable signatures based on SIDH. 83

4.2.1 Modified supersingular CDH problems . 84
4.2.2 Attacking OMSSCDH and 1MSSCDH . 85
4.2.3 Application to the construction by Jao and Soukharev 87
4.2.4 Srinath and Chandrasekaran undeniable blind signatures 92

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies . 92
4.3.1 OPRFs and their applications . 93
4.3.2 Security properties of (V)OPRFs . 95
4.3.3 An isogeny-based OPRF by Boneh, Kogan and Woo 96
4.3.4 The auxiliary one-more SIDH assumption . 97
4.3.5 Attacks on the auxiliary one-more SIDH assumption 99
4.3.6 Analysis of the attack . 105
4.3.7 Attack on the SIDH-based OPRF . 107
4.3.8 Proof of concept implementation . 110
4.3.9 Trusted setup of the starting curve . 111

4.4 Conclusion. 113

The content of this chapter is based on the following two publications cryptanalysing
multiple ‘one-more’ hardness assumptions that were used in the construction of undeniable
signatures and oblivious pseudorandom functions

• Simon-Philipp Merz, Romy Minko, and Christophe Petit. Another look at some
isogeny hardness assumptions. In Stanislaw Jarecki, editor, CT-RSA 2020, volume
12006 of LNCS, pages 496–511. Springer, Heidelberg, February 2020.

• Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Antonio
Sanso. Cryptanalysis of an oblivious PRF from supersingular isogenies. In Mehdi

4.1 Introduction 82

Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090
of LNCS, pages 160–184. Springer, Heidelberg, December 2021.

4.1 Introduction

In Section 2.4, we introduced several problems underlying isogeny-based cryptography.
To construct new protocols and “prove” their security, authors often introduce tweaked
hardness assumptions and conjecture the corresponding problems to be hard too. However,
as this process may introduce weaknesses [KM07], it is important to scrutinise these new
hardness assumptions.

In this chapter, we present multiple attacks on isogeny-based “one-more” hardness
assumptions that were used in the security proofs of isogeny-based undeniable signatures
and oblivious pseudorandom functions.

First, we cryptanalyse the so-called One-Sided Modified SSCDH problem and the
One-More SSCDH problem underlying the security proofs of isogeny-based undeniable
signature schemes proposed by Jao and Soukharev [JS14]. We show that both the
decisional and computational variants of these problems can be solved in polynomial
time. Further, we demonstrate an exponential attack breaking the suggested parameter
sets for two undeniable signature schemes.

In the second part of this chapter, we cryptanalyse the SIDH-based oblivious pseudo-
random function from supersingular isogenies proposed at Asiacrypt’20 by Boneh, Kogan
and Woo [BKW20]. To account for our attack against undeniable signatures mentioned
above, larger parameters were chosen. However, to prove the security of their scheme
they introduce yet another tweaked assumption called the auxiliary one-more assumption.
We give an attack on this assumption and we show that this leads to an attack on the
oblivious PRF itself. The attack breaks the pseudorandomness of the protocol as it
allows adversaries to evaluate the OPRF without further interactions with the server
after some initial OPRF evaluations and offline computation. More specifically, we first
propose a polynomial-time attack. Then, we argue that it is easy to change the OPRF
protocol to include some countermeasures, and present a second subexponential attack
that succeeds in the presence of said countermeasures. Both attacks break the security
parameters suggested by Boneh et al. which we demonstrate in practice using a proof of
concept implementation of our attack. Finally, we examine the generation of one of the
OPRF parameters and argue that a trusted third party is needed.

4.2 Cryptanalysis of undeniable signatures based on SIDH 83

Chapter outline. In Section 4.2.1, we recall the One-Sided Modified SSCDH problem
and the One-More SSCDH problem, two problems that were conjectured to be hard in
the literature on isogeny-based undeniable signatures. We describe an attack on both of
them in Section 4.2.2. In the following Section 4.2.3, we describe how Jao and Soukharev
used the problems to construct isogeny-based undeniable signatures [JS14]. We provide
an attack on the signature scheme itself and mention further constructions that are
affected by our attacks in Section 4.2.4.

In Section 4.3.1, we give a brief introduction to OPRFs and briefly survey some use
cases of this protocol in practice, before we recall the security properties of (verifiable)
OPRFs in Section 4.3.2 more formally. In Section 4.3.3, we describe the construction due
to Boneh, Kogan and Woo. The attacks against their new “one-more” assumption are
presented in Section 4.3.5 and analysed in Section 4.3.6. In Section 4.3.7, we discuss how
to apply the attack against the OPRF protocol itself. We present experimental results of
our attack’s proof of concept implementation in Section 4.3.8. In Section 4.3.9, we argue
that a trusted setup should be used to generate one the OPRF’s parameters and briefly
sketch two pitfalls in case of a lack of such a trusted setup.

4.2 Cryptanalysis of undeniable signatures based on
SIDH

In this section, we review some of the isogeny problems that have been suggested as
hard problems to prove the security of a new construction of isogeny-based undeniable
signatures by Jao and Soukharev [JS14].

An undeniable signature scheme is a scheme in which signatures can only be verified
with cooperation of the signer [CV90]. To verify a signature, the verifier sends a signature
σ back to the signer, who engages in a zero-knowledge confirmation (or disavowal)
protocol to prove the validity (or invalidity) of σ. The security properties required
by an undeniable signature scheme are undeniability, unforgeability and invisibility.
Undeniability ensures that a signer cannot repudiate a valid signature. Unforgeability
is the notion that an adversary cannot compute a valid message-signature pair without
knowledge of the signer’s secret key. Invisibility requires that an adversary cannot
distinguish between a valid signature and a signature produced by a simulator with
non-negligible probability. For more background on undeniable signature schemes we
refer the reader to [CV90, DP96, KF08].

The construction of undeniable signatures by Jao and Soukharev has been used and
extended by other authors (e.g. [SC18]). We will show that the hardness assumptions

4.2 Cryptanalysis of undeniable signatures based on SIDH 84

used to make the security proofs work are not valid and that the proposed isogeny
problems lack the conjectured hardness. This does not immediately lead to an attack
on the signature scheme itself. However, we propose an (exponential) attack on the
cryptographic construction, breaking the suggested parameters for all security levels.

4.2.1 Modified supersingular CDH problems

In this section, we recall the somewhat more artificial variations of the supersingular com-
putational Diffie–Hellman problem underlying the SIDH key exchange. These variations
were used and conjectured to be hard in the security proofs of [JS14, SC18].

In the following, we use the same notation as in Section 2.3.2, where we introduced
SIDH, with deg(φA) = ℓeA

A and deg(φB) = ℓeB
B for small distinct primes ℓA, ℓB.

EA

E0 EAB

EB

φ′
B=[φA]∗φBφA

φB φ′
A=[φB]∗φA

Fig. 4.1 Commutative SIDH diagram.

Definition 4.2.1 ([JS14]). Fix the notation as in Fig. 4.1. Given EA, EB and ker(φB),
the modified SSCDH (MSSCDH) problem asks to determine EAB up to isomorphism.

Clearly, the knowledge of ker(φB) is equivalent to the knowledge of φB : E0 → EB,
but the lack of information on the auxiliary points in the image of φA in the MSSCDH
problem compared to the SSI-T problem underlying SIDH prevents an attacker to shift
ker(φB) onto EA to compute the pushfoward φ′

B = [φA]∗φB : EA → EAB.

Definition 4.2.2 ([JS14]). For fixed EA, EB, given an oracle to solve MSSCDH for any
EA, EB′ , ker(φB′), where EB′ is ℓeB

B -isogenous to E0 and not isomorphic to EB, the one-
sided MSSCDH (OMSSCDH) problem asks to solve MSSCDH for EA, EB and ker(φB).

While the OMSSCDH assumption seems somewhat more artificial, it arises naturally
in the security analysis of undeniable signatures proposed in [JS14]. The authors of
the same paper conjectured the problem to be computationally infeasible, in the sense
that for any polynomial-time algorithm, the advantage of the algorithm is a negligible
function in the security parameter log p. However, we will see in the next subsection that

4.2 Cryptanalysis of undeniable signatures based on SIDH 85

E0

EA

EB

EAB

EB′

EAB′

φB

φA

φ′
B

φ′
B′

φB′

φ′
A

Fig. 4.2 Given an oracle providing EAB′ for any curve E ′
B not isomorphic to EB that is

ℓeB
B -isogenous to E0, the OMSSCDH asks to find EAB.

a polynomial time attacker will have a non-negligible advantage to solve the OMSSCDH
problem. The decisional variant of this problem is also defined in [JS14]; our attack can
be applied to it in a straightforward way.

Our results furthermore break other strongly related problems, such as the following
slightly weaker problem used in the construction of undeniable blind signatures [SC18].

Definition 4.2.3. Let E0 be some starting curve as in the SIDH key exchange and let
mA, nA be secret integers in {0, . . . , ℓeA

A − 1}.
Let a signing oracle respond EAB ∼= EB/⟨[mA]PB + [nA]QB⟩ upon receipt of a curve

EB isogenous to E0 and points PB, QB spanning EB[ℓeB
B].

The one-more SSCDH (1MSSCDH) problem asks to produce at least q + 1 distinct
pairs of curves (EBi

, EABi
), where EBi

are ℓeB
B -isogenous to E0, PBi

and QBi
span EBi

[ℓeB
B]

and EABi
is isomorphic to EBi

/⟨[mA]PBi
+ [nA]QBi

⟩ for 1 ≤ i ≤ q + 1, after q queries to
the signing oracle.

Compared to the OMSSCDH problem, 1MSSCDH leaves the choice of the additional
MSSCDH instance which needs to be solved to the attacker.

4.2.2 Attacking OMSSCDH and 1MSSCDH

Now, we describe our attacks on the OMSSCDH and 1MSSCDH problems.

Proposition 4.2.4. A solution to the OMSSCDH problem can be guessed with probability
1

(ℓB+1)ℓB after a single query to the signing oracle.

Proof. Assume an attacker wants to solve OMSSCDH given EA, EB and ker(φB). Let
EB′ be another curve ℓ2

B-isogenous to EB and ℓeB
B -isogenous to E0. Such an EB′ is

4.2 Cryptanalysis of undeniable signatures based on SIDH 86

obtained from EB by backtracking the last ℓB-isogeny step of φB and then computing
another ℓB isogeny from this curve that does not lie on the path of φB. Since φB is
known this can be computed without any guessing, but even if φB was not known to the
attacker such an EB′ could be guessed with probability ℓB−1

(ℓB+1)ℓB .
Next, the attacker queries the oracle on EB′ to receive EAB′ . As depicted in Fig. 4.3,

any curve in the isomorphism class of EAB is ℓ2
B-isogenous to EAB′ . Therefore, an attacker

guesses the isomorphism class of EAB correctly with probability ((ℓB + 1)ℓB)−1 finishing
the proof.

E0 ◦ ◦ EB

EB′

EA ◦ ◦ EAB

EAB′

φA

φB

Fig. 4.3 Query of OMSSCDH oracle on ℓ2
B-isogenous curve via backtracking one step of

φB yields elliptic curve ℓ2
B-isogenous to target curve

To compute φB efficiently, the prime ℓB is usually chosen to be small (typically 2
or 3) and thus Proposition 4.2.4 breaks the OMSSCDH problem completely.

Remark 4.2.5. Using multiple queries to the signing oracle, one can break the OMSS-
CDH problem with even larger probability. For example, querying the oracle on two
curves ℓ2

B-isogenous to EB and ℓeB
B -isogenous to E0, the common neighbour of both an-

swers of the oracle will be ℓB isogenous to EAB and thus can be guessed with probability
(ℓB − 1)−1.

Without the condition on the degree of the isogeny between the curves submitted to
the OMSSCDH oracle and the base curve (or if this condition is not checked), the attack
can be made even more efficient. Namely, an attacker always solves this modified version
of the OMSSCDH problem after two queries to the oracle as follows.

The attacker computes two curves EB1 , EB2 of different isomorphism classes that are
ℓB-isogenous to EB. Knowing ker(φB) the attacker computes ker(φBi

) and queries the
oracle to solve MSSCDH for EA, EBi

and ker(φBi
) for i = 1, 2. The oracle sends back

4.2 Cryptanalysis of undeniable signatures based on SIDH 87

EABi
which are ℓB-isogenous to the unknown EAB as depicted in Fig. 4.4. We find the

isomorphism class of EAB as the only common ℓB-isogenous neighbour to both EAB1 and
EAB2 .

E0 ◦ ◦ EB ◦

EA ◦ ◦ EAB ◦

φA

φB

Fig. 4.4 Diagonal maps show the signing oracle mapping ℓB-isogenous curves of EB to
ℓB-isogenous curves of the target curve EAB

Clearly, the attack described in Proposition 4.2.4 applies to the decisional version
of the problem, OMSSDDH, too. Furthermore, a solution to the OMSSCDH problem
implies a solution to the 1MSSCDH problem.

Corollary 4.2.6. A solution to the 1MSSCDH problem can be guessed with probability
1

(ℓB+1)ℓB after a single query to the signing oracle.

Note that alternatively an attacker could submit all of the ℓ2
B-isogenous neighbours

via backtracking one step of φB and compute “one-more” solution as the only remaining
option with certainty.

4.2.3 Application to the construction by Jao and Soukharev

We continue with a description of our attack against the isogeny-based undeniable
signature scheme by Jao and Soukharev [JS14].

Jao–Soukharev undeniable signatures

The protocol by Jao and Soukharev takes p to be a prime of the form ℓeA
A ℓ

eB
B ℓ

eC
C · f ± 1

similar to the SIDH protocol, where ℓA, ℓB, ℓC are small coprime primes. A supersingular
starting curve E0 over Fp2 and bases {PA, QA}, {PB, QB} and {PC , QC} of E0[ℓeA

A], E0[ℓeB
B]

and E0[ℓeC
C], respectively, are fixed. The public parameters of the scheme are p, E0 and the

three torsion bases, together with a hash functionH. The signer generates random integers
mA, nA ∈ Z/ℓeA

A Z and computes the isogeny φA : E0 → EA := E0/⟨[mA]PA + [nA]QA⟩.
The public key consists of the curve EA together with the points {φA(PC), φA(QC)} and
the integers mA, nA, or equivalently φA, constitute the private key.

4.2 Cryptanalysis of undeniable signatures based on SIDH 88

To sign a message M , the signer computes the hash h = H(M) of the message and
the isogenies

φB : E0 → EB = E0/⟨PB + [h]QB⟩
φAB : EA → EAB = EA/⟨φA(PB + [h]QB)⟩
φBA : EB → EAB = EB/⟨φB([mA]PA + [nA]QA)⟩.

The signer outputs EAB in addition to the two auxiliary points φBA(φB(PC)), φBA(φB(QC))
as the signature.

Given a signature σ = (Eσ, P,Q), the first step in the confirmation and disavowal
protocols is for the signer to select mC , nC ∈ Z/ℓeC

C Z and compute the curves EC =
E0/⟨[mC]PC + [nC]QC⟩, EBC = EB/⟨φB([mC]PC + [nC]QC)⟩, EAC = EA/⟨φA([mC]PC +
[nC]QC)⟩ and EABC = EBC/⟨φB([mA]PA + [nA]QA)⟩. The signer outputs these curves
and ker(φCB) as their commitment, where φCB is the isogeny from EC to EBC . In
addition to the auxiliary points of the signature, this commitment provides the verifier
with enough information to compute EABC and EσC = Eσ/⟨[mC]P + [nC]Q⟩, to check
whether EσC = EABC . Further details of the confirmation and disavowal protocols can
be found in [JS14].

In the Jao–Soukharev construction, the adversary knows EA and can compute EBi

and ker(φBi
), corresponding to message Mi, from H. The signing oracle then essentially

solves MSSCDH for any of the adversary’s input messages Mi. The paper claims that
under the assumption that the confirmation and disavowal protocols of the signature
scheme are zero-knowledge, the unforgeability game describes the OMSSCDH problem.
We first recall the unforgeability game and then argue that OMSSCDH is not equivalent
to forging signatures in the next subsection.

Unforgeability is the notion that an adversary cannot compute a valid message-
signature pair with non-negligible probability. It is defined using the following security
game:

1. The challenger generates a key pair, giving the verification key to the adversary.

2. The adversary is given access to a signing oracle and makes queries adaptively
with messages mi, for i = 1, 2, . . . , k, for some k, receiving the corresponding
signatures σi.

Additionally, the adversary has access to a confirmation/disavowal oracle for the
protocol, which they can query adaptively with message-signature pairs.

4.2 Cryptanalysis of undeniable signatures based on SIDH 89

3. The adversary outputs a pair (m,σ).

The adversary wins the game (i.e. forges a signature successfully), if (m,σ) is a valid
message-signature pair and m ̸= mi for all i = 1, 2, . . . k. A signature scheme is called
unforgeable if any PPT adversary wins with only negligible probability.

Another look at the security proof of [JS14]

In [JS14] the claim is made that forging a signature for this construction is equivalent
to solving OMSSCDH, so one would expect our attack to directly break unforgeability.
However, equivalence would only be true if the attacker had the freedom to submit
arbitrary curves to the signing oracle. In the protocol, an adversary wishing to forge a
signature can only query the signing oracle with messages, Mi. In the signing protocol
the curves EBi

are computed from message hashes rather than the messages themselves.
Thus, an adversary would need to find a message mapping to some specific curve first in
order to use an attack on OMSSCDH to forge a signature. Consequently, the adversary
would need to break the hash function. Forging messages therefore seems harder than
breaking OMSSCDH.

Thus, the attack of Section 4.2.1 applies to the hardness assumption but not the
actual protocol in [JS14]. In this section we will demonstrate how a hybrid version of
our attack on OMSSCDH and finding “near-collisions” in the hash function allows to
reduce the security level of the construction for the proposed parameters.

To account for the scheme’s loss of malleability due to the hash function we make use
of the following lemma.

Lemma 4.2.7. Let E0 be a supersingular elliptic curve, let ℓ be a prime, let e be an integer,
and let {P,Q} be a basis for E0[ℓe]. Let n,m < ℓe be positive integers congruent modulo
ℓk for some integer k < e. Then the ℓ-isogeny paths from E0 to EA = E0/⟨P + [n]Q⟩
and EB = E0/⟨P + [m]Q⟩ are equal up to the k-th step.

Proof. Let m = n+ αℓk, for some α > 0. We have

ℓe−k(P + [m]Q) = ℓe−k(P + [n]Q) + ℓe−k+k[α]Q = ℓe−k(P + [n]Q).

That is, both ⟨P + [m]Q⟩ and ⟨P + [n]Q⟩ are equal on a subgroup of size ℓk. Now, the
lemma follows from Corollary 2.2.15.

Suppose the adversary wishes to forge a signature for the message M . Let H :
{0, 1}∗ → Z be the public hash function used in the signature scheme. The hash function

4.2 Cryptanalysis of undeniable signatures based on SIDH 90

determines a coefficient of a point in the E[ℓei
i] torsion group and can therefore be treated

as a function to a group of size 22λ for classical security levels. Let 2L denote the size of
this group in the image.

EA EAB′

EAB

φ1 φ2

ψB′ , deg(ψB′) = ℓkB

ψB, deg(ψB) = ℓkB

φeB′

φeB

Fig. 4.5 Isogeny paths between EA, EAB and EAB′ . In our attack we use ψ = ψB ◦ ψ̂B′

and have φAB′ = φeB′ ◦ φeB′ −1 ◦ · · · ◦ φ1.

The attack proceeds as follows:

1. Build a near-collision on H with respect to the ℓB-adic metric. More precisely, find
two messages M and M ′ such that the difference between H(M) and H(M ′) is
divisible by a large power of ℓB, say a power of size roughly 2L1 .

2. Submit M ′ to the signing oracle to obtain the signature

σ′ =
(
EAB′ , P1 := φB′A(φB′(PC)), P2 := φB′A(φB′(QC))

)
.

3. Guess the ℓ2k
B -isogeny ψ : EAB′ → EAB, where EAB is the unknown curve corre-

sponding to M . Let ψ = ψB ◦ ψ̂B′ , the composition of two degree ℓkB ≈ 2L2 isogenies
with L2 = L−L1, where ψ̂B′ corresponds to k backwards steps on the isogeny path
from EAB′ and ψB corresponds to k forward steps to EAB. This is illustrated in
Fig. 4.5. The probability of correctly identifying ψ in a single guess is 1

(ℓB+1)ℓ2k−1
B

.

4. Find s such that sℓkB ≡ 1 mod ℓeC
C . Compute the auxilary points of the signature

as {[s] · ψ(P1), [s] · ψ(P2)}.

5. Output σ = (EAB, [s] · ψ(P1), [s] · ψ(P2)).

Theorem 4.2.8. Let s, ψ, P1 and P2 be defined as in our attack. Moreover, let σ be the
signature (EAB, [s]ψ(P1), [s]ψ(P2)) computed in the attack. Assuming that EAB is guessed
correctly, σ is a valid signature.

Proof. Since ψ is of degree coprime to ℓC , we have that ⟨ψ(P1), ψ(P2)⟩ = EAB[ℓeC
C]

whenever ⟨P1, P2⟩ = EAB′ [ℓeC
C]. Although these points would already pass the validation

4.2 Cryptanalysis of undeniable signatures based on SIDH 91

for the signature scheme, one might be able to distinguish them from the honestly
generated points. The factor [s] in our signature ensures that forged and honest signatures
are identically distributed, as we will show below.

Recall that ψ = ψB ◦ ψ̂B′ and P1 = φB′A(φB′(PC)). Since the order of PC is coprime
to deg(φB′A) and deg(φB′), and the isogeny diagram is commutative, we can write
P1 = φAB′(φA(PC)).

By expanding φAB′ we obtain

ψ̂B′ ◦ φAB′ = φ̂eB′ −k ◦ · · · ◦ φ̂eB′ ◦ φeB′ ◦ · · · ◦ φeB′ −k ◦ . . . φeB−k ◦ · · · ◦ φ1

= [ℓkB] ◦ φeB′ −k−1 ◦ · · · ◦ φ1.

Since s is the multiplicative inverse of ℓkB modulo ℓeC
C , we have

[s]ψ(P1) = φAB(φA(PC)) ∈ EAB[ℓeC
C].

Analogously, we have [s]ψ(P2) = φAB(φA(QC)) ∈ EAB[ℓeC
C].

Let P = φBA(φB(PC)) ∈ EAB[ℓeC
C] and Q = φBA(φB(QC)) ∈ EAB[ℓeC

C]. These are
the points we expect in an honest signature. In both the confirmation and disavowal
protocols of the Jao–Soukharev scheme, the verifier uses the auxiliary points to compute
an isogeny from EAB to a curve Eσ defined as EAB/⟨[mC · s]ψ(P1) + [nC · s]ψ(P2)⟩,
where mC , nC ∈ Z/ℓeC

C Z are integers chosen by the signer. This curve is checked against
EABC = EAB/⟨[mC]P + [nC]Q⟩ to determine the validity of σ. The two points obtained
in our attack span the subgroup EAB[ℓeC

C], and we have EAB as the correct signature
curve, so it follows that Eσ and EABC are isomorphic and thus the signature is accepted
as valid.

Finding a near-collision of L1 bits on H classically has a cost of 2L1/2 queries to
H. In Step 3, we can then guess the correct isogeny and curve EAB with probability
approximately 2−2L2 = 2−2(L−L1). Taking L1 = 4L/5 the attack then has a total classical
cost of 22L/5, as opposed to the claimed 2L/2. This lowers the security estimate of the
parameters with respect to unforgeability. Moreover, we are able to break invisibility,
since any adversary with the ability to forge signatures with higher probability can
simply check whether the challenge signature obtained in the invisibility game matches a
potential forgery.

Assuming that we can find (near)-collisions of the hash function with lower quantum
complexity [BHT97], the first step of our attack costs 2L1/3 on a quantum computer.
Taking L1 = 6L/7, this could lower the complexity on a quantum computer to 22L/7, as

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 92

opposed to the claimed 2L/3. However, it has been argued that quantum collision search
might be inferior to classical collision search because of the expensive memory access and
quantum memory. For a general discussion on the impracticalities of known quantum
algorithms for collision search, we refer to Bernstein [Ber09].

4.2.4 Srinath and Chandrasekaran undeniable blind signatures

Srinath and Chandrasekaran [SC18] extended the Jao–Soukharev construction to an
undeniable blind signature scheme, introducing a third actor, the requestor, to the scheme.
It is a four-prime variant of the original scheme, taking the prime p to be of the form
ℓeA
A ℓ

eB
B ℓ

eC
C ℓ

eD
D · f ± 1 and adding the public parameter {PD, QD}, a basis for E0[ℓeD

D]. The
requestor computes the message curve EB = E0/⟨PB + [H(m)]QB⟩ using the public hash
function, as before. They then blind the curve by taking a random integer 0 < d < ℓeD

D to
compute EBD = EB/⟨φB(PD) + [d]φB(QD)⟩. The blinded curve is then sent to the signer.
The signing algorithm of the scheme proceeds in the same way as in the Jao–Soukharev
construction. Upon receipt of the blinded signature curve EBDA, the requestor uses an
unblinding algorithm to obtain the unblinded signature EBA, which is the same as the one
in Jao–Soukharev’s signature scheme. Thus, signatures as in Srinath and Chandrasekaran
are just Jao–Soukharev signatures pushed forward through another coprime isogeny and
the scheme is vulnerable to our attack. As before, both unforgeability and invisibility
can be broken.

4.3 Cryptanalysis of an oblivious PRF from super-
singular isogenies

Boneh, Kogan and Woo proposed two new post-quantum oblivious pseudorandom func-
tions (OPRFs) at Asiacrypt 2020 [BKW20]. One construction is based on SIDH and
the other one on CSIDH. The security of the SIDH-based variant relies, amongst other
assumptions, on the hardness of a new “one-more” assumption that we cryptanalyse in
this section. We will provide multiple variants of an attack on the assumption and the
OPRF protocol. The CSIDH-based OPRF proposal by Boneh, Kogan and Woo is not
affected by our attacks.

Before presenting the attacks, we recall what an OPRF protocol is, point to different
post-quantum constructions and recall the required security properties.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 93

The attacks on the SIDH-based OPRF break the pseudorandomness property of an
OPRF and allow malicious clients to evaluate the OPRF on arbitrary inputs after some
initial queries to the server, without further interaction with the server.

Our first attack allows attackers to break this property of the SIDH-based OPRF
protocol in polynomial time. We argue that a simple modification of the OPRF protocol
prevents such an attack. Then, we show that a second variant of the attack leads to an
attack on the protocol even in the presence of those countermeasures. The latter attack
has a subexponential complexity, but there appear to be no simple countermeasures. As
a result of our attack, the parameters suggested by Boneh, Kogan and Woo fall short of
their estimated security level.

Finally, we discuss which party should generate one of the parameters of the SIDH-
based OPRF. We argue there are security implications if the server, the client or any third
party maliciously generates this parameter. The client or a third party could introduce a
backdoor through this parameter to recover the secret key of the server, whereas if the
server is malicious, they can break another assumption on which the security proofs are
built. We suggest that a trusted setup may be needed to guarantee provable security.

4.3.1 OPRFs and their applications

An oblivious pseudorandom function (OPRF) is a two-party protocol between a client
and a server that computes a pseudorandom function (PRF) on a client’s input with the
server’s key. At the end, the server does not learn anything about the client’s input or
the output of the function and the client learns the evaluation of the OPRF but nothing
about the server’s key. In particular, a client should not be able to compute the OPRF
on any input without the server’s participation.

Moreover, a verifiable oblivious pseudo random function (VOPRF) is an OPRF where
a server initially commits to some key and the client is ensured that the server used this
key to evaluate the OPRF consistently. In particular, the client is guaranteed that a
server does not change their secret key across different executions of the protocol.

Oblivious pseudorandom functions are an important building block in many cryp-
tographic applications. They can be used for private set intersection [JL09], which
in turn has many applications such as private contact discovery for messaging ser-
vices [DRRT18] or checking for compromised credentials [LPA+19]. Further applica-
tions of (V)OPRFs include password-authenticated key exchange [JKX18], password-
management systems [ECS+15], adaptive oblivious transfer [JL09], password-protected
secret sharing [JKK14] and privacy-preserving CAPTCHA systems [DGS+18].

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 94

BP

commit(k)

f(k,m) ⊥

m k

Fig. 4.6 (V)OPRF protocol between a client and a server.

Apart from their theoretical relevance in cryptography, OPRFs have had significant
real-world impact recently.

The password-authenticated key exchange OPAQUE [JKX18] which is built on an
OPRF is intended for use in TLS 1.3 [SKFB21].

The privacy-preserving authorisation mechanism known as Privacy Pass by Davidson,
Goldberg, Sullivan, Tankersley and Valsorda [DGS+18] is also based entirely on the
security of a VOPRF. Privacy Pass is currently used at scale by Cloudflare. Finally,
there is an ongoing effort to standardise OPRFs at the Crypto Forum Research Group
(CFRG) [DSW19].

