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Abstract. In this work, we investigate the BGV scheme as implemented
in HElib. We begin by performing an implementation-specific noise anal-
ysis of BGV. This allows us to derive much tighter bounds than what
was previously done. To confirm this, we compare our bounds against the
state of the art. We find that, while our bounds are at most 1.8 bits off
the experimentally observed values, they are as much as 29 bits tighter
than previous work. Finally, to illustrate the importance of our results,
we propose new and optimised parameters for HElib. In HElib, the spe-
cial modulus is chosen to be k times larger than the current ciphertext
modulus Qi. For a ratio of subsequent ciphertext moduli log( Qi

Qi−1
) = 54

(a very common choice in HElib), we can optimise k by up to 26 bits.
This means that we can either enable more multiplications without hav-
ing to switch to larger parameters, or reduce the size of the evaluation
keys, thus reducing on communication costs in relevant applications. We
argue that our results are near-optimal.

1 Introduction

Fully Homomorphic Encryption (FHE) is a type of encryption that allows to
compute on encrypted data. An open problem for nearly three decades, the first
construction came in 2009 from Gentry [18]. Since then, the field has seen some
spectacular advances, and there are now several widely used and implemented
schemes, each with various tradeoffs. Loosely speaking, these all fit into four
generations. The first generation refers to the original construction [18] and its
variants. The second generation includes the BGV [4] and BFV [3, 17] schemes.
The third generation includes the CGGI scheme [6, 7], which was developed
from the line of work [21, 16]. Finally, the fourth generation consists of the
approximate homomorphic scheme CKKS [5] and its numerous variants. The
above named schemes all base their security on variants of the Learning With
Errors problem (LWE) [32], and are currently being standardised.

In this work, we focus on the BGV scheme [4], which has been implemented
in several open source libraries, including HElib [23], PALISADE [31], SEAL [33]
and Lattigo [27]. The implementation in HElib was the first public implemen-
tation of BGV, and remains actively maintained. It has been used in several
applications [1, 10, 15, 20].
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BGV does not follow the Gentry blueprint [18] of building a somewhat ho-
momorphic encryption scheme and then bootstrapping it to obtain a fully ho-
momorphic scheme. Instead, it uses levels, which can be thought of as layers of
the ciphertext ring. We encrypt at the top level, and switch down one level after
each multiplication, until we reach a final level where no more multiplications are
possible without incorrect decryption. In this setting, the circuit to be evaluated
must be fixed in advance, and large enough parameters must be chosen so that
there are enough levels to support the required depth of the circuit.

The levelled approach is proposed in [4] as a noise management technique.
Noise is a feature of all ciphertexts in all LWE-based homomorphic encryption
schemes, and is essential for security. The noise grows with each homomorphic
operation, particularly so with multiplication, and if it becomes too large then
decryption will fail. A good understanding of noise growth is therefore necessary
to balance correctness, security and performance requirements.

Several noise analyses of BGV have been presented in prior work [11, 13,
19, 20, 22, 25, 30]. Most approaches give a worst-case bound on the canonical
norm [11, 13, 19, 20] (defined below) or infinity norm [25] of the noise after each
BGV operation. In [13], it was observed that there can be a large gap between the
noise predicted by such bounds and the actual observed noise in BGV ciphertexts
as implemented in HElib. This can be explained by the inherent looseness of the
bounds compounding as we move through the circuit.

To mitigate this, an average-case approach for BGV noise anaylsis was pre-
sented in [30], that built upon a similar analysis for the CKKS scheme that
was presented in [12], in analogue to the approach taken for the CGGI scheme
in [8, 9]. The main idea is to track the variance of the noise through each op-
eration, arriving at a variance for the noise in the output ciphertext, which can
then be bounded. Experiments in [30], using implementations of BGV in HElib
and in SEAL, showed that, while the gap identified in [13] between the predicted
and observed noise is narrowed when using this average-case approach, it is not
completely closed. Moreover, the gap was seen to be wider for HElib than for
SEAL. It was suggested in [30] that this could be explained by the different
implementation choices in HElib and SEAL, but providing and evaluating an
implementation-specific noise analysis of BGV was left as an open problem.

1.1 Our Contributions

In this paper, we give for the first time a noise analysis for BGV that is specifically
adapted to its implementation in HElib, as described in [22]. It follows a similar
approach as in [8, 9, 12, 30], in that we present results for how the variance of
the noise develops through the stages of homomorphic multiplication. However,
in contrast to [30], we focus not just on BGV ciphertext noise, but on BGV as
implemented in HElib. Further, we evaluate the efficacy of our approach, and
discuss its utility and applicability.

In more detail, we confirm that our analysis resolves the open question posed
in [30], by experimentally verifying that our theoretical results for the variance
of the noise (Corollaries 2 and 3) empirically match the variance of the noise
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observed in HElib ciphertexts (Tables 1 and 3). We thereby demonstrate that
our theoretical analysis of the variance is tight and any eventual loss in the
tightness comes from the final bounding step.

Additionally, we present a detailed comparison to prior noise analyses for
BGV. The results show that our approach leads to closer modelling of the noise
and consequently tighter bounds. This applies both for prior works using bounds
on the canonical norm (Table 4) and the infinity norm (Table 6). We see for
example in Table 4, for a ring size n = 32768, that our theoretical bounds are up
to 29 bits tighter than those in [22] and up to 9 bits tighter than those in [13],
whilst being at most 1.8 bits off the observed experimental values.

An interesting finding of our comparison was that applying previous analyses
for BGV, such as the work [25] that was developed considering PALISADE [31],
may underestimate the observed HElib noise. This means that relying on such
analyses to estimate the noise growth in HElib ciphertexts might lead to decryp-
tion errors. This observation further emphasises the value of implementation
specific noise analyses.

Finally, we use our results to propose new parameters in HElib. Specifically,
we demonstrate that our analysis allows to optimize the ratio between ciphertext
moduli in the moduli chain that express how the levels are made up in HElib.
In HElib, the special modulus is chosen to be k times larger than the current
ciphertext modulus Qi. In Section 6 we show that, for a ratio of subsequent
ciphertext moduli log( Qi

Qi−1
) = 54 (a very common choice in HElib), we can

optimise k by up to 26 bits. Our work enables the following tradeoff. On the one
hand, it could be used to allow more moduli to be included in the chain, and
thus we can permit a greater multiplicative depth for a fixed parameter set. This
means we can evaluate higher-depth computations without having to switch to
a larger parameter set and incurring a consequent performance slow down. On
the other hand, it could be used to reduce the size of evaluation keys, and hence
represents an improvement in communication costs.

1.2 Structure of the Paper

In Section 2 we introduce notation and the necessary background. In Section 3
we present our implementation-specific noise analysis for BGV as implemented
in HElib. In Section 4 we experimentally verify the theoretical analysis that we
have developed. In Section 5 we compare our approach with prior analyses of
BGV noise growth. In Section 6 we demonstrate how our analysis can be applied
to optimize parameter selection in HElib.

