
Universally Composable Simultaneous Broadcast against a
Dishonest Majority and Applications

Myrto Arapinis

The University of Edinburgh

Edinburgh, United Kingdom

marapini@ed.ac.uk

Ábel Kocsis

The University of Edinburgh

Edinburgh, United Kingdom

abelkcss@gmail.com

Nikolaos Lamprou

The University of Edinburgh

Edinburgh, United Kingdom

nikolaoslabrou@yahoo.gr

Liam Medley

Royal Holloway University of London

Egham, United Kingdom

liam.medley.2018@live.rhul.ac.uk

Thomas Zacharias

The University of Edinburgh

Edinburgh, United Kingdom

tzachari@ed.ac.uk

ABSTRACT
Simultaneous broadcast (SBC) protocols, introduced in [Chor et

al., FOCS 1985], constitute a special class of broadcast channels

which, besides consistency, guarantee that all senders broadcast

their messages independently of the messages broadcast by other

parties. SBC has proved extremely useful in the design of various

distributed computing constructions (e.g., multiparty computation,

coin flipping, electronic voting, fair bidding). As with any commu-

nication channel, it is crucial that SBC security is composable, i.e.,

it is preserved under concurrent protocol executions. The work

of [Hevia, SCN 2006] proposes a formal treatment of SBC in the

state-of-the-art Universal Composability (UC) framework [Canetti,

FOCS 2001] and a construction secure assuming an honest majority.

In this work, we provide a comprehensive revision of SBC in

the UC setting and improve the results of [Hevia, SCN 2006]. In

particular, we present a new SBC functionality that captures both

simultaneity and liveness by considering a broadcast period such

that (i) within this period all messages are broadcast independently

and (ii) after the period ends, the session is terminated without re-

quiring full participation of all parties. Next, we employ time-lock

encryption (TLE) over a standard broadcast channel to devise an

SBC protocol that realizes our functionality against any adaptive

adversary corrupting up to all-but-one parties. In our study, we

capture synchronicity via a global clock [Katz et al., TCC 2013],

thus lifting the restrictions of the original synchronous commu-

nication setting used in [Hevia, SCN 2006]. As a building block

of independent interest, we prove the first TLE protocol that is

adaptively secure in the UC setting, strengthening the main result

of [Arapinis et al., ASIACRYPT 2021].

Finally, we formally exhibit the power of our SBC construction in

the design of UC-secure applications by presenting two interesting

use cases: (i) distributed generation of uniform random strings, and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC 2023, June 19–23, 2023, Orlando, FL

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/3583668.xxxxxxx

(ii) decentralized electronic voting systems, without the presence

of a special trusted party.

CCS CONCEPTS
• Security and privacy→Distributed systems security;Cryp-
tography; Formal security models.

KEYWORDS
Secure Broadcast, Universal Composability, Time-Lock Encryption

ACM Reference Format:
Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas

Zacharias. 2023. Universally Composable Simultaneous Broadcast against a

Dishonest Majority and Applications. In ACM Symposium on Principles of

Distributed Computing (PODC ’23), June 19–23, 2023, Orlando, FL, USA. ACM,

New York, NY, USA, ?? pages. https://doi.org/10.1145/3583668.xxxxxxx

1 INTRODUCTION
Communication over a broadcast channel guarantees consistency

of message delivery, in the sense that all honest parties output the

same message, even when the sender is malicious. Since its intro-

duction by Pease et al. [?], broadcast has been a pivotal concept

in fault tolerant distributed computing and cryptography. From a

property-based security perspective, broadcast communication dic-

tates that every honest party will output some value (termination)

that is the same across all honest parties (agreement) and matches

the sender’s value, when the sender is honest (validity). The first

efficient construction was proposed by Dolev and Strong [?]. In
particular, the Dolev-Strong broadcast protocol deploys public-key

infrastructure (PKI) to achieve property-based security against an

adversary corrupting up to t < n parties, where n is the number of

parties. In the context of simulation-based security though, Hirt and

Zikas [?] proved that broadcast under t > n
2
corruptions (dishonest

majority) is impossible, even assuming a PKI. In the model of [?],
the adversary may adaptively corrupt parties within the duration of

a round (non-atomic communication model). Subsequently, Garay et

al. [?] showed that in the weaker setting where a party cannot be

corrupted in the middle of a round (atomic communication model),

PKI is sufficient for realizing adaptively secure broadcast against

an adversary corrupting up to t < n parties.

An important class of protocols that has attracted considerable

attention is the one where broadcast is simultaneous, i.e., all senders

transmit their messages independently of the messages broadcast

https://orcid.org/0009-0007-1757-1423
https://orcid.org/0009-0009-6731-2555
https://orcid.org/0000-0003-3695-0385
https://orcid.org/0009-0009-4533-7890
https://orcid.org/0000-0002-5022-8543
https://doi.org/10.1145/3583668.xxxxxxx
https://doi.org/10.1145/3583668.xxxxxxx

PODC 2023, June 19–23, 2023, Orlando, FL Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

Figure 1: Overview of the paper’s contributions. We denote ΠX the X, and FX the ideal functionality capturing the security
requirements for X, and in UC fashion we write ΠX ≈ FX to denote that the protocol ΠX realizes the ideal functionality FX
(thus, ensuring the same security properties). Our results rely on the following hybrid functionalities: (i) the global clock
Gclock, (ii) the random oracles FRO and F ∗RO, (iii) the wrapperWq (·), (iv) the certification Fcert modelling a PKI, (v) the relaxed
broadcast FRBC that allows a single message to be broadcast in an unfair manner (and can be realized via Fcert and Gclock, cf.
Fact ??), (vi) the public key threshold key generation FPKG, and (vii) the signature key generation FSKG.

by other parties. The concept of simultaneous broadcast (SBC) was

put forth by Chor et al. [?] and has proved remarkably useful in the

design of various distributed computing constructions (e.g., multi-

party computation, coin flipping, electronic voting, fair bidding).

The works of Chor and Rabin [?] and Gennaro [?] improve the

round complexity of [?] from linear to logarithmic, and from loga-

rithmic to constant (in n), respectively. From a security modeling

aspect, Hevia and Micciancio [?] point out the hierarchy between

the SBC definitions in [? ? ?] as [?]⇒[?]⇒[?] (from strongest to

weakest). Specifically, the simulation-based definition of [?] implies

sequentially composable security. Under the definition of [?], Faust
et al. [?] present a construction with a performance gain in the

presence of repeated protocol runs. All the aforementioned SBC

solutions [? ? ? ?] achieve security that tolerates t < n
2
corruptions

(honest majority).

The concept of SBC that retains security under concurrent ex-

ecutions has been formally investigated by Hevia [?]. Namely, [?
] proposes a formal SBC treatment in the state-of-the-art Univer-

sal Composability (UC) framework of Canetti [?] along with a

construction that has constant round complexity and is secure as-

suming an honest majority. Composable security is crucial for any

broadcast channel functionality that serves as a building block for

distributed protocol design and is a primary goal of our work.

Our contributions. We explore the SBC problem in the context of

UC security against a dishonest majority. We improve the results

of [?] both from a definitional and a security aspect. In more detail,

we achieve the following improvements (cf. Figure ??(a)):

• We define a new SBC functionality that abstracts communication

given an agreed broadcast period, outside of which all broadcast

operations are discarded. Our functionality captures (i) simultane-

ity: corrupted senders broadcast without having any information

about honest senders’ messages; (ii) liveness: after the broadcast

period ends, termination is guaranteed (with some delay) without

the requirement of full participation by all parties. We stress that

the latter property is not captured by the functionality of [?], as
the adversary (simulator) may wait indefinitely until it allows

termination of the execution which happens only after all (honest

and corrupted) senders have transmitted their value.