To construct verifiable OPRFs, generic techniques from two-party computation and
zero-knowledge proofs can be used. However, the resulting protocols might be rather
inefficient. Therefore, all of the real-world use cases of (V)OPRFs are currently in-
stantiated with efficient (V)OPRFs which are based on classical security assumptions.
Practical constructions are currently usually based either on the hardness of the decisional
Diffie–Hellman problem, called DH-OPRF [JKK14], or they are derived from RSA blind
signatures [Cha82, DSW19].

For quantum-secure OPRFs, there are only few proposals. Indeed, only three such
solutions appear in the literature to date. In 2019, Albrecht, Davidson, Deo and Smart
proposed a lattice-based VOPRF [ADDS21] based on the ring learning with errors
problem and the short integer solution problem in one dimension. Another OPRF based
on the shifted Legendre symbol problem was proposed in [SHB21] and Boneh, Kogan
and Woo presented two isogeny-based (V)OPRFs at Asiacrypt 2020 [BKW20]. One
construction is an SIDH-based VOPRF, and the other a CSIDH-based OPRF.

The SIDH-based variant relies on the hardness of SIDH, and a novel “one-more”
isogeny assumption which we attack in Section 4.3.5. Our attack on the assumption
further breaks the pseudorandomness of the OPRF.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 95

4.3.2 Security properties of (V)OPRFs

The security properties of an oblivious pseudorandom function (OPRF) include those of
a standard pseudorandom function (PRF), see e.g. [KL20, Def. 3.25].

Definition 4.3.1. Let F : K ×X → Y be an efficiently computable function. F is a
pseudorandom function (PRF) if for all probabilistic polynomial-time distinguishers D,
there is a negligible function negl such that

Pr[DF (k,·)(1n) = 1]− Pr[Df(·)(1n) = 1] ≤ negl(n),

where Pr denotes the probability, the first probability is taken over uniform choices of
k ∈ {0, 1}n and the randomness of D, and the second probability is taken over uniform
choices of functions f : X → Y and the randomness of D.

A consequence of pseudorandomness is that one cannot compute evaluations of
F (k, ·) on new inputs from existing evaluations. However, our attack on the OPRF by
Boneh, Kogan and Woo will allow adversaries to evaluate F (k, ·) on arbitrary inputs
after some initial evaluations. This could lead to significant attacks on OPRF-based
protocols. In the context of private set intersection based on oblivious PRFs, the proposed
attack allows the attacker to brute-force the other party’s set elements and break the
privacy requirement. In the Privacy Pass protocol used to guarantee privacy-preserving
CAPTCHAs, our attack allows the attacker to generate unlimited tokens, thus avoiding
solving CAPTCHAs and fully breaking the security of the system.

Furthermore, OPRFs are required to be oblivious in the following sense.

Definition 4.3.2 ([FIPR05]). Let F : K ×X → Y be a PRF. A protocol between a
client with input x ∈ X and a server with key k ∈ K is called an oblivious PRF, if the
client learns F (k, x) and nothing else and the server learns nothing about x or F (k, x) at
the end of the protocol.

In particular, the server will learn nothing about the input x of the client and the
client will learn nothing about the server’s key k.

Additionally, an OPRF can have the property of being verifiable.

Definition 4.3.3. An OPRF is said to be verifiable if the evaluation y that the client
obtains at the end of the protocol is correct, i.e. if it satisfies y = F (k, x), where x ∈ X
is the client’s input and k ∈ K is the server’s private key.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 96

In practice, verifiability is usually ensured by the server committing to a key k prior
to the execution of the verifiable OPRF (VOPRF) and providing a zero-knowledge proof
that the VOPRF execution uses the same key as the committed value.

For more formal simulation-based security definitions of properties required from
OPRFs, we refer to [ADDS21].

4.3.3 An isogeny-based OPRF by Boneh, Kogan and Woo

We provide a simplified description of the SIDH-based OPRF by Boneh, Kogan and Woo
which we sketch in Fig. 4.7.

Let λ be the security parameter and let p = fNKNMNVNRNS − 1 be a prime
where f ∈ Z is a small cofactor and Ni are powers of distinct small primes such
that NK, NM, NV, NR are roughly of size 25λ/2 and NS ≈ 22λ. To account for our attack
from [MMP20] described in Section 4.2.3, the factors NK, NM, NV, NR are chosen of
size 25λ/2 instead of the more common size 22λ in the SIDH protocol. Moreover, let
H1 : {0, 1}∗ → ZNM be a cryptographic hash function. In the security proofs, H1 is
treated as a random oracle. Finally, let E0 be a randomly chosen supersingular elliptic
curve over Fp2 and let {Pi, Qi} denote a basis of E0[Ni] for i = K,M, V,R, S. While
Boneh, Kogan and Woo only require E0 to be a randomly chosen elliptic curve, we will
discuss how it is generated in Section 4.3.9 and argue that this choice should be done by
a trusted third party.

First, the server chooses their private key k which is the PRF key and publishes a
commitment to this key. To evaluate the OPRF on the input x in the input space, a
client computes the hash H1(x) = m ∈ ZNM . Furthermore, the client randomly chooses
an element r ∈ ZNR .

The client computes the isogenies ϕm : E0 → Em := E0/⟨PM + [m]QM⟩ and ϕr :
Em → Emr := Em/⟨ϕm(PR) + [r]ϕm(QR)⟩. Then, the client sends Emr together with the
torsion point images of Pi, Qi for i = V,K, S to the server as well as a basis of Emr[NR].
To avoid active attacks like the GPST attack [GPST16], where a malicious client tries
to recover information about the server’s private key by sending manipulated torsion
point information, the client proves to the server in a non-interactive zero-knowledge
proof that they know the kernel of the isogeny from E0 to Emr and that the provided
torsion point images are indeed the images under this isogeny. For full details about the
zero-knowledge proof, we refer to [BKW20, Sect. 5].

Subsequently, the server computes their secret isogeny ϕk : Emr → Emrk, where
Emrk := Emr/⟨ϕr ◦ϕm(PK) + [k]ϕr ◦ϕm(QK)⟩. Moreover, the server computes the images
of the order NV torsion points and the basis of Emr[NR] provided by the client. The

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 97

server sends Emrk together with the torsion point information to the client. Using an
interactive zero-knowledge proof with a cut-and-choose approach between server and
client, the server can prove to the client that it computed the isogeny and the torsion
point images correctly. This proof uses the torsion point images of order NV and the
server’s initial commitment to the key k. Details about this zero-knowledge proof can be
found in [BKW20, Sect. 6].

After executing the zero-knowledge proof with the server to convince itself of the
correctness of the server’s reply, the client uses the images of the Emr[NR] torsion
to unblind Emrk. The unblinding isogeny ϕ̂′

r is the pushforward of the dual of ϕr
along ϕk to Emrk. This allows the client to compute a curve isomorphic to Emk :=
Em/⟨ϕm(PK) + [k]ϕm(QK)⟩ without knowing k at any point in time. Hashing the input
together with the j-invariant of Emk and the server’s initial commitment to their key k
yields the output of the VOPRF. The isogeny evaluations of the OPRF are sketched in
Fig. 4.7.

E0 Em

Emr

Emk

Emrk

ϕm

ϕr

ϕk

ϕ̂′
r

Fig. 4.7 Sketch of isogeny-based VOPRF by Boneh, Kogan and Woo. The isogenies
computed by the client are marked in red (ϕm, ϕr, and ϕ̂′

r) while the server’s isogeny is
noted in blue (ϕk). The green isogenies represent the map which is jointly evaluated by
the client and the server.

4.3.4 The auxiliary one-more SIDH assumption

To prove the unpredictability of their SIDH-based VOPRF, Boneh, Kogan and Woo intro-
duce a new hardness assumption, the auxiliary one-more SIDH assumption in [BKW20].
In this section, we recall the game underlying this new security assumption, before
providing an adversary that can win the security game later.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 98

While decision queries defined in the following game are used in the OPRF’s security
proofs, our attacks will not make use of decision queries and a reader may choose to
ignore this additional ability of the adversary.

Game 4.3.4 (Auxiliary One-More SIDH). Let p = f · N1 · · ·Nn − 1 be a prime
depending on the security level λ and n, where Ni are smooth coprime integers and f
is a small cofactor, and let M,K ∈ {1, . . . , n} be two distinct indices. Consider the
following game between a challenger and an adversary:

• The challenger chooses a random supersingular curve E0/Fp2 and a basis {P,Q}
of E0[(p+ 1)/(NM ·NK)]. Moreover, it chooses K ∈ E0 of order NK, computes
ϕK : E0 → EK := E0/⟨K⟩, and sends E0, P,Q, and EK to the adversary.

• The adversary can make a sequence of the following queries to the challenger:

– Challenge query: The challenger chooses M ∈ E0[NM] randomly and sends
it to the adversary.

– Solve query: The adversary submits V ∈ E0[(p+ 1)/NK] to the challenger,
who computes ϕKV : E0 → E0/⟨K,V ⟩ and sends j(E0/⟨K,V ⟩), ϕKV (P),
and ϕKV (Q) to the adversary.

– Decision query: The adversary submits a pair (i, j) to the challenger, where
i is a positive integer bounded by the number of challenge queries made
so far, and j ∈ Fp2. The challenger responds true if j = j(E0/⟨K,M⟩),
where M is the challenger’s response to the ith challenge query, and false
otherwise.

• The adversary outputs a list of distinct pairs of the form (i, j), where i is a
positive integer bounded by the number of challenge queries made and j ∈ Fp2.

We call an output-pair (i, j) correct, if j is the j-invariant of E0/⟨K,M⟩, where M
is the challenger’s response to the i-th challenge query. An adversary wins the game
if the number of correct pairs exceeds the number of solve queries.

Assumption 4.3.5 (Auxiliary One-More SIDH [BKW20]). For every constant n and
every distinct M,K ∈ {1, . . . , n}, every efficient adversary wins the above game with
probability negligible in λ.

In the following, we show that the auxiliary one-more SIDH assumption by Boneh,
Kogan and Woo does not hold.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 99

4.3.5 Attacks on the auxiliary one-more SIDH assumption

We give different attacks on the security problem underlying Assumption 4.3.5 that
follow a similar strategy. Let K be the server’s secret subgroup, determining the isogeny
ϕK : E0 → E0/⟨K⟩. The idea is to use a number of solve queries to subsequently predict
E0/⟨K,M⟩ for any M ∈ E0[NM]. To this end, we will derive a method to extract the
subgroup generated by ϕK(P) for any P ∈ E0[NM] with a number of solve queries, i.e.
an attacker recovers certain torsion point images up to a scalar under the secret isogeny.
Using this procedure, an adversary can extract the subgroups generated by ϕK(PM),
ϕK(QM) and ϕK(PM +QM), where {PM , QM} is a basis of E0[NM].

Knowing these subgroups allows the adversary to compute the subgroups generated
by ϕK(M) for arbitrary M ∈ E0[NM] without any further solve queries. Given a
generator of ⟨ϕK(M)⟩, the adversary can compute the j-invariant of E0/⟨K,M⟩ as
E0/⟨K,M⟩ ∼= EK/⟨ϕK(M)⟩. In particular, the adversary can produce arbitrarily many
correct output-pairs and win the security game underlying the auxiliary one-more SIDH
assumption (Assumption 4.3.5). Note that our attack does not recover the server’s secret,
but rather enough information to make the server’s input to the OPRF obsolete.

First, we show that recovering said torsion point images up to a scalar is sufficient to
compute the correct answer to arbitrary challenges in the corresponding security game.
Subsequently, we give multiple approaches to recover these torsion point images. In
Section 4.3.7, we will show how the attack on the security assumption translates to an
attack on the (V)OPRF itself.

Winning the security game given torsion point images

In this subsection, we show how mapping three different subgroups of order NM to
EK := E0/⟨K⟩ is enough to recover sufficient information to compute a generator of the
subgroup ⟨ϕK(M)⟩ ⊂ EK for any point M ∈ E0[NM].

Lemma 4.3.6. Let PV , QV , RV := PV + QV ∈ E0 be pairwise linearly independent
points of smooth order NM and let ϕK : E0 → EK be an unknown isogeny of degree
coprime to NM. Given the points PV , QV , RV and the subgroups ⟨ϕK(PV)⟩, ⟨ϕK(QV)⟩
and ⟨ϕK(RV)⟩, an adversary can compute ⟨ϕK(M)⟩ for arbitrary M ∈ E0[NM].

Proof. Fix P ′, Q′, and R′ to be generators of ⟨ϕK(PV)⟩, ⟨ϕK(QV)⟩ and ⟨ϕK(RV)⟩, respec-
tively. Note that the given information ⟨ϕK(PV)⟩, ⟨ϕK(QV)⟩ and ⟨ϕK(RV)⟩ is the same
as knowing ϕK(PV), ϕK(QV), ϕK(RV) up to a scalar multiple coprime to NM. There are
many different generators for the groups ⟨ϕK(PV)⟩, ⟨ϕK(QV)⟩ and ⟨ϕK(RV)⟩ but for any

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 100

fixed choice we have

P ′ = αϕK(PV),
Q′ = βϕK(QV),
R′ = γϕK(RV)

for some (unknown) integers α, β, γ coprime to NM. As isogenies are homomorphisms,
we have ϕK(RV) = ϕK(PV) + ϕK(QV). One finds a, b such that R′ = aP ′ + bQ′, which
can be done efficiently as computing discrete logarithms is easy in a group of smooth
order NM. We have γ = aα = bβ. Thus, it is possible for the attacker to recover the
ratio α/β = b/a.

Given M ∈ E0[NM], an adversary can compute the integers k1, k2 such that M =
k1PV + k2QV (which again is possible because NM is smooth) and obtain ⟨ϕK(M)⟩ by
computing ⟨k1ϕK(P) + k2ϕK(Q)⟩ = ⟨k1P

′ + k2
α
β
Q′⟩.

In particular, an adversary who knows ϕK(PV), ϕK(QV) and ϕK(RV) up to an
unknown scalar and EK := E0/⟨K⟩ can compute E0/⟨K,M⟩ ∼= EK/⟨ϕK(M)⟩ for any
M ∈ E0[NM].

Recovering points in ϕK(E0[NM]) up to a scalar

The previous subsection shows that E0/⟨K,M⟩ can be computed by an adversary for
arbitrary M ∈ E0[NM] as long as they can recover images of points in E0[NM] under the
secret isogeny ϕK up to scalar. In this section, we will present multiple ways an adversary
can recover this information. For better understanding, we include in our exposition not
only a polynomial and a subexponential attack (in case countermeasures to prevent the
former one are put in place) but also an exponential attack.

Query points of arbitrary order. Let M ∈ E0[NM]. We are interested in recovering
ϕK(M) up to a scalar, given access to the oracle provided by the solve queries in
Game 4.3.4. Note that our attack will not use decision queries as defined in the same
game.

There is a simple procedure to compute an isogeny between the curves EK and
EM := EK/⟨ϕK(M)⟩ and therefore ϕK(M) up to scalar, if solve queries are allowed
for points of arbitrary order. Recall that during a solve query in Game 4.3.4, an
adversary gets to submit points V ∈ E0[(p+ 1)/NK] to the challenger, who replies with
the j-invariant of E0/⟨K,V ⟩ and some additional torsion point images. Algorithm 4.1

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 101

describes how an adversary can recover ϕK(M) up to a scalar for arbitrary M ∈ E0[NM].
The algorithm recovers the isogeny from EK to EK/⟨ϕK(M)⟩ by using solve queries to
obtain all intermediate curves along this isogeny. This way, the adversary recovers the
isogeny EK → EK/⟨ϕK(M)⟩ one step at a time and therefore its kernel ⟨ϕK(M)⟩.

Algorithm 4.1: Computation of ⟨ϕK(M)⟩ using solve queries on points of
arbitrary order

Let {li}ni=0 be an integer sequence of all divisors of NM such that li+1/li is a
prime, li < li+1, with l0 := 1, ln := NM.

Input: EK , M ∈ E0[NM] and access to an oracle answering solve queries as
defined in Game 4.3.4.

Output: A generator of ⟨ϕK(M)⟩.
E(n) ← E0/⟨K⟩

1 for i = n− 1, . . . , 0 do
2 Query the oracle with the point Vi := [li]M and obtain the curve

E(i) := E0/⟨K,Vi⟩ = E0/⟨K, [li]M⟩ = EK/⟨[li]ϕK(M)⟩.
3 Find li+1/li-isogeny ϕi from E(i+1) to E(i).
4 return A generator of ker(ϕ0 ◦ · · · ◦ ϕn−1).

Lemma 4.3.7. Algorithm 4.1 returns λϕK(M), where λ ∈ Z is coprime to NM.

Proof. Let ψM be the isogeny from EK to EK/ϕK(M). Then the claim follows from
the observation that E0/⟨K, [li]M⟩ ∼= E0/⟨[li]K, [li]M⟩, since li is coprime to the order
of K.

Remark 4.3.8. Note that an attacker can easily change the attack to require fewer
queries. Instead of using one query for each intermediate curve, an attacker can choose
any factorisation f1 · · · ft of NM such that fi are roughly of equal size and query the
oracle with

[∏b
j=1 fi

]
M for b = 1, . . . , t. Then, the attacker is left to recover the isogeny

between any two consecutive queries, i.e. the isogenies of degree fi for i = 1, . . . , t, using
a meet-in-the-middle approach.

Game 4.3.4 does not restrict the points of E0[(p+ 1)/NK] that can be submitted to
the solve queries. However, in the context of the game, this attack can be easily thwarted
by answering a solve query only if the submitted point is of order (p + 1)/NK. This
property can be checked efficiently by the challenger. In Section 4.3.7, we discuss how
this polynomial-time attack and its countermeasures translate to the VOPRF protocol.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 102

Query points of order (p + 1)/NK. Next, we present how an attacker can retrieve
the necessary information even if they are only allowed to send solve queries on points of
order (p+ 1)/NK, i.e. if the challenger checks the order of a submitted point and only
replies to a query if the point is of order (p+ 1)/NK.

E0/⟨K,V ⟩

•

EK

E0

ϕM

ϕV ′

ϕV

ϕK

Fig. 4.8 Depiction of the isogenies of a solve query

Let ϕV denote the isogeny EK → E0/⟨V,K⟩ of degree (p+1)/NK and let ϕV = ϕV ′◦ϕM
be its decomposition into a degree (p+ 1)/(NKNM) and a degree NM isogeny. Our attack
aims to recover the image of multiple subgroups of E0[NM] under the isogeny ϕK , i.e. we
are interested in the kernel of the isogeny ϕM for different points V . The isogenies are
depicted in Fig. 4.8.

Recovering ϕV ′ from torsion point information. Let P,Q ∈ E0[(p + 1)/NMNK]
be the torsion point basis provided by the challenger and let V ∈ E0[(p + 1)/NK] be
linearly independent from P or Q. Then, we can use the torsion point images provided
during solve queries to compute ϕ̂′

V as follows.
Let P ′ := ϕV ◦ ϕK(P), Q′ := ϕV ◦ ϕK(Q) be the torsion point images provided by the

challenger. The adversary can compute ϕ̂V ′ as the isogeny from E0/⟨K,V ⟩ with kernel
⟨P ′, Q′⟩. Note that ⟨P ′, Q′⟩ ⊂ ker(ϕ̂V ′), because ϕ̂V ′ ◦ ϕV ′ = [(p+ 1)/NMNK] is the order
of the points P,Q. As V is linearly independent to at least one of P and Q, the other
inclusion follows from ⟨P ′, Q′⟩ spanning a subgroup of size (p+ 1)/NMNK.

Choosing PV , QV as a basis of E0[(p+1)/NK] such that [NM]PV = P+[(p+1)/NMNK]Q
and [NM]QV = [(p+ 1)/NMNK]P +Q, every point of the form PV + [i]QV or [i]PV +QV

will be linearly independent of P or Q.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 103

EK

•

•

•

EK/⟨ϕK(VeM/2)⟩ EK/⟨ϕK(Vi)⟩ EK/⟨ϕK(V1)⟩ EK/⟨ϕK(PM)⟩

Fig. 4.9 Naïve attack where isogenies of increasing length need to be recovered. The
blue lines represent the meet-in-the-middle computations.

As a consequence of ϕV ′ being easy to recover, we may assume that during a solve
query an attacker can send a point M of order NM to the challenger who returns
E0/⟨K,M⟩. We are left to recover the kernel of ϕM .

Naïve attack to recover ϕM . Next we describe an exponential attack that recovers
ϕ̂M using meet-in-the-middle (MITM) computations of increasing size. In the subsequent
part, we will introduce a trade-off between queries and computation costs that reduces
the complexity of the attack to subexponential.

Let PM , QM denote a basis of E0[NM]. For simplicity of exposition we treat NM as
a prime power and we write NM = ℓeM

M . The attack recovers ϕM : EK → EK/⟨PM⟩ by
recovering each of the eM intermediate curves one at a time.

The attacker starts by querying the solve oracle with two points V0 := PM and
V1 := PM + [ℓeM −1

M]QM . Note that the curves EK/⟨ϕK(V0)⟩ and EK/⟨ϕK(V1)⟩ are
ℓ2
M -isogenous, since they are both ℓM -isogenous to EK/⟨[ℓM]ϕK(V0)⟩ = EK/⟨[ℓM]ϕK(V1)⟩.

The attacker recovers the curve EK/⟨[ℓM]ϕK(V0)⟩, which is the first intermediate curve
on the ϕM isogeny path by computing the common neighbour of EK/⟨ϕK(V0)⟩ and
EK/⟨ϕK(V1)⟩.

The rest of the attacks proceeds similarly. The attacker queries the solve oracle on
the points Vi := PM + [ℓeM −i

M]QM , for i = 1, . . . , eM/2 and runs a MITM attack to recover
EK/⟨[ℓiM]ϕK(V0)⟩ given EK/⟨ϕK(Vi)⟩ and EK/⟨[ℓi−1

M]ϕK(V0)]⟩. This could be repeated
eM times to recover the entire isogeny ϕM . However, the attacker does not need to
recover the last part of the isogeny through this strategy, since it is faster to directly
compute the MITM between EK/⟨[ℓeM/2

M]V0⟩ and the starting curve EK . The attack with
the required meet-in-the-middle computations is shown in Fig. 4.9.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 104

E0

•

• •

• • • •

E0/⟨V0⟩ E0/⟨V1⟩ E0/⟨V2⟩ E0/⟨V3⟩ E0/⟨V2q−4⟩ E0/⟨V2q−3⟩ E0/⟨V2q−2⟩ E0/⟨V2q−1⟩

Fig. 4.10 The attacker queries the challenger on points corresponding to isogeny kernels
leading to the leaves of this binary tree

Note that the isogenies that need to be recovered using MITM grow at each step. To
recover the i-th intermediate curve, the attacker needs to compute an isogeny between
two curves that are ℓ(i+1)

M -isogenous, which takes roughly O(ℓ(i+1)/2
M).

Clearly, this attack can be optimised by recovering multiple steps of ϕM at a time,
and by making sure that the different MITM attacks that need to be executed have
similar complexity. We will discuss these improvements next.

Full attack with query-time trade-off

We can reduce the complexity of the naïve attack by introducing a trade-off between
queries and the cost of MITM computations. This is because the attacker recovers the
whole path between two isogenies during a MITM computation. Thus, it is possible to
recover more than one intermediate curve with a single (longer) MITM computation.
Moreover, the queries can be spaced out more in order to reduce the length of the
isogenies that have to be recovered using MITM strategies.

More formally, let 2q denote the number of queries that an attacker can (or wants
to) send to the challenger. For simplicity of this exposition, assume that 2em is divisible
by q + 2. The attacker chooses the Vi such that E0/⟨K,Vi⟩ correspond to curves that
are the leaves of a binary isogeny tree. The Vi should be chosen such that there is
an ℓ

2eM/(q+2)
M isogeny between any two siblings in the binary tree and the curve that is

ℓ
eM/(q+2)
M -isogenous to both leaves is their parent in the tree. Again, the parent and its

sibling should be ℓ2eM/(q+2)
M -isogenous, etc.

Remark 4.3.9. Note that it is easy to choose such a set of points Vi. Let PM , QM be a
basis of E0[ℓeM

M]. The attacker can choose

V0 := PM

Vi := Vi−2⌊log i⌋ + [ℓeM −(⌊log i⌋+1)2eM/(q+2)
M]QM

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 105

Lemma 4.3.10. Let E0/⟨Vi⟩ and E0/⟨Vj⟩ be ℓkM isogenous curves. Then EK/⟨ϕK(Vi)⟩
and EK/⟨ϕK(Vj)⟩ are ℓkM -isogenous curves too.

Proof. This follows from NK = deg(ϕK) being coprime to ℓkM .

In particular, {ϕK(PM), ϕK(QM)} is a basis of EK [NM] and EK/⟨ϕK(Vi)⟩ are the
leaves in a binary tree where all siblings are ℓ2eM/(q+2)

M isogenous.
After querying the oracle to obtain EK/⟨ϕK(Vi)⟩ = E0/⟨K,Vi⟩, an attacker iteratively

recovers parent nodes in the binary tree using a meet-in-the-middle approach. Any
siblings in the tree correspond to curves that are ℓ2eM/(q+2)

M -isogenous, thus this can be
done in O(ℓeM/(q+2)

M) time and memory. Note that the root of the binary tree is recovered
after 2q − 1 such meet-in-the-middle instances, i.e. the number of internal nodes in the
binary tree. This root of the binary tree is by construction ℓ

2eM/(q+2)
M -isogenous to E0.

This isogeny can be recovered using one final meet-in-the-middle search. An attacker
recovers and saves the intermediate nodes and isogenies from EK to the leaf EK/ϕK(V0).
Clearly, the kernel of this isogeny is ϕK(V0).

In summary, we can recover the isogeny from EK → EK/⟨ϕK(PM)⟩ for any PM with
2q queries to the challenger and 2q instances of meet-in-the-middle isogeny computations
with the cost of O

(
ℓ
eM/(q+2)
M

)
time and memory each.

Remark 4.3.11. If ℓM = 2, we get q bits for free, i.e. one additional bit per layer of the
binary tree. This is because every parent node in the binary tree has three outgoing
edges: two edges leading to its children and one edge leading towards the root. Thus,
having recovered both paths to the children an attacker gets one step towards the root
for free.

4.3.6 Analysis of the attack

The proposed attack is composed of two stages: firstly the generators of ⟨ϕK(PV)⟩,
⟨ϕK(QV)⟩, and ⟨ϕK(RV)⟩ for three pairwise linearly independent points PV , QV , RV are
recovered, and then these points are used to recover ϕK(M) for any possibly challenge
M ∈ E0[NM].

The second part consists mostly of pairing evaluations and discrete log computations
in groups of smooth order. Thus, it runs in polynomial time. The complexity of the
attack is dominated by the complexity of recovering the subgroups during the first step.

The algorithm proposed to solve this first step in the presence of countermeasures
against our polynomial time attack, as presented in the previous section, offers different
trade-offs between computation costs and solve queries. As little as two solve queries

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 106

can be enough to recover ϕM with two meet-in-the-middle computations. If we write
NM ≈ 2m, each meet-in-the-middle requires O(2m/3) operations. This is already an
improvement over the standard meet-in-the-middle attack that requires O(2m/2) time.
The OPRF protocol targets 128 bits of security, which corresponds to m ≈ 5λ/2 = 320.
Thus six queries (two per generator) are enough to reduce the security to m/3 = 106 bits.
The number of solve queries can be significantly increased to obtain a faster attack. Note
that OPRF protocols are usually used for applications such as private set intersection
that support a large number of queries. Thus, common scenarios where the OPRF may
be used would easily enable an attack with many queries.

Since OPRFs are used in protocols where the clients interact several times with the
server, we can expect the attacker to be able to run several OPRF instances. Thus,
we model a solve query as an oracle query, where it has a constant complexity. Then,
the overall complexity of recovering a generator of ⟨ϕK(PV)⟩ with 2q solve queries is
O(2m/(q+2)+q) operations, since the attacker needs to compute 2q meet-in-the-middle
instances between curves which are 22m/(q+2)-isogenous. In terms of the security parameter,
that complexity is equivalent to O(25λ/2(q+2) + q), since the OPRF protocol suggests using
m ≈ 5λ/2. If the number of solve queries is unrestricted, the complexity of the attack is
minimised for q =

√
5λ/2− 2, which gives an overall complexity of O(2

√
10λ−2), or using

the L-notation L[1/2, c], for some constant c. This shows the attack is subexponential,
assuming that the solve query complexity is O(1).

At 128-bit of security, our attack becomes feasible with around 64 solve queries, when
it requires 64 meet-in-the-middle computations between curves which are 280-isogenous,
i.e. each MITM has a complexity of 240 operations. If the number of solve queries is
unrestricted, an attacker can use for instance 218 solve queries to reduce the overall
complexity of the attack to 218 MITM computations, each with a complexity of roughly
216 operations.

