
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Multiple input parsing and lexical analysis

ELIZABETH SCOTT, ADRIAN JOHNSTONE, and ROBERT WALSH, Royal Holloway, University of

London, UK

CCS Concepts: • Theory of computation→ Grammars and context-free languages; • Software and its engineering→ Syntax.

Additional Key Words and Phrases: Lexical analysis, programming language syntax specification, lexical disambiguation

ACM Reference Format:
Elizabeth Scott, Adrian Johnstone, and Robert Walsh. 2018. Multiple input parsing and lexical analysis. 1, 1 (April 2018), 45 pages.

https://doi.org/10.1145/1122445.1122456

Abstract

This paper introduces two new approaches in the areas of lexical analysis and context free parsing. We present an extension,

MGLL, of generalised parsing which allows multiple input strings to be parsed together efficiently, and we present an

enhanced approach to lexical analysis which exploits this multiple parsing capability. The work provides new power to

formal language specification and disambiguation, and brings new techniques into the historically well studied areas of

lexical and syntax analysis. It encompasses character level parsing at one extreme and the classical LEX/YACC style division

at the other, allowing the advantages of both approaches.

1 INTRODUCTION

In this paper we present a modern alternative to the traditional approach to formal language specification in which

lexical and syntax analysis are separate procedures. Separation of ‘words’ from the ‘sentences’ they are composed

into matches human perception and allows efficient implementations of language analysers. However, the particular

meaning of a word may be dependent on the sentence in which it appears and separate lexical and syntax specifications

do not easily support this. The problem is that the lexical phase returns a single lexicalised string to the syntax analyser.

For example, the Java language specifications have moved away from traditional LEX/YACC style specifications as

the language has become more baroque. The first Java Language specification document gives two grammars, one of

which is intended to be suitable for use with Yacc-like LALR parser generators. The more recent JLS18 version does not

provide an LALR formal grammar, and the grammar that is given would pose significant challenges to a traditional

parser generator. The technical contributions of this paper are two new approaches in the areas of context free parsing

and lexical analysis. We present an extension, MGLL, of generalised parsing which allows multiple input strings to

be parsed together efficiently, and we present an enhanced approach to lexical analysis which exploits this multiple

Authors’ address: Elizabeth Scott, e.scott@rhul.ac.uk; Adrian Johnstone, a.johnstone@rhul.ac.uk; Robert Walsh, Royal Holloway, University of London,

Egham Hill, Egham, Surrey, UK, TW20 0EX.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-5907-8513
HTTPS://ORCID.ORG/0000-0002-9446-9701
HTTPS://ORCID.ORG/0000-0002-6533-5050
https://doi.org/10.1145/1122445.1122456
https://orcid.org/0000-0001-5907-8513
https://orcid.org/0000-0002-9446-9701
https://orcid.org/0000-0002-6533-5050

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

parsing capability. The work provides new power to formal language specification and disambiguation, and brings new

techniques into the historically well studied areas of lexical and syntactic analysis.

The paper is divided into three parts: Part 1 addresses TWE (Tokens With Extents) sets which represent sets of

lexicalisations, Part 2 introduces MGLL, and Part 3 looks at practicalities, including a Java case study. Parts 1 and 2 can

be approached independently. Part 1 (Section 2) discusses ‘indexed’ lexicalisations and sets up the associated ‘extents’

machinery and can be seen as motivation for the multi-parser presented in Part 2. Conversely Part 2 (Sections 3, 4) can

be seen as the primary contribution, with lexical flexibility as an application. Multi-parsing is novel, and it is easier to

understand if the application to parsing multiple lexicalisations is thought of as a concrete example. Thus we present

the multi-lexing material first, although multi-parsing is more fundamental.

In Part 3 (Sections 5 – 9) we look at practicalities including constructing TWE sets from a character string, whitespace

handling and lexical disambiguation. Part 3 provides a formal basis for the experimental results of a Java case study we

initially reported in [SJ19] and have updated here. A full evaluation of implementation strategies and run-time costs

will only emerge as the technique is used more widely in the community. To establish base line practicality we have

carried out initial investigations, using the Java language specification as an exemplar.

1.1 Words and sentences

Language analysis typically involves grouping a set of characters into words (lexical analysis) and then structuring the

words into sentences (phrase level analysis) from which semantics are extracted. Lexical analysis is commonly held to

be a solved problem: theoretically the input character strings are grouped into words and recognised by linear time

finite state automata which are automatically constructed from the regular expression specifications [ASU86, ALSU06].

This approach is embodied in the venerable LEX and FLEX tools [ME90]. In practice however, lexical analysers for

real languages are often constructed by hand to facilitate features which do not fit easily into the domain of regular

expressions and a strict lexer/parser divide.

Furthermore, for programming languages one particular lexicalisation of an input character string is usually selected,

independently of the phrase level structure, before parsing is attempted. Permitting several lexicalisations to be parsed

allows syntactic context to be used before ultimately rejecting lexicalisations, making the boundary between lexical

and phrase level specification more fluid and giving a programming language designer more freedom.

The key to the practicality of allowing multiple lexicalisations lies in the efficient parsing of multiple input

strings. In principle, if two sentences have a common subsequence of words, for example 𝑝1𝑝2𝑝3𝑝4𝑝5𝑤1𝑤2𝑤3𝑤4𝛼 and

𝑞1𝑞2𝑞3𝑞4𝑤1𝑤2𝑤3𝑤4𝛽 , then the parsing of the sequence 𝑤1𝑤2𝑤3𝑤4 could be shared. (An illustration of how such a

situation may arise from multiple lexicalisations is given in Section 1.2.2.) However, most formal parsing techniques are

based on the position of each word in the sequence (the words 𝑝𝑖 and 𝑞𝑖 are parsed at step 𝑖 etc), and since the lengths

of the initial sequences are different (5 and 4 respectively) the parser cannot synchronise on𝑤1. In the MGLL paradigm

we add a pair of integer ‘extents’ to each word; these are the left and right index positions of the word in the input

character string. Then the MGLL parser steps correspond to the left extents, and by making the left extent of𝑤1 the

same in both sequences a parser can synchronise on𝑤1 and parse𝑤1𝑤2𝑤3𝑤4 concurrently for both sequences.

𝑞1

𝑝1

𝑞2

𝑝2

𝑞3

𝑝3 𝑤1

𝑤1

𝑤2

𝑤2

𝑤4

𝑤4 𝛼

𝛽

𝑞4

𝑝4 𝑝5 𝑤3

𝑤3

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Multiple input parsing and lexical analysis 3

1.2 Language structure and ambiguity

We can view a programming language L as being a set of strings over some finite alphabetA, together with a semantics

(meaning) for each element of L. The job of a language designer is to specify the set of strings and their semantics.

One rather extreme approach would be to make L the set A∗
of all the strings over A and to include invalid as a

possible semantic value. However, specifying semantics formally is difficult and splitting the language analysis task

into several stages is usually helpful. Specified syntax rules restrict L to a much smaller subset of the set of all strings,

and semantics are specified only for those strings.

1.2.1 Syntax and semantics. In detail, the words of L are specified as a set of subsets of A∗
, and each of these subsets

(patterns) is identified by a unique token. The sentences are then specified via a context free grammar whose terminals

are these tokens. The point is to take advantage of well understood structural specifications such as regular expressions

and context free grammars, both to reduce the number of strings for which semantics must be specified and to provide

a structure on which the semantic definitions can be based. In this sense, the syntactic part of a language specification

is the first stage of the semantic specification.

In general, given a sequence of characters 𝑞 and a set of tokens, there will be more than one way of converting 𝑞 into

a token sequence. Even in natural languages this is the case; for example greenhouse corresponds both to a single

token noun and to a sequence of length two, adjective noun. In English this is handled by requiring that words are

separated by spaces in a character string. Programming languages do not usually require a user to separate the words

in this way so other mechanisms are needed to identify individual words. Furthermore, some context free grammars

can structure a token sequence into a sentence in more than one way. For example read and write or mark can

be structured as (read and write) or mark or as read and (write or mark). Selecting from among several

token sequences and sentential structures is referred to as disambiguation. Context free ambiguity is hard to reason

about in practice, and is undecidable in general.

1.2.2 Lexical ambiguity. It is usual to design phrase level grammars to limit potential phrase level ambiguity, but lexical

level ambiguity is universal and extensive. Lexical disambiguation is primarily carried out according to two principles:

longest match from the left and designer-specified priority. In the first case, the character string 𝑞 is read from the left

and the longest string 𝑞1 which matches some token is selected: 𝑞 = 𝑞1𝑞
′
. The process is then repeated with the string

𝑞′, and continues until the whole string has been lexicalised. If 𝑞1 belongs to the sets of two tokens, then the token with

the highest priority is selected.

Mostly this lexical disambiguation strategy works well, but it is not always powerful enough. Consider the following

English ‘sentence’ in which the words have not been identified using spaces:

paintthegreenhousered

Using the longest match disambiguation strategy, a painting contractor would interpret this as

paint the greenhouse red

This may result in unexpected behaviour if one of the houses had a greenhouse in the garden! If there were no

greenhouse then the contractor may reject the instruction as invalid, despite the fact that one of the houses was painted

green.

This slightly artificial seeming situation actually does arise in C-style languages, including Java. Given input

x-----y a Java lexical analyser will lexicalise the string as (x)(--)(--)(-)(y) which will then be rejected as

invalid by the semantic analyser because the postdecrement operator -- returns a value and the second -- cannot be

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

applied. However, there is of course a lexicalisation (x)(--)(-)(--)(y) which does have a valid semantic interpretation. A

similar example is x--y which is lexicalised as (x)(--)(y) rather than the syntactically valid (x)(-)(-)(y). Perhaps a little

confusingly, the unique lexicalisation of x+-y is the syntactically correct (x)(+)(-)(y), so x+-y is legal Java while x--y is

not.

The greenhouse example provides a concrete illustration of the sharing remarks made in Section 1.1. After parsing

the two lexicalisations of the phrase, an MGLL parse can synchronise the parsing of any subsequent text:

𝑝1(paint)

𝑞1(paint)

𝑝2(the)

𝑞2(the)

𝑝5 (𝑟𝑒𝑑)

𝑞4 (𝑟𝑒𝑑)

𝑤1(and)

𝑤1(and)

𝑤3(go)

𝑤3(go)

𝑤4(home)

𝑤4(home)

𝑤2(then)

𝑤2(then)

𝑝4(house)𝑝3(green)

𝑞3(greenhouse)

. . .

. . .

In fact we have 𝑝1 = 𝑞1, 𝑝2 = 𝑞2 and 𝑝5 = 𝑞4 and an MGLL parser will actually concurrently parse 𝑝1𝑝2 = 𝑞1𝑞2, and

𝑝5𝑤1𝑤2𝑤3𝑤4 = 𝑞4𝑤1𝑤2𝑤3𝑤4.

1.3 Our approach

The need to decide on a single token string before parsing commences is a significant drawback of the classical approach

to language analysis. We now have efficient general parsers which can cope with ambiguity and, as we shall show in

this paper, multiple input strings. Thus we can allow the lexer to pass some selection decisions, such as the choice

between (x)(--)(y) and (x)(-)(-)(y) above, to the parser.

In this paper we (i) give a new version, MGLL, of the GLL parsing approach which parses multiple input strings and

represents the resulting derivations efficiently in an extended form of shared packed parse forest (SPPF), (ii) describe

how to specify multiple lexicalisations which form the input to an MGLL parser, and (iii) give lexical disambiguation

mechanisms.

To motivate this somewhat technically detailed paper we highlight now that our technique is practical, and performs

better than the alternative character level specification approach; it constitutes a paradigm shift in the handling of

the traditional lexer/parser interface of a compiler. For example, as discussed in Section 8.3, our Java prototype MGLL

implementation can parse all the 10
26323

(indexed) lexicalisations of an example 64,537 character Java program, returning

all the derivations of the syntactically correct lexicalisations in an extended shared packed parse forest (ESPPF) with

1,077,525 nodes. A corresponding character level GLL parser produces a shared packed parse forest with 2,735,250

nodes. With the standard longest match and priority lexical disambiguation enabled our MGLL parser returns all the

derivations of the syntactically correct lexicalisations in an ESPPF with 301,920 nodes.

1.4 Related work

Production compilers typically use hand crafted front ends because as languages get richer, the lack of generality of

the classical parsing approaches as described in the textbooks forces a shift to ad hoc mechanisms for dealing with

non-determinisms.

The Java Language specifications have moved away from their initial LEX/YACC based approach and JLS18 does not

provide an LALR formal grammar, posing significant challenges to a traditional parser generator. The actual parser

used in Oracle’s open-sourced javac is a collection of manually crafted parsing functions. We do not know what the

formal relationship is between the published grammar and the parser, or how the hand-written parser deals with the

ambiguities we have encountered. The same trend is visible within the GNU team: the LALR grammar for gcc was

dropped some years ago in favour of a handcrafted parser. Clang has always had a hand-crafted parser as far as we

know. In the software engineering world, the need for code quality measurement tools presents a particular parsing

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Multiple input parsing and lexical analysis 5

challenge since these systems need to include parsers for a broad set of languages and dialects. All this demonstrates

need for more powerful general techniques.

The multi-parsing approach presented in the paper is completely new, but there are relationships to generalised

parsing, character level parsing, and certain forms of lexical decision postponement.

Aycock and Horspool [AH01] described an approach primarily targeted at the problem of overlapping token sets,

that is when two or more tokens share some lexemes and the choice of token depends on the context. Their motivating

example was the language PL/I in which keywords such as IF are also permitted to be identifier names. Aycock and

Horspool introduced what they called a Schrodinger token which is returned when lexemes which match more than

one token are found. The values of instances of the Schrodinger token are determined at the time they are parsed. A

general parser is used but only one token string is actually parsed. At the end of the paper there is a brief discussion of

a possible extension of the technique to apply to more general lexical ambiguity. The example given is from C-like

languages in which >> could be treated as two instances of the closing bracket > or as the binary shift operator. The

idea, which is only sketched, is to introduce a further padding token NULL which matches just the empty string lexeme

and which is ignored by the parser.

In [CT96] and [CT99] a non-deterministic lexical analyser for the French language is presented. Chanod and

Tapanainen’s focus is particularly on lexemes, such as a priori or de men̂e or 240 000, which can include spaces and may

have more than one lexicalisation. Their system contains two lexical analysers; the first ‘knows’ about lexemes with

spaces and identifies these then the second runs to match the remaining space delimited lexemes. The issue of more

than one lexicalisation of a string is discussed but no formal treatment is given. Such cases are handled by methods

specific to the French translation application.

Another way of passing lexicalisation decisions to the parser, often referred to as scannerless parsing, has also been

explored in the literature [Vis97a]. It is possible to collapse the lexical/phrase level structure of a language specification

by taking the tokens to be the alphabet characters A, and taking the pattern of 𝑦 ∈ A to be the set which contains just

the string 'y' of length one. The context free grammar then has A as its terminal set. The tokens from the traditional

representation appear as non-terminals in the character level grammar, and the parser effectively constructs and parses

all the original lexicalisations. The emergence of practical general parsing algorithms has allowed this approach to be

implemented. For example, it is used in ASF+SDF [vdBHKO02] and implemented in an SGLR parser [Vis97b] which is

used in Stratego/XT [Vis04]. Rascal [KvdSV09] also provides support for character level parsing.

However, character level grammars are nearly always ambiguous and using them needs care. There are two particular

problems. Firstly the resulting derivation tree representation will require a lot of space and generation time, and it

leaves a bigger disambiguation task for the semantic phase. Secondly, many parsing algorithms are made more efficient

by using the next input (lookahead) symbol to determine the parse action. Character level tokens are not, in general,

particularly good in this role. Filtering most of the lexicalisations before the parsing stage reduces the work for the

parser, and parsing is, in general, a more computationally expensive operation than lexicalisation. Furthermore, phrase

level error reporting is usually more helpful if it is presented at token rather than character level.

We have already presented [SJ19] a preliminary multi-parsing GLL-style algorithm, LCNP. This parser only parses

multiple lexicalisations of a single character string, and the lexer is called by the parser during its execution. The main

focus of the study was an examination of lexicalisation issues in Java. In this paper we review those results and give

some further data on the relative sizes of the parser structures for MGLL and character level GLL Java parsers.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

Part 1 - Multiple Lexicalisations

The key to efficient multi-parsing is ultimately to replace the input token strings with a set of tokens with extents.

Conceptually the tokens in the string have an integer added. In a classical parsing approach this integer is the position

of the token in the input string, and it is implicit in the indexed notation 𝑡0𝑡1 . . . 𝑡𝑚 used to refer to the input string.

Using more varied indexing gives the machinery needed for MGLL; the input string is modified to have the form

(𝑡0, 𝑖0) (𝑡1, 𝑖1) . . . (𝑡𝑚, 𝑖𝑚). For the multi-lexer parsing applications the integer 𝑖 𝑗 is the end position of the lexeme

associated with 𝑡 𝑗 in the underlying character string. Then an indexed token string can be represented with a set of

triples (𝑡 𝑗 , 𝑖 𝑗−1, 𝑖 𝑗), and taking the union of sets for several input strings allows them to be parsed together with shared

subsequences parsed concurrently. In this part of the paper we define and analyse these sets of triples.

We formally define the notions of indexed token strings and token with extents sets, identify properties of sets of

tokens with extents which are important for the multi-lexer parsing application, and discuss a representation which

does not increase the worst case asymptotic complexity order of the parser.

The reader whose is interested the generality of multi-parsers can just read Sections 2.1 and 2.2 and then move on to

Part 2.

2 TOKENS WITH EXTENTS (TWE) SETS

To gain insight into the potential cost of identifying and processing all possible lexicalisations of an input string, we

examined a 5859 character Java implementation of Conway’s game of Life. Even using the original, relatively small,

lexical and syntax specification for Java [GJS96], the total number of different possible lexicalisations is 1.92 × 10
387

, far

too large a number for them to be dealt with individually. Perhaps more surprisingly, 2.0 × 10
39

of these lexicalisations

are syntactically valid Java sentences (see Section 8.1). A practical technique which is going to handle such input

numbers needs a representation which allows common parts to be shared and processed together. First we give the

machinery which replaces classical strings of lexical tokens with TWE sets. Lexical disambiguation can be performed

by removing elements from the TWE set, but there are some limitations in terms of the properties of the reduced sets

and these are analysed in Sections 2.2 and 2.3. In Section 2.4 we discuss the ‘parser lookahead’ sets of a TWE set that

have the role that the ‘next input symbol’ has in a recursive descent parser.

2.1 Indexed token strings - ITS

Definition 2.1 The definition of a language L includes a set of fundamental characters A and a set of tokens; each

token denotes a set of strings of characters, the token’s pattern. We call a string of elements of A a character string and

a character string in the pattern of a token is called a lexeme of that token. A lexicalisation of a character string 𝑞 is

a string 𝑡0 . . . 𝑡𝑚 of tokens with the property that there exist 𝑞𝑖 ∈ 𝑡𝑖 , 0 ≤ 𝑖 ≤ 𝑚, such that 𝑞 = 𝑞0 . . . 𝑞𝑚 . We say that

𝑞0, . . . , 𝑞𝑚 is a sequence of lexemes corresponding to the lexicalisation 𝑡0 . . . 𝑡𝑚 .

In fact, the notion of lexicalisation is not quite adequate for capturing the full spectrum of lexical outcomes for a

given character string. Suppose that the token 𝑡 has a pattern which consists of all non-empty strings from the character

set {𝑎, 𝑏, 𝑐}. Then the lexicalisation 𝑡𝑡 can correspond to 𝑎𝑏𝑎 = 𝑞0𝑞1 in two ways, with 𝑞0 = 𝑎𝑏 or 𝑞1 = 𝑏𝑎.

To capture these alternatives we consider pairs (𝑡, 𝑖), where 𝑡 is a token and 𝑖 is an integer position in the character

string, the right extent of the lexeme matched to 𝑡 . This allows the two lexicalisations above to be represented

(𝑡, 2) (𝑡, 3) (𝑡, 1) (𝑡, 3)
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Multiple input parsing and lexical analysis 7

If we replace the pairs with triples, then each string can be represented as a set rather than a string:

{(𝑡, 0, 2), (𝑡, 2, 3)}, {(𝑡, 0, 1), (𝑡, 1, 3)}

We called these triples tokens with extents.

Of course there are two other lexicalisations of 𝑎𝑏𝑎 as 𝑡 and 𝑡𝑡𝑡 . These have token with extents representations,

respectively,

{(𝑡, 0, 3)} and {(𝑡, 0, 1), (𝑡, 1, 2), (𝑡, 2, 3)}

A parser that is required to parse all the lexicalisations, 𝑡, 𝑡𝑡 and 𝑡𝑡𝑡 , may improve efficiency by parsing the strings

together and only processing the shared triples (𝑡, 0, 1) and (𝑡, 2, 3), once. More significantly, as mentioned above, this

approach allows shared parsing of, say, substrings 𝑣 and𝑤 in the nine token strings of the form 𝑡𝑖𝑤𝑡 𝑗𝑣 , 1 ≤ 𝑖, 𝑗 ≤ 3,

even though these strings do not even have the same number of tokens, because the extents in𝑤 and 𝑣 will always be

the same.