2 Preliminaries

2.1 Notation

Vectors are denoted by a small bold letter z, where zi denotes its ith component.
In a slight abuse of notation, for a polynomial a ∈ R, where R is a polynomial
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ring of degree n, we denote by a[i] the i-th coefficient of a. It can be thought of
as the i-th element in the coefficient vector of a. The notation [·]q denotes re-
duction modulo q (coefficient wise, when applied to a polynomial). The notation
d·c denotes rounding to the nearest integer (coefficient wise, when applied to a
polynomial). Unless otherwise specified, log denotes log2.

We denote by σ2 a variance, σ a standard deviation and µ the mean of any
distribution, while σ2

est, σest and µest denote their point estimators. Let N (µ, σ)
be the normal distribution with mean µ and standard deviation σ. For any
distribution D we denote by x← D the fact that x has been drawn from D. For

any set S, x
$← S denotes the fact that x has been sampled uniformly at random

from S.

2.2 Point Estimators for Variance and Standard Deviation

Let xi ← D(σ2) for 1 ≤ i ≤ w be samples drawn from an unknown distribution,
with unknown variance σ2 and let x be their mean. We can estimate the variance
and standard deviation of D as follows. The (biased) sample variance is defined
as:

σ2
biased =

1

w

w∑
i=1

(xi − x)2 .

It can be shown that the expectation E[σ2
biased] = w−1

w σ2 and hence the obtained
estimation is biased. To avoid this, we will use the unbiased sample variance

σ2
est =

w

w − 1
· σ2

biased =
1

w − 1

w∑
i=1

(xi − x)2 .

From this, the standard deviation σ is estimated via σest =
√
σ2
est. Since σest is

obtained from σ2
est through a non-linear operation, it is no longer unbiased. For

a big enough sample size, the bias is however negligible.

2.3 Algebraic Background

We let R = Z[x]/(xm + 1), the cyclotomic ring of dimension n = φ(m), where
φ(·) is Euler’s Totient Function. For m is a power of two, we have φ(m) = m/2.

To represent polynomials in R as vectors we can use both the coefficient
embedding and the canonical embedding. For a polynomial a ∈ R, expressed as
a = a0 + . . .+ an−1x

n−1, its coefficient embedding is the vector (a0, . . . , an−1).
To define the canonical embedding, let ζm be a primitve mth root of unity

and Q(ζm) the mth cyclotomic number field obtained as a field extension of Q
by adjoining ζm. There are n ring embeddings σ1, . . . , σn : Q(ζm) ↪→ C given
by ζm 7→ ζkm for k ∈ {1, . . . , n}. The canonical embedding of an element
p ∈ Q(ζm) is given via p 7→ (σ1(p), . . . , σn(p))T .

The canonical norm of an element p ∈ Q(ζm) is denoted as ‖p‖can and is
the infinity norm of the embedded vector. The following bound on the canonical
norm of a random polynomial is proved in Section 2.8 of [24].
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Lemma 1 ([24]). Let a← Rq be a random polynomial and let σ2
a[i] be the vari-

ance of each coefficient in the powerful basis (ζm, . . . , ζ
n
m). The random variable

a(ζkm) for k ∈ {1, . . . , n} has variance σ2
a(ζkm) = σ2

a[i]n, and the canonical norm

of a can be bounded by

‖a‖can ≤ 6
√
σ2
a[i]n .

We denote by ‖p‖∞ the infinity norm of the coefficient embedding of p. For
a, b ∈ R and for γR the expansion factor [28] of R, it holds that

||ab||∞ ≤ γR||a||∞||b||∞.

For an n-dimensional power of two cyclotomic ring R we have γR = n. To bound
the infinity norm of polynomials whose coefficients are normally distributed, we
will use the following well-known fact.

Lemma 2. Let v ∼ N (0, σ) and let erf(·) be the error function. Then v lies in
the interval (−a, a) with probability

erf

(
a

σ
√

12

)
.

For a vector v, whose entries are identically and independently normally
distributed with mean 0 and variance σ2, each entry is smaller than an a ∈ R,
with the above stated probability. That is, we have

P(||v||∞) ≤ a) = erf

(
a

σ
√

2

)
.

For a = 10σ, ||v||∞ > 10σ is true with probability smaller than 2−75.

2.4 The BGV Scheme

The BGV scheme [4] is a levelled FHE scheme based on the Ring-LWE prob-
lem [29]. The ciphertext space is Rq = Zq[x]/(xm + 1), where q is the ciphertext
modulus. The plaintext space is Rt = Zt[x]/(xm + 1), where t is the plaintext
modulus. Messages and ciphertexts will be considered as polynomials in Rt and
Rq, respectively.

The BGV scheme is parametrised by the ring dimension n, the plaintext
modulus t; the length L of the moduli chain QL � . . . � Q0, where Qi|Qi+1

for i ∈ {0, . . . , L − 1}; the decomposition base ω; the security parameter λ; the
secret key distribution S; and the error distribution χ.

BGV consists of the algorithms KeyGen, Encrypt, Decrypt, Add, PreMult,
KeySwitch and ModSwitch, defined as follows.

KeyGen(1λ): Draw s ← S and set (1, s) := sk as the secret key. Sample a
$← Rq and

e ← χ. Set pk = (pk[0], pk[1]) := ([−as − te]QL
, a) as the public key. For

i ∈ {0, . . . , logω(QL)} sample ai
$← RQL

and ei ← χ and set evk := ([−ais−
tei + ωis2]QL

, ai). Return (sk, pk, evk).
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Encrypt(pk, m): Let m ∈ Rt be a message. Let Qi, i ∈ {0, . . . , L} be the modulus in the
moduli chain corresponding to the current level. Sample u← S and e1, e2 ←
χ. Return ct = (ct[0], ct[1]) := ([m+ pk[0]u+ te1]Qi , [pk[1]u+ te2]Qi).

Decrypt(sk,ct): Return m′ = [< ct, sk >]Qi ]t.
Add(ct0, ct1): Return ct := ([ct0[0] + ct1[0]]Qi

, [ct0[1], ct1[1]]Qi
).

PreMult(ct0, ct1): Return ctpm = (ctpm[0], ctpm[1], ctpm[2]) :=
([ct0[0]ct1[0]]Qi

, [ct0[0]ct1[1] + ct0[1]ct1[0]]Qi
, [ct0[1]ct1[1]]Qi

).
KeySwitch(ct,evk): Let ct = (ct[0], ct[1], ct[2]). Set for the decomposition base ωj = D?

j =

D1 . . . Dj−1, where the Dh are such that Qi =
∏̀
h=1

Dh. Define ctj [2] such

that

ct[2] =
∑̀
j=1

ctj [2]D?
j .

Define the matrix Ai to switch keys from si to s as the matrix whose jth

row aij = (aij [0], aij [1]) is an encryption of kQj−1si under sk with respect
to a bigger ciphertext modulus Q = kQi, gcd(k,Qi) = 1. Output

ctks := k(ct[0], ct[1]) +
∑̀
j=1

(ctj [2]a2j [1], ctj [2]a2j [1]).