• We provide a construction that realizes our SBC functionality in

an optimal way, that is, it preserves UC security against a Byzan-

tine adversary that can adaptively corrupt up to t < n parties in the

non-atomic communication model. To overcome the impossibility

result of [?], besides PKI, we deploy (i) adaptively secure time-

lock encryption (TLE) in the UC setting; (ii) a programmable

random oracle (RO). Specifically, via TLE (and the programmable

RO), senders perform (equivocable) encryptions of their message

that can be decrypted by any party when the decryption time

comes, with some delay upon the end of the broadcast period. It

is easy to see that the semantic security of the TLE ciphertexts

that lasts throughout the broadcast period guarantees simultane-

ity. The broadcast period is set dynamically, by having the first

sender of the session (as scheduled by the environment) “wake

up” the other parties via the broadcast of a special message.

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC 2023, June 19–23, 2023, Orlando, FL

Although using a programmable RO is standard to enable equiv-

ocation in simulation-based security (e.g., in [? ? ? ?]), TLE with

adaptive UC security is not available in the literature. To con-

struct it, we rely on the findings of the following papers:

(1) The work of Arapinis et al. [?] that provides a UC treatment

of TLE and a protocol that is secure against a static adversary.

(2) The work of Cohen et al. [?] that studies the concept of broad-
cast and fairness in the context of resource-restricted cryptog-

raphy [?]. They prove that time-lock puzzles (TLPs) (a notion

closely related to TLE) and a programmable RO are sufficient

for building stand-alone simulation-based secure broadcast

against an adaptive adversary that corrupts up to t < n parties

in the non-atomic model. They also show that neither TLPs nor

programmable ROs alone are enough to achieve such level of

security. In [?], standard broadcast encompasses fairness, i.e.,

an adversary that adaptively corrupts a sender after learning

her value cannot change this original value. The weaker notion

of unfair broadcast [?] can be realized by the Dolev-Strong

protocol [?] against t < n adaptive corruptions.

Compared to [?] and [?], we take the following steps: first, we
adapt the fair broadcast (FBC) and unfair broadcast (UBC) func-

tionalities in [?] to the UC setting, where multiple senders may

perform many broadcasts per round. Then, similar to [? ? ?],
we model resource-restriction in UC via wrapper that allows all

parties to perform up to a number of RO queries per round. Next,

we revisit the FBC protocol in [?] by using the TLE algorithms

of [?] instead of an arbitrary time-lock puzzle and show that

our instantiation UC-realizes our FBC functionality. Finally, we

prove that by deploying the TLE protocol of [?] over our FBC
functionality is sufficient to provide an adaptively secure realiza-

tion of the TLE functionality in [?]. We view the construction

of the first adaptively UC secure TLE protocol as a contribution

of independent interest. We refer the reader to Section ?? for
a detailed discussion of the key subtleties to the design of our

composably secure (un)fair broadcast protocols.

• The SBC construction in [?] is over the synchronous communi-

cation functionality in [?]. As [?] shows, this functionality does

not provide the guarantees expected of a synchronous network

(specifically, termination). These limitations are lifted when rely-

ing on a (global) clock functionality [?], as we do in our formal

treatment. The use of a global clock is the standard way to model

loose synchronicity in UC: every clock tick marks the advance

of the execution rounds while within a round, communication is

adversarially scheduled by the environment.

Armed with our construction, we present two interesting appli-

cations of SBC that enjoy adaptive UC security. Namely,

• Distributed uniform random string generation (Figure ??(b)).We

devise a protocol where a set of parties contribute their share of

randomness via our SBC channel. After some delay (upon the

end of the broadcast period), the honest parties agree on the XOR

of the shares they received as a common uniform random string.

We call this delayed uniform random string (DURS) generation.

• Self-tallying e-voting (Figure ??(c)). Self-tallying voting systems

(STVSs) constitute a special class of decentralized electronic vot-

ing systems put forth by Kiayias and Yung [?], where the voters
can perform the tally themselves without the need for a trusted

tallying authority. Most existing efficient STVSs [? ? ?] require a

trusted party to ensure election fairness (i.e., no partial results

are leaked before the end of the vote casting period). We remove

the need of a trusted party in self-tallying elections by modifying

the construction in [?] (shown secure in the UC framework). In

particular, we deploy our SBC channel for vote casting instead

of a bulletin board used in the original protocol.

The proofs of all the theorems and lemmas can be found in the

companion full version [?].

2 BACKGROUND
2.1 Network model
We consider synchronous point-to-point communication among n
parties in P, where protocol execution is carried out in rounds. The

adversary is Byzantine and may adaptively corrupt any number

of t < n parties. The corruption is w.r.t. the strong non-atomic

communication model (cf. [? ?]) where the adversary may corrupt

parties in the middle of a round.

2.2 The UC framework
Universal Composability (UC), introduced by Canetti in [?], is a
state-of-the-art framework for the formal study of protocols that

should remain secure under concurrent executions. In UC, security

is captured via the real world/ideal world paradigm as follows.

• In the ideal world, an environment Z schedules the execution

and provides inputs to the parties that are dummy, i.e., they

simply forward their inputs to an ideal functionality F , which

abstracts the studied security notion (e.g., secure broadcast). The

functionality is responsible for carrying out the execution given

the forwarded input and returns to the party some output along

with a destination identity ID, so that the dummy party forwards

the output to ID. By default, we assume that the destination is

Z, unless specified explicitly. The execution is carried out in

the presence of an ideal adversary S, the simulator, that inter-

acts with F and Z and controls corrupted parties. We denote

by EXECF,S,Z the output of Z after ending the ideal world

execution.

• In the real world, Z schedules the execution and provides in-

puts as previously, but now the parties actively engage in a joint

computation w.r.t. the guidelines of some protocolΠ (e.g., a broad-

cast protocol). The execution is now in the presence of a real

(Byzantine) adversary A that interacts withZ and may (adap-

tively) corrupt a number of parties. We denote by EXECΠ,A,Z
the output ofZ after ending the real world execution.

Definition 1. We say that a protocolΠ UC-realizes the ideal func-

tionality F if for every real world adversary A there is a simulator

S such that for every environmentZ, the distributions EXECF,S,Z

and EXECΠ,A,Z are computationally indistinguishable.

According to the UC Theorem, the UC security of Π implies that Π
can be replaced by F in any protocol that invokes Π as a subrou-

tine. Besides, a protocol may use as subroutine a functionality that

abstracts some setup notion (e.g., PKI, a random oracle, or a global

clock). These setup functionalities maybe global, in the sense that

share their state across executions of multiple protocols [?]. If a
protocol utilizes a set of functionalities {F1, . . . ,Fk }, then we say

that its UC security is argued in the (F1, . . . ,Fk)-hybrid model.

PODC 2023, June 19–23, 2023, Orlando, FL Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

2.3 Hybrid functionalities
Throughout the paper, λ denotes the security parameter and negl(·)
a negligible function.

The global clock functionality. The global clock (cf. [? ?]) can
be read at any moment by any party. For each session, the clock ad-

vances only when all the involved honest parties and functionalities

in the session make an Advance_Clock request.