Definition 2.2We call a sequence 𝑢 = (𝑡0, 𝑖0) (𝑡1, 𝑖1) . . . (𝑡𝑘 , 𝑖𝑘), 0 < 𝑖1 < . . . < 𝑖𝑘 , of pairs in which each token has a

right extent (the end position of the corresponding lexeme in the character string) an indexed token string. We call

𝑡0𝑡1 . . . 𝑡𝑘 the underlying token string of 𝑢; we call {(𝑡0, 0, 𝑖1), (𝑡1, 𝑖1, 𝑖2), . . . , (𝑡𝑘 , 𝑖𝑘−1, 𝑖𝑘)} the token with extents set of 𝑢;

and we say that each triple (𝑡 𝑗 , 𝑖 𝑗−1, 𝑖 𝑗) belongs to 𝑢.
For parsing purposes 𝑡𝑘 will be the end of string character, $, 𝑖𝑘−1 will be the length,𝑚, of the underlying character

string, and 𝑖𝑘 =𝑚 + 1.

As already mentioned, we can represent each indexed token string as a set of token-with-extents triples, and parsing

the union of these sets rather than each set individually is where the efficiency is gained. However, the relationship

between the set of indexed token strings and the union of the sets of corresponding triples is somewhat complex, as we

discuss next.

2.2 Sets of tokens with extents

Definition 2.3 A set of tokens with extents (TWE set) is a finite set of triples of the form (𝑡, 𝑖, 𝑗), where 𝑡 is an element

of some specified set of tokens and 𝑖, 𝑗 are integers with 0 ≤ 𝑖 < 𝑗 . The height of a TWE set is the largest integer,𝑚,

such that there is a triple (𝑡, 𝑖,𝑚) in the set. If the set is empty then the height is 0. For example,

Σ0 = {(𝑎, 0, 1), (𝑎, 0, 2), (𝑎, 0, 3), (𝑎, 1, 2), (𝑎, 2, 3), (𝑏, 3, 4), (𝑏, 4, 5), (𝑑, 3, 5)}

is a TWE set of height 5.

It can help to visualise a TWE set as a directed acyclic graph. The TWE graph of a TWE set Σ has a node labelled 𝑘

for each 𝑘 such there is a triple of the form (𝑡, 𝑖, 𝑘) or a triple of the form (𝑡, 𝑘, 𝑗) in Σ. For each triple (𝑡, 𝑖, 𝑗) ∈ Σ, there

is an edge labelled 𝑡 from node 𝑖 to node 𝑗 . For example, the TWE set Σ0 has TWE graph

0 1 2 3 4 5������������������������
- - - - -

𝑎

𝑎 𝑑
𝑎

𝑎 𝑎 𝑏 𝑏

* **

Definition 2.4 We say that the indexed token string (𝑡0, 𝑖0) (𝑡1, 𝑖1) . . . (𝑡𝑘 , 𝑖𝑘) is embedded in the TWE set Σ if 𝑖𝑘 is

the height of Σ and the triples (𝑡1, 0, 𝑖0), (𝑡1, 𝑖0, 𝑖1), . . . , (𝑡𝑘 , 𝑖𝑘−1, 𝑖𝑘) all belong to Σ. The empty string is the only string

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

embedded in the empty TWE set, and the empty string is not embedded in any nonempty TWE set. We denote the set

of all indexed token strings embedded in Σ by 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ).

Definition 2.5 We refer to a set of indexed token strings in which all the strings have the same rightmost index as an

ITS (indexed token string) set. For an ITS set 𝑋 , we define the associated TWE set, Σ𝑋 , to be the union of the TWE sets

of the strings in 𝑋 . Note that the height of Σ𝑋 is the rightmost index of the strings in 𝑋 .

For example, Σ0 above embeds the set of indexed token strings

𝑋 = { (𝑎, 1) (𝑎, 2) (𝑎, 3) (𝑏, 4) (𝑏, 5), (𝑎, 2) (𝑎, 3) (𝑑, 5), (𝑎, 1) (𝑎, 2) (𝑎, 3) (𝑑, 5),
(𝑎, 2) (𝑎, 3) (𝑏, 4) (𝑏, 5), (𝑎, 3) (𝑏, 4) (𝑑, 5), (𝑎, 3) (𝑑, 5) }

𝑋 is an ITS set, Σ𝑋 = Σ0, and 𝑋 = 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ0).

The rest of this section addresses issues needed to establish the correspondence between a partially disambiguated

TWE set and the ITS set expected to be parsed. The reader who wants to focus on the multi-parsing technique can pass

over this and proceed to Part 2 of the paper.

Tight And Consistent ITS Sets

A TWE set built from all the lexicalisations of a single character string has well behaved properties. However, once

these sets are manipulated, for example when elements are removed for ambiguity reduction or unions of sets are taken

to allow wider potential parser sharing, these properties can become compromised. We define the properties that are

required for TWE set parsing to correspond to parsing a set of token sequences.

Definition 2.6 A TWE set Σ is tight if every triple in Σ belongs to some indexed token string embedded in Σ. An ITS

set 𝑋 is consistent if every string embedded in Σ𝑋 is an element of 𝑋 .

Tightness of the TWE set ensures that a parser does not have to process triples that can never be part of a sentence

and consistency of the underlying ITS set ensures that only the sentences in that set are accepted by the parser.

It follows from the structure of the TWE graph that for a TWE set Σ, with height𝑚, the set of strings embedded in Σ

is precisely the set of paths from the node labelled 0 to the node𝑚 in its TWE graph. Furthermore, the TWE is tight if

and only if node 0 is the only source node (node with no in-edges), and node m is the only sink node (node with no

out-edges).

2.3 Properties Of Σ𝑋 And 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ)

Not all TWE sets we may construct are tight, and for some ITS sets 𝑋 the associated TWE sets embed more that just

the strings in 𝑋 , i.e. 𝑋 is not consistent.

For example, consider the TWE set {(𝑎, 0, 1), (𝑎, 0, 2), (𝑏, 1, 3) (𝑏, 2, 3)}. If we remove (𝑎, 0, 1) the resulting set

Σ = {(𝑎, 0, 2), (𝑏, 1, 3), (𝑏, 2, 3)} embeds only the string (𝑎, 2) (𝑏, 3), which has associated TWE set {(𝑎, 0, 2), (𝑏, 2, 3)}.
Thus Σ is not tight.

Conversely the set with two indexed lexicalisations 𝑋 = { (𝑎, 2) (𝑏, 3), (𝑐, 2) (𝑑, 3) } has TWE set

Σ𝑋 = { (𝑎, 0, 2), (𝑐, 0, 2), (𝑏, 2, 3), (𝑑, 2, 3) },

which also embeds (𝑎, 2) (𝑑, 3) and (𝑐, 2) (𝑏, 3). Thus 𝑋 is not consistent.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Multiple input parsing and lexical analysis 9

It is an immediate consequence of the definition that every string in an ITS set, 𝑋 say, is embedded in the TWE set

associated with 𝑋 , i.e. 𝑋 ⊆ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋).
In the case that the TWE set has redundant triples which do not belong to any embedded indexed token string, i.e. it

is not tight, these triples will take unnecessary parse-time space, and possibly parse-time activity. Furthermore, given

input Σ, an MGLL parser will parse all the strings in 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ), not just those from the ITS set from which Σ was

created. Thus we need to reason about these situations.

The following lemmas, whose proofs are given in Appendix A, give a definition of a tight TWE set in terms of the

triples rather than the embedded strings and then in terms of the sets Σ𝑋 and 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ).

Lemma 1. A TWE set Σ with height𝑚 is tight if and only if, for every element (𝑡, 𝑖, 𝑗) ∈ Σ, (a) 𝑖 = 0 or there is an element

(𝑡 ′, 𝑖′, 𝑖) ∈ Σ, and (b) 𝑗 =𝑚 or there is an element (𝑡 ′, 𝑗, 𝑗 ′) ∈ Σ.

Lemma 2. (i) A TWE set Σ is tight if Σ ⊆ Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) .

(ii) If the TWE set Σ is tight then Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) = Σ.

(iii) For any ITS set 𝑋 , Σ𝑋 is tight.

(iv) An ITS set 𝑋 is consistent if and only if 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋) = 𝑋 .

(v) For any TWE set Σ, 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) is consistent.

2.4 Representing TWE sets

For parsers whose input is a single token string, the string can be held in an input array and when an input symbol is

matched by the parser the next input symbol is obtained simply by incrementing the index pointer. For multiple input

parsing, for each token 𝑎, say, at position 𝑖 , the next input tokens are all the tokens of the form (𝑏, 𝑘, 𝑗) such that there

is a token (𝑎, 𝑖, 𝑘). We need to be able to find these ‘next’ tokens efficiently. The parser will only need to consider the

token and left extent (𝑎, 𝑖) and will only need to find the next tokens with their left extents, (𝑏, 𝑘). We use the parser

lookahead sets of a TWE set Σ which are defined as

𝑙𝑘Σ𝑎,𝑖 = {𝑘 | (𝑎, 𝑖, 𝑘) ∈ Σ and for some 𝑏, 𝑗, (𝑏, 𝑘, 𝑗) ∈ Σ}

To maintain the complexity bound of the parsers, and to ensure that the space taken by the parser lookahead sets is

linear in the case where there is only one embedded string, it is important to be able represent and construct these

lookahead sets efficiently. To demonstrate that this is possible we discuss one particular representation.

We represent Σ as an array 𝑖𝑛𝑝𝑢𝑡 , of dimension𝑚, the height of Σ. The 𝑖th element of 𝑖𝑛𝑝𝑢𝑡 is a set of pairs of the

form (𝑎, Σ𝑎,𝑖), whose first element is a token and whose second element is a set of integers, Σ𝑎,𝑖 = {𝑘 | (𝑎, 𝑖, 𝑘) ∈ Σ}.
We do not include (𝑎, Σ𝑎,𝑖) in 𝑖𝑛𝑝𝑢𝑡 [𝑖] if Σ𝑎,𝑖 = ∅.

We construct a second array, also of dimension𝑚, whose elements are sets of tokens,

𝑡Σ𝑘 = {𝑏 | for some 𝑗, (𝑏, 𝑘, 𝑗) ∈ Σ}

Then we have

𝑙𝑘Σ𝑎,𝑖 = {𝑘 ∈ Σ𝑎,𝑖 | 𝑡Σ𝑘 ≠ ∅}

As we mentioned above, when running an MGLL parser we assume that the strings embedded in Σ all end with the

end-of-string symbol $. Thus we include the triple ($,𝑚,𝑚 + 1) in Σ, and so {𝑚 + 1} = 𝑙𝑘Σ
$,𝑚 and {$} = 𝑡Σ𝑚 .

The worst case size of 𝑖𝑛𝑝𝑢𝑡 is𝑂 (𝑚2). In fact, the size of the set Σ𝑎,𝑖 is the number of edges labelled 𝑎, in the graphical

representation of Σ, whose source node is 𝑖 . So the size of the data structures is𝑂 (𝑚 × 𝑑) where 𝑑 is the largest number

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

of out-edges of any node in the graphical representation of Σ. Furthermore, 𝑑 is bounded by the number of strings

embedded in Σ and by 𝑂 (𝑚). Since there is at most one element (𝑎, 𝑖, 𝑘) ∈ Σ for each 𝑎, 𝑖, 𝑘 , elements are added to Σ𝑎,𝑖

only once, so there is no search associated with element insertion. Thus the construction time for the data structures is

𝑂 (𝑚 × 𝑑), and the size and construction time when there is only one input string is linear in𝑚.

If the graphical representation of the TWE set for Σ has an edge between every pair of nodes then Σ embeds 𝑂 (2𝑚)
strings, but an MGLL parser parses all these strings together in worst case 𝑂 (𝑚3) time and space.

Part 2 - Parsing Multiple Input Strings

We now introduce a fully general parsing technique, MGLL, which will concurrently parse any set of token strings that

can be written as a consistent set of indexed token strings (see Section 2.2). The application of MGLL that we have

is for parsing multiple lexicalisations of a given character string but the algorithm can take as input any TWE set, Σ.

The only assumption that we need to make is that Σ is tight, and then the MGLL parser will parse all the sentences

embedded in 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ). Even in our applications in this paper, Σ may be a subset of a TWE set corresponding to all

lexicalisations of some character string because of ambiguity reduction (see Section 7). However, if the reader has in

mind the case where the input TWE set is of the form 𝑋Σ, where 𝑋 is the set of all indexed lexicalisations of some

underlying character string, then this is sufficient to allow a full understanding of the parsing technique.

GLL is an extension of recursive descent parsing in which parse functions are replaced with labelled blocks of

code, and calls and returns from these blocks are handled directly using an explicit stack. This allows points of non-

determinism in the recursive descent parser to be put on a worklist so that they are all explored by the parser. For

this to be effective the call stacks associated with each element on the worklist are combined into a Tomita-style

graph structured stack [Tom91, Tom86]. To turn this into a technique that can handle multiple input strings, what in a

recursive descent parser are matches to input symbols are treated in MGLL as additional points of non-determinism,

and all possible matches are put onto the worklist for subsequent exploration. The details are discussed in Section 4.

Before describing the MGLL parsing algorithm we need to consider how the output derivations will be represented.

A common approach is to use a shared packed parse forest (SPPF), [Tom86, BL89]. GLL parsers construct a binarised

SPPF that is worst case cubic in size. In Section 3 we give an extended representation that can embed derivations of

more than one sentence.

3 REPRESENTING MULTIPLE DERIVATIONS

Generalised parsers typically construct a packed graphical representation of the derivation fragments constructed from

a nondeterministic grammar. This representation embeds all the derivations in the case of an ambiguous grammar.

We now describe an extension of the representation which embeds derivations of sets of sentences. For a context free

grammar Γ and TWE set Σ, we denote by 𝑠𝑒𝑛(Σ, Γ) the set of strings embedded in Σ whose underlying token sequences

are sentences in Γ. For input Σ, an MGLL parser for Γ will generate an extended shared packed parse forest (ESPPF)

which embeds precisely the derivations of the strings in 𝑠𝑒𝑛(Σ, Γ). In fact, the standard GLL SPPF [SJ13] construction

extends without any additional machinery to generate an ESPPF, we simply need to show how to identify the embedded

sentences and to show that they are the elements of 𝑠𝑒𝑛(Σ, Γ).

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Multiple input parsing and lexical analysis 11

3.1 ESPPF – extended SPPFs for multiple input strings

We begin by describing classical SPPFs to establish notation and to create a base point for the extended definition.

Definition 3.1 A context free grammar (CFG) consists of a set T, of terminals, a set N, of nonterminals disjoint from T,
a start symbol 𝑆 ∈ N, and a set of grammar rules 𝑋 ::= 𝛼1 | . . . | 𝛼𝑡 , one for each nonterminal 𝑋 ∈ N, where each 𝛼𝑘 ,

1 ≤ 𝑘 ≤ 𝑡 , is a string over the alphabet T∪N. We refer to the 𝛼𝑘 as the production alternates, or just alternates, of 𝑋 , and

to 𝑋 ::= 𝛼𝑘 as a production rule, or just a production. A derivation step is an expansion 𝛾𝑌𝛽⇒𝛾𝛼𝛽 where 𝛾, 𝛽 ∈ (T ∪ N)∗

and 𝛼 is an alternate of 𝑌 . A derivation of 𝜏 from 𝜎 is a sequence 𝜎⇒𝛽1⇒ . . .⇒𝛽𝑛−1⇒𝜏 , also written 𝜎
∗⇒𝜏 . We say 𝛼

is nullable if 𝛼
∗⇒𝜖 .

Note, the use of terms terminal and nonterminal is standard for context free grammars. The term token is used in

lexical analysis and the set of tokens constructed by a lexical analyser form the terminals of the phrase level grammar.

Thus ‘terminal’ and ‘token’ are used interchangeably. In this part of the paper we shall use the word terminal for

consistency with traditional context free grammar terminology, and also because MGLL does not require terminals to

have associated lexemes from an underlying character sequence.

3.1.1 Annotated derivation trees. A derivation tree is a graphical representation of a derivation of a sentence in a CFG Γ.

It is an ordered tree whose root node is labelled with the start symbol and leaf nodes are labelled with a terminal or 𝜖 .

An interior node is labelled with a nonterminal, 𝑋 say, and its children are labelled with the symbols of an alternate of

𝑋 . In order to ultimately share nodes, derivation tree nodes are annotated with integer extents to ensure that they are

uniquely identified by their labels. Symbol nodes are are labelled with triples (𝑥, 𝑖, 𝑗) where 𝑥 is a terminal, nonterminal

or 𝜖 . For a classical SPPF, the extents (𝑖, 𝑗) correspond to the substring generated by the node, so 𝑥
∗⇒𝑎𝑖+1 . . . 𝑎 𝑗 .

In order to ensure that the parser has worst-case cubic runtime and to allow process descriptors (see below) to contain

just one SPPF node, the derivation trees are binarised from the left in the natural way by introducing intermediate

nodes, as shown in Example 3.1 below. An intermediate node is labelled with a grammar slot, a position before or after a

terminal or nonterminal on the right hand side of a production rule. We use a ‘dot’ to indicate a grammar slot,𝐴 ::= 𝜇 ·𝜈 .

3.1.2 SPPFs. An SPPF is a representation of all of the annotated derivation trees of a string 𝑎1 . . . 𝑎𝑛 with respect

to Γ. It is the result of merging all the annotated derivation trees, sharing nodes with the same label. For ambiguous

grammars, a symbol or intermediate node can have different families of children in different derivation trees. In the

SPPF each family is grouped together under a packed node. Packed nodes are labelled with a grammar slot, 𝑋 ::= 𝛼𝑥 · 𝛽 ,
and an integer 𝑘 , the pivot. The right child of the packed node will be a node labelled (𝑥, 𝑘, 𝑗) and the left child, if it

exists, will be an intermediate node labelled (𝑋 ::= 𝛼 · 𝑥𝛽, 𝑖, 𝑘), or a symbol node (𝛼, 𝑖, 𝑘), if 𝛼 has length 1. The yield of

the SPPF, the leaves read in left to right order, corresponds to the input string.

For a production of length zero or one, an SPPF node will have only one child. Rather than writing special cases of

various functions, we use a special ‘dummy’ node, denoted by Δ, for the missing child. By convention Δ will always be

the left child and it will usually be omitted from displayed graphs.

Example 3.1 The following are the SPPFs for the strings 𝑎𝑎𝑎 and 𝑎𝑎𝑏 in the grammar, Γ1: 𝑆 ::= 𝑆 𝑆 | 𝑎 | 𝑎 𝑎 𝑏

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

𝑆, 0, 3

𝑆, 0, 3

𝑆, 2, 3

𝑆, 1, 3𝑆, 0, 2

𝑎, 0, 1

𝑎, 0, 1

𝑎, 1, 2

𝑎, 1, 2

𝑏, 2, 3

𝑆, 1, 2𝑆, 0, 1

𝑎, 2, 3

𝑆 ::= 𝑎𝑎𝑏 ·, 2

𝑆 ::= 𝑆𝑆 ·, 2

𝑆 ::= 𝑆𝑆 ·, 2

𝑆 ::= 𝑆𝑆 ·, 1

𝑆 ::= 𝑆𝑆 ·, 1

𝑆 ::= 𝑎𝑎 · 𝑏, 1

𝑆 ::= 𝑎·, 2𝑆 ::= 𝑎 ·, 1𝑆 ::= 𝑎·, 0

�
��+

�
��+

�
��+

H
HHj

???

𝑆 ::= 𝑎𝑎 · 𝑏, 0, 2

?

HHHj

@@R@@R

���9

���9

���9���9

�
 �	
�
 �	

�
 �	

�
 �	�
 �	
�
 �	

�
 �	
�
 �	�
 �	

�
 �	�
 �	

�
 �	
�
 �	

�
 �	

�
 �	
�
 �	

�
 �	�
 �	

�
 �	�
 �	 �
 �	�
 �	

@@R

@
@R

�

��

w

PPPq

9
��

���
�
�/

The rectangular nodes are the intermediate nodes, and the nodes with one integer in their label are the packed nodes.

The SPPF on the right above is also the binarised derivation tree for 𝑎𝑎𝑏 in Γ1. The SPPF on the left is obtained by

merging the two annotated binarised derivation trees for 𝑎𝑎𝑎.

3.1.3 ESPPFs. We now describe the extended SPPF for a TWE set with respect to a grammar. We suppose that we have

a context free grammar, Γ say, which has terminal set T. We consider an input TWE set Σ, of height𝑚, and we suppose

that

{ (𝑎11, 𝑖11) (𝑎12, 𝑖12) . . . (𝑎1𝑗1 ,𝑚), (𝑎21, 𝑖21) (𝑎22, 𝑖22) . . . (𝑎2𝑗2 ,𝑚), . . . , (𝑎𝑑1, 𝑖𝑑1) (𝑎𝑑2, 𝑖𝑑2) . . . (𝑎𝑑 𝑗𝑝 ,𝑚) }

is the corresponding ITS set 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ).
For each indexed token string

(𝑎ℎ1, 𝑖ℎ1) (𝑎ℎ2, 𝑖ℎ2) . . . (𝑎ℎ𝑗1 ,𝑚)

we obtain an ESPPF by simply replacing each extent and pivot value, 𝑘 , in the labels of the SPPF nodes with 𝑖ℎ𝑘 (or

with 0 or𝑚 as appropriate).