ModSwitch(ct,Qj): Let ct = (ct[0], ct[1]). Return ctms :=
(⌊

Qj

Qi
ct[0]

⌉
t
,
⌊
Qj

Qi
ct[1]

⌉
t

)
, where⌊

Qi−1

Q ct[i]
⌉
t

denotes the rounding of the coefficients of the scaled ciphertext

such that it encrypts the same message modulo t as the unscaled ciphertext.

In BGV, one multiplication consists of the following three steps: PreMult,
KeySwitch and ModSwitch. When used as super- or subscripts, the notation pm,
ks, and ms indicates that the object relates to the result of a BGV PreMult,
KeySwitch or ModSwitch operation, respectively.

2.5 The HElib Library

HElib [22] provides a widely used implementation of BGV. In the original pre-
sentation of BGV [4], the secret key distribution S is a discrete gaussian with
standard deviation σ = 3.2. In HElib, S is the following ternary distribution: for
a specified hamming weight h, a coefficient is chosen to be 0 with probability
n−h
n , and ±1 with probability h

2n . In the case of dense keys and m a power of

two, h is set to be h := n
2 . Hence, we have E(S) = 0 and the variance σ2

S = h
n .

Since version 1.0.0 [23], the moduli chain is parametrised by bits and δ,
instead of by the number of multiplicative levels L. The parameter bits gives
the length of the top modulus of the ciphertext moduli in bits. The special
modulus used for key switching is then chosen to be about k times the size of
the current ciphertext modulus Qi, where gcd(k,Qi) = 1. The parameter δ gives
the relation in size between the moduli in the modulus chain. The plaintext
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modulus is given by the exponent t = pr and the number of plaintext slots by
a parameter s. In our experiments, we will use t = 3 and s = 1. The parameter
c defines the number of lines in the key switching matrix. The default c = 2 is
recommended by HElib.

2.6 Noise Definition

The definition of the noise or error in a BGV ciphertext varies in different sources.
HElib uses the critical quantity, as defined in [11].

Definition 1 ([11]). Let ct be a BGV ciphertext, encrypting a message m ∈ Rt
with respect to a ciphertext modulus q and secret key sk = (1, s). The critical
quantity of ct is defined as:

v = [< ct, sk >]q.

We will compare our analysis with that of [25], who define the noise in a
BGV ciphertext as follows.

Definition 2 ([25]). Let ct be a BGV ciphertext, encrypting a message m ∈ Rt
with respect to a ciphertext modulus q and secret key sk. The noise e of ct is
defined as

e =
1

t
([< ct, sk >]q −m).

The critical quantity determines whether decryption will be correct, since it is
an intermediate result in the decryption process. As such, we view it as the more
natural definition. On the other hand, the noise as in Definition 2 looks at the
ciphertext noise independent of the message and the plaintext modulus. Since
both the message and the plaintext modulus are fixed for a fixed ciphertext,
both quantities can be computed from one another, therefore the two definitions
are essentially equivalent.

3 Noise Heuristics for HElib Ciphertexts

In this section we give heuristics for the variance of the critical quantity after
both the PreMult and ModSwitch operations for BGV as implemented in HElib.
We first give expressions for the relevant critical quantities. We then determine
the required variances of these critical quantities. Our analysis relies on the
following result on the variance of the product of two polynomials.

Lemma 3. Let f, g ∈ R be two polynomials of degree n, whose coefficients are
drawn identically and independently from two distributions Df and Dg :

f [i]
i.i.d←−− Df (µf , σ

2
f ), g[i]

i.i.d←−− Dg(µg, σ2
g),
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i ∈ {1, . . . , n}, where µj is the mean and σ2
j is the variance of Dj respectively.

Let E(Dj) denote the expectation of Dj , j ∈ {f, g}. Then the variance of the
distribution of the coefficients of f · g is:

σ2
(fg)[i] = n(E(Df )2σ2

g + E(Dg)2σ2
f + σ2

gσ
2
f ).

Proof. The coefficients of the product of two polynomials f , g ∈ R is given
in [24] as

(fg)[i] =

i∑
k=0

f [k]g[i− k]−
n∑

k=i+1

f [k]g[i+ n− k].

For the variance of the product XY of two independent random variables X, Y
we have that σ2

XY = E(X)2σ2
Y + E(Y )2σ2

X + σ2
Xσ

2
Y , where E(X) and E(Y ) are

the expectations of X and Y respectively, whereas for the variance of the sum
X + Y we have σ2

X+Y = σ2
X + σ2

Y . The coefficients (fg)[i] of fg hence are the
sum of n products of the coefficients of f and g. The claimed result follows. ut

3.1 Expressions for the Critical Quantities

We next establish the critical quantities after BGV PreMult, KeySwitch and
ModSwitch, as implemented in HElib. We consider the multiplication of two ci-
phertexts, where one is the output of at least one multiplication, and the other is
fresh. Let ct0 = (ct0[0], ct0[1]) be a ciphertext, which is not fresh, encryptingm0

at level i with critical quantity v0 = [< ct0, sk >]Qi . Let ct1 = (ct1[0], ct1[1])
be a fresh ciphertext encrypting m1 with critical quantity v1 = [< ct1, sk >]QL

.
Furthermore, let (ctpm[0], ctpm[1], ctpm[2]) := PreMult(ct0, ct1) denote the
output of pre-multiplication, (ctks[0], ctks[1]) := KeySwitch(ctpm) denote the
output of key switching and (ctms[0], ctms[1]) := ModSwitch(ctks) denote the
the output of modulus switching. These ciphertexts all encrypt [m0m1]t with
critical quantities vpm, vks and vms respectively.

We first determine the BGV critical quantity vpm of (cpm0 , cpm1 , cpm2 ).

Lemma 4. With the notation as above, we can express vpm = [v0v1]Qi
.

Proof. For some h1, h2 ∈ N, we have:

vpm = [ctpm[0] + ctpm[1]s+ ctpm[2]s2]Qi

= [ct0[0]ct1[0] + (ct0[0]ct1[1] + ct0[1]ct1[0])s+ ct0[1]ct1[1]s2]Qi

= [(ct0[0] + ct0[1]s)(ct1[0] + ct1[1]s)]Qi

= [([ct0[0] + ct0[1]s]Qi
+ h1Qi)([ct1[0] + ct1[1]s]Qi

+ h2Qi)]Qi
= [v0v1]Qi

.

ut

We next give an expression for the critical quantity vks of ctks, specialised
to the HElib implementation of BGV. Note that, by the definition of the key

switching matrix as given in [22], it holds that: a
(0)
ij + a

(1)
ij s = kD?

j si + teij .
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Lemma 5. With the notation as above, we can express

vks =

 Q
Qi
vpm + t

∑̀
j=1

ct
pm
j [2]e2j


Q

.

