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Abstract

Structural and magnetic studies of the disorder-induced classical spin liquid
Ho2Ti2−xScxO7−x/2 and the candidate quantum spin liquid Pr2ScNbO7 were performed
through a combination of neutron scattering techniques and computational modelling.

Disorder was investigated in Ho2Ti2−xScxO7−x/2 with x = 0, x = 0.1 and x = 0.5
by doping with Sc ions. The difference in valency between Ti4+ and Sc3+ led to the
need for charge compensating oxygen vacancies. This allowed the introduction of oxygen
vacancies in a controlled manner throughout the structure uniformly. Total scattering and
structural diffuse scattering measurements were performed in conjunction with RMC fits,
Bragg refinements and ab initio density functional theory (DFT) calculations to determine
the location of the vacancies. Not only was it found that the vacancies are located at O(2)
sites but, in addition, other O(2) ions were displaced towards the centre of the tetrahedra
formed by the B-sites.

Crystal electric field (CEF) measurements were performed to determine the effect of
the vacancies on the single-ion magnetism. It was found that the ground state doublet of
the Ho ions next to a vacancy split into two singlets separated by an energy of 0.12 meV.
However, calculations performed at 0.5 K and with a 0.1 T applied magnetic field show
that the Ho ions next to a vacancy developed a moment of 6.2 µB mostly along the 〈111〉
direction but with a 15.2◦ tilt towards the vacancy. Magnetic diffuse scattering mea-
surements were performed to study the effects of disorder on the cooperative magnetism.
While the resulting scattering is qualitatively similar to that of stoichiometric Ho2Ti2O7

[1, 2], the pinch point width broadened as the levels of doping increased. It is possible
that this broadening is caused by the tilting of the moments at the defective-Ho sites.

The structural arrangement of Sc and Nb ions in the highly substituted Pr2ScNbO7

system was studied by means of neutron scattering, DFT and RMC fits. It was found
that the structure with the lowest energy contains a charge ice structure with equal
numbers of Sc and Nb ions in each tetrahedron and with chains of alternating Sc and
Nb. However, this structure is chemically frustrated, since the alternating chains cannot
be accommodated in all directions. Total scattering calculations show that no long-range
order of this lowest energy structure exists, and diffuse scattering calculations using a
single unit cell of the lowest energy structure are in excellent agreement with the measured
data. This suggests that the structure comprises small domains of the lowest energy
structure with Sc/Nb disorder at the domain walls.

CEF analyses were performed on Pr2ScNbO7 to study the effect of the disorder on the
single-ion magnetism. CEF fits were performed on the data, assuming a D3d symmetry
at the Pr sites. This resulted in a doublet ground state, with the first excited state at
2.7 meV. The lowest energy DFT structure contains two different Pr sites. Point-charge-
model CEF calculations predict singlet ground states for both Pr sites, with the first
excited state at 1.2 meV and 4.6 meV. Furthermore, both sites form spiral one-dimensional
chains. Magnetic diffuse scattering measurements were performed to study the effects of
the disorder on the cooperative magnetism, producing uncorrelated scattering. The one-
dimensional arrangement of these ions could explain the measured uncorrelated scattering.
These measurements were used to extract a Pr effective magnetic moment of 2.10(8) µB.
Finally, low energy excitation studies show that, when subtracting the 5 K data from the
lower temperature data, a peak near 0.7 meV energy transfer is present, very similar to
the ones found in Pr2Zr2O7 [3] and Pr2Hf2O7 [4], which were claimed to be a signature of
cooperative quantum fluctuations.

2



Acknowledgements

The work performed in this thesis could have not been done without the support of the
people that help me in many aspects of my life.

To my RHUL supervisor Jon Goff, thank you for all the guidance and help throughout
these past three years, and for giving me an even more profound appreciation for the
experimental sciences. Even in the most difficult times, your constant support was a great
source of reassurance. And, of course, thank you for putting up with all my questions.
Working with you has been a great opportunity.

To my ILL supervisor Lucile Mangin-Thro, for all those long days performing experi-
ments, aligning crystals and, of course, for the constant optimism. Thank you for putting
up with me and my constant visits to your office. You were a huge inspiration and made
me realise that I want to pursue a career as an instrument scientist. And of course Andrew
Wildes, for those quick discussions where we started with a single science question and
spent hours talking about a million other things.

To Thomas Hicken for performing all those DFT calculations and for all the discussions
on the data interpretation. To Claudio Castelnovo, Li Ern and Attila Szabó, for their
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Chapter 1

Introduction

1.1 What are pyrochlores?
The focus of this thesis will be on oxide pyrochlores (or pyrochlore for short), with

general formula A2B2O7, where the A and B atoms are cations.

Pyrochlores belong to the crystallographic space group Fd3̄m (227) and contain 8
formula units per conventional unit cell. The lattice of the pyrochlore can be separated
into 2 sub-lattices, as figure 1.1 shows, with the first sub-lattice composed of the B cations
surrounded by 6 O(2) ions, and a second sub-lattice composed of the A cations forming
tetrahedra surrounding O(1) ions. Because of this, the general formula of pyrochlores is
sometimes expressed as A2B2O(2)6O(1). These two sub-lattices form a cubic unit cell
where the side length usually ranges between 9 and 11 Å [6]. The A and B sites form 3D
arrays of corner sharing tetrahedra, which has key implications for the magnetic properties
of pyrochlores [7], as will be shown later on in the thesis.

Usually, either an A or B site is chosen as the origin for the pyrochlore unit cell.
Table 1.1 shows the ion species, location and coordinate for a unit cell with a B site
as the origin. The location is composed of two values: a number that represents the
multiplicity or how many of that specific ion exist in the unit cell, and a Wyckoff letter
to label that specific site (it has no physical meaning) [8]. To generate the entire unit cell
structure, each of the coordinates of the 4 distinct ions is added to the 4 site symmetries
in the first row of table 1.1. So to generate all A sites you add all the coordinates to
(0,0,0), then (0,1/2,1/2), then (1/2,0,1/2); and finally (1/2,1/2,0), and similarly for the
other 3 ions. Pyrochlores have 192 possible symmetry operations (an operation on the
system that leaves it unchanged), 48 for each site symmetry [8].

Figure 1.1: Separation of the pyrochlore lattice into 2 sub-lattices. Figure acquired from
[5].
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Table 1.1: Pyrochlore structure data from [6].

Ion Location coordinates

(0,0,0; 0,1/2,1/2; 1/2,0,1/2; 1/2,1/2,0) +
A 16d 1/2,1/2,1/2; 1/2,1/4,1/4; 1/4,1/2,1/4; 1/4,1/4,1/2
B 16c 0,0,0; 0,1/4,1/4; 1/4,0,1/4; 1/4,1/4,0

x,1/8,1/8; -x,7/8,7/8; 1/4-x,1/8,1/8; 3/4+x,7/8,7/8;
O(2) 48f 1/8,x,1/8; 7/8,-x,7/8; 1/8,1/4-x,1/8; 7/8,3/4+x,7/8;

1/8,1/8,x; 7/8,7/8,-x; 1/8,1/8,1/4-x; 7/8,7/8,3/4+x
O(1) 8b 3/8,3/8,3/8; 5/8,5/8,5/8

The x-coordinate in table 1.1 characterises the “shape” the O ions form around the
A and B sites [6]. In the full pyrochlore structure, the A cations have an ionic radius of
∼1 Å and have a coordination number of 8, corresponding to 6 O(2) and 2 O(1) nearest
neighbour ions, with the A-O(2) bond lengths longer than the A-O(1) bond lengths by
0.2–0.3 Å. On the other hand, B cations have a smaller ionic radius of ∼0.6 Å and
have a coordination number of 6, corresponding to the octahedra of the surrounding
O(2) ions, with all 6 B-O(2) bonds of equal length. These 8 and 6 coordinations are
sometimes referred to as cubic and octahedral coordination respectively [6]. However, due
to symmetry constraints, either the 8 coordination is a regular cube or the 6 coordination is
a regular octahedron, both cannot simultaneously form regular polyhedra. In fact, in most
pyrochlores, both coordinations form irregular polyhedra. The shape of the polyhedra is
determined by the x-coordinate of the O(2) ions, known as the positional parameter of
the pyrochlore. Using a B site as the origin of the cell, when x=0.3125 the 6 coordinate is
a perfect octahedron (see figure 1.2a) while when x=0.375 the 8 coordination is a perfect
cube (see figure 1.2b). Typical x values range from 0.309 to 0.355 [6].

There are many forms of classifying pyrochlores into subfamilies, but the most common
way is by the valency of the A and B cations: (3+,4+) pyrochlores, where the valency
of the A and B cations are 3+ and 4+ respectively, and the (2+,5+) pyrochlores with
valencies 2+ and 5+. Here the focus will be on (3+,4+), which corresponds to the
majority of the pyrochlores. The A3+ ions are usually ions such as rare earths, Y and

(a) (b)

Figure 1.2: Change in shape of coordination for the A and B ion. (a) When x = 0.3125,
the oxygen ions form a perfect octahedron around the B ion. (b) When x = 0.375, the

oxygen ions form a perfect cube around the A ion. Figures acquired from [6].
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Bi, while the B4+ ions are usually transition metals or any of the group IVa elements
[6]. Due to the wide variety of possible A and B combinations, only restricted by the
ionic radius and charge neutrality, pyrochlores are of great interest. Pyrochlores exhibit a
wide range of properties depending on the precise composition: superconductivity [9, 10],
semiconductivity [11, 12], ferromagnetism and antiferromagnetism [13–15], and magnetic
frustration which will be one of the foci of this thesis. This diversity of behaviour lends
itself the possibility for a wide range of applications, both potential and realised, including:
solar energy conversion [16, 17], nuclear waste disposal [18, 19], electrocatalysis [20, 21]
and thermal barrier coating [22, 23].

These properties can be altered by introducing disorder into the system in the form
of doping (substitution of an A or B ion by a new species), stuffing (changing A ions by
B ions or vice-versa), vacancies, etc. In this thesis, the main focus will be on pyrochlores
with disorder arising from ion substitution on the B sites and oxygen removal. If a large
amount of these types of disorder is introduced in a pyrochlore, a phase transition may
occur to a defect fluorite structure ([AB]2 O7) [24].

Before describing the defect fluorite, the “ideal” fluorite needs to be considered. In the
fluorite structure (BO2) shown in figure 1.3a, the cations form edge shearing tetrahedra,
since all of them are of the same species [25]. In pyrochlores, on the other hand, half of the
tetrahedra are formed by the A cations and the other half by the B cations, and thus the
cations form corner sharing tetrahedra. If the tetrahedra of a fluorite were labelled like
those from a pyrochlore, one can distinguish from figure 1.3 three different oxygen sites:
the 48f sites (O(2) ions), surrounded by two A and two B sites, the 8b sites (O(1) ions),
surrounded by 4 A sites, and the 8a sites surrounded by 4 B sites [25]. The key difference
between the pyrochlore and a fluorite is that the 8a site in a fluorite is always occupied
by an oxygen, while in a pyrochlore the 8a site is empty. Furthermore, the x value of the
48f oxygen in a fluorite is 0.375. The defect fluorite is a variant of the fluorite where the
A and B cations are randomly distributed and not separated as in the pyrochlore, and
all oxygen sites are occupied equally with an average probability of 7/8, i.e. an oxygen
vacancy can be found in any of the 3 oxygen sites [25]. An example of a phase transition
from a pyrochlore to a defect fluorite was found in Ho2Ti2−xZrxO7 by Drey et al. [26] at

(a) (b)

Figure 1.3: (a) The fluorite structure, with the yellow spheres as the B4+ ions and the
red spheres as the O2− ions. (b) 1/8 of the pyrochlore structure, with the blue spheres

as the A3+ ions, the yellow spheres as the B4+ ions and the large red spheres as the O2−

ions. Figures acquired from [25].

16



high levels of doping (x > 1). Some systems, such as Ho2 (Ti1.33Ho0.67) O6.67 [27], may
have a mixture of both structures in the form of clusters.

1.2 What are frustrated systems?
Many pyrochlores containing magnetic ions exhibit a property known as frustration.

Frustration can arise in many systems, such as liquid crystals [28], colloidal monolayers
[29], Core-Collapse Supernova Matter [30] and water ice [31]. However, the focus of this
thesis will be on frustration in magnetic systems. The study of magnetically frustrated
systems is not new, since these types of systems were being investigated even before the
term “frustration” was coined [32, 33]. Due to this frustration, these systems exhibit
properties not found in conventional magnets, such as enhanced magnetocaloric effects
[34], zero or negative thermal expansion [35], enhanced conductivity [36] and enhanced
insulation [37]. Because of this, some of the applications of frustrated magnets are in
refrigeration [38] and hardware for implementing neural networks [39].

Depending on the level of disorder, magnetically frustrated systems are generally sep-
arated into spin glasses, where frustration arises due to site disorder, and geometrically
frustrated systems, where disorder is not needed to produce frustration [40]. Geometri-
cally frustrated systems, as the name indicates, arise due to the site-site interactions being
in conflict as a result of their arrangement in a particular phase [41]. Because of this,
some geometrically frustrated systems are very sensitive to structural disorder, breaking
frustration in the presence of small deviations from stoichiometry [42].

One of the origins of geometrical frustration in magnetism is in the exchange interac-
tions and coupling constant J . Depending on the exchange interaction between electrons,
given by the sign of J , spins can arrange parallel or antiparallel to each other to minimise
the total energy of the system [43]. Thus, in a conventional ferromagnet all the exchange
interactions are satisfied by aligning the moments parallel to each other, and similarly
in a conventional antiferromagnet with antiparallel neighbouring moments. However, in
a magnetically frustrated system the exchange interactions cannot all be satisfied simul-
taneously [44] which leads to the system having a highly degenerate ground state since
there is no unique arrangement of magnetic moments that minimises the energy. This
degeneracy is not unique to just magnetic systems, as a system with a highly degenerate
ground state is often called frustrated independent if the system is magnetic or not [41].
This degeneracy results in these systems having a non-zero residual entropy (entropy that
persists even if the system is cooled arbitrarily close to 0 K) which can be controlled by
an external magnetic field [41]. The evolution of the entropy with temperature allows
for the determination of frustrated systems experimentally, with the drop in entropy near
the ordering temperature for unfrustrated magnets being much more pronounced than for
frustrated magnets [40].

Another very common method of experimentally identifying geometrically frustrated
systems is through the magnetic susceptibility χ. At high temperatures, the susceptibility
follows the Curie-Weiss law [40]

χ =
CC

T −ΘCW

(1.1)

where CC is the Curie constant, T the temperature and ΘCW the Curie-Weiss temperature
defined as the temperature below which the ferromagnetic or antiferromagnetic interac-
tions activate [45]. ΘCW is generally also used to indicate the strength of the dominant
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magnetic interaction [46]. Usually it is 1/χ that is studied as a function of temperature,
since at high temperatures 1/χ follows a straight line. However, in conventional magnets,
as the temperature reaches ΘCW, 1/χ diverges from its linear dependence. This is a way
of measuring the ordering temperature TC of magnetic systems, which for unfrustrated
systems TC ≈ |ΘCW|. In frustrated systems the ordering temperature is much lower due
to the competition of the different exchange interactions that an individual moment feels,
resulting in 1/χ diverging from its linear dependence at a much lower temperature than
ΘCW. Due to these competing interactions, TC is sometimes defined as the temperature
at which ordering freezes out [47, 48].