For example, if we index the string 𝑎𝑎𝑏 as

(𝑎, 2) (𝑎, 3) (𝑏, 5)

(so𝑚 = 5) then the SPPF for 𝑎𝑎𝑏 in Γ1, above, becomes the following ESPPF for this ITS:

𝑆, 0, 5

𝑎, 0, 2 𝑎, 2, 3

𝑏, 3, 5

𝑆 ::= 𝑎𝑎𝑏 ·, 3

𝑆 ::= 𝑎𝑎 · 𝑏, 2

�
��+

�
��+

HHHj

𝑆 ::= 𝑎𝑎 · 𝑏, 0, 3

?

H
HHj

���9

�
 �	

�
 �	
�
 �	

�
 �	 �
 �	

�
 �	

We combine the ESPPFs for each string in an ITS set into a single ESPPF by sharing nodes.

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Multiple input parsing and lexical analysis 13

Definition 3.2 The extended shared packed parse forest (ESPPF) for Σ in Γ is the graph obtained by taking the union of

the ESPPFs for each string in 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ). Symbol and intermediate nodes with the same labels are merged as are packed

nodes which have the same label and the same parent label. Of course, the ESPPF for Σ contains only derivations of

strings in the language of the grammar, the other strings have empty ESPPF.

3.1.4 Example. For the grammar Γ1, in Example 3.1 above, we consider the TWE set

Σ = {(𝑎, 0, 2), (𝑎, 0, 3), (𝑎, 0, 5), (𝑎, 2, 3), (𝑎, 2, 5), (𝑎, 3, 5), (𝑏, 3, 5)}

(We can imagine that 𝑎 is a token whose pattern is all nonempty strings composed from x, yy and zz, and that 𝑏 is a

token whose pattern contains the single string yy. Then Σ is the TWE set constructed from all the strings which are

indexed lexicalisations of zzxyy.)

Then the ESPPF for Σ in Γ1 is

𝑆, 0, 5

𝑆, 3, 5

𝑆, 2, 5𝑆, 0, 3

𝑎, 0, 2

𝑎, 0, 3

𝑎, 2, 3

𝑎, 2, 5

𝑏, 3, 5

𝑆, 2, 3𝑆, 0, 2

𝑎, 3, 5

𝑆 ::= 𝑎𝑎𝑏 ·, 3
𝑆 ::= 𝑆𝑆 ·, 3

𝑆 ::= 𝑆𝑆 ·, 3

𝑆 ::= 𝑆𝑆 ·, 2

𝑆 ::= 𝑆𝑆 ·, 2

𝑆 ::= 𝑎𝑎 · 𝑏, 2

𝑆 ::= 𝑎·, 3𝑆 ::= 𝑎·, 2

𝑆 ::= 𝑎 ·, 2

𝑆 ::= 𝑎·, 0

𝑆 ::= 𝑎·, 0

�
��+

�
��+

??

?

?

?

𝑆 ::= 𝑎𝑎 · 𝑏, 0, 3

HHHj

@@R@@R

@@R

���9

���9���9

�
 �	

�
 �	

�
 �	�
 �	
�
 �	

�
 �	

�
 �	

�
 �	
�
 �	

�
 �	

�
 �	
�
 �	

�
 �	

�
 �	
�
 �	

�
 �	�
 �	

�
 �	�
 �	 �
 �	

�
 �	
�
 �	

�
 �	

@@R

@
@R

�

��

w

PPPq

9
�����

�
�/

q

� 9

?

𝑢1

𝑢2 𝑢3 𝑢4

𝑢5

𝑢6

Of the six indexed token strings in 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) only four have underlying strings which are sentences in the grammar,

two corresponding to 𝑎𝑎, one to 𝑎𝑎𝑎 and one to 𝑎𝑎𝑏. The ESPPFs for these are combined to form the ESPPF above for Σ.

Our ESPPF definition is deliberately declarative. The method by which an ESPPF (and any SPPF) is constructed

depends on the parsing algorithm being used. In most cases the construction is bottom up with leaf nodes constructed

as input symbols are read, and parent nodes are constructed after the processing of the corresponding grammar rule is

completed.

3.1.5 ESPPF sentence finding algorithm. For a traditional SPPF the yield, the sequence of leaf node labels read left to

right, gives the input string which generated the SPPF. For an ESPPF it is not quite so easy to read off the set of strings

it has parsed. We cannot simply construct strings of leaf nodes by matching the extents. In the example in Section 3.1.4,

(𝑎, 0, 3) and (𝑏, 3, 5) are leaf nodes whose extents match and end at 5, but 𝑎𝑏 is not a sentence in the grammar.

We now give a constructive definition of the set 𝑖𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒) of indexed token strings whose derivations are

captured in the ESPPF 𝜒 of Σ in Γ and the corresponding set 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒) of underlying sentences in Γ. Of course,

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒) can be obtained from 𝑖𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒) by just removing the extents from the triples. However, 𝑖𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒)
and its subsets will be larger that the corresponding 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒). So if only the latter is required then the direct

construction will be more efficient.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

Suppose that we are given a nonempty ESPPF, 𝜒 say, with root node 𝑤𝑆 , labelled (𝑆, 0,𝑚). For each ESPPF node

𝑤 , including the packed nodes, we define associated sets 𝑖𝑃𝑆𝑤 and 𝑃𝑆𝑤 , of strings of triples and terminals (tokens),

respectively, which are sets of partial sentences. The sets 𝑖𝑃𝑆𝑤 and 𝑃𝑆𝑤 are constructed from the corresponding sets of

for𝑤 ’s children, so in this sense the algorithm walks the ESPPF from the leaves up.

• For a leaf node, 𝑤 say, labelled (𝑎, 𝑖, 𝑗), if 𝑖 < 𝑗 set 𝑖𝑃𝑆𝑤 = {𝑤} and 𝑃𝑆𝑤 = {𝑎}. If 𝑖 = 𝑗 set 𝑖𝑃𝑆𝑤 = 𝑃𝑆𝑤 = {𝜖},
where 𝜖 denotes the empty string.

• For a packed node𝑤 , with two children, 𝑦 = (𝑡, 𝑖, 𝑘) and 𝑧 = (𝑠, 𝑘, 𝑗) where 𝑖 ≤ 𝑘 ≤ 𝑗 , set 𝑖𝑃𝑆𝑤 to be 𝑖𝑃𝑆𝑦 · 𝑖𝑃𝑆𝑧 ,
the set of all strings which are concatenations of some element in 𝑖𝑃𝑆𝑦 with some element in 𝑖𝑃𝑆𝑧 . Similarly set

𝑃𝑆𝑤 to be 𝑃𝑆𝑦 · 𝑃𝑆𝑧 .
• For a packed node𝑤 , with one child, 𝑦 = (𝑡, 𝑖, 𝑗), set 𝑖𝑃𝑆𝑤 = 𝑖𝑃𝑆𝑦 and 𝑃𝑆𝑤 = 𝑃𝑆𝑦 .

• For an internal node𝑤 , with packed node children𝑤1, ...,𝑤𝑝 , set 𝑖𝑃𝑆𝑤 to be the union of 𝑖𝑃𝑆𝑤𝑖
, for 𝑖 = 1, . . . , 𝑝 ,

and set 𝑃𝑆𝑤 to be the union of 𝑃𝑆𝑤𝑖
, for 𝑖 = 1, . . . , 𝑝 .

• Let 𝑖𝑃𝑆𝑤𝑆
and 𝑃𝑆𝑤𝑆

be the sets associated with the root node𝑤𝑆 = (𝑆, 0,𝑚) of 𝜒 . The ESPPF captures the deriva-
tions of an ITS (𝑎1, 𝑛1) . . . (𝑎𝑚−1, 𝑛𝑚−1) (𝑎𝑚,𝑚) if and only if (𝑎1, 0, 𝑛1) . . . (𝑎𝑚−1, 𝑛𝑚−2, 𝑛𝑚−1) (𝑎𝑚, 𝑛𝑚−1,𝑚) ∈
𝑖𝑃𝑆𝑤𝑆

. The set of captured strings is denoted by 𝑖𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒), and by 𝑖𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝑤𝑆) and 𝑖𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝑆, 0,𝑚),
as convenient.

Note that it is easy to see by structural induction that if 𝑢 = (𝑥, 𝑖, 𝑗), or if 𝑢 = (𝑥, 𝑘) with parent (𝑥 ′, 𝑖, 𝑗), and if 𝑖 < 𝑗

then the strings in 𝑖𝑃𝑆𝑢 are all of the form (𝑎, 𝑖, 𝑙) . . . (𝑏, 𝑙 ′, 𝑗), and that 𝑃𝑆𝑢 is the set of underlying strings of the indexed

token strings in 𝑖𝑃𝑆𝑢 .

If we apply the sentence finding procedure to the ESPPF in Example 3.1.4 we get that

𝑖𝑃𝑆𝑤𝑆
= {𝑢1𝑢4, 𝑢2𝑢3𝑢4, 𝑢2𝑢5, 𝑢2𝑢3𝑢6}

This gives indexed lexicalisations

(𝑎, 3) (𝑎, 5), (𝑎, 2) (𝑎, 3) (𝑎, 5), (𝑎, 2) (𝑎, 5), (𝑎, 2) (𝑎, 3) (𝑏, 5)

and sentences

𝑃𝑆𝑤𝑆
= { 𝑎𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝑏 }

The next theorem follows from the definition of the ESPPF of a TWE set with respect to a grammar, and its proof is

given in Appendix A.

Theorem 1. Let Σ be a tight TWE set and 𝜒 be the ESPPF for Σ with respect to a grammar Γ. The indexed token strings

encoded in 𝜒 are precisely the strings embedded in Σ whose underlying token strings are in the language of the grammar,

i.e. 𝑖𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒) = 𝑠𝑒𝑛(Σ, Γ).

4 PARSING MULTIPLE LEXICALISATIONS

We now describe the MGLL parsing algorithm for a context free grammar Γ, which takes as input a TWE set represen-

tation, Σ say, of a consistent set of indexed token strings and constructs an ESPPF representation of the derivations of

these strings. An MGLL parser can output the set 𝑠𝑒𝑛(Σ, Γ), which contains precisely the indexed strings which were

successfully parsed. Detailed expositions of the GLL algorithm may be found in [SJ10a] and [SJ13] with supporting

material in [JS11a] and [JS11b]. The basic approach is a generalisation of recursive descent parsing.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Multiple input parsing and lexical analysis 15

4.1 Parsing as grammar traversal

The structure of a recursive descent parser follows closely the form of the underlying grammar: terminals are matched

to the next input symbol and nonterminals trigger a call to a corresponding parse function. A parse function for a

nonterminal, 𝑋 say, is comprised of a block of code for each alternate of the grammar rule for 𝑋 , and the standard

function call stack handles the return from nonterminal calls. For a general grammar, more than one of the alternates

may be valid at the same point in a parse. An MGLL parser captures all the possible choices and explores each in turn.

To achieve this the parse functions associated with a recursive descent parser are replaced with algorithm line labels,

goto statements and an explicit stack which replaces the function call stack. The stack elements are pairs (𝐿, 𝑗), where
𝐿 is the algorithm line label to be returned to when the stack element is popped, and 𝑗 is the current input position

when (𝐿, 𝑗) is created. We call 𝑗 the level of the node (𝐿, 𝑗).
The parser configurations are stored as process descriptors, which record the current line of the algorithm, the

stack-top, input position and ESPPF node. The parser is made efficient by representing all of the separate stacks in a

single structure, a graph structured stack (GSS). The individual stacks are merged into the GSS by sharing nodes with

the same return label if they are at the same level. The descriptors are stored in a setU, to make sure that the same

descriptor is not processed more than once and there is a ‘worklist’ R, which contains those descriptors inU which

have not yet been processed.

Positions in the parsing algorithm and GSS nodes are labelled with grammar slots as defined above for ESPPF

intermediate nodes. A special slot, denoted by 𝐿0, labels the end of the outer loop of the parsing algorithm. We think of

𝐿0 as corresponding to the end of an augmented grammar start rule 𝑆 ′ ::= 𝑆 · $.
When executing, an MGLL parser is essentially traversing the grammar and the ITS strings embedded in the input

TWE set. Each traversal has its own associated stack embedded in the GSS which is being constructed. The stack

elements are nodes of the graph and there is a directed edge from node 𝑢 to node 𝑣 if 𝑢 is immediately above 𝑣 on a

stack. The edges of the GSS are labelled with an ESPPF node or the dummy node, denoted by Δ (see Section 3.1.2). This

node will be the left child of the ESPPF node constructed when the associated subparse is complete.

The parser employs three variables, 𝑐𝑈 which holds the current stack top (a GSS node), 𝑐𝐼 which holds the current ITS

index (i.e TWE element left index) and 𝑐𝑁 which holds the current ESPPF node. When a process descriptor is created

the values of 𝑐𝑈 , 𝑐𝐼 and 𝑐𝑁 are recorded in the descriptor and when a descriptor is processed in order to continue a

traversal, these variables are set using the values in the descriptor. The outer loop of an MGLL parser selects the next

descriptor (𝐿,𝑢, 𝑖,𝑤), and the parse continues from the line 𝐿, with 𝑐𝑈 = 𝑢, 𝑐𝐼 = 𝑖 and 𝑐𝑁 = 𝑤 .

The GSS and ESPPF are built using support functions, formally defined in Section 4.5, whose definition is independent

of the grammar for which the parser has been built. The function 𝑎𝑑𝑑 () creates descriptors and adds them to U and R,
𝑐𝑟𝑒𝑎𝑡𝑒 () pushes return labels onto the stack and 𝑝𝑜𝑝 () takes a GSS node 𝑢 = (𝐿, 𝑗) and ‘pops’ it: for each edge (𝑢, 𝑣) in
the GSS it creates a descriptor with code label 𝐿 and stack node 𝑣 .

It is possible for new edges to be added to a GSS node, 𝑢, after a 𝑝𝑜𝑝 () action has been applied. Thus, when 𝑝𝑜𝑝 (𝑢, 𝑧)
is called, this action is recorded in a set, P. If a later new edge is added to 𝑢, by the function 𝑐𝑟𝑒𝑎𝑡𝑒 (), then the set P is

inspected and any earlier pop actions associated with 𝑢 are applied down the new edge.

The ESPPF is built by the functions 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝐸 (𝑖) and 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑇 (𝑎, 𝑖, 𝑗), also defined in Section 4.5, which construct

and return ESPPF nodes labelled (𝜖, 𝑖, 𝑖) and (𝑎, 𝑖, 𝑗), respectively, and 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝐿,𝑤, 𝑧), which creates a parent node

with grandchildren𝑤 and 𝑧.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

By calling the sentence finding algorithm described in Section 3.1.5 an MGLL parser can output precisely the ITSs

and sentences that were embedded in the input TWE set (and for which it has constructed derivations). However, these

sets can in some cases have exponential size, so we do not include sentence reporting in the basic MGLL algorithm. We

simply either output the ESPPF constructed or report failure.

For efficiency the algorithm uses the following precomputed subsets of Σ, described in Section 2.4.

𝑡Σ𝑘 = {𝑏 | for some 𝑗, (𝑏, 𝑘, 𝑗) ∈ Σ} 𝑙𝑘Σ𝑎,𝑖 = {𝑘 ∈ Σ𝑎,𝑖 | 𝑡Σ𝑘 ≠ ∅}

The function 𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (), defined in Section 4.4, uses 𝑡Σ𝑘 with the standard first and follow sets to limit descriptor

creation, and 𝑙𝑘Σ𝑎,𝑖 is used for input symbol matching, as described in Section 4.3.

4.2 Example - an MGLL parser for 𝑆 ::= 𝑆 𝑆 | 𝑎 | 𝑎 𝑎 𝑏

construct the sets 𝑙𝑘Σ𝑎,𝑖 and 𝑡Σ𝑖 from Σ

create GSS node 𝑢0 = (𝐿0, 0)
U := ∅; R := ∅; P := ∅
𝑎𝑑𝑑 (𝐽𝑆 , 𝑢0, 0,Δ)
while R ≠ ∅ {

remove a descriptor, (𝐿,𝑢, 𝑖,𝑤) say, from R
𝑐𝑈 := 𝑢; 𝑐𝑁 := 𝑤 ; 𝑐𝐼 := 𝑖; goto L

𝐽𝑆 : if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑐𝐼 , 𝑆𝑆, 𝑆, Σ)) { 𝑎𝑑𝑑 (𝑆 ::= ·𝑆𝑆, 𝑐𝑈 , 𝑐𝐼 ,Δ) }
if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑐𝐼 , 𝑎, 𝑆, Σ)) { 𝑎𝑑𝑑 (𝑆 ::= ·𝑎, 𝑐𝑈 , 𝑐𝐼 ,Δ) }
if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑐𝐼 , 𝑎𝑎𝑏, 𝑆, Σ)) { 𝑎𝑑𝑑 (𝑆 ::= ·𝑎𝑎𝑏, 𝑐𝑈 , 𝑐𝐼 ,Δ) }
goto 𝐿0

𝑆 ::= ·𝑆𝑆 :
𝑐𝑈 := 𝑐𝑟𝑒𝑎𝑡𝑒 (𝑆 ::= 𝑆 · 𝑆, 𝑐𝑈 , 𝑐𝐼 , 𝑐𝑁); goto 𝐽𝑆

𝑆 ::= 𝑆 · 𝑆 :
𝑐𝑈 := 𝑐𝑟𝑒𝑎𝑡𝑒 (𝑆 ::= 𝑆𝑆 ·, 𝑐𝑈 , 𝑐𝐼 , 𝑐𝑁); goto 𝐽𝑆

𝑆 ::= 𝑆𝑆 ·:
𝑝𝑜𝑝 (𝑐𝑈 , 𝑐𝑁) ; goto 𝐿0

𝑆 ::= ·𝑎:
for each 𝑘 ∈ Σ𝑎,𝑐𝐼 {

if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑘, 𝜖, 𝑆, Σ)) {
𝑐𝑅 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑇 (𝑎, 𝑐𝐼 , 𝑘)
𝑐𝑇 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝑆 ::= 𝑎·, 𝑐𝑁 , 𝑐𝑅)
𝑎𝑑𝑑 (𝑆 ::= 𝑎·, 𝑐𝑈 , 𝑘, 𝑐𝑇) } }

goto 𝐿0

𝑆 ::= 𝑎·:
𝑝𝑜𝑝 (𝑐𝑈 , 𝑐𝑁) ; goto 𝐿0

𝑆 ::= ·𝑎𝑎𝑏:
for each 𝑘 ∈ Σ𝑎,𝑐𝐼 {

if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑘, 𝑎𝑏, 𝑆, Σ)) {
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Multiple input parsing and lexical analysis 17

𝑐𝑅 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑇 (𝑎, 𝑐𝐼 , 𝑘)
𝑐𝑇 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝑆 ::= 𝑎 · 𝑎𝑏, 𝑐𝑁 , 𝑐𝑅)
𝑎𝑑𝑑 (𝑆 ::= 𝑎 · 𝑎𝑏, 𝑐𝑈 , 𝑘, 𝑐𝑇) } }

goto 𝐿0

𝑆 ::= 𝑎 · 𝑎𝑏:
for each 𝑘 ∈ Σ𝑎,𝑐𝐼 {

if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑘,𝑏, 𝑆, Σ)) {
𝑐𝑅 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑇 (𝑎, 𝑐𝐼 , 𝑘)
𝑐𝑇 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝑆 ::= 𝑎𝑎 · 𝑏, 𝑐𝑁 , 𝑐𝑅)
𝑎𝑑𝑑 (𝑆 ::= 𝑎𝑎 · 𝑏, 𝑐𝑈 , 𝑘, 𝑐𝑇) } }

goto 𝐿0

𝑆 ::= 𝑎𝑎 · 𝑏:
for each 𝑘 ∈ Σ𝑏,𝑐𝐼 {

if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑘, 𝜖, 𝑆, Σ)) {
𝑐𝑅 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑇 (𝑏, 𝑐𝐼 , 𝑘)
𝑐𝑇 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝑆 ::= 𝑎𝑎𝑏·, 𝑐𝑁 , 𝑐𝑅)
𝑎𝑑𝑑 (𝑆 ::= 𝑎𝑎𝑏·, 𝑐𝑈 , 𝑘, 𝑐𝑇) } }

goto 𝐿0

𝑆 ::= 𝑎𝑎𝑏·:
𝑝𝑜𝑝 (𝑐𝑈 , 𝑐𝑁) ; goto 𝐿0

𝐿0: }
if (there exists an ESPPF node (𝑆, 0,𝑚)) { return the ESPPF }
else { report failure }

4.3 Terminal matching

The main change required from the original GLL specification is in the ‘matching’ of terminals. In the classical GLL

algorithm, the next input symbol is obtained simply by incrementing the input pointer. For the multi-input parser there

may be several next terminals and these may have different ‘lengths’ (right extents or next input indexes). In an MGLL

parser, process descriptors are created for each possibility.