The random oracle functionality. The RO functionality (cf. [?])
can be seen as a trusted source of random input. Given a query, it

returns a random value. It also updates a local variable LH in order

to return the same value to similar queries. This functionality can

be seen as the "idealization" of a hash function.

The certification functionality. The certification functionality

(cf. [?]) abstracts a certification scheme which provides signatures

bound to identities. It provides commands for signature genera-

tion and verification, and is tied to a single party (so each party

requires a separate instance). It can be realized via an EUF-CMA

secure signature scheme combined with a party acting as a trusted

certification authority.

The wrapper functionality. We recall the wrapper functionality

from [?] in the full version (in the adaptive corruption model), for

the special case where the wrapped evaluation functionality is the

random oracle FRO. The wrapperWq allows the parties to access

FRO only up to q times per round (clock tick).

The relaxed broadcast functionality FRBC(P).

The functionality initializes a pair of variables

(Output, Sender) as (⊥,⊥). It also maintains the set

of corrupted parties, Pcorr, initialized as empty.

■Upon receiving (sid,Broadcast,M) from P ∈ P \ Pcorr,
if (Output, Sender) = (⊥,⊥), it records the output-

sender pair (Output, Sender) ← (M, P) and sends

(sid,Broadcast,M, P) to S.
■ Upon receiving (sid,Broadcast,M, P) from S on

behalf of P ∈ Pcorr, if (Output, Sender) = (⊥,⊥), it sends
(sid,Broadcast,M, P) to all parties and S, and halts.

■Upon receiving (sid,Allow, M̃) fromS, if Sender ∈ Pcorr,
it sends (sid,Broadcast, M̃, Sender) to all parties and S,
and halts. Otherwise, it ignores the message.

■ Upon receiving (sidC ,Advance_Clock) from

P ∈ P \ Pcorr, if Sender = P , it sends

(sid,Broadcast,Output, Sender) to all parties and S,

and halts. Otherwise, it returns (sidC ,Advance_Clock)
to P with destination identity Gclock.

Figure 2: The functionality FRBC interactingwith the parties
in P and the simulator S.

The relaxed broadcast functionality. In Figure ??, we present
the relaxed broadcast functionality FRBC (for a single message)

in [?] that is the stepping stone for realizing unfair broadcast (cf.
Subsection ??) which, in turn, is in the core of the design of the

fair and simultaneous broadcast constructions. The functionality

captures agreement, but only a weak notion of validity, i.e., if a

sender is always honest and broadcasts a message M , then every

honest party will output the valueM . In addition, we modify the

original description of FRBC by forcing the delivery of the message

to all parties, when the sender (i) is initially corrupted, or (ii) remains

honest in the execution and completes her part by forwarding an

Advance_Clock message. This was implicit in [?]. As presented in
[? ?], FRBC can be realized based on the Dolev-Strong protocol [?
] and a UC-secure signature scheme. Formally,

Fact 1 ([? ?]). There exists a protocolΠRBC that UC-realizes FRBC
in the (Fcert,Gclock)-hybrid model against an adaptive adversary

corrupting t < n parties (in the non-atomic model).

2.4 Time-lock encryption
To realize our secure SBC we will mobilise a special type of encryp-

tion, called time-lock encryption (TLE). TLE allows one to encrypt

a message M for a set amount of time τ . Decryption requires a

witness w whose computation is inherently sequential. [?] pro-
vides a UC treatment of the TLE primitive, and a TLE scheme that

is UC secure against static adversaries. We will revisit TLE in the

presence of adaptive adversaries in Section ??.
The time-lock encryption (TLE) functionality. In Figure ??, we
present the TLE functionality from [?]. Here, leak(·) is a function
over time slots that captures the timing advantage of the adversary

in intercepting the TLE ciphertexts, and delay is an integer that

express the delay of ciphertext generation.

The Astrolabous TLE scheme. We utilize the algorithms of the

Astrolabous TLE scheme from [?]. Given Astrolabous, FTLE is

UC-realized in the static corruption model as stated below.

Fact 2 ([?]). Let FBC be the broadcast functionality defined in [?].
There exists a protocol that UC-realizes F

leak,delay
TLE in the (Wq (F

∗
RO),

FRO,FBC,Gclock)-hybrid model against a static adversary corrupting

t < n parties, with leakage function leak(Cl) = Cl+ 1 and delay = 1,

where FRO and F ∗RO are distinct random oracles.

3 UC (UN)FAIR BROADCAST AGAINST
DISHONEST MAJORITIES

The prior work of Cohen et al. [?] studies broadcast fairness in
a stand-alone fashion. Here, we revisit the concept of broadcast

fairness in the setting of UC security, where protocol sessions may

securely run concurrently or as subroutines of larger protocols;

and in each session, every party can send of multiple messages. We

provide a comprehensive formal treatment of the notions of unfair

broadcast (UBC) and fair broadcast (FBC) that will be the stepping

stones for the constructions of the following sections.

3.1 Unfair broadcast definition and realization
The UBC functionality. We consider a relaxation of FBC, cap-

tured by the notion of unfair broadcast introduced in [?]. We

present the UBC functionality in Figure ??. Informally, in UBC, the

adversary (simulator) is allowed to receive the sender’s message be-

fore broadcasting actually happens, and (unlike in FBC) adaptively

corrupt the sender to broadcast a message of its preference.

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC 2023, June 19–23, 2023, Orlando, FL

The time-lock encryption functionality F
leak,delay
TLE (P).

The functionality initializes the list of recorded mes-

sage/ciphertext Lrec as empty and defines the tag space

TAG. It also maintains the set of corrupted parties, Pcorr,
initialized as empty.

■Upon receiving (sid,Enc,M,τ) from P < Pcorr, it reads
the time Cl and does:

(1) If τ < 0, it returns (sid,Enc,M,τ ,⊥) to P .

(2) It picks tag
$

← TAG and it inserts the tuple

(M,Null,τ , tag,Cl, P) → Lrec.

(3) It sends (sid,Enc,τ , tag,Cl, 0 |M | , P) to S. Upon receiv-

ing the token back from S it returns (sid,Encrypting)
to P .

■Upon receiving (sid,Update, {(c j , tagj)}
p(λ)
j=1) from S, for

all c j , Null it updates each tuple (Mj ,Null,τj , tagj ,Clj , P)
in Lrec to (Mj , c j ,τj , tagj ,Clj , P).

■Upon receiving (sid,Retrieve) from P , it reads the time

Cl and does:

(1) For every tuple (M,Null,τ , tag,Cl′, P) ∈ Lrec such that

Cl − Cl′ ≥ delay, it picks c
$

← {0, 1}p
′(λ)

and updates

the tuple as (M, c,τ , tag,Cl′, P).
(2) It sets C := {(M, c,τ)}(M,c,τ , ·,Cl′,P)∈Lrec:Cl−Cl′≥delay.

(3) It returns (sid,Encrypted,C) to P .
■Upon receiving (sid,Dec, c,τ) from P < Pcorr, if c , Null:
(1) If τ < 0, it returns (sid,Dec, c,τ ,⊥) to P . Else, it reads

the time Cl from Gclock and:
(a) If Cl < τ , it sends (sid,Dec, c,τ ,More_Time) to P .
(b) If Cl ≥ τ , then

– If there are two tuples

(M1, c,τ1, ·, ·, ·), (M2, c,τ2, ·, ·, ·) in Lrec such that

M1 , M2 and c , Null where τ ≥ max{τ1,τ2}, it
returns to P (sid,Dec, c,τ ,⊥).