Proof. The result follows from:

vks = [< ctks, sk >]Q

=

kctpm[0] +
∑̀
j=1

ct
pm
j [2]a2,j [0] +

kctpm[1] +
∑̀
j=1

ctksj [2]a2,j [1]

 s


Q

=

k(ctpm[0] + ctpm[1]s) +
∑̀
j=1

ctj [2](kD?
j s

2 + te2j)


Q

=

k(ctpm[0] + ctpm[1]s+ ctpm[2]s2) + t
∑̀
j=1

ct
pm
j [2]e2j


Q

.

ut

In HElib, k = Q
Qi

is chosen to be the product of all the special primes and
such that the kvpm term dominates the expression given for vks in Lemma 5. Its
bit length is determined through the following heuristic

log2

(
Dmax ·m · t · σ0 ·

√
12 · `√

φ(m) ln(φ(m))t2h

)
.

This heuristic is taken from the method AddSpecialPrimes() from [23]. Here,
Dmax = maxj∈{1,...,`}D

?
j is the largest digit used in the decomposition of ctpm[2],

m is the dimension of the cyclotomic ring (if it is a power of 2, then m = 2n),
t is the plaintext modulus, σ0 the standard deviation of the error distribution,
usually σ0 = 3.2, and h is the hamming weight of the secret key. The parameter
` is normally set to be 3 by default [22]. This discussion leads to the following
corollary.

Corollary 1. The critical quantity after HElib key switching can be approxi-
mated as

vks ≈
Q

Qi
vpm.

We next give an expression for the critical quantity vms in (cms0 , cms1 ), that
is specialised to the HElib implementation of BGV.

Lemma 6. Let

τi :=
Qi−1
Q

ct[i]−
⌊
Qi−1
Q

ct[i]

⌉
t
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be the rounding error associated with the critical quantity. With the remaining
notation as above, we can express

vms =

[
Qi−1
Q

vks + τ0 + τ1s

]
Qi−1

.

Proof. The modulus switching procedure for switching from a modulus Q to a
modulus Qi−1 scales the ciphertext by the factor Qi

Q and rounds it to the nearest
integer, such that it is again encrypting the same message modulo t as before
the modulus switching. We assume τi to be uniformly randomly distributed in
the interval

(
− t

2 ,
t
2

]
, which is in line with previous work [11, 13]. The result then

follows from:

vms = [< ctms, sk >]Qi−1
=

[⌊
Qi−1
Q

ctks[0]

⌉
t

+

⌊
Qi−1
Q

ctks[1]

⌉
t

s

]
Qi−1

=

[
Qi−1
Q

ctks[0] + τ0 +
Qi−1
Q

ctks[1]s+ τ1s

]
Qi−1

.

ut

3.2 Variance of the Critical Quantities

We now establish the coefficient variance of the critical quantities after BGV
PreMult, KeySwitch and ModSwitch, as implemented in HElib. We first deter-
mine the coefficient variance of the critical quantity after key switching.

Lemma 7. Let KeySwitch(ctpm) = (ctks[0], ctks[1]) be the ciphertext after key
switching and vks its critical quantity. Then the random variable describing vks
has coefficient variance

σ2
ks =

(
Q

Qi

)2

σ2
pm +

t2nσ2
0

12

∑̀
j=1

(D?
j )2,

where σ2
pm is the coefficient variance of vpm, and ` is the number of digits.

Proof. By Lemma 5, we have vks =

[
Q
Qi
vpm + t

∑̀
j=1

c2,je2j

]
Q

. We therefore get

for the coefficient variance

σ2
ks = σ2

Q
Qi
vpm[i]

+ σ2

t
∑̀
j=1

ct
pm
j [2]e2j

=

(
Q

Qi

)2

σ2
vpm[i] + t2

∑̀
j=1

nσ2
ctpmj [2]σ

2
e2j

from which the results follows. ut
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We next introduce the main result of this section, the coefficient variance
of the critical quantity after modulus switching in HElib. Our key observa-
tion is that, in this setting, the coefficient variance of the critical quantity after
ModSwitch is solely dependent on h and t, and not on the input critical quantities
of the ciphertexts that are being multiplied. Hence, it is not dependent on the
number of multiplications that were carried out previously on each respective
ciphertext.

Lemma 8. In HElib, if ||vpm|| � Qi−1

Qi
, the critical quantity after modulus

switching from a modulus Q to a modulus Qi−1 for a ciphertext ctms encrypting
a product m can be closely approximated by the term

vms = [τ0 + τ1s]Qi−1
.

The variance of the distribution of the coefficients of vms can be closely approx-

imated by σ2
ms ≈ t2

12 (1 + h), where h is the hamming weight of the secret key.

Proof. Let ctks be the ciphertext and vks = [< ctks, sk >]Q the critical quan-
tity of the ciphertext after key switching. By Lemma 6 we have for the critical
quantity after modulus switching:

vms =

[
Qi−1
Q

vks + τ0 + τ1s

]
Qi−1

.

Using Lemma 5 we obtain:

vms =

Qi−1
Q

 Q
Qi
vpm + t

∑̀
j=1

e2,jct
pm
j [2]


Q

+ τ0 + τ1s


Qi−1

=

Qi−1
Qi

vpm +
Qi−1
Q

t
∑̀
j=1

e2jct
pm
j [2] + τ0 + τ1s


Qi−1

≈

Qi−1
Q

t
∑̀
j=1

e2jct
pm
j [2] + τ0 + τ1s


Qi−1

,

where the last line holds due to the assumption that ||vpm|| � Qi

Qi−1
. We see

in [22] that log2

(
Qi

Qi−1

)
≥ 36 for all i, and hence the first part of the sum is

negligible. We further see in Section 4 that log2(||vpm||∞) ≤ 22, for n ≤ 215, so

this assumption is reasonable. Next, by Corollary 1, Q
Qi

is chosen such that Q
Qi
vpm

dominates t
∑̀
j=1

e2jct
pm
j [2]. That is, [ QQi

||vpm|| ≥
∣∣∣∣∣∣∣∣t ∑̀

j=1

e2jct
pm
j [2]

∣∣∣∣∣∣∣∣. Thus,

Qi−1
Q

∣∣∣∣∣∣∣∣t∑̀
j=1

e2jct
pm
j [2]

∣∣∣∣∣∣∣∣ ≤ Qi−1
Q
||vpm|| ≤

Qi−1
Q

Qi
Qi−1

=
Qi
Q
,

11



and so this term is also negligible. We obtain the claimed approximation for vms.
Since the coefficients of τj for j ∈ {0, 1} are distributed continuously uni-

formly randomly in the interval
(
− t

2 ,
t
2

]
, they have expectation 0 and variance

σ2
τj [i]

= t2

12 , for i ∈ {1, . . . , n}. Using Lemma 3, and the variance of the HElib

secret distribution established in Section 2.5, we obtain the following for the
variance of the coefficients of τ0 + τ1s :

σ2
ms = σ2

(τ0+τ1s)[i]
= σ2

τ0[i]
+ σ2

τ1s[i]
= σ2

τ0[i]
+ nσ2

τ1[i]
σ2
s[i] =

t2

12
+ n

t2

12

h

n
,

from which the claimed result follows. ut

We can specialize Lemma 8 to the situation of our experiments.