In order to avoid creating descriptors that will terminate as soon their processing begins, we add a test against the

next input symbol. As a consequence, readers who are familiar with classical GLL will notice that we have also moved

the positions, in the templates, of other tests to avoid unnecessary repetition.

For a given terminal 𝑎, and left extent 𝑖 , the parser matches all of the triples (𝑎, 𝑖, 𝑘) ∈ Σ at the same time. There is a

potential search cost associated with finding all of the input triples which can follow these triples, i.e. the elements

(𝑏, 𝑘, 𝑗). So initially parser lookahead sets, 𝑙𝑘Σ𝑎,𝑖 , are computed; we assume that an efficient data representation and

construction process are used, see Section 2.2. Because a lookahead test is performed before creating a descriptor, it is

only necessary to store the next index, 𝑘 , in the descriptors.

We also note here that, although a descriptor is a 4-tuple (𝐿,𝑢, 𝑖,𝑤) where 𝑢 = (𝐿′, 𝑘) is a GSS node, we do not need

the full ESPPF node𝑤 = (𝐿′′, 𝑝, 𝑞) because it will always be the case that 𝑝 = 𝑘 and 𝑞 = 𝑖 . Thus there are at most 𝑂 (𝑚)
possible descriptors.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

The MGLL parser specification is a set of ‘templates’ and a parser generator constructs an MGLL parser from the

templates by substituting actual grammar symbols, alternates and sets of terminals into the templates. The GSS and

ESPPF construction is done by support functions which are independent of the grammar and can be used by any MGLL

parser. Finally, there is a function that handles the parser lookahead.

4.4 Lookahead testing functions

The function 𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 () is used for efficiency to guard certain parser actions. It checks whether, at input index 𝑖 , there

is a TWE element whose left extent is 𝑖 and which lies in the predictor set for the current grammar position. The predict

set is based on the standard first and follow sets:

first𝑇 (𝛼) = {𝑡 ∈ T | 𝛼 ∗⇒𝑡𝛼 ′} follow𝑇 (𝑋) = {𝑡 ∈ T | 𝑆 ∗⇒𝛼𝑋𝑡𝛽}

first(𝛼) =

first𝑇 (𝛼) ∪ {𝜖} if 𝛼

∗⇒𝜖

first𝑇 (𝛼) otherwise

follow(𝑋) =

follow𝑇 (𝑋) ∪ {$} if 𝑆

∗⇒𝛾𝑋

follow𝑇 (𝑋) otherwise

predict(𝛽, 𝑋) = {𝑏 | 𝑏 ∈ first(𝛽) or (𝜖 ∈ first(𝛽) and 𝑏 ∈ follow(𝑋))}

𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑖, 𝛽, 𝑋, Σ) =

true if (predict(𝛽, 𝑋) ∩ 𝑡Σ𝑖) ≠ ∅

false otherwise

4.5 GSS and ESPPF constructing functions

We now give the support functions for the MGLL parsers.

𝑎𝑑𝑑 (𝐿,𝑢, 𝑖,𝑤) {
if ((𝐿,𝑢, 𝑖,𝑤) ∉ U) { add (𝐿,𝑢, 𝑖,𝑤) toU and to R } }

𝑝𝑜𝑝 (𝑢, 𝑧) {
if (𝑢 ≠ 𝑢0 and (𝑢, 𝑧) ∉ P) {

let 𝐿 = (𝑌 ::= 𝜈𝑋 · 𝜇, 𝑘) be the label of 𝑢
let 𝑖 be the right extent of 𝑧

add (𝑢, 𝑧) to P
for each GSS edge (𝑢,𝑤, 𝑣) {

let 𝑦 be the node returned by 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝐿,𝑤, 𝑧)
if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑖, 𝜇, 𝑌 , Σ)) 𝑎𝑑𝑑 (𝐿, 𝑣, 𝑖, 𝑦)) } } }

𝑐𝑟𝑒𝑎𝑡𝑒 (𝑌 ::= 𝜈𝑋 · 𝜇,𝑢, 𝑖,𝑤) {
let 𝐿 be 𝑌 ::= 𝜈𝑋 · 𝜇
if there is not already a GSS node labelled (𝐿, 𝑖) create one

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Multiple input parsing and lexical analysis 19

let 𝑣 be the GSS node labelled (𝐿, 𝑖)
if there is not an edge from 𝑣 to 𝑢 labelled𝑤 {

create an edge from 𝑣 to 𝑢 labelled𝑤

for all 𝑧 such that (𝑣, 𝑧) ∈ P {
let 𝑦 be the node returned by 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝐿,𝑤, 𝑧)
let 𝑗 be the right extent of 𝑧

if(𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑗, 𝜇, 𝑌 , Σ)) 𝑎𝑑𝑑 (𝐿, 𝑣, 𝑗, 𝑦)) } }
return 𝑣 }

The functions that build the ESPPF take a grammar slot, 𝐿 say, as a parameter. The nodes constructed are labelled

with slots related to 𝐿 and the specific construction depends on the type of slot. The following notation is used for the

required properties. We say that 𝐿 is eoR, end-of-rule, if 𝐿 is the end of a production, i.e. of the form 𝑋 ::= 𝛼 ·. We say

that 𝐿 is fiR, first-in-rule, if 𝐿 is not 𝑒𝑜𝑅 and it is of the form 𝑋 ::= 𝑥 .𝜏 where 𝑥 is a terminal or a nonterminal.
1
Finally,

𝑙ℎ𝑠_𝐿 denotes the nonterminal on the left hand side of 𝐿.

𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝐸 (𝑖) {
if there is no ESPPF node 𝑦 labelled (𝜖, 𝑖, 𝑖) create one
return 𝑦 }

𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑇 (𝑎, 𝑖, 𝑗) {
if there is no ESPPF node 𝑦 labelled (𝑎, 𝑖, 𝑗) create one
return 𝑦 }

𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝐿, 𝑧,𝑤) {
if (𝐿 is fiR) { return 𝑧 }
else {

suppose that𝑤 has label (𝑞, 𝑘, 𝑗)
if (𝐿 is eoR) set Ω := 𝑙ℎ𝑠_𝐿 else set Ω := 𝐿

if (𝑧 = Δ) let 𝑖 := 𝑘 else suppose that 𝑧 has label (Ω′, 𝑖, 𝑘)
if there does not exist an ESPPF node 𝑦 labelled (Ω, 𝑖, 𝑗) create one
if 𝑦 does not have a child labelled (𝐿, 𝑘) {

create one with right child𝑤 and, if 𝑧 ≠ Δ, left child 𝑧 }
return 𝑦 } }

4.6 MGLL parser templates

MGLL parsers are specified using a set of code templates. The parser for a specific grammar, Γ, is obtained by substituting

the nonterminals, terminals and grammar rules of Γ into the templates. The template for the main function𝑀𝐺𝐿𝐿𝑝𝑎𝑟𝑠𝑒 ()
assumes the start nonterminal of Γ is 𝑆 and the set of nonterminals of Γ is {𝑋1, . . . , 𝑋𝑝 } (the operation of the parser is

independent of the order nonterminal code templates 𝑐𝑜𝑑𝑒 (𝑋𝑖)).

1
Note this will result in the ESPPF being a multigraph in the case of grammar rules of the form 𝑋 ::= 𝐴𝐴𝛾 where 𝐴 is a nullable nonterminal. The

definition of fiR can be modified to exclude slots of the form 𝑋 ::= 𝐴 · 𝐴𝛾 to avoid this if desired.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

We assume that there is a TWE set Σ, comprised of triples (𝑎, 𝑖, 𝑗), where 𝑎 is a terminal and 0 ≤ 𝑖 < 𝑗 ≤ 𝑚, and a

final triple, ($,𝑚,𝑚 + 1). The set Σ and the sets 𝑙𝑘Σ𝑎,𝑖 and 𝑡Σ𝑖 are computed using an efficient representation such as

that described in Section 2.2. We use the following notation

𝑚 is a constant integer, the height of Σ

𝑐𝐼 is an integer variable whose value is in {0, . . . ,𝑚}
GSS is a weighted digraph whose nodes are labelled with elements of the form (𝐿, 𝑗), where 𝐿 is a grammar slot or 𝐿0

𝑐𝑈 is a GSS node variable, 𝑐𝑁 , 𝑐𝑇 and 𝑐𝑅 are ESPPF node variables

P is a set of (GSS node, ESPPF node, integer) triples

R is a set of descriptors (Grammar slot, GSS node, integer, ESPPF node) yet to be processed

U is the set of all descriptors constructed so far

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 (𝑤) is the result of running the sentence finding algorithm on the ESPPF subgraph rooted at𝑤

Template for the main function𝑀𝐺𝐿𝐿𝑝𝑎𝑟𝑠𝑒 (Σ)

𝑀𝐺𝐿𝐿𝑝𝑎𝑟𝑠𝑒 (Σ)=
construct the sets 𝑙𝑘Σ𝑎,𝑖 and 𝑡Σ𝑖 from Σ

create GSS node 𝑢0 = (𝐿0, 0)
U := ∅; R := ∅; P := ∅
𝑎𝑑𝑑 (𝐽𝑆 , 𝑢0, 0,Δ)
while(R ≠ ∅) {

remove a descriptor, (𝐿,𝑢, 𝑖,𝑤) say, from R
𝑐𝑈 := 𝑢; 𝑐𝑁 := 𝑤 ; 𝑐𝐼 := 𝑖; goto L

𝑐𝑜𝑑𝑒 (𝑋1)
. . .

𝑐𝑜𝑑𝑒 (𝑋𝑝)
𝐿0: }

if (there exists an ESPPF node (𝑆, 0,𝑚)) { return the ESPPF }
else { report failure }

The template for grammar rules

Consider the grammar rule 𝑋 ::= 𝜏1 | . . . | 𝜏𝑝 , 1 ≤ 𝑖 ≤ 𝑝 . We give the template for 𝑐𝑜𝑑𝑒 (𝑋) in terms of functions

𝑐𝑜𝑑𝑒 (𝑋 ::= ·𝜏𝑖), which will be specified below.

𝑐𝑜𝑑𝑒 (𝑋) =
𝐽𝑋 : if (𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑐𝐼 , 𝜏1, 𝑋, Σ)) { 𝑎𝑑𝑑 (𝑋 ::= ·𝜏1, 𝑐𝑈 , 𝑐𝐼 ,Δ) }

. . .

if (𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑐𝐼 , 𝜏𝑝 , 𝑋, Σ)) { 𝑎𝑑𝑑 (𝑋 ::= ·𝜏𝑝 , 𝑐𝑈 , 𝑐𝐼 ,Δ) }
goto 𝐿0

𝑋 ::= ·𝜏1 : 𝑐𝑜𝑑𝑒 (𝑋 ::= ·𝜏1); 𝑝𝑜𝑝 (𝑐𝑈 , 𝑐𝑁); goto 𝐿0

. . .

𝑋 ::= ·𝜏𝑝 : 𝑐𝑜𝑑𝑒 (𝑋 ::= ·𝜏𝑝); 𝑝𝑜𝑝 (𝑐𝑈 , 𝑐𝑁); goto 𝐿0

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Multiple input parsing and lexical analysis 21

The templates for alternates

In the following 𝑋,𝑌 are nonterminals, 𝑡 is a terminal, and 𝛼 and 𝛽 are (possibly empty) strings of terminals and

nonterminals.

𝑐𝑜𝑑𝑒 (𝑋 ::= ·) = 𝑐𝑅 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝐸 (𝑐𝐼); 𝑐𝑁 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝑋 ::= ·, 𝑐𝑁 , 𝑐𝑅)

𝑐𝑜𝑑𝑒 (𝑋 ::= 𝛼𝑡 · 𝛽) = for each 𝑘 ∈ Σ𝑡,𝑐𝐼 {
if (𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑘, 𝛽, 𝑋, Σ)) {
𝑐𝑅 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑇 (𝑡, 𝑐𝐼 , 𝑘)
𝑐𝑇 := 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 (𝑋 ::= 𝛼𝑡 · 𝛽, 𝑐𝑁 , 𝑐𝑅)
𝑎𝑑𝑑 (𝑋 ::= 𝛼𝑡 · 𝛽, 𝑐𝑈 , 𝑘, 𝑐𝑇) } }

goto 𝐿0

𝑋 ::= 𝛼𝑡 · 𝛽 :

𝑐𝑜𝑑𝑒 (𝑋 ::= 𝛼𝑌 · 𝛽) = 𝑐𝑈 := 𝑐𝑟𝑒𝑎𝑡𝑒 (𝑋 ::= 𝛼𝑌 · 𝛽, 𝑐𝑈 , 𝑐𝐼 , 𝑐𝑁); goto 𝐽𝑌

𝑋 ::= 𝛼𝑌 · 𝛽 :

𝑐𝑜𝑑𝑒 (𝑋 ::= ·𝑥1 . . . 𝑥𝑑) = 𝑐𝑜𝑑𝑒 (𝑋 ::= 𝑥1 · 𝑥2 . . . 𝑥𝑑)
𝑐𝑜𝑑𝑒 (𝑋 ::= 𝑥1𝑥2 · 𝑥3 . . . 𝑥𝑑)
. . .

𝑐𝑜𝑑𝑒 (𝑋 ::= 𝑥1𝑥2 . . . 𝑥𝑑 ·)

Part 3 - Using The Multi-Parsing Approach

We now look at the application of MGLL parsing to processing multiple lexicalisations of a given character string.

We discuss various approaches to constructing a TWE set from the character string. Compiler front ends can treat

whitespace in various different ways; we review some of these and discuss their incorporation into the multi-lexer

parsing environment. We also provide a formal discussion of lexical ambiguity reduction in a TWE set.

We have implemented all the techniques described in this paper in our ART toolset [JS11b]. We report in Section 8

on data structure sizes and on the impact of various disambiguation choices, using examples from Java. In Section 9 we

give some preliminary comparative performance evaluations of the techniques.

The advantage of MGLL is increased expressive power and flexibility, not improved efficiency. The multi-lexer parser

approach is fully general and comparisons to other techniques that place restrictions on either the lexicalisations

constructed or on the phrase level grammar used require care. The closest correspondence that can be achieved to

determinism limited techniques is to construct the TWE set using the standard DFA lexicalisation style, with longest

match and priority disambiguation applied, and then to parse the single resulting lexicalisation with a general parser.

This models the traditional approach and we can compare examples using this and the full MGLL approach. The results

(Section 9) show that the additional overheads from the MGLL approach are not significant.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

5 TWE SET CONSTRUCTION FROM CHARACTER STRINGS

Our description of MGLL above does not make any assumptions about where the ITS set and corresponding TWE set

are derived from. Currently, our primary application is the lexical phase of compilation, and in this section we briefly

discuss the construction of the TWE set Σ𝛾 which corresponds to the set, LX(𝛾), of all lexicalisations of the character
string 𝛾 = 𝑥1 . . . 𝑥ℎ .

We shall assume we have a given set of characters A, a set of tokens 𝑇 , and a specification for the pattern of each

token. We assume that no pattern contains the empty string. We want to produce Σ𝛾 directly from the character string

𝛾 , not via the ITS set. Since Σ𝛾 is the TWE set of LX(𝛾), if it has an element of the form (𝑡, 𝑖, 𝑗) then either 𝑖 = 0 or Σ𝛾

also has an element of the form (𝑡 ′, 𝑙, 𝑖). So we can begin by creating all elements, (𝑥1 . . . 𝑥 𝑗 , 0, 𝑗), such that 𝑥1 . . . 𝑥 𝑗 is a

lexeme of some token. Then, for values of 𝑗 from 1 to𝑚 − 1, if there is already an element of the form (𝑡, 𝑖, 𝑗), add all

elements (𝑥 𝑗+1 . . . 𝑥ℎ, 𝑗, ℎ) such that 𝑥 𝑗+1 . . . 𝑥ℎ is a lexeme of some token. Once the construction is complete the set is

pruned, as described in Appendix B, which eliminates partial lexicalisations that did not extend to full lexicalisations.

The TWE elements themselves can be constructed using a variety of techniques. Here we briefly discuss both finite

state automata and GLL based approaches, and in Section 9.2 we report some corresponding experimental data.

If the patterns of the tokens are defined by regular expressions, we can build the finite state automata in the usual

way [ALSU06] and it is easy to use the automata to construct a TWE set which embeds all the ITS set of all lexicalisations

of a character string. An example algorithm is given in Appendix B.

Limiting the specification of token patterns to regular expressions makes handling comments, and whitespace in

general, harder. If the patterns of the tokens are context free we can construct a grammar whose terminals are the

elements of A and for each token 𝑡 ∈ 𝑇 there is a nonterminal and corresponding grammar rules which generate its

pattern. The start symbol, 𝑆 , then has productions of the form 𝑆 ::= 𝑡 | 𝑡 𝑆 , for each 𝑡 ∈ 𝑇 . A generalised parser for this

grammar can be used to parse 𝛾 , and the set Σ𝛾 is then the set of SPPF node labels of the form (𝑡, 𝑗, 𝑖).
Of course, parsers are generally more computationally expensive than recognisers as the latter are not required

to find all derivations or to construct an output structure. To construct a GLL recogniser from any of the GLL parser

family, and thus to get nearer to the efficiency of an automata based TWE constructor, we can simply remove the

SPPF construction functionality. We do not need the 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 () functions at all, the GSS does not need to have labelled

edges and the descriptors are triples (𝐿,𝑢, 𝑖) which do not include an SPPF node. This means that the data structures

are smaller and that the parser runs more quickly. To add the TWE generating functionality, the TWE elements are

associated with grammar nonterminals that represent the tokens and the TWE elements are output on the return from

pop actions on these nonterminals.

These modifications can be made to the MGLL algorithm described above. However, in [SJ18] we have presented an

EBNF GLL algorithm which directly implements regular expression constructs such as Kleene and positive closure

using iteration rather than recursive grammar rules. This significantly reduces function call stack (GSS) activity and

also reduces the number of descriptors that have to be processed. The TWE constructing modifications can be applied

to the EBNF GLL templates and this is what we have done to produce the TWE set construction algorithm that we used

for the results quoted in this paper. An informal description of the algorithm can be found in Appendix B.

We also note that in a production compiler the lexer does more than just lexicalisation; for example it may retain

formatting information for use in error messages. Our presentation assumes that the input has been buffered into a

character string and that the left and right extents are indices into that string: any application that retains formatting

information can generate such indices at the same time.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Multiple input parsing and lexical analysis 23

6 WHITESPACE HANDLING

Our formulation above gives a clean model for lexical and syntax analysis in cases where all the characters in the input

character string are used in lexemes of tokens which are passed to the parser. However, traditional lexers often treat

whitespace characters and comments differently, effectively suppressing them from the character string. We briefly

discuss some approaches that are possible in a multi-lexer parser. In this section we shall use𝑤𝑠 to denote a designated

whitespace token which we assume is specified in the same way as the other tokens in 𝑇 .

6.1 Explicit whitespace handling

Explicit whitespace handling can been achieved cleanly in a multi-lexer parser by treating𝑤𝑠 in the same way as the

other tokens, simply passing them on to the parser. The grammar is modified to include an optional 𝑤𝑠 after each

instance of the other terminals in the grammar. One advantage is that, by using different whitespace tokens which

are inserted in the appropriate places in the grammar, the issues associated with different whitespace conventions

in embedded languages can be handled safely. In many cases it is possible to have the whitespace tokens inserted

automatically; this approach is worked through in detail in [JSvdB14]. However, the whitespace tokens increase the

size of the parser and the size of the data structures it produces, and the approach does not have the clean lexer/parser

interface that whitespace suppression achieves.

6.2 Character level grammars

Character level grammars treat whitespace characters like any other character and whitespace-matching nonterminals

are defined in the grammar. This is essentially equivalent to the explicit whitespace handling approach for token level

grammars. However, whitespace ambiguity significantly increases the size of the parser output structures if they include

the derivations from the whitespace nonterminals. The ambiguity has to be resolved using syntax level disambiguation

or the whitespace has to be handled using on-the-fly mechanisms that are outwith the pure parsing approaches.

As we shall discuss below, the multi-lexer parser approach can include cleanly defined lexical level disambiguation.

Thus multi-lexer parser specification with explicit whitespace handling can provide the power of a character level

specification in a more efficient way.