With the definitions of TC and ΘCW, the degree of frustration in a magnetic system
can be defined using the frustration parameter f [49]

f =
|ΘCW|

TC

(1.2)

This parameter can take any value between 1 for a ferromagnet [40] to ∞ for quantum
spin liquid systems, which will be discussed further in the thesis. Non-frustrated anti-
ferromagnetic systems have an f value between 2 and 5 [50]. A system with f > 10 is
said to be strongly frustrated and where simple theories such as mean-field theory fail
[40]. Finally, it is worth mentioning that the frustration parameter is not only highly
dependent on the shape or structure of the lattice, but also on the dimensionality of the
system [49].

In 2D systems, and to an extent in 3D as it will be shown later on, structures with tri-
angular symmetry very commonly exhibit a form of geometric frustration. In a 2D system,
the simplest way to visualise a geometrically frustrated magnetic system is through the
triangular antiferromagnetic lattice, shown in figure 1.4a, where the spins are equidistant
to each other and feel the same nearest neighbour antiferromagnetic interaction. One
can see that if spins 1 and 2 are antiparallel, i.e. are satisfying the nearest neighbour

(a)

(b)

Figure 1.4: (a) Representation of the 2D triangular antiferromagnetic frustrated system.
(b) The 6 possible ground state configurations of this system. Figures acquired from [51].
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antiferromagnetic interaction, spin 3 can only satisfy the exchange interaction with one of
the two other spins. For this particular example, the system would have 6 possible config-
urations for the ground state: spin 3 antiparallel (parallel) to 2 and parallel (antiparallel)
to 1, and similarly for spin 1 (spins 2 and 3 are antiparallel) and 2 (spins 1 and 3 are
antiparallel) [47]. This arrangement is valid if the system described above has an axis
constraint, where the spin can only be parallel or antiparticle to a certain direction. This
is commonly known as an Ising system. However, if the spins are allowed to rotate freely
in the plane (XY-system), the ground state arrangement would be formed by each spin
vector at 120◦ with each other [52]. This 120◦ arrangement arises from the minimisation
of the Hamiltonian Ĥ. The simplest expression of Ĥ that this system can have if we
assume ONLY nearest neighbour interaction is [53]

Ĥ = −J
∑
〈ij〉

Si · Sj = −J
2

∑
4

(S1 + S2 + S3)2
4 + constant terms (1.3)

where J is the coupling constant which for this case is negative because the exchange
interactions are antiferromagnetic [43], S is the vector spin and 4 refers to the triangle
structure from figure 1.4. One can see that to minimise this Hamiltonian, the summation
of the triangle needs to be zero, thus resulting in a 120◦ rotation.

These triangular structures can be arranged in many ways to form 2D lattices. One
such structure is the kagome lattice, shown in figure 1.5, where each spin has four nearest
neighbours. Figure 1.5 shows two possible ground state configurations for a kagome
structure where spins are allowed to rotate freely in the plane: Q = 0 state (figure 1.5a)
where all spins point either in or out of each triangle, or Q =

√
3×
√

3 (figure 1.5b) where
spins are coplanar [54].

It is worth pointing out that a perfect kagome structure is not always needed to main-
tain geometrical frustration [56–58]. The distorted kagome lattice shown in figure 1.6 still
exhibits all the properties of a geometrically frustrated magnetic system. An example of
a system with the shown distorted kagome lattice is the organically templated iron fluo-

(a) (b)

Figure 1.5: Illustration of (a) the Q = 0 and (b) Q =
√

3 ×
√

3 ground state of the
kagome lattice. Figures acquired from [55].
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Figure 1.6: Polyhedral view of the 2D network of corner/edge-sharing iron octahedra in
I. Figure acquired from [56].

rosulfate [H3N (CH2)2 NH2 (CH2)2 NH2 (CH2)2 NH3]
[
FeII

3 F6 (SO4)2

]
, I for short [56]. This

system is particularly interesting because despite exhibiting the properties of a frustrated
system, such as the divergence of the susceptibility, the system also exhibits magnetic
hysteresis below 18 K which is not common in kagome systems [49, 50, 56]. This is in-
dicative of ferrimagnetic interactions, where spins want to align antiparallel to each other
but the magnitude of the spin or moment pointing in one direction is not the same as the
spin pointing in the opposite direction [59].

The base of many geometrically frustrated 3D systems is the triangular structure,
just like in 2D, which commonly arranges to form tetrahedra. As figure 1.7a shows, the
density of tetrahedra can vary from a closely packed structure, which is the case for the
FCC structure, to isolated non-interacting tetrahedra [40]. The pyrochlore, which is the
main focus of this thesis, sits in between these two extreme cases.

Just as with the 2D kagome lattice, many of the pyrochlores that exhibit Ising frus-
tration are those in which the spins at the corners of the tetrahedra can only point either
towards or away from the centre of the tetrahedra [60], or in other words the system
has axial anisotropy along the 〈111〉 direction. However, unlike the 2D kagome lattice,
frustration occurs if nearest neighbour ferromagnetic interactions are present such that a
spin pointing in/out wants its neighbours to point in the same direction. This results in a
two-in-two-out structure like the one shown in figure 1.7b, satisfied in 6 equivalent ways.

1.3 Spin liquid
An example of a family of geometrically frustrated systems, and the focus of this

thesis, is the spin liquid. A spin liquid is a dynamic arrangement of strongly correlated
spins that does not exhibit long-range order [61]. As a comparison, a spin glass has a
static arrangement of spins with no long-range order [40].

Spin liquids are often divided in two groups: the quantum spin liquid (QSL), with
some candidates given by [62–65], and the classical spin liquid (CSL), with examples
given by [66–68]. The key difference between the QSL and CSL systems is the presence
of entanglement. QSLs exhibit long-range quantum entanglement in which electronic
spins reside in a macroscopic superposition of infinitely many microstates, whereas CSLs
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(a)

(b)

Figure 1.7: (a) The transition from a dense tetrahedral lattice to a sparse system of
non-interacting tetrahedra in 3D. (b) The ground state of a single tetrahedron of spins

with ferromagnetic interactions. Figures acquired from [60] and [40] respectively.

contain particles in localised states [61]. Entanglement in QSLs will be discussed later on
in more detail.

Other parameters can be used to differentiate between a QSL and a CSL. Systems
with small moments are more likely to exhibit QSL behaviour, since a smaller moment
tends to mean larger quantum fluctuations, hence a QSL is more likely to be stabilised.
In addition, both systems have different temperature dependencies. In QSL systems the
spins fluctuate even at 0 K [47], resulting in the frustrated parameter being ∞. On the
other hand, some CSL families do have a freezing temperature TC. TC is usually much
smaller than ΘCW, and thus this CSLs have a large but finite f value. Some CSLs have
even been observed to freeze into an order state, such is the case of Li9Fe3(P2O7)3(PO4)2

[66].

Thus, three different temperature regimes can be defined [48]:

1. The T > ΘCW regime, which corresponds to the paramagnetic phase of the system.

2. The ΘCW > T > TC regime, where spins should order but the system inhibits
this due to the geometric arrangement of the exchange interactions. This regime
is usually termed a cooperative paramagnet [69] and can be of interest due to the
highly non-trivial physics that can emerge here, as attested on the spinel ZnCr2O4

[70].

21



3. The T < TC regime. In a QSL, this regime should not exist, and the system should
remain disordered down to 0 K. In some CSL, the spin fluctuations slow down
dramatically as the temperature is reduced towards TC.

In the following sections, two families of spin liquids will be discussed in more detail:
the classical spin ice and the QSL.

1.3.1 Classical spin ice
Before diving into the topic of classical spin ice, it is worth discussing the water ice

system. The molecule of water consists of two H and a single O atom. These two are held
together by a covalent bond, that is, they share electrons through the bonds to complete
the valence shell. Water ice is the crystalline forms of liquid water. However, the crystal
structure of water ice can take many forms depending on the pressure and temperature
[71, 72]. At ambient pressure, water ice can be found most commonly in the hexagonal
ice form (Ih) [73], shown in figure 1.8.

Two molecules of water (H2O) can form a hydrogen bond due to the dipolar nature
of the molecule. Since the O atom shares two electrons with two H atoms, the side of the
H2O molecule containing the H atoms is less negatively charged than the opposing side.
This makes the H2O molecules electric dipoles, resulting in the negatively charged end of
one water molecule orienting itself to be close to the positive end of a nearby molecule,
forming a hydrogen bond [74]. While this type of bond is much weaker than the covalent
bond, its range is much larger.

Each H2O molecule can form four hydrogen bonds: each H with an O of a near H2O,
and the O with an H from two near H2O molecules [74]. From the perspective of an O
atom, this corresponds to having 2 nearby H (covalent bonds) and two far away H atoms
(hydrogen bonds). This is known as the Bernal-Fowler ice rule [75], and it is this rule that
makes the water ice a non-magnetic geometrically frustrated system, since the H atoms
can be arranged in 6 possible ways to satisfy this rule, which inhibits the system from
reaching an order state at the lowest temperatures.

This was confirmed when measuring the low-temperature properties of water ice, re-
sulting in the system having a finite residual entropy characteristic of frustrated systems.
The entropy of water ice was first calculated by Pauling [31] using the number of possible
configurations of hydrogen bonds which can be formed. For every O atom, 16 possible
configurations of the surrounding H exist, but only 6 of them obey the Bernal-Fowler ice
rule. In addition, every O has a total of 2 full H atoms (4×1/2 H since each H atom

Figure 1.8: Crystal structure of hexagonal water ice (Ih). Figure acquired from [73].
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is shared between two O atoms). Thus, for a system with NO O atoms, the number of
possible ground states is

W = 22NO ×
(

6

16

)NO

=

(
3

2

)NO

(1.4)

since each O–O bond can have two possible positions for the H, giving 22NO possible
H configurations. Using the formula of the configurational entropy S per O atom, the
residual entropy of ice is

S = kB lnW = NkB ln
3

2
≈ 3.36 J/mol K (1.5)

Experimentally, the entropy cannot be observed directly, but it is the change in entropy
between two temperatures that is measured. The entropy in water ice was first measured
by Giauque et al. [76], where the specific heat C(T ) was measured between 10 K and the
gas phase. The entropy was then extracted by integrating the C(T )/T between the two
mentioned limits. The difference between this entropy and the absolute entropy for the gas
phase gave a residual entropy of 3.42 J/mol K [76], similar to the calculated value. Finally,
neutron diffraction measurements have helped to confirm the structural configuration of
H atoms [77–79]. It is worth noting that these calculations and measurements are in bulk
samples, as layered ice has been show to not obey the Bernal-Fowler ice rule [80].

With these ideas, let us discuss the classical spin ice system. A classical spin ice is
a type of classical spin liquid formed mainly in pyrochlores of structure R2B2O7, where
the R cations are magnetic rare-earth ions and the B cations are usually non-magnetic
[81]. It was P. W. Anderson [82] who first observed how an Ising magnetic model on
the pyrochlore lattice could exhibit a ground state entropy equivalent to that of water
ice. These systems were later called “spin ice” and were first observed experimentally 4
decades later by Harris et al. [83].

The distinctive feature of a classical spin ice is the ground state configuration of the
spins at the corners of the tetrahedra of rare earths following a very similar rule to the ice
rule in water ice: each tetrahedron must have two spins pointing in and two spins pointing
out [84]. This two-in-two-out (2I2O) rule is also named the “ice rule”. For these systems
to be frustrated and part of the classical spin liquid family, the interactions between the
4 spins of the corner sharing tetrahedra must be ferromagnetic and must have a strong
single-site Ising anisotropy along the local 〈111〉 axes [85]. The similarities between water
ice and classical spin ice can be seen more clearly in figure 1.9.

Because the overall net spin interaction needs to be a ferromagnetic for the ice rules
to be satisfied, not all rare-earth pyrochlores are classical spin ice. Nd2Zr2O7 for example,
has antiferromagnetically coupled Ising spins, and thus in the ground state the spins are
pointing either all in or all out (AIAO) of the tetrahedra [86].

Due to the similarities with water ice, one can see that the ground state entropy of
classical spin ice systems can be calculated in a very similar way to that of water ice.
A pyrochlore with NT tetrahedra contains 2NT spins since, just as with water ice, each
spin is “shared” between two tetrahedra. Just as with water ice, there are only 6 possible
configurations of spins out of the full 16 that satisfy the ice-rules, and the spins can point
either towards or away from the centre of a tetrahedron. Thus, the number of ground
states can be estimated to be [88]
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(a) (b)

Figure 1.9: Schematic representation of frustration in (a) water ice and (b) classical spin
ice. Figures acquired from [87].

WS = 22NT ×
(

6

16

)NT

=

(
3

2

)NT

(1.6)

and using the same equation for the entropy, but dividing by 2 to get the entropy per
spin, one arrives at a value of (kB/2) ln (3/2). The entropy of Dy2Ti2O7 was determined
by Ramirez et al.[89] following a method similar to the method used by Giauque et al.
[76]: measuring the specific heat from 300 mK to 10 K (in the paramagnetic regime),
as figure 1.10 shows. This produced a residual entropy close to 3.72 J/mol K, similar to
the entropy calculated by Pauling in water ice [31], and even closer to the one measured
experimentally [76]. A similar result was found for Ho2Ti2O7 [68].

The Dy2Ti2O7 and Ho2Ti2O7 systems just mentioned are the two archetype examples
of classical spin ice. Both belong to the family of classical spin liquids due to them having
a large moment µ, and the moment fluctuations slowing down significantly below 0.65 K
[67, 68]. Low temperature calculations of these systems show that the slowing down
of the moments prevents the formation of an ordered state [85]. Furthermore, Dy3+ in
Dy2Ti2O7 and Ho3+ in Ho2Ti2O7 have very similar crystal electric field (CEF) levels, with
the first excited levels at 20.9 meV [90] and 20.4 meV [91] respectively. The key difference
between the energy levels of these two ions is that Dy3+ is a Kramers ion and thus all
the energy levels are doublets, while Ho3+ is a non-Kramers ion and thus some levels are
singlets and some are doublets. Nevertheless, the CEF measurements of both samples
show that the moments in both systems have a strong Ising behaviour, i.e. the moments
only point along the line connecting the O(1) ions, which is an essential ingredient to
their low-temperature spin ice state. Finally, it is because of the large moments and such
a strong anisotropy that moment-tunnelling is frozen out at very low temperatures [47,
92].

Since Ho3+ and Dy3+ are rare earths, both exhibit strong spin-orbit coupling and thus
the total angular momentum J = L+ S is a good quantum number. The theoretical full
magnetic moment can be calculated using [48, 94]

µ = gJJµB (1.7)
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(a)

(b)

Figure 1.10: (a) Specific heat and (b) entropy data for Dy2Ti2O7. The experimental
data is from [89], and the Monte Carlo simulations using the dipolar spin-ice model (and

full figures) is from [93] .

where µB is the Bohr magneton and gJ is the Landé factor [46]

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(1.8)

where L is the total orbital angular momentum and S is the total spin angular momen-
tum. Both, Ho3+ in Ho2Ti2O7 and Dy3+ in Dy2Ti2O7 have a calculated and measured
magnetic moment of around 10µB [95, 96]. These magnetic moments behave as magnetic
dipoles, since they generate a magnetic field that can interact with other nearby magnetic
moments [59]. This is similar to water ice, where a side of the molecule is more negatively
charge than the other. Thus, because the magnetic moments in these systems are strong,
the nearest neighbour exchange interactions are not the only contributor to frustration
and the ice rules, but dipolar interactions (magnetic dipole-dipole interaction) also play
an important role in classical spin ice systems [85]. Dipolar interactions are specially
important at large distances, since their strength decays with distance at a much slower
rate than exchange interactions [81].