Corollary 2. The coefficient standard deviation σms of the critical quantity vms
after modulus switching as implemented in HElib, with dense secret key and
plaintext modulus t = 3, is given by

σms =
1

2

√
3 +

3

2
n.

We now determine the coefficient variance of the critical quantity after
PreMult in HElib, when considering the multiplication of two ciphertexts, at
least one of which is not fresh.

Lemma 9. Let ct0 be a ciphertext after modulus switching to level 0 ≤ i < L.
Let ct1 be a ciphertext at level i < j ≤ L. In HElib, the coefficients of the critical
quantity vpm of the ciphertext ctpm = PreMult(ct0, ct1) have variance

σ2
pm =

t4n

72
(1 + h)2.

Proof. Since the ciphertexts ct0 and ct1 are at different levels, a common ci-
phertext modulus is calculated as follows in HElib [22].

Let v0 and v1 be the critical quantities and Qi and Qj the ciphertext moduli
of ct0 and ct1 respectively. The new common ciphertext modulus Q is chosen
such that:

Q

Qi
v0 ≈ vms ≈

Q

Qj
v1, (1)

where vms is the critical quantity after modulus switching ct0 and ct1 to Q.
Since ct1 has been modulus switched to level j, and the critical quantity after
modulus switching is independent of the message, we have v1 = vms. Hence
by Equation 1 we have Q = Qj . Let v0 be the critical quantity after modulus
switching ct0 to Qj . Then we have:

v0 =

[⌊
Qj
Qi

ct0[0]

⌉
t

+

⌊
Qj
Qi

ct0[1]

⌉
t

s

]
Qj

=

[
Qj
Qi

(ct0[0] + ct0[1]s) + τ0 + τ1s

]
Qj

12



=

[
Qj
Qi
v0 + vms

]
Qj

≈ [vms + vms]Qj ,

where the last approximation holds by Equation 1. Using Lemma 4 and Lemma 8,
we obtain the claimed variance as follows:

σ2
pm = n(σ2

ms + σ2
ms)σ

2
ms = 2nσ4

ms = 2n

(
t2

12
(1 + h)

)2

=
t4n

72
(1 + h)2.

ut

We can specialize Lemma 9 to the situation of our experiments.

Corollary 3. The coefficient standard deviation σpm of the critical quantity vpm
after PreMult as implemented in HElib, with dense secret key and plaintext mod-
ulus t = 3, is given by

σpm =
3

2

(
1 +

n

2

)√n

2
.

4 Experimental Verification

In this section, we confirm the theoretical results that we obtained in Section 3
experimentally. We compare the predicted standard deviation of the critical
quantity after HElib operations with the point estimator of the observed stan-
dard deviation of the critical quantity of HElib ciphertexts, over a data set of
10000 trials.

In more detail, we evaluated several circuits for various parameter sets in
HElib v. 2.2.1 [23]. We evaluated each circuit 10000 times for each parameter
set. We considered circuits with γ multiplications, for 1 ≤ γ ≤ 5 as follows. For
one multiplication, we multiplied two fresh ciphertexts, applied key switching to
the result and modulus switched to the next level. For two multiplications, we
multiplied two fresh ciphertexts, applied key switching to the result, and modulus
switched to the next level. We then multiplied the resulting ciphertext with a
fresh one, applied key switching and modulus switching. For three, four and five
multiplications, we follow the same methodology, so that at each multiplication,
we multiply a fresh ciphertext with the output of the previous multiplication.

We recorded the critical quantities of the ciphertext at each stage in the
last multiplication in each circuit. That is, in the case of one multiplication,
they were calculated directly after the first pre-multiplication, key switching
and modulus switching. In the case of two multiplications, they were calculated
after the second pre-multiplication, key switching and modulus switching; and
so on.

The parameter sets we used are given in abbreviated form in the Tables 1 -
3. The full parameter sets can be found in Appendix A of the eprint version [14],
giving the bit length of the moduli in the moduli chain, which is necessary for
calculating the key switching heuristics; and estimates of the security (based on
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the lattice estimator [2]). Our goal was to choose several parameter sets, each
with a security level of 128 bits or above. To be able to compare among multiple
sets of parameters for a fixed multiplicative depth, some insecure parameter sets
were included, if no secure ones could be found. For the parameter sets with
n = 16384 and n = 32768, the same bit length for the moduli chain was set, but
δ was varied to observe the effects of the resolution of the moduli chain on the
critical quantity.

The experimental results observed for PreMult KeySwitch and
ModSwitch can be seen in Tables 1 to 3 respectively. In the tables, the
column Heuristic gives the theoretically obtained standard deviations for
PreMult (Corollary 3) KeySwitch (Corollary 7) and ModSwitch (Corollary 2),
and the column σest,op for op ∈ {pm, ks,ms} gives the experimentally obtained

sample standard deviation. The column ∆i :=
|σop−σest,op|

σop
·100 for i ∈ {1, . . . , 5}

gives the observed difference between theory and practice for each circuit as a
percentage. The first line in each table gives the number of multiplications that
were evaluated. The results for one pre-multiplication are not presented, since in
this case the conditions of Lemma 9 are not satisfied, and hence the theoretical
results are not applicable. Indeed, the theoretical results assume that both input
ciphertexts have been freshly modulus switched. This is correct from the second
multiplication on: one ciphertext is the result of a previous multiplication and
therefore was modulus switched just before. The second ciphertext is a fresh
encryption and therefore at a higher level as the first. To make levels match
this ciphertext is modulus switched, too. The only exception to this is the first
multiplication, where to fresh ciphertexts with therefore different initial critical
quantities are multiplied. Since the a multiplication is normally followed by a
modulus switching and the exact noise estimates of the first multiplication are
therefore no very important, we did not include this special case here.

For PreMult we see from Table 1 that the experimental results deviate from
the theoretical ones by at most 2.1%, and for all but six values the deviation is
less than 1%. ForModSwitch we see from Table 3 that the experimental results
deviate by at most 1.1% and for all but two values the deviation is less than 1%.
The standard error tells us to expect a deviation of the experimental from the
theoretical results of approximately 1√

n
, where n is the number of trials. Since we

have n = 10000 for all experiments, this means we are to expect a deviation of
about 1√

10000
= 1%. That is, the deviations of the experimental results from the

theoretical ones are what is to be empirically expected. We can hence consider
our theoretical results to be experimentally confirmed for pre-multiplication and
modulus switching. Further, we conclude that our results are near-optimal.

The experimental results observed for KeySwitch can be seen in Table 2.
For KeySwitch the deviations that we observe are larger, between 0.14% and
16.88%. This can be explained by the fact that we need approximations to obtain
a calculable heuristic, for example estimating D?

j as the maximal value among
all j ∈ {1, . . . , `}.

Our experiments consider circuits with up to five multiplications. The results
confirm Lemma 8, which shows that the noise after modulus switching is inde-
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pendent of the number of multiplications computed previously. The same result
would also apply in a deeper circuit, if a modulus switching were applied after
each multiplication. Therefore, experimental results for circuits with more mul-
tiplications have not been included since they do not provide new information.