6.3 Whitespace suppression

For indexed token strings whitespace suppression is easy, tokens of the form (𝑤𝑠, 𝑗) are simply removed. So, for example,

(𝑡0, 𝑖0) (𝑤𝑠, 𝑖1) (𝑡2, 𝑖2) (𝑡3, 𝑖3) (𝑤𝑠, 𝑖4) (𝑡5, 𝑖5) becomes (𝑡0, 𝑖0) (𝑡2, 𝑖2) (𝑡3, 𝑖3) (𝑡5, 𝑖5)

To apply the suppression directly on the TWE set we just have to update the extents. For each triple, (𝑤𝑠, 0, 𝑘), and
for each triple of the form (𝑡, 𝑘, 𝑗) add the triple (𝑡, 0, 𝑗) and delete (𝑤𝑠, 0, 𝑘). Then, let 𝑗 be the smallest integer for

which there is a triple (𝑤𝑠, 𝑗, 𝑘). For each triple of the form (𝑡, 𝑖, 𝑗) add the triple (𝑡, 𝑖, 𝑘) and delete (𝑤𝑠, 𝑗, 𝑘). Continue
in this way until there are no triples with a whitespace token and then prune the set. Note, this process preserves the

height of the TWE set being modified.

The highly ambiguous nature of whitespace could make the absorption process costly, for example in terms of the

number of different extents and the need to avoid the redundancy of absorbing one whitespace token into another.

In Section 7 we discuss lexical disambiguation techniques. For languages such as Java, these techniques can be used

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

to eliminate all but at most one whitespace token between non-whitespace tokens, making subsequent whitespace

absorption straightforward.

Alternatively, if whitespace is well behaved in the sense that whitespace characters cannot appear at the start of

lexemes for other tokens, we could carry out suppression as the TWE set is being constructed, essentially achieving the

classical approach of having the lexer suppress whitespace. For a TWE constructor built from an EBNF GLL recogniser

this is easy to implement. We simply add the Kleene closure of the set of whitespace characters to the end of the

production rules for each token. If whitespace characters cannot appear at the start of a lexeme of any other token

then the lookahead in the GLL recogniser will ensure that only lexemes that include all whitespace to their right are

matched.

6.4 Embedded whitespace conventions

Of course, the use of whitespace suppression is not always straightforward. For example for embedded languages which

have different whitespace and comment conventions from their host language, tokens may be suppressible in some

contexts but not others. This is difficult for traditional parsers in which one lexicalisation is selected before parsing,

because the context required to decide on suppressibility is not available. In the multi-lexer environment for each

whitespace matching substring two lexicalisations can be generated, one in which the token is seen as whitespace and

suppressed, and the other in which the token is retained.

Suppose that in the host language comments are enclosed in (* *) bracket pairs but in the embedded language

these denote strings. We can define two comment and two string tokens, 𝑐ℎ, 𝑠ℎ and 𝑐𝑒 , 𝑠𝑒 , for the host and embedded

languages, respectively. The tokens 𝑐ℎ and 𝑐𝑒 are suppressed as described above, while the tokens 𝑠ℎ, 𝑠𝑒 are retained.

So, for example, (*end*) will generate two triples, (𝑐ℎ, 𝑖, 𝑖 + 7) and (𝑠𝑒 , 𝑖, 𝑖 + 7), and the former will be suppressed

as whitespace. If the ‘correct’ lexicalisation was the comment then the token 𝑠𝑒 will not be valid and the parser will

(correctly) reject derivations which attempt to include it. Conversely, if the string was the correct lexicalisation then

the parser will reject derivations which omit it, unless the instance of the string token in the embedded grammar was

optional.

In the latter case, where there is a token, 𝑡 say, such that the patterns of𝑤𝑠 and 𝑡 have a common lexeme and there

exist sentences of the forms 𝑢𝑡𝑣 and 𝑢𝑦, suppression of the token𝑤𝑠 is unsafe. Thus, although whitespace suppression

in a multi-lexer environment is widely applicable, it cannot be used in all cases.

6.5 Separate whitespace processing

A similar effect to whitespace disambiguation could be achieved by having an initial procedure that takes the input

character string, identifies whitespace sequences and replaces them with a single whitespace character such as \n. The

lexical definition of𝑤𝑠 is just the string of length one whose character is \n, making either explicit whitespace handling

or whitespace absorption relatively simple to adopt. The processing is outwith the theory we have developed for TWE

sets and can take any form a user desires.

This is the approach that was used to implement whitespace suppression in the C# case study reported in Walsh’s

thesis [Wal15].

7 LEXICAL AMBIGUITY REDUCTION

Although MGLL parsers can parse all lexicalisations of an input string in worst case cubic time, parsing all of them and

then using syntax level disambiguation to select from those for which the parse succeeds is likely to be slower than is

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Multiple input parsing and lexical analysis 25

desirable. In contrast to character level parsing, the multi-lexer parser approach allows the number of lexicalisations to

be reduced prior to parsing via user-specified lexical disambiguation rules which are applied to the TWE set. This allows

the classical case in which only one token string is presented to the parser to be modelled, whilst retaining the flexibility

of passing some lexical ambiguity on to the parser if appropriate. The rules we consider suppress some elements from a

given TWE set, but may not remove all ambiguities. For this reason we refer to them as lexical ambiguity reduction

rules.

7.1 ITS versus TWE set ambiguity redution

Conceptually lexical ambiguity reduction is the removal of strings from an ITS set of lexicalisations. However, as we

discussed above, for efficiency reasons we work with TWE sets and our rules will remove triples from a TWE set.

Removing strings from an ITS set is not always equivalent to removing triples from the corresponding TWE set.

Removing strings from an ITS set may make it inconsistent, but the corresponding TWE set will embed the smallest

enclosing consistent set so some removed strings will be reinstated. Furthermore, removing a triple from a TWE set

will remove all the strings which contain that triple. If the ambiguity removal is complete in the sense that only one

lexicalisation remains at the end then the same outcome can be achieved by removing either strings from the ITS

set or triples from the TWE set. However, it is important to recognise that there are some ITS sets which cannot be

constructed by TWE element removal.

7.2 Identifying TWE set ambiguities

Ambiguity in a tight TWE set, Σ say, corresponds exactly to the existence of two or more distinct triples with the same

left extent, (𝑎, 𝑖, 𝑗), (𝑏, 𝑖, 𝑘) ∈ Σ, and, equivalently, to nodes in the graphical representation with more than one out

edge. Of course, it also corresponds to the existence of nodes with more than one in-edge, and there are dual ‘in-edge’

ambiguity reduction rules but we will not consider these here.

7.3 Ambiguity reduction rules

A lexical disambiguation rule is specified in two parts: a relation 𝑅 on the set of tokens and a condition, 𝑐𝑜𝑛𝑑 , on the

extents. A rule {𝑅, 𝑐𝑜𝑛𝑑} is applied to a pair of distinct triples (𝑢, 𝑣), The purpose of a disambiguation rule is to remove

elements from a TWE set. If 𝑢 = (𝑎, 𝑖, 𝑗), 𝑣 = (𝑏, 𝑖, 𝑘), and if 𝑎𝑅𝑏 and 𝑐𝑜𝑛𝑑 (𝑗, 𝑘) hold, then the rule {𝑅, 𝑐𝑜𝑛𝑑} applies to
(𝑢, 𝑣) and if 𝑣 is in the TWE set then 𝑢 is marked for removal (see below).

In practice, a rule may be better thought of as being applied to the left element, 𝑢, with the parameter 𝑣 , because

only 𝑢 is affected by the rule application. We think of 𝑅 as a priority relation, so 𝑏𝑅𝑎 may be read as 𝑎 has priority over

𝑏 under 𝑅.

When specifying the extent condition 𝑐𝑜𝑛𝑑 we use the convention that a triple will represent its right extent. For

example, {𝑅,𝑢 < 𝑣} denotes the rule in which 𝑐𝑜𝑛𝑑 (𝑢, 𝑣) is the condition that the right extent of 𝑢 is less than the right

extent of 𝑣 , and if 𝑅 is defined to be the identity relation 𝑎𝑅𝑎 this gives longest match (see Section 7.4).

If 𝑢 = (𝑏, 𝑖, 𝑘) and 𝑣 = (𝑎, 𝑖, 𝑗) then, informally, the rule {𝑅, 𝑐𝑜𝑛𝑑} is applies to (𝑢, 𝑣) if 𝑎 has priority over 𝑏 under 𝑅

and 𝑐𝑜𝑛𝑑 (𝑢, 𝑣) is true. It may seem natural to delete the triple 𝑢 in this case. However this can lead to results which

are dependent on the order of application. For example, consider triples (𝑎, 0, 1), (𝑏, 0, 2), (𝑐, 0, 3) and a rule {𝑅,𝑢 < 𝑣}
where 𝑏𝑅𝑎 and 𝑐𝑅𝑏 but not 𝑐𝑅𝑎. Then removing (𝑏, 0, 2) before (𝑐, 0, 3) would leave (𝑐, 0, 3) whereas removing (𝑐, 0, 3)
first would ultimately leave just (𝑎, 0, 1). To ensure that the result is independent of the order of application of rules,

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

triples are just marked for removal. Disambiguation rules are applied to the pair (𝑢, 𝑣) if 𝑢 is unmarked and regardless

of whether or not 𝑣 is marked.

Lexical disambiguation Given a TWE set, Σ, and set, LDR, of lexical disambiguation rules, a triple 𝑢 = (𝑏, 𝑖, 𝑘) ∈ Σ is

marked for deletion if there is a triple 𝑣 = (𝑎, 𝑖, 𝑗) ∈ Σ and a rule {𝑅, 𝑐𝑜𝑛𝑑} ∈ LDR such that 𝑏𝑅𝑎 and 𝑐𝑜𝑛𝑑 (𝑢, 𝑣) is true.

This formalism does restrict disambiguation decisions to being local in the sense that the specification is in terms of

only pairs of triples with the same left extent. It cannot include any other contextual information from other parts of

the TWE graph. But it is general enough to model the standard longest match and priority style specifications, and

other things such as shortest match can also be specified.

7.4 Longest match disambiguation

We can specify a local form of longest match lexical disambiguation for a token, 𝑎 say, as {𝑅𝑎, 𝑢 < 𝑣}, where 𝑠𝑅𝑎𝑡 if
and only if 𝑠 = 𝑡 = 𝑎. Then (𝑏, 𝑖, 𝑘) is marked for deletion if 𝑏 = 𝑎 and there is a triple (𝑎, 𝑖, 𝑗) such that 𝑘 < 𝑗 . This rule

is commonly used to disambiguate identifier tokens. Suppose that ID is a token whose pattern is the set of C-style

identifiers. The string xy1 has a TWE set which is represented graphically as

0 1 2 3����������������
- - -

ID

ID

ID

ID

ID num

* 1

z

Applying the lexical disambiguation rule {𝑅ID, 𝑢 < 𝑣} first at node 0, marks (ID, 0, 1) and (ID, 0, 2) for deletion. Then
applying the rule at node 1 marks (ID, 1, 2). All the possible applications of all rules have now been applied so the

marked triples (edges) are deleted, leaving the TWE set

0 1 2 3����������������
-

ID

ID

num

1

z

Pruning this set leaves the single triple (ID, 0, 3) corresponding to the lexicalisation of ab1 as ID.

We refer to this local longest match as Longest Within disambiguation. It is common for longest match to apply

across tokens, so that for example, if1 tokenises to an identifier even in the case that if is a keyword. We can specify

longest match across all the tokens as (𝑅𝑡𝑜𝑡 , 𝑢 < 𝑣) where 𝑅𝑡𝑜𝑡 is the total relation over all tokens, 𝑠𝑅𝑡𝑜𝑡 𝑡 is true for all

tokens 𝑠, 𝑡 . We refer to this as Longest Across disambiguation.

7.5 Token priority based disambiguation

Longest Across does not resolve the situation in which the same lexeme belongs to the pattern of two or more tokens.

To give the keyword token if priority over the identifier token we can define a lexical disambiguation rule {𝑅1, 𝑢 = 𝑣},
where 𝑅1 contains the single element ID𝑅1 if. Given tokens (, num and), the TWE set for if(1) is

0 1 2 3 4 5������������������������
- - - - -

ID

ID

if

ID (num)

*

z

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Multiple input parsing and lexical analysis 27

Applying both {𝑅ID, 𝑢 < 𝑣} and {𝑅1, 𝑢 = 𝑣} at node 0 leaves the TWE set which embeds the single string, if (num).

7.6 Other disambiguation possibilities

As a further illustration we consider early versions of FORTRAN in which spaces were not significant and, in particular,

keywords took priority over longer identifiers. So ifx>1 was interpreted as if ID relop num. We can model this using

the disambiguation rule {𝑅ID, 𝑢 < 𝑣} together with the rule {𝑅2, 𝑢 ≤ 𝑣} where 𝑅2 has just one element ID𝑅2 if. Then

ifx>1 has TWE set

0 1 2 3 4 5������������������������
- - - - -

IDID

ID

if ID

ID ID relop num

*

z z

1

Applying {𝑅ID, 𝑢 < 𝑣} at node 1 and {𝑅2, 𝑢 ≤ 𝑣} at node 0, marks the triples (𝐼𝐷, 0, 2), (𝐼𝐷, 0, 3) and (𝐼𝐷, 1, 2). Applying
{𝑅ID, 𝑢 < 𝑣} at node 0 marks (𝐼𝐷, 0, 1) and then removing marked edges, gives

0 1 2 3 4 5������������������������
- - -

if ID

ID relop num
z z

Pruning this set leaves the tight TWE set which embeds just the lexicalisation if ID relop num. Of course, these

disambiguation rules still cause words such as sift to be lexicalised as ID. The TWE set for sift is

0 1 2 3 4��������������������
- - - -

ID

IDID

ID

ID

ID

ID if

ID ID ID

* * *

z

1 1

q

Applying the disambiguation rules and removing marked edges gives

0 1 2 3 4��������������������
-

ID

ID if

ID

*

z q

Pruning this leaves the TWE set {(𝐼𝐷, 0, 4)}.
The {𝑅, 𝑐𝑜𝑛𝑑} paradigm is powerful because we can specify any condition 𝑐𝑜𝑛𝑑 that we wish. For example, we could

include the condition 𝑖 = 2𝑚 to specify that only even numbered nodes should have the rule applied to them. We can

also easily extend the mechanism to look at follow or preceding tokens. For example, {𝑅, 𝑟𝑒𝑥𝑡𝑒𝑛𝑡 (𝑢) = 𝑙𝑒𝑥𝑡𝑒𝑛𝑡 (𝑣)}
could specify that 𝑢 = (𝑏, 𝑖, 𝑘) is marked for deletion if there is a triple 𝑣 = (𝑎, 𝑘, 𝑗) such that 𝑏𝑅𝑎. In this paper we have

just discussed the rules that implement the familiar longest match and priority disambiguations to show how to obtain

the standard Lex functionality and to indicate the flexibility of our approach.

The cardinality reductions which result from applying the longest match and priority ambiguity reduction rules to

the TWE sets generated for some example Java programs are discussed in Section 8.2.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

8 MULTI-LEXER PARSING FOR JAVA

The goal of our work is increased power and flexibility in the lexical specification of formal languages. We are not

claiming that our approach is more efficient than classical ‘lex then parse’ techniques. However, the increased powermust

not compromise the practicality of the technique for real languages. This is clearly a potential cause for concern because

the ‘size’ of the problem would be very large if the ‘solution’ was to simply generate all the possible lexicalisations of

an input string and parse all of them individually. In this section we examine the lexicalisations of some example Java

programs, and report the size of data structures created when these programs are parsed using the MGLL approach and

the character level approach.

We report, in Table 1, the total number of lexicalisations of three example strings, showing that parsing all of them is

not possible using any of the current single input token-level parsing techniques, but the corresponding TWE set is

small and easily parsed using MGLL.

We report, in Table 2, the lower total number of lexicalisations and TWE set sizes that are generated if lexical

disambiguation is applied, showing that efficiency gains can be made because of the flexibility of MGLL over character

level parsing.

We also compare the MGLL approach with character level approach at the parsing level, reporting, in Table 3, the

size of the parser related data structures produced.

We have previously carried out an initial study using a provisional implementation of the approach [SJ19]. This is

both updated and extended in this paper, including a large example and the JAVA JLS18 standard specification. We use

the following Java programs.

Sample programs

Life.java – a 217 line, 5859 character implementation of Conway’s Game of Life.

Linden.java – a 40 line, 961 character program that implements a Lindenmayer string rewriter.

Sand.java – a 276 line, 5685 character parser generator used for exploring backtracking recursive descent parsing.

ListViewTest.java – a 1601 line, 64537 character program from a JavaFX open source library.

Whitespace treatment

To illustrate the flexibility of whitespace handling, in our initial experiments [SJ19] whitespace was handled explicitly,

as described in Section 6.1, but disambiguated so that only a single token was constructed for each contiguous sequence

of whitespace characters.

In this paper we have additionally generated the token numbers for the case where whitespace is discarded, as

described in Section 6.3, as this is the more typical use case, and for the full whitespace character lists (i.e. explicit

whitespace handling without the disambiguation) because this models the character level parsing approach.

Java specification versions

The lexicalisations depend on the language specification, and for the data in Sections 8.1 and 8.2 we have primarily

used the original Java specification [GJS96]. The specification is written in BNF without closure operators, so we could

use it almost directly with a BNF MGLL parser, and also the division between lexical and parse levels in this version

makes the total number of lexicalisations for an input program calculatable (see Section 8.1).

We have also implemented the 2022, JLS18, Java specification [GJS
+
22], in which we have replaced the EBNF

constructs with BNF ones. In the original Java JLS1 specification there is only one Identifier terminal, but in JLS18

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Multiple input parsing and lexical analysis 29

there are three. This creates a large increase in the number of lexicalisations, and these cannot be resolved by lexical

disambiguation. However, the corresponding TWE sets are still small and can be parsed by an MGLL parser for JLS18.

This shows the importance of the TWE/MGLL approach as no parser that requires a single token string input can use

the JLS18 specification directly.

8.1 Lexicalisation data

In this section we show data for the total number of lexicalisations and the total number of tokens that would have

to be processed if the lexicalisations were parsed independently. The sizes make it clear that such an approach is not

possible. We have also shown the corresponding TWE set sizes, which are small and manageable for even a prototype

MGLL implementation.

The data in Tables 1 and 2 are for the Java JLS1 specification [GJS96]. We have computed the numbers of lexicalisations

by building the graphical representation of the TWE set and then computing from that the number of paths from the

start node to the end node. We cannot count these paths individually, but the nature of lexicalisations is that they

re-converge at intervals along the graph. We can count the number of paths in each of these so-called ‘segments’ and

then the total number of paths is the product of the sizes of the segments.

The total numbers of lexicalisations and indexed lexicalisations are shown in the third and fifth columns of Table 1.

The fourth column gives the total number of tokens in all the strings in the third column. These numbers illustrate that

simply parsing all lexicalisations is not a practical option. The TWE size, sixth column, is very much smaller than the

corresponding total number of tokens, and is clearly tractable.

The Java JLS18 specification [GJS
+
22] has three versions of identifier, two of which are subsets of the full identifier

class. This creates a lexical ambiguity for every identifier in our input examples and makes the number of lexicalisations

so large that even our segments based approach cannot compute the total number. However, as shown in the rightmost

column (JLS18 TWE set size), the corresponding TWE sets are still small, and they can be parsed by an MGLL parser

for JLS18.

ListViewTest.java is not accepted by the original Java grammar, so we cannot generate lexicalistion counts. But the

impracticality is sufficiently demonstrated by the smaller strings. We note, however, that the size for the whitespace

discarded TWE set for ListViewTest.java is 980,999, which is easily handled by the MGLL parser, as shown in Table 3.

8.2 Lexical ambiguity

Perhaps surprisingly, as shown in the sentences column of Table 1, a large number of the alternative lexicalisations are

syntactically correct. Effectively, in the traditional approach, the lexical analyser is carrying out quite a lot of syntactic

disambiguation. For a character level parser, the equivalent disambiguation has to be carried out by the parser and

this is not straightforward. Whitespace is a particular problem because, unlike identifiers, any sequence of whitespace

tokens is legal where one is legal, so each different lexicalisation of each whitespace string creates a further sentence.

The MGLL parser built the full whitespace undisambiguated SPPF but the recursive sentence counting procedure we

used was not able to complete the required multiple traversals.