Because of the presence of the dipolar interactions, the most widely used model for
describing these systems is the dipolar spin ice (DSI) model [68] with Hamiltonian
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Ĥ = −J
∑
〈ij〉

Szii · S
zj
j +Dr3

nn

∑
i>j

Szii · S
zj
j

|rij|3
−

3 (Szii · rij)
(
S
zj
j · rij

)
|rij|5

(1.9)

where J is the nearest neighbour exchange interaction previously discussed, defined with
the convention that J < 0 is antiferromagnetic and J > 0 is ferromagnetic [81], rnn is the
distance between two nearest neighbour spins, rij is the vector that connects two spins in
the system, Szii is a spin of unit length constrained to only point along its local zi = 〈111〉
(towards or away from the centre of the corner sharing tetrahedra) and D is the dipolar
constant [97]

D =
µ0

4π

µ2

r3
nn

(1.10)

where µ0 is the vacuum permeability. While this equation works well for the basis of
Ho2Ti2O7 and Dy2Ti2O7, it has been speculated in [97] that this form of the Hamiltonian
is insufficient to explain the finer details in Dy2Ti2O7, and that a better approximation is
achieved by including the second and third-nearest neighbour exchange correlations [98].
Nevertheless, the success of this model can be seen in the Monte Carlo calculations for
the specific heat and entropy of Dy2Ti2O7 in figure 1.10.

Equation (1.9) highlights the importance of the dipolar interactions, as in classical
spin ice systems such as Dy2Ti2O7 and Ho2Ti2O7 the exchange interaction J can be
antiferromagnetic (negative) [81] but the strength of the dipolar interactions makes the
overall nearest neighbour interaction effectively ferromagnetic. To better demonstrate
the importance of the dipolar interactions, let us consider a simplified case of a single
tetrahedron of spins (see figure 1.7b). From the centre of a tetrahedron of magnetic ions,
Szii can take 4 possible values [48]:

Sz11 = ± 1√
3

−1
−1
+1

 Sz22 = ± 1√
3

+1
+1
+1

 Sz33 = ± 1√
3

+1
−1
−1

 Sz44 = ± 1√
3

−1
+1
−1

 (1.11)

where a positive (negative) sign corresponds to the spin pointing out (in) of the tetrahe-
dron. One can easily see how the multiplication between two spins can now only be +1/3
if both spins point in or out, or -1/3 if one spin points out and the other in. As such, the
first term in equation (1.9) simplifies to [48]

− J
∑
〈ij〉

Szii · S
zj
j =

J
3

∑
〈ij〉

σiσj where

{
σi = +1 if the spin points out

σi = −1 if the spin points in
(1.12)

For the second term in equation (1.9), if the tetrahedron is projected onto a plane, the
unit vector connecting two nearest neighbour spins will be of the form

rij =
1√
2

±1
±1
0

 (1.13)
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with the position of the 0 within the vector and the sign of the other components changing
depending on the value of ij. This simplifies the second summation in equation (1.9) to
[48]

Dr3
nn

∑
i>j

Szii · S
zj
j

|rij|3
−

3 (Szii · rij)
(
S
zj
j · rij

)
|rij|5

=
5D
3

∑
〈ij〉

σiσj (1.14)

where the sign of σi is the same as in equation (1.12). Combining equations (1.12) and
(1.14), the Hamiltonian simplifies to [48]

Ĥ = Jeff

∑
〈ij〉

σiσj where Jeff = JNN +DNN =
J
3

+
5D
3

(1.15)

a form very similar to the Hamiltonian of the 2D triangular system (see equation (1.3)).
This simplified model highlights the importance of the dipolar interactions. The JNN and
DNN constants found for Dy3+ in Dy2Ti2O7 and Ho3+ in Ho2Ti2O7 are JNN = −1.24 K
and DNN = 2.35 K [93], and JNN = −0.52 K and DNN = 2.35 K [68] respectively.

The emergent state containing the 2I2O state with spin flip excitations, discussed
below, is known as the Coulomb phase [1, 81, 99]. The Coulomb phase is present in
many highly frustrated systems, which have local constraints that can be mapped to a
divergence-free “flux” [100]. The 2I2O rule is a perfect example of this constraint, since
the vector sum of the moments is zero, which is equivalent to a divergence-free “spin field”
∇ ·H (r) = 0 where H (r) is the field generated by the spin dipoles and ∇· is commonly
referred to as the lattice divergence [81].

The main distinguishing experimental feature in classical spin ice is the pinch point.
A pinch point is a bow-tie like structure centred on nuclear Bragg positions that repre-
sents saddle points in the magnetic diffuse scattering (diffuse scattering will be defined
later on in the thesis) [47]. These pinch points arise due to the long-range order of the
divergence-free tetrahedra (∇ ·H (r) = 0) [101–104]. Below the freezing temperature, all
the tetrahedra need to obey the ice rule to minimise the energy and satisfy the spin corre-
lations, resulting in the system having long-range order of the two-in-two-out structure of
the tetrahedra, as shown in figure 1.11a for two corner sharing tetrahedra of spins. This
does not contradict the findings of Harris et al. [60] on the absence of long range order
in Ho2Ti2O7, since the arrangement of the 4 spins to satisfy the ice rules will vary from
tetrahedra to tetrahedra. Thus, just as with Bragg peaks, the long-range order in real
space translates onto singularity like features in reciprocal space.

Figure 1.12a shows a Dy2Ti2O7 pinch point at (0,2,0), and figure 1.12b shows a
Ho2Ti2O7 pinch point at (0,0,2). The Dy2Ti2O7 pinch point is covered by a Bragg peak
because the experiment was performed with unpolarised neutrons, so the scattering shown
is the nuclear plus magnetic diffuse scattering. On the other hand, the Ho2Ti2O7 pinch
point can be seen very clearly as polarised neutrons were used to separate the magnetic
and nuclear diffuse scattering. In particular, figure 1.12b shows the spin flip (SF) scat-
tering. Bramwell et al. [68] simulated the magnetic diffuse scattering of Ho2Ti2O7 using
only the nearest neighbour spin ice (NNSI) model (JNN > 0 and DNN = 0) and using the
full dipolar spin ice model, shown in figure 1.13. While the calculation with just nearest
neighbour exchange interactions do produce a bow tie like structure similar to the exper-
imental data, the dipolar interactions are needed to properly reproduce all the features
such as the lower intensity at the pinch points.
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(a) (b)

Figure 1.11: Mapping from spins (dipoles) to dumbbells. (a) Two adjacent tetrahedra
obeying the ice rules, with two spins pointing in and two out. (b) The corresponding

dumbbell picture obtained by replacing each spin by a pair of opposite magnetic
charges. Figures acquired from [105].

In an ideal classical spin ice system below the freezing temperature, all the tetrahedra
of magnetic ions obey the ice rule. However, as the temperature is increased, violations
of the ice rule can happen in the form of spins flipping, as figure 1.14a shows. These
thermal excitations in the form of spin flips result in the violation of the divergence-free
flux constraint of the Coulomb phase, i.e. ∇·H (r) 6= 0. Because of this, these excitations
are commonly known as emergent magnetic monopoles. These excitations are often called
“fractionalised” excitations, since the spin dipole fractionalises into two monopoles [105].
Finally, the Coulomb phase is often defined as the quasi-particle vacuum for magnetic
monopoles, since it is the only state of mater where these excitations can form [99, 105].

(a) (b)

Figure 1.12: (a) Total diffuse scattering of Dy2Ti2O7 measured at 0.7 K. (b) Magnetic
diffuse scattering of Ho2Ti2O7 measured at 1.7 K. Figures acquired from [106] and [1]

respectively.
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(a) (b)

Figure 1.13: Diffuse scattering calculations of Ho2Ti2O7 using (a) the nearest neighbour
spin ice model (JNN > 0 and DNN = 0) and (b) the dipolar spin ice model. Figures

acquired from [68].

Castelnovo et al. [105] proposed the “dumbbells” model to describe the emergent
magnetic monopoles in the Coulomb phase in terms of magnetic charges. In this model,
the spins are replaced by dumbbells consisting of equal and opposite magnetic charges
at each end, such that the ice rules are obeyed by the need to have magnetic charge
compensation, this is, the summation of the charges needs to be zero. An example of this
is shown for two adjacent tetrahedra in figure 1.11b.

The sign of the magnetic charges are assigned so as to recover the dipole moment of
each spin, with the magnitude given by Q = µ/ad where ad =

√
3/2rnn is the diamond

lattice (lattice formed by connecting the centre of the corner sharing tetrahedra of spins)
bond length. Since each tetrahedron is now composed of a sum of magnetic charges, the
energy can be calculated as the pairwise interaction energy of magnetic charges, given by
the magnetic Coulomb law [105]

(a) (b)

Figure 1.14: Representation of a thermal excitation in a classical spin ice in (a) the
dipole representation by flipping a shared spin, and (b) the “Dumbbell” model by

swapping two charges of opposite sign. Figures acquired from [105].
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∑
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where Qα is the total charge at site α in the diamond lattice (the charge at the centre of
a tetrahedron), rαβ is the distance between the two sites, and the second term is needed
to reproduce the net nearest neighbour interaction. Equation 1.16 clearly shows that to
minimise the energy, each site needs to be magnetically neutral (Qα = 0) which is only
possible if the system obeys the ice rules.

In the dumbbell model, a spin flip is equivalent to swapping two charges of opposite
sign. This results in the total magnetic charge of the sites with the shared spin flip no
longer being neutral, but with a value of Qα = ±2µ/ad [105]. A representation of this
excitation in the dumbbell model is shown in figure 1.14b. While the magnetic charge of
a monopole is small, since at the same distance the force between two monopoles is 14000
times weaker than the electrostatic force between two electrons, at low temperatures their
presence is still measurable [47].

It is worth pointing out that these excitations are termed monopoles because they
have magnetic properties similar to Dirac’s magnetic monopoles [107], mainly that they
both act as magnetic sinks. However, some key differences exist between the two. One
of these differences is that, while the charge of Dirac’s monopole is quantised, the spin
ice monopole can be tuned continuously by applying pressure on the sample and thus
changing the value of µ/ad. The most important difference is that spin ice monopoles are
not sources of B (r) fields, but sources of H (r) fields appropriate to the condensed matter
setting [105], which is still allowed by standard electromagnetic theory [108].

Flipping a single spin is equivalent to simply generating a dipole, since the two emer-
gent monopoles of opposite sign are next to each other, and it requires an energy cost of
∼ 0.92 meV [109] and ∼ 0.84 meV [110] for Ho2Ti2O7 and Dy2Ti2O7 respectively, at low
temperatures (<1 K). However, subsequent spins can be flipped for zero energy cost until
both monopoles are sufficiently apart that they can be considered as isolated monopoles,
as 1.15 shows. Thus, these monopoles are deconfined, since it only takes a finite amount
of energy to separate them to infinity, i.e. are true elementary excitations of the system.
The string of flipped spins is referred to as a “Dirac string”, and the Coulombic inter-
action felt by each pair of monopoles is −µ0q

2
m/ (4πr) where r is the distance between

monopoles and qm the net monopolar magnetic charge [105]. These excitations can also
be found in artificial spin ice, the 2D analogue of 3D spin ice [111].

It is through these excitations that a classical spin ice can fluctuate between different
ground states. The simplest example is shown in figure 1.16 where flipping 6 spins, one
to create a monopole-antimonopole pair, four to move each monopole around a hexagon
of the diamond lattice, and one to annihilate the two monopoles, causes the system to
change from one ground state to another.

The presence of monopoles and their effects in an applied magnetic field was studied by
Kadowaki et al. [113], where a magnetic field was applied to a single crystal of Dy2Ti2O7

along a [111] direction. Along this direction, the pyrochlore lattice consists of a stacking
of triangular and kagome lattices, as figure 1.17a shows. In a weak applied field, the
spins forming the triangular lattice align to the applied field, while the spins in the
kagome lattice arrange in a two-in-one-out or two-out-one-in structure so as to satisfy
the ice rules (the kagome ice state). As the applied field increases, the concentration
of monopoles increases until a critical field is reached where the spins realise a fully
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Figure 1.15: Monopoles of opposite charge separated by a string of flipped spins (a
Dirac string). The pink arrows indicate spins, and the blue and red spheres indicate

monopoles. Figure acquired from [1].

(a) (b)

(c) (d)

Figure 1.16: (a) A monopole-antimonopole pair is created by flipping a spin. (b), (c)
Flipping adjacent spins moves the defects to the next tetrahedra. (d) The last spin flip

annihilates the two monopoles, restoring the ground state of the system. Figures
acquired from [112].
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ordered, staggered arrangement of monopoles, as figure 1.17b shows. This was observed
with neutron scattering in the form of a weakened kagome ice scattering pattern and an
increase of the diffuse scattering around Bragg points.

The Dirac strings were studied by Morris et al. [106] in Dy2Ti2O7 by applying a
magnetic field along the 〈100〉 direction of the sample. If a strong saturating field hs is
applied in this direction, the system reaches a non-degenerate ground state but with the
tetrahedra still obeying the ice rules, i.e. free of monopoles. Since the sample was studied
just above the temperature at which magnetic monopoles can form, sparse thermally
excited monopole-antimonopole pairs start to appear as the magnetic field is lowered,
which separate by flipping adjacent spins. The flipped spins simulate a random walk
biased in a direction opposite to the applied field, i.e. the Dirac strings are oriented
antiparallel to the applied field, as figure 1.18a shows. The experimental signature of these
Dirac strings observed via neutron scattering is the presence of a set of cone like structures
emanating from Bragg points, as figure 1.18b shows. These were well reproduced by the
calculation shown in figure 1.18c assuming a random walk of the monopoles weakly biased
to be antiparallel to the direction of the applied field.

Muons have also been used to characterise magnetic monopoles in Ho2Ti2O7 and
Dy2Ti2O7. For example, the first reported experimental studies of magnetic monopoles in
spin ice using transverse field muon spin rotation obtained a value for the magnetic charge
in agreement with theory [114]. However, interpretation of results using this technique
has proved controversial [115].

An alternative experimental method of detecting monopole excitations and measuring
the length of the Dirac string is by the broadening of the pinch points. The width of
the pinch point is inversely related to the correlation length of the ice rules (distance
over which the tetrahedra obey the two-in-two-out rule) ξice. Since a monopole is defined
as a violation of the ice rules via a spin flip, their presence would cause the correlation
length ξice to decrease, which is manifested by the broadening of the pinch point. This
was observed by Fennell et al. [1] who measured the width of the (0,0,2) pinch point
of Ho2Ti2O7 (see figure 1.12b) between 1.7K and 50K, as figure 1.19a shows. Since the
distance over which the ice rules are obeyed is the same as the distance between two

(a) (b)

Figure 1.17: (a) Stacked triangular and kagome lattices in Dy2Ti2O7, shown by green
and blue lines, respectively, along a [111] direction. Under small [111] magnetic fields,

spins on the kagome lattice remain in the disordered kagome ice state. (b) As the
magnetic field is increased, spins orient to form a fully ordered, staggered arrangement

of monopoles. Figures acquired from [113].
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(a)

(b) (c)

Figure 1.18: (a) Arrangement of spins in a magnetic field just below hs applied along a
[100] direction. The spins in the Dirac string are aligned antiparallel to the applied field.
(b) 3D representation of the single-crystal Dy2Ti2O7 neutron diffraction data at 0.7 K in
a magnetic field 30% below hs, showing a cone of scattering emanating from the (0,2,0)

Bragg peak. (c) Calculation of the diffuse scattering characteristic of weakly biased
random-walk correlations. Figures acquired from [106].

monopoles, ξice can also be used as a measure of the Dirac string length. Fennell et
al. concluded that ξice has a temperature variation that is consistent with an essential
singularity ≈ e(B/T ), as figure 1.19b shows, where B = 1.7± 0.1 K for Ho2Ti2O7, a value
close to the measured Jeff = 1.8 K for the same system [68].