(n,L, δ)
2 3 4 5

Heuristic σest,pm ∆2 σest,pm ∆3 σest,pm ∆4 σest,pm ∆5

(4096, 2, 6) 17.085 17.095 0.60% - - - - - -

(8192, 3, 6)
18.585

18.599 0.96% 18.596 0.77% - - - -

(8192, 4, 10) 18.590 0.35% 18.575 0.70% 18.584 0.12% - -

(16384, 5, 3)
20.085

20.095 0.66% 20.087 1.35% 20.082 0.12% 20.104 1.33%

(16384, 5, 6) 20.054 2.17% 20.101 1.09% 20.071 1.01% 20.105 1.42%

(32768, 7, 3)
21.585

21.580 0.37% 21.574 0.77% 21.591 0.40% 21.576 0.66%

(32768, 7, 6) 21.576 0.62% 21.590 0.37% 21.592 0.50% 21.586 0.89%

Table 1: Estimated and theoretical standard deviations of the critical quantity
after pre-multiplication in bits.

(n,L, δ) Heuristic
2 3 4 5

σest,ks ∆2 σest,ks ∆3 σest,ks ∆4 σest,ks ∆5

(4096, 2, 6) 62.924 63.13 15.44% - - - - - -

(8192, 3, 6) 63.465 63.69 16.88% 63.61 10.92% - - - -

(8192, 4, 10) 66.492 66.549 3.99% 66.540 3.33% 66.520 1.94% - -

(16384, 5, 3) 121.964 122.076 8.08% 122.081 8.47% 122.044 5.67% 122.013 3.45%

(16384, 5, 6) 67.065 67.145 5.67% 67.117 3.65% 67.113 3.38% 67.091 1.84%

(32768, 7, 3) 183.388 183.398 0.69% 183.392 0.24% 183.390 0.14% 183.401 0.88%

(32768, 7, 6) 125.387 125.445 4.07% 125.449 4.36% 125.443 3.93% 125.425 2.67%

Table 2: Theoretical and experimental standard deviation of the critical quantity
after key switching in bits.

5 Comparison with Other Noise Heuristics

In this section, to illustrate the effectiveness of our HElib-specific approach, we
compare our noise analysis with the prior heuristic noise analyses of BGV given
in [13], [22] and [25]. In particular, these prior works all give bounds on the
canonical norm of either the BGV critical quantity ([13, 22]) or the infinity
norm of the BGV noise ([25]). In order to compare our results with these works,
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(n,L, δ)
1 2 3 4 5

Heur. σest,ms ∆1 σest,ms ∆2 σest,ms ∆3 σest,ms ∆4 σest,ms ∆5

(2048, 1, 3) 4.793 4.779 0.97% - - - - - - - -

(4096, 1, 3)
5.293

5.277 1.12% - - - - - - - -

(4096, 2, 6) 5.298 0.36% 5.294 0.07% - - - - - -

(8192, 1, 3)

5.793

5.806 0.94% - - - - - - - -

(8192, 3, 6) 5.796 0.24% 5.797 0.31% 5.800 0.55% - - - -

(8192, 4, 10) 5.780 0.87% 5.799 0.47% 5.793 0.02% 5.791 0.13% - -

(16384, 5, 3)
6.293

6.294 0.11% 6.294 0.13% 6.295 0.14% 6.293 0.02% 6.299 0.47%

(16384, 5, 6) 6.300 0.53% 6.280 0.87% 6.301 0.55% 6.295 0.16% 6.299 0.43%

(32768, 7, 3)
6.793

6.790 0.19% 6.794 0.09% 6.794 0.13% 6.791 0.14% 6.789 0.23%

(32768, 7, 6) 6.782 0.70% 6.793 0.05% 6.792 0.03% 6.793 0.05% 6.793 0.12%

Table 3: Theoretical and experimental standard deviation of the critical quantity
after modulus switching in bits.

we therefore also need to derive appropriate bounds on the critical quantity and
noise in HElib BGV ciphertexts from the results obtained in Section 3.

We will give the comparison with related work for a circuit consisting of two
multiplications. This is done because the first multiplication is a special case,
for which Lemma 9 does not apply. If we multiply two ciphertexts which are not
at the same level, ModSwitch is first applied to the ciphertext at the highest
level, in order for both ciphertexts to be at the same level. This means that
from the second multiplication onwards, the noise in the input ciphertexts is
always the noise resulting from ModSwitch. Only in the first multiplication are
the input ciphertexts fresh ciphertexts, which leads to a different expression for
the standard deviation of the critical quantity after pre-multiplication.

5.1 Bounding the Critical Quantity

We use Iliashenko’s approach [24], recalled in Lemma 1, to give a bound on the
canonical norm of the critical quantity. To bound the infinity norm of the criti-
cal quantity, for pre-multiplication and modulus switching, we show the critical
quantity is distributed as a Normal random variable, and use Lemma 2. For key
switching, applying the Kolmogorov-Smirnov test [26, 34] to our experimental
data indicated that the critical quantity was not Normal (see Appendix B of the
eprint version [14]. We obtain a bound on the infinity norm of the critical quan-
tity after key switching using bounds on the infinity norms of the constituent
polynomials that make up the critical quantity expression. In particular, since
we do not use the standard deviation of the coefficients of the critical quantity
after key switching to bound the critical quantity, it does not matter that the
theoretical results for the standard deviation as shown in Table 2 are less tight.

In Lemma 10 we show that the distribution of the critical quantity after
pre-multiplication and modulus switching can be approximated by a Normal
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distribution. Similar results were given in [30] for the distribution of the noise
after these operations.

Lemma 10. Let ctpm and ctms be the ciphertexts after pre-multiplication and
modulus switching respectively. Let vpm = [ctpm[0] + ctpm[1]s+ ctpm[2]s2]q and
vms = [ctms[0] + ctms[1]s]q be their respective critical quantities. Then

vpm[i] ∼ N (0, σ2
pm)

vms[i] ∼ N (0, σ2
ms),

for all i, where σ2
pm and σ2

ms are the coefficient variances given in Lemmas 8
and 9 respectively.

Proof. Deferred to Appendix C of the eprint version [14]. ut

It remains to bound the critical quantity after key switching.

Lemma 11. The critical quantity after key switching in HElib can be bounded
as

||vks||∞ ≤ 10kσpm + 5t`nDmaxσ0 ,

where Dmax = maxj=1,...,`D
?
j , the maximal digit in the decomposition of ct[2].

Proof. Using the expression for vks given in Lemma 5, we can bound

||vks||∞ =
∣∣∣∣ Q
Qi
vpm + t

∑̀
j=1

ct
pm
j [2]e2j

∣∣∣∣
∞ ≤

Q

Qi
||vpm||∞ + t

∑̀
j=1

n||ctpmj [2]||∞||e2j ||∞

≤ Q

Qi
10σpm + t`n

Dmax

2
10σ0 = kσpm + 5t`nDmaxσ0,

where for bounds on ||e2,j ||∞ and ||vpm||∞, the normality of their distributions,
and hence Lemma 2, was used. ut

5.2 Bounding the Noise

While our work focuses on the critical quantity, the work [25] uses the noise as
in Definition 2. To facilitate comparison, we adapt our heuristics as follows.