The MGLL approach allows a split between disambiguation at the lexical (TWE set generation) level and at the

parse level. This flexibility allows the compiler designer to use more efficient lexical level disambiguation where they

can but to have the power to perform lexical disambiguation at the syntax level where it is appropriate. For example,

whitespace and identifiers can be disambiguated at TWE set level using a longest match strategy but disambiguation of

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

input input token tokens to indexed TWE sentences JLS18 TWE

length strings be handled token strings set size set size

Whitespace Compressed

Life 5859 2 × 10
387

7.5 × 10
390

1 × 10
759

15197 2.0 × 10
39

41946

Linden 961 3 × 10
72

1.9 × 10
75

1 × 10
121

1961 512 5305

Sand 5685 2 × 10
371

6.5 × 10
374

3 × 10
728

14834 4.5 × 10
27

41085

Whitespace Discarded

Life 5859 2 × 10
387

5.9 × 10
390

1 × 10
759

14538 2.0 × 10
39

41287

Linden 961 3 × 10
72

1.6 × 10
75

1 × 10
121

1866 512 5210

Sand 5685 2 × 10
371

5.3 × 10
374

3 × 10
728

14264 4.5 × 10
27

40515

Whitespace Not Pre-disambiguated

Life 5859 9 × 10
527

3.7 × 10
531

9 × 10
1069

20652 − 47401

Linden 961 2 × 10
96

1.8 × 10
99

5 × 10
174

2867 − 6211

Sand 5685 2 × 10
530

7.7 × 10
533

8 × 10
1065

19991 − 46242

Table 1. Java lexicalisations

input token tokens to indexed TWE sentences JLS18 TWE

strings be handled token strings set size set size

Life (LM) 7 × 10
65

1.0 × 10
69

7 × 10
65

1711 1.5 × 10
20

2910

Life (P) 1 × 10
370

4.8 × 10
373

1 × 10
745

14325 2985984 40648

Life (LP) 1 × 10
18

1.7 × 10
21

1 × 10
18

1551 1 2430

Linden (LM) 3 × 10
13

8.8 × 10
15

3 × 10
13

308 32 548

Linden (P) 2 × 10
70

9.0 × 10
72

3145728 1822 4 5078

Linden (LP) 4 × 10
6

1.1 × 10
9

4 × 10
6

285 1 479

Sand (LM) 8 × 10
73

1.1 × 10
77

8 × 10
73

1593 1.1 × 10
18

2685

Sand (P) 1 × 10
357

2.5 × 10
360

7 × 10
718

14061 3145728 39906

Sand (LP) 3 × 10
28

5.1 × 10
31

3 × 10
28

1442 1 2232

Table 2. Java lexicalisations with partial disambiguation (whitespace discarded)

keywords and identifiers could be passed to the parser, allowing keywords to be used as identifiers where there is no

syntactic conflict.

Table 2 shows the data for the cases where longest match within tokens is applied to the TWE set (LM) and both

longest match and keyword priority are applied (LP), as described in Section 7. In the Java specification the Identifier

token explicitly excludes the keywords, and we have shown the impact of this by applying only keyword priority to

the TWE set (P). We have only shown the data for the whitespace discarded case. Longest match fully disambiguates

whitespace, and the whitespace compressed data is only significantly different from the discarded case in the size of the

TWE sets.

The reader may be surprised that so many syntactically correct sentences remain after longest match is applied. This

is because identifiers can appear in the same context as certain Java keywords such as this. Keyword priority also

does not resolve all ambiguity. For example there are places in a Java program where both one and two identifiers can

appear. Using both longest match and keyword priority results in a single sentence in each input string.

We also remark that in data reported here the effect of replacing a whitespace sequence with a single lexeme of

length one was achieved in the lexer using longest match disambiguation rather than using an initial processor. The

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Multiple input parsing and lexical analysis 31

code examples used had no comments so longest match disambiguation was sufficient. We used the same specification

grammar for all the whitespace variations; our implementation includes an automatic whitespace nonterminal insertion

capability.

8.3 MGLL versus character level Java parsing

As we have already discussed, it is possible to dispense completely with separate lexical analysis and to write a grammar

whose terminals are effectively the ASCII characters. If the grammar contains nonterminals corresponding to the tokens

of a traditional grammar specification then the character level SPPF effectively embeds all the lexicalisations of the

input and all their derivations.

Many of the lexicalisations do not correspond to syntactically correct strings and these will be rejected by the parser.

However there will also be many syntactically correct lexicalisations. For example, syntactically, an identifier can appear

anywhere that the keyword this can appear in a Java program. Under the character level grammar approach, these

ambiguities have to be removed using syntax level disambiguation.

Syntactic ambiguities can all be identified as nodes in the SPPF that have more than one packed node child. However,

the position of the multiple packed nodes does not always indicate the cause of the problem, particularly when the

conflict is between identifiers and keywords.

For example, in the Java character level grammar the interchangeability of the keyword void and an identifier may

ultimately appear as an ambiguity under the nonterminal ClassBodyDeclaration which has grammar rule

ClassBodyDeclaration::= ConstructorDeclaration | ClassMemberDeclaration

Thus identifying the place to apply, in a character level SPPF, what would be lexical level disambiguation in a standard

lexer/parse set-up can be difficult.

Of course we can carry out the disambiguation for specific inputs, and we have done so in order to compare the sizes

of the parser data structures required for a character level Java parser with a corresponding TWE based parser.

In order to allow us to report data for a large program taken from an external source, we have used the Java

JLS18 specification for the data reported, in Table 3, for the Life.java and ListViewTest.java strings. In each case,

the first line displays the number of SPPF nodes generated by a character level Java grammar (SPPF full/nodes), the

number of remaining nodes after complete disambiguation (SPPF disambig/nodes) and the size of the descriptor set

U (descriptor/set size). The full SPPF node number is, together with the descriptor set size, a measure of the space

required by the parser. The disambiguated nodes number is a measure of the size of the data structure that will be

output to a downstream process. A GLL style parser has an outer loop that processes each descriptor and so the size of

the descriptor set is a measure of the relative run-time cost of the process.

With the TWE approach we have many choices over where disambiguation is carried out and how whitespace

is handled. For our data reporting we have used two white space options: whitespace compression in a way that

corresponds to the character level model and discarding whitespace in the way normally deployed by compilers with

separated lexers. The latter option is what we would normally expect to use, however this is not an option for a character

level parser so we have included the former option to demonstrate that even with this approach the TWE/MGLL data

structures are smaller than the character level ones.

As we have said, the only option for a character level parser is syntax level disambiguation. For the TWE/MGLL parser

we have correspondingly collected data for the case where no TWE disambiguation is applied. We have also applied

‘full’ TWE disambiguation using longest match and priority. In the latter case the disambiguated SPPF constructed

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

SPPF full SPPF disambig descriptor

nodes nodes set size

Life.java (217 lines, 5859 characters)

Character level GLL 164462 39984 356820

MGLL, compressed WS

undisambiguated TWE set 91348 23238 382265

disambiguated TWE set 38077 23238 221540

MGLL, discarded WS

undisambiguated TWE set 69996 17217 328224

disambiguated TWE set 28689 17217 204363

ListViewTest.java (1601 lines, 64537 characters)

Character level GLL 2735250 495896 4932221

MGLL, compressed WS

undisambiguated TWE set 1405062 248779 4757653

disambiguated TWE set 406689 248439 2178706

MGLL, discarded WS

undisambiguated TWE set 1077525 183133 3900840

disambiguated TWE set 301920 182823 2003859

Table 3. SPPF and descriptor set sizes for Life.java and ListViewTest.java

has the same size as the disambiguated SPPF for the case where the TWE set is not disambiguated, but the size of the

descriptor set is much smaller, i.e. the parser is doing less work to produce the same output. The size of the full SPPF

for the TWE disambiguated cases is slightly larger than the disambiguated one. This is not due to disambiguation. It

arises because the disambiguated count includes only those nodes that are reachable from the root while the full SPPF

count includes those nodes constructed by parse threads that ultimately did not succeed. Compared to the character

level approach, the TWE based approaches all generate significantly lower SPPF sizes and descriptor numbers (the

former drives the data storage requirements and the latter drives the number of executions of the parser outer loop).

9 PERFORMANCE EVALUATION ISSUES

In this section we present an initial evaluation of the utility of the multi-lexer parsing approach. A complete evaluation

of our approach requires two multi-dimensional spaces to be explored: (i) the application space and (ii) the engineering

optimisation space. In Section 9.2 we present some early stages of (i). We briefly discuss (ii) in Section 10.2.

We cannot compare the multi-lexer approach with traditional Lex/Yacc technology, or with more general but still

limited techniques such as PEGs [For04] or the extended lookahead LL(*) [PF11] approach. These do not even provide

multiple derivations of one input sentence: at each step phrase level ambiguity is ‘resolved’ by selecting one derivation

to proceed with, for example by removing conflicts in the case of an LR parser or by selecting the first successful match

in the case of PEGs. Ultimately only one derivation is constructed, and therefore only one lexicalisation would be

parsed even if several could be input. Parsing multiple sentences will always create multiple derivations even when the

sentences themselves are unambiguous.

However, we can experimentally compare the GLL recogniser TWE set construction techniques with one based on

the traditional Lex-style DFA approach. We can also use the latter, with longest match and priority disambiguation, and

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Multiple input parsing and lexical analysis 33

with a GLL parser applied to the single resulting lexicalisation, for comparison with the full MGLL approach. We return

to this in Section 9.3.

9.1 Pragmatics

For compilation, the application space comprises different programming languages and their partitioning into lexical

and parse level components. As we have already described in some detail, the precise choice of interface between lexical

and parsing stages can have a significant impact on the size of TWE sets and SPPFs constructed in the overall parsing

chain. In the ‘interface’ we include the nomination of tokens, choosers applied to the TWE set, choosers applied to the

SPPF and, ultimately, the design of the language itself and its grammar.

At present we have an implementation which allows exploration of the application space. Some parts are tightly

engineered, many (especially the TWE set and chooser processes) are not, relying as they do on generic Java API

functionality. As a trivial example: in several places we want to perform a pairwise comparison over a set of tuples.

A tight implementation would represent these sets as arrays of tuples, allowing all pairs to be checked in time 𝑛2/2
(where 𝑛 is the cardinality of the set). In our present implementation we are constrained by the API iterators to perform

two nested complete iterations, which executes in time 𝑛2 and also suffers the overhead of the iterator.

Although the current implementation is designed for experimental flexibility in the application space, we can of

course take performance measurements from it, and we report some here.

9.2 Experimental scheme and prototype measurements

A GLL parser working on a character level grammar offers full generality. As we have discussed in Section 8.3, an MGLL

parser working on a TWE set built by some multi-lexing technology offers three advantages over character-level GLL:

(i) smaller data structures, (ii) higher throughput and (iii) the opportunity to specify lexical disambiguations in a way

that is quite natural, but which would be hard to express as operations within a character level SPPF. In this section we

describe an experimental model which can be used for measuring throughput for the multi-lexer parsing approach.

We have five computational processes that we consider: (i) lexicalisation using a GLL recogniser which builds a TWE

set, (ii) MGLL parsing using a full TWE set, (iii) lexical choice to selectively remove elements of a TWE set, (iv) MGLL

parsing using that reduced TWE set and (vi) lexicalisation using a Deterministic Finite Automaton which builds a TWE

set. This last is only applicable to languages that have a regular lexical specification: it would, for instance, be unable to

handle languages which have nested comments.

9.2.1 Experimental software. The software used is part of our ART tool [JS11b] which encourages Ambiguity Resilient

Translation – our term for systems that allow ambiguities to be ‘carried forward’ in the translation process to the point

where they are most naturally resolved. Full source code along with the corpora of grammars and source examples that

we have used may be found at https://github.com/AJohnstone2007/MultipleInputParsingSnapshot

For this paper, we use Java JLS1 and JLS18 grammars which have been automatically extracted from the specification

documents using a handcrafted converter from typeset text to ART specification: the converter is itself part of ART and

a detailed description of our extraction process is part of the online corpus.

9.2.2 Test corpus. We use two styles of inputs when testing parsers: a small set of standard programs that we have

used in many previous publications and which provide comparability of results concerning the size of SPPFs and other

data structures; and bulk testing using complete sources for major open source software packages which we use to

Manuscript submitted to ACM

https://github.com/AJohnstone2007/MultipleInputParsingSnapshot

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

increase confidence in our grammar extraction processes. For this paper we have thus used our standard set of small

programs for continuity, and also tested all lexer/parser combinations on the source code for Open-JFX.

Java FX is one of the most complex Java APIs supporting, as it does, 2D and 3D graphics and a large collection of

GUI widgets, observable data structures and even a complete web browser. Although now open source, the original

code base was developed as part of Oracle’s main Java offering, and makes extensive use of more modern parts of Java

such as lambda expressions.

Our JFX corpus comprises 4,588 files totalling 43,568,050 bytes of source. We maintain two versions: the full version,

and a version in which each file has been whitespace-normalised by replacing each run of whitespace with either a

single space, or a single newline character depending on whether the run extends beyond a single line. The purpose of

the whitespace-normalised files is to side-step the issues concerning disambiguation of whitespace runs, as discussed

in Section 6.5, so that the timings for our MGLL experiments illustrate only the impact of language level lexical

disambiguation. The total size of the whitespace-normalised corpus is 23,634,044 bytes.

Each of our lexer/parser combinations successfully parses all files in both versions of the JFX corpus except for one

file (JavaScriptBridgeTest.java) which contains an illegal character constant that is two characters long. We note

that this file is also rejected by the Oracle javac compiler.

We have selected seven test inputs with lengths ascending from less than 1kByte to over 200kBytes for this study:

test scripts and the rest of the corpus are available online. Test data reported here refers to the whitespace-normalised

versions of the files.

9.2.3 Experimental hardware, system software and timing regime. Measurements were made using a DELL XPS 15 9510

laptop with 16GByte of installed memory and an Intel Core i7-11800H eight-core processor running at 2.3GHz. The

experiments were run from the command line under Microsoft Windows 10 Enterprise version 10.0.19042 using Oracle’s

Java HotSpot(TM) 64-Bit Server VM (build 14.0.2+12-46, mixed mode, sharing).

The nanosecond timing routines in the Java System API do not accurately reflect computational load in multicore

systems and can even return negative values. As a result we used the System.currentTimeMillis() to measure runtimes.

Timings under Windows based JVMs can display a broad distribution with variations of ±10% being typical. This

variation does reflect day-to-day behaviour of these kinds of systems. Therefore, for each experiment we made 30 runs

and report here the max, median and min run times in milliseconds.

9.2.4 Results. Table 4 shows the runtimes in milliseconds for each of our inputs and each of the five computational

processes. In each cell we show the maximum, median and minimum times from 30 iterations of the process. Each

iteration comprised a cold start for the JVM, so for short strings we expect Java warmup effects to be in play, and that is

particularly evident for the DFA lexer column. Conversely, general parsing algorithms like MGLL have a cubic worst

case runtime on highly ambiguous grammars. However, programming language grammars, even modern ones like

JLS18 which display nontrivial lexical ambiguity, are unlikely to trigger the worst case.

An MGLL parser comprises a three stage pipeline: multilex to TWE set; apply choosers to TWE set; multiparse from

TWE set to ESPPF. An important performance requirement is that the overall process scales up to large strings. To

demonstrate this, the rightmost column in Table 4 shows the median throughput, calculated as the sum of the median

DFA lex, choice and MGLL parse times divided by the length of the string. Since timings are in milliseconds, this gives

throughput in kByte per second.

Throughput is around 20kByte s
−1

for all inputs except CssParser which is significantly better. We speculate that

this is because the CssParser source code is dominated by simple test expressions which induce less lexical ambiguity

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Multiple input parsing and lexical analysis 35

Test input length GLL lex MGLL full Choose MGLL dis DFA lex Throughput

LindenMayer 961

26

25

23

47

43

39

9

9

8

24

23

21

39

10

8

22.9

Sandbox 5685

193

188

165

252

244

217

44

37

33

170

161

153

134

69

65

21.3

LifeStrFix 5859

218

211

203

292

273

219

38

36

33

204

188

151

226

66

65

20.2

MultipleGradientPaintContext 10314

302

294

273

366

360

326

88

85

82

296

263

245

377

186

182

19.3

ListViewTest 64540

2172

2142

2121

2099

1894

1797

626

616

560

1001

917

843

1453

1168

1142

23.9

CssParser 122534

3441

3162

3130

3855

3743

3375

551

525

510

1475

1438

1419

2184

1840

1811

32.2

TreeTableViewTest 216893

15749

15521

15428

8870

8702

8545

2262

2090

1991

2556

2397

2354

5305

5054

4918

22.7

Table 4. Runtime in milliseconds and throughput in kByte per second for DFA based lexing and MGLL parsing

than the other inputs. This hypothesis is supported by the relatively short lexical choice runtime which indicates that

the full TWE set for CssParser has low ambiguity.

There are some other effects displayed in the table that merit further analysis. The GLL based recogniser does not

have to create SPPF nodes and only uses the subgrammars whose start symbols are the non-terminals that correspond

to tokens, so it will be significantly faster than a GLL character level parser which has to carry out the equivalent lexical

analysis. When we compare the GLL based lexer with the DFA based lexer we can see that its performance is good for

inputs up to at least 10kbytes. However for longer strings, the performance of GLL Lex reduces. We hypothesise that is

because of congestion in the hash tables that store our GSS structures leading to saturation; further engineering work

is required to investigate this. Conversely, the speedup of MGLL running on the disambiguated TWE set relative to

MGLL on the full set increases for very long strings. It is possible that the reduced size of the TWE set is keeping the

disambiguated MGLL parse small enough to avoid the postulated saturation effect.

9.3 The multi-lexer parsing landscape

The multi-lexer parsing approach allows the specifier to make choices at three points: the method used to construct the

TWE set, the amount of disambiguation applied to the TWE set before parsing, and the choice of parsing technique.

Using a DFA-based TWE set constructor (lexer) is closest to the traditional techniques, but requires the specification of

token patterns via regular languages. If lexical disambiguation leaves a single lexicalisation then this can be input to

any parser which is applicable to the syntax level grammar. In particular any fully general parsing technique such as

GLL, GLR or Earley parser can be used.

Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

However, as we discussed in Section 1.2.2, full lexical disambiguation may leave only a lexicalisation which is not

syntactically valid. The MGLL based multi-lexer parser allows some lexical pre-disambiguation while permitting more

than one lexicalisation to remain prior to parsing. This allows the parser to resolve some lexical ambiguity using the

syntactic context. Furthermore, applying some degree of TWE set disambiguation can reduce the work required of the

parser, and can also reduce post parse disambiguation requirements.

In this section we compare (A) a DFA TWE set builder producing a single lexicalisation which is input to a GLL

parser, to (B) a GLL TWE set builder with only partical lexical disambiguation and an MGLL parser, on the Java JLS18

specification and the ListViewTest.java program.

lexer disambiguation

DFA based

parser

GLLLongest Across- -- -TWE set TWE set
SPPF(A) ListViewTest

lexer disambiguation

GLL based

parser

MGLLLongest Within- -- -TWE set TWE set
ESPPF(B) ListViewTest

We have used a GLL parser because the JLS18 grammar as specified in the standard is ambiguous, so we need a

generalised parser, and MGLL degrades to GLL when there is only one lexicalisation embedded in the TWE set. We

have used Longest Across lexicial disambiguation, which applies longest match both within and across tokens in the

classical LEX style, for the GLL parser input to reduce the TWE set to contain a single lexicalisation
2
. We have used

Longest Within for the MGLL parser input so that longest match is applied only to lexemes of the same token, leaving

lexical ambiguities between tokens where they cannot be resolved correctly by priority specification.

The Java JLS18 specification has three identifier terminals and it is not possible to apply systematic lexical level

disambiguation to get a single lexicalisation, but this is required if we want to use an existing non-MGLL parsing

technology. So we have modified the JLS18 specification so that TypeIdentifier and UnqualifiedMethodIdentifier

are nonterminals that derive the terminal Identifier. We refer to this as the identifier merged specification.

MGLL can parse the original specification and ‘select’ the correct identifier from the TWE set using the syntax

context. So we have taken the runtime data quoted in the previous section and added data structure information to also

provide the GLL lexer/MGLL parser configuration with the unmodified JLS18 specification for comparison. The three

lines in Table 5 thus represent:

(i) modified input string (» replaced with > >) and modified JLS18 specification (identifier terminals merged)

(ii) unmodified input string and modified JLS18 specification

(ii) unmodified input string and unmodified JLS18 specification.

The three Identifier tokens have almost identical patterns, so of course the number of lexicalisations and the size of

the full TWE set for (iii) are higher, corresponding to the higher level of lexical ambiguity. The ambiguity is retained

after the TWE set disambiguation and resolved by the parser. So the disambiguated TWE set is larger and the parse

time is slightly longer. However, unlike (i) and (ii), the full JLS18 specification is being used, and no modification to the

input string is needed. We also note that, of course, we can use the DFA based TWE set builder with the MGLL parser

and any of the disambiguation choices, and the DFA and MGLL numbers reported in Table 5 will remain the same.

2
Longest match disambiguation is not correct for some instances of » in a java program. We have added spaces between the seven instances of » in

ListViewTest.java to get a correct single lexicalisation. This is not required for, or applied to, the case where we use Longest Within and MGLL.

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Multiple input parsing and lexical analysis 37

full indexed lexer disambig disambig indexed disambig SPPF descriptor parse

TWE set lexicalisations runtime TWE set lexicalisations runtime nodes set size runtime

(i) 337231 6 × 10
12115

693ms 14952 1 160ms 293148 1233158 673ms

DFA Lexer, Longest Across disambiguation, GLL parser, identifier merged JLS18 specification

(ii) 337231 6 × 10
12115

1044ms 56415 1 × 10
187

145ms 321078 1419114 770ms

GLL ENBF Lexer, Longest Within disambiguation, MGLL parser, identifier merged JLS18 spefication

(iii) 980999 1 × 10
26323

2142ms 143795 2 × 10
2317

616ms 301920 2003859 917ms

GLL ENBF Lexer, Longest Within disambiguation, MGLL parser, JLS18 standard specification
Table 5. Data for ListViewTest.java

10 DISCUSSION AND FURTHERWORK

In this section we note some generalisations that, for simplicity, were not detailed in the presentation above and we

also highlight some potential extensions and applications.