Monopoles can also be found in the presence of disorder by removing spins through
the replacement of magnetic ions by non-magnetic ions, as it was found by [116] in
Ho2−xYxTi2O7 where Ho3+ ions were replaced by non-magnetic Y3+ ions. More detail
of this effect will be given later on in the thesis.

1.3.2 Quantum Spin liquid
In 1973, P.W. Anderson proposed that the ground state of some antiferromagnetic

frustrated systems could be described by the resonating valence bond (RVB) model [117].
The main idea of the RVB model is that any two antiparallel spins pair up to form a
spin singlet with a total spin S = 0 and vanishing net magnetic moment [118]. This
is to be compared with the Néel state where only after the average the total spins is
zero [46]. Such a singlet is sometimes called “single valence bond”, and it represents the
maximally quantum entangled state between two spins. If the system has strong quantum
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(a) (b)

Figure 1.19: (a) SF scattering at the (0,0,2) pinch point of Ho2Ti2O7 at increasing
temperatures. A Lorentzian is fitted to each pinch point. (b) Temperature dependence

of ξice extracted from the Lorentzian fits fitted to an exponential divergence in T−1.
Figures acquired from [1].

fluctuations arising from the geometrical frustration, the singlets will not arrange in any
particular order [44]. However, if the quantum mechanical fluctuations are too weak such
that each spin is entangled only with one other spin (static and localised), the system is
known as a valence band solid (VBS) [47]. An example of two spins and a square lattice
system is shown in figure 1.20.

The wave function of the RVB state is defined as a linear superposition of all possible
configurations of the singlets, this includes short range (figure 1.21a) and long range
(figure 1.21b) bonds [44, 47]. In such a state, the strongly entangled spins do not form
any ordered magnetic structure and the spins continue to fluctuate even at 0 K. Such a
state was termed QSL. Anderson proposed this model to describe the ground state of the
spin-1/2 Heisenberg antiferromagnet on the 2D triangular lattice. While in the end this
model proved not correct for this particular system, since the spins oriented at 120◦ to one
another, it did emphasise the importance of frustration to stabilise a QSL state [61]. QSLs
can be grouped into classes depending on aspects such as the dimension, distribution of
valence bond lengths, etc. These classes are described by what is known as a Gauge theory

(a) (b)

Figure 1.20: Cartoon picture of the (a) Néel and (b) Anderson RVB state for (top) just
two spins and (bottom) a square lattice. Figures acquired from [118].
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(a)

(b)

Figure 1.21: Representation of the superposition of all the possible pairings of spins for
(a) short range and (b) long range single valence bonds. Entangled spin-zero singlets of
two S = 1/2 spins are indicated by ovals that cover two points on the triangular lattice.

Figures acquired from [47].

[119]. In this theory, the variational wave functions are approximate representations of
ground states of an associated field theory, with this field theory consisting of fractionalised
excitations coupled to fluctuating gauge fields. The gauge fields will change depending
on the class of QSL: gapped, gapless, etc.

These fractionalised exotic excitations are possible in QSLs due to the presence of
entangled spin states. In general, excitations can be classified on two grounds: electron-
like, with half-odd-integer spin (usually S = 1/2) and charge ±e, or magnon-like, with
integer spin (usually S = 1) and neutral charge [47]. QSLs can exhibit fractionalised
excitations named “spinons” with half-odd-integer spin (usually S = 1/2) and neutral
charge [47]. The magnetic monopole in spin ice described in the previous section is
an example of a fractionalised excitation. These excitations are formed when a spin is
excluded from forming an entangled state or by breaking an entangled state [118]. In
fact, these excitations are similar to monopoles in a spin ice, where once created no extra
energy is needed for the spinons to propagate in the system (deconfined excitations).
This propagation can be understood as the system moving through the different possible
degenerate ground states [47]. Valence bonds formed by spins that are far apart are more
weakly bound and thus can be “broken” to form free spins with relatively little energy.
[47]. QSLs with a substantial contribution of longer range entangled states are known
as QSL states with gapless excitations [118]. On the other hand, the spins might be so
strongly entangled that excitations are not possible [120]. While these excitations are well
understood in the spin-1/2 Heisenberg antiferromagnetic chain, where spinons form the
domain walls that are free to propagate away from each other [121], their nature in 2D
and 3D systems is less clear. In 2D and 3D, spinons can have varied character depending
on the class of QSL. They may obey Fermi-Dirac or Bose-Einstein statistics, and some
theories propose that spinons may form a partially filled band with a Fermi surface, known
as spinon Fermi-surface state [61].

Another key feature of QSLs is that the moments continue to fluctuate even at 0 K.
As mentioned before, some CSLs have a finite temperature TC below which the system
falls out of equilibrium, with the spin fluctuations significantly slowing down. This is
due to the large energy barrier between ground states and the weak quantum amplitude
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for such large spins to cooperatively tunnel through these barriers [47, 92]. This effect
can be seen, for example, on the previously described classical spin ice Dy2Ti2O7 and
Ho2Ti2O7, where ac-susceptibility measurements show slowing of the dynamics with time
scales in the order of decades [122, 123]. In QSL the spins continue to fluctuate even at
0 K due to the strong quantum effects and the reduced energy barriers. This is similar to
the quantum harmonic oscillator, which retains its zero-point motion even in the ground
state [61, 124].

Due to the large degree of geometrical frustration, systems with 2D triangular or
kagome structures or 3D pyrochlore systems are said to be the most promising QSL can-
didates. However, in general the discussion of possible QSL candidates is more centred on
2D systems, since the reduced dimensionality enhances the quantum fluctuations needed
for QSLs [44].

To identify a QSL experimentally, the measurements would ideally have to be per-
formed at 0 K. This is not allowed by the third law of thermodynamics [125], and thus
the measurements are usually performed at temperatures far below the strength of the
magnetic exchange coupling [44]. In this region, the 0 K properties can be well approxi-
mated. A good indicator of a QSL is the lack of magnetic order and lack of spin freezing at
very low T . This information can be extracted by measuring the magnetic susceptibility,
which also provides information on the strength of the magnetic interactions through the
Curie-Weiss temperature ΘCW. With this, the frustration parameter can also be calcu-
lated to determine the strength of the frustration. An ideal QSL should have f = ∞,
but the finite T measurements as well as intrinsic disorder in the materials will limit this
value [47]. In addition, microscopic probes such as muon spin relaxation (µSR) [126, 127]
and nuclear magnetic resonance (NMR) [128] are also commonly used to determine the
local magnetic environment.

At present, no technique exists that can be used to directly measured the long-range
entanglement in QSLs, only indirectly through the presence of fractionalised excitations
[44]. The specific heat is a common technique used to study the presence of magnetic
excitations. It is important that the specific heat has no defined peaks, since these peaks
indicate a phase transition. The presence of a peak in the specific heat well below ΘCW

indicates that significant spin entropy is being loss, establishing the possibility of a long
range magnetic order, and a peak like the one shown in figure 1.10 indicates a transition
to a frozen-spin phase [89]. Furthermore, the experimental signature of the excitations is
a broad continuum spectrum, making inelastic neutron scattering (INS) a very commonly
used technique. INS also has the added benefit of providing information on magnetic
correlations [47]. Other commonly used techniques include NMR and electron spin reso-
nance.

A 2D triangular QSL candidate that was studied using some of the techniques de-
scribed above is 1T − TaS2. This system undergoes a metal to Mott insulator transition
at 180 K where 13 Ta4+ form a hexagonal star of David, 12 of them forming the cor-
ners of the star and an isolated Ta in the centre, giving rise to a net S = 1/2 for each
star of David, as figure 1.22a shows. Ribak et al. [129] performed susceptibility, heat
capacity and µSR measurements. The susceptibility data, shown in figure 1.22b results
in ΘCW = 2.1 K and an exchange constant J = 0.1 K, much smaller than the exchange
constants of Ho and Dy in Ho2Ti2O7 and Dy2Ti2O7. The heat capacity, shown in fig-
ure 1.22c shows a linear increase with temperature for all magnetic fields which could be
from thermally excited spinons as some models of gapless QSL [47, 130] suggest. However,
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(a) (b)

(c) (d)

Figure 1.22: (a) Structure formed by 1T − TaS2. (b) Magnetic molar susceptibility as a
function of T . (c) Heat capacity measurements at eight applied fields. (d) Temperature
dependence of the muon damping rate (λ) with and without an applied field. Figure (a)

acquired from [127] and figures (b) to (d) acquired from [129].

further studies are needed to confirm this. Finally, the muon data in figure 1.22d shows
no change of the muon damping rate (λ) at multiple temperatures, indicating the absence
of frozen moments. If frozen moments were found in the sample, an increase in λ would
be observed. Whether this material is a QSL is under debate [127, 131, 132].

Another 2D QSL candidate worth mentioning is the 2D spin-1/2 kagome lattice
ZnCu3 (OD)6 Cl2, also called herbertsmithite, where the Cu2+ ions form 2D spin-1/2
kagome planes separated by the nonmagnetic Zn2+ ions. A single crystal of this sys-
tem was studied by Han et al. [133] using INS techniques. The scattering in reciprocal
space with an energy integration range between 1 meV and 9 meV, shown in figure 1.23a,
has the shape of broadened hexagonal rings. Comparison of these data with calculations
suggest that the nearest-neighbour spin singlet model is not enough to explain the data
and longer-range correlations are needed. The intensity as a function of both energy
and Q, shown in figure 1.23b, shows very broad continuous features, a clear signature
of spinons. Furthermore, Han et al. did not find any indication of a spin gap down to
0.25 meV meaning that this system could be a gapless U (1) QSL.

Chillal et al. [134] recently studied a QSL candidate in a 3D system that does not have
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(a) (b)

Figure 1.23: Scattering data of the 2D spin-1/2 kagome lattice ZnCu3 (OD)6 Cl2. (a)
Intensity in reciprocal space with a constant integration range of 1 meV to 9 meV. (b)
Magnetic dispersion along the high-symmetry [110] direction. Figures acquired from

[133].

a pyrochlore structure. The sample studied was PbCuTe2O6, a 3D system consisting of
S = 1/2 Cu+2 magnetic moments which interact antiferromagnaetically and form a three-
dimensional network of corner-sharing triangles, as figure 1.24a shows. Previous studies
of the magnetic susceptibility and specific heat by Koteswararao et al. [135] indicated no
evidence for long-range magnetic order or static magnetism. This is in agreement with
Chillal et al. µSR measurements shown in figure 1.24b, inferred from the rapid decay of
the depolarisation with time. Figure 1.24c shows the excitation spectrum of a powder
sample measured at 0.1 K while figure 1.24d shows the excitation spectrum of a single
crystal at a constant energy transfer of 0.5 meV and 0.1 K. Both of these measurements
show continuous, broad diffuse bands of magnetic signal, indicative of deconfined spinon
excitations. Modelling of the data suggest that it is the presence of strong quantum
fluctuations that destroy long-range magnetic order or any static magnetism in the ground
state. However, Chillal et al. suggests the need to further study this system to more
conclusively determine if it is gapped or gapless.

It is worth noting that, while all the systems studied shown above do seem like promis-
ing QSLs, their conclusions are still highly debated since these systems could also be spin
glasses. Both of these systems have similar behaviour and experimental signatures, such
as the absence of long-range magnetic order and the presence of continuous broad INS
spectra [136]. The key difference between QSLs and spin glasses is the spin glasses having
a freezing temperature, but it may be below the temperatures available experimentally.

Due to their many unique properties, QSLs also hold great application potential.
One such application is in topological quantum computing. This is due to the presence
of long-range quantum entanglement that can potentially be exploited to realise robust
quantum computation [137]. Furthermore, spinons are believed to hold the key to creating
more robust quantum bits since they are expected to be resistant to noise and external
interference, a necessary ingredient for reliable quantum computing. However, many
experiments are still needed to demonstrate how these quantum bits can be manipulated
and encoded. Another promising application is in superconductivity. QSLs are Mott
insulators where, unlike a band insulator where the bands are either full or empty, the
bands are half filled [44]. Because of this, P. W. Anderson proposed that high temperature
superconductivity in copper oxide superconductors can evolve from a spin liquid state
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(a) (b)

(c) (d)

Figure 1.24: (a) Three-dimensional network of corner-sharing triangles of Cu2+ in
PbCuTe2O6. (b) µSR spectra as a function of temperature. Excitation spectra obtained

(c) on a powder and (d) on a single crystal. The single crystal data is at a constant
energy transfer of 0.5 meV. Figures acquired from [134].

[138]. However, to achieve this, additional doping or large pressures are needed to reach
the superconducting state. A recent example of this is in the QSL candidate NaYbSe2

studied by Jia et al. [139]. NaYbSe2 has a perfect triangular lattice, an ideal structure for
QSL behaviour. In addition, measurements performed at 50 mK show no spin freezing
or long-range magnetic order [140]. Jia et al. performed resistivity measurements at low
temperatures and high pressures. They found that this system underwent a transition
to a superconducting state when pressures higher than 103.4 GPa were applied, with the
resistance dropping sharply below 8 K.

Finally, it is worth discussing the quantum analogue of the classical spin ice, the
quantum spin ice. The quantum spin ice (QSI) is a type of U (1) QSL [141] where spin
ice configurations tunnel among themselves, i.e. a generalisation of the classical spin
ice (CSI) integrating quantum fluctuations [104]. In a spin ice, the dominant tunnelling
process involves flipping loops of spins that point nose-to-tail on a hexagonal plaquette,
as figure 1.25 shows.

An interesting property of QSI systems is the presence of emergent photons. The
two-in-two-out ‘ice rule’ acting on each tetrahedron leads to a manifold of degenerate
ground states. This rule arises due to the spin correlations of each tetrahedron satisfying
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Figure 1.25: Illustration of the simplest tunnelling process between different spin-ice
configurations. Figure acquired from [104].

∇·H (r) = 0. An emergent gauge field A (r) can be defined as H (r) = ∇×A (r). In a CSI,
due to the spin fluctuations slowing down significantly below the freezing temperature,
this gauge field is effectively constant in time. However, the quantum fluctuations in a QSI
system result in the two-in-two-out states no longer being static, but dynamic, making
the emergent gauge field change in time. This gives rise to an electric field through
E (r) = −∂A(r)

∂t
and a ground state governed by Maxwell equation [104]

SMaxwell =
1

8π

∫ [
E (r)2 − c2H (r)2] dtd3r (1.17)

Any state of the QSI described by this equation supports linearly dispersing transverse
excitations of the gauge field in the form of gapless emergent photons with a speed of
light c [104].

Furthermore, just as with CSI, magnetic monopoles can also be found in QSI systems.
These monopoles are very similar to the ones found in CSI, with the key difference that
in a QSI the monopoles hop coherently and form waves [104]. Experimentally, the main
difference between CSI and QSI is that, while in CSI the pinch points do not change
below the freezing temperature, in a QSI pinch points are suppressed as temperatures are
lowered, disappearing at T = 0 [104, 142]. This is because as the temperature decreases,
quantum effects tune the system into a quantum spin liquid. Finally, unlike in CSI where
the residual entropy is the same as the water ice entropy, as it was shown above, in a
QSI the residual entropy is predicted to vanish at zero temperature due to the system
having a single quantum mechanical ground state formed through the superposition of
many classical ice configurations [142].