The high-level attack does not generally require much memory. Storing the isogeny
tree in memory is not particularly demanding, especially if the tree is traversed in
a depth-first manner. In particular, memory is used only to store the part of the
recovered isogeny, together with the two curves between which the meet-in-the-middle
needs to be computed. However, a more significant amount of memory is used by
the meet-in-the-middle computations, and indeed we see that the memory used by a
single meet-in-the-middle generally outweighs the memory used by the rest of the attack.
Meet-in-the-middle computations between curves which are 2n-isogenous require to store
2n/2 curves. Thus, their memory requirements are given by 2 · 2n/2 log p, since each
curve can be represented by its j-invariant in Fp2 . For common security levels, such as

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 107

those proposed by Boneh, Kogan and Woo [BKW20], the memory requirements remain
moderate. In Section 4.3.8, we show that indeed our attack requires about 3 GB of
memory to break 128 bits of security. However, for a more complete asymptotical analysis,
we note that the memory requirements may become a bottleneck for the attack against
higher security levels. In those instances, it may be preferable to substitute the meet-in-
the-middle approach with the van Oorschot-Wiener algorithm [vW99]. This reduces the
memory consumption at the cost of higher asymptotic complexity. In particular, the vOW
algorithm requires O(23n/4) computations (compared to O(2n/2) of MITM) to recover
the halfway curve between curves which are 2n-isogenous. Thus, while the concrete
performance of the attack may differ, its asymptotic complexity remains subexponential.

4.3.7 Attack on the SIDH-based OPRF

Having presented an attack on one of the security assumptions underlying the isogeny-
based OPRF by Boneh, Kogan and Woo, we investigate how an adversary can use the
same method to attack the OPRF itself.

We will show that a malicious client can send carefully crafted queries to the server
for which it can produce all necessary NIZK proofs required by the protocol that was
summarised in Section 4.3.3. However, after some offline computation analogously to
the attack on the auxiliary one-more SIDH assumption outlined in the previous section,
the malicious client can evaluate the OPRF on any input without the help of the server.
Even though the malicious client does not recover the server’s secret key k, this breaks
the pseudorandomness of the OPRF, see Definition 4.3.1. We will use the notation
introduced in Section 4.3.3 to refer to the different isogenies of the OPRF.

A malicious client will not use a hashed input to obtain the kernel for the first isogeny
ϕm : E0 → Em but rather choose the kernel of this first isogeny. The choice is analogous
to the points from E0[NM] that the attacker submitted to the solve queries in the attack
of the previous section. In other words, instead of computing Em as E0/⟨P + [H(x)]Q⟩
for some input x, the malicious client chooses a point Vi and computes Em as E0/⟨Vi⟩ in
the i-th evaluation of the OPRF.

The rest of the protocol is executed honestly. The malicious client can pick some
r ∈ NR to blind their maliciously chosen Em. And it can compute the torsion point
information for the server honestly since it knows the kernel of the isogeny from E0 to
Emr = Em/⟨ϕm(PR) + [r]ϕm(QR)⟩. In particular, the malicious client will always be able
to produce the valid non-interactive zero-knowledge proof of knowledge for the kernel of
E0 → Emr and the correct computation of the torsion point information.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 108

Following through with the rest of the OPRF protocol, the malicious client obtains the
j-invariant of the curve E0/⟨Vi, K⟩ after unblinding. Here, K denotes the server’s secret
PK + [k]QK again. This is exactly what corresponds to a solve query in the auxiliary
one-more SIDH game, Game 4.3.4.

Now the malicious client can proceed as in the attacks on the auxiliary one-more
SIDH assumption.

In the attack using points of arbitrary order dividing NM, the malicious client recovers
the isogeny EK → EK/⟨ϕK(P)⟩ = E0/⟨K,P ⟩ and therefore ⟨ϕK(P)⟩ for any P ∈ E0[NM]
in polynomial time. This is done by submitting points of lower order, i.e. choosing
the isogeny E0 → Em shorter, to recover the isogeny stepwise. We have shown in a
previous section that after recovering three such isogenies corresponding to pairwise
linearly independent points P,Q, P +Q a malicious client can compute E0/⟨M,K⟩ for
any M ∈ E0[NM].

Then, the malicious client can evaluate the OPRF on arbitrary inputs x as follows:
They compute the point M := PM + [H1(x)]QM as in the honest evaluation and then
they compute j(E0/⟨M,K⟩) directly as described in our attack. Hashing this j-invariant
together with the input x and public information of the server yields the output of the
OPRF. Note that the malicious client does not even need to interact anymore with the
server to evaluate the OPRF on arbitrary inputs.

Clearly, this breaks the pseudorandomness property of an OPRF, see Definition 4.3.1,
as a malicious client will be able to predict the output of the OPRF for any input after
the initial queries.

Remark 4.3.12. The SIDH-based OPRF protocol by Boneh, Kogan and Woo does not
prohibit malicious clients from using points of smaller order dividing NM, i.e. from using
a shorter isogeny E0 → Em. However, this attack could be thwarted if the server checked
that the submitted curve is of correct distance from the starting curve. A simple test
using pairing computations on the provided torsion point information may be tricked by
an adversary, but the NIZK proof of the client could be extended to include a proof that
the client’s witness, i.e. the kernel of the isogeny E0 → Emr, is of full order NMNR.

Even if countermeasures for this polynomial-time attack are put in place, we are left
with the following subexponential attack when points of full order are used.

The client evaluates the OPRF on a certain number of inputs that correspond to
solve queries in the auxiliary one-more game. More precisely, the client chooses the
kernel of their first isogeny as in the subexponential attack of the previous section. After
blinding, evaluation of the server and unblinding, the client obtains what would have
been the result of a solve query in the previous section. After the offline computation

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 109

which, using meet-in-the-middle routines, recovers the binary tree as described in the
attack with query-time trade-off, the client obtains torsion point images of E0[NM] up
to scalar under the isogeny E0 → EK := E0/⟨PK + [k]QK⟩. As before, this is enough to
compute E0/⟨M,K⟩ for any M ∈ E0[NM], allowing the client to compute the OPRF on
arbitrary inputs and therefore breaking the pseudorandomness of the OPRF.

Possible countermeasures

In the case where the degree of the client’s isogeny is forced to be NMNR, the proposed
attack has subexponential complexity, and thus possible countermeasures may include
increasing the parameter sizes. However, the solve queries to time trade-off makes this
approach rather costly. If the number of possible solve queries is unrestricted, to get 128-
bit security one would need the isogeny degree NM to be ≈ 2(1282). This can be partially
lowered by guaranteeing security only up to a certain number of queries. Given a limit of
2Q queries, the exponent m needs to guarantee that min{2

√
m−2, 2m/(Q+2)+Q} is at least 2λ.

Thus, for 128-bit security, with Q = 64 the isogeny degree NM would have to be increased
to ≈ 24224, whereas Q = 32 would require a degree NM ≈ 23264. Note that handling 232

queries may well be within the scope of several OPRF applications, and isogenies of the
given size may become impractically large. Their feasibility, however, depends on the
specifics of the OPRF application and its time and bandwidth requirements. Thus, while
the attack is subexponential (assuming O(1) complexity for solve queries), increasing the
parameter size comes at a significant performance and communication cost.

Therefore, it is important to consider possible algorithmic countermeasures. Firstly,
note that the attacker submits seemingly valid requests, so the server cannot stop such
interactions. Even if the server did want to prevent these requests, it may not be able
to detect them. This is because the attacker only submits the image curve and some
torsion point images under an isogeny with chosen kernel.

However, the attack strongly depends on the attacker choosing the point V . If the
input points V were randomised, the attack as such could not work. The OPRF protocol
requires that such points are obtained via hashing the client’s PRF input x, but it
does not enforce it. Hence, a possible countermeasure to the proposed attack would be
requiring the client to provide a zero-knowledge proof that the curve Emr is not only the
result of honest isogeny computations, but also that the kernel of ϕm is the result of some
hash function. However, we are not aware of a way to prove such a statement efficiently.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 110

4.3.8 Proof of concept implementation

We implemented our subexponential attack in SageMath to demonstrate the correctness
of the algorithm and prove its feasibility.1 This implementation is to be regarded only as
a proof-of-concept version and several subroutines could be further optimised. Improving
their performance and using lower-level languages, such as C, as well as platform-specific
instructions, such as AVX, could significantly reduce the running time of the attack.
Further, more recent versions of SageMath since publication of the this attack offer
significantly faster isogeny evaluation.

The proposed attack has two distinguishing features that help its implementation:
it can be easily parallelised, and it has very low memory requirements. Indeed, the
computations to recover the generators of ⟨ϕK(PV)⟩, ⟨ϕK(QV)⟩ and ⟨ϕK(PV +QV)⟩ are
independent of each other. It is also possible to achieve a higher degree of parallelisation.
Within each computation to recover a single generator, the meet-in-the-middle operations
within each layer of the tree are also independent of each other, and they can thus be
parallelised. In this case, the tree is generated layer-by-layer in a breadth-first manner.
Note that while this may require a sizeable amount of memory to fully store an entire
layer, the memory requirements are hardly the bottleneck. An attack with 220 queries
requires to store, at most, 219 curves. Since an elliptic curve can be represented by its
j-invariant, the memory limit is 219 · 2 log p. With a prime of size ≈ 21500, as proposed in
the OPRF protocol, the memory limit is about 196 MB. Alternatively, it is possible to
traverse the tree in a depth-first manner to further lower the memory requirement, but
this may limit the degree of parallelisation. Our implementation provides parallelised
meet-in-the-middle computations with a configurable number of cores in parallel.

Results

The majority of the attack’s subroutines have polynomial complexity and they are
optimised enough that their performance does not affect the overall running time. The
building block that most affects the performance of the attack is the meet-in-the-middle
computation. Indeed, the timings of the attack are directly correlated to the timing of a
single meet-in-the-middle computation and the total number of queries. The memory
requirements of the attack are given by the amount of memory needed for a single
meet-in-the-middle, which in turn depends on the distance between the two curves. For
parallelised implementations of the attack, the memory requirements correspond to as
many meet-in-the-middle computations as there are parallel instances.

1Source code available at https://github.com/isogenists/isogeny-OPRF.

https://github.com/isogenists/isogeny-OPRF

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 111

Table 4.1 shows the running times at different security levels on an Apple M1 CPU
clocked at 3.20 GHz with 4 CPUs running in parallel. Up to 32 bits of security, the
results come from running the entire attack, whereas for higher security levels the results
are estimated based on those of a single MITM computation. The estimated time t is
computed as

t = 3(M +Q)2q
C

, (4.1)

where M is the average running time of a MITM computation, Q is the average running
time of a solve query computation, 2q is the number of queries and C is the number of
CPUs running in parallel. This formula follows from the fact that there are 2q MITM
computations and 2q solve queries for each generator recovery, and three of those are
needed. Running computations at lower security levels and computing Eq. (4.1) does
indeed estimate the running time accurately.

We estimate that our non-optimised implementation running on a laptop with 4
CPUs can break 64 bits2 of security in less than two days and 128 bits of security in
about 5 years. If the same attack was performed with more powerful hardware and an
optimised implementation, the running time could easily be reduced.

Lastly, note that in the implementation solve queries are simulated locally. A real
attack would interact with the server, and thus the attack time would not include the
time to compute a solve query. For completeness, Table 4.1 reports the running time of
the entire implementation, including the solve queries.

4.3.9 Trusted setup of the starting curve

Boneh, Kogan and Woo suggest using a random supersingular elliptic curve as the starting
curve in their OPRF protocol. Unfortunately, there is currently no known algorithm
to generate a random supersingular elliptic curve such that its endomorphism ring is
unknown to the person who generated it. Some failed attempts to solve this problem
have been studied in [LB20, CPV20, BBD+22]. However, a distributed trusted setup
is often proposed as a workaround, and the tools necessary to practically run such a
distributed trusted-setup ceremony were developed in [BCC+22].

This motivates the question whether a trusted third party or distributed trusted-setup
is needed to generate the starting curve E0.

2We report the results for eM = 169, which corresponds to λ = 67. That is because our implementation
requires (q + 2) | eM , and 169 allows choosing q = 11. The requirement that (q + 2) | eM is a limitation
of the implementation and not of the attack itself.

4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies 112

Parameters MITM Running Time
log p λ eM q Distance Memory (kB) (s)
112 8 20 3 8 3.5 15
216 16 40 6 10 13.8 212 (3.53 m)
413 32 80 8 16 211.4 1,371 (22.85 m)
859 67 169 11 26 14,073 163,869 (1.89 d)

1,614 128 320 18 40 3,384,803 174,709,440 (5.54 y)

Table 4.1 Results of our proof-of-concept implementation running on an Apple M1
CPU clocked at 3.20 GHz with 4 CPUs in parallel and SageMath version 9.2. Results
for λ = 128 are estimated based on the average running time of a meet-in-the-middle
computation. Parameters include the size of the prime p, the security level λ, the
degree of the isogeny written as NM = 2eM , and the number of queries 2q. The MITM
section reports the distance between the curves and memory needed to compute a single
meet-in-the-middle.

Phrased differently, would choosing the starting curve E0 and therefore knowledge of
its endomorphism ring allow a malicious server, client or third party to break security
properties of the (V)OPRF?

We first discuss whether a server may know the endomorphism ring of the starting
curve E0. The security proof of the OPRF relies on the hardness of finding two distinct
isogenies (up to isomorphism) of the same degree from E0 to a second curve [BKW20,
Lem. 29]. If the server chooses the starting curve and therefore knows its endomorphism
ring, they are able to produce such collisions by breaking the collision resistance of the
CGL hash function as described in [PL17, EHL+18]. To guarantee provable security, a
server should therefore not choose the starting curve.

However, breaking the verifiability insured by the zero-knowledge proof [BKW20,
Protocol 17] or the weak binding property [BKW20, Game 3] of the protocol seems
harder than finding collisions. Indeed, the server would need to produce two isogenies of
degree dividing NK such that both isogenies have the same action on the NV-torsion for
a chosen starting curve. We leave adapting the security proofs or finding an attack on
the zero-knowledge proof for future work.

We now argue that any other party, either the client or a third party, cannot choose
the curve E0 without compromising the security of the protocol. In [dQKL+21], the
authors describe algorithms for finding a secret isogeny when torsion information is
provided. Their algorithms can be split into two categories: one where the starting
curve has j-invariant 1728 and one where the starting curve is a so-called trapdoor curve

4.4 Conclusion 113

from which one can solve the isogeny problem faster than generic meet-in-the-middle
algorithms.

Definition 4.3.13. Let p be a prime and A,B be coprime smooth integers. A tuple (E, T)
is called a (A,B) trapdoor curve if the trapdoor T encompassing required information to
run torsion point attacks from [dQKL+21] allows one to solve any instance of the SSI-T
problem with secret isogeny of degree A from E and torsion point images of E[B] in
polynomial time.

When B ≈ A2 or larger, then one can construct (A,B) trapdoor curves from which
one can retrieve secret isogenies of degree A in polynomial time, if the action on the
B-torsion is known [dQKL+21, Thm. 15].

Attacks from the special starting curve with j-invariant 1728 do not apply here, since
the starting curve is required to have an endomorphism ring which is unknown to the
server. However, trapdoor curves have the property that without extra information they
are difficult to distinguish from a random supersingular curve.

Suppose that a malicious party generates the starting curve E0 in the following way.
They generate a curve E ′ which is a trapdoor (NK, NVNR)-curve and then perform a
random isogeny walk of degree NMNR (of which they keep track) to obtain E0 which is
sent to the server. Now the malicious party poses as a client and instead of honestly
complying with the protocol, they use E ′ as Emr. They can prove knowledge of a suitable
isogeny and torsion point images as they know an isogeny of the correct degree from E0.
Then the server computes Emrk and reveals the action on the NVNR-torsion. Since Emr
was chosen to be a trapdoor curve and NVNR ≈ N2

K, the malicious party can retrieve
this isogeny in polynomial time.

Such an attack can be thwarted by applying a trusted setup in which E0 is a random
curve with unknown endomorphism ring. In [BCC+22], an efficient way to perform
a distributed trusted setup is described, ensuring that, if at least one participant is
honest, the setup can be trusted. In that case, torsion point attacks are not applicable.
Another countermeasure would be to increase NK substantially making the construction
of (NK, NVNR)-curves infeasible. However, this variant would be susceptible to potential
future improvements of trapdoor curve constructions.

4.4 Conclusion

In this chapter, we investigated the hardness of some isogeny “one-more” assumptions
that were used in the security proofs of undeniable signatures and oblivious pseudorandom
functions.

4.4 Conclusion 114

First, we showed that the OMSSCDH and 1MSSCDH problems can be solved with
non-negligible probability by a polynomial time attacker. Jao and Soukharev [JS14]
proposed an undeniable isogeny-based signature scheme based on these assumptions.
We presented an attack against the unforgeability and invisibility properties of the
Jao-Soukharev protocol, showing that an adversary with access to a signing oracle is able
to forge arbitrary signatures at lower cost than expected for a given security parameter, λ.
To summarise, this is achieved by computing a near-collision on the public hash function
H and guessing an ℓ2k

B -isogeny between an honest signature produced by the oracle for
one message to the target forgery curve. The classical cost for this attack is 24λ/5, with
the hash function length equal to 2λ. We postulate that the quantum cost for this attack
is 26λ/7. These attacks imply that parameters need to be increased by 25% to achieve the
same classical security level. Furthermore, we argue that the equivalence drawn in [JS14]
between unforgeability and the OMSSCDH problem is incorrect, and hence that the
security proofs in that paper are incorrect. Yet, we note that the inclusion of a hash
function increases the difficulty of forgery, assuming the hash function is cryptographically
secure, as the adversary is forced to search for a message that will result in a specific
curve, rather than querying the oracle indiscriminately.

Second, we performed a thorough cryptanalysis of the SIDH-based oblivious pseudo-
random function by Boneh, Kogan and Woo and the auxiliary one-more assumption this
OPRF’s security proof relies on. We show how an adversary can win the corresponding
security game in polynomial time, or in presence of some additional countermeasures
in subexponential time. The attack on the underlying hardness assumption leads to an
attack on the pseudorandomness of the OPRF itself. We show how a malicious client can
extract enough information from a number of initial executions of the OPRF protocol to
subsequently evaluate the OPRF on arbitrary inputs without further interaction with
the server. This attack breaks the pseudorandomness of the OPRF for the security
parameters proposed by Boneh, Kogan and Woo. Moreover, we discussed the security
implications following from a lack of a trusted setup (which was not required in the
original proposal) when generating the starting curve parameter in the SIDH-based
OPRF. We show how a client or a third party generating the starting curve can backdoor
it to retrieve the server’s secret key, while a malicious server generating the starting curve
could break another assumption made in the security proof of the OPRF.

Finally, we want to point out that the undeniable signature scheme by Jao and
Soukharev and the SIDH-based OPRF by Boneh, Kogan and Woo are also shown
to be insecure by recent SIDH attacks [CD22, MM22, Rob22a] which were developed

4.4 Conclusion 115

after the results of this chapter. However, these attacks break the protocols even more
fundamentally as they allow various parties to recover each other’s private keys.

Overall there have been very few proposals for post-quantum OPRFs. Given the
large communication cost of the CSIDH-based OPRF by Boneh, Kogan and Woo (500kB
per evaluation), and that the lattice-based OPRF by Albrecht, Davidson, Deo and
Smart [ADDS21] is also much less efficient than its classical counterparts would be, it is
still an open problem to construct an efficient post-quantum OPRF. In case building
such a general purpose efficient (V)OPRF remains elusive, it would alternatively be
interesting to instead propose post-quantum alternatives for concrete applications, e.g.
for anonymous authentication schemes.

CHAPTER 5

On the Isogeny Problem with Torsion
Point Information

5.1 Introduction . 117
5.2 Preliminaries . 119

5.2.1 Connecting ideals and the KLPT algorithm. 119
5.2.2 LLL lattice reduction. 121
5.2.3 The reduction by GPST . 122

5.3 Reducing isogeny finding to endomorphism ring computation . . . 123
5.3.1 Evaluating non-smooth degree isogenies . 123
5.3.2 Computing isogenies using torsion information 125
5.3.3 Computational example. 130

5.4 Reduction in the presence of countermeasures against SIDH
attacks . 132

5.5 Relevance to isogeny-based cryptography . 134

In this chapter, we present a new reduction from the problem of computing an isogeny of
a specific degree to the endomorphism ring computation problem, if certain torsion point
information is provided. The work presented in this chapter is an amended version of
what was published previously as

Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, and Yan Bo Ti. On the isogeny
problem with torsion point information. In Goichiro Hanaoka, Junji Shikata, and Yohei
Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS, pages 142–161. Springer,
Heidelberg, March 2022.

Compared to the published version we further show that the reduction still applies for
SIDH-like schemes that mask their degree or torsion point images as has been suggested
as countermeasures to thwart the recent attacks on SIDH.

5.1 Introduction 117

5.1 Introduction

There are infinitely many isogenies E1 → E2 between two given curves, but for attacking
isogeny-based primitives such as SIDH one is required to recover an isogeny φ : E1 → E2 of
a particular degree. Generic algorithms that compute an isogeny from the endomorphism
rings are unlikely to return an isogeny of the degree required.

In [GPST16, Sect. 4], Galbraith, Petit, Shani and Ti presented a polynomial-time
reduction for the problem of finding the secret isogeny in SIDH to the problem of
computing the endomorphism ring of a supersingular elliptic curve. Their method
exploits the fact that secret isogenies in SIDH are of degree approximately p1/2 which is
relatively small compared to the diameter of the supersingular ℓ-isogeny graphs involved.
In the case where the isogeny one wishes to recover is not of particularly small degree, as
is the case for example in B-SIDH [Cos20], SÉTA [DDF+21] or instantiations of SIDH
with secret isogenies of larger degree, the observation no longer holds and the reduction
algorithm of [GPST16] no longer applies.

In this chapter, we present a more general reduction algorithm that generalises to
all SIDH-type schemes. More precisely, assuming the generalised Riemann hypothesis
(GRH), we provide a polynomial-time (in log p) algorithm that recovers an isogeny with
given N2-torsion point images between two supersingular elliptic curves of a specific
degree N1, given their endomorphism rings. More formally, let d be the minimal degree
of any isogeny between two isogenous supersingular elliptic curves E1 and E2. Then, our
algorithm solves the following task efficiently, whenever N1 < dN2/16.

Task 5.1.1. Let N1, N2 be coprime integers and let φ : E1 → E2 be a secret isogeny of
degree N1 between two supersingular elliptic curves. Let PB, QB be a basis of E1[N2].
Given End(E1), End(E2), φ(PB), and φ(QB), find an isogeny φ′ : E1 → E2 of degree N1

such that φ|E1[N2] = φ′
|E1[N2].

Note that this can be seen as a reduction of the SSI-T problem (not just for SIDH
parameters) to the problem of computing endomorphism rings of supersingular elliptic
curves. Since SIDH-type schemes such as B-SIDH tend to use balanced parameters, that
is where N1 ≈ N2, the condition that N1 < dN2/16 is very mild.

The main idea behind our algorithm is the following. Isogenies from E1 to E2 form
a Z-module M of rank 4. A basis of M can be computed using an algorithm due to
Kirschmer and Voight [KV10] (or the KLPT algorithm [KLPT14]). Then, one computes
an LLL-reduced basis ψ1, ψ2, ψ3, ψ4 of M . We show how to evaluate ψi(PB), ψi(QB)
for i = 1, . . . , 4 given φ(PB) and φ(QB), where the ψi in general do not have a smooth
degree.

5.1 Introduction 118

Since φ = x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4 for some xi ∈ Z, the provided torsion point
images yield 4 linear equations in 4 variables, x1, x2, x3, x4, modulo N2. This is because
torsion point images can be represented by a 2× 2 matrix with entries from Z/N2Z and
each entry corresponds to one equation. We will show that this system of equations has
a unique solution for xi modulo N2 which we can efficiently compute. Since the ψi form
an LLL-reduced basis, we will see that the absolute value of the coefficients xi can be
bounded by N2/2 for N1 < dN2/16. Finally, this can be lifted to a solution for xi ∈ Z
and thus yields the secret isogeny.

The reduction presented in this chapter can be seen as an extension of previous work
by Kohel, Lauter, Petit and Tignol [KLPT14] and Wesolowski [Wes22b] which allows
to compute an isogeny (of no specific degree) between two supersingular elliptic curves,
whenever the endomorphism rings of the curves are known. Note that Kohel et al. provide
a heuristic polynomial-time algorithm for this reduction, whereas Wesolowski shows that
this reduction works in polynomial-time in general assuming GRH only.

A unique trait of SIDH is that it reveals auxiliary points, which are the images of
certain torsion points under the secret isogeny. Since publication of the conference version
of this work at PKC 2022 [FKMT22], a series of papers by Castryck and Decru [CD22],
Maino and Martindale [MM22], and Robert [Rob22a] broke SIDH and various derivatives
such as B-SIDH or SÉTA efficiently by using the auxiliary points published in the
protocols. The methods described in this chapter also require these points for the
reduction. Thus, at a first glance it might seem that the reduction presented in this
chapter has lost its relevance. However, apart from leading to a better understanding of
the relation between foundational problems in isogeny-based cryptography, it is easy to
construct parameter sets for which our reduction applies but the recent SIDH attacks
do not. Further, countermeasures to thwart the attacks by masking the degree and/or
the auxiliary points have been proposed [Mor22, Fou22]. We show how our reduction
extends to protocols deploying these countermeasures.

Computing endomorphism rings and then applying our reduction gives rise to an
attack against SIDH-like schemes. This attack provides a lower bound on the size of
the prime p of the underlying finite field. For B-SIDH this shows that the size of the
prime p is tight and cannot be lowered significantly, while simultaneously maintaining
the claimed security level. This was particularly relevant at the time the results were
first published predating recent SIDH attacks [CD22, MM22, Rob22a], but note that by
using a starting curve of unknown endomorphism ring and masking the torsion point
images, B-SIDH is not (yet) considered broken by recent attacks.

5.2 Preliminaries 119

The attack arising from our reduction has a similar classical runtime as a generic
meet-in-the-middle algorithm but is essentially memory-free, whereas meet-in-the-middle
requires an exponential amount of memory. The quantum version of our attack is
dominated by the computation of endomorphism rings of supersingular elliptic curve and
has a much better runtime than previously known quantum attacks (O(p1/4) [BJS14]
compared to O(p1/2) [JS19]). Furthermore, our attack does not suffer from issues arising
from quantum memory, which was argued to be a problem for Tani’s claw finding
algorithm [JS19].

Chapter outline. In Section 5.2, we recall some background on the KLPT and LLL
algorithms as well as a description of the related reduction by Galbraith, Petit, Shani, and
Ti [GPST16]. In Section 5.3, we give algorithms to evaluate non-smooth degree isogenies
and to compute an isogeny of a specific degree between two supersingular elliptic curves,
given their endomorphism rings and certain torsion point information. In Section 5.4, we
will address the implications of the attacks that used auxiliary points to break SIDH.
Finally, we discuss the impact of this chapter’s content on isogeny-based cryptography in
Section 5.5.

5.2 Preliminaries

In this section, we briefly recall some consequences of the algorithm by Kohel, Lauter,
Petit and Tignol (KLPT) [KLPT14] and the LLL lattice reduction [LLL82]. Moreover,
we sketch a related algorithm from [GPST16] which computes an isogeny of specific
degree between two supersingular elliptic curves with known endomorphism rings, if the
degree of the sought isogeny is sufficiently small.

5.2.1 Connecting ideals and the KLPT algorithm

Let Bp,∞ be a quaternion algebra ramified at p and at infinity (Definition 2.2.22). Let
O1 and O2 be maximal orders in Bp,∞. Then the quaternion path problem asks for a
left ideal I connecting O1 and O2, i.e., a left ideal I of O1 which is also a right ideal
of O2. This is the quaternion analogue of the pure isogeny problem under Deuring’s
correspondence described in Section 2.2.6. We have the following result.

Lemma 5.2.1. [KLPT14, Lem. 8] Let O1 and O2 be maximal orders in Bp,∞. Then
the intersection O1 ∩ O2 has the same index M in O1 and O2. Furthermore,

I(O1,O2) := {α ∈ Bp,∞ |αO2α ⊂MO1}

5.2 Preliminaries 120

is a left ideal of O1 and a right ideal of O2 of reduced norm M . I(O1,O2) can be computed
in polynomial time.

Lemma 5.2.1 shows that one can compute a connecting ideal between two maximal
orders efficiently. However, this ideal will not have smooth norm in general. In [KLPT14],
the main algorithm shows how to compute an equivalent left ideal (see Definition 2.2.33)
of O1 of norm ℓk, where ℓ can be any small prime number.