– If no tuple (·, c, ·, ·, ·, ·) is recorded in Lrec,
it sends (sid,Dec, c,τ) to S. Upon receiv-

ing (sid,Dec, c,τ ,M) back from S it stores

(M, c,τ ,Null, 0,Null) in Lrec and returns

(sid,Dec, c,τ ,M) to P .

– If there is a unique tuple (M, c,τdec, ·, ·, ·) in Lrec,
then if τ ≥ τdec, it returns (sid, Dec, c,τ ,M)
to P . Else, if Cl < τdec, it returns (sid,
Dec, c,τ ,More_Time) to P . Else, if Cl ≥ τdec > τ , it
returns (sid,Dec, c,τ , Invalid_Time) to P .

■ Upon receiving (sid, Leakage) from S, it

reads the time Cl from Gclock and returns

(sid, Leakage, ({(M, c,τ)}∀(M,c,τ , ·, ·, ·)∈Lrec:τ ≤leak(Cl) ∪

{(M, c,τ , tag,Cl, P) ∈ Lrec}∀P ∈Pcorr)) to S.

Figure 3: The functionality F leak,delay
TLE parameterized by the

security parameter λ, a leakage function leak, a delay vari-
able delay, interacting with the parties in P, the simulator S,
and global clock Gclock.

The unfair broadcast functionality FUBC(P).

The functionality initializes list Lpend of pending messages

as empty. It also maintains the set of corrupted parties,

Pcorr, initialized as empty.

■Upon receiving (sid,Broadcast,M) from P ∈ P \ Pcorr,
it picks a unique random tag from {0, 1}λ , adds the tuple
(tag,M, P) to Lpend and sends (sid,Broadcast, tag,M, P)
to S.

■Upon receiving (sid,Broadcast,M, P) from S on behalf

of P ∈ Pcorr, it sends (sid,Broadcast,M) to all parties and
S.

■Upon receiving (sid,Allow, tag, M̃) from S, if there is a
tuple (tag, ·, P) ∈ Lpend such that P ∈ Pcorr, it does:
(1) It sends (sid,Broadcast, M̃) to all parties and

(sid,Broadcast, M̃, P) to S.
(2) It deletes (tag, ·, P) from Lpend.
■Upon receiving (sidC ,Advance_Clock) from P ∈ P \
Pcorr it does:
(1) It reads the time Cl from Gclock. If this is the first time

that P has sent a (sidC ,Advance_Clock)message dur-

ing round Cl, then for every (tag,M, P) ∈ Lpend, it
does:

(a) It sends (sid,Broadcast,M) to all parties and

(sid,Broadcast,M, P) to S.
(b) It deletes (tag,M, P) from Lpend.

(2) It returns (sidC ,Advance_Clock) to P with destina-

tion identity Gclock.

Figure 4: The functionality FUBC interactingwith the parties
in P and the simulator S.

The UBC protocol. In Figure ??, we present a simple protocol

that utilizes multiple instances of FRBC (cf. Figure ??) to realize

concurrent unfair broadcast executions. The invocation to the FRBC
instances replaces the composition of multiple Dolev-Strong runs.

By the description of ΠUBC, the Universal Composition Theo-

rem [?], and Fact ??, we get the following lemma.

Lemma 1. There exists a protocol that UC-realizes FUBC in the

(Fcert,Gclock)-hybridmodel against an adaptive adversary corrupting

t < n parties.

The FBC functionality. Our FBC functionality F
∆,α
FBC has the FBC

functionality in [?] as a reference point, and extends [?] to the

setting where any party can send of multiple messages per round.

In FBC, the adversary (simulator) can receive the sender’s message

before its broadcasting actually happens. However, even if it adap-

tively corrupts the sender, the adversary cannot alter the original

message that has been “locked” as the intended broadcast value.

The functionality is parameterized by two integers: (i) a delay ∆,
and (ii) an advantage α of the simulator S to retrieve the broadcast

messages compared to the parties. Specifically, if a message is re-

quested to be broadcast at time Cl∗, then F ∆,α
FBC will send it to the

parties at time Cl∗ +∆, whereas S can obtain it at time Cl∗ +∆−α .

PODC 2023, June 19–23, 2023, Orlando, FL Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

The unfair broadcast protocol ΠUBC(FRBC, P).

Every party P maintains two counters totalP , countP , ini-
tialized to 0.

■Upon receiving (sid,Broadcast,M) from Z, the party

P does:

(1) She increases countP and totalP by 1.

(2) She sends (sid,Broadcast,M) to F P,totalP
RBC .

■Upon receiving (sid,Broadcast,M∗, P∗) from F P ∗, ·
RBC , the

party P forwards (sid,Broadcast,M∗) toZ.

■ Upon receiving (sidC ,Advance_Clock) from Z, the

party P reads the timeCl from Gclock. If this is the first time

that she has received a (sidC ,Advance_Clock) command

during round Cl, she does:
(1) For every j = 1, . . . , countP , she sends

(sidC ,Advance_Clock) to F
P,totalP−(countP−j)
RBC .

Namely, P instructs F
P,totalP−(countP−j)
RBC to broadcast

her j-th message for the current round Cl.
(2) She resets countP to 0.

(3) She forwards (sidC ,Advance_Clock) to Gclock.

Figure 5: The protocol ΠUBC with the parties in P.

3.2 Fair broadcast definition and realization
The functionality associates each Broadcast request with a unique

random tag, marks the request as “pending”, and informs S of the

senders’ activity by leaking the tag and the sender’s identity to

S. After ∆ − α rounds, S can perform an Output_Reqest and

obtain the message that corresponds to a specific tag. However,

at this point and unlike in UBC, the message becomes “locked”

and S cannot alter it with a message of its choice, even if the

sender gets adaptively corrupted. Besides, by performing a Corrup-

tion_Reqest, S can obtain the pending messages of all corrupted

parties, so that it can update the state of the corresponding simu-

lated party with the actual pending messages. The simulator may

change the original message of a broadcast request with a value of

its choice only if (i) the associated sender is corrupted and (ii) the

original message is not locked. The message delivery to the parties

happens when the parties forward an Advance_Clock message

for the round that is ∆ time after the broadcast request occurred.

The functionality is formally presented in Figure ??.
The FBC protocol. The (stand-alone) FBC protocol proposed in [?
] is not UC secure. In Figure ??, we present our protocol that realizes
concurrent fair broadcast executions. As in [?], we deploy (a) UBC,

(b) time-lock puzzles (instantiated by the TLE algorithms in [?])
to achieve broadcast fairness, and (c) a programmable RO to allow

equivocation (also applied in [? ? ?]).
In order to construct FBC in a settingwith recurring and arbitrary

scheduled broadcast executions, several technical issues arise. The

key challenge here is to ensure that messages are retrieved by all

parties in the same round. Our protocol carefully orchestrates TLE

encryption, emission, reception, and TLE decryption of messages

broadcast in UBC manner w.r.t. the global clock to achieve this. The

UC-secure protocol ΠFBC encompasses the following key features:

The fair broadcast functionality F
∆,α
FBC (P).

The functionality initializes the list Lpend of (unlocked)

pending messages as empty, the list Llock of locked mes-

sages as empty, and a variable Output as ⊥. It also main-

tains the set of corrupted parties, Pcorr, initialized as empty.