One of the most compelling families of materials thought to exhibit this QSI behaviour
are praseodymium-based pyrochlores, since in these materials the dipolar interactions are
reduced by an order of magnitude in comparison to that for Dy3+ or Ho3+. The reduced
dipolar interaction reduces the energy barrier between ground states, enhancing the im-
portance of quantum fluctuations and tunnelling between ground states. In addition,
since Pr ions have fewer electrons than Ho and Dy, the 4f wave function is spatially ex-
tended [143], and can then be largely overlapped with the O 2p orbitals of the O(1) ions
[144]. This will lead to superexchange interactions between Pr ions through the O(1) ions,
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which is believed to be the leading interaction [144]. Recently, Sibille et al. [4] performed
INS measurements on Pr2Hf2O7 at 50mK. The quasi-elastic data shown in figure 1.26a
show the general shape observed in pyrochlore materials with spin ice correlations. Fig-
ure 1.26b shows radial and transverse cuts of the (0,0,2) pinch point. These cuts show
how the measured pinch points seem to be suppressed relative to a CSI model calculation.
Sibille et al. claims that the agreement with the predictions of a lattice field theory of the
photon excitations of a QSI [104] is better. The fit of this theory to the data indicates a
speed of light c ≈ 3.6 m/s for the emergent photons.

1.3.2.1 Disorder in QSL

So far, all the discussion on spin liquids has been focused on materials where no
disorder was assumed. This is because frustration, a key ingredient of QSLs, can be
broken by a lattice distortion. However, Savary et al. [145] proposed the use of disorder
itself to generate long range quantum entanglement in pyrochlores based on non-Kramers
ions. The idea is that structural imperfections around the magnetic sites act as transverse
fields which act on the doubly degenerate ground state. These transverse fields induce
tunnelling between spin ice ground states, which stabilises the U (1) QSL. The idea of
disorder induced QSL was focused around Ho2Ti2O7 and Pr2Zr2O7 because they have a
large separation between the ground state and the first excited states. As such, there will
be no mixing between these two states when the transverse field is applied, an essential
ingredient for a U (1) QSL [141]. Figure 1.27 shows the predicted phase diagram as a
function of disorder for quantum spin ice, which includes two true quantum spin liquids
[145].

Rare-earth ions can be classified as Kramers (Yb3+ and Dy3+) or non-Kramers (Ho3+

and Pr3+) depending on whether the number of 4f electrons is odd or even, respectively.
In Kramers ions all the energy levels are degenerate (doublets), while in non-Kramers ions
non-degenerate levels (singlets) are allowed. Furthermore, a permanent magnetic moment

(a) (b)

Figure 1.26: Scattering data of Pr2Hf2O7 collected using time-of-flight INS at 50 mK
with unpolarised neutrons. (a) 2D elastic data integrated around zero energy transfer.

(b) Radial (top) and transverse (bottom) cuts through the (0,0,2) pinch point and
comparison with a model calculation of a CSI (red dashed line) and a QSI (solid blue

line). Figures acquired from [4].
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Figure 1.27: Phase diagram in the mean strength of disorder (h̄) – disorder (δh) plane.
Figure acquired from [145].

can be associated only with a degenerate ground state. Thus, a magnetic non-Kramers
ion is one with a doubly degenerate ground state (doublet ground state). The fact that
Ho3+ and Pr3+ have doublet ground states with large moments is a consequence of the
symmetry of the crystal electric field (CEF) in pyrochlores. The reason why Savary et
al. [145] proposed non-magnetic structural distortions in systems with non-Kramers ions
is because disorder can lower the symmetry of the rare-earth sites. This will generate a
different CEF, which will be explained later on in the thesis, which can split the doublet
ground state into two singlets formed by superpositions of the original doublet states.

1.4 Motivation
In this thesis, the effects of two kinds of disorder on Ho3+ and Pr3+ pyrochlore systems

was studied using neutrons. The effects of introducing disorder in the form of substitution
and vacancies of non-magnetic ions in Ho2Ti2O7 was studied by doping this system with
Sc ions on the B-sites. However, due to the difference in charge valency between Ti4+

and Sc3+, this doping reduced the “amount of positive charge” in the system, and thus
charge compensating O vacancies were introduced. In addition, the effects of strains
on the magnetism was studied on Pr2ScNbO7. The combination of trivalent Sc3+ and
pentavalent Nb5+ cations in equal quantities is a way to introduce local strains without
the complication of introducing charge-compensating oxygen vacancies.

To determine the origin of the disorder of both systems (location of vacancy for the
Ho system and ordering of Sc/Nb ions for the Pr system), total scattering measurements
and diffuse scattering measurements were performed using multiple instruments. The
resulting data were analysed with Bragg refinement, RMC fits and density functional
theory (DFT) calculations. Once the origin of the disorder was known, the effects on
the magnetism were studied by performing crystal electric field measurements to extract
the energy levels of the Ho3+ and Pr3+ ions in the presence of disorder. In addition,
the effects of disorder on the cooperative magnetism was studied by performing magnetic
diffuse scattering measurements.

Neutrons are particularly useful for studying disordered systems such as these because
of the ability to isolate the structural and the magnetic diffuse scattering with neutron
polarisation analysis, as will be discussed later. Furthermore, if x-rays were to be used,
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the effect of O ions would be difficult to study since, in the presence of Ho or Pr ions,
these ions are invisible. Not only that, but due to the similar number of electrons in Ti
and Sc, the effect of doping Sc ions in Ho2Ti2O7 could not be distinguished using x-rays.
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Chapter 2

Theory of neutron scattering

2.1 The crystal lattice

2.1.1 Real space
For the purposes of this thesis, the focus will be on single crystals and powders. A

crystal is a solid material whose constituents (atoms, ions, molecules, ...) are arranged
in a highly ordered microscopic structure [146]. To describe a crystal, it is necessary to
define a set of coordinate axis. The 2D system shown in figure 2.1 will be used to illustrate
this concept. The origin of the system can be anywhere, but the convention is to use one
of the atoms. These axes are sometime called lattice vectors and are identified by a length
(lattice constant) and the angle between them. The position of all equivalent points (or
lattice points) are found with the lattice vectors using [147]

r = ha + kb or r = ha + kb + lc (2.1)

for a 2D and a 3D system respectively, where a, b and c are the lattice vectors and h, k
and l can take any possible integer value and are called Miller indices. This will generate
the crystal lattice, shown as the set of dark dots in figure 2.1. In 2D every possible crystal
lattice can be classified into one of 5 possible types, and in 3D there are 14 possible types.
These are called the Bravais lattices [147].

The set of lattice vectors forms a unit cell, the region of space which can be repeatedly
stacked to assemble the crystal lattice without gaps. As it is shown in figure 2.1, the unit
cell can change depending on the chosen set of lattice vectors. With this, two types of
unit cells can be chosen: a primitive unit cell (vectors a and b in figure 2.1), containing
a single lattice point (the smallest possible primitive unit cell is called the Wigner–Seitz
cell), and a conventional unit cell (vectors a’ and b’ in figure 2.1), which is chosen because
it is more symmetric [146]. Figure 1.1 shows the conventional unit cell of the pyrochlore.

To fully describe the crystal structure, the content inside of the unit cell needs to
be defined. This is called the basis and is given by the group of atoms associated with
each lattice point, which completely generate the structure [147]. For the 2D example in
figure 2.1, the basis is given by the green dots to the right of the lattice. In a pyrochlore,
the basis for the conventional unit cell is given in table 1.1. When combining the crystal
lattice with the basis, in 3D 230 possible space groups exist [146], with the pyrochlore
belonging to space group 227 labelled Fd3̄m.

Finally, it is sometimes useful to define lattice planes or directions. A plane is defined
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Figure 2.1: 2D system with ions forming a regular structure. The structure is separated
into the lattice and the basis. Figure acquired from [146].

by where it intercepts in the crystal lattice such that, in 3D, the plane nearest the origin
will have intercepts at a/h, b/k and c/l, where a, b and c are the lengths of the chosen
lattice vectors [147]. The notation used with lattice planes is (hkl) (the Miller indices in
()-brackets), with the set of symmetrically equivalent planes denoted as {hkl}. So a plane
that intercepts at the halfway point of each axis of the unit cell is called the (222) plane.
Similarly, a direction is defined in terms of the lattice vectors using equation (2.1) and
the notation used is [hkl] (the Miller indices in []-brackets), with the set of symmetrically
equivalent directions denoted as 〈hkl〉 [147]. For both, directions and planes, a bar ¯ on
top of a value indicates a negative integer (1̄ = −1).

2.1.2 Reciprocal space
A useful concept in crystallography is the use of reciprocal space, also known as mo-

mentum space or k-space. It allows for the description of a parameter space in terms of
the momentum change. Similarly to real space, in reciprocal space a reciprocal lattice for
a system exists and is defined as the Fourier transform of the crystal lattice. As it will be
made clearer later, this is the space that is measured with diffraction experiments.

The reciprocal lattice vectors are related to the real space lattice vectors as [147]

a∗ =
2π(b× c)

a(b× c)
b∗ =

2π(c× a)

a(b× c)
c∗ =

2π(a× b)

a(b× c)
(2.2)

where, just as with the crystal structure, the location of a point is defined by the reciprocal
lattice vector [147]

τ = ha∗ + kb∗ + lc∗ (2.3)

where h, k and l are also Miller indices. Finally, just as with the crystal lattice, in the
reciprocal lattice a unit cell can also be defined with a∗, b∗ and c∗. The first Brillouin
zone in reciprocal space is the equivalent of the primitive unit cell in real space, and plays
a key role in structure determination.

2.2 Diffraction
Multiple probes, such as x-rays, electrons and muons, can be used to study and de-

termine crystal structures as well as their properties. However, for the purposes of this
thesis, the focus will be on the use of neutrons to study crystals.

Neutron scattering is a signal-limited technique and, therefore large-scale sources, re-
actor or accelerator facilities are required. However, neutrons have significant advantages
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over x-rays for certain types of experiments. Neutrons interact with the nucleus via the
nuclear strong force, which varies randomly across the periodic table but always with the
same order of magnitude. This makes neutrons more sensitive to the positions of lighter
elements, including oxygen, than x-rays. In addition, neutrons, which are a spin 1/2 par-
ticle, have a magnetic moment with which they can interact with the spin of the unpaired
electrons and the spin of the nucleus through dipole-dipole effects. This means that for
neutrons the magnetic cross-section is comparable to the nuclear cross-section, in contrast
to x-rays where the charge scattering dominates the magnetic scattering. Hence, neutrons
are the first choice for studies of magnetic ordering and excitations. Other interactions
can be neglected for the purposes of this thesis, such as interactions with the electric field
via a spin-orbit and Foldy interactions [46].

Finally, as it will be discussed later on, the energies with which neutrons are generated
is of the same order as many excitations in condensed matter, making them an ideal
probe to study many dynamic events. This is in contrast to x-rays where energies tend
to be many orders of magnitude greater than excitations and where, although inelastic
experiments are now possible at synchrotrons, they are more challenging. However, while
the focus of this thesis is on neutrons, it is worth noting that both neutrons and x-rays
are used to probe the dynamics of systems since they are generated with different energy
ranges and thus probe different types of excitations.

2.2.1 Neutron scattering
Consider a beam of neutrons all with energy E heading towards a target called the

scattering system. The geometry of the problem is shown in figure 2.2. Neutron scattering
aims to measure the probability that, after interacting with the scattering system, a
neutron scatters into a certain solid angle dΩ within a final energy range dEf and final
spin S. In an experiment, the basic quantity that is measured (ignoring polarisation

which will be discussed later one) is the partial differential cross-section d2σ
dΩdEf

where the

cross-section σ is the probability of scattering [148].

2.2.1.1 Scattering from a single fixed atom

For simplicity, let us consider first scattering from a single fixed nucleus with no
magnetism (the spin state of the neutron does not change). Since the wave-particle
duality also affects neutrons, an estimate of the de Broglie wavelength for the neutron
can be calculated using the mass of the neutron mn = 1.675 × 10−27 Kg and an energy
in the meV order (typical energy used in neutron scattering). This gives a wavelength
of the order of 10−10 m = 1 Å, much larger than the range of the strong nuclear force of
around 10−15 m [149]. As such, we can use the result from diffraction theory that states
that if waves of any kind (in this case the incident neutron) are scattered by an object
much smaller (the fixed nucleus) than the incoming wave, the scattered wave is spherically
symmetric.

A neutron moving along the (arbitrary) z axis can be expressed by the wave function
[149]

ψin = eikz (2.4)

where k = 2π/λ is the wavevector. After scattering, the wave function of the neutron at
a distance r from the target can be written as [149]
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Figure 2.2: Neutron scattering geometry. Figure acquired from [148].

ψsc = − b
r
eikr (2.5)

In this particular example, both wave functions have a normalisation factor of 1, and the
scattering process is elastic, i.e. there is no transfer of momentum from the neutron to the
nucleus and thus k = ki = kf . It is worth noting that, in reality, both k and r are vectors
and the exponential in equations (2.4) and (2.5) should be exp{ik · r}, where |k| = k and
|r| = r.

The quantity b in equation (2.5) is known as the scattering length, which has a real and
imaginary part and depends on the target nucleus. Two types of nuclei exist: The first
type is nuclei where b depends on the energy of the neutron. For this type, the scattering
is a resonance phenomenon associated with the formation of compound nuclei [149]. The
imaginary part of b is important since it corresponds to the absorption. For the purposes
of this thesis, the focus will be on nuclei where the imaginary part of b is small, which
corresponds to the majority of atoms, and we can treat this quantity as purely real [149].

With ψin and ψsc we can extract the scattering cross-section σ. Since the scattering
process is elastic, the neutron energy is unchanged, and thus the partial differential cross-
section simplifies to the differential cross-section dσ

dΩ
which is defined as the number of

neutrons scattered per second into dΩ in the direction (2θ, φ) per unit area of the beam
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[150]. If v is the velocity of the neutron, then the number of scattered neutrons going
through the area dS per second is given by vdS|ψsc|2 = vb2dΩ and the flux of incident
neutrons is given by Φ = v|ψin|2 = v. Thus, from the definition of the differential cross-
section [149]

dσ

dΩ
=
vb2dΩ

ΦdΩ
(2.6)

which, when integrating over all possible angles (θ : 0 → π and φ : 0 → 2π ) and using
the definition dΩ = sin(θ)dθdφ results in an expression of the cross-section of the form
[149]

σ = 4πb2 (2.7)

with units of m2.

2.2.2 Crystal structure determination

2.2.2.1 Bragg’s law

As described above, the neutron de Broglie wavelength is of the order of 1Å, of the
order of interatomic distances in solids and liquids. Because of this, the crystal structure
acts as a diffraction grating for the incoming neutrons [147]. Interference between the
scattered neutrons will produce different scattering intensity patterns, with which we can
extract information such as the structure and lattice parameters.

The most basic analysis of the resulting intensity pattern follows from Bragg’s Law:
scattering can be detected when the incident neutrons are scattered coherently, this is, for
a scattering angle of 2θ the path difference must be an integer multiple of the wavelength
[147]. To see this, consider scattering from a single plane of atoms, as shown in figure 2.3a,
with an incident angle θ. The waves that scatter at the two points A and D will only
interfere constructively if AB = CD, in other words, if θ = ϕ. Thus, the neutron is
deflected through an angle 2θ.