KLPT Algorithm. We will not recall all technical details of the KLPT algorithm
here and instead we refer to [KLPT14, DKL+20]. However, we briefly sketch the different
steps of the algorithm. Let I be the given left-ideal of O1. By picking random elements
α ∈ I until the norm of α is a prime N and then considering the ideal Iα/Norm(I) which
is equivalent to I and of Norm(α), one may assume that I is an ideal of prime norm N .
Next, one picks β ∈ I at random such that I is generated by N and β in O1. Both steps
are easy and can be done very efficiently. Next, one factors β = γδ mod N for some
γ ∈ O1, where Norm(γ) = Nℓa for some a ∈ Z≥0, and δ ∈ Zj + Zij, where i, j ∈ Bp,∞

are the elements such that i2 = −1 and j2 = −p. The core of the KLPT algorithm is
then to lift δ to a pair (λ, δ′) ∈ Z×O1 such that δ′ = λδ mod N and Norm(δ′) = ℓb for
some b ∈ Z≥0. Since I is generated by N and γδ′, the ideal Iγδ′/N is equivalent to I
and of norm ℓa+b as desired. Note that the KLPT algorithm is only heuristic, but that a
variant of it was proven rigorously assuming only GRH by Wesolowski [Wes22b].

Let E1, E2 be supersingular elliptic curves with endomorphism rings O1 and O2,
respectively. Then the set of isogenies from E1 to E2 is a left O1-module and a right
O2-module. In particular, they form a Z-lattice of rank 4 [Voi21, Lem. 42.1.11]. By the
following lemma, the Z-lattice is isomorphic to a connecting left ideal I as an O1-module.

Lemma 5.2.2. [Voi21, 42.2.8] Let Hom(E2, E1) denote the set of isogenies from E2 to
E1 and let O1 and O2 denote the endomorphism rings of E1 and E2, respectively. Let
I be a connecting ideal of O1 and O2 and let ϕI : E2 → E1 denote the corresponding
isogeny. Then the map ϕ∗

I : Hom(E1, E2) → I, ψ 7→ ψ ◦ ϕI is an isomorphism of left
O1-modules.

Since the KLPT algorithm computes a connecting ideal between two maximal orders,
Lemma 5.2.2 implies that one can compute a Z-basis of Hom(E1, E2). However, the
degree of these isogenies might not be smooth and it is not obvious that one can evaluate
them efficiently. In Algorithm 5.1, we will show that one can evaluate these isogenies on
points efficiently using the KLPT algorithm.

5.2 Preliminaries 121

5.2.2 LLL lattice reduction

Next, we recall some basic facts about lattice reduction, which aims to transform an
arbitrary input basis into a basis of “higher quality”. In the following, we are interested
in bases that are close to orthogonal.

Let B := (b1, . . . , bn) be the basis of a lattice L, let πi denote the projection onto
span(b1, . . . , bi−1) for i = {1, . . . , n} and let B∗ := (b∗

1, . . . , b
∗
n) be the Gram–Schmidt

orthogonalisation of B, where b∗
i = πi(bi). Intuitively speaking, a good basis is one in

which the sequence of Gram–Schmidt norms ∥b∗
1∥, ∥b∗

2∥, . . . , ∥b∗
n∥ does not decay too fast.

The Lenstra–Lenstra–Lovász (LLL) reduction calculates a short and nearly orthogonal
lattice basis for any lattice in polynomial time [LLL82]. We recall a more precise statement
in the following proposition using the Gram–Schmidt coefficients µi,j := ⟨bi,b

∗
j ⟩

⟨b∗
j ,b

∗
j ⟩ .

Proposition 5.2.3. The LLL lattice reduction with factors (η, δ), where δ ∈ (0.25, 1)
and η ∈ [0.5,

√
δ], provides in polynomial time a basis B = (b1, . . . , bn) that is size-reduced

with µi,j < η for all j < i and has Gram–Schmidt orthogonalisation satisfying the so-called
Lovász condition δ∥b∗

i ∥2 ≤ ∥µi+1,ibi + b∗
i+1∥2.

The default parameters for LLL reduction in magma, which we use for the experiments
later in this chapter, are δ = 0.75 and η = 0.501. Since LLL-reduced bases are in some
sense close to orthogonal, we can expect short vectors in the lattice to have rather small
coefficients with respect to the basis. This is captured by the following lemma which is a
consequence of [LLL82, Eq. (1.8)] and Cramer’s rule.

Lemma 5.2.4. Let L be a full rank lattice with LLL-reduced basis b1, . . . , bn with factors
(η, δ) and let v := ∑n

i=1 γibi ∈ L. Then

|γi| ≤
(

4
(4δ − 1)

)n(n−1)/4 |v|
|bi|

.

Proof. By [LLL82, Eq. (1.8)], an LLL-reduced basis b1, . . . , bn satisfies

n∏
i=1
|bi| ≤

(
4

(4δ − 1)

)n(n−1)/4

det(L).

5.2 Preliminaries 122

Using Cramer’s rule, we therefore get

|γi| =
det(b1, . . . , bi−1, v, bi+1, . . . , bn)

det(L) ≤ |b1| · · · |bi−1| · |v| · |bi+1| · · · |bn|
det(L) · |bi|

|bi|

≤
(

4
(4δ − 1)

)n(n−1)/4

· |v| · det(L)
|bi| · det(L) =

(
4

(4δ − 1)

)n(n−1)/4

· |v|
|bi|

.

5.2.3 The reduction by GPST

In [GPST16, §4], Galbraith, Petit, Shani and Ti give an efficient reduction of computing
the secret isogeny of an SIDH instance to the problem of computing the endomorphism
rings of both the isogeny’s domain and the codomain. We summarise their results and
we recall why the algorithm does not work as such outside of the SIDH setting.

Let φ : E1 → E2 be a ℓn-degree isogeny one wishes to recover given the two endo-
morphism rings O1 = End(E1) and O2 = End(E2). Since E1 and E2 are supersingular
curves, their endomorphism rings are maximal orders in the quaternion algebra Bp,∞. By
Lemma 5.2.1, one can recover an ideal connecting O1 and O2 efficiently. Such an ideal
corresponds to one of infinitely many isogenies between E1 and E2. This isogeny is in
general not of degree ℓn and, in particular, it is not the same as φ. Yet, to attack SIDH,
the isogeny needs to be of the correct degree and must have the correct action on the
torsion points.

The secret isogenies in SIDH are of degree approximately √p. However, a pair of
random supersingular elliptic curves over Fp2 is unlikely to be connected by an isogeny of
degree significantly smaller than √p. In [GPST16], the authors leverage this observation
to recover the target isogeny given the endomorphism rings of E1 and E2 as follows.

Given a connecting ideal I for the endomorphism rings, the authors compute a
Minkowski reduced basis which is used to recover an element α ∈ I of minimal norm.

By [KLPT14, Lem. 5], the ideal I ′ := Iα/Norm(I) is another ideal connecting O1

and O2 of (minimal) norm Norm(α). Then, the isogeny E1 → E2 of degree Norm(α)
corresponding to this ideal can be computed using Vélu’s formulae. If the shortest isogeny
between E1 and E2 is indeed of degree ℓn, this algorithm allows to recover such an isogeny
of correct degree from the endomorphisms. The experimental results in [GPST16] suggest
that, by trying relatively few small elements α in the previous algorithm, one recovers an
isogeny that can be used to attack SIDH with overwhelming probability.

Clearly, the approach outlined above relies crucially on the fact that the degree of
the sought isogeny is among the smallest possible degrees of isogenies connecting E1

5.3 Reducing isogeny finding to endomorphism ring computation 123

and E2. In schemes that do not use secret isogenies of relatively small degree (e.g.,
B-SIDH [Cos20] or SÉTA [DDF+21]), the approach is infeasible.

5.3 Reducing isogeny finding to endomorphism ring
computation

In this section, we describe an algorithm to evaluate non-smooth degree isogenies; and an
algorithm to compute a secret isogeny ϕ : E1 → E2 of degree N1 between supersingular
elliptic curves, provided that certain N2-torsion images and the endomorphism rings of
E1 and E2 are known.

5.3.1 Evaluating non-smooth degree isogenies

In this subsection, we provide an algorithm solving the following task.

Task 5.3.1. Let E1 and E2 be two curves with given endomorphism rings O1 and O2

respectively. Let I be an O1-left and O2-right ideal and let P ∈ E1. Evaluate ϕI(P),
where ϕI is the isogeny corresponding to the ideal I.

Remark 5.3.2. The isogeny ϕI corresponding to the left ideal I is only unique up to
post-composition with isomorphisms. Here, E2 is a prescribed curve so the only potential
issues arise from automorphisms of E2. The number of automorphisms of E2 can be
bounded by a constant (in most cases it is actually 2), so there is some slight ambiguity
in the end result of Task 5.3.1 which will eventually result in a constant overhead every
time this subroutine is called.

To solve this task, we extend an algorithm due to Petit and Lauter [PL17, Alg. 3]
which evaluates endomorphisms. Note that a solution to Task 5.3.1 evaluates isogenies
of not necessarily smooth degree between curves with known endomorphism rings.

Petit–Lauter Algorithm [PL17, Alg. 3]

Let (E1,O1) denote a supersingular curve and its endomorphism ring, and let w ∈ O1.
In order to evaluate the endomorphism ϕwO1 on a point P ∈ E1, the algorithm by Petit
and Lauter uses a curve (E0,O0) whose endomorphisms can be efficiently evaluated, e.g.
the curve with j-invariant 1728 (see Example 2.2.25). The algorithm proceeds as follows.

Let {w1, w2, w3, w4} be a basis of O0 and let {ϕ1, ϕ2, ϕ3, ϕ4} be the corresponding
basis of End(E0). The core idea of the algorithm is to use the KLPT algorithm to
compute a powersmooth isogeny φ : E1 → E0 of degree N .

5.3 Reducing isogeny finding to endomorphism ring computation 124

Then, we have NO1 ⊂ O0 and thus Nw ∈ O0. For w = (a1w1+a2w2+a3w3+a4w4)/N ,
this implies

ϕwO1 = φ−1 ◦ a1ϕ1 + a2ϕ2 + a3ϕ3 + a4ϕ4

N
◦ φ,

where φ−1 := 1
degφ φ̂. Since all the isogenies on the right-hand side can be evaluated

efficiently, this allows to evaluate ϕwO1 .

Solving Task 5.3.1:

Let (E1,O1) and (E2,O2) be supersingular elliptic curves with their endomorphism rings,
let I be an O1-left and O2-right ideal of non-smooth norm and let P ∈ E1. We would
like to evaluate the isogeny ϕI corresponding to the ideal I at the point P .

Using the KLPT algorithm, we compute an O1-right and O2-left ideal J whose smooth
norm is coprime to that of I. Then, the ideal IJ represents an endomorphism w ∈ O1

of E1. The element w ∈ O1 can be recovered by computing the shortest vector in IJ .
We obtain IJ = wO1 for some w ∈ O1. Using [PL17, Alg. 3], we evaluate Q := ϕwO1(P),
and compute ϕI(P) := ϕ−1

J (Q). We summarise the steps in Algorithm 5.1.

Algorithm 5.1: Evaluating non-smooth degree isogenies
Input: Elliptic curves E1, E2 with endomorphism rings O1,O2 and an O1-left

and O2-right ideal I together with a point P ∈ E1, an elliptic curve E0
such that its endomorphism ring O0 with basis {w1, w2, w3, w4}
corresponds to endomorphisms ϕ1, ϕ2, ϕ3, ϕ4 that can be evaluated
efficiently.

Output: ϕI(P).
1 Compute an O1-right and O2-left ideal J whose smooth norm is coprime to that

of I using Wesolowski’s algorithm [Wes22b] (or KLPT).
2 Compute an O1-left and O0-right ideal K of powersmooth norm N using

Wesolowski’s algorithm (or KLPT).
3 Set IJ = wO1 for some w ∈ O1 and find integers a1, a2, a3 and a4 such that

Nw = a1w1 + a2w2 + a3w3 + a4w4.
4 Evaluate Q := ϕIJ(P) = ϕ−1

K ◦(a1ϕ1+a2ϕ2+a3ϕ3+a4ϕ4)◦ϕK(P)
N

using [PL17, Alg. 3].
5 return ϕI(P) := ϕ−1

J (Q).

Lemma 5.3.3. Assuming GRH, Algorithm 5.1 runs in polynomial time.

Proof. The endomorphism rings of the curves E0, E1 and E2 are known. For this case,
Wesolowski gave a polynomial-time algorithm to compute a connecting smooth ideal in

5.3 Reducing isogeny finding to endomorphism ring computation 125

polynomial time assuming only GRH [Wes22b]. Previously, a similar (faster) polynomial-
time algorithm, KLPT [KLPT14], was already known for this task, but it relies on
heuristics. Thus, Steps 1 and 2 run in polynomial time.

The ideal I (O1-left and O2-right) and J (O1-right and O2-left) have coprime norms,
hence the two-sided O1 ideal IJ corresponds to a non trivial endomorphism w ∈ O1 of
E1 that can be recovered by computing a Minkowski reduced basis of IJ . For lattices up
to dimension 4, a Minkowski reduced basis can be computed in polynomial time [NS04].
The integers a1, a2, a3 and a4 are obtained by rewriting the quaternion Nw as an element
of O0. Therefore, Step 3 runs in polynomial time. By hypothesis, the isogenies ϕ1, ϕ2,
ϕ3 and ϕ4 can be evaluated efficiently. The ideals K and J have smooth norm, hence the
isogenies ϕK , ϕ−1

K and ϕ−1
J have smooth degree and can also be evaluated efficiently for

example using Vélu’s formulae. It follows that Step 4 and Step 5 run in polynomial time
as well.

5.3.2 Computing isogenies using torsion information

As recalled in Section 5.2.3, [GPST16] gives a strategy to compute an isogeny ϕ between
two curves E1 and E2 with known endomorphism rings O1 and O2, if its degree is minimal
(i.e., ϕ is an isogeny of minimal degree connecting E1 and E2). The algorithm in [GPST16]
applies to the SIDH setting where the degree of the secret isogeny is minimal with non-
negligible probability (or otherwise at least of particularly small degree). Meanwhile, the
torsion point information available in SIDH-like schemes is not used at all.

In this section, we will generalise this algorithm. We will show how the torsion
point information in SIDH-like schemes can be exploited together with the knowledge of
endomorphism rings to compute a secret isogeny of arbitrary (fixed) degree, if it exists.

The strategy is as follows. Let ϕ : E1 → E2 be a secret isogeny, let P , Q be a basis
of E1[N2] and let ϕ(P), ϕ(Q) be the torsion information provided in SIDH-like schemes.
Let I(O1,O2) be a connecting ideal between the maximal orders O1 and O2. Instead of
solving for a minimal norm element of the ideal I(O1,O2) as in [GPST16], we compute
an LLL-reduced basis {ψ1, ψ2, ψ3, ψ4} of I.

Using Algorithm 5.1, the isogenies ψi, i = 1, . . . , 4, can be evaluated at the points P
and Q. Next, we want to write ϕ in terms of our LLL-reduced basis, i.e. we want to find
(x1, . . . , x4) ∈ Z4 such that

ϕ = x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4. (5.1)

5.3 Reducing isogeny finding to endomorphism ring computation 126

Clearly, recovering xi allows us to compute the secret isogeny ϕ. Note that Eq. (5.1)
implies in particular

4∑
i=1

xiψi(P) = ϕ(P) and
4∑
i=1

xiψi(Q) = ϕ(Q). (5.2)

To compute x1, x2, x3 and x4, we first prove that a solution to Eq. (5.2) is unique
modulo N2. Then, we use simple linear algebra methods to recover it. Finally, we will
show that knowing the xi modulo N2 is enough to recover them exactly (as integers).

Lemma 5.3.4. Let E1, E2 be supersingular elliptic curves over Fp2 and let P,Q be a
basis of E1[N2]. Let ψ1, ψ2, ψ3, ψ4 be a Z-basis of Hom(E1, E2). The system of linear
equations modulo N2 corresponding to

4∑
i=1

xiψi(P) = ϕ(P) and
4∑
i=1

xiψi(Q) = ϕ(Q)

has a unique solution (x1, x2, x3, x4) ∈ (Z/N2Z)4.

Proof. Let P ′, Q′ be a basis of E2[N2]. Every isogeny ϕ in Hom(E1, E2) can be identified

with a matrix
a b

c d

 ∈M2(Z/N2Z) by writing its images on E1[N2] as

ϕ(P) = [a]P ′ + [c]Q′, ϕ(Q) = [b]P ′ + [d]Q′.

Let A =
a b

c d

 be a matrix in M2(Z/N2Z). First, we prove that for any matrix A,

there exists an isogeny ϕ ∈ Hom(E1, E2) such that representation of ϕ is A.
Let ψ : E1 → E2 be an isogeny such that the degree of ψ is coprime to N2. Note that

such an isogeny exists as the ℓ-isogeny graph is connected for any prime ℓ. Let M be the
matrix corresponding to ψ. Since the degree of ψ is coprime to N2, it corresponds to an
invertible matrix in M2(Z/N2Z).

It is known (see [Voi21, Thm. 42.1.9]) that End(E1)/N2 End(E1) is isomorphic to
M2(Z/N2Z) (the injection is clear, surjectivity is the key result). Note that the isomor-
phism depends on a choice of basis of E1[N2]. Consider the isomorphism corresponding
to the basis P,Q. Then, there exists an endomorphism θ ∈ End(E1) whose matrix
representation is AM−1. This implies that the matrix representation of ϕ = θ ◦ ψ is
AM−1M = A, i.e. there exists an isogeny from E0 to E1 that is represented by the
matrix A.

5.3 Reducing isogeny finding to endomorphism ring computation 127

Clearly, ∑4
i=1 xiψi and ∑4

i=1 yiψi are represented by the same matrix if for i = 1, . . . , 4
we have xi ≡ yi (mod N2). Thus, there are at most N4

2 = |(Z/N2Z)4| different matrices
that one can obtain.

Now, the lemma follows by a simple counting argument. Since every matrix in
M2(Z/N2Z) is represented for an isogeny, every matrix must uniquely correspond to
a sum of the form ∑4

i=1 xiψi modulo N2. Consequently, if a matrix has two different
representations of the form ∑4

i=1 xiψi, then they are the same modulo N2.

Remark 5.3.5. The main result of the proof is that Hom(E1, E2) modulo N2 is iso-
morphic to M2(Z/N2Z) as a Z/N2Z-module [Tat66]. Informally, the key idea is that
Hom(E1, E2) is a left ideal in End(E1), hence it will be a left ideal in M2(Z/N2Z). Since
isogenies between E1 and E2 of degree coprime to N2 exist, this left ideal will contain
invertible matrices, hence it must be the entire matrix ring.

Next, we provide details on how to recover x1, x2, x3, x4. Let {ψ1, ψ2, ψ3, ψ3} be our
LLL-reduced basis of Hom(E1, E2). Given ψi(P), ψi(Q) for i = 1, 2, 3, 4 and ϕ(P), ϕ(Q),
we would like to compute (x1, · · · , x4) ∈ (Z/N2Z)4 such that

4∑
i=1

[xi]ψi(P) = ϕ(P) and
4∑
i=1

[xi]ψi(Q) = ϕ(Q).

Note that N2 is a smooth integer and that ϕ(P) and ϕ(Q) form a basis of E2[N2] as
deg(ϕ) and N2 are coprime. For i = 1, 2, 3, 4, we can compute the integers ai, bi, ci, di ∈
Z/N2Z such that ψi(P) = [ai]ϕ(P) + [bi]ϕ(Q) and ψi(Q) = [ci]ϕ(P) + [di]ϕ(Q) by using
the Weil pairing and solving discrete logarithms in a group of smooth order. Now, the
integers (x1, · · · , x4) ∈ (Z/N2Z)4 satisfy

ϕ(P) =
[4∑
i=1

xiai

]
ϕ(P) +

[4∑
i=1

xibi

]
ϕ(Q)

and
ϕ(Q) =

[4∑
i=1

xici

]
ϕ(P) +

[4∑
i=1

xidi

]
ϕ(Q).

We obtain

(
1 0 0 1

)
=
(
x1 x2 x3 x4

)
·

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

 .

5.3 Reducing isogeny finding to endomorphism ring computation 128

By Lemma 5.3.4, there exists a unique solution
(
x1 x2 x3 x4

)
to the previous equation.

Hence the matrix

M :=

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

is invertible and the solution is given by

(
x1 x2 x3 x4

)
=
(
1 0 0 1

)
·M−1. The

latter operation corresponds to adding the first and the fourth row of M−1. We summarise
this process in Algorithm 5.2.

Algorithm 5.2: Computing a solution to the linear system
Input: ψi(P) and ψi(Q) for i = 1, . . . , 4, where ψi are a Z-basis of Hom(E1, E2);

ϕ(P) and ϕ(Q) of smooth order N2.
Output: x1, x2, x3, x4 such that ∑4

i=1[xi]ψi(P) = ϕ(P), and∑4
i=1[xi]ψi(Q) = ϕ(Q).

1 for i = 1, · · · , 4 do
2 Compute ai, bi, ci, di ∈ Z/N2Z such that ψi(P) = [ai]ϕ(P) + [bi]ϕ(Q) and

ψi(Q) = [ci]ϕ(P) + [di]ϕ(Q).
3 Set M to be the 4× 4 matrix whose rows are

(
ai bi ci di

)
for i = 1, 2, 3, 4.

4 Compute the inverse matrix M−1 of M .
5 Set

(
x1 x2 x3 x4

)
to be the sum of the first and the fourth rows of M−1.

6 return x1, x2, x3, x4 such that |xi| < N2/2.

Lemma 5.3.6. Algorithm 5.2 is correct and runs in polynomial time provided that N2

is smooth.

Proof. Follows from the previous discussion.

The following Lemma 5.3.7 gives a condition under which the solution computed in
Algorithm 5.2 yields a solution to Eq. (5.1).

Lemma 5.3.7. Let d := min{deg(φ) |φ : E1 → E2 is isogeny} and N1
N2

< d
16 . Given

the solution x1, . . . , x4 to the system of linear equations modulo N2 returned by Algo-
rithm 5.2, where ∑4

i=1[xi]ψi(P) = ϕ(P), ∑4
i=1[xi]ψi(Q) = ϕ(Q), we have ϕ = ∑4

i=1[xi]ψi
in Hom(E1, E2).

Proof. By Lemma 5.2.4, with δ = 0.75 and n = 4, we have that ϕ = ∑4
i=1[γi]ψi where

|γi| ≤ 8 deg(ϕ)
deg(ψi) ≤

8N1
d

. It follows that |γi| ≤ 8N1
d
< N2

2 since N1
N2

< d
16 by hypothesis.

5.3 Reducing isogeny finding to endomorphism ring computation 129

The solution (x1, x2, x3, x4) returned by Algorithm 5.2 satisfies |xi| < N2
2 for

i = 1, 2, 3, 4. Moreover, by Lemma 5.3.4, this solution is unique modulo N2. Thus,
ϕ = ∑4

i=1[xi]ψi in Hom(E1, E2).

The entire process of computing isogenies of a specific but arbitrary degree between
two supersingular curves with known endomorphism ring is summarised in Algorithm 5.3.

Algorithm 5.3: Computing isogeny with torsion point information
Input: Supersingular elliptic curves E1, E2 with known endomorphism rings

O1,O2 which are connected by an isogeny ϕ of degree N1 and
ϕ(P), ϕ(Q), where P,Q are a basis of E1[N2], such that N1

N2
< d

16 .
Output: ϕ.

1 Compute a basis of an O1-left and O2-right ideal I.
2 Compute an LLL-reduced basis ψ1, ψ2, ψ3, ψ4 of I.
3 Compute ψi(P), ψi(Q) using Algorithm 5.1.
4 Use Algorithm 5.2 to solve for |xi| < N2/2 such that∑4

i=1[xi]ψi(P) = ϕ(P), ∑4
i=1[xi]ψi(Q) = ϕ(Q) .

5 Compute isogeny from the relation ϕ = ∑4
i=1[xi]ψi.

6 return ϕ.

Finally, we prove that Algorithm 5.3 succeeds in polynomial time.

Theorem 5.3.8. Let d := min{deg(ϕ) |ϕ : E1 → E2 is isogeny}. Assuming GRH,
Algorithm 5.3 solves Task 5.1.1 in polynomial time, whenever N1

N2
< d

16 .

Proof. Correctness of the algorithm follows from Lemma 5.3.7 and the preceding dis-
cussion. We are left to show the polynomial running time. Step 1 can be computed
using an efficient algorithm due to Kirschmer and Voight [KV10] (or using the KLPT
algorithm [KLPT14], but we do not need the connecting ideal to have a smooth norm).
Step 2 is the LLL lattice reduction algorithm for a four-dimensional lattice which also
runs in polynomial time. Step 3 and Step 4 run in polynomial time by Lemma 5.3.3 and
Lemma 5.3.6, respectively.

Remark 5.3.9. The condition N1
N2

< d
16 could be weakened to N1

N2
≤ d

16 in which case we
get that |xi| ≤ N2/2. However, when N2 is even and xi is congruent to N2/2, then the
lift to the above range is not unique (as −N2/2 and N2/2 represent the same residue
class). This is not an issue for Algorithm 5.3 as one will have multiple candidates for
ψ (16 of them in the worst case) that can be tested. By looking at the degrees, the
correct one can be chosen efficiently. More generally, one could relax the statement of
Theorem 5.3.8 further by allowing non-unique lifts and adding an additional step to
check for the correctness of solutions at the end of Algorithm 5.3.

5.3 Reducing isogeny finding to endomorphism ring computation 130

Remark 5.3.10. As was shown in Lemma 5.3.7, Algorithm 5.3 requires an amount of
torsion point information that depends on the degree d of the shortest isogeny between
the supersingular elliptic curves E1 and E2.

Many applications of cryptographic interest use balanced parameters where N1 ≈ N2.
Taking N1

N2
≈ 1, the procedure above works whenever the two curves are not connected

by an isogeny of degree smaller than 16. This can be checked easily with an exhaustive
search.

Remark 5.3.11. Algorithm 5.3 does not use the fact that N1 is smooth. If one wants
to retrieve the secret isogeny as a rational map (as a composition of small degree maps),
then clearly the smoothness of N1 is still required. However, if one only wants to evaluate
the secret isogeny at any point coprime to its degree (e.g. as in pSIDH [Ler22]), then
this can be accomplished by Algorithm 5.3 even if N1 is not smooth.

5.3.3 Computational example

We illustrate our reduction with an example.
Consider the prime p = 83701957499, where we have p+ 1 = 22 · 314 · 54 · 7. Let Bp,∞

be the quaternion algebra ramified at p and ∞ and generated over the rationals by i, j, k,
where i2 = −1, j2 = −p, and k = ij. Fix the finite field Fp2 where α2 = −1 generates
Fp2 over Fp. Take the elliptic curve given by E0 : y2 = x3 + x which has j-invariant 1728
and endomorphism ring generated by

1, i, 1 + ij

2 ,
i+ j

2

as was described in Example 2.2.25. Let the secret isogeny be a 314-isogeny θ : E0 → E

and let the torsion point images of E0[54] under θ be known, i.e. θ|E0[54] is known. For the
purpose of illustrating the reduction, we use the secret θ to recover the endomorphism
ring of E which is generated by

5159993 + j + 10319986i+ 11800766447346k
9565938

,
2j + 6291065i+ 7411685041437k

9565938
,

3i+ 196249k
2

, 1594323k.

However, note that this computation involving the secret only computes the endomor-
phism ring which we assume to be already known for our reduction.

Now, using the knowledge of both endomorphism rings, our reduction proceeds as
follows. First, we compute a connecting ideal between the two endomorphism rings and
also compute a reduced basis of the ideal

5.3 Reducing isogeny finding to endomorphism ring computation 131

227049 + j + 154612i
2

,
154612 − 227049i+ k

2
,

121127 − 9j + 4995744i+ 14k
2

,
4995744 − 14j − 121127i− 9k

2
.

Interpreting these quaternions as endomorphisms, we can map generators of E0[54]
through them. We fix the following generators of E0[54]

P5 = (75854242840α + 62002351922, 51107649030α + 19190692821),
Q5 = (17857458337α + 504604508, 77775481527α + 25718537048).

In particular, by naming the endomorphisms corresponding to the reduced basis
elements ψ′

1, ψ
′
2, ψ

′
3, ψ

′
4, respectively, we have that

ψ′
1(P5) = (9049577476α + 26838535531, 9532248787α + 18861270144) ,

ψ′
1(Q5) = (14085392798α + 75272963133, 35152660085α + 3705843319) ,
ψ′

2(P5) = (54148936824α + 29574813, 27904476482α + 79581351851) ,
ψ′

2(Q5) = (6218706354α + 14437916419, 19897519544α + 26853032937) ,
ψ′

3(P5) = (27253519435α + 63921648196, 55371710596α + 3587102479) ,
ψ′

3(Q5) = (6221393886α + 23453138168, 81414672111α + 63571818133) ,
ψ′

4(P5) = (20904892135α + 45099774747, 32347928248α + 14718113311) ,
ψ′

4(Q5) = (16837240041α + 11444980635, 5815630261α + 82050564219) .