■Upon receiving (sid,Broadcast,M) from P ∈ P \ Pcorr
or (sid,Broadcast,M, P) from S on behalf of P ∈ Pcorr, it
reads the time Cl from Gclock, picks a unique random tag
from {0, 1}λ , and adds the tuple (tag,M, P ,Cl) to Lpend.
Then, it sends (sid,Broadcast, tag, P) to S.
■ Upon receiving (sid,Output_Reqest, tag) from S,
it reads the time Cl from Gclock. If there is a tuple

(tag,M, P ,Cl∗) ∈ Lpend such that Cl − Cl∗ = ∆ − α , it
adds (tag,M, P ,Cl∗) to Llock, removes it from Lpend, and
sends (sid,Output_Reqest, tag,M, P ,Cl∗) to S.
■ Upon receiving (sid,Corruption_Reqest) from S,

it sends (sid,Corruption_Reqest, ⟨(tag,M, P ,Cl∗) ∈
Lpend : P ∈ Pcorr⟩) to S.

■Upon receiving (sid,Allow, tag, M̃, P̃) from S, it does:
(1) If there is no tuple (tag,M, P̃ ,Cl∗) in Lpend or Llock, it

ignores the message.

(2) If P̃ ∈ P\Pcorr or (tag,M, P̃ ,Cl∗) ∈ Llock, it ignores the
message.

(3) If P̃ ∈ Pcorr and (tag,M, P̃ ,Cl∗) ∈ Lpend (i.e., the mes-

sage is not locked), it sets Output← M̃ . If there is no

tuple (tag, ·, ·, ·) in Llock, it adds (tag,Output, P̃ ,Cl∗) to
Llock and removes (tag,M, P̃ ,Cl∗) from Lpend. It sends
(sid,Allow_OK) to S.

■Upon receiving (sidC ,Advance_Clock) from P ∈ P \
Pcorr, it does:
(1) It reads the time Cl from Gclock.
(2) Let L← Lpend@Llock be the concatenation of the two

lists. It sorts L lexicographically w.r.t. the second coor-

dinate (i.e. messages) of its tuples.

(3) For every tuple (tag∗,M∗, P∗,Cl∗) ∈ L, if Cl−Cl∗ = ∆,
it sends (sid,Broadcast,M∗) to P .

(4) It returns (sidC ,Advance_Clock) to P with destina-

tion identity Gclock.

Figure 6: The functionality F ∆,α
FBC interacting with the par-

ties in P and the simulator S, parameterized by delay ∆ and
simulator advantage α .

(1) Resource-restriction is formalized via a wrapperWq (F
∗
RO) that

allows a party or the adversary to perform up to q parallel

queries per round (cf. [? ? ?] for similar formal treatments).

(2) To take advantage of parallelization that the wrapper offers,

parties generate puzzles for creating TLE ciphertexts (and solve

the puzzles of the ciphertexts they have received) only when

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC 2023, June 19–23, 2023, Orlando, FL

they are about to complete their round. I.e., when receiving an

Advance_Clock command by the environment, they broadcast

in UBCmanner all their messages (TLE encryptedwith difficulty

set to 2 rounds and equivocated) for the current round. Observe

that if without such restriction and allow senders broadcast

their messages upon instruction by the environment, then this

would lead to an "waste of resources"; so, parties would not be

able to broadcast more than q messages per round and/or they

would not have any queries left to proceed to puzzle solution.

(3) For realization of FFBC, a message must be retrieved by all

parties in the same round. Hence, we require that parties, when

acting as recipients, begin decryption (puzzle solving) in the

round that follows the one they received the associated TLE

ciphertext. Otherwise, the following may happen: let parties A,
B, andC complete round Cl first, second, and third, respectively.
If B broadcasts an encrypted messageM , then, unlike C , A will

have exhausted its available resources (RO queries) by the time

she receivesM . As a result,C is able to retrieveM at roundCl+1
(by making the first set of q RO queries in Cl and the second

set in Cl + 1) whereas A not earlier than Cl + 2 (by making the

first set in Cl + 1 and the second in Cl + 2).
(4) The reason that we impose time difficulty of two rounds instead

of just one is rather technical. Namely, if it was set to one round,

then the number of queries required for puzzle solution is q.
However, a rushing real-world adversary may choose to waste

all of its resources to decrypt a TLE ciphertext in the same round

that the ciphertext was intercepted. In this case, the simulator

would not have time for equivocating the randomness hidden

in the underlying puzzle and simulation would fail.

The protocol is formally described in Figure ??. The core idea of
the construction is the following: to broadcast a message M in

a fair manner, the sender chooses a randomness ρ and creates a

TLE ciphertext c of ρ. Then, she queries the RO on ρ to receive a

response η, computes M ⊕ η, and broadcasts (c,M ⊕ η) via FUBC.
When decryption time comes, any recipient can decrypt c as ρ,
obtain η via a RO query on ρ, and retrieveM by an XOR operation.

In the following lemma, we prove that our FBC protocol UC-

realizes F
∆,α
FBC for delay ∆ = 2 and advantage α = 2. Namely, the

parties retrieve the messages after two rounds and the simulator

two rounds earlier (i.e., in the same round).

The fair broadcast protocol ΠFBC(FUBC,Wq (F
∗
RO),FRO, P).

The protocol utilizes the TLE algorithms (AST.Enc, AST.Dec)
described in [?]. Every party P maintains (i) a list LPpend of

messages pending to be broadcast, (ii) a list LPwait of received
ciphertexts waiting to be decrypted, and (iii) a list LP of messages

ready to be delivered. All three lists are initialized as empty.

■ Upon receiving (sid, Broadcast, M) from Z, P adds M to

LPpend.

■Upon receiving (sid, Broadcast, (c∗, y∗)) from FUBC, P reads

the time Cl from Gclock and adds (c∗, y∗, Cl) to LPwait.

■ Upon receiving (sid, Advance_Clock) from Z, the party P
reads the time Cl from Gclock. If this is the first time that P has

received (sid, Advance_Clock) for time Cl, she does:
(1) For every M in LPpend, she picks puzzle randomness

rM
0
| | · · · | |rM

2q−1
$

←
(
{0, 1}λ

)
2q
.

(2) For every (c∗, y∗, Cl − 1) in LPwait, she parses c
∗
as (2, c∗

2
, c∗

3
)

and c∗
3

as

(
r ∗
0
, z∗

1
, . . . , z∗

2q). For every (c∗∗, y∗∗, Cl −

2) in LPwait, she parses c∗∗ as (2, c∗∗
2
, c∗∗

3
) and c∗

3
as(

r ∗∗
0
, z∗∗

1
, . . . , z∗∗

2q).

(3) She makes all available q queriesQ0, . . . , Qq−1 toWq (F
∗
RO)

for Cl and gets responses R0, . . . , Rq−1, respectively, where
• Q0 =

(
∪M∈LPpend

{rM
0
, . . . , rM

2q−1 }
) ⋃ (
∪
(c∗,y∗,Cl−1)∈LPwait

{r ∗
0
}
) ⋃ (

∪
(c∗∗,y∗∗,Cl−2)∈LPwait

{z∗∗q ⊕ h
∗∗
q−1 }

)
.

• R0 =
(
∪M∈LPpend

{hM
0
, . . . , hM

2q−1 }
) ⋃ (
∪
(c∗,y∗,Cl−1)∈LPwait

{h∗
0
}
) ⋃ (

∪
(c∗∗,y∗∗,Cl−2)∈LPwait

{h∗∗q }
)
.