However, it is also necessary for multiple planes to scatter in phase [147], as shown in
figure 2.3b. In this case, not only the angles need to be the same, but the path difference
must be an integer numbers of wavelengths (ABC = nλ). This is written mathematically
in Bragg’s law as [147]

nλ = 2d sin (θ) (2.8)

where d is the spacing between lattice planes, n is the diffraction order, θ is the scattering

(a) (b)

Figure 2.3: (a) A single plane of lattice points and (b) a stack of planes separated by a
distance d where the neutron incident angle is θ. Figures acquired from [146].
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angle and λ is the wavelength of the incident neutron. In addition, it is useful to relate
this expression to reciprocal space. A useful quantity in diffraction is the wavevector
transfer Q, which is defined as the difference between the incident and final wavevector,
ki − kf . As figure 2.4 shows, if the scattering is elastic, so |ki| = |kf | = |k|, Q must be
perpendicular to the scattering plane and the geometry must satisfy [146]

|Q|
2

= |k| sin (θ) =
2π

λ
sin (θ) (2.9)

which, using equation (2.8), can be reduced to [146]

|Q| = 4π sin (θ)

λ
=

2π

d
(2.10)

which relates the inter-plane distance to the wavevector transfer.

2.2.2.2 Scattering from a crystal

Since a crystal can be separated into the lattice and the basis, the distance rj of an
ion j from an arbitrary origin can be defined as

rj = rυ + RΥ (2.11)

where RΥ is the distance from the origin to lattice point Υ and rυ is the distance from
the lattice point to ion υ. If the origin of each unit cell is at the lattice point, then rυ is
also the distance from the origin of that unit cell.

If the scattering is elastic, the expression for the differential cross-section found for
a single bound nucleus can be extended for a system with N nuclei by summing over
all possible ion locations. For this, we can use the expression from equation (2.5) but
considering a more general case where |ki| 6= |kf | and the scattering ion is a distance rj
from the arbitrary origin. Thus, scattering from the jth ion with scattering length bj will
contribute a small amount to the scattered wave [150]:

[δψsc]j = −bjeiki·rj
eikf ·|D−rj |
|D− rj|

= −bjeikf ·D
eiQ·rj

|D− rj|
(2.12)

where D is an arbitrary position, usually the distance from the arbitrary origin to the
detector. The full expression for the scattered wave is simply found by considering the
contribution from all N atoms

Figure 2.4: Schematic of the change of wavevector k. Figure acquired from [151].
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ψsc = −eikf ·D
N∑
j=1

bj
eiQ·rj

|D− rj|
(2.13)

It is worth pointing out that this scattered wave is a simplification from the Born approx-
imation, where it is assumed that the incident wave does not interfere with the scattered
wave (weak scattering) [150]. In addition, events in which neutrons are deflected multiple
times are ignored. This equation can be further simplified in the Fraunhofer or far-field
limit, where it is assumed that the distance from the origin to the detector D is much
larger than the typical size of a crystal [150]

|D− rj| ≈ |D| = D (2.14)

The scattered wave then has a modulus squared

|ψsc|2 =
1

D2

∣∣∣∣∣
N∑
j=1

bje
iQ·rj

∣∣∣∣∣
2

(2.15)

Finally, using the definition of the differential cross-section from before, the neutron count
rate measured in the detector is given by [46]

I (Q) =
dσ

dΩ
∝

∣∣∣∣∣
N∑
j=1

bje
iQ·rj

∣∣∣∣∣
2

(2.16)

If the crystal being scattered from is composed by N unit cells, each cell with n atoms
(the basis), the expression above can be further decomposed using equation (2.11) into
two parts

I (Q) ∝

∣∣∣∣∣
N∑
Υ

eiQ·RΥ

n∑
υ

bυe
iQ·rυ

∣∣∣∣∣
2

(2.17)

where the first summation is the symmetry term and the second the structure factor. One
can see that the symmetry term will be non-zero when Q ·RΥ gives an integer number
of 2π. Using equations (2.1) and (2.3), one can see that this is only possible if

Q · a = 2πh and Q · b = 2πk and Q · c = 2πl (2.18)

where h, k and l are integers (the Miller indices). This is known as the Laue condition,
which states that the momentum transfer to the crystal must coincide with a reciprocal
lattice vector (Q = τ ) for scattering to be possible [147]. This is also the condition
for constructive interference. If this condition is satisfied, the symmetry term will be a
constant and the exponent in the structure factor can be modified [147]

I (Q) ∝

∣∣∣∣∣
n∑
υ

bυe
i2π(huυ+kvυ+lwυ)

∣∣∣∣∣
2

(2.19)

where we have used the fact that the position of the ions can be expressed as rυ =
uυa + vυb + wυc, this is as fractions of the lattice vectors. One can see that, depending
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on the location of the ion in the unit cell, the relative intensity of the scattered beam
will change even when the Laue condition is satisfied. It is with this that not only the
structure of a crystal can be determined, but also the relative position of the different
species of ions within the crystal.

Each crystallographic space group has a different combination of h, k and l values that
produce a non-zero structure factor. For example, a face centre cubic (FCC) crystal will
give a non-zero structure factor when h, k and l are either all odd or all even [146]. Thus,
if for a given crystal the set of h, k and l values that produce non-zero structure factors
are determined, then the crystal can be classified into one of the possible crystallographic
space groups.

Since the focus of the thesis is on neutron scattering, it is worth describing one of
the benefits of neutrons over x-rays. Because x-rays interact with the cloud of electrons
surrounding the nucleus, the probability of an x-ray interacting with an ion increases with
atomic number. As such, when studying systems such as Ho2Ti2O7, the O is practically
invisible to the x-ray, and we would get information mainly from the Ho. The scattering
lengths of Ho, Ti and O are 8.01 fm, -3.44 fm and 5.80 fm respectively [152], different
enough for the neutrons to easily differentiate between them. Furthermore, x-rays cannot
differentiate between a Ti and a Sc, since they are next to each other in the periodic table.
However, because Ti has a negative b and Sc a positive b, the neutron can distinguish
between them easily. In general, as figure 2.5 shows, the values of all the bs are around
the same order of magnitude, but different enough for the neutron to distinguish them.
This property of the scattering length is very useful when studying materials with defects
such as vacancies, or when the sample is doped with a new type of ion.

Figure 2.5: Variation of coherent scattering length with atomic number (open squares).
Variation of coherent scattering length among isotopes is indicated for several cases by

the filled squares. Figure acquired from [153].
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2.2.3 General expression for neutron scattering
The general expression for the partial differential cross-section used in a scattering

experiment with magnetic contributions and inelastic effects is [154]

d2σ

dΩdEf
(Q, ~ω) =

kf
ki

( m

2π~2

)2 ∑
σi,σf

∑
n0,n1

p (σi) p (n0) | 〈kfσfn1|V |kiσin0〉|2 δ (ε1 − ε0 + ~ω)

(2.20)

where ki and kf are the neutron initial and final wavevector, m is the neutron mass, σi
and σf are the initial and final neutron spin state, n0 and n1 are the quantum numbers
for the initial and final state of the target system, ε0 and ε1 are the initial and final energy
of the target system, V (r) is the interaction potential, ~ω is the energy transfer given by

~ω = Ei − Ef (2.21)

where Ei and Ef are the initial and final energy of the neutron, p (σi) is the probability
of finding the neutron in the initial spin state σi and p (n0) is the probability of finding
the target system in state n0.

The δ function at the end represents the energy conservation law that must be satisfied
in an experiment: Ei + ε0 = Ef + ε1 [149]. For the purposes of this thesis, two types of
interaction potentials will be considered: nuclear interaction potential VN and magnetic
interaction potential VM . The total interaction potential is simply given by the sum of
the two. Because of the ||2 in equation (2.20), the resulting interaction potential will be
composed of a purely magnetic component, a purely nuclear component and a component
formed by a mix of the nuclear and magnetic potential. For the systems studied in this
thesis, the mixed terms which are commonly known as “Nuclear Magnetic Interference”
terms can be neglected.

2.2.3.1 Nuclear interaction potential

From the simple case described above on scattering from a single bound nucleus and
scattering from a crystal with N ions, the nuclear interaction potential can be expressed
as [154]

VN (r) =
2π~2

m

N∑
j

bjδ (R− rj) (2.22)

which is known as the Fermi pseudopontial [148] and where b is the scattering length.
Consider a system with no magnetism. Inserting equation (2.22) into (2.20) gives [149]

d2σ

dΩdEf
(Q, ~ω) =

kf
ki

(
1

2π~

)∑
j,j′

bjbj′

∫ ∞
−∞
〈e−iQ·rj′ (0)eiQ·rj(t)〉e−iωtdt (2.23)

where the notation 〈AB〉 =
∑

n0,n1
p (n0) 〈n0|A|n1〉 〈n1|B|n0〉 [149] was used as well as

the following equalities:

δ (ε1 − ε0 + ~ω) =
1

2π~

∫ ∞
−∞

e−i(ε0−ε1)t/~e−iωtdt (2.24)
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eiHt/~|n〉 = eiEt/~|n〉 (2.25)

eiQ·rj(t) = eiHt/~eiQ·rje−iHt/~ (2.26)

where H is the Hamiltonian of the system.

In a system formed by different isotopes, it is usual to assume that there is no correla-
tion between the values of b for any two nuclei [46]. Consider a large number of scattering
systems, all the same regarding the positions, but each having a different isotope distri-
bution on the sites. Provided the system contains a large number of nuclei (a condition
usually well satisfied) the cross-section measured is very close to the cross-section averaged
over all the systems. Thus [149]

bjbj′ → bjbj′ (2.27)

where the bar gives the average over the isotropic distribution [46]. On the assumption
of no correlation between b values [149]

bjbj′ =

{∣∣b∣∣2 if j 6= j′

|b|2 if j = j′
(2.28)

where

b =
∑
i

pibi and b2 =
∑
i

pib
2
i (2.29)

where pi is the relative frequency. With this, two new cross-sections can be defined: the co-

herent cross-section σcoh = 4π
∣∣b∣∣2 and the incoherent cross-section σinc = 4π

(
|b|2 −

∣∣b∣∣2).

As such, the partial differential cross-section can be separated into two parts [149]

d2σ

dΩdEf
=

(
d2σ

dΩdEf

)
coh

+

(
d2σ

dΩdEf

)
inc

(2.30)

where, the first term is the coherent scattering term and the second the incoherent scat-
tering term. Physically, in the coherent scattering, there is interference between scattered
neutron waves from different ions, which gives information on the relative positions of the
ions [155]. In the incoherent scattering, on the other hand, there is no interference and it
depends only on which atoms are present, irrespective of their arrangement [46, 155].

In a real system at a finite temperature, the ions will vibrate around a central equi-
librium point. Because of this, the position of an ion is described by rj (t) = rj + uj (t),
where rj is described by equation (2.11) and uj (t) is the isotropic displacement parameter
and represents the displacement from equilibrium. Inserting this into equation (2.23) and

using 〈eAeB〉 = e
1
2(〈A2〉+〈B2〉)e〈AB〉 [46] gives [149]

d2σ

dΩdEf
(Q, ~ω) =

kf
ki

(
1

2π~

)∑
j,j′

bjbj′

∫ ∞
−∞

e−iQ·(rj′−rj)e−(Wj′ (Q)+Wj(Q))

e〈(Q·uj′ (0))(Q·uj(t))〉e−iωtdt

(2.31)
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where W (Q) = 1
2
〈(Q · u)2〉 is the Debye-Waller factor. In general, u is a 3×3 matrix with

each term of the matrix representing the strength of the vibration in a given direction.
The last Q dependant exponential term in equation (2.31) can be expanded in a series of
the form e〈AB〉 = 1 + 〈AB〉+ 1

2!
〈AB〉2. If only the first term of the expansion is retained,

then we arrive at the form of equation (2.31) appropriate for elastic scattering [149]

dσ

dΩ
(Q) = N

(2π)3

v0

∑
τ

|
∑
υ

bυe
iQ·rυe−Wυ(Q)|2δ (Q− τ ) +N

∑
υ

(
b2
υ −

(
bυ
)2
)
e−2Wυ(Q)

(2.32)

where N is the number of unit cells, v0 is the volume of the unit cell, and the first term
is equivalent to equation (2.19) but with the Debye-Waller factor included. Here, the
first term is the coherent elastic scattering term and the second the incoherent elastic
scattering term.

2.2.3.2 Magnetic interaction potential

Due to having a non-zero spin, neutrons, just like electrons, have magnetic dipole
moment given by [149]

µn = −γµNσ̂ (2.33)

where γ = 1.913, µN is the nuclear magneton and σ̂ is the neutron Pauli spin operator.
Since neutrons interact with unpaired electrons which generate a magnetic field Be, the
magnetic interaction potential can be written as [154]

VM = −µn ·Be (2.34)

The magnetic field of the electron can be further separated into a term arising from the
spin and a term arising from the orbital motion.

An important effect to consider is that neutrons are sensitive only to the part of the
electron magnetism which is perpendicular to Q. This is because of the divergence free
rule of Maxwells equations ∇ · Be (r) = 0 which Fourier transforms to Q · Be (Q) = 0.
Consider first the case of a single electron. Using the relation between the magnetic field
and vector potential Be = ∇ × A, the definition A = ∇ × µe

r
[154], and the Fourier

transform F (∇×) = −iQ× [154]

〈kfsfρf |Vm|ifsiρi〉 = 〈kfσfn1|−µn · ∇×
(
∇× µe

r

)
|kiσin0〉

= 〈σfn1|µn ·
(
Q̂ ×

(
Q̂ × µe (Q)

))
|σin0〉

= 〈σfn1|−µn ·
(
Q̂ ×

(
µe (Q) × Q̂

))
|σin0〉

∝ 〈σfn1|−σ̂ · µe⊥ (Q)|σin0〉

(2.35)

Generalizing to the entire scattering system with
∑
µe⊥ (Q) = M⊥ (Q) and using µN =

e~
2mp

, equation (2.20) for a purely magnetic system becomes [154]
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d2σ

dΩdEf
(Q, ~ω) =

kf
ki

(γr0)2
∑
σi,σf

∑
n0,n1

p (σi) p (n0) | 〈σfn1|σ̂ ·M⊥ (Q)|σin0〉|2 δ (ε1 − ε0 + ~ω)

(2.36)

where r0 is the classical radius of the electron [149]. Since σ̂ only depends on the spin
coordinate of the neutron and M⊥ only depends on the electron coordinate,

〈σfn1|σ̂ ·M⊥ (Q)|σin0〉 = 〈σf |σ̂|σi〉 〈n1|M⊥ (Q)|n0〉 (2.37)

Thus, for an incident beam of unpolarised neutrons, equation (2.36) becomes [149]

d2σ

dΩdEf
(Q, ~ω) =

kf
ki

(γr0)2
∑
αβ

(
δαβ − Q̂αQ̂β

)
×
∑
n0,n1

p (n0) 〈n0|M∗α (Q)|n1〉 〈n1|Mβ (Q)|n0〉 δ (ε1 − ε0 + ~ω)

(2.38)

where the equality

M⊥ (Q)∗M⊥ (Q) =
∑
αβ

(
δαβ − Q̂αQ̂β

)
M∗α (Q) Mβ (Q) (2.39)

was used with α, β = x, y and z. Equation (2.38) relates to a general system. It is useful
to consider the case of neutron scattering due to spin only, i.e. ignoring the orbital angular
moment of the electron. In this case, and just as with the purely nuclear case, the position
of the jth unpaired electron can be written as rj (t) = rj + rζ (t), where rj is described by
equation (2.11) and rζ (t) is the distance from the nucleus to the ζth unpaired electron.
Then [149]

M (Q) =
∑
j

eiQ·rj
∑
ζ

eiQ·rζ(t)sζ (2.40)

where sυ is the spin angular momentum operator. With this, equation (2.38) can be
written as [149]

d2σ

dΩdEf
(Q, ~ω) =

kf
ki

(γr0)2
∑
αβ

(
δαβ − Q̂αQ̂β

)∑
j,j′

f ∗j′ (Q) fj (Q)
∑
n0,n1

p (n0)

× 〈n0|e−iQ·rj′Sαj′ (Q)|n1〉 〈n1|eiQ·rjSβj (Q)|n0〉 δ (ε1 − ε0 + ~ω)
(2.41)

where α, β = x, y and z, Sβj is the β component of the spin angular momentum of atom
j, and fj (Q) is the magnetic form factor, the equivalent to the scattering length b for the
nuclear interaction. Unlike b, f (Q) has a Q dependence. This is because the magnetic
interaction takes place within the electron cloud surrounding the nucleus and as such,
we can no longer treat the interacting atom as a point like object. In addition, not only
f (Q) changes from species to species, but it also changes depending on the charge of the
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ion. This is because the unpaired electron can be in an s, p, d or f orbital, which will
have an effect on the shape of f (Q) [46].