10.1 General MGLL application

Multi-parsing without multi-lexing As we have said, parsing multiple lexicalisations of an underlying character

string is our primary application for multi-parsing. However, MGLL can parse any set of sentences that are exactly the

syntactically correct strings in some representation as a consistent ITS set. Although we do not currently have any

substantial examples (the technique is still quite new) we give a simple illustrative example.

Consider the set of strings of the form 𝑐𝑎𝑘𝑏ℎ𝑑 , where 𝑘, ℎ are integers greater than 0. This set is the language, 𝐿(Γ),
defined by the grammar, Γ, whose rules are

𝑆 ::= 𝑐 𝐴 𝐵 𝑑 𝐴 ::= 𝑎 𝐴 | 𝑎 𝐵 ::= 𝑏 𝐵 | 𝑏

Suppose that we wish to parse all the strings in 𝐿(Γ) in which the embedded string of a’s and b’s has length at most 4.

𝐿4 = {𝑐𝑎𝑎𝑎𝑏𝑑, 𝑐𝑎𝑏𝑏𝑏𝑑, 𝑐𝑎𝑏𝑑, 𝑐𝑎𝑎𝑏𝑏𝑑, 𝑐𝑎𝑎𝑏𝑑, 𝑐𝑎𝑏𝑏𝑑}

We can choose indexed token strings corresponding to the required strings as follows

𝑋 = { (𝑐, 1) (𝑎, 2) (𝑎, 3) (𝑎, 4) (𝑏, 5) (𝑑, 6), (𝑐, 1) (𝑎, 2) (𝑏, 3) (𝑏, 4) (𝑏, 5) (𝑑, 6), (𝑐, 1) (𝑎, 4) (𝑏, 5) (𝑑, 6),
(𝑐, 1) (𝑎, 2) (𝑎, 3) (𝑏, 4) (𝑏, 5) (𝑑, 6), (𝑐, 1) (𝑎, 3) (𝑎, 4) (𝑏, 5) (𝑑, 6), (𝑐, 1) (𝑎, 3) (𝑏, 4) (𝑏, 5) (𝑑, 6) }

The associated TWE set Σ𝑋 is

{(𝑐, 0, 1), (𝑎, 1, 2), (𝑎, 2, 3), (𝑎, 3, 4), (𝑏, 4, 5), (𝑑, 5, 6), (𝑏, 2, 3), (𝑏, 3, 4), (𝑎, 1, 4), (𝑎, 1, 3)}

In fact 𝑋 is not consistent, Σ𝑋 also embeds the indexed token string (𝑐, 1) (𝑎, 2) (𝑏, 3) (𝑎, 4) (𝑏, 5) (𝑑, 6) which is not in 𝑋 .

However 𝑐𝑎𝑏𝑎𝑏𝑑 is not in the language of Γ and so will be rejected by the MGLL parser.

More generally, if 𝐿𝑛 is the set of 𝑛(𝑛 − 1)/2 sentences of the form 𝑐𝑎𝑘𝑏ℎ𝑑 , where 𝑘 + ℎ ≤ 𝑛, then there is a

corresponding indexed token set 𝑋 whose TWE set is

Σ𝑋 = {(𝑐, 0, 1), (𝑎, 𝑖, 𝑖 + 1), (𝑏, 𝑖 + 1, 𝑖 + 2), (𝑎, 1, 𝑖 + 1), (𝑑, 𝑛 + 1, 𝑛 + 2) | 1 ≤ 𝑖 ≤ 𝑛 − 1}

The elements of 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋) that are also sentences in Γ are precisely the elements of 𝐿𝑛 , that is

𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋) ∩ 𝐿(Γ) = 𝐿𝑛 .

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

The size of Σ𝑋 is 3𝑛 − 2, and so the input to an MGLL parser is linear in 𝑛, but the size |𝐿𝑛 | of the set of sentences it
parses is quadratic in 𝑛.

Embedded languages – island parsing For multi-lexer parsing, the advantage that we have highlighted in this

paper is the ability to handle lexical disambiguation flexibly. The same approach may also have advantages for compiling

systems that have embedded languages, for example SQL embedded in Java. In such cases the lexical tokens depend on

the context, i.e. on whether the statement being processed belongs to the outer or the embedded language. For example,

something which is a keyword in SQL may be an identifier in Java. A common approach is to have separate lexers for

outer and embedded language and to have the parser call which ever is appropriate for the context. With the MGLL

approach all of the tokens can be constructed using a single lexer, and the parser will only use those that are correct for

the context.

We have previously carried out a case study in the so-called ‘island parsing’ domain where we used a GLL parser to

parse strings with embedded actions targeted at the Tom language analysis tool [JSvdB
+
13]. It would be interesting to

do the same thing with the MGLL approach to see what can be improved by employing a multi-lexer parser.

User specified extents In our discussions in this paper we have focused on TWE elements whose extents are

constructed from an underlying character string. However, the MGLL technique does not require this. The extents

can be user specified and need only to form a monotonically increasing sequence. When parsing multiple strings,

synchronising on any desired subsequence can then be achieved by ensuring that the extents on their symbols match in

all strings.

We note that the left-most left extent does not have to be 0, it can be any integer which is less than all the other

extents. Using a base left extent which is not 0 could allow sets of triples to be combined. However, for simplicity,

throughout this paper we have taken the left-most left extent to be 0.

It is an important feature of our technique that it can parse sets comprised of token strings of different lengths, but

the MGLL parser needs a fixed length to be able to determine whether the whole string has been parsed. Thus we

require that in any given set, the indexed token strings all have the same final right extent.

We also note that the choice of extents for the indexed token strings has no effect on whether the string is parsed

successfully. The MGLL parser will parse all the strings embedded in the TWE set and accept precisely those whose

underlying string is in the language of the grammar. However, the extents do impact on the efficiency of the parser. At

one extreme the extents can be chosen so that they are all different, except for the rightmost extents. This will ensure

that the ITS set is consistent, but the parser will effectively parse each string separately and the size of the input TWE

set would be as big as it could be, with one triple for every terminal instance in every input string. At the other extreme

we could try to use extents to make the TWE set as small as possible. This will improve efficiency in one direction but

it will also increase the number of strings embedded in the input set and thus the number of redundant derivations

represented in the output.

The construction of TWE sets which are not based on underlying character strings, and the selection of extents to

tune parser efficiency, is likely to require experience which will only be built up over time. The indexing in the previous

𝑐𝑎𝑘𝑏ℎ𝑑 example was chosen using human judgment, not a principled process. However, the MGLL technique does not

require application specific modification. It works in the same way on any TWE set, raising the potential for efficient,

tunable multi-parsing to improve efficiency in any application which requires the structural analysis of a large number

of strings. The remaining application specific challenge is to find a suitable indexing choice, not the subsequent MGLL

multi-parsing.

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Multiple input parsing and lexical analysis 39

10.2 Engineering optimisation

Generalised parsing algorithms provide many opportunities for tight optimisation when computing their internal data

structures. In our previous work on GLR style algorithms [SJ06, SJE07] we developed very efficient implementations

in ANSI-C that mapped grammar positions onto small integers and performed their own memory management: we

achieved speedups of around an order of magnitude during this optimisation work. Our work on the GLL algorithm has

been less tightly engineered, but we have provided elsewhere [SJ16] results of a comparison between a conventional

Object Oriented implementation of a simplified GLL algorithm and a version that used a similar style of low level

memory management. Both were written in Java: on a highly ambiguous grammar we reported speedup factors of

between 10 and 20 for examples large enough to trigger Java’s warmup behaviour. We also reported there that a

naive transcription of the low level Java code to C resulted in a speedup of over 50 compared to the pure OO Java

implementation. Now, care is required when interpreting those reports: the grammar was pathologically ambiguous,

and the performance gap between Java and compiled low-level C has narrowed in the intervening years. Nevertheless,

our experience is that careful low level implementations of parsing algorithms even in Java can yield significant speed

ups over code that leverages the standard Java APIs.

The MGLL approach also offers interesting opportunities to exploit multi-core processors. For instance, the construc-

tion of TWE sets proceeds left to right, and the ‘consumption’ of the TWE set by an MGLL parser also proceeds left to

right. Hence there is a natural producer-consumer relationship between the two parts which could be run on separate

processors. This will be explored in future work.

10.3 Multi-lexer parsing with other techniques

We have developed multi-parsing with GLL because the close relationship between the GLL technique and grammar

traversal makes it relatively easy to handle the situation in which there may be many ‘next input’ tokens at a given step

in the algorithm.

The difference between a recogniser and a parser is that the former simply checks that the input is syntactically

correct. A parser returns a representation of the derivation of the input and a fully general parser returns a representation

of all derivations of the input. In its original form, Earley’s algorithm [Ear70] is a recogniser that is correct for all

context free grammars. However, Earley’s proposed extension to a general parser contained an error. GLR [Tom86] is a

generalisation of LR parsing that was designed to produce derivations, with the aim of correcting the error in Earley’s

derivation construction proposal. Tomita’s algorithm also contained an error in the case of grammars with ‘hidden left

recursion’. We can create versions of both these recognisers that take as input TWE sets, but this is more complicated

than the GLL adaptation, particularly because both Earley and Tomita’s algorithms treat the matching of input symbols

in a separate ‘scanner’ or ‘shifter’ phase at the end of each algorithm step. For multiple input strings the worklists

associated with this phase needs to be modified.

However, any recogniser, or any parser, that makes full disambiguation choices during the parse, will only determine

that at least one of the tokenisations embedded in the TWE set is syntactically correct. It is the construction of the

ESPPF and the existence of the sentence finding algorithm that allow us to parse, and recover, multiple input sentences

embedded in a TWE set. Extending other generalised parsing techniques to admit multi-parsing will thus include

modifying them to output an ESPPF, or a similar form of representation, from an input TWE set.

We have given a corrected version of the general parser version proposed by Earley for his algorithm, that generates

an SPPF [SJ10b]. We also have produced a corrected version, RNGLR, of GLR based on so called ‘right nulled’ LR parse

Manuscript submitted to ACM

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

tables [SJ06]. It is likely that both these algorithms could be modified to produce an ESPPF from a TWE set. But we have

focused on MGLL for this paper as implementation as grammar traversal makes the extension of GLL relatively simple.

10.4 Disambiguation in a character level grammar

For a character level grammar there is no notion of lexical ambiguity. The ‘tokens’ are characters whose patterns

are pairwise disjoint singleton sets. All ambiguity is syntactic, i.e. a property of the grammar. The lexical notions of

longest match and priority for a standard separated lexical/phrase level specification need to be converted to syntactic

disambiguation rules for the corresponding character level grammar.

In fact, the natural syntactic versions of longest match and priority (choosing the longest possible sequence of input

tokens and choosing one grammar rule over another) are not sufficient, in general, to implement the lexical versions

(which are in terms of the character string and token priority). The point at which syntactic ambiguity becomes apparent

(the position of multiple packed nodes) is not always the point at which the longest matching character substring can

be determined. Thus not only is the multi-lexer parser approach potentially more efficient than character level parsing,

it can allow more natural and effective lexical disambiguation.

We do not formally consider syntactic disambiguation in this paper, but the relationship between the lexical

disambiguation rules we have introduced and the syntactic disambiguation strategies used in a character level parser

merits further investigation.

10.5 Conclusions

In this paper we have introduced MGLL, a general parsing technique that can efficiently parse a set of input strings

together, sharing the processing of common parts. We have also introduced its application to multi-lexer parsing, giving

a language specifier the power of a character level grammar specification whilst retaining the advantages of a token

level grammar. These advantages include: (i) the lexical disambiguation strategy can be specified independently of

the syntax level, but disambiguation decisions can also be passed on to the parser or even to a post parse processor

if desired, (ii) patterns of tokens can be defined and recognised without full parsing, and this is more efficient than

character level parsing, particularly when the patterns are regular languages, and (iii) lookahead and error reporting in

the parser can be at token rather than character level.

We thus achieve a spectrum of possibilities for the lexical/phrase level divide, with character level parsing at

one extreme, and the classical LEX/YACC-style division at the other. The language designer is free to choose the

lexical/phrase level divide, while our concrete separation avoids the (mis-)use of lexical disambiguation techniques at

phrase level.

11 ACKNOWLEDGEMENTS

This work was partially supported by EPSRC funded project EP/I032509/1 PLanCompS: Programming Language

Components and Specifications.

We thank the anonymous referees for their detailed work and for the many helpful suggestions they made.

REFERENCES
[AH01] John Aycock and R. Nigel Horspool. Schrodinger’s token. Software: practice and experience, 31:803 – 814, 2001.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and tools, 2nd edition. Addison-Wesley,

2006.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and tools. Addison-Wesley, 1986.

Manuscript submitted to ACM

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

Multiple input parsing and lexical analysis 41

[BL89] Sylvie Billot and Bernard Lang. The structure of shared forests in ambiguous parsing. In Proceedings of the 27th conference on Association
for Computational Linguistics, pages 143–151. Association for Computational Linguistics, 1989.

[CT96] J.-P. Chanod and P. Tapananeinen. A non-deterministic tokeniser for finite-state parsing. In W. Wahlster, editor, ECAI 96. 12th European
Conference on Artificial Intelligence, pages 10–12. JohnWiley & Sons, Ltd., 1996.

[CT99] J.-P. Chanod and P. Tapananeinen. Finite state based reductionist parsing for french. In A. Kornai, editor, Extended Finite State Models of
Languages, pages 72–85. Cambridge University Press, 1999.

[Ear70] J Earley. An efficient context-free parsing algorithm. Communications of the ACM, 13(2):94–102, February 1970.

[For04] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation. In Neil D. Jones and Xavier Leroy, editors, Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, pages
111–122. ACM, 2004.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley, 1996.

[GJS
+
22] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Bucklkey, Daniel Smith, and Gavin Bierman. The Java Language Specification Java

SE 18 Edition.
https://docs.oracle.com/javase/specs/jls/se18/jls18.pdf, 2022.

[JS11a] Adrian Johnstone and Elizabeth Scott. Modelling GLL parser implementations. In M.van den Brand B.Malloy, S.Staab, editor, SLE 2010,
volume 6563 of Lecture Notes in Computer Science, pages 42–61. Springer-Verlag, 2011.

[JS11b] Adrian Johnstone and Elizabeth Scott. Translator generation using ART. In M.van den Brand B.Malloy, S.Staab, editor, SLE 2010, volume

6563 of Lecture Notes in Computer Science, pages 306–315. Springer-Verlag, 2011.
[JSvdB

+
13] Adrian Johnstone, Elizabeth Scott, Mark van den Brand, Ali Afroozeh, Maarten Manders, and Jean-Christophe Moreau, Pierre-

Etienneand Bach. Island grammar-based parsing using gll and tom. In Software Language Engineering Lecture Notes in Computer
Science 5th International Conference, SLE 2012, Revised Selected Papers, volume 7745, 2013.

[JSvdB14] Adrian Johnstone, Elizabeth Scott, and Mark van den Brand. Modular grammar specification. Science of Computer Programming, 87:23 – 43,

2014.

[KvdSV09] P. Klint, T. van der Storm, and J. Vinju. Rascal: A domain specific language for source code analysis and manipulation. In Source Code
Analysis and Manipulation, pages 108–177. IEEE, 2009.

[ME90] M.E.Lesk and E.Schmidt. Lex—-a lexical analyzer generator. In UNIX Vol. II, pages 375–387, Philadelphia, 1990. W.B.Saunders.

[PF11] Terence Parr and Kathleen Fisher. Ll(*): the foundation of the antlr parser generator. In PLDI, pages 425–436, 2011.
[SJ06] Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers. ACM Transactions on Programming Languages and Systems, 28(4):577–618,

July 2006.

[SJ10a] Elizabeth Scott and Adrian Johnstone. GLL parsing. In 9th Workshop on Language Descriptions Tools and Applications (LDTA 2009), volume

253 of Electronic Notes in Theoretical Computer Science, pages 177–189. Elsevier, 2010.
[SJ10b] Elizabeth Scott and Adrian Johnstone. Recognition is not parsing – SPPF-style parsing from cubic recognisers. 75:55–70, 2010.

[SJ13] Elizabeth Scott and Adrian Johnstone. GLL parse-tree generation. Science of Computer Programming, 78:1828–1844, 2013.
[SJ16] E. Scott and A. Johnstone. Structuring the GLL parsing algorithm for performance. Science of Computer Programming, 125:1–22, 2016.
[SJ18] Elizabeth Scott and Adrian Johnstone. GLL syntax analysers for EBNF grammars. Science of Computer Programming, 166:120–145, 2018.
[SJ19] Elizabeth Scott and Adrian Johnstone. Multiple lexicalisation - A Java based case study. In Proceedings of the 12th ACM SIGPLAN

International Conference on Software Language Engineering, SLE’19. ACM, 2019.

[SJE07] Elizabeth Scott, Adrian Johnstone, and Giorgios Economopoulos. A cubic Tomita style GLR parsing algorithm. Acta Informatica,
44(6):427–461, 2007.

[Tom86] Masaru Tomita. Efficient parsing for natural language. Kluwer Academic Publishers, Boston, 1986.

[Tom91] Masaru Tomita. Generalized LR parsing. Kluwer Academic Publishers, The Netherlands, 1991.

[vdBHKO02] M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling language definitions: the ASF+SDF compiler. ACM Transactions on
Programming Languages and Systems, 24(4):334–368, 2002.

[Vis97a] Eelco Visser. Scannerless generalised-LR parsing. Technical Report P9707, University of Amsterdam, 1997.

[Vis97b] Eelco Visser. Syntax definition for language prototyping. PhD thesis, University of Amsterdam, 1997.

[Vis04] Eelco Visser. Program transformation with Stratego/XT: rules, strategies, tools, and systems in StrategoXT-0.9. In C.Lengauer et. al, editor,

Domain-Specific Program Generation, volume 3016 of Lecture Notes in Computer Science, pages 216–238. Springer-Verlag, Berlin, June 2004.
[Wal15] R. M. Walsh. Adapting Compiler Front Ends for Generalised Parsing, PhD Thesis. Royal Holloway, University of London, 2015.

Manuscript submitted to ACM

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

42 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

A APPENDIX - PROOFS

Proof of Lemma 1

If Σ is tight then (𝑡, 𝑖, 𝑗) belongs to some string 𝑢 embedded in Σ. If 𝑖 ≠ 0 then this string is of the form 𝑢′ (𝑡 ′, 𝑖) (𝑡, 𝑗)𝑣
and thus, for some 𝑘 , (𝑡 ′, 𝑘, 𝑖) ∈ Σ. Similarly, if 𝑗 ≠ ℎ then the string is of the form 𝑢′ (𝑡, 𝑗) (𝑡 ′, 𝑘)𝑣 and thus, for some 𝑘 ,

(𝑡 ′, 𝑗, 𝑘) ∈ Σ.

Now suppose that (a) and (b) hold and suppose that (𝑡, 𝑖, 𝑗) ∈ Σ. Repeatedly using (a), we can choose elements

(𝑡0, 𝑖1, 𝑖), (𝑡1, 𝑖2, 𝑖1), . . . , (𝑡𝑝 , 0, 𝑖𝑝) in Σ. Repeatedly using (b), we can choose elements (𝑠1, 𝑗, 𝑗1), (𝑠2, 𝑗1, 𝑗2), . . . , (𝑠𝑓 , 𝑖 𝑓 , ℎ)
in Σ. Then the string (𝑡𝑝 , 𝑖𝑝) . . . (𝑡1, 𝑖1) (𝑡0, 𝑖) (𝑡, 𝑗) (𝑠1, 𝑗1) . . . (𝑠𝑓 , ℎ) is embedded in Σ. So Σ is tight.

Proof of Lemma 2

(i) If Σ ⊆ Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) and 𝑔 ∈ Σ then 𝑔 ∈ Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) and so 𝑔 belongs to some string embedded in Σ. Thus Σ is tight.

(ii) By definition, if Σ is tight then every triple𝑔 ∈ Σ belongs to the TWE set of some string in 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) so𝑔 ∈ Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) .

By the definition of 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) we have Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) ⊆ Σ, so Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) = Σ.

(iii) By definition, if (𝑡, 𝑖, 𝑗) ∈ Σ𝑋 then (𝑡, 𝑖, 𝑗) belongs to some 𝑢 ∈ 𝑋 , and, also by definition, 𝑢 is embedded in Σ𝑋 .

Then (𝑡, 𝑖, 𝑗) ∈ Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) and the result follows from (i).

(iv) This is an immediate consequence of the definitions: by definition of Σ𝑥 and 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋) we have 𝑋 ⊆ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋),
and the definition of the consistency of 𝑋 is equivalent to 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋) ⊆ 𝑋 .

(v) Let 𝑋 = 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ). We show that 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋) = 𝑋 then the result follows from (iii). As we remarked in the proof

of (iii), we have 𝑋 ⊆ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋), for any 𝑋 . So we need to show that 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋) ⊆ 𝑋 .