Furthermore, we know the images of P5 and Q5 through the secret isogeny θ. Note
that these ψ′

i are not the same as the ψi defined in the previous section as they are
endomorphisms of E0. However, they are just the original ψi composed with the isogeny
between E and E0 coming from KLPT. We will denote the actual isogenies corresponding
to them by ψi. They can be evaluated at P5 and Q5 by applying the connecting isogeny
to them and multiplying it with the inverse of its degree modulo 54. These are points in
E, and in particular, they are in the subgroup E[54]. This allows us to express them in
terms of θ(P5) and θ(Q5) which we were given.

This results in the following 4× 4 matrix

222 128 484 474
311 363 337 12
184 477 307 574
344 566 191 132

5.4 Reduction in the presence of countermeasures against SIDH attacks 132

whose first row represents the four coefficients that express ψ1(P5) as a linear combination
of θ(P5) and θ(Q5), and ψ1(Q5) as a linear combination of θ(P5) and θ(Q5). For example,

ψ2(Q5) = [337]θ(P5) + [12]θ(Q5).

Inverting this matrix and summing the first and fourth rows allow us to recover the
coefficients xi’s providing the expression of the secret isogeny as a linear combination of
ψ1, ψ2, ψ3 and ψ4. The result of the computation is that

θ = [14]ψ1 + [9]ψ2 + ψ4.

One can verify that this is correct. Note that this verification can be done without
computing the ψi but by computing that the degree of this linear combination is indeed
314 (as the action on the 54-torsion is already correct).

Remark 5.3.12. The secret isogeny in this example is not the isogeny between E0 and
E of smallest degree, hence the algorithm from [GPST16] would not have been sufficient
to find θ.

5.4 Reduction in the presence of countermeasures
against SIDH attacks

After publication of the results of this chapter up to this point at PKC 2022 [FKMT22],
several papers emerged that broke SIDH and SIDH-based schemes such as B-SIDH in
classical polynomial time [CD22, MM22, Rob22a]. In this section, we will argue that even
in the presence of countermeasures proposed against these recent attacks, our reduction
still applies.

First, observe that our reduction works in a more general context. Namely, [CD22]
and [MM22] require the cardinality of the subgroup generated by the known torsion
point images to be at least as large as the degree of the secret isogeny, i.e. N1 ≈ N2.
Robert’s attack only requires N1 < N2

2 [Rob22a]. For B-SIDH parameters where the
secret isogeny is of degree p this matches roughly the amount of torsion point information
required for our reduction to work, as we expect the shortest connecting isogeny to be
of degree roughly √p. However, for the general SSI-T problem it is easy to construct
parameter sets for which the requirements of our attacks are weaker than what is
required by Robert’s attack. For an example, consider the case where N1 ≈ p3/4. This
is a case not covered by [GPST16] and the polynomial attack by Robert requires that

5.4 Reduction in the presence of countermeasures against SIDH attacks 133

N2 ≈ p3/8 [Rob22a]. For p ≈ N1N2, our reduction still works whenever N2 ≈ p1/4,
which follows from Theorem 5.3.8 and the fact that the shortest isogeny between two
supersingular elliptic curve is roughly of degree √p. Note that the shortest isogeny does
not need to lie in one ℓ-isogeny graph for a fixed ℓ but rather lies in the union of all
ℓ-isogeny graphs.

The second remark concerns countermeasures. Since the attacks were published, two
countermeasures have been proposed. In [Mor22], Moriya proposes to mask the degree
of the secret isogeny. This prevents all previous attacks. Yet, our reduction still works
as we never use N1 explicitly and our reduction only requires an upper bound on the
degree. A sufficient upper bound (√p in SIDH and p in B-SIDH) is always known to the
attacker.

Another countermeasure proposed by Fouotsa [Fou22] suggests to only reveal a secret
multiple of the torsion point images (coprime to the order of the torsion points) as this
information is sufficient to compute pushforwards of the secret isogenies. To prevent
attackers from computing the secret multiple using pairings, one has to use a prime p
such that p + 1 is a product of many distinct small primes. Assume we are not given
exact torsion point images φ(PB) and φ(QB), but their multiples [λ]φ(PB) and [λ]φ(QB)
instead, where λ is a secret integer. In this case, Task 5.1.1 becomes the following.

Task 5.4.1. Let N1, N2 be coprime integers and let φ : E1 → E2 be a secret isogeny of
degree N1 between two supersingular elliptic curves. Let PB, QB be a basis of E1[N2].
Given End(E1), End(E2), [λ]φ(PB), and [λ]φ(QB) for an unknown λ ∈ Z coprime to N2,
find an isogeny φ′ : E1 → E2 of degree N1 such that φ|E1[N2] = φ′

|E1[N2].

For the rest of this section, we will describe how our reduction can be extended to
solve this task.

Using Algorithm 5.2 for this task mutatis mutandis, the resulting system of equations
will have 5 variables and 4 equations instead. By Lemma 5.3.4, this equation has rank 4.
Hence, there will be one degree of freedom and every solution lies on a line in (Z/N2Z)5.
Thus, there are too many solutions for an exhaustive search. However, for slightly weaker
bounds, we can still make our reduction work.

Theorem 5.4.2. Let d := min{deg(ϕ) |ϕ : E1 → E2 is isogeny}. We can solve Task 5.4.1
in heuristic polynomial time whenever N1

d
< N23/4

8 .

Proof. As in the proof of Lemma 5.3.4, denote by {ψ1, ψ2, ψ3, ψ3} an LLL reduced basis
for Hom(E1, E2). Recall the inequality ϕ = ∑4

i=1 γiψi where |γi| ≤ 8 deg(ϕ)
deg(ψi) ≤

8N1
d

. For
N1
d
< N23/4

8 this implies |γi| < N2
3/4. Thus, one is looking for a very special solution to

5.5 Relevance to isogeny-based cryptography 134

the above homogeneous linear system. More precisely, the first 4 variables have to be
smaller than N2

3/4 and the last variable is smaller than N2 (i.e., no condition is imposed
on the last variable). This is an SIS-like lattice problem where the lattice consists of
the integer solutions to this system of equations. The SIS problem stands for short
integer solution and is a standard problem in lattice-based cryptography, which was first
introduced by Ajtai [Ajt96]. The only difference is that one is not looking for a short
vector with respect to the Euclidean metric but for a short vector in a slightly different
metric. The volume of the defined rectangle is N4

2 , i.e. the size of the lattice determinant.
Heuristically, we expect there to be a unique lattice vector in this rectangle. This vector
can be found in two different ways: either using a weighted inner product which puts
large weights on the first 4 variables and very little weight on the last variable or by
orthogonal projection to the vector (0, 0, 0, 0, N2) and using general lattice reduction in
the projected lattice. Being left with a closest vector problem (CVP) in dimension 5, the
problem can be solved easily [HPS11].

5.5 Relevance to isogeny-based cryptography

In this chapter, we showed how to compute an isogeny of a specific degree between two
supersingular elliptic curves, given their endomorphism rings and the images of some
torsion points under the isogeny. We use this section to briefly summarise the impact of
our results on different isogeny-based constructions.

For a long time, the isogeny-based community considered the meet in the middle
attack (MITM) as the best attack when addressing the security level λ of isogeny-based
schemes. Meanwhile, the MITM attack requires exponential storage, hence it may
be unrealistic in practice. Therefore, more recently the van Oorschot–Wiener (vOW)
parallel collision finding algorithm [vW99] was considered for the isogeny computation
problem [ACC+19, CLN+20]. The vOW collision search allows for a space-time trade-off
in the generic MITM, leading to a higher time complexity when limited storage is used.

Estimating the security level of isogeny-based schemes using vOW instead suggests
that one can reduce the size of parameters that were previously fixed due to considering
the generic MITM attack with unrealistic memory requirements. For B-SIDH, the
proposed prime p ≈ N1N2 is roughly 22λ. Given the analysis of the vOW collision search
attack in [LWS21] to recover isogenies of degree N1 or N2, one may be tempted to propose
smaller B-SIDH primes in order to improve B-SIDH’s efficiency. Similar proposals were
made for SIDH [LWS21].

5.5 Relevance to isogeny-based cryptography 135

However, we must also consider the attack in which the endomorphism rings of
supersingular elliptic curves are computed so that Algorithm 5.3 of this chapter can be
used to compute the secret isogeny. The complexity of this approach depends primarily on
the size of the finite field Fp2 over which the curves are defined. As stated in Section 2.4,
the classical and quantum complexity for computing endomorphism rings of supersingular
elliptic curves is O(log(p)2p1/2) and O∗(p1/4), respectively. Consequently, the parameter
p must also satisfy 22λ < p. Thus, lowering p below 22λ would make B-SIDH vulnerable
to attacks that compute endomorphism rings and use the results of this chapter, showing
that the size of p in B-SIDH was tight.

In the meantime certain attacks [CD22, MM22, Rob22a] broke SIDH, B-SIDH and
SÉTA using the provided torsion point information and the degree of the secret isogenies.
Note that the direct key recovery attack uses the algorithm to evaluate non-smooth
isogenies presented in Section 5.3.1 as a subroutine [Wes22c].

Countermeasures which mask the degree of the secret isogeny and/or mask the
available torsion point information have been proposed to thwart these attacks [Mor22,
Fou22]. Schemes deploying these countermeasures are less efficient, but they are still
considered secure at the time of writing this thesis. We showed in this chapter that our
reduction still holds in the presence of said countermeasures. The conclusion that the
prime p cannot be lowered therefore still applies to the versions of B-SIDH deploying
the suggested countermeasures, i.e. this chapter’s results provide an upper bound on the
security of schemes like B-SIDH.

Furthermore, there are different ways of interpreting the results of this chapter. For
example, proposing schemes with longer isogeny walks than the ones in B-SIDH does
not provide any additional security benefit, as the attacker could then just compute
endomorphism rings and use the reduction of this chapter to compute the secret isogeny.
Perhaps this is not entirely unexpected given that the walks in B-SIDH have lengths
which are comparable to the diameter of the supersingular ℓ-isogeny graph for a fixed ℓ.
Finally, our results also imply that when (masked) torsion point images are provided,
the problem of finding one isogeny between two supersingular elliptic curves becomes
equivalent to finding an isogeny of a specific degree between these two supersingular
curves, for a wide range of parameters.

CHAPTER 6

SCALLOP: Scaling the CSI-Fish
6.1 Introduction . 137

6.1.1 Technical overview . 139
6.2 Orientations of supersingular curves . 142
6.3 The generic group action. 144

6.3.1 Factorisation of ideals and decomposition of isogenies 144
6.3.2 Effective orientation. 145
6.3.3 Computation of the group action from the effective orientation 146

6.4 Security of a group action . 148
6.5 SCALLOP: a secure and efficient group action. 150

6.5.1 Parameter choice and precomputation . 150
6.5.2 The group action computation . 157

6.6 Concrete instantiation . 160
6.6.1 Parameter selection . 161
6.6.2 Concrete parameters . 162
6.6.3 Performance . 164

6.7 Security discussion: evaluating the descending isogeny 165

For all practical purposes, this chapter is identical to the following paper which introduces
a new isogeny-based group action and was published as

Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp
Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: Scaling the CSI-FiSh. In
Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940
of LNCS, pages 345–375. Springer, Heidelberg, May 2023.

6.1 Introduction 137

6.1 Introduction

A major breakthrough for isogeny-based group actions was the invention of the CSIDH
key exchange [CLM+18]. The construction follows a similar blueprint as the CRS
key exchange but the class group of an imaginary quadratic order acts on the set of
supersingular elliptic curves defined over a prime field, instead of ordinary curves, and
this makes the scheme a lot faster for various reasons. This made CSIDH the first efficient
post-quantum cryptographic group action and its efficient public key validation gives
rise to non-interactive key exchange. While it is well known that CSIDH, like CRS,
is susceptible to a quantum subexponential attack, the concrete size of parameters to
achieve a certain security level has been a matter of debate [Pei20, BS20, CSCJR22].

The first attempt to build isogeny-based signatures was outlined in Stolbunov’s PhD
thesis, where the Fiat–Shamir transform is applied to a Σ-protocol [Sto12]. However, to
instantiate the scheme it would be necessary to sample uniformly from the acting class
group and, crucially, to compute a canonical representative for each class group element
efficiently. The first requirement could be approximated sufficiently well, but the second
one remained elusive. Instead of using canonical representatives, De Feo and Galbraith
proposed the signature scheme SeaSign [DG19] which uses an abundantly redundant
representation together with rejection sampling to make the distribution of class group
elements independent from the secret key. Though it provides short signatures, signing
time remained impractical for the fastest parameter set (2 minutes), even after further
optimisations by Decru, Panny and Vercauteren [DPV19].

Computing the class group structure of the acting group solves both challenges left to
instantiate Stolbunov’s signature scheme. By providing a simple canonical representation
for class group elements, it also gives an easy way to sample uniformly, instead of resorting
to expensive statistical methods. In 2019, Beullens, Kleinjung and Vercauteren [BKV19]
conducted a record breaking class group computation to find the class group structure
and relation lattice of the class group of the imaginary quadratic field corresponding
to the smallest CSIDH parameter set, CSIDH-512. This let them efficiently instantiate
Stolbunov’s signature, leading to CSI-FiSh [BKV19]. CSI-FiSh is very efficient and is a
building block for many other schemes such as threshold signatures [DM20, CS20], ring
signatures [BKP20, LD21]) and group signatures [BDK+22]. Furthermore, it is a basis
for other primitives such as updatable encryption [LR22].

6.1 Introduction 138

Unfortunately, the best known algorithms to compute the class group structure have
complexity L∆(1/2), using the classic L-notation

Lx(α) = exp
(
O
(
(log x)α(log log x)1−α

))
,

where ∆ denotes the discriminant of the number field. The algorithm uses an index-
calculus approach to compute the class group structure and instantiating CSI-FiSh for
larger security levels of CSIDH would require class group computations that are currently
firmly out of reach. Yet, especially in light of recent debates about CSIDH’s concrete
quantum security, it is desirable to have an efficient isogeny-based signature scheme (and
all the aforementioned primitives) at higher security levels.

This motivates the search for other cryptographic isogeny group actions that have
better control on the class group. Thus, it is natural to look at orientations different from
the one in CSIDH. However, choosing an orientation poses several challenges. First, it is
usually hard to compute an orientation even if one knows that the curve is oriented by a
particular order as discussed in [DDF+21]. Secondly, disclosing the orientation in the
public key requires an efficient representation of the orientation. Then, the resulting group
action should be efficiently computable. Finally, for a general orientation it is unclear
how the structure of the class group can be computed, whereas special orientations may
not lead to cryptographically secure group actions (see [CK19, DD22] and [ACL+22,
Thm. 11.4]).

In this chapter, we present SCALLOP: SCALable isogeny action based on Oriented
supersingular curves with Prime conductor, a new isogeny-based group action. Following
a standard approach used in CSIDH and OSIDH [CLM+18, CK19], we use the group
action of the class group of an imaginary quadratic order on a set of oriented supersingular
curves. In an attempt to solve the scaling issue of CSI-FiSh, we explore the situation
where the quadratic order O of discriminant ∆ has a large prime conductor f inside
an imaginary quadratic field of very small discriminant d0, i.e. ∆ = f 2d0. There are
exact formulas and results to compute the structure of the class group in this case.
Compared to CSIDH, this is the main benefit of our construction as this data is required
to uniquely represent — and efficiently act by — arbitrary group elements, which in turn
is a requirement in, e.g., the CSI-FiSh signature scheme by Beullens, Kleinjung and
Vercauteren [BKV19].

To make the computation of the resulting group action efficient, we study how to
obtain effective and (hopefully) secure O-orientations for a generic quadratic order O,
something known only in the special case of CSIDH, where O = Z[√−p], prior to this

6.1 Introduction 139

work. In particular, we introduce a generic framework to evaluate the group action
when O contains a generator α such that the principal ideal Oα can be factored as L2

1L2

for two ideals L1,L2 of smooth coprime norm. We then show how to instantiate this
framework when O is an order of large prime conductor and we provide an algorithm
to perform the computation as efficiently as possible in this context. In particular, we
provide a way to choose the conductor such that O has a generator α of the correct form
with essentially optimal size. As is customary in isogeny-based cryptography, this setup
also requires to carefully select the characteristic of the finite field Fp for an efficient
evaluation of the group action.

To generate concrete parameters, we also provide an efficient algorithm to generate
an initial effective O-orientation, something that can always be done in polynomial time
(using the maximal-order-to-supersingular-elliptic-curve algorithm from [EHL+18]) but
might be very costly in practice.

Our new group action still requires a precomputation of complexity L∆(1/2): Here the
main algorithmic task is to compute a lattice of relations for the class group, which can
be used later to obtain a “short representative” of any given class in Cl(O). Computing
relations in the class group amounts to solving discrete logarithms in a subgroup of some
finite field (unrelated to Fp), whose order we can somewhat control by choosing the
conductor.

Despite the fact that our choice of conductor is very constrained by the requirements
on the generator α (see Section 6.5.1), we show that we have a search space large enough
to obtain a fairly smooth class number. Thus, we were able to instantiate the SCALLOP
group action for security levels that remain entirely out of reach for the CSI-FiSh
approach, using only modest computational resources. Concretely, we give parameters for
our group action with security comparable to CSIDH-512 and CSIDH-1024. This leads
to an isogeny-based Fiat–Shamir signature analogous to CSI-FiSh for security parameters
twice as large as CSI-FiSh.

We provide an implementation of our new group action. The implementation takes
35 seconds (resp. 12.5 minutes) for a single group-action evaluation at a CSIDH-512-
equivalent (resp. CSIDH-1024-equivalent) security level, showing that, while feasible, the
SCALLOP group action does not achieve realistically usable performance yet.

6.1.1 Technical overview

We give below a list of tasks and constraints required to create a setup analogous to
CSI-FiSh. Then, we briefly explain how our new group action is evaluated and how it
compares to CSI-FiSh.

6.1 Introduction 140

We distinguish two phases in setting-up an isogeny-based group action: an offline and
an online one. The offline phase is the main novelty introduced in CSI-FiSh compared to
CSIDH [CLM+18]. It is performed just once at parameter generation. We do not need
it to be efficient, but we want it to be feasible. This precomputation is crucial to the
efficiency of the online phase, which is executed at every group action evaluation (hence
dozens of times for each signature) and needs to be as fast as possible.

In the following, let O be an imaginary quadratic order.

Evaluating isogeny group actions. Abstractly, a group action is defined by a group
G, a set X, and a map G × X → X satisfying some set of axioms. Algorithmically,
we ask that elements of G and X have a representation, and that for any g ∈ G

and x ∈ X it is feasible to compute g · x. These, and other requirements, have been
formalised under the names of Hard Homogenous Space (HHS) [Cou06] or Effective
Group Action (EGA) [ADMP20].

In the specific case of isogeny actions, the set X is a set of elliptic curves, which can
be represented by an appropriate invariant, e.g. the j-invariant. The group G = Cl(O)
tends to be cyclic, or nearly cyclic, thus its elements could be uniquely represented as
powers ae of some generator a. However it is not true in general that ae · E can be
efficiently evaluated for every exponent e and every curve E. Instead, there exist a list of
ideals l1, . . . , ln of small norm, spanning Cl(O) and such that the actions li · E can be
efficiently evaluated for every li and every E. Then, the action of any ideal of the form
b = ∏n

i=1 l
ei
i can be efficiently evaluated as soon as the exponent vector (e1, . . . , en) ∈ Zn

has small norm. This setup is called a Restricted EGA (REGA) in [ADMP20].
To go from a REGA to an EGA, we need a way to rewrite any ideal class ae as a

product ae = ∏n
i=1 l

ei
i with small exponents. The main advance in CSI-FiSh was the

computation of the lattice of relations of the ideals l1, . . . , ln in CSIDH-512, i.e. the lattice
L spanned by the vectors (e1, . . . , en) such that ∏ lei

i is principal. If the li span Cl(O),
then Zn/L is isomorphic to Cl(O). Then, assuming a = l1, finding a decomposition of ae

with short exponents amounts to solving a Closest Vector Problem (CVP) in the lattice
of relations for the vector (e, 0, . . . , 0).

Our aim is to replicate this strategy for the relation lattices associated to the class
groups we are interested in.

The offline phase. The goal of this phase is to precompute the relation lattice of the
class group Cl(O), and produce a reduced basis of it. The main steps are:

1. Compute the class number and the structure of the class group.

6.1 Introduction 141

2. Generate the lattice of relations L.

3. Compute a reduced basis of L suitable for solving approximate-CVP.

In CSI-FiSh, the first item is obtained as a byproduct of the second, which is performed
using index calculus, for an asymptotic cost of L∆(1/2). The last step is a standard
lattice-basis reduction (typically done using BKZ [SE94]); although, depending on the
approximation factor, this step may even have exponential complexity, it is the fastest
one in practice.

In this chapter, we describe a method which changes the way the first two steps are
performed. First, we choose O so that the class group structure comes for free: We select
a quadratic order O = Z + fO0 of large conductor f inside a maximal quadratic order
O0 of small discriminant d0. Computing the class group structure, then, amounts to
factoring f , which we choose to be a prime.

Secondly, by choosing O0 and f carefully, not only can we compute the group
structure, but we can even control it to some extent. In particular, we search for the
prime f such that the class number of O, given by f −

(
d0
f

)
, is somewhat smooth, so

that computing discrete logarithms in Cl(O) becomes feasible. Then, instead of using
index calculus, we directly obtain the lattice of relations by computing the discrete
logarithm relationships between the generators l1, . . . , ln. Asymptotically, an Lf(1/2)-
long search for f is expected to yield an Lf (1/2)-smooth class number: At this level of
detail in the analysis, no obvious improvement over index calculus stands out, however
the constants hidden in the exponents turn out to be much more favorable to our setup,
as our experiments confirm.

The final step, BKZ reduction, remains unchanged.

In the online phase we evaluate the group action. The inputs are an oriented curve
E and an integer e, the output is the oriented curve ae ·E, where a is some fixed generator
(e.g. a = l1). This phase consists of two steps:

1. Solving approximate-CVP to find a decomposition ae = ∏
lei
i with small exponents.

2. Using isogeny computations to evaluate
(∏

lei
i

)
· E.

In SCALLOP the first step is identical to CSI-FiSh: We use Babai’s nearest plane
algorithm [Bab86] to find a vector close to (e, 0, . . . , 0). The cost of this step is negligible,
however the quality of the output depends on the quality of the basis computed in
the offline phase, and has a big impact on the cost of the next step. In practice, the
dimension of the lattices we consider is small enough that we can compute a nearly

6.2 Orientations of supersingular curves 142

optimal basis, thus the approximation factor for CVP will be rather small. However,
from an asymptotic point of view, there is a trade-off between the time spent reducing
the lattice in the offline phase, and the approximation factor achieved in the online phase.
The break-even point happens at L(1/2), exactly like in CSI-FiSh.

The isogeny computation step is where we deviate most from CSI-FiSh. Indeed,
in CSI-FiSh there is an implicit orientation by the order O = Z[√−p], which is easily
computed via Frobenius endomorphisms. In contrast, in SCALLOP we need an explicit
representation of the orientation, that we transport along the group action. It is thus
not surprising that, for the same parameter sizes, our algorithms are significantly slower
than CSI-FiSh. Nonetheless we show there are choices of orientations for which it is at
least feasible to run them.

Concretely, we choose a quadratic order O that contains a generator α of smooth
norm of size roughly equal to disc(O) (essentially, the smallest size we could hope
for). The orientation is then represented by an endomorphism ω corresponding to the
principal ideal Oα, encoded as the composition of two isogenies of degree roughly equal to√

disc(O). The endomorphism ω plays here the same role as the Frobenius endomorphism
in CSI-FiSh: An ideal li acts through an isogeny of degree ℓi whose kernel is stabilised
by ω, to compute li · E it is thus sufficient to evaluate ω on E[ℓi] and determine its
eigenspaces.

In Section 6.5.1, we justify the concrete choices for O in more detail and we present
all required precomputations. The full description of the algorithm for the online phase
is given in Section 6.5.2.

Organisation of the chapter.

The rest of this chapter is organised as follows. Section 6.2 introduces the necessary
terminology for oriented supersingular curves used in this chapter. In Section 6.3, we
introduce our generic framework for effective orientation and group action computation.
Then, we introduce the security notions related to group actions in Section 6.4. In
Section 6.5, we explain in detail how the SCALLOP group action works. In Section 6.6,
we discuss the concrete instantiation of the scheme. Finally, we analyse one particular
angle of attack against the scheme in Section 6.7.

6.2 Orientations of supersingular curves

For the rest of this chapter, we fix a quadratic imaginary field K and a quadratic
order O of discriminant D < 0 in K. In the following, we will only consider primitive

6.2 Orientations of supersingular curves 143

O-orientations of supersingular elliptic curves as defined in Definition 2.2.26 and may
omit the word primitive. If (E, ι) is a primitive O-oriented curve, we call E a O-orientable
curve. Further, we consider the following set of (primitively) O-oriented curves.

Definition 6.2.1. Let SO(p) denote the set of supersingular O-oriented curves (E, ι) up
to isomorphisms and Galois conjugacy.

Note that we consider the elements up to Galois conjugacy. The Frobenius π creates
two orientations from each optimal embedding of O in a maximal quaternion order of
Bp,∞, i.e. one on E and one on the twist E(p). This convention diverges from the one
taken in [Onu21, Wes22a], where orientations are not considered up to Galois conjugacy.
Further, we denote the class number of O, i.e. the size of the class group Cl(O), by h(O).

The following proposition follows from the results proven by Onuki [Onu21, Prop. 3.2,
Prop. 3.3, Thm. 3.4] and gives a way to compute #SO(p).

Proposition 6.2.2. The set SO(p) is not empty if and only if p does not split in K and
does not divide the conductor of O. When these conditions are satisfied, and p is not
ramified in K, we have #SO(p) = h(O).

When p is ramified in K, the situation is a bit more complicated but it can be
shown [ACL+22] that

#SO(p) ∈
{1

2h(O), h(O)
}

.

Recall that when SO(p) is not empty, the set of invertible O-ideals acts on O-
orientations via an operation that we write a · (E, ι) = (Ea, ιa). Principal ideals act
trivially, thus the operation defines a group action of Cl(O) on SO(p), which we also
denote by ·. Onuki proved that this group action is free and transitive in the case of
Proposition 6.2.2, see also Section 2.2.5.

To fix the terminology of this chapter, we briefly recall how this action is computed
using isogenies. For an ideal a in O and an O-orientation (E, ιE), we define the a-torsion
subgroup E[a] := ⋂

α∈a ker ιE(α) and write φEa for the isogeny of kernel E[a]. We have

φEa : E → Ea = E/E[a] and ιEa (x) = 1
n(a)φ

E
a ◦ ι(x) ◦ φ̂Ea . (6.1)

When a does not factor as nb for some integer n > 1, we say that a is primitive. In
that case, the corresponding isogeny φEa is said to be cyclic, i.e. it has a cyclic kernel.

It will be useful for us to consider a generator α of O (an element such that O = Z[α]).
In that case, every ideal a can be written as ⟨x+ αy, n(a)⟩ for some x, y ∈ Z. Note that

6.3 The generic group action 144

this choice of generator is not unique: if α is a generator, any α+ k for k ∈ Z will also
be a generator.

Although an orientation may exist it is not always clear how to represent it and
compute with it. Informally, an effective orientation is one that comes with efficient
representations and algorithms. We will give a more formal, and slightly more specific
definition in Section 6.3.2.

6.3 The generic group action

This section introduces our general framework for evaluating group actions of oriented
curves. The algorithm we outline below is not designed to be particularly efficient. Later,
in Section 6.5.2, we will describe in detail a version and parameter choices that make it
somewhat practical.

The key to our technique is having a generator of smooth norm for the quadratic
order. To simplify the exposition, we restrict to quadratic orders O with a generator
α of norm L2

1L2, where L1 and L2 are two smooth coprime integers and the principal
ideal Oα is equal to L2

1L2 for some primitive ideals L1,L2. We will further refine these
constraints in Section 6.5.1 for an efficient instantiation.

We now present a few generic properties, later in Section 6.3.2, we describe how the
orientation by such an order can be made effective.

6.3.1 Factorisation of ideals and decomposition of isogenies

We recall from Eq. (6.1) that if (E, ιE) is an oriented curve and a is an ideal, the action
a · (E, ιE) is computed via an isogeny denoted by φEa .

Proposition 6.3.1. If a can be factored as a1a2, then the isogeny φEa can be decomposed
as φEa1

a2 ◦ φEa1. Moreover, if a1 and a2 have coprime norms, then φ
Ea1
a2 = [φEa1]∗φEa2.

Proof. The fact that we can factor φEa is standard and the formula to compute φEa1
a2

follows from Lemma 6.3.2 below.

Lemma 6.3.2. Let a, b be two ideals such that E[a] ∩ E[b] = {0}. Let φEa : E → Ea :=
E/E[a] be the isogeny corresponding to the action of a on (E, ιE). Then Ea[b] = φEa (E[b]).

Proof. Firstly, let us suppose that a = n(a) and b = n(b) are coprime. Then the lemma
follows from the usual commutative diagram obtained by decomposing the isogeny φEab
as φEa

b ◦ φEa with Ea[b] = kerφEa
b = φEa (E[b]).