An example of the magnetic form factor for Mn2+ in MnO is shown in figure 2.6. In
a system where both, nuclear and magnetic interactions exist, the measured scattering
will contain a combination of nuclear effects and magnetic effects. However, the magnetic
effects will be mainly visible at low Q values. This is because of the decay of f (Q) with
Q. This is specially useful in inelastic scattering processes, which will be discussed later,
where magnetic excitations are more visible at low Q due to the magnetic form factor,
but hidden at high Q by the phononic contribution that increases with |Q|2.

Just as with the nuclear interaction case, elastic magnetic scattering is possible, and
the differential cross-section has the form (following steps similar as with the nuclear
scattering) [46]

dσ

dΩ
(Q) = N

(2π)3

vm

∑
τ

∣∣∣(Q̂ ×
(
FM (Q) × Q̂

))∣∣∣2 δ (Q− τm) (2.42)

where Nm is the number of magnetic unit cells, vm is the volume of the magnetic unit
cell, τm are reciprocal lattice vectors for the magnetic lattice, and

FM (Q) =
γr0

2µB

∑
j

µjfj (Q) eiQ·rje−Wj(Q) (2.43)

is the magnetic structure factor, which has a very similar form to the coherent term in
equation (2.32). Here, µj is the magnetic moment of the jth magnetic ion. In the same
way that different crystals will produce different nuclear Bragg peak patterns depending
on the nuclear structure, a system that exhibits long range magnetic order will produce
magnetic Bragg peaks. Furthermore, the location of the magnetic Bragg peaks gives
information on the magnetic lattice of the crystal and the intensities give information on
the location of the magnetic ions within the unit cell and the magnetic moments on each

Figure 2.6: Magnetic form factor for Mn2+ in MnO. Figure acquired from [156].
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ion. It is worth pointing out that the magnetic Bragg peaks do not necessarily need to
appear at the same locations as the nuclear Bragg peaks.

2.3 Inelastic scattering
Most of the discussion so far has been assuming elastic scattering, where ki = kf and

there is no energy exchange between the scattering system and the incoming neutron.
However, in neutron scattering, time-dependent effects, i.e. the dynamics of the system,
are also of interest. To study these effects, inelastic scattering is needed.

In inelastic neutron scattering, there is an exchange of both energy (Ei 6= Ef ) and
momentum (ki 6= kf ) [157]. To visualise the change of momentum, it is useful to represent
the wavevectors with a scattering triangle, as shown in figure 2.7, where Q = ki − kf .
As figure 2.7b shows, two forms of inelastic scattering exist, depending on whether the
energy is transferred to (energy loss) or from (energy gain) the scattering system. The
energy transfer is computed using [158]

∆E =
~2 |ki|2

2m
− ~2 |kf |2

2m
(2.44)

For positive ∆E (energy transfer from the neutron to the system), the limit is given by
the incident energy of the neutron Ei, since the neutron cannot transfer more energy to
the system than “what it has”. Depending on the amount of energy transfer, different
dynamic effects can be measured, as figure 2.8 shows, where in general the larger the
energy transfer the faster the dynamic effect [159]. A limiting case of inelastic scattering

(a)

(b)

Figure 2.7: Scattering triangles for (a) an elastic scattering event in which the neutron is
deflected but does not gain or lose energy (so that ki = kf ) and (b) inelastic scattering
in which the neutron either loses energy (ki > kf ) or gains energy (ki < kf ) during the

interaction with the sample. Figures acquired from [157].
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Figure 2.8: Energy ranges spanned by inelastic neutron scattering. Figure acquired from
[159].

exist called quasi-elastic scattering, in which the energy transferred is much smaller than
the incident energy.

The intensity measured by an energy loss (neutron loses energy) interaction and an
energy gain (neutron gains energy) interaction will not have the same strength, represented
as I in figure 2.8. This is because of the detailed balance condition [158]

d2σ

dΩdEf
(−Q,−~ω) = e

− ~ω
kBT

d2σ

dΩdEf
(Q, ~ω) (2.45)

for systems in thermal equilibrium. Physically, this condition states that the population

of energy levels with energy ~ω is proportional to e
− ~ω

kBT [46]. To view this effect, consider
the transition between energy levels. At T = 0 K no energy levels above the ground state
are populated, energy gain interactions are not possible, and hence there is no intensity
for neutron energy gain. At high temperatures, an almost equal population would be
expected in both levels, and thus one would expect similar scattering intensity for energy
gain and loss. However, due to the exponential factor, the intensity from energy gain
events will be smaller [158].

In general, inelastic scattering can arise from either magnetic or nuclear interactions.
Furthermore, the information acquired can be due to localised events, occurring at a
single site in the crystal, or collective events, such as phonons or spin waves which involve
multiple ions. In this thesis, only localised magnetic excitations called crystal electric
field excitations will be considered.

2.3.1 Crystal electric field excitations
The energy levels of a free ion are different from the energy levels of that same ion

inside a crystal. The electrons of a magnetic ion inside a crystal experience an extra
electrostatic field from the electrons of the surrounding ions and, to a lesser extent, the
field from covalent bonding [46]. All fields from all the ions and bonds combine to form a
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crystal electric field (CEF) or ligand field. The CEF interacts with the orbital part of the
electronic wave function, producing a splitting of the energy levels. An example of this is
shown in figure 2.9 for Pr4+ in PrO2 for a CEF of cubic symmetry. The form of the CEF
will depend on the surrounding ions, and as such the splitting of the energy levels will
change between ions depending on the symmetry of the system [160]. The new energy
levels produced after splitting are commonly known as CEF levels.

The strength of the CEF will depend on the type of ion and the location of the
unpaired electron. In most rare-earth ions with 4f orbitals, the CEF levels are weak and
more sensitive to the presence of disorder [46]. It is for this reason that the effect on
the CEF levels is very important to determine the single ion properties of rare earths,
especially in crystals with some kind of disorder that can affect the surroundings of the
magnetic ion. Furthermore, because the spin-orbit coupling is not affected, the total
angular momentum quantum number J can still be used [46].

CEFs play an important role on the single ion properties of magnetic ions for multiple
reasons [96]. CEFs affect the magnetic ground state of the ion, that is, it can make the
ion magnetic (doublet ground state) or non-magnetic (singlet ground state). If the ion
is magnetic, the CEF will affect the preferred direction of the spin, what is commonly
known as easy plane (XY behaviour) or easy axis (Ising behaviour). This is important
in pyrochlores, as CEFs determine if the spin is Ising (pointing along the line connecting
the O(1) ions), XY (in the plane perpendicular to the line connecting the O(1) ions) or
Heisenberg (isotropic) [96]. Finally, in most rare-earth ions, when kBT is smaller than the
CEF splitting the magnetic moment is partially quenched relative to the free ion moment
[46].

The transitions of electrons between CEF levels, are known as CEF excitations. Non-
localised excitations such as phonons and spin waves are expressed as waves of ions or
spins, and as such they have a dispersion relation relating the wave vector Q with the
energy of the excitation E [162]. However, CEF excitations are localised (cannot be

Figure 2.9: Single-ion energy level scheme for Pr4+ in PrO2. Figure acquired from [161].
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defined as a wave of particles or spins), since only one ion is involved, and as such no
Q − E relation exists (dispersionless). Experimentally, only lines at a constant energy
can be observed, with the intensity of the line decreasing with increasing Q due to the Q
dependence of the magnetic form factor. Rosenkranz et al. [91] studied the CEF levels
of Ho3+ in Ho2Ti2O7 shown in figure 2.10a. Figure 2.10b shows the energy spectrum
at 10 K and 150 K with multiple neutron incident energies. The Ei = 6 meV data
at 150 K shows the effect of the detailed balance condition, with the intensity of the
energy gain data lower than the intensity of the energy loss data. Furthermore, at higher
temperatures, transitions between different CEF levels are observed, due to them being
thermally populated.

2.4 Diffuse scattering
So far, the focus on elastic scattering has been on Bragg scattering, this is, scattering

at integer values of the Miller indices. However, Bragg scattering only gives information
on the average crystal structure. This is useful to determine general information such as
the space group. In addition, so far the assumption has been that the target system had a
near-infinite perfect periodicity, with all unit cells being exactly the same. However, mate-
rials with deviations from ideal crystallinity are also of interest, since the deviations from
long-range order may help explain physical phenomena such as colossal magnetoresistance
[163], relaxor ferroelectricity [164], fast ion conduction [165], and geometric frustration
[145, 166]. In this thesis, the discussion will be focus on systems that do not completely
deviate from order and that still exhibit a distinguishable average structure, i.e. system
with partial disorder.

While deviation from ideal crystallinity can be found in many forms, in this thesis the
focus will be on deviations due to substitution of an ion by another and deviation due to
missing ions (vacancies). These changes to the ideal lattice will produce a distortion field
that will affect all the surrounding ions, not only displacing them from the “ideal” lattice
position but in some cases changing their magnetic properties.

(a) (b)

Figure 2.10: (a) CEF energy level scheme for the Ho3+ ion in Ho2Ti2O7. The arrows
denote observed transitions. (b) Comparison between the CEF spectra measured at

10 K and 150 K at 3 different neutron incident energies and the calculated spectrum,
including instrumental resolution and intrinsic broadening of the transitions. Figures

acquired from [91].
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In the presence of disorder, scattering can still arise even when the Laue condition
is not satisfied (at a considerably reduced intensity) and as such it is important to not
restrict studies to integer values of h, k and l and allow the indices to vary continuously.
This scattering, termed diffuse scattering, can appear anywhere in reciprocal space and
provides information on the local structure. Diffuse scattering is broad in reciprocal space
because it is a short range effect, while repeating structures (unit cells) produce Bragg
peaks, which are very intense and sharp in reciprocal space, due to them being of long
range order. Furthermore, the diffuse scattering is generally much weaker than Bragg
scattering, usually by several orders of magnitude [167].

Experimentally, there are several things to consider when studying diffuse scattering:

1. Since diffuse scattering is broad in reciprocal space, it is important to measure a
wide range of angles [167]. Because of this, multi-detector instruments such as D7
from the Institut Laue-Langevin (ILL) and SXD from ISIS, which will be discussed
in the following chapter, are ideal for acquired maps such as those from figure 1.12.

2. Because diffuse scattering is much weaker than Bragg scattering, it is preferable
to use large crystals or large amounts of powders to increase the amount of scat-
tered neutrons and maximise signal-to-background ratio. In addition, measuring the
background and subtracting it from the data is ideal to minimise the contribution
of the background in the analysis.

Some systems might contain both nuclear and magnetic disorder. If unpolarised
neutrons are used to study these systems, the measured scattering data will contain
a mixture of the nuclear and magnet scattering. However, if polarised neutrons are
used then polarisation analysis, which will be discussed further on in the thesis, can
be used to properly isolate each contribution.

Finally, measurements are usually performed at low temperatures, to avoid any
thermal contribution such as phonons.

3. Diffuse scattering is usually defined as a quasi-static scattering process in which no
energy analysis of the scattered neutron beam is performed. In other words, it is
equivalent to taking a “snapshot” of the system [168]. Because of this, it is important
to satisfy the quasi-static approximation, i.e. the energy of the incident neutron
must be larger than some characteristic energy of the system being studied [169].
When the diffuse scattering is studied, the intensity measured requires a correct
integration over all the energy states in the sample for a given Q. The rigorous
way to do this would be to perform a careful inelastic scattering experiment over
an infinitely large range of neutron energy transfers, express the data as a function
of Q and E and then sum the data over E for a given Q. In other words

I(Q) =

∫ ∞
−∞

I(Q, E)dE (2.46)

This is not possible due to time constraints, the ability to produce neutrons in all
energy ranges, and so on. As such, in most experiments where a monochromatic
beam of neutrons with energy Ei is used, the quasi-static approximation applies

I(Q) =

∫ Ei

−∞
I(Q, E)dE (2.47)
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However, this approximation is valid if the energy scales in the sample are much
smaller than Ei. In other words, in order for the diffuse scattering to contain all the
information of an inelastic event with a characteristic energy, the incident energy
of the neutron must be larger than that characteristic energy. In magnetism, the
limiting value for Ei is usually given by ΘCW, since ΘCW is a measure of the net
magnetic interactions. The effects of not satisfying the quasi-static approximation
are shown in figure 2.11.

Extracting information from diffuse scattering is essential to understand the local
distortions of a system. However, unlike other scattering data, there is no general rule
to analyse the diffuse scattering and the interpretation has typically been carried out on
a case by case basis [171]. Nevertheless, many methods of modelling diffuse scattering
data (which will be described later on in the thesis) usually emerge from variations of
Monte-Carlo (MC) and Reverse MC (RMC) approaches, density functional theory (DFT)
calculations and Rietveld refinement, with the last one almost exclusively used in powder
data. In the following section, the difference method, extensively used in this thesis, is
described.

2.4.1 Diffuse scattering difference method
The formalism developed in this section is from [172]. This method is used to model

the diffuse scattering of disorder systems using individual defects, such as vacancies, and
a small surrounding region of relaxed ions. This allows the modelling of large systems
with a small number of parameters. The main idea of the difference method is that the
summation over ions may be converted to one over sites by defining the probability of
occupation of each site in the crystal. For diffuse scattering, this means that the coherent
scattering may be calculated from the occupation of sites relative to the ideal lattice. The
most general expression for the neutrons scattering from a crystal is

S(Q) =
1

N

∣∣∣∣∣∑
j

bje
iQ·rj

∣∣∣∣∣
2

(2.48)

(a) (b)

Figure 2.11: MnO has a ΘCW ≈ 500 K. (a) Data collected using Ei = 3.6 meV ≈ 40 K,
much lower than ΘCW, resulting in the data having swirly features which are artefacts
coming from not satisfying the quasi-static approximation. (b) Data collected using
Ei = 56 meV ≈ 650 K, above ΘCW and resulting in the spiral features disappearing.