Lemma 12. Let ctpm, ctks and ctms be the ciphertexts after pre-
multiplication, key switching and modulus switching. Let eop be their noises,
for op ∈ {pm, ks,ms}. Then we have for the variances σ2

pm,e, σ
2
ks,e, σ

2
ms,e of the

noise:

σ2
pm,e =

n

144
(2t2(1 + h)2 + 17t+ 26)

σ2
ms,e =

1

12
(2 + h).

σ2
ks,e =

(
Q

Qi

)2

σ2
pm,e +

nσ2
0

12

∑̀
j=1

(D?
j )2.
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Proof. Deferred to Appendix D of the eprint version [14]. ut

It is shown in [30] that for pre-multiplication and modulus switching, the
noise is distributed as a Normal random variable. We can then use Lemma 2
to give a bound on the infinity norm. It remains to bound the noise after key
switching.

Lemma 13. The noise after key switching in HElib can be bounded as

||eks||∞ ≤
Q

Qi
10σpm,e + 5`nDmaxσ0 .

Proof. Appendix D of the eprint version [14] shows that eks = Q
Qi
epm +∑̀

j=1

ct
pm
j [2]e2j . Hence

||eks||∞ =
∣∣∣∣ Q
Qi
epm +

∑̀
j=1

ct
pm
j [2]e2j

∣∣∣∣
∞ ≤

Q

Qi
||epm||∞ +

∑̀
j=1

n||ctpmj [2]||∞||e2j ||∞,

from which the claim follows. ut

5.3 Comparison of Critical Quantity Bounds with [13] and [22]

The canonical norm bounds stated in [13] and [22] are recalled in Appendix E of
the eprint version [14]. We present in Table 4 (for pre-multiplication and modulus
switching) and in Table 5 (for key switching) the results of comparing the bounds
in [13] and [22] with our bounds in the infinity and canonical norms developed in
Section 5.1. We compare with the experimentally obtained infinity norms after
two pre-multiplications, key switches and modulus switches (columns || · ||∞).
Note that since the noise after modulus switching does not depend on the input
noise, the infinity norm is not dependent on the number of multiplications (see
Table 13 in Appendix G.2 in the eprint version [14]).

Tables 4 and 5 show that both our bounds on the infinity norm and on the
canonical norm are tighter than the ones given in the two works we compare with.
We also note that the key switching bound from [22] seems to underestimate the
key switching noise by about 3 bits. This could lead to decryption errors.

5.4 Comparison of Noise Bounds with [25]

We next compare our noise bounds, developed in Section 5.2, with the noise
bounds presented in [25]. We present results only for pre-multiplication and
modulus switching. We do not compare with the key switching bounds in [25]
since they modulus switch from the special modulus to the ciphertext modulus
directly after key switching. This reduces the noise significantly and makes it
even smaller than the pre-multiplication noise [25]. This is not the case in the
HElib implementation, so the comparison would not be very meaningful.
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(n,L, δ)
PreMult ModSwitch

|| · ||∞ B∞ Bcan [13] [22] || · ||∞ B∞ Bcan [13] [22]

(4096, 2, 6) 18.94 20.41 25.67 28.17 44.42 7.15 8.61 13.88 14.09 22.21

(8192, 3, 6) 20.52
21.91 27.67 30.17 47.53

7.72
9.11 14.88 15.08 23.76

(8192, 4, 6) 20.51 7.73

(16384, 5, 3) 22.08
23.41 29.67 32.17 50.63

8.28
9.61 15.88 16.09 25.31

(16384, 5, 6) 22.03 8.29

(32768, 7, 3) 23.07
24.91 31.67 34.17 53.73

8.89
10.11 16.88 17.09 26.86

(32768, 7, 6) 23.68 8.89

Table 4: Comparison of the infinity norm of the experimental results with our
theoretical bounds on the infinity norm B∞ and the canonical norm Bcan of the
critical quantity, with the results from [13] and [22].

(n,L, δ) || · ||∞ B∞ Bcan [13] [22]

(4096, 2, 6) 65.078 65.407 70.671 71.848 62.435

(8192, 3, 6) 65.687 66.907 72.670 73.848 63.493

(8192, 4, 10) 68.526 69.907 76.670 76.848 66.493

(16384, 5, 3) 124.115 125.407 131.670 131.848 121.546

(16384, 5, 6) 69.174 70.407 76.670 76.848 66.546

(32768, 7, 3) 185.204 186.907 193.670 193.848 182.596

(32768, 7, 6) 127.539 128.907 135.67 135.848 124.596

Table 5: Comparison of the experimentally obtained bound on the infinity norm
of the critical quantity after key switching with theoretical bounds on the infinity
norm and the canonical norm with [13] and [22]. The values are given in bits.

The noise bounds stated in [25] are recalled in Appendix F of the eprint
version [14]. Table 6 gives the results of comparing the bounds in [25] with our
bounds in the infinity and canonical norms developed in Section 5.2. The columns
|| · ||∞ contain the infinity norm after the second pre-multiplication and modulus
switching respectively, while results for all multiplications are given in Table 15
in Appendix G.3 of the eprint version [14].

Table 6 shows that our bounds for pre-multiplication are tighter than the
ones given by [25]. For modulus switching, the results of [25] are closer to the
experimentally obtained values, but are underestimating them. Since their re-
sults were developed considering PALISADE [31], the difference may be due to
differences in the implementation in these two libraries. The estimation of the
ring expansion factor as γR ≈ 2

√
n may also underestimate the noise polynomial

in certain cases.

In summary, our comparisons demonstrate that relying on prior BGV noise
analyses to estimate the noise growth in BGV HElib ciphertexts might lead to
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(n,L, δ)
PreMult ModSwitch

|| · ||∞ B∞ Bcan [25] || · ||∞ B∞ Bcan [25]

(4096, 2, 6) 17.99 18.82 24.09 15.58 6.22 7.03 12.95 6.01

(8192, 3, 6) 19.56
20.32 26.09 16.58

6.77
7.53 13.95 6.51

(8192, 4, 10) 19.59 6.80

(16384, 5, 3) 21.13
21.82 28.09 17.58

7.35
8.03 14.95 7.01

(16384, 5, 6) 21.16 7.34

(32768, 7, 3) 22.68
23.32 30.09 18.58

7.90
8.53 15.95 7.50

(32768, 7, 6) 22.69 7.90

Table 6: Comparison of the bounds on the infinity norm of the noise after 2
multiplications for pre-multiplications and modulus switching with the results
from [25] in bits.

decryption errors. This further emphasises the value of implementation specific
noise analyses, as we have presented here for HElib.

6 Optimizations and Tradeoffs

In this section, we show how our analysis can be applied to give an optimized ra-
tio between ciphertext moduli in the moduli chain, and discuss the improvements
that this could enable.