6.3 The generic group action 145

Secondly, let us suppose that a = b. Then since E[a] ∩ E[b] = {0}, we have b = a

and b · a · (E, ιE) = (E, ιE). It follows that Ea[b] = Ea[a] = ker φ̂Ea = φEa (E[a]) =
φEa (E[a]⊕ E[b]) = φEa (E[b]).

Lastly, suppose generally that gcd(a, b) = c, writing a = ca′, b = cb′, a = ca′ and
b = cb′. Then Ea[b] = Ea[c] ⊕ Ea[b′]. Combining the first case and the second one,
we have Ea[c] = φ

Ea′
c (Ea′ [c]) = φ

Ea′
c ◦ φEa′(E[c]) = φEa (E[c]) and Ea[b′] = φ

Ea′
c (Ea′ [b′]) =

φ
Ea′
c ◦ φEa′(E[b′]) = φEa (E[b′]). Hence Ea[b] = φEa (E[b]).

When using Lemma 6.3.2, we will in general specify the tuple (E, a, b) at hand.

6.3.2 Effective orientation

Let us take an O-orientation (E, ιE). Through ιE, we obtain an endomorphism ωE ∈
End(E) as ιE(α). This endomorphism ωE has degree L2

1L2 and it can be decomposed
as ωE = φ̂E

L−1
1
◦ φEL1L2 , as Proposition 6.3.1 shows. Thus, we obtain a representation of

ωE from the kernel representations of the two isogenies φ̂E
L−1

1
and φEL1L2 . This idea of

decomposing an endomorphism into a cycle of two isogenies is now quite standard in
isogeny-based cryptography (see for instance [dQKL+21, DLW22]).

Formally, we have the following definition.

Definition 6.3.3. Let (E, ιE) ∈ SO(p) where O = Z[α] with α = L2
1L2. An effective

orientation for (E, ιE) is a tuple sE = (E,PE, QE) where (E,PE) and (E,QE) are the
kernel representations of the isogenies φEL1L2 and φEL1 of degree L1L2 and L1 respectively.

Remark 6.3.4. When it comes to using an effective orientation as public key, it is
important to represent it in a canonical way. For example, when performing a key exchange
with SCALLOP, the oriented curve that acts as the shared key, must be canonically
represented so that both parties can get the same shared key. Given sE = (E,PE, QE),
one computes canonical generators P ′

E and Q′
E of the groups ⟨PE⟩ and ⟨QE⟩ respectively.

The effective representation s′
E = (E,P ′

E, Q
′
E) is then refered to as the canonical effective

representation for (E, ιE).

Since L1 and L2 are coprime, PE = RE + SE where RE and SE are points of order L1

and L2 respectively. Given PE, one recovers RE = [λ2L2]PE and SE = [λ1L1]PE, where
λ1 is the inverse of L1 mod L2 and λ2 is the inverse of L2 mod L1. Conversely, given
RE and SE, one recovers PE = RE + SE. In some cases, such as the statement and
proof of Proposition 6.3.6, we may directly assume ωE is represented as (RE, SE, QE),
for simplicity.

6.3 The generic group action 146

6.3.3 Computation of the group action from the effective ori-
entation

Let a be an ideal of O, our goal now is to understand how to compute an effective
orientation ωEa for a · (E, ιE) from the effective orientation ωE.

By Proposition 6.3.1, we know that we can focus on the case where a = l is a
prime ideal. If we know how to compute φEl and the effective orientation ωEl

for
(El, ιEl

) = l · (E, ιE), from l and ωE, then we can recursively compute the action of any
ideal a from its factorisation as a product of prime ideals. Therefore, we focus on the
two operations of computing φEl and computing ωEl

.

Computation of the group action isogeny. The computation of φEl can be done
from kerφEl = E[l] using Vélu’s formulas [Vél71]. Thus, the main operation is the
computation of E[l] from ωE. Proposition 6.3.5 provides this operation.

Proposition 6.3.5. When ℓ is split in O = Z[α], and l is a prime ideal above ℓ, there
exists λ ∈ Z such that l = ⟨α− λ, ℓ⟩. Then, kerφEl = E[l] = E[ℓ] ∩ ker ρE where
ρE = ωE − [λ]E.

Proof. It suffices to see that n(α− λ) = λ2 − λtr(α) + n(α) has two solutions modulo ℓ
if and only if discO = tr(α)2 − 4n(α) is a non-zero square modulo ℓ which is exactly the
case where ℓ splits in O. The ideal ⟨α− λ, ℓ⟩ has norm ℓ because α− λ ̸∈ ℓO (because ℓ
is split in O). Then the result follows from the definition of φEl .

To computate a generator of kerφEl from Proposition 6.3.5 it suffices, for instance,
to evaluate ωE − [n(α)/λ] (or ωE − tr(α) if λ = 0) on a basis P,Q of E[ℓ], then at least
one of the two images will generate E[l]. From this, we derive the kernel representation
of φEl .

Computation of the new effective orientation. Computing ωEl
is less straightfor-

ward. There are basically two cases depending on whether ℓ is coprime with n(α) = degωE
or not. The first case is by far the simplest: When ℓ and n(α) are coprime, applying
Proposition 6.3.1 to ωE = φ̂E

L−1
1
◦ φEL1L2 shows that ωEl

= [φEl]∗ωE. Thus, it suffices to
push the generators of φ̂E

L−1
1

and φEL1L2 through φEl to get a kernel representation for ωEl
.

The story is more complicated when ℓ and n(α) are not coprime because the pushfor-
ward of ωE is not well-defined in this case. Let us treat the simplified case where L1 = ℓ

(and so n(α) = ℓ2L2 for some L2 coprime with ℓ), as the generic case can be handled
with similar ideas. The full algorithm to handle the generic case is given in Section 6.5.2.

6.3 The generic group action 147

E

φE
l

φEl

El El

φEl
L2

ωE

El

φEl

l
φEl
l

E El2

φ
El2
L2

ωEl

Fig. 6.1 A picture of the effective orientation computation from Proposition 6.3.6.

When n(α) = ℓ2L2, there are two possibilities: either L1 = l or L1 = l−1 as there are
no further primitive ideals of norm dividing ℓ. If we have a method to solve the former,
we can derive a method to solve the latter by considering the dual of the endomorphism
ωE. Thus, we focus on L1 = l.

Proposition 6.3.6. Let α be a generator of O of norm ℓ2L2 with Oα = l2L2 as above.
Then ωE = ι(α) can be decomposed as φ̂E

l
◦ φEl

L2 ◦ φ
E
l . Suppose that ωE is represented

as (RE, SE, QE) where E[l] = ⟨RE⟩, E[L2] = ⟨SE⟩ and E[l] = ⟨QE⟩. The effective
orientation of the curve El is (REl

, SEl
, QEl

) where:

QEl
= φEl (QE)

REl
= φ̂El

L2 ◦ φ
E
l

(RE)
SEl

= φEl (SE).

Proof. By the definitions of the group action and of the effective orientation, ωE = ι(α)
implies ωEl

= ιl(α). This is why we obtain the two decompositions φ̂E
l
◦ φEl

L2 ◦ φ
E
l for ωE

and φ̂El

l
◦φEl2

L2 ◦φ
El
l for ωEl

from the factorisation Oα = l2L2. The rest of the proposition
follows by applying Lemma 6.3.2 to (E, l, l), (E,L2l, l), and (E, l,L2) respectively.

Note that Proposition 6.3.6 remains valid when we replace the ideal l by any ideal of
smooth norm dividing αO. This will be the case in Section 6.5 where we evaluate the
action of a product of prime ideals li where some l2i divide αO and others do not.

In Section 6.5, we introduce a concrete instantiation of the general principle described
above. There, we provide a detailed and efficient version of the algorithms outlined in
this section.

6.4 Security of a group action 148

Comparison with CSIDH. In CSIDH [CLM+18], the effective orientation is obtained
through the Frobenius endomorphism, which has norm p and is thus coprime to the norm
of all ideals we need to evaluate. Thus, we are in the easy case. Moreover, the situation
of CSIDH is particularly simple because the kernel of φEl can be directly obtained as one
of the two subgroups of order ℓ stable under Frobenius.

6.4 Security of a group action

In this section, we review the best known attacks on the problems underlying our
cryptographic group action. Recall the vectorisation and parallelisation problems, defined
in Section 2.3.1, associated to a (free and transitive) cryptographic group action of a
group G on a set X. A group action · : G×X → X is called a hard homogenous space
if it can be computed efficiently and the vectorisation and parallelisation problems are
hard [Cou06]. We call it a very hard homogenous space if additionally the following
problem is hard.

Problem 6.4.1 (Decisional Parallelisation). Given x, y, u, v ∈ X, decide whether there
exists g ∈ G such that y = g · x and v = g · u.

The vectorisation and parallelisation problems, when instantiated with our group ac-
tion of the class group of O on SO(p), are also known as the problems O-Vectorisation
and O-DiffieHellman, studied in [Wes22a]. For simplicity, assume that the factorisa-
tion of disc(O) is known, and that it has O(log log |disc(O)|) distinct prime factors1, as
will be the case of our construction.

The two problems O-Vectorisation and O-DiffieHellman are equivalent under
quantum reductions (see [GPSV21, MZ22] for reductions that are polynomial in the cost
of evaluating the group action, or [Wes22a] for reductions that are polynomial in the
instance lengths).

Furthermore, these problems are closely related to the endomorphism ring problem,
a foundational problem of isogeny-based cryptography: given a supersingular curve E,
compute a basis of the endomorphism ring End(E) (i.e., four endomorphisms of E that
generate End(E) as a lattice). More precisely, the problem O-Vectorisation is equiv-
alent to the following oriented version of the endomorphism ring problem (see [Wes22a,
Fig. 1]).

Problem 6.4.2 (O-EndRing). Given an effectively oriented curve (E, ιE) ∈ SO(p),
compute a basis of the endomorphism ring End(E).

1Note that the average number of distinct prime factors of integers up to n is indeed O(log log n).

6.4 Security of a group action 149

Clearly, O-EndRing reduces to the standard endomorphism ring problem, but the
converse is not known to be true. In fact, O-EndRing currently seems simpler than the
endomorphism ring problem as long as |disc(O)| < p2. Precisely,

• The endomorphism ring problem can be solved in time (log p)O(1)p1/2 (see [DG16,
EHL+20]), and

• The problem O-EndRing can be solved in time lO(1)|disc(O)|1/4 with l the length
of the input (see [Wes22a, Prop. 3]).

Write O = Z + fO0 where f is the conductor of O and O0 is the maximal order.
Better algorithms than the above are known when O0 has small class group and f is
powersmooth (see [Wes22a, Thm. 5]), or even smooth in certain situations (as discussed
in [CK19], or more generally [Wes22a, Cor. 6]). We will protect against such attacks by
choosing f a large prime. This is in fact one key difference between OSIDH [CK19] and
our construction. In OSIDH [CK19], the setting is similar, but f is smooth (a power of
two), and the f -torsion is defined over Fp2 . For this not to be a vulnerability, OSIDH
is forced to only reveal partial information on the orientations, which must be done
carefully, lest the attacks of [DD22] apply. An unfortunate side effect is that, without
the full orientation, OSIDH does not actually provide an effective group action.

In summary, the fastest known generic classical method to solve the vectorisation
problem associated to the group action has complexity

min
(
(log p)O(1)p1/2, log(p+ d)O(1)d1/4

)
= log(p+ d)O(1) min

(
p1/2, f 1/2

)
,

where d = |disc(O)|. A precise estimate of the O(1) appearing in the complexity
of [Wes22a, Prop. 3] would provide a more precise estimation of the cost of an attack.

Regarding quantum security, there is an asymptotically faster heuristic algorithm,
which runs in subexponential time (see [Wes22a, Prop. 4]). It relies on Kuperberg’s
algorithm [Kup05] for the Abelian hidden shift problem, and runs in time

log(p)O(1)Ldisc(O)(1/2).

Note that in special cases the hidden shift problem can be solved in polynomial time
as discussed in [CvD10, Iva07, CM22]. These include groups isomorphic to (Z/ℓZ)k

where ℓ is a small prime and groups of the form (Z/2Z)k × (Z/qZ)r where q is a small
prime. In general class groups rarely have this structure and for the parameter sets
proposed, we can easily see that these attacks do not apply.

6.5 SCALLOP: a secure and efficient group action 150

Finally, let us discuss the hardness of the decisional parallelisation problem. Clearly,
it is not harder than vectorisation, hence the algorithms discussed above apply. The
only known method that may outperform them is an algorithm to distinguish the action
of ideal classes up to squares. More precisely, to each odd prime divisor m | disc(O) is
associated a quadratic character, i.e., a group homomorphism

χm : Cl(O) −→ {±1},

Given oriented curves (E, ι) and (Ea, ιa), the algorithm of [CHVW22] (a generalisation
of [CSV22]) allows one to evaluate χm([a]) in time polynomial in m. In fact, the algorithm
requires finding random points in E[m], and solving a discrete logarithm in a group of
order m. Hence the quantum complexity may be as low as polynomial in log(m) and k if
the points of E[m] are defined over Fpk . There may also be two additional computable
characters if disc(O) is even. Clearly, if [a] ∈ Cl(O)2 is a square, then χm([a]) = 1, so
one can prevent this attack by using Cl(O)2 instead of Cl(O). Another way to prevent
this attack is to ensure that all prime factors of disc(O) are large, and E[m] lives in a
large field extension, so no character can be computed efficiently.

6.5 SCALLOP: a secure and efficient group action

We finally propose an efficient instantiation of the effective group action outlined in
Section 6.3. Our main algorithm is given in Section 6.5.2, but we need to motivate our
parameter choices first. This is what we do in Section 6.5.1, where we also explain all
the required precomputations.

6.5.1 Parameter choice and precomputation

The content of this section covers all the choices of parameters and precomputations
required to make the SCALLOP group action computation secure and efficient. All the
algorithms described here have to be run only once, at the moment of generating public
parameters. We refer the reader to Section 6.1.1 for a list of all the requirements of that
precomputation to obtain a construction similar to CSI-FiSh.

Choice of quadratic order. Our main motivation is to obtain a quadratic order O of
large discriminant, but with an easy to compute structure of the class group. In general,
this is a hard problem for classical computers, the best algorithm being index calculus,
with a complexity of Ldisc(O)(1/2). But there are some special cases where the structure

6.5 SCALLOP: a secure and efficient group action 151

is easily determined, e.g. when
O = Z + fO0, (6.2)

where O0 is a quadratic maximal order of small discriminant and f is in Z. In that case,
we deduce directly the structure of Cl(O) from that of Cl(O0) and the factorisation of f .
In practice, we propose to take O0 of class number one (e.g. the Gaussian integers) and
f a prime number (also for security, as discussed in Section 6.4).

We give below a formula for the class number of such an order. The group structure,
which turns out to be cyclic when O0 has class number one, is described in the preprint
version of the paper underlying this chapter [DFK+23b, Appx. A].

Proposition 6.5.1. Let f be a prime integer and let O0 be a quadratic order of class
number h0, discriminant d0 and let u0 denote |O×

0 |/2. The class number of Z + fO0 is
equal to

(
f −

(
d0
f

))
h0
u0

.

Note that u0 is one for all orders corresponding to curves with j-invariant different
from 0 or 1728. From now on, we write d0 for disc(O0), and we assume the class number
is one. It is not too difficult to generalise the algorithms below to larger class numbers,
as long as d0 is small.

Choice of conductor. We argued that we need a prime f for security, and to avoid
factoring. Prime numbers also have the advantage of being abundant and easy to generate.
Apart from this, our choice of f will be determined by efficiency constraints. In particular,
to use the algorithm outlined in Section 6.3, we require that there exists a generator α
with norm equal to L2

1L2 to obtain effective O-orientations. Since the manipulation of
this effective orientation requires computing L1- and L2-isogenies, we need L1 and L2 to
be smooth. Moreover, we need L2 to be small for the algorithm SetUpCurve described
below.

Finally, there is a third requirement that we will motivate a bit later: that f − (d0
f

) is
as smooth as possible. This last constraint impacts the efficiency of the offline phase of
our scheme. As such, it is less important than the smoothness of L1L2, which impacts the
cost of the online phase. This is why our approach consists in finding a set of candidates
for f that closely match the first two constraints, before sieving through the set to find
the best candidate for the last requirement. In Section 6.6.1, we provide more details on
how we select the parameters and we give some concrete examples of cryptographic size.

For a given O, finding a generator α of smooth norm is quite hard. Indeed, for a
generic O, the size of the α of smallest smooth norm will be very large compared to f .
This is why we choose the conductor f (and thus the order O) at the same time as the

6.5 SCALLOP: a secure and efficient group action 152

generator α. Our method allows us to find a conductor f and an α of smooth norm of
optimal size (i.e, n(α) ≈ f 2). To do that, we first target a smooth norm L2

1L2, and then
we find a suitable conductor f .

Concretely, we fix a collection of principal ideals of small prime norm in O0. Let us
write α0 for a generator of O0 and l1, . . . , lm for the collection of principal ideals and
ℓ1, . . . , ℓm for the associated split primes. Because the ℓi are split, there are two principal
ideals of norm ℓi in O0: li and its conjugate li, which, by a slight abuse of notation, we
write l−1

i . We denote by L the product ∏m
i=1 ℓi. For some n1 < n2 ≤ m, we consider

the products ∏n1
i=1 l

bi
i

∏n2
i=n1+1 l

ci
i where all bi ∈ {−2, 2} and ci ∈ {−1, 1}, then we get

2n2 principal ideals of norm L2
1L2 with L1 = ∏n1

i=1 ℓi and L2 = ∏n2
i=n1+1 ℓi. It suffices to

obtain one such ideal of the form ⟨L2
1L2, α⟩ where α = x+ fα0 for some prime number

f to get that Z + fO0 = Z[α] where α has norm L2
1L2 as we desire. Each product

has probability roughly 1/ log(L2
1L2) to satisfy the desired property. This gives a set

of size 2m/ log(L) to sieve through in order to find the best candidate with respect to
our third requirement (we have the estimate m = O(log(L2

1L2)/ log log(L2
1L2)), see for

instance [HW+79, Ch. 22]). Up to exchanging li and l−1
i , we can assume that all the bi

and ci are positive and so we have O0α = ∏n1
i=1 l

2
i

∏n2
i=n1+1 li.

Remark 6.5.2. Note that for a fixed O0 of discriminant d0, the choice of class group
determines

(
d0
p

)
to be 1 or −1. This is the only condition imposed on the prime

characteristic p by the choice of class group. Thus, we will be able to choose p in a way
that enables efficient computations after a suitable O has been found.

Computing the relation lattice. Knowing the order of Cl(O) is not enough for our
application. Indeed, we want to be able to efficiently evaluate the action of any ideal
class, which, by virtue of Proposition 6.3.1, calls for a way to compute for any class a
representative that factors as a short product of ideals of small norm. For that, we follow
the method introduced in [BKV19].

The first step is to choose a set {l1, . . . , lm, . . . , ln} of n = O(log(f)) ideals of small
prime norm,2 and to generate its lattice of relations L, i.e. the lattice spanned by the
vectors (e1, . . . , en) ∈ Zn such that the ideal ∏n

i=1 l
ei
i is principal in O. [BKV19] uses an

index calculus method, with complexity Lf (1/2), to compute a basis of L. But another
basis is simply given by the relations ah(O) = 1 and axi = li, where a is any generator of
Cl(O) and the xi are the discrete logarithms to base a. If we force Cl(O) to have smooth
order, we can efficiently compute these discrete logarithms using the Pohlig–Hellman
method.

2This set contains the ideals l1, . . . , lm that divide O0α, but can be larger in general.

6.5 SCALLOP: a secure and efficient group action 153

This explains why we search for f such that f − (d0
f

) is as smooth as possible (recall
Proposition 6.5.1). Unfortunately, we could not find a method to significantly bias f−(d0

f
)

towards being smooth, thus our method still has subexponential complexity: Heuristically,
if we sieve through Lf(1/2) candidates we expect to find one that is Lf(1/2)-smooth,
then solving discrete logarithms also takes Lf (1/2) operations.

Although it looks like we haven’t improved over index calculus, the constant hidden
in (the exponent of) Lf(1/2) is better for our method—which indeed performs much
better in practice—and is the only reason we were able to instantiate parameters twice
as large as those of CSI-FiSh (see Section 6.6).

After having computed a basis for L, the second step, which we do identically
to [BKV19], is to apply a lattice reduction algorithm to obtain a shorter basis. Here
we need to strike a balance between the time spent reducing and the quality of the
output: For example, using BKZ with block size in O(

√
n), running in time Lexp(n)(1/2),

we achieve an approximation factor of Lexp(n)(1/2) (see [LN20, Thm. 3]). In practice,
however, the lattice rank n tends to be relatively small, letting us compute a nearly
optimal basis in negligible time, as already observed in [BKV19].

Finally, any time we are given an ideal class, say le1, we use Babai’s nearest plane
algorithm [Bab86] to find a vector v close to e = (e, 0, . . . , 0), whence we deduce a
representative le−v1

1
∏n
i=2 l

−vi
i ≡ le1. The cost of evaluating the group action by this

representative, using the algorithms of Section 6.3, will be proportional to the norm of
e−v. Hence the better the basis of L has been reduced, the faster the evaluation will be.

Choice of prime characteristic. When it comes to the choice of p, we want to find
a prime that maximises the efficiency of evaluating the group action. We have two
requirements: that the effective orientations (E,PE, QE) (see Definition 6.3.3) can be
manipulated efficiently, and that the isogenies associated to the ideals li can be evaluated
efficiently.

For the first requirement, we will force the points PE and QE representing the kernel
of ωE = ιE(α) to be defined over Fp2 . Recall that PE has order L1L2 and QE has order
L1, hence it is sufficient to choose L1L2 | (p2 − 1).

Similarly, for the second requirement, we want each of the E[li] to be defined over Fp2 in
order to apply the most efficient versions of Vélu’s formulas, i.e. we want n(li) = ℓi | (p2−1).
Point in case, ℓ1, . . . , ℓm must already divide p2 − 1. Write L = L1L2L3 = ∏n

i=1 ℓi, then
it suffices to select p = cL± 1 for some small cofactor c.

Finally we want that SO0(p) is not empty, implying that p must not split in O0. For
instance, if O0 = Z[i], we need p ≡ 3 (mod 4). In any case, finding such a prime p can

6.5 SCALLOP: a secure and efficient group action 154

be done after a logarithmic number of tries for a cofactor c. Alternatively, one might
take c = 1 and play with the split prime factors dividing L1L2L3 until L ± 1 is prime
and split in O0.

In fact, we also need p to be large enough to prevent generic attacks (see Section 6.4).
Luckily, with the choices outlined above, we will obtain a prime p that is a lot larger
than the minimal security requirement.

Generation of a starting curve. After we have chosen parameters O0, L, α, f, p,
generated and reduced the lattice of relations L, the last step of precomputation is the
generation of a first orientation (E, ιE) in SO(p). After this last part is done, we will be
able to do everything with the group action algorithm. This algorithm will be described
later in full detail as Algorithm 6.3, but for now, we focus on the computation of one
(E, ιE) with the corresponding embedding ωE = ιE(α). The goal of this paragraph is to
explain how the algorithm SetUpCurve works (see Algorithm 6.1).

First, let us take (E0, ι0) ∈ SO0(p), and O0 ∼= End(E0) a maximal order in Bp,∞.
When d0 is small enough, O0 is a special extremal order as defined in [KLPT14]. This
means that we can efficiently find elements γ ∈ O0 of norm M as soon as M > p. For
instance, when p ≡ 3 (mod 4), we can do this in the endomorphism ring of the curve of
j-invariant 1728 with the FullRepresentInteger algorithm from [DLW22, Alg. 1]. Moreover,
we can evaluate any endomorphism of End(E0) efficiently, because we have the nice
representation made explicit at Example 2.2.25. By a result from [LB20], the orientations
in SO(p) are obtained from the orientations of SO0(p) through f -isogenies, this is what
we explain in Proposition 6.5.3.

Proposition 6.5.3. Let O0 be a quadratic order, and (E0, ι0) ∈ SO0(p), let f be a prime
integer and O = Z+fO0. If φ : E0 → E is not one of the 1+(d0

f
) isogenies corresponding

to prime ideals above f , then there exists ιE : O ↪→ End(E) and (E, ιE) ∈ SO(p).
Moreover ιE(α) = [φ]∗ι0(α) for any α ∈ O.

Now the idea is to compute the kernel of ι0(α) (in fact the kernel of the two isogenies
of degree L in the decomposition of ι0(α)) and push that kernel through the isogeny φ.
Let us write this kernel as G. The only problem is that in our case f is a large prime,
ruling out Vélu’s formulas for evaluating φ. Since we know End(E0), our idea is to use the
method described in [Ler22, Alg. 2] (or [FKMT22] described in Section 5.3.1) to evaluate
isogenies of large prime degree: represent φ as an ideal Iφ of norm f and compute J ∼ Iφ

where S = n(J), is smooth. Then, evaluate φ, using ψ the isogeny corresponding to J .
This is also similar to the key generation of the SQISign signature protocol [DKL+20].
Here, we can even use the alternative key generation method described in [DKL+20,

6.5 SCALLOP: a secure and efficient group action 155

Appx. D] for better efficiency. Indeed, we can choose almost any isogeny of degree f
(by Proposition 6.5.3, there are at most two isogenies of degree f that do not create a
O-orientation). Thus, we need to find an endomorphism of norm fS for some smooth
integer S. Of course, the simplest situation would be to take S = 1, but this is not possible
because f ≈ L1

√
L2 is strictly smaller than p, and we can only find endomorphisms of

norm larger than p in End(E0). Another natural choice would be to take S dividing
L but we need S to be coprime with L1L2 because our goal is to evaluate the isogeny
of degree S on the L1L2-torsion to compute the kernel representation of ωE. Thus, we
can use only the L3-torsion which is not enough in itself because fL3 < p. We are not
going to assume anything specific about the cofactor c (defined along with the prime
p as p = cL± 1), in particular c might not be coprime to L so we may not be able to
use it in S. However, c quantifies the size of the additional torsion we need, since we
have c

√
L2 ≈ p/(fL3). What we know for sure is that c is small. Thus, if L2 is small as

well, we can select a small prime ℓ0 coprime with L1L2 and take S = L3ℓ
h
0 for some h

such that ℓh0 > p/(fL3). Since h and ℓ0 are small, we can simply brute-force through all
ℓh0-isogenies until one works, i.e., until we obtain an endomorphism of the right norm and
trace after pushing the kernel representation through the considered isogeny of degree ℓh0 .

This yields the SetUpCurve algorithm that we describe below as Algorithm 6.1. The
orientation (E0, ι0) ∈ SO0(p), and an explicit isomorphism ρ0 : O0 ↪→ End(E0) are
considered as implicit parameters of this algorithm. The output is a kernel representation
of ιEωE as in Definition 6.3.3.

For a kernel representation s and any morphism ψ, we write ψ(s) for the kernel
representation of the group obtained by pushing through ψ the kernel corresponding to s.

Proposition 6.5.4. SetUpCurve is correct and terminates in O(c
√
L2poly(log(pcL2))

where c is one of (p± 1)/L.

Proof. To prove correctness, we need to verify that the output sE is an effective orientation
in SO(p). Let us assume that the verification made in the loop passed. We will start
by proving correctness under that assumption, then we will justify why the verification
always passes. When the verification passes, it means that sE is the kernel representation
for an endomorphism ωE of the same norm and trace as α. This implies that Z[ωE] ∼= Z[α]
and so by definition we get that sE is a correct effective orientation.

Now, let us justify that there always is an i that passes the verification. The element
γ ∈ O0 provides us with a principal ideal O0γ, whose corresponding isogeny ρ0(φγ) is an
endomorphism of E0. Moreover, we have that (up to composing with some isomorphisms
if necessary) φγ = ψ′ ◦ φ ◦ φf where φf : E0 → E has degree f , φ : E → E ′ has degree
ℓh0 and ψ′ : E ′ → E0 has degree L3. By Proposition 6.5.3, E is an O-orientable curve

6.5 SCALLOP: a secure and efficient group action 156

Algorithm 6.1: SetUpCurve(p, f)
Input: A prime p of the form p = cL1L2L3 ± 1 and a prime f such that there

exists O0 of discriminant d0 where p is not split and O = Z + fO0
contains an element of norm L2

1L2.
Output: An effective orientation sE for (E, ιE) ∈ SO(p).

1 Let ℓ0 be the smallest prime coprime with L1L2.
2 Compute s0 the kernel representation of ω0 = ι0(α).
3 Set h such that ℓh0 > p/(fL3) and compute γ ∈ O0 of norm fL3ℓ

h
0 with

FullRepresentInteger.
4 Compute the kernel representation s = ρ0(γ)(s0).
5 Use ρ0 to compute the isogeny ψ : E0 → E ′ of norm L3 corresponding to the

ideal ⟨γ, L3⟩.
6 Make the list (φi : E ′ → Ei)1≤i≤m of all isogenies of degree ℓh0 from E ′.
7 for i ∈ [1,m]: do
8 Compute si = φi ◦ ψ(s) and verify that it is a kernel representation for an

endomorphism ωi of norm n(α) and that it is not s0.
9 If yes, verify that tr(ωi) is the same as tr(α). If yes, break from the loop.