• For j ≥ 1, Q j =
(
∪
(c∗,y∗,Cl−1)∈LPwait

{z∗j ⊕

h∗j−1 }
) ⋃ (

∪
(c∗∗,y∗∗,Cl−2)∈LPwait

{z∗∗j+q ⊕ h
∗∗
j+q−1 }

)
.

• For j ≥ 1, Rj =
(
∪
(c∗,y∗,Cl−1)∈LPwait

{h∗j }
) ⋃ (

∪
(c∗∗,y∗∗,Cl−2)∈LPwait

{h∗∗j+q }
)
.
a

(4) For every M in LPpend:
(a) She chooses a random value ρ from the TLE message space;

(b) She encrypts as c ← AST.Enc(ρ, 2) using RO responses

(hM
0
, . . . , hM

2q−1) obtained by queryingWq (F
∗
RO) on Q0.

(c) She queries FRO on ρ and receives a response η.
(d) She computes y ← M ⊕ η.
(e) She deletes M from LPpend, and sends

(sid, Broadcast, (c, y)) to FUBC.
(5) For every (c∗∗, y∗∗, Cl − 2) in LPwait:

(a) She sets the decryption witness asw∗∗
2
← (h∗∗

0
, . . . , h∗∗q−1).

(b) She computes ρ∗∗ ← AST.Dec(c∗∗, w∗∗
2
).

(c) She queries FRO on ρ∗∗ and receives a response η∗∗.
(d) She computes M∗∗ ← y∗∗ ⊕ η∗∗ and adds M∗∗ to LP .
(e) She deletes (c∗∗, y∗∗, Cl − 2) from LPwait.

(6) She sorts LP lexicographically.

(7) For every M∗∗ in LP , she returns (sid, Broadcast, M∗∗) to
Z.

(8) She resets LP as empty.

(9) She sends (sidC , Advance_Clock) to FUBC. Upon re-

ceiving (sidC , Advance_Clock) from FUBC, she forwards

(sidC , Advance_Clock) to Gclock and completes her round.

a
Namely, the first query includes all puzzle generation queries required

for the TLE of every message that will be broadcast by P . The j-th query

includes (i) all j-th step puzzle solving queries for decrypting messages

received in round Cl − 1 and (ii) all (q + j)-step puzzle solving queries for

decrypting messages received in round Cl − 2. The queries are computed

as described in Subsection ??. As a result, the decryption witness for each

TLE ciphertext can be computed in two rounds (upon completing all

necessary 2q hashes).

Figure 6: The protocol ΠFBC with the parties in P.

Lemma 2. The protocol ΠFBC in Figure ?? UC-realizes F 2,2
FBC in the

(FUBC,Wq (F
∗
RO),FRO,Gclock)-hybrid model against an adaptive

adversary corrupting t < n parties.

PODC 2023, June 19–23, 2023, Orlando, FL Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

4 UC TIME-LOCK ENCRYPTION AGAINST
ADAPTIVE ADVERSARIES

In this section, we strengthen the main result of [?] (cf. Fact ??),
presenting the first UC realization of FTLE against adaptive adver-

saries. Specifically, we prove that the TLE construction in [?] is UC
secure when deploying FFBC as the hybrid that establishes com-

munication among parties. In more details, the TLE construction

in [?] requires that an encryptor broadcasts her TLE ciphertext

to all other parties to allow them to begin solving the associated

time-lock puzzle for decryption. The following theorem shows that

FBC is sufficient to guarantee adaptive security of the TLE protocol.

Theorem 1. Let ∆,α be integers s.t. ∆ ≥ α ≥ 0. The protocol ΠTLE

in Figure ?? UC-realizes F leak,delay
TLE in the (Wq (F

∗
RO),FRO,F

∆,α
FBC ,

Gclock)-hybrid model, where leak(Cl) = Cl + α and delay = ∆ + 1.

5 SIMULTANEOUS BROADCAST
In this section, we present our formal study of the simultaneous

broadcast (SBC) notion in the UC framework, which comprises

a new functionality FSBC and a TLE-based construction that we

prove it UC-realizes FSBC. Our approach revisits and improves

upon the work of Hevia [?] w.r.t. several aspects. In particular,

(1) We consider SBC executions where honest parties agree on a

well-defined broadcast period, outside of which all broadcast

messages are ignored. This setting is plausible, as simultaneity

suggests that no sender broadcasts a message depending on

the messages broadcast by other parties. If there is no such

broadcast period, then liveness and simultaneity are in conflict,

as a malicious sender could wait indefinitely until all honest

parties are forced to either (i) abort, or (ii) reveal their messages

before all (malicious) senders broadcast their values. On the

contrary, within an agreed valid period, honest parties can safely

broadcast knowing that every invalid message will be discarded.

Unlike [?], participation of all parties is not necessary for the

termination of the protocol execution. In Section ??, we propose
practical use cases where our SBC setting is greatly desired.

(2) The SBC functionality of [?] is designed w.r.t. the synchronous

communication setting in [?]. As shown in [?], this setting
has limitations (specifically, guarantee of termination) that are

lifted when using Gclock. In our formal treatment, synchronicity

is captured in the state-of-the-art Gclock-hybrid model.

(3) The SBC construction in [?] is proven secure only against

adversaries that corrupt a minority of all parties. By utilizing

TLE, our work introduces the first SBC protocol that is UC

secure against any adversary corrupting t < n parties.

The SBC functionality. Our SBC functionality FSBC (cf. Fig-

ure ??) interacts with Gclock and is parameterized by a broadcast

time span Φ, a message delivery delay ∆ and a simulator ad-

vantage α . Upon first Broadcast request, it sets the current

global time as the beginning of the broadcast period that lasts Φ
rounds. If a Broadcast request was made by an honest sender

P , then the functionality leaks only the sender’s identity. All

Broadcast requests are recorded as long as they are made

within the broadcast period. The recorded messages are issued

to each party (resp. the simulator) ∆ rounds (resp. ∆−α rounds)

after the end of the period.

The simultaneous broadcast functionality F
Φ,∆,α
SBC (P).

The functionality initializes the list Lpend of pending mes-

sages as empty and two variables tstart, tend to ⊥. It also

maintains the set of corrupted parties, Pcorr, initialized as

empty.

■Upon receiving (sid,Broadcast,M) from P ∈ P \ Pcorr
or (sid,Broadcast,M, P) from S on behalf of P ∈ Pcorr, it
does:

(1) It reads the time Cl from Gclock.
(2) If tstart = ⊥, it sets tstart ← Cl and tend ← tstart + Φ.
(3) If tstart ≤ Cl < tend, it does :
(a) It picks a unique random tag from {0, 1}λ .
(b) If P ∈ P \ Pcorr, it adds (tag,M, P ,Cl, 0) to Lpend

and sends (sid, Sender, tag, 0 |M | , P) to S. Other-
wise, it adds (tag,M, P ,Cl, 1) to Lpend and sends

(sid, Sender, tag,M, P) to S.
■ Upon receiving (sid,Corruption_Reqest) from S,

it sends (sid,Corruption_Reqest, ⟨(tag,M, P ,Cl∗, 0) ∈
Lpend : P ∈ Pcorr⟩) to S.