The moduli chain in HElib is constructed from three chosen sets of primes:
small primes, normal primes and special primes [22]. The ciphertext moduli
are formed as products of elements from special primes and normal primes.
The product of all the special primes forms the factor k, by which the current
ciphertext modulus is multiplied to obtain the modulus for key switching. In
contrast to the construction of ciphertext primes, the factor k always consists of
all the special primes.

Let δ be the resolution parameter. The default setting is δ = 3, but it
can be customized to δ ∈ {1, . . . , 10}. The normal primes are all of the same
bit size b, where b ∈ {54, . . . , 60}. The small primes consist of two primes
of bit size c =

⌊
2b
3

⌉
∈ {36, . . . , 40} and one prime of size d = b − δ2t > c,

where t = 0, 1, . . . can be chosen as needed. Therefore, the ratio Qi

Qi−1
between

the ciphertext moduli of two adjacent levels is always at least 36 bits, but is
more likely bigger. The smallest ratio of Qi

Qi−1
that was observed in our ex-

periments for different values of δ was 54 bits, where we obtained this ratio
by calling context.productOfPrimes(context.getCtxtPrimes()) after each
modulus switching and divided the results. Our experiments used δ ∈ {3, 6, 10}.
In these cases, d ∈ {42, . . . , 57} for δ = 3, d ∈ {42, . . . , 54} for δ = 6 and
d ∈ {44, . . . , 50} for δ = 10.
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The special primes are chosen such that k||vpm||can ≥
∣∣∣∣t ∑̀

j=1

ctj [2]e2,j
∣∣∣∣can,

in order to keep the modulus switching noise as small as possible. However, as
can be seen from Section 3, this condition is sufficient but not necessary. To
achieve a constant modulus switching noise, we require[⌈

Qi−1
Q

ctks[0]

⌋
+

⌈
Qi−1
Q

ctks[1]

⌋
s

]
Qi−1

≈ [τ0 + τ1s]Qi−1 . (2)

In the proof of Lemma 8 we have seen that

∣∣∣∣Qi−1
Q

vks
∣∣∣∣
∞ ≈

∣∣∣∣Qi−1
Q

t
∑̀
j=1

ct
pm
j [2]e2j

∣∣∣∣
∞ =

∣∣∣∣Qi−1
Qik

t
∑̀
j=1

ct
pm
j [2]e2j

∣∣∣∣
∞. (3)

To fulfill the conditions of Equation 2, this term needs to be smaller than
the modulus switching noise. This can be achieved by either making Qi

Qi−1
or k

sufficiently large. We will look at both those values, assuming them in turn to
be fixed. From Lemma 11 we have

∣∣∣∣Qi−1
Qik

t
∑

ct
pm
j [2]e2j

∣∣∣∣
∞ ≤

Qi−1
Qik

t`nDmax5σ0, (4)

where Dmax = maxj∈{1,...,`}(D
?
j ) is the maximal digit that is used for decompo-

sition during key switching. As stated in Lemma 2, we have

ασms ≤ ||τ0 + τ1s||∞, (5)

with probability α = 1 − erf
(
β√
2

)
. Depending on β, we therefore obtain for k

by combining Equations 3,4 and 5

Qi−1Dmaxt`n5σ0
Qiσms

≤ k. (6)

The values we observed for Dmax in our experiments can be found in Table 12
in Appendix G.1 of the eprint version [14]. We calculate the values for k needed
for our parameter sets based Equation 6 for two values of Qi

Qi−1
: 36 bits, since

this is the minimal value possible in HElib; and 54 bits, since this was the most
common value we observed in practice. The values for k shown in Table 7 are
for α ∈ {0.01, 0.001, 0.0001}.

We see that we can optimize k for α = 0.01 by up to 8 bits if log2

(
Qi

Qi−1

)
= 36

but can reach an optimization of up to 26 bits if log2

(
Qi

Qi−1

)
= 54.

If we assume k to be constant, then we get from Equation 2

Qi
Qi−1

>
Dmaxt`n5σ0
βσmsk

.
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log2

(
Qi

Qi−1

)
= 36 log2

(
Qi

Qi−1

)
= 54

(n,L, δ) α = 0.01 α = 0.001 α = 0.0001 α = 0.01 α = 0.001 α = 0.0001

(2048, 1, 3) 37 41 44 19 22 25

(4096, 1, 3) 39 42 45 21 24 27

(4096, 2, 6) 39 42 45 21 24 27

(8192, 1, 3) 40 43 47 22 25 28

(8192, 3, 6) 40 43 47 22 25 28

(8192, 4, 10) 43 46 50 25 28 31

(16384, 5, 3) 98 101 104 80 83 86

(16384, 5, 6) 43 46 49 25 28 31

(32768, 7, 3) 166 163 166 141 144 147

(32768, 7, 6) 101 105 108 83 86 89

Table 7: Optimized values for k in bits for different failure probabilities α and
ciphertext ratios.

The result for the ratio Qi

Qi−1
can be found in Table 8, where we assumed as

values for k the values observed in our experiments, as specified in Table 9 in
Appendix A of the eprint version [14].

(n,L, δ) α = 0.01 α = 0.001 α = 0.0001

(2048, 1, 3) 29 32 35

(4096, 1, 3) 30 33 36

(4096, 2, 6) 30 33 36

(8192, 1, 3) 32 35 38

(8192, 3, 6) 32 35 38

(8192, 4, 10) 32 35 38

(16384, 5, 3) 33 36 39

(16384, 5, 6) 33 36 39

(32768, 7, 3) 34 37 40

(32768, 7, 6) 34 37 40

Table 8: Ratio between ciphertext moduli in bits for different failure probabilities
α.

We see from Table 8 that we can reduce the ratio between ciphertext moduli
by a minimum of 2 bits, if the ratio was never bigger than the smallest prime in
“small prime”. We can reduce the ratio by up to 25 bits compared to the ratios
we practically observed in our experiments.

The optimization we propose leads to a trade-off: we can either reduce the
size of the special modulus during key switching, or the ratio between ciphertext
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moduli and hence reach a larger multiplicative depth for the same parameter
sets. These two optimizations may be of interest in different applications.

For example, in a non-interactive protocol, bootstrapping represents a bot-
tleneck. In this case, we would like to maximize the number of multiplications
before having to bootstrap. Therefore, optimizing the ratio between the cipher-
text moduli and thus reaching a larger multiplicative depth for the same param-
eter set optimizes a circuit. In the somewhat homomorphic encryption setting,
increasing the number of ciphertext moduli for a fixed parameter set may per-
mit to perform a higher-depth computation with a smaller parameter set, thus
improving performance.

On the other hand, in a client-aided outsourced computation protocol, boot-
strapping is replaced by sending the ciphertext to the client for recryption.,
and is no longer a bottleneck. However, in this scenario, evaluation keys for key
switching will have to be generated and exchanged, whose size grows with the
size of the special moduli. In such a case, to save on communication costs and
to make the key switching procedure more efficient, reducing the size of the spe-
cial modulus can be of importance. Since in this case the multiplicative depth is
less important, the ratio between the ciphertext moduli can be increased, hence
allowing for a substantial reduction of the factor k.
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