10 Set E = Ei, and sE = si.
11 return sE.

unless φf corresponds to one of the 1 +
(
d0
f

)
horizontal f -isogenies of domain E0. Let us

assume for now that it is not. By Proposition 6.5.3, we know that the endomorphism
ωE = ιE(α) can be obtained by pushing forward ω0 through φf . Thus, we need to show
that s = φf(s0). By design, the ideal ⟨γ, L3⟩ corresponds to the isogeny ψ̂′. Thus, we
have that the isogeny ψ computed in Step 4, is the isogeny ψ̂′. Then, if we take the
index i0 such that φi0 = φ̂, we get that Ei0 is the curve E that we are looking for.
Then, si0 = φi0 ◦ ψ ◦ ψ′ ◦ φ ◦ ϕf(s) = φf(s) and this proves the result. To finish the
proof of correctness, we simply need to address the case where φf might be one of the
bad isogenies. What happens in that case, is that [φf]∗ι0(α) = ι0(α) (so we obtain an
embedding that is not primitive, since it is the corresponding to ι0). Thus, the additional
verification that si is not s0 prevents the bad case from happening and so we know that
sE is an effective orientation of SO(p).

Regarding complexity, we have ℓh0 < ℓ0p/(fL3) and since we have f = O(L1
√
L2),

the loop is repeated at most O(c
√
L2) times. The computations over the quaternions are

in O(poly(log(p)). Then, since we have the explicit isomorphism ρ0, we can compute ψ
and evaluate ρ0(γ) over the L-torsion in O(poly(log(p)) (remember that the L-torsion is
defined over Fp2 and L < p). Then, the computation of each φi is in O(poly(log(pL2c)) and

6.5 SCALLOP: a secure and efficient group action 157

computing si and checking the trace has O(poly(log(p)) complexity with the CheckTrace
algorithm introduced in [Ler22]. This proves the result.

6.5.2 The group action computation

Now that we have our starting curve E and an effective orientation ωE, it remains to
see how we can compute Ea and the kernel representation of ωEa for any ideal a. For
efficiency reasons, we restrict ourselves to the case where a has a smooth norm. Also, we
target the case where n(a) = ∏n

i=1 ℓ
ei
i because this is the one where we will be able to

compute the corresponding isogeny efficiently.
Since we only have the L-torsion available, we can factor a as the product of e =

max1≤i≤n ei ideals whose norm is dividing L and treat each of them independently.
Thus, our main algorithm is GroupActionSmall (Algorithm 6.2) that performs the group

action computation for one ideal of degree dividing L. The final algorithm GroupAction
(described as Algorithm 6.3) is simply the consecutive execution of this subalgorithm on
all factors.

When the ideal has degree dividing L. Let us fix some notation. We write
L1 = ∏n1

i=1 li, L2 = ∏n2
i=n1+1 li and L3 = ∏n

i=n2+1 li. With these definitions we have
Oα = L2

1L2. Equivalently, this means that we can write ωE as φ̂E
L−1

1
◦ φEL1L2 . The

kernel of ωE is made of two subgroups that we write ⟨PE⟩, ⟨QE⟩ with ⟨PE⟩ = kerφEL1L2

and ⟨QE⟩ = kerφE
L−1

1
. Let us take the input ideal a, it can be factored as a1, a2, a3

where n(ai)|Li. And for i = 1, 2 we also factor ai as bici where bi|Li and ci|L−1
i and

gcd(n(bi), n(ci)) = 1. We write Ki = Li/bi and J1 = L−1
1 /c1. Given an ideal a whose

norm divides L, we use Algorithm 6.2 (GroupActionSmall) to compute the action of a on
(E, sE).

Fig. 6.2 provides a visualisation of the different isogenies involved in Algorithm 6.2.

Proposition 6.5.5. GroupActionSmall is correct and runs in time Õ(B) where B is the
largest factor of L.

Proof. To prove correctness, we need to verify that sEa = (PEa , QEa) represents the two
correct subgroups, that is Ea[L1L2] = ⟨PEa⟩ and Ea[L−1

1] = ⟨QEa⟩. By definition of the
effective orientation, we have E[L1L2] = ⟨PE⟩ and E[L−1

1] = ⟨QE⟩.
From the computation of the isogenies φEb1b2 , φEb1b2

K1K2 , φEc1 and φEc1
J1 in Steps 2, 4, 6 and

8 respectively, and their evaluation on the respective n(c2a3) torsion groups in Steps 3, 5,

6.5 SCALLOP: a secure and efficient group action 158

Algorithm 6.2: GroupActionSmall((E, ιE), a)
Input: An effective O-orientation sE for (E, ιE) and an ideal a = b1b2c1c2a3

such that bi|Li and ci|L−1
i for i = 1, 2 and n(a3)|L3.

Output: An effective O-orientation sEa for (Ea, ιEa).
1 Parse sE as E,PE, QE.
2 Compute φEb1b2 from its kernel ⟨

[
L1L2
n(b1b2)

]
PE⟩.

3 Compute P ∗
Eb1b2

= φEb1b2(PE), QEb1b2
= φEb1b2(QE) and φEb1b2(E[n(c2)L3]).

4 Compute φEb1b2
K1K2 from its kernel ⟨P ∗

Eb1b2
⟩.

5 Compute QEL1L2
= φ

Eb1b2
K1K2 (QEb1b2

) and φ
Eb1b2
K1K2 (Eb1b2 [n(b1b2c2)L3]).

6 Compute φEc1 from its kernel ⟨[L1
n(c1)]QE⟩

7 Compute PEc1
= φEc1(PE), Q∗

Ec1
= φEc1(QE) and φEc1(E[n(c2)L3]).

8 Compute φEc1
J1 from its kernel ⟨Q∗

Ec1
⟩

9 Compute PEL1L2
= φ

Ec1
J1 (PEc1

) and φ
Ec1
J1 (E[n(c1c2)L3]).

10 From the action of φEb1b2
K1K2 on Eb1b2 [n(b1b2)], compute φ̂Eb1b2

K1K2 ([L1L2
n(b1b2)]PEL1L2

) and
add it up to P ∗

Eb1b2
to recover PEb1b2

.
11 From the action of φEc1

J1 on Ec1 [n(c1)], compute φ̂Ec1
J1 ([L1

n(c1)]QEL1L2
) and add it up

to Q∗
Ec1

to recover QEc1
.

12 From the action of φEb1b2 , φEb1b2
K1K2 , φEc1 and φ

Ec1
J1 on the respective n(c2)L3-torsion

groups, compute ωEb1b2
(Eb1b2 [n(c2)L3]) and deduce Eb1b2 [c2a3].

13 Compute φEb1b2
c1 from its kernel ⟨

[
L1
n(c1)

]
QEb1b2

⟩
14 Compute PEa1b2

= φ
Eb1b2
a1b2 (PEb1b2

) and Ea1b2 [c2a3] = φ
Eb1b2
c1 (Eb1b2 [c2a3]).

15 Compute φEc1
b1b2 from its kernel ⟨

[
L1L2
n(b1b2)

]
PEc1
⟩

16 Compute QEa1b2
= φ

Ec1
b1b2(QEc1

).
17 Compute φEa1b2

c2a3 = φ
Ea1a2
a3 ◦ φEa1b2

c2 from its kernel Ea1b2 [c2a3].
18 Compute PEa = φ

Ea1b2
c2a3 (PEa1b2

) and QEa = φ
Ea1b2
c2a3 (QEa1b2

).
19 Compute the canonical effective orientation sEa for (Ea, ιEa) from Ea, PEa and

QEa (see Remark 6.3.4).
20 return sEa.

6.5 SCALLOP: a secure and efficient group action 159

EEL1L2 Ea1c1 Ea1a2
Ea

Ec1

Eb1b2
φEb1b2

φEc1

φ
Eb1b2
c1

φ
Ec1
b1b2

φ
Ec1
J1

φ
Eb1b2
K1K2

φ
Ea1c1
c2 φ

Ea1a2
a3

Fig. 6.2 A picture of the isogenies and curves involved in GroupActionSmall.

7 and 9, we successfully recover the action of

ωEb1b2
= φEb1b2 ◦ φ̂

E
c1 ◦ φ̂

Ec1
J1 ◦ φ

Eb1b2
K1K2

on Eb1b2 [n(c2)L3] in Step 12. Since n(c2)L3 is smooth, we efficiently solve some two-
dimensional discrete logarithms in the group Eb1b2 [n(c2)L3] to successfully recover
Eb1b2 [c2a3] in Step 12.

Applying Lemma 6.3.2 to (E, b1b2,L
−1), we get that ⟨QEb1b2

⟩ = Eb1b2 [L−1
1] in Step 3.

Meanwhile, in Step 3 ⟨P ∗
Eb1b2
⟩ = ⟨φEb1b2(PE)⟩ generates the proper subgroup of Eb1b2 [L1L2]

of order L1L2/n(b1b2).
To recover the remaining part of the group Eb1b2 [L1L2], one applies the formulas given

in Proposition 6.3.6. That is, one recovers the part of Eb1b2 [L1L2] lost when evaluating
φEb1b2 on PE by evaluating

φE(L1K1K2)−1 = φ̂
Eb1b2
K1K2 ◦ φ

Ec1
J1 ◦ φ

E
c1

on [L1L2
n(b1b2)]PE. This is done in Step 10 where Eb1b2 [L1L2] = ⟨PEb1b2

⟩.
Reasoning similarly for c1 and L1L2, we get that in Step 7, we have the equality

⟨PEc1
⟩ = Ec1 [L1L2] and that Step 11 successfully recovers QEc1

such that Ec1 [L−1
1] =

⟨QEc1
⟩.

Applying Lemma 6.3.2 to (Ec1 , b1b2,L
−1), (Eb1b2 , c1,L1L2) and (Eb1b2 , c1, c2a3) respec-

tively, we get that

Ea1b2 [L−1
1] = φ

Ec1
b1b2

(
Ec1 [L−1

1]
)

= φ
Ec1
b1b2(⟨QEc1

⟩) = ⟨QEa1b2
⟩

6.6 Concrete instantiation 160

as computed in Step 16,

Ea1b2 [L1L2] = φ
Eb1b2
c1 (Eb1b2 [L1L2]) = φ

Eb1b2
c1 (⟨PEb1b2

⟩) = ⟨PEa1b2
⟩

as computed in Step 14 and

Ea1b2 [c2a3] = φ
Eb1b2
c1 (Eb1b2 [c2a3]) .

In Steps 17 and 18, we compute φEa1b2
c2a3 and applying Lemma 6.3.2 to (Ea1b2 , c2a3,L

−1)
and (Ea1b2 , c2a3,L1L2) respectively, we get

Ea[L−1
1] = φ

Ea1b2
c2a3 (Ea1b1 [L−1

1]) = φ
Ea1b2
c2a3 (⟨Qa1b1⟩) = ⟨QEa⟩

and
Ea[L1L2] = φ

Ea1b2
c2a3 (Ea1b1 [L1L2]) = φ

Ea1b2
c2a3 (⟨Pa1b1⟩) = ⟨PEa⟩.

Algorithm 6.2 mostly consists of scalar multiplications, isogenies and discrete logarithm
computations. The running time of scalar multiplications is polynomial in log(p) and
log(L). Since the degrees of the isogenies computed, and the orders of the groups in
which the discrete logarithms are computed divide L, then these operations can be
performed in time Õ(B) where B is the largest factor of L. Hence the overall complexity
of Algorithm 6.2, ignoring logarithmic factors, is Õ(B).

The full algorithm. Now, Algorithm 6.3 describes the group action evaluation. It
is simply made of consecutive executions of GroupActionSmall preceded with a little
initialisation.

6.6 Concrete instantiation

In this section, we report on the concrete choices we made to instantiate a signature
scheme analogous to CSI-FiSh on top of our SCALLOP group action.

For the construction of the signature scheme it suffices to replace the CSIDH group
action by the SCALLOP group action. For a sketch of the signature scheme, we instead
refer the reader to the sketch of CSI-FiSh in the preliminaries or to [BKV19] for the
detailed description of the scheme.

The security of the new signature scheme based on the SCALLOP group action relies
on the problems introduced in Section 6.4. For the concrete instantiation we target two
levels of security: matching the security of CSIDH-512 and the one of CSIDH-1024. To

6.6 Concrete instantiation 161

Algorithm 6.3: GroupAction((E, ιE), d)
Input: An effective O-orientation sE for (E, ιE) and d = le1

1 · · · len
n .

Output: An effective O-orientation sEd for (Ed, ιEd)
1 while some ei ̸= 0 do
2 a = 1
3 for i ∈ {1, · · · , n} do
4 if ei < 0 then
5 a = a ∗ l−1

i , ei = ei + 1
6 else if ei > 0 then
7 a = a ∗ li, ei = ei − 1

8 sE = GroupActionSmall(sE, a)
9 return sE.

obtain class groups of the same size, we take prime conductors of size 256 and 512 bits
respectively.

6.6.1 Parameter selection

As outlined in Section 6.5, we start by choosing the conductor f . To this end, we fix
O0 = Z[i] to be the Gaussian integers. Then, we consider the smallest n1 + n2 split
primes ℓi. As before, let li denote split ideals associated to the primes ℓi. We partition
the primes into two sets P1 and P2 of respective size n1 and n2 such that L1 = ∏

ℓi∈P1 ℓi

and L2 = ∏
ℓi∈P2 ℓi. For such a fixed partition, we iterate through choices for bi ∈ {−2, 2}

and ci ∈ {−1, 1} to generate candidates for the orientation α ∈ Z[i] as

∏
ℓi∈P1

lbi
i

∏
ℓi∈P2

lci
i .

By construction, each candidate is of smooth norm L2
1L2.

For each candidate, we test whether the coefficient f of the imaginary part is prime.
If this is the case, we try to factor f + 1, if f ≡ 3 (mod 4), or f − 1 otherwise. Factoring
is done using the ECM method with early abort in case a factor larger than a given
smoothness bound is found or no further factor is discovered within a given time frame.

We ran this method and the algorithm SetUpCurve to find a conductor and a starting
oriented curve for parameters with the same security level as CSIDH-512 and CSIDH-1024
respectively. The result are reported in Section 6.6.2.

In both cases, the computation ran in minutes on a laptop.

6.6 Concrete instantiation 162

6.6.2 Concrete parameters
128-bit parameters. We choose n1 + n2 = 37 such that f > 2256 as long as L2 is
sufficiently small. Taking L2 = 5, we found

α = − 600591808385180536757881465597002302416458558485126821764359031606300809784518

+ 813882587493810077851957456371883857713360998173103581924791873490003540502291i,

where f ≈ 2259 and f + 1 is 234-smooth.
For these values, we choose to consider L = L1L2L3 as the product of the 65 smallest

primes split in O0. We choose the prime characteristic to be p = 4cL− 1 for a cofactor
c = 335 and it is of 528 bits. In that case, we ran SetUpCurve and found the curve E
y2 = x(x2 +Ax+ 1) and the generators PE +RE = (XP : ZP) and QE = (XQ : ZQ) with

A = 6097131856309720106709355598531442247201172015501563397293294692913861525438243

05586404027203286371218559576094219612254895492407385077835353293836473582216156i

+ 6154203050263327294185007468577116825020016879693623450232515562571184399039780

74239505844517514411499242170968625179487146013956635387122252006310139961458627

XP = 6496627669559872627126426534954341866567752062881984427313982186012133760934868

2053267403977612866044608709977202489719633085395505798729152245974957138874364i

+ 3056346286256169607822658527595684519952244095716914363015882401497402419031238

84067062444498174462757100863123084027477649307746921497178333469289043565995389

ZP = 1899739089838571960321465644011738013032576761685494928063181811040671772336871

8960821783070258517210561361301741028000188914609283796546407836389139273245673i

+ 1475362903454741694322410222776475294859933687514144615142470101682544785852701

3717351300531972522264790185598118174449016749578295230692028885632016095180151

XQ = 2469818792475575457639930872370341390449003677032813053810716121452318949264386

93935785318433362583747698473264146540339779183840067932009812209007329466955538i

+ 4673692447828914954394995382663393198855870520104061296682435639678627264243608

28941690624656664550571842480155725302787142201839669528155442075391877673039043

ZQ = 2481377063499690506232037287156303560272663468881817170817458747171635178338879

15372933044705906891680845109908810627498064202940421960548161243298726554555947i

+ 5387944227157394708375710104815860305251081484910498424429234423442202342380850

72105701529147575802448514849470103019165742967961778570505788500695645374180032

over Fp2 = Fp[i] = Fp[X]/⟨X2 + 1⟩.

6.6 Concrete instantiation 163

256-bit parameters. We choose n = 68 and taking L2 = 5 we obtained

α = −1732789171287999248865840014371615621781101280436793273723405210

526356347946603557614710265303485229586472132988844003836753101468

59057269270267622717600758

+ 111067294716243081975130937217528372885477020011478178590825958748

137054759443760832676453989566903528901601602870671704714448434265

277819658117244388003679i.

In this case, f ≈ 2516 and f + 1 is 274-smooth.
With the values given above, we choose to consider L = L1L2L3 as the product of the

75 smallest primes split in O0. We choose the prime characteristic to be p = 4cL−1 for a
cofactor c = 256 and it is of 625 bits. In that case, we ran SetUpCurve and found the curve
E y2 = x(x2 + Ax + 1) and the generators PE + Re = (XP : ZP) and QE = (XQ : ZQ)
with

A = 147275998382645776665008425032549727015261439838745102087356793299

4602207568162203688423845772132160199000373457269445389371361539465

7032790161720120235152509434377407352876150073244122362i

+ 119077054972255322960390267599689318914164103457996137020065802336

8705460476252906808842052600604128224501684481662076224641109840534

5507104748871500047123475604126711073313864874934324924

XP = 492555444431645203474344564742527593139043136885801237701636936324

9512321072358408124769514841143750007578202805786829603451881581246

7117902012178442976919626562751512480123868300475638582i

+ 160728320760902619108152017541647965397628920335381690975773174016

1345373841514432658803135480959287600240206000259275797274253916296

9648571264928742822920418372676348677776788679955809937

ZP = 508856872348785710159152814624363239736852521142590779448941887712

0093767370002342556132637018592901373081443010181013296131507986831

7613826543803409890933507777497697852107749649449140072i

+ 652483897787328979568655540089891443070986122621973121391553673615

1833206930732814463148469026767115548638891741012079561679044477842

0027011367209710594277710901122981203914047875599523144

XQ = 8288790445250350064839699147723505455046784996434709459114263301451

6.6 Concrete instantiation 164

13555366994534893915039828011404242096316309402192844877740264807437

68290532664434976573982687738156363392189216850588623i

+ 3841153250318664329707927176022953223337846295759540419318894044227

41873758876927107378405774778546263315680724522558971565667653319001

88588214966739680468020271926250543359268691203618367

ZQ = 7632506641709948071231387782881695957036755405739448884185396304973

67028512609698993522424798527887517852952889696552274845489095323007

55463467566133229061065390077081896687856794158932892i

+ 7041471146738903041490132396241268700802113200139966332869051682626

26131679016289683615028815480043907036563543582528941777513336648179

68449585096463852399500535832511947622241108071785464

over Fp2 = Fp[i] = Fp[X]/⟨X2 + 1⟩.
Note that we were far from exhausting the search spaces in either case and it may be

possible to find smoother solutions and, consequently, to further accelerate the setup.

6.6.3 Performance

Size of public keys. Public keys are represented as effective orientations (E,PE, QE)
(see Definition 6.3.3), with all constants defined over Fp2 , so they are approximately six
times larger than CSIDH keys. However, using standard compression techniques, we can
represent them using only two Fp-elements and two integers modulo L1L2, which would
give keys of approximately 1600 bits for SCALLOP-512 and 2300 bits for SCALLOP-1024.

Implementation. We implemented our group action in C++, making use of assembly-
language field arithmetic.3 In our proof-of-concept implementation, applying the action
of one arbitrary class group element takes about 35 seconds for the smaller parameter
set and 12.5 minutes for the larger parameter set on a single core of an Intel i5-6440HQ
processor running at 3.5 GHz. Note that our implementation is not side-channel resistant.

While the current implementation is not fully optimised, for instance it does not
yet use the

√
élu algorithm [BDLS20], we do not expect to gain an order of magnitude

by implementing all the possible optimisations. Thus, even if our implementation
demonstrates feasibility, it seems that the SCALLOP group action is not yet ready for
cryptographic applications.

3Our code is available at https://github.com/isogeny-scallop/scallop.

https://github.com/isogeny-scallop/scallop

6.7 Security discussion: evaluating the descending isogeny 165

6.7 Security discussion: evaluating the descending
isogeny

We discuss a conceivable strategy to break the hardness assumptions of our proposed
group action in the following. Recall that O-Vectorisation is essentially equivalent
to O-EndRing, hence it would be sufficient to devise an algorithm that computes the
endomorphism ring of any O-oriented curve, say (E1, ι1). Given an O0-oriented curve
(E0, ι0) with a known endomorphism ring and O0 of class number one, there exists a
unique descending isogeny

φ : (E0, ι0) −→ (E1, ι1),

which has degree f . To compute End(E1), one could try the following:

1. Find an algorithm to evaluate φ on input points efficiently.

2. Using Step 1, try to convert φ into its corresponding left End(E0)-ideal Iφ.

3. Deduce End(E1) as the right-order of Iφ.

Note that this problem is related to the SubOrder to Ideal Problem (SOIP) introduced
by Leroux [Ler22]. It is quite obvious that the problem we study here is harder than the
SOIP since the SOIP provides to the attacker several effective orientations of different
quadratic orders (instead of one in our case). We refer to [Ler22, Sect. 4] for a study
of the SOIP. Below, we will try to explain why applying efficiently the attack outlined
above appears complicated.

In particular, the first two steps seem challenging. Since we chose deg(φ) = f to be
a large prime, there is no hope to evaluate φ, Step 1, using standard algorithms such
as Vélu’s formulas, which have polynomial complexity in deg(φ). However, even if one
managed to solve Step 1, it is not clear how to solve Step 2 (which is somewhat equivalent
to the SOIP, see [Ler22, Prop. 14]). Known algorithms to convert an isogeny into an ideal
require working within the torsion subgroup E[deg(φ)]. Our parameter choice ensures
this torsion to be defined over an extension field of exponentially large degree.

Despite these obstacles, let us investigate a possible solution to Step 1, which does
not necessarily need to rely on Vélu’s formulas, or knowing ker(φ).

Let us introduce a vector notation for arithmetic on the curves. Given a pair of points
B = (P,Q), and a vector of two integers v = (x, y), we write v · B = xP + yQ. Fix a
positive integer n coprime with p and the norm of a. Let B0 = (P0, Q0) and B1 = (P1, Q1)
be bases of E0[n] and E1[n] respectively. Let ψ : E0 → E1 be an isogeny. The restriction

6.7 Security discussion: evaluating the descending isogeny 166

of ψ on the n-torsion is characterised by the matrix Mψ ∈M2×2(Z/nZ) such that for any
v ∈ (Z/nZ)2, we have ψ(v · B0) = (Mψv) · B1. We call Mψ the matrix form of ψ with
respect to B0 and B1.

In the following, we show that even for φ of large prime degree, it is possible to learn
information about Mφ, effectively identifying a 1-dimensional subvariety of M2×2(Z/nZ)
containing it. Yet, this is not enough to solve Step 1.

Let en(−,−) denote the Weil pairing on points of order dividing n. The following
lemma fixes the determinant of Mφ.

Lemma 6.7.1. If en(P0, Q0) = en(P1, Q1), then det(Mφ) ≡ deg(φ) mod n.

Proof. Write Mφ = (a bc d). We have

en(P0, Q0)deg(φ) = en(φ(P0), φ(Q0)) = en(aP1 + cQ1, bP1 + dQ1)
= en(P1, Q1)ad−bc = en(P0, Q0)det(Mφ).

The result follows from the non-degeneracy of the Weil pairing.

For random bases B0 and B1, en(P0, Q0) = en(P1, Q1) is unlikely. However, at the
cost of solving one discrete logarithm in a group of order n, this condition on the bases
can be enforced. This can be done in classical exponential time in the size of the largest
prime factor of n, or in quantum polynomial time in log(n).

Due to φ being a descending isogeny, we observe that Mφ satisfies further certain
linear relations: Writing O0 = Z[ω] and O = Z[fω], we have ι1(fω) = φ ◦ ι0(ω) ◦ φ̂,
hence

AMφ = MφB

where A is the matrix of ι1(fω) (with respect to B1), and B is the matrix of fι0(ω)
(with respect to B0). Note that the matrices A and B can be computed in quantum
polynomial time (or in classical exponential time in the size of the largest prime factor).
This is because the endomorphisms can be evaluated in polynomial time on the points of
the basis, and the matrix coefficients follow from a discrete logarithm computation as
above.

For simplicity, assume that n is prime. Then, M2×2(Z/nZ) is an Fn-vector space. The
space M of solutions M of AMφ = MφB has dimension 2. Indeed, if M is one solution
with non-zero determinant, then XM is a solution if and only if X commutes with A.
Note that a solution exists, since Mφ itself has non-zero determinant by Lemma 6.7.1.
The space of matrices that commute with A is the span of A and the identity matrix I2,
which has rank 1 if A is a scalar matrix, and 2 otherwise. Since n is coprime with the

6.7 Security discussion: evaluating the descending isogeny 167

norm of a, the endomorphism ι1(fω) does not act like a scalar on the n-torsion, so A is
not a scalar matrix, and the space of solutions M has dimension 2.

Together with Lemma 6.7.1, we have reduced our search space for Mφ to the one-
dimensional Fn-variety

Mf = {M ∈M| det(M) = f}.

It is unclear how to reduce this space further, narrowing down Mφ. One may be tempted
to use pairing equations as in Lemma 6.7.1 with the Tate pairing instead of the Weil
pairing. However, the curves having trace ±2p, the Tate pairing is alternating (see [Was08,
Thm. 3.17]), and thereby provides the same condition as the Weil pairing. In conclusion,
it appears that all the available information is insufficient to evaluate the descending
isogeny φ on any input efficiently.

References

[ACC+19] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred
Menezes, and Francisco Rodríguez-Henríquez. On the cost of computing
isogenies between supersingular elliptic curves. In Carlos Cid and Michael J.
Jacobson Jr:, editors, SAC 2018, volume 11349 of LNCS, pages 322–343.
Springer, Heidelberg, August 2019.

[ACL+22] Sarah Arpin, Mingjie Chen, Kristin E. Lauter, Renate Scheidler, Katherine E.
Stange, and Ha T. N. Tran. Orienteering with one endomorphism. Cryptology
ePrint Archive, Report 2022/098, 2022. https://eprint.iacr.org/2022/098.

[ADDS21] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-
optimal verifiable oblivious pseudorandom functions from ideal lattices. In
Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages
261–289. Springer, Heidelberg, May 2021.

[ADMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis.
Cryptographic group actions and applications. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages
411–439. Springer, Heidelberg, December 2020.

[AEN19] Yoshinori Aono, Thomas Espitau, and Phong Q. Nguyen. Random lattices:
Theory and practice, 2019.

[AJK+16] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christo-
pher Leonardi. Key compression for isogeny-based cryptosystems. In Pro-
ceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryp-
tography, pages 1–10. ACM, 2016.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages
99–108, 1996.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica, 6(1):1–13, 1986.

[BBD+22] Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D.
Galbraith, Sabrina Kunzweiler, Simon-Philipp Merz, Christophe Petit, Ben-
jamin Smith, Katherine E. Stange, Yan Bo Ti, Christelle Vincent, José Felipe
Voloch, Charlotte Weitkämper, and Lukas Zobernig. Failing to hash into

https://eprint.iacr.org/2022/098

References 169

supersingular isogeny graphs. Cryptology ePrint Archive, Report 2022/518,
2022. https://eprint.iacr.org/2022/518.

[BBEL08] Juliana Belding, Reinier Bröker, Andreas Enge, and Kristin Lauter. Comput-
ing hilbert class polynomials. In Algorithmic Number Theory: 8th Interna-
tional Symposium, ANTS-VIII Banff, Canada, May 17-22, 2008 Proceedings
8, pages 282–295. Springer, 2008.

[BCC+22] Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris
Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Pa-
tranabis, and Benjamin Wesolowski. Supersingular curves you can trust.
Cryptology ePrint Archive, Report 2022/1469, 2022. https://eprint.iacr.org/
2022/1469.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system I: The user language. Journal of Symbolic Computation, 24(3-4):235–
265, 1997.

[BDK+22] Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico
Pintore. Group signatures and more from isogenies and lattices: Generic,
simple, and efficient. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 95–126. Springer,
Heidelberg, May / June 2022.

[BDLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
Faster computation of isogenies of large prime degree. In ANTS-XIV-14th Al-
gorithmic Number Theory Symposium, volume 4, pages 39–55. Mathematical
Sciences Publishers, 2020.

[Ber09] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers
make SHARCS obsolete. SHARCS, 9:105, 2009.

[BHT97] Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum algorithm for the
collision problem. arXiv preprint quant-ph/9705002, 1997. https://arxiv.org/
abs/quant-ph/9705002.

[Bis12] Gaetan Bisson. Computing endomorphism rings of elliptic curves under the
GRH. Journal of Mathematical Cryptology, 5(2):101–114, 2012.

[BJS14] Jean-François Biasse, David Jao, and Anirudh Sankar. A quantum algorithm
for computing isogenies between supersingular elliptic curves. In Willi Meier
and Debdeep Mukhopadhyay, editors, INDOCRYPT 2014, volume 8885 of
LNCS, pages 428–442. Springer, Heidelberg, December 2014.

[BKM+20] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and
Charlotte Weitkämper. On adaptive attacks against Jao-Urbanik’s isogeny-
based protocol. In Progress in Cryptology-AFRICACRYPT 2020: 12th

https://eprint.iacr.org/2022/518
https://eprint.iacr.org/2022/1469
https://eprint.iacr.org/2022/1469
https://arxiv.org/abs/quant-ph/9705002
https://arxiv.org/abs/quant-ph/9705002

References 170

International Conference on Cryptology in Africa, Cairo, Egypt, July 20–22,
2020, Proceedings 12, pages 195–213. Springer, 2020.

[BKM+21] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and An-
tonio Sanso. Cryptanalysis of an oblivious PRF from supersingular isogenies.
In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part I,
volume 13090 of LNCS, pages 160–184. Springer, Heidelberg, December
2021.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and
Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II,
volume 12492 of LNCS, pages 464–492. Springer, Heidelberg, December
2020.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
Efficient isogeny based signatures through class group computations. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I,
volume 11921 of LNCS, pages 227–247. Springer, Heidelberg, December
2019.

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom
functions from isogenies. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 520–550. Springer,
Heidelberg, December 2020.

[BL07] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on
elliptic curves. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833
of LNCS, pages 29–50. Springer, Heidelberg, December 2007.

[BS11] Gaetan Bisson and Andrew V. Sutherland. Computing the endomorphism
ring of an ordinary elliptic curve over a finite field. Journal of Number
Theory, 131(5):815–831, 2011.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of
CSIDH. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 493–522. Springer, Heidelberg, May
2020.

[CD20] Wouter Castryck and Thomas Decru. CSIDH on the surface. In Jintai Ding
and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th Inter-
national Conference, PQCrypto 2020, pages 111–129. Springer, Heidelberg,
2020.

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH (preliminary version). Cryptology ePrint Archive, Report 2022/975,
2022. https://eprint.iacr.org/2022/975.

https://eprint.iacr.org/2022/975

References 171

[CDV20] Wouter Castryck, Thomas Decru, and Frederik Vercauteren. Radical iso-
genies. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 493–519. Springer, Heidelberg, De-
cember 2020.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203.
Plenum Press, New York, USA, 1982.

[CHM+23] Wouter Castryck, Marc Houben, Simon-Philipp Merz, Marzio Mula, Sam
van Buuren, and Frederik Vercauteren. Weak instances of class group action
based cryptography via self-pairings. To appear at CRYPTO 2023. Preprint
available at https://eprint.iacr.org/2023/549, 2023.

[CHVW22] Wouter Castryck, Marc Houben, Frederik Vercauteren, and Benjamin
Wesolowski. On the decisional Diffie-Hellman problem for class group actions
on oriented elliptic curves. Research in Number Theory, 8, 2022.

[CJL+17] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and
David Urbanik. Efficient compression of SIDH public keys. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 679–706. Springer, Heidelberg, April / May 2017.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic
curve isogenies in quantum subexponential time. Journal of Mathematical
Cryptology, 8(1):1–29, 2014.

[CK19] Leonardo Colò and David Kohel. Orienting supersingular isogeny graphs.
Number-Theoretic Methods in Cryptology 2019, 2019.

[CLG09] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic
hash functions from expander graphs. Journal of Cryptology, 22(1):93–113,
January 2009.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An efficient post-quantum commutative group action. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III,
volume 11274 of LNCS, pages 395–427. Springer, Heidelberg, December
2018.

[CLN+20] Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando
Virdia. Improved classical cryptanalysis of SIKE in practice. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part II, volume 12111 of LNCS, pages 505–534. Springer, Heidel-
berg, May 2020.

https://eprint.iacr.org/2023/549

References 172

[CM22] Wouter Castryck and Natan Vander Meeren. Two remarks on the vec-
torization problem. Cryptology ePrint Archive, Report 2022/1366, 2022.
https://eprint.iacr.org/2022/1366.

[Cor08] Giuseppe Cornacchia. Su di un metodo per la risoluzione in numeri interi
dell’equazione ∑n

h=0 chx
n−hyh = p. Giornale di Matematiche di Battaglini,

46:33–90, 1908.

[Cos19] Craig Costello. Supersingular isogeny key exchange for beginners. In Ken-
neth G. Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of
LNCS, pages 21–50. Springer, Heidelberg, August 2019.

[Cos20] Craig Costello. B-SIDH: Supersingular isogeny Diffie-Hellman using twisted
torsion. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 440–463. Springer, Heidelberg, De-
cember 2020.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. https://eprint.iacr.org/2006/291.

[CPV20] Wouter Castryck, Lorenz Panny, and Frederik Vercauteren. Rational iso-
genies from irrational endomorphisms. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 523–548.
Springer, Heidelberg, May 2020.

[CS18] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic
- the case of large characteristic fields. Journal of Cryptographic Engineering,
8(3):227–240, September 2018.

[CS20] Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh secret keys
to produce an actively secure distributed signing protocol. In Jintai Ding and
Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 169–186. Springer, Heidelberg, 2020.

[CSCJR22] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Fran-
cisco Rodríguez-Henríquez. The SQALE of CSIDH: sublinear Vélu quantum-
resistant isogeny action with low exponents. Journal of Cryptographic
Engineering, 12(3):349–368, September 2022.

[CSV22] Wouter Castryck, Jana Sotáková, and Frederik Vercauteren. Breaking the
decisional diffie-hellman problem for class group actions using genus theory:
Extended version. Journal of Cryptology, 35(4):24, October 2022.

[CV90] David Chaum and Hans Van Antwerpen. Undeniable signatures. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 212–216. Springer,
Heidelberg, August 1990.

https://eprint.iacr.org/2022/1366
https://eprint.iacr.org/2006/291

References 173

[CvD10] Andrew M. Childs and Wim van Dam. Quantum algorithms for algebraic
problems. Reviews of Modern Physics, 82(1):1, 2010.

[DD22] Pierrick Dartois and Luca De Feo. On the security of OSIDH. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I,
volume 13177 of LNCS, pages 52–81. Springer, Heidelberg, March 2022.

[DDF+21] Luca De Feo, Cyprien Delpech de Saint Guilhem, Tako Boris Fouotsa,
Péter Kutas, Antonin Leroux, Christophe Petit, Javier Silva, and Benjamin
Wesolowski. Séta: Supersingular encryption from torsion attacks. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume
13093 of LNCS, pages 249–278. Springer, Heidelberg, December 2021.

[Deu41] Max Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkör-
per. In Abhandlungen aus dem mathematischen Seminar der Universität
Hamburg, volume 14, pages 197–272. Springer, 1941.

[DF17] Luca De Feo. Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062, 12, 2017. https://arxiv.org/abs/1711.04062.

[DFK+23a] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: Scaling
the CSI-FiSh. In Alexandra Boldyreva and Vladimir Kolesnikov, editors,
PKC 2023, Part I, volume 13940 of LNCS, pages 345–375. Springer, Heidel-
berg, May 2023.

[DFK+23b] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: scaling
the CSI-FiSh. Cryptology ePrint Archive, Report 2023/058, 2023. https://
eprint.iacr.org/2023/058.

[DG16] Christina Delfs and Steven D. Galbraith. Computing isogenies between
supersingular elliptic curves over Fp. Designs, Codes and Cryptography,
78(2):425–440, 2016.

[DG19] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures
from class group actions. In Yuval Ishai and Vincent Rijmen, editors, EU-
ROCRYPT 2019, Part III, volume 11478 of LNCS, pages 759–789. Springer,
Heidelberg, May 2019.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. Privacy pass: Bypassing internet challenges anonymously. PoPETs,
2018(3):164–180, July 2018.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

https://arxiv.org/abs/1711.04062
https://eprint.iacr.org/2023/058
https://eprint.iacr.org/2023/058

References 174

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: Compact post-quantum signatures from quater-
nions and isogenies. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part I, volume 12491 of LNCS, pages 64–93. Springer,
Heidelberg, December 2020.

[DKS18] Luca De Feo, Jean Kieffer, and Benjamin Smith. Towards practical key
exchange from ordinary isogeny graphs. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS,
pages 365–394. Springer, Heidelberg, December 2018.

[DLW22] Luca De Feo, Antonin Leroux, and Benjamin Wesolowski. New algorithms
for the deuring correspondence: SQISign twice as fast. Cryptology ePrint
Archive, Report 2022/234, 2022. https://eprint.iacr.org/2022/234.

[DM20] Luca De Feo and Michael Meyer. Threshold schemes from isogeny assump-
tions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 187–212.
Springer, Heidelberg, May 2020.

[DP96] Ivan Damgård and Torben P. Pedersen. New convertible undeniable signature
schemes. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS,
pages 372–386. Springer, Heidelberg, May 1996.

[DPV19] Thomas Decru, Lorenz Panny, and Frederik Vercauteren. Faster SeaSign
signatures through improved rejection sampling. In Jintai Ding and Rainer
Steinwandt, editors, Post-Quantum Cryptography - 10th International Con-
ference, PQCrypto 2019, pages 271–285. Springer, Heidelberg, 2019.

[dQKL+21] Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindale, Lorenz
Panny, Christophe Petit, and Katherine E. Stange. Improved torsion-
point attacks on SIDH variants. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 432–470, Virtual
Event, August 2021. Springer, Heidelberg.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: scaling
private contact discovery. Proc. Priv. Enhancing Technol., 2018(4):159–178,
2018.

[DSW19] Alex Davidson, Nick Sullivan, and Christopher A. Wood. Oblivious Pseu-
dorandom Functions (OPRFs) using Prime-Order Groups. Internet-draft,
Internet Engineering Task Force, 2019. Work in Progress.

[ECS+15] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas
Ristenpart. The pythia PRF service. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, pages 547–562. USENIX Association, August
2015.

https://eprint.iacr.org/2022/234

References 175

[EHL+18] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis Morrison,
and Christophe Petit. Supersingular isogeny graphs and endomorphism
rings: Reductions and solutions. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 329–368.
Springer, Heidelberg, April / May 2018.

[EHL+20] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison, and
Jennifer Park. Computing endomorphism rings of supersingular elliptic
curves and connections to path-finding in isogeny graphs. Open Book Series,
4(1):215–232, 2020.

[FHKP13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Pa-
terson. Non-interactive key exchange. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 254–271. Springer,
Heidelberg, February / March 2013.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions. In Joe Kilian, editor,
TCC 2005, volume 3378 of LNCS, pages 303–324. Springer, Heidelberg,
February 2005.

[FKMT22] Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, and Yan Bo Ti. On
the isogeny problem with torsion point information. In Goichiro Hanaoka,
Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume
13177 of LNCS, pages 142–161. Springer, Heidelberg, March 2022.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmet-
ric and symmetric encryption schemes. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg,
August 1999.

[Fou22] Tako Boris Fouotsa. SIDH with masked torsion point images. Cryptology
ePrint Archive, Report 2022/1054, 2022. https://eprint.iacr.org/2022/1054.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

[Gal99] Steven D. Galbraith. Constructing isogenies between elliptic curves over
finite fields. LMS Journal of Computation and Mathematics, 2:118–138,
1999.

[Gal12] Steven D. Galbraith. Mathematics of public key cryptography. Cambridge
University Press, 2012.

https://eprint.iacr.org/2022/1054

References 176

[GGMP20] Steven D. Galbraith, Robert Granger, Simon-Philipp Merz, and Christophe
Petit. On index calculus algorithms for subfield curves. In Orr Dunkelman,
Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020, volume
12804 of LNCS, pages 115–138. Springer, Heidelberg, October 2020.

[GHS02] Steven D. Galbraith, Florian Hess, and Nigel P. Smart. Extending the
GHS Weil descent attack. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 29–44. Springer, Heidelberg, April / May 2002.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On
the security of supersingular isogeny cryptosystems. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 63–91. Springer, Heidelberg, December 2016.

[GPSV21] Steven D. Galbraith, Lorenz Panny, Benjamin Smith, and Frederik Ver-
cauteren. Quantum equivalence of the DLP and CDHP for group actions.
Mathematical Cryptology, 1(1):40–44, 2021.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017.

[HM89] James L. Hafner and Kevin S. McCurley. A rigorous subexponential algorithm
for computation of class groups. Journal of the American mathematical
society, 2(4):837–850, 1989.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the
shortest and closest lattice vector problems. IWCC, 6639:159–190, 2011.

[HW+79] Godfrey Harold Hardy, Edward Maitland Wright, et al. An introduction to
the theory of numbers. Oxford university press, 1979.

[IJ13] Sorina Ionica and Antoine Joux. Pairing the volcano. Mathematics of
Computation, 82(281):581–603, 2013.

[Iva07] Gábor Ivanyos. On solving systems of random linear disequations. 2007.
https://arxiv.org/abs/0704.2988.

[JAC+17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De
Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik.
SIKE. Technical report, National Institute of Standards and Technology, 2017.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-1-submissions.

https://arxiv.org/abs/0704.2988
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions

References 177

[JAC+19] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello,
Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMac-
chia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev,
David Urbanik, and Geovandro Pereira. SIKE. Technical re-
port, National Institute of Standards and Technology, 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-2-submissions.

[JD11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, pages 19–34.
Springer, Heidelberg, November / December 2011.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only model.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 233–253. Springer, Heidelberg, December 2014.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric
PAKE protocol secure against pre-computation attacks. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume
10822 of LNCS, pages 456–486. Springer, Heidelberg, April / May 2018.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom func-
tion with applications to adaptive OT and secure computation of set inter-
section. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
577–594. Springer, Heidelberg, March 2009.

[JMV09] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. Expander
graphs based on GRH with an application to elliptic curve cryptography.
Journal of Number Theory, 129(6):1491–1504, 2009.

[JS14] David Jao and Vladimir Soukharev. Isogeny-based quantum-resistant unde-
niable signatures. In Michele Mosca, editor, Post-Quantum Cryptography
- 6th International Workshop, PQCrypto 2014, pages 160–179. Springer,
Heidelberg, October 2014.

[JS19] Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the RAM
model: Claw-finding attacks on SIKE. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
32–61. Springer, Heidelberg, August 2019.

[Kan97] Ernst Kani. The number of curves of genus two with elliptic differentials.
1997.

[KF08] Kaoru Kurosawa and Jun Furukawa. Universally composable undeniable
signature. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions

References 178

Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008,
Part II, volume 5126 of LNCS, pages 524–535. Springer, Heidelberg, July
2008.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC press, 2020.

[KLPT14] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On
the quaternion ℓ-isogeny path problem. LMS Journal of Computation and
Mathematics, 17(A):418–432, 2014.

[KM07] Neal Koblitz and Alfred J. Menezes. Another look at “provable security”.
Journal of Cryptology, 20(1):3–37, January 2007.

[KMPW21] Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Charlotte Weitkäm-
per. One-way functions and malleability oracles: Hidden shift attacks on
isogeny-based protocols. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 242–271.
Springer, Heidelberg, October 2021.

[Koh96] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD
thesis, University of California, Berkeley, 1996.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM Journal on Computing, 35(1):170–188,
2005.

[Kup11] Greg Kuperberg. Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. arXiv preprint arXiv:1112.3333, 2011.
https://arxiv.org/abs/1112.3333.

[KV10] Markus Kirschmer and John Voight. Algorithmic enumeration of ideal classes
for quaternion orders. SIAM Journal on Computing, 39(5):1714–1747, 2010.

[Lan09] Edmund Landau. Über die Einteilung der positiven ganzen Zahlen in vier
Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung
erforderlichen Quadrate. 1909.

[LB20] Jonathan Love and Dan Boneh. Supersingular curves with small noninteger
endomorphisms. Open Book Series, 4(1):7–22, 2020.

[LD21] Yi-Fu Lai and Samuel Dobson. Collusion resistant revocable ring signatures
and group signatures from hard homogeneous spaces. Cryptology ePrint
Archive, Report 2021/1365, 2021. https://eprint.iacr.org/2021/1365.

[Ler22] Antonin Leroux. A new isogeny representation and applications to cryptog-
raphy. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022,

https://arxiv.org/abs/1112.3333
https://eprint.iacr.org/2021/1365

References 179

Part II, volume 13792 of LNCS, pages 3–35. Springer, Heidelberg, December
2022.

[LLL82] Arjen K. Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261:515–534,
1982.

[LN20] Jianwei Li and Phong Q. Nguyen. A complete analysis of the BKZ lattice
reduction algorithm. Cryptology ePrint Archive, Report 2020/1237, 2020.
https://eprint.iacr.org/2020/1237.

[LPA+19] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and
Thomas Ristenpart. Protocols for checking compromised credentials. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 1387–1403. ACM Press, November 2019.

[LR22] Antonin Leroux and Maxime Roméas. Updatable encryption from group
actions. Cryptology ePrint Archive, Report 2022/739, 2022. https://
eprint.iacr.org/2022/739.

[LWS21] Patrick Longa, Wen Wang, and Jakub Szefer. The cost to break SIKE: A
comparative hardware-based analysis with AES and SHA-3. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS,
pages 402–431, Virtual Event, August 2021. Springer, Heidelberg.

[MM22] Luciano Maino and Chloe Martindale. An attack on SIDH with arbitrary
starting curve. Cryptology ePrint Archive, Report 2022/1026, 2022. https://
eprint.iacr.org/2022/1026.

[MMP20] Simon-Philipp Merz, Romy Minko, and Christophe Petit. Another look
at some isogeny hardness assumptions. In Stanislaw Jarecki, editor, CT-
RSA 2020, volume 12006 of LNCS, pages 496–511. Springer, Heidelberg,
February 2020.

[Mon87] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[Mor22] Tomoki Moriya. Masked-degree SIDH. Cryptology ePrint Archive, Report
2022/1019, 2022. https://eprint.iacr.org/2022/1019.

[MP19] Simon-Philipp Merz and Christophe Petit. Factoring products of braids via
garside normal form. In Dongdai Lin and Kazue Sako, editors, PKC 2019,
Part II, volume 11443 of LNCS, pages 646–678. Springer, Heidelberg, April
2019.

[MZ22] Hart Montgomery and Mark Zhandry. Full quantum equivalence of group
action DLog and CDH, and more. In Shweta Agrawal and Dongdai Lin,

https://eprint.iacr.org/2020/1237
https://eprint.iacr.org/2022/739
https://eprint.iacr.org/2022/739
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1019

References 180

editors, Advances in Cryptology – ASIACRYPT 2022, pages 3–32, Cham,
2022. Springer Nature Switzerland.

[NIS16] NIST. National Institute of Standards and Technology. Submission
Requirements and Evaluation Criteria for the Post-Quantum Cryptography
Standardization Process. Available at https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-
dec-2016.pdf, 2016. Accessed: 2023-04-04.

[NIS22] NIST. National Institute of Standards and Technology. Call for Additional
Digital Signature Schemes for the Post-Quantum Cryptography Standard-
ization Process. Available at https://csrc.nist.gov/csrc/media/Projects/pqc-
dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf, 2022. Accessed:
2023-04-04.

[NR19] Michael Naehrig and Joost Renes. Dual isogenies and their application
to public-key compression for isogeny-based cryptography. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume
11922 of LNCS, pages 243–272. Springer, Heidelberg, December 2019.

[NS04] Phong Q. Nguyen and Damien Stehlé. Low-dimensional lattice basis re-
duction revisited. In Duncan A. Buell, editor, ANTS 2004, pages 338–357.
Springer, 2004.

[Onu21] Hiroshi Onuki. On oriented supersingular elliptic curves. Finite Fields and
Their Applications, 69:101777, 2021.

[Pan21] Lorenz Panny. Cryptography on isogeny graphs. Eindhoven: Technische
Universiteit Eindhoven, 2021.

[Pei20] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS,
pages 463–492. Springer, Heidelberg, May 2020.

[Pet17] Christophe Petit. Faster algorithms for isogeny problems using torsion point
images. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part II, volume 10625 of LNCS, pages 330–353. Springer, Heidelberg, De-
cember 2017.

[Piz90] Arnold K. Pizer. Ramanujan graphs and hecke operators. Bulletin of the
American Mathematical Society, 23(1):127–137, 1990.

[PL17] Christophe Petit and Kristin Lauter. Hard and easy problems for supersin-
gular isogeny graphs. Cryptology ePrint Archive, Report 2017/962, 2017.
https://eprint.iacr.org/2017/962.

[Ram13] Srinivasa Ramanujan. First letter to G.H. Hardy. 1913.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://eprint.iacr.org/2017/962

References 181

[Reg04] Oded Regev. A subexponential time algorithm for the dihedral hidden
subgroup problem with polynomial space. arXiv preprint quant-ph:0406151,
2004. https://arxiv.org/abs/quant-ph/0406151.

[Rob22a] Damien Robert. Breaking SIDH in polynomial time. Cryptology ePrint
Archive, Report 2022/1038, 2022. https://eprint.iacr.org/2022/1038.

[Rob22b] Damien Robert. Some applications of higher dimensional isogenies to elliptic
curves (overview of results). Cryptology ePrint Archive, Report 2022/1704,
2022. https://eprint.iacr.org/2022/1704.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem
Based On Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.
https://eprint.iacr.org/2006/145.

[SC18] M Seshadri Srinath and V Chandrasekaran. Isogeny-based Quantum-resistant
Undeniable Blind Signature Scheme. International Journal of Network
Security, 20(1):9–18, 2018.

[Sch85] René Schoof. Elliptic curves over finite fields and the computation of square
roots mod p. Mathematics of computation, 44(170):483–494, 1985.

[Sch87] René Schoof. Nonsingular plane cubic curves over finite fields. Journal of
combinatorial theory, Series A, 46(2):183–211, 1987.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Mathematical
programming, 66:181–199, 1994.

[Sha94] Igor R. Shafarevich. Basic algebraic geometry, volume 2. Springer, 1994.

[SHB21] István András Seres, Máté Horváth, and Péter Burcsi. The legendre
pseudorandom function as a multivariate quadratic cryptosystem: Secu-
rity and applications. Cryptology ePrint Archive, Report 2021/182, 2021.
https://eprint.iacr.org/2021/182.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of
computer science, pages 124–134. Ieee, 1994.

[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106. Springer,
2009.

[SKFB21] Nick Sullivan, Hugo Krawczyk, Owen Friel, and Richard Barnes. OPAQUE
with TLS 1.3. Internet-draft, Internet Engineering Task Force, 2021. Work
in Progress.

[Smi05] Benjamin A. Smith. Explicit endomorphisms and correspondences. 2005.

https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1704
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2021/182

References 182

[Sto12] Anton Stolbunov. Cryptographic schemes based on isogenies, 2012.

[Sut11] Andrew Sutherland. Computing Hilbert class polynomials with the Chinese
remainder theorem. Mathematics of Computation, 80(273):501–538, 2011.

[Sut13] Andrew Sutherland. Isogeny volcanoes. The Open Book Series, 1(1):507–530,
2013.

[Tan09] Seiichiro Tani. Claw finding algorithms using quantum walk. Theoretical
Computer Science, 410(50):5285–5297, 2009.

[Tat66] John Tate. Endomorphisms of abelian varieties over finite fields. Inventiones
mathematicae, 2:134–144, 1966.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris,
Séries A, 273:305–347, 1971.

[Voi21] John Voight. Quaternion algebras. Springer, 2021.

[vW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
cryptanalytic applications. Journal of Cryptology, 12(1):1–28, January 1999.

[Was08] Lawrence C. Washington. Elliptic curves: number theory and cryptography.
Chapman and Hall/CRC, second edition, 2008.

[Wat69] William C. Waterhouse. Abelian varieties over finite fields. In Annales
scientifiques de l’École normale supérieure, volume 2, pages 521–560, 1969.

[Wes22a] Benjamin Wesolowski. Orientations and the supersingular endomorphism
ring problem. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part III, volume 13277 of LNCS, pages 345–371. Springer,
Heidelberg, May / June 2022.

[Wes22b] Benjamin Wesolowski. The supersingular isogeny path and endomorphism
ring problems are equivalent. In 62nd FOCS, pages 1100–1111. IEEE
Computer Society Press, February 2022.

[Wes22c] Benjamin Wesolowski. Understanding and improving the Castryck-Decru
attack on SIDH, 2022.

[ZSP+18] Gustavo Zanon, Marcos A. Simplício Jr., Geovandro C. C. F. Pereira, Javad
Doliskani, and Paulo S. L. M. Barreto. Faster isogeny-based compressed key
agreement. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 9th International Conference, PQCrypto 2018, pages 248–268.
Springer, Heidelberg, 2018.

	Table of contents
	1 Introduction
	2 Preliminaries
	2.1 Notation and terminology
	2.2 Mathematical background
	2.2.1 Elliptic curves
	2.2.2 Isogenies
	2.2.3 Endomorphism rings
	2.2.4 Orientations of elliptic curves
	2.2.5 Class group actions on oriented elliptic curves
	2.2.6 Deuring's correspondence
	2.2.7 Isogeny graphs

	2.3 Isogeny-based key exchange protocols
	2.3.1 CRS and CSIDH
	2.3.2 SIDH

	2.4 Problems underlying isogeny-based cryptography

	3 SIDH Attacks Using Torsion Point Images
	3.1 Introduction
	3.2 Active GPST attack on semi-static SIDH
	3.3 Classical torsion point attacks
	3.3.1 Endomorphisms for classical torsion point attacks
	3.3.2 Solving norm equations

	3.4 Improving torsion point attacks by using precomputation
	3.4.1 Algorithm
	3.4.2 Analysis
	3.4.3 Experiments

	3.5 Quantum hidden shift attacks on SIDH
	3.5.1 Quantum algorithms to solve hidden shift problems
	3.5.2 Malleability oracles and hidden shift attacks
	3.5.3 Quantum subexponential time attack on overstretched SIDH
	3.5.4 An effective free and transitive group action
	3.5.5 Lifting endomorphisms
	3.5.6 Algorithm summary
	3.5.7 Childs–Jao–Soukharev attack on HHS

	3.6 Castryck–Decru attack on SIDH

	4 Two More One-More Assumptions
	4.1 Introduction
	4.2 Cryptanalysis of undeniable signatures based on SIDH
	4.2.1 Modified supersingular CDH problems
	4.2.2 Attacking OMSSCDH and 1MSSCDH
	4.2.3 Application to the construction by Jao and Soukharev
	4.2.4 Srinath and Chandrasekaran undeniable blind signatures

	4.3 Cryptanalysis of an oblivious PRF from supersingular isogenies
	4.3.1 OPRFs and their applications
	4.3.2 Security properties of (V)OPRFs
	4.3.3 An isogeny-based OPRF by Boneh, Kogan and Woo
	4.3.4 The auxiliary one-more SIDH assumption
	4.3.5 Attacks on the auxiliary one-more SIDH assumption
	4.3.6 Analysis of the attack
	4.3.7 Attack on the SIDH-based OPRF
	4.3.8 Proof of concept implementation
	4.3.9 Trusted setup of the starting curve

	4.4 Conclusion

	5 On the Isogeny Problem with Torsion Point Information
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Connecting ideals and the KLPT algorithm
	5.2.2 LLL lattice reduction
	5.2.3 The reduction by GPST

	5.3 Reducing isogeny finding to endomorphism ring computation
	5.3.1 Evaluating non-smooth degree isogenies
	5.3.2 Computing isogenies using torsion information
	5.3.3 Computational example

	5.4 Reduction in the presence of countermeasures against SIDH attacks
	5.5 Relevance to isogeny-based cryptography

	6 SCALLOP: Scaling the CSI-Fish
	6.1 Introduction
	6.1.1 Technical overview

	6.2 Orientations of supersingular curves
	6.3 The generic group action
	6.3.1 Factorisation of ideals and decomposition of isogenies
	6.3.2 Effective orientation
	6.3.3 Computation of the group action from the effective orientation

	6.4 Security of a group action
	6.5 SCALLOP: a secure and efficient group action
	6.5.1 Parameter choice and precomputation
	6.5.2 The group action computation

	6.6 Concrete instantiation
	6.6.1 Parameter selection
	6.6.2 Concrete parameters
	6.6.3 Performance

	6.7 Security discussion: evaluating the descending isogeny

	References