Let ℎ be the height of Σ𝑋 . We prove, by induction, that if (𝑡1, 0, 𝑖1), (𝑡2, 𝑖1, 𝑖2), . . . , (𝑡𝑘 , 𝑖𝑘−1, 𝑖𝑘) are elements of Σ𝑋 then

there are elements (𝑡𝑘+1, 𝑖𝑘 , 𝑖𝑘+1), . . . , (𝑡𝑙 , 𝑖𝑙−1, ℎ) in Σ𝑋 such that (𝑡1, 𝑖1) . . . (𝑡𝑘 , 𝑖𝑘) (𝑡𝑘+1, 𝑖𝑘+1) . . . (𝑡𝑙 , ℎ) is in 𝑋 . Then, if

𝑢 ∈ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ𝑋) we have, by definition, that 𝑢 is of the form (𝑡1, 𝑖1), (𝑡2, 𝑖2), . . . , (𝑡𝑙 , ℎ), where the triples (𝑡𝑝 , 𝑖𝑝−1, 𝑖𝑝)
all belong to Σ𝑋 , so we will have 𝑢 ∈ 𝑋 by induction.

For (𝑡1, 0, 𝑖1) ∈ Σ𝑋 , by construction there must be a string 𝑢 ∈ 𝑋 of the form (𝑡1, 𝑖1) (𝑡2, 𝑖2) . . . (𝑡𝑙 , ℎ) and the triples

(𝑡2, 𝑖1, 𝑖2), . . . , (𝑡𝑙 , 𝑖𝑙−1, ℎ) also belong to Σ𝑋 , as required.

Now suppose that (𝑡1, 0, 𝑖1), (𝑡2, 𝑖1, 𝑖2), . . . , (𝑡𝑘 , 𝑖𝑘−1, 𝑖𝑘), (𝑠, 𝑖𝑘 , 𝑗), are elements of Σ𝑋 and, by induction, that there

are elements (𝑡𝑘+1, 𝑖𝑘 , 𝑖𝑘+1), . . . , (𝑡𝑙 , 𝑖𝑙−1, ℎ) in Σ𝑋 such that (𝑡1, 𝑖1) (𝑡2, 𝑖2) . . . (𝑡𝑘 , 𝑖𝑘) (𝑡𝑘+1, 𝑖𝑘+1) . . . (𝑡𝑙 , ℎ) is in 𝑋 . By

construction, since (𝑠, 𝑖𝑘 , 𝑗) ∈ Σ𝑋 , there is a string of the form 𝑢 (𝑠′, 𝑖𝑘) (𝑠, 𝑗)𝑣 in 𝑋 . Since 𝑋 is consistent we have that

(𝑡1, 𝑖1) (𝑡2, 𝑖2) . . . (𝑡𝑘 , 𝑖𝑘) (𝑠, 𝑗)𝑣 is in 𝑋 . The TWE set corresponding to this string is a subset of Σ𝑋 and is a set of triples

of the required form.

Proof of Theorem 1

Suppose that 𝛾 = (𝑎1, 𝑛1) . . . (𝑎𝑚, 𝑛𝑚) ∈ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ, Γ), so (𝑎 𝑗 , 𝑛 𝑗−1, 𝑛 𝑗) ∈ Σ for 1 ≤ 𝑗 ≤ 𝑚 and there is an SPPF for

𝑎1 . . . 𝑎𝑚 in Γ. We construct the ESPPF 𝜒𝛾 for 𝛾 as above by replacing each extent and pivot value, 𝑘 , in the labels of the

SPPF nodes with 𝑛𝑘 . Let 𝑢 𝑗 = (𝑎 𝑗 , 𝑛 𝑗−1, 𝑛 𝑗) for 1 ≤ 𝑗 ≤ 𝑚 and 𝑛0 = 0. By definition, all of the nodes in 𝜒𝛾 are nodes in

𝜒 and the root node (𝑆, 0, 𝑛𝑚) of 𝜒𝛾 is also the root noded of 𝜒 . We show by structural induction that if 𝑢 = (𝑥, 𝑖, 𝑗) ∈ 𝜒𝛾

then 𝑢𝑖+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑢 , where, if 𝑖 = 𝑗 , 𝑢𝑖+1 . . . 𝑢 𝑗 = 𝜖 . If 𝑢 is a leaf node then this is true by definition. So suppose that 𝑢

has a packed node child𝑤 . If𝑤 has two children 𝑦 = (𝑡, 𝑖, 𝑘) and 𝑧 = (𝑠, 𝑘, 𝑗) then by induction 𝑢𝑖+1 . . . 𝑢𝑘 ∈ 𝑃𝑆𝑦 and

𝑢𝑘+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑧 so 𝑢𝑖+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑤 ⊆ 𝑃𝑆𝑢 by definition. If 𝑤 has only one child 𝑦 = (𝑡, 𝑖, 𝑗) then again the result

Manuscript submitted to ACM

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

Multiple input parsing and lexical analysis 43

𝑢𝑖+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑦 = 𝑃𝑆𝑤 ⊆ 𝑃𝑆𝑢 follows immediately by induction and definition. Thus, since 𝜒𝛾 is an ESPPF for 𝛾 , we

have 𝑢1 . . . 𝑢𝑛𝑚 ∈ 𝑃𝑆𝑤𝑆
and thus 𝛾 ∈ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒).

Now suppose that 𝛾 = (𝑎1, 𝑛1) . . . (𝑎𝑚, 𝑛𝑚) ∈ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 (𝜒). By construction 𝑢𝑖 = (𝑎𝑖 , 𝑛𝑖−1, 𝑛𝑖) are leaf nodes in
𝜒 and so, by definition, (𝑎𝑖 , 𝑛𝑖−1, 𝑛𝑖) ∈ Σ and 𝛾 ∈ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ). Also by definition, 𝑢1 . . . 𝑢𝑛𝑚 ∈ 𝑃𝑆𝑤𝑆

. We show by

structural induction that if 𝑢 = (𝑥, 𝑖, 𝑗) ∈ 𝜒 and 𝑢𝑖+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑢 then 𝑥 derives 𝑎𝑖+1 . . . 𝑎 𝑗 in Γ. From this it follows that

𝛾 ∈ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ, Γ) as required. To construct the proof we show at the same time that if 𝑢 = (𝑋 ::= 𝛼𝑥 · 𝛽, 𝑖, 𝑗) ∈ 𝜒 and

𝑢𝑖+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑢 then 𝛼𝑥 derives 𝑎𝑖+1 . . . 𝑎 𝑗 in Γ.

If 𝑢 is a leaf node then 𝑥 = 𝑎 𝑗 or, if 𝑖 = 𝑗 , 𝑥 = 𝜖 so the result is trivially true. So suppose that 𝑢 has a packed node

child 𝑤 such that 𝑢𝑖+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑤 ⊆ 𝑃𝑆𝑢 . If 𝑤 has only one child 𝑦 = (𝑡, 𝑖, 𝑗) then 𝑢 = (𝑋, 𝑖, 𝑗), 𝑤 = (𝑋 ::= 𝑡 ·, 𝑖),
𝑢𝑖+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑦 = 𝑃𝑆𝑤 and by induction 𝑡 , and hence 𝑋 , derives 𝑎𝑖+1 . . . 𝑎 𝑗 in Γ. If𝑤 has two children 𝑦 = (𝑡, 𝑖, 𝑘) and
𝑧 = (𝑥, 𝑘, 𝑗) then𝑤 = (𝑋 ::= 𝛼𝑥 · 𝛽, 𝑘) where 𝑡 is either 𝛼 or𝑋 ::= 𝛼 ·𝑥𝛽 . We have 𝑃𝑆𝑤 = 𝑃𝑆𝑦 ·𝑃𝑆𝑧 and 𝑢𝑖+1 . . . 𝑢𝑘 ∈ 𝑃𝑆𝑦 ,

𝑢𝑖𝑘+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑧 . By induction, 𝛼 derives 𝑢𝑖+1 . . . 𝑢𝑘 and 𝑥 derives 𝑢𝑖𝑘+1 . . . 𝑢 𝑗 ∈ 𝑃𝑆𝑧 , so 𝛼𝑥 derives 𝑢𝑖+1 . . . 𝑢 𝑗 . Finally,

either 𝛽 = 𝜖 and 𝑢 = (𝑋, 𝑖, 𝑗), so 𝑋 derives 𝑢𝑖+1 . . . 𝑢 𝑗 , or 𝑢 = (𝑋 ::= 𝛼𝑥 · 𝛽, 𝑖, 𝑗). This proves the result.

B APPENDIX - ADDITIONAL ALGORITHMS

B.1 TWE Set Pruning - 𝑝𝑟𝑢𝑛𝑒 (Σ)

To allow us to ensure that a set is tight, we define a procedure which removes redundant triples, constructing the

maximum size tight TWE set, 𝑝𝑟𝑢𝑛𝑒 (Σ), contained in Σ. The definition interacts naturally with consistency in the sense

that 𝑝𝑟𝑢𝑛𝑒 (Σ) constructed has the same set of embedded strings as Σ.

We define 𝑝𝑟𝑢𝑛𝑒 (Σ), where Σ is a TWE set of height ℎ, as follows:

• construct Σ′ by taking all the elements in Σ of the form (𝑡, 0, 𝑖) for any 𝑡, 𝑖
• form the closure, Σ′′, of Σ′ under the property that (i) Σ′ ⊆ Σ′′ and (ii) if (𝑡 ′, 𝑗, 𝑖) ∈ Σ′′ then (𝑠, 𝑖, 𝑓) ∈ Σ′′ for

all (𝑠, 𝑖, 𝑓) ∈ Σ

• define 𝑝𝑟𝑢𝑛𝑒 (Σ) to be the smallest set which contains all the elements of the form (𝑡, 𝑗, ℎ) in Σ′′, and which has

the property that if (𝑡 ′, 𝑗, 𝑖) ∈ 𝑝𝑟𝑢𝑛𝑒 (Σ) then (𝑠, 𝑓 , 𝑗) ∈ 𝑝𝑟𝑢𝑛𝑒 (Σ) for all (𝑠, 𝑓 , 𝑗) ∈ Σ′′.

The following lemma shows that 𝑝𝑟𝑢𝑛𝑒 (Σ) has the required properties.

Lemma 3. For any TWE set Σ we have 𝑝𝑟𝑢𝑛𝑒 (Σ) = Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) . In particular, 𝑝𝑟𝑢𝑛𝑒 (Σ) is tight and the indexed token
strings embedded in Σ are precisely those embedded in Σ, i.e. 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) = 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (𝑝𝑟𝑢𝑛𝑒 (Σ)).

Let ℎ be the height of Σ. From the construction of Σ′′, if there is an element of the form (𝑡, 𝑖, ℎ) ∈ Σ′′ then there is a

string in 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ). Thus, if 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) = ∅ we have 𝑝𝑟𝑢𝑛𝑒 (Σ) = ∅ and the result holds.

So we suppose that 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) ≠ ∅ and then, from the construction of Σ′′, Σ′′ is non-empty and has height ℎ,

and so 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ′′) ⊆ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ). Also by construction we have 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) ⊆ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ′′). Similarly, 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ′′) =
𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (𝑝𝑟𝑢𝑛𝑒 (Σ)).

Consider an element (𝑡, 𝑖, 𝑗) ∈ 𝑝𝑟𝑢𝑛𝑒 (Σ). Since (𝑡, 𝑖, 𝑗) ∈ Σ′′ there is a sequence (𝑡0, 0, 𝑖1), . . . , (𝑡𝑙 , 𝑖𝑙 , 𝑖), (𝑡, 𝑖, 𝑗) of
elements in Σ′′. Since (𝑡, 𝑖, 𝑗) ∈ 𝑝𝑟𝑢𝑛𝑒 (Σ) we have (𝑡𝑙 , 𝑖𝑙 , 𝑖) ∈ 𝑝𝑟𝑢𝑛𝑒 (Σ) and thus part (a) of Lemma 2 holds for 𝑝𝑟𝑢𝑛𝑒 (Σ).

Manuscript submitted to ACM

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

44 Elizabeth Scott, Adrian Johnstone, and Robert Walsh

Since (𝑡, 𝑖, 𝑗) ∈ 𝑝𝑟𝑢𝑛𝑒 (Σ), if 𝑗 < ℎ then, by construction of 𝑝𝑟𝑢𝑛𝑒 (Σ) there must be an element (𝑡 ′, 𝑗, 𝑓) ∈ 𝑝𝑟𝑢𝑛𝑒 (Σ), as
required for part (b) of Lemma 2. Thus, by Lemma 2, 𝑝𝑟𝑢𝑛𝑒 (Σ) is tight.

Finally then, since 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) = 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ′′) = 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (𝑝𝑟𝑢𝑛𝑒 (Σ)), we get

Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (Σ) = Σ𝑠𝑡𝑟𝑖𝑛𝑔𝑠 (𝑝𝑟𝑢𝑛𝑒 (Σ)) = 𝑝𝑟𝑢𝑛𝑒 (Σ)

B.2 Automata based TWE set generation

𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝑖𝑠𝑒 (𝛾,𝑇) {
for 𝑡 ∈ 𝑇 build a DFA Δ𝑡 which accepts precisely the pattern of 𝑡

if 𝛾 = 𝜖 set ℎ := 0 otherwise let 𝛾 = 𝑥1 . . . 𝑥ℎ

initialise Σ′ := {($, ℎ, ℎ + 1)}
if 𝛾 = 𝜖 initialise 𝐽 := ∅ otherwise initialise 𝐽 := {1}
while 𝐽 ≠ ∅ {

remove the smallest integer 𝑖 from 𝐽

for each 𝑡 ∈ 𝑇 {
traverse Δ𝑡 with input 𝑥𝑖 . . . 𝑥ℎ

each time an accepting state is reached {
if the remaining input is 𝑥 𝑗+1 . . . 𝑥ℎ where 𝑗 ≤ ℎ

add (𝑡, 𝑖, 𝑗) to Σ′ and 𝑗 to 𝐽 } } }
return Σ𝛾 := 𝑝𝑟𝑢𝑛𝑒 (Σ′) }
The construction produces all the lexicalisations from the left. Since any complete lexicalisation can be produced by

starting at the left of the character string, this produces all lexicalisations, but not, in most cases, lexicalisations of all

the substrings of 𝛾 .

B.3 TWE set generation using a GLL EBNF recogniser

An EBNF grammar is a grammar in which the right hand sides of the grammar rules are regular expressions over the

set of terminals and nonterminals. We define an EBNF lexical grammar as a restricted form of EBNF grammar with a

start rule 𝑆 , and identified lexical nonterminals 𝑇1, . . . ,𝑇𝑓 which are distinct from each other and from 𝑆 . Each token

nonerminal 𝑇𝑞 has a specified associated token 𝑡𝑞 . The grammar rule for 𝑆 must be a single Kleene closure of the form

𝑆 ::= (𝑇1 | . . . | 𝑇𝑓)∗

and 𝑆 and𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑓 must not appear on the right hand side of any other rule in the grammar. The method allows for

any context free specification of the token patterns. However, in the most straightforward case, EBNF lexical grammar

just has a single rule for each 𝑇𝑞 whose right hand side is a regular expression over the characters A. This will result in

an efficient GLL parser as there will be very little GSS activity and can be directly compared to the automata based

approach described in Section B.2.

The EBNFGLL algorithm [SJ18] differs from theMGLL algorithm above in that it has templates for regular expressions,

and also in that it has more complicated 𝑔𝑒𝑡𝑁𝑜𝑑𝑒 () functions to build the SPPF. However, the modification we make to

generate the TWE elements is in the template for 𝑐𝑜𝑑𝑒 (𝑋), which is essentially the same for EBNF GLL as for MGLL

above (the difference is that the alternates 𝜏𝑖 can be regular expressions rather than just strings but this is not visible at

the level of the 𝑐𝑜𝑑𝑒 (𝑋) template).

Manuscript submitted to ACM

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

Multiple input parsing and lexical analysis 45

The required additional functionality is to create a TWE element (𝑡𝑞, 𝑖, 𝑗) when the parser ‘matches’ 𝑥𝑖−1 . . . 𝑥 𝑗 to

the token nonterminal 𝑇𝑞 , and then to effectively start a new parse from input position 𝑗 . As long as the grammar is a

lexical grammar this happens exactly when the parser carries out a pop action associated with token nonterminal. The

current GSS node, 𝑐𝑈 , will have a label of the form (𝑆 ::= (𝑇1 | . . . |𝑇𝑞 · | . . . |𝑇𝑓)∗, 𝑖) and the required TWE element will

be (𝑡𝑞, 𝑙𝑒𝑣𝑒𝑙 (𝑐𝑈), 𝑐𝐼), where 𝑙𝑒𝑣𝑒𝑙 (𝐿, 𝑖) denotes 𝑖 , the integer index of the GSS node (𝐿, 𝑖).
Denoting the TWE set being built by the parser by Σ, all we have to do is modify the 𝑐𝑜𝑑𝑒 (𝑋) template for token

nonterminals to add an element to Σ after a return from a pop action.

TWE building template for 𝑐𝑜𝑑𝑒 (𝑋)
If 𝑇𝑞 is a token nonerminal with the grammar rule 𝑇𝑞 ::= 𝜏1 | . . . | 𝜏𝑝 and associated token 𝑡𝑞 then

𝑐𝑜𝑑𝑒 (𝑇𝑞) =
𝐽𝑇𝑞 : if (𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑐𝐼 , 𝜏1,𝑇𝑞, Σ)) { 𝑎𝑑𝑑 (𝑇𝑞 ::= ·𝜏1, 𝑐𝑈 , 𝑐𝐼) }

. . .

if (𝑡𝑒𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑐𝐼 , 𝜏𝑝 ,𝑇𝑞, Σ)) { 𝑎𝑑𝑑 (𝑇𝑞 ::= ·𝜏𝑝 , 𝑐𝑈 , 𝑐𝐼) }
goto 𝐿0

𝑇𝑞 ::= ·𝜏1 : 𝑐𝑜𝑑𝑒 (𝑇𝑞 ::= ·𝜏1); 𝑝𝑜𝑝 (𝑐𝑈 , 𝑐𝐼); add (𝑡𝑞, 𝑙𝑒𝑣𝑒𝑙 (𝑐𝑈), 𝑐𝐼) to Σ; goto 𝐿0

. . .

𝑇𝑞 ::= ·𝜏𝑝 : 𝑐𝑜𝑑𝑒 (𝑇𝑞 ::= ·𝜏𝑝); 𝑝𝑜𝑝 (𝑐𝑈 , 𝑐𝐼); add (𝑡𝑞, 𝑙𝑒𝑣𝑒𝑙 (𝑐𝑈), 𝑐𝐼) to Σ; goto 𝐿0

Note that the ITS set of all lexicalisations of a character string will always be consistent, as required for MGLL input.

As for the automata method, this algorithm produces lexicalisations from the left. For most programming languages all

partial left hand lexicalisations can be extended to full lexicalisations so the TWE set will also be tight. In specifications

for which not all initial left segment lexicalisations can be extended to completion the 𝑝𝑟𝑢𝑛𝑒 () procedure described
above can be used to extract a tight subset.

Manuscript submitted to ACM

	1 Introduction
	1.1 Words and sentences
	1.2 Language structure and ambiguity
	1.3 Our approach
	1.4 Related work

	2 Tokens With Extents (TWE) sets
	2.1 Indexed token strings - ITS
	2.2 Sets of tokens with extents
	2.3 Properties Of X And strings()
	2.4 Representing TWE sets

	3 Representing multiple derivations
	3.1 ESPPF – extended SPPFs for multiple input strings

	4 Parsing multiple lexicalisations
	4.1 Parsing as grammar traversal
	4.2 Example - an MGLL parser for S ::= S S | a | a a b
	4.3 Terminal matching
	4.4 Lookahead testing functions
	4.5 GSS and ESPPF constructing functions
	4.6 MGLL parser templates

	5 TWE set construction from character strings
	6 Whitespace handling
	6.1 Explicit whitespace handling
	6.2 Character level grammars
	6.3 Whitespace suppression
	6.4 Embedded whitespace conventions
	6.5 Separate whitespace processing

	7 Lexical ambiguity reduction
	7.1 ITS versus TWE set ambiguity redution
	7.2 Identifying TWE set ambiguities
	7.3 Ambiguity reduction rules
	7.4 Longest match disambiguation
	7.5 Token priority based disambiguation
	7.6 Other disambiguation possibilities

	8 Multi-lexer parsing for Java
	8.1 Lexicalisation data
	8.2 Lexical ambiguity
	8.3 MGLL versus character level Java parsing

	9 Performance evaluation issues
	9.1 Pragmatics
	9.2 Experimental scheme and prototype measurements
	9.3 The multi-lexer parsing landscape

	10 Discussion and further work
	10.1 General MGLL application
	10.2 Engineering optimisation
	10.3 Multi-lexer parsing with other techniques
	10.4 Disambiguation in a character level grammar
	10.5 Conclusions

	11 Acknowledgements
	References
	A Appendix - Proofs
	B Appendix - Additional algorithms
	B.1 TWE Set Pruning - prune()
	B.2 Automata based TWE set generation
	B.3 TWE set generation using a GLL EBNF recogniser