■Upon receiving (sid,Allow, tag, M̃, P̃) from S, it does:
(1) It reads the time Cl from Gclock.
(2) If tstart ≤ Cl < tend and there is a tuple

(tag,M, P̃ ,Cl∗, 0) ∈ Lpend and P̃ ∈ Pcorr, it updates the
tuple as (tag, M̃, P̃ ,Cl∗, 1) and sends (sid,Allow_OK)

to S. Otherwise, it ignores the message.

■Upon receiving (sidC ,Advance_Clock) from P ∈ P \
Pcorr, it does:
(1) It reads the time Cl from Gclock.
(2) If this is the first time it has received a

(sidC ,Advance_Clock) message from P during

round Cl, then
(a) If it has received no other (sidC ,Advance_Clock)

message during round Cl,
(i) If Cl = tend, then it does:

(A) It updates every tuple (·, ·, P∗, ·, 0) ∈ Lpend such

that P∗ ∈ P \ Pcorr as (·, ·, P∗, ·, 1) (to guarantee

the broadcast of messages from always honest

parties).

(B) It sorts Lpend lexicographically according to the
second coordinate (messages).

(ii) If Cl = tend + ∆ − α , it sends

(sid,Broadcast, ⟨(tag,M)⟩(tag,M, ·, ·,1)∈Lpend)

to S.

(b) If Cl = tend + ∆, it sends

(sid,Broadcast, ⟨M⟩(·,M, ·, ·,1)∈Lpend) to P .

(3) It returns (sidC ,Advance_Clock) to P with destina-

tion identity Gclock.

Figure 7: The functionality F Φ,∆,α
SBC interacting with the par-

ties in P and the simulator S, parameterized by time span Φ,
delay ∆, and simulator advantage α .

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC 2023, June 19–23, 2023, Orlando, FL

The SBC protocol ΠSBC(FUBC,F
leak,delay
TLE ,FRO,Φ,∆, P).

Every party P maintains a list LPpend of messages under pending

encryption and a list LPrec of received ciphertexts both initialized

as empty, and four variables tPawake, t
P
end, τ

P
rel, first

P
, all initialized

to ⊥. All parties understand a special message ‘Wake_Up’ that is
not in the broadcast message space.

■Upon receiving (sid, Broadcast, M) from Z, the party P does:

(1) If tPawake = ⊥, she sets firstP ← M and sends

(sid, Broadcast, Wake_Up) to FUBC.
(2) If tPawake , ⊥, she does:

(a) She reads the time Cl from Gclock.
(b) If Cl ≥ tPend − delay, she ignores the message

a
.

(c) She chooses a randomness ρ
$

← {0, 1}λ .

(d) She adds (ρ, M) in LPpend.

(e) She sends (sid, Enc, ρ, τ Prel) to F
leak,delay
TLE .

■ Upon receiving (sid, Broadcast, Wake_Up) from FUBC, if

tPawake = ⊥, the party P does:

(1) She reads the time Cl from Gclock.
(2) She sets tPawake ← Cl, tPend ← tPawake + Φ, and τ

P
rel ← tPend + ∆

(i.e., all parties agree on the start and end of the broadcast

period, as well as the time-lock decryption time).

(3) If firstP , ⊥, she parses the (unique) pair in LPpend that con-

tains firstP as (ρ, firstP). Then, she sends (sid, Enc, ρ, τ Prel)

to F
leak,delay
TLE (this check is true only if P broadcasts her first

message when acting as the first sender in the session).

■ Upon receiving (sid, Broadcast, (c∗, τ ∗, y∗)) from FUBC, if
τ ∗ = τ Prel and for every (c′, y′) ∈ LPrec : c′ , c∗ ∧ y′ , y∗,
then the party P adds (c∗, y∗) to LPrec.
■Upon receiving (sidC , Advance_Clock) byZ, the party P does:

(1) She reads the time Cl from Gclock. If this is not the first time

she has received a (sidC , Advance_Clock) command during

round Cl, she ignores the message.

(2) If tPawake ≤ Cl < tPend, she sends (sid, Retrieve) to F
leak,delay
TLE

to obtain the encryptions of messages that she requested

delay rounds earlier. Upon receiving (sid, Encrypted, T)
from F

leak,delay
TLE , she does:

(a) She parses T as a list of tuples of the form (ρ, c, τ Prel).
(b) For every (ρ, c, τ Prel) ∈ T such that there is a pair (ρ, M) ∈

LPpend, she does:
(i) She queries FRO on ρ and receives a response η.
(ii) She computes y ← M ⊕ η.
(iii) She sends (sid, Broadcast, (c, τ Prel, y)) to FUBC.

(3) If Cl = τ Prel, then for every (c∗, y∗) ∈ LPrec, she does:

(a) She sends (sid, Dec, c∗, τ Prel) to F
leak,delay
TLE . Upon re-

ceiving (sid, Dec, c∗, τ Prel, ρ
∗) from F

leak,delay
TLE , if ρ∗ <

{⊥, More_Time, Invalid_Time}, she queries FRO on ρ∗

and receives a response η∗.
(b) She computes M∗ ← y∗ ⊕ η∗.
(c) She sends (sid, Broadcast, M∗) to Z.

(4) She sends (sidC , Advance_Clock) to FUBC. Upon re-

ceiving (sidC , Advance_Clock) from FUBC, she forwards

(sidC , Advance_Clock) to Gclock and completes her round.

a
The reason is that due to TLE ciphertext generation time (delay rounds),

if Cl ≥ tPend − delay, then the message would not be ready for broadcast

before tPend .

Figure 8: The protocol ΠSBC with the parties in P.

The SBC protocol. Our SBC protocol (cf. Figure ??) is over FUBC
and deploys F

leak,delay
TLE to achieve simultaneity, and FRO for equivo-

cation. In the beginning, the first sender notifies via FUBC the other

parties of the start of the broadcast period via a special ‘Wake_Up’
message. By the properties of UBC, all honest parties agree on the

time frame of the broadcast period that lasts Φ rounds. During the

broadcast period, in order to broadcast a message M , the sender

chooses a randomness ρ and interacts with F
leak,delay
TLE to obtain a

TLE ciphertext c of ρ (after delay rounds). By default, c is set to be

decrypted ∆ rounds after the end of the broadcast period. Then, she

makes an RO query for ρ, receives a response η and broadcasts c and
M ⊕ η via FUBC. Any recipient of c,M ⊕ η can retrieve the message

∆ rounds after the end of the broadcast period by (i) obtaining ρ

via a decryption request of c to F
leak,delay
TLE , (ii) obtaining η as a RO

response to query ρ, and (iii) computingM ← (M ⊕ η) ⊕ η.

Theorem 2. Let leak(·), delay be the leakage and delay parame-

ters of FTLE. Let Φ,∆ be positive integers such that Φ > delay and

∆ > max

Cl∗
{leak(Cl∗) − Cl∗}. The protocol ΠSBC in Figure ?? UC-

realizesF
Φ,∆,α
SBC in the (FUBC,F

leak,delay
TLE ,FRO,Gclock)-hybridmodel

against an adaptive adversary corrupting t < n parties, where the

simulator advantage is α = max

Cl∗
{leak(Cl∗) − Cl∗} + 1.

Corollary 1. There exists a protocol that UC-realises F
Φ,∆,α
SBC

in the (Fcert,Wq (F
∗
RO),FRO, Gclock)-hybrid model, where Φ > 3,

∆ > 2, and α = 3.

6 APPLICATIONS OF SBC
6.1 Distributed random string generation
The delayed uniform random string (DURS) functionality.
The DURS functionality is along the lines of the common reference

string (CRS) functionality in [?]. The functionality draws a single

random string r uniformly at random, and delivers r upon request.

The delivery of r is delayed, in the sense that the party who made

an early request has to wait until ∆ time has elapsed since the

first request was made. Besides, the simulator has an advantage

α , i.e., it can obtain r (on behalf of some corrupted party) when

∆ − α time has elapsed since the first request was made. The DURS

functionality is presented in detail the full version.

The DURS protocol. As a first application, we propose a proto-
col that employs SBC to realize the DURS functionality described

above. The idea is simple: each party contributes its randomness

by broadcasting it via SBC to other parties. After SBC is finalized

(with delay ∆), all parties agree on the XOR of the received random

strings as the generated URS. In addition, the parties agree on the

beginning of the URS generation period via a special ‘Wake_Up’
message broadcast in RBC manner by the first activated party.

Theorem 3. Let ∆,Φ,α be non-negative integers such that ∆ >
Φ > 0 and ∆ − Φ ≥ α . The protocol ΠDURS in Figure ?? UC-realizes
F

∆,α
DURS in the (F

Φ,∆−Φ,α
SBC ,FRBC,Gclock)-hybrid model against an

adaptive adversary corrupting t < n parties.

6.2 Self-tallying e-voting
The concept of self-tallying elections was introduced by Kiayias

and Yung in [?]. In this paradigm, the post-ballot-casting (tally)

PODC 2023, June 19–23, 2023, Orlando, FL Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

The DURS protocol ΠDURS(F
Φ,∆−Φ,α
SBC ,FRBC, P).

Each party P maintains a variable ursP initialized to ⊥

and two flags f Pwait, f
P
awake, initialized to 0.

■Upon receiving (sid,URS) fromZ, the party P does:

(1) If ursP , ⊥, it returns (sid,URS, ursP) toZ. Else,

(a) If f Pwait = 0, she sets f Pwait ← 1.

(b) If f Pawake = 0, she sends (sid,Broadcast, Wake_Up)
to F P

RBC.

■ Upon receiving (sid,Broadcast, Wake_Up, P∗) from

F P ∗
RBC, if P

∗ ∈ P and f Pawake = 0, the party P does:

(1) She sets f Pawake ← 1.

(2) She chooses a randomness ρ
$

← {0, 1}λ .

(3) She sends (sid,Broadcast, ρ) to F Φ,∆−Φ,α
SBC .

■ Upon receiving (sidC ,Advance_Clock) from Z, the

party P does:

(1) If f Pawake = 0, she sends (sidC ,Advance_Clock) to
F P
RBC.

(a) If F P
RBC responds with

(sid,Broadcast, Wake_Up, P), she executes steps ??-
?? from the Broadcast interface above.

(b) She sends (sidC ,Advance_Clock) to Gclock.
Otherwise, she sends (sidC ,Advance_Clock) to

F
Φ,∆−Φ,α
SBC . Upon receiving the token from F

Φ,∆−Φ,α
SBC ,

she sends (sidC ,Advance_Clock) to Gclock.
■ Upon receiving (sid,Broadcast, ⟨ρ1, . . . ρk ⟩) from

F
Φ,∆−Φ,α
SBC , if ursP = ⊥, the party P does:

(1) She sets ursP ←
⊕

i ∈[k]:ρi ∈{0,1}λ ρi .

(2) If f Pwait = 1, she sends (sid,URS, ursP) toZ.

Figure 9: The DURS protocol ΠDURS with parties in P.

phase can be performed by any party, removing the need for tallier

designation. It was further improved by Groth in [?], and later

studied in the UC framework by Szepieniec and Preneel in [?].
To ensure fairness, i.e. to prevent intermediary results from being

leaked before the end of the casting phase, all these previous works

introduce a trusted control voter that casts a dummy ballot last,

contradicting self-tallying in some sense. In this section, we deploy

our SBC channel to solve the fairness challenge in self-tallying

elections, lifting the need for this trusted control voter.

The voting system (VS) functionality. The ideal voting system
functionality, F

Φ,∆,α
V S is presented in Figure ??. It is simply the

adaptation of Preneel and Szepieniec’s functionality to the global

clock model and adaptive corruption [?]. The VS functionality only
differs from the SBC functionality in that the individually broadcast

ballots are not forwarded to the voters (and simulator), but instead

the result (tally) of the election is sent to them. Voters submit their

votes to the functionality during the casting period that lasts Φ

The self-tallying protocol ΠSTVS(F
Φ,∆,α
SBC ,FRBC,FPKG,FSKG,V)

■ Initiate by invoking FPKG followed by FSKG.

■All authorities Aj choose random values xi, j ← Zn2

for all voters Vi such that

∑
i xi, j = 0. They send these

values to FRBC but encrypted with that voter’s public key.

Also,they publishwxi, j
for each xi, j .

■The scrutineers check that

∑
i xi, j = 0 for all j by calcu-

lating

∏
i w

xi, j ?

= 1. Also, the scrutineers calculate every

voter’s verification keywi = w
∑
j xi, j =

∏
j w

xi, j
.

■All votersVi read their messages from the authorities and

determine their own secret exponent xi =
∑
j xi, j .

■ In order to vote, the voters select a public random seed

r , for example by querying the random oracle. Next, each

voter encrypts his vote using rxi for randomizer. This en-

cryption is posted to FBB F
Φ,∆,α
SBC along with a proof that

the ballot encrypts an allowable vote and that the correct

secret exponent was used, and with a signature on the

previous two objects.

■ Upon receiving (sid,Broadcast, ⟨b1, . . . ,bk ⟩) from

F
Φ,∆,α
SBC , voters combine all votes and calculate tally res .

Figure 10: The protocol ΠSTVS with voters V. Variant of [?
]: instead of posting to the bulletin board FBB, ballots are
posted via FSBC, removing the need for the trusted control
voter.

amount of time from the opening of the election. The functionality

does not allow the adversary to read the honestly cast votes or to

falsify them. The functionality releases the result of the election

when it moves to the tally phase after Φ + ∆ time has elapsed from

the opening of the election. The simulator has an advantage α , i.e.,
it can obtain the election result (on behalf of some corrupted party)

when Φ + ∆ − α time has elapsed since the opening of the election,

(yet after the end of the casting period). The VS functionality is

presented in detail in the full version.

The self-tallying VS (STVS) protocol.We deploy an SBC instead

of the BB used in the original protocol of Preneel and Szepieniec [?
] to ensure fairness, removing the need for the control dummy

party. The protocol assumes a public-key generation mechanism

formalised by an ideal functionality FSKG for the authorities public

key and corresponding private key shares, and a voters’ key gener-

ation functionality FPKG for eligibility. The UC-security of ΠSTVS
is similar to the original one [?].

Theorem 4. Let ∆,Φ,α be non-negative integers such that ∆ >
Φ > 0 and ∆ ≥ α . The protocol ΠSTVS in Figure ?? UC-realizes

F
Φ,∆,α
VS in the (F

Φ,∆,α
SBC ,FRBC,FPKG,FSKG,Gclock)-hybridmodel against

an adaptive adversary corrupting t < n parties.

ACKNOWLEDGMENTS
Zacharias was supported by Input Output (https://iohk.io) through

their funding of the Edinburgh Blockchain Technology Lab.

https://iohk.io