Figures acquired from [169] and [170] respectively.
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where the summation runs over all N ions in the crystal, bj is the scattering length of the
jth ion and rj is the position vector. This can be expressed as a summation over all sites
(ideal lattice sites, displaced sites, etc), such that

S(Q) =
1

N

∣∣∣∣∣∑
j

pjbje
iQ·rj

∣∣∣∣∣
2

(2.49)

where pj is the probability of occupation of the jth site. Since in the ideal lattice the
probability of occupation is cj = 0 or 1, it is possible to write the expression for the
scattering intensity relative to the ideal lattice as

S(Q) =
1

N

∣∣∣∣∣∑
j

cjbje
iQ·rj +

∑
j

(pj − cj)bjeiQ·rj
∣∣∣∣∣
2

(2.50)

which, defining the first and second term as A and B respectively

SA+B =
1

N
|A+B|2 =

1

N
(AA∗ + AB∗ +BA∗ +BB∗) (2.51)

where the first term gives the scattering from the ideal lattice (Bragg peaks), and the last
term gives the diffuse scattering. While diffuse scattering may rise anywhere in reciprocal
space, the diffuse scattering near Bragg peaks is usually obscured by the much larger
Bragg intensity. However, we are only really interested in the diffuse scattering away
from Bragg peaks. Away from Bragg peaks, A = 0, so that the cross terms are zero, and
just the diffuse scattering term BB∗ remains. With this, a diffuse form factor FD

k (Q) can
be defined as

FD
k (Q) =

∑
j

(pj − cj)bjeiQ·rj (2.52)

where (pj − cj) represents the difference between the real and the ideal lattice. For an
interstitial site, or an ion relaxed from its regular site, pj − cj = 1. For a vacancy, or the
site from which an ion is relaxed, pj − cj = −1. When an ion remains on its regular site
pj − cj = 0. This means that the summation only needs to be performed over a few sites.
A Debye-Waller factor eWj(Q) for the jth ion can be included in equation 2.52 to take
into account the attenuation of the neutron scattering due to temperature and vibration
effects. For a system with doping or vacancies, the summation above does not have to
be over all the ions in the system, and just over all the ions near the “defect cluster”.
To see this, consider first a system with a single vacancy. This vacancy will produce a
distortion field that will result in a displacement of the surrounding ions. However, to a
first approximation, only the closest ions will feel a strong distortion field and thus their
displacement will be the largest. For the rest of the ions, the displacement will be minimal
and the FD

k (Q) will be negligible. Thus, the summation only needs to be over the ions
surrounding the vacancy, simplifying significantly the calculations.

However, this summation is over a cluster in a single orientation and configuration.
If there is no correlation between the positions and orientations of the defect clusters, an
incoherent summation needs to be performed over all possible orientations allowed by the
crystal symmetry to obtain the coherent scattering per defective ion
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SD(Q) =
1

NiNo

∣∣∣∣∣∑
k

FD
k (Q)

∣∣∣∣∣
2

(2.53)

where Ni is the number of defective ions in the cluster and No is the number of ori-
entations of the cluster. Pyrochlores belong to the m3̄m point group, where a total of
48 symmetry operations can be performed. These symmetry operations are of the form
(x y z), (y −x −z) and so on, where x, y and z are the axis of the system. Thus, 48
different FD

k (Q) need to be calculated.

2.4.2 Pair Distribution Function
Depending on the state of the crystal, the measured diffuse scattering will have differ-

ent forms. When a single crystal is studied, the mapping of reciprocal space intensities in
an area or, with some instruments, volume of interest can be measured. This results in
maps like the one shown in figure 2.11. However, when a powdered crystalline material
is measured such maps are no longer possible and instead the measurement averages the
scattering into a 1D diffraction pattern commonly called total scattering measurements.
These 1D diffraction patterns contain all the Bragg and diffuse scattering information
which, when Fourier transformed, produce the pair distribution function (PDF) [171].

A PDF is a weighted histogram showing the distribution of all inter-atomic distances
in a material, describing the structure of a disordered material [46]. In other words, it is
a radial probability density function describing the probability of finding an atom of one
type between distance r and r + dr away from an atom of another type [173].

To find a relation between the PDF and what is measured in an experiment, consider
first a monatomic system, this is a system where all the atoms are the same. For such a
system, the differential cross-section may be written as [174]

1

N

dσ

dΩ
(Q) =

1

N

[
dσ

dΩ
(Q)

]coh

+
1

N

[
dσ

dΩ
(Q)

]inc

= |b|2S(Q) +
(
|b|2 − |b|2

)
= |b|2 (S(Q)− 1) + |b|2

(2.54)

where S(Q) is the static structure factor (the Debye-Waller factor is ignored). In this
equation, the first term is the “distinct” term (interference between different atoms),
and the second term is the “self” term (self-interference from individual atoms). Fourier
transforming the distinct term gives a definition for the PDF [174]

g(r)− 1 =
1

ρ0 (2π)3

∫
(S(Q)− 1) e−iQ·rd3Q (2.55)

where ρ0 is the total atomic number density, the “−1” on the left-hand side represents
the subtraction from forward scattering (Q = 0) and the “−1” on the right-hand side
represents the subtraction of the self scattering, which is the self correlation of an atom
with itself. In the case of diffraction from isotropic samples, such as powders, liquids
or crystals, equation (2.55) can be integrated over angular coordinates to obtain the
expression [174]
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g(r)− 1 =
1

2π2rρ0

∫ ∞
0

Q (S(Q)− 1) sin (Qr)dQ (2.56)

In PDF analysis, alternative expressions are used to extract similar information, such as
the reduced PDF [174]

D(r) =
2

π

∫ ∞
0

Q (S(Q)− 1) sin (Qr)dQ (2.57)

which allows the extraction of the total atomic number density from the initial slope.
Furthermore, as figure 2.12 shows, with g(r) the amplitude is damped as the distance
from the origin increases, while in D(r) the amplitude does not decrease with distance.
Another common alternative is the radial distribution function [174]

RDF (r) = 4πr2ρ0g(r) (2.58)

which is mainly used to extract the atomic coordination numbers. Examples of PDFs of
a monatomic system in a liquid phase are shown in figure 2.12. The reason behind the
ripples near the origin is due to the finite size of the data, since it is impossible to have
an infinite reciprocal space range. The truncation at Qmax produces small features at
r-values below inter-atomic distances [175].

Equation (2.56) can be generalised to a multicomponent system by writing the differ-
ential cross-section as [46]

1

N

dσ

dΩ
(Q) =

∑
α,β

cαcβb∗αbβ (Sαβ(Q)− 1) +
∑
α

cα|bα|2 (2.59)

where Sαβ(Q) are the partial structure factors and c the concentrations of the different
species. With this, the partial PDF can be computed in a similar form as before [174]

g(r)αβ − 1 =
1

2π2rρ0

∫ ∞
0

Q (Sαβ(Q)− 1) sin (Qr)dQ (2.60)

Thus, the total PDF G(r) is defined [174]

G(r) =
∑
α,β

cαcβb∗αbβ [g(r)αβ − 1] (2.61)

(a) (b)

Figure 2.12: Example of the (a) PDF and (b) reduced PDF of a monatomic system in a
liquid phase. Figures acquired from [174].
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a weighted summation of partial pair distribution functions, each of which describes the
probability of finding an atom of one type between distance r and r + dr away from an
atom of another type [173]. There are several experimental considerations that need to
be taken to get good PDF data [175]:

1. It is convenient to use high energy neutrons, since this will increase Qmax, which
will increase the real space resolution. Similarly, good reciprocal space resolution is
needed to reduce the broadening of the Bragg peaks and increase the intensity of
high-r features [175].

2. Just as with diffuse scattering, background subtraction is essential. The data must
be corrected for non-sample scattering, otherwise when it is Fourier transformed,
false information can be translated to the PDF which will give us incorrect inter-
pretation of the crystal structure.

Different features of a PDF curve will correspond to different kinds of information.
Some examples are the position of a peak which indicates the distance of atomic pairs, the
area of peaks which is related to the abundance of relevant pairs weighted by their scat-
tering power (coordination number), and the width of peaks which is related to disorder
inside the material, both structural or vibrational [176].

2.5 Polarisation analysis
So far, all of the discussion on neutron theory has been on the assumption that the

incoming beam of neutrons is unpolarised, where the spins of all the incoming neutrons are
pointing in all possible directions. However, the use of unpolarised neutrons means that
the scattering measured is a combination of the nuclear and magnetic diffuse contribution,
since the nuclear and magnetic potential appear as summation in equation (2.20). This can
be an issue when the magnetic properties of a material are studied, since magnetic diffuse
scattering in many systems is weak, and usually obscured by the nuclear diffuse scattering,
as well as thermal diffuse scattering caused by phonons and incoherent scattering in the
sample [167]. One way to overcome this issue is by modelling the different scattering cross-
sections measured and subtracting them from the data to isolate the magnetic scattering.
However, this can be tedious and difficult when studying complex materials.

In a neutron experiment, the best way to separate the magnetic and nuclear scattering
cross-sections is by analysis of the spin state of the scattered neutrons. To do this, a beam
of polarised neutrons is needed, this is a beam where all the neutrons have their spin state
along the polarisation direction [167]. Since neutrons are spin-1/2 particles, two possible
neutron spin states can be defined relative to the polarisation direction: u for a ‘spin
up” state and v for a “spin-down” state [149]. The polarisation of a neutron beam is the
average over the individual polarisations of the neutrons [177]

P =
1

N

∑
j

pj (2.62)

where N is the number of neutrons in the beam, pj is the polarisation state of the jth

neutron, usually +1 for spin-up state and -1 for spin-down state and 0 6 |P| 6 1. In
an experiment with polarised neutrons, the spin state of the neutron after scattering is
analysed, giving rise to four different cross-sections
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u→ u v → v v → u u→ v (2.63)

The first two processes, where the spin state does not change, are called the non-spin-flip
(NSF) scattering, and the latter two are called the spin-flip (SF) scattering. Since the
spin of the neutron interacts with the spin of the unpaired electrons and the spin of the
nuclei, the presence of these four new forms of scattering need to be treated for each one
of them.

For the purposes of this thesis, the focus will be on uniaxial polarisation analysis
and XYZ polarisation analysis (XYZ–PA) on the D7 instrument at the ILL, a neutron
spectrometer with a planar multi-detector in the xy plane and a weak applied field to
guide the neutrons [167].

2.5.1 Uniaxial polarisation
When performing uniaxial polarisation measurements, the polarisation direction is

usually fixed normal to the scattering plane, commonly defined as the z-axis of the scat-
tering system. As such, the expression of the polarisation of the incoming beam can be
described as [167]

|P| = P =
nu − nv
nu + nv

(2.64)

where nu and nv are the number of neutrons in the spin-up and spin-down state, respec-
tively. This expression can alternatively be written as

P =
F − 1

F + 1
(2.65)

where F = nu/nv is the flipping ratio, which is a measurable quantity [178].

The scattering length b has a spin dependant component, due to the interaction
through the strong nuclear force of the neutron spin with the nuclei spin. As such, b
can have two possible values: b+ when I + 1/2, i.e. the neutron is aligned parallel to the
nuclear spin I, and b− when I− 1/2, i.e. the neutron is aligned antiparallel to the nuclear
spin. With this, the scattering length can be expressed as [167]

b = A+Bσ · I (2.66)

where σ is the Pauli spin operator,

A =
(I + 1)b+ + Ib−

2I + 1
and B =

b+ − b−
2I + 1

(2.67)

Since the scattering length has a spin dependant component, the 〈σf |VN |σi〉 term for
the nuclear potential in equation (2.20) can no longer be ignored. It is worth pointing
out that while the neutron and nucleus spin also interact via dipolar interactions, these
interactions are much weaker than the electron-neutron dipolar interaction due to the
small nuclear moment [179], and will thus be ignored in this discussion. As such, the
neutron interacts with the nuclear spin mainly though the strong force and, unlike with
electron magnetism, it is sensitive to the component of the nuclear moment parallel to
the scattering vector.

67



From (2.63), four possible cross-sections exist which, combining the nuclear and mag-
netic potential, results in the Moon–Riste–Koehler (MRK) equations [180]

〈u|VN + VM |u〉 →A−
γr0

2
M⊥z +BIz

〈v|VN + VM |v〉 →A+
γr0

2
M⊥z −BIz

〈u|VN + VM |v〉 → −
γr0

2
(M⊥x + iM⊥y) +B (Ix + iIy)

〈v|VN + VM |u〉 → −
γr0

2
(M⊥x − iM⊥y) +B (Ix − iIy)

(2.68)

where M⊥ is magnetisation of the sample perpendicular to the scattering vector and I
the nuclear spin [167]. The electronic magnetic terms in these equations illustrate one
of the main rules of all magnetic uniaxial neutron polarisation analysis measurements: If
the polarisation direction is along the z axis [167]

1. NSF scattering is sensitive only to the components of the magnetisation parallel to
the z axis.

2. SF scattering is sensitive only to the components of the magnetisation perpendicular
to the z axis.

Another general feature that these equations show is that the purely nuclear structural
scattering terms are only found in NSF scattering. Finally, since neutrons are not sensitive
to the component of the electron magnetism parallel to the scattering vector, a very
useful experimental set up is one in which the polarisation direction is fixed to be along
the scattering vector Q. This will cause the NSF scattering to contain all the nuclear
structural information, and the SF scattering all the electronic magnetic information
[177].

2.5.2 XYZ polarisation
In XYZ–PA, NSF and SF scattering is studied with the longitudinal component of

the polarisation of the scattered beam along an x, y and z direction, each direction being
measured individually. It is common to define the x direction as parallel to Q, the y
direction perpendicular to Q in the plane, and the z direction perpendicular to Q out of
the plane [46].

Unlike uniaxial polarisation analysis, where complete separation of the nuclear struc-
tural, electron magnetic and nuclear magnetic is not possible, XYZ–PA allows for a full
separation of all components. To do this, the RMK equations can be generalised to [181]

(
dσ

dΩ

)β
u→u
∝N +NM∗

⊥β +N∗M⊥β +M∗
⊥βM⊥β + I∗βIβ(

dσ

dΩ

)β
v→v
∝N−NM∗

⊥β −N∗M⊥β +M∗
⊥βM⊥β + I∗βIβ

(2.69)

for u→ u and v → v NSF scattering and
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(
dσ

dΩ

)β
u→v
∝M∗

⊥M⊥ −M∗
⊥βM⊥β + i (M∗

⊥× M⊥)β + I∗I− I∗βIβ(
dσ

dΩ

)β
v→u
∝M∗

⊥M⊥ −M∗
⊥βM⊥β − i (M∗

⊥× M⊥)β + I∗I− I∗βIβ

(2.70)

for SF scattering, where β = x, y and z, N = N∗N is the purely nuclear structural
scattering term, M∗

⊥M⊥ is the dipolar electron magnetic scattering term, NM⊥β is the
nuclear-magnetic interference (NMI) scattering term, M∗

⊥ × M⊥ is the magnetic chiral
scattering term and I∗I is the purely nuclear magnetic scattering term.

In this thesis the instrument used to perform polarisation analysis measurements is
D7, which has a planar multi-detector covering a large Q-range. Thus, the angle between
the polarisation direction x′ and the Q vectors, commonly known as the Schärpf angle
α [182], will be different for all the detectors. This is equivalent to defining a Cartesian
coordinate system (x′, y′, z) for the polarisation and a different coordinate system (x, y, z)
for Q, as figure 2.13 shows, which are related by a rotation of α degrees around the vertical
z-axis. Since in this instrument all the detectors are on the same plane, the normalised
Q vector can be written as [167]

Q̂ =

cos (α)
sin (α)

0

 (2.71)

which constrains ki, kf and Q to be on the scattering plane of the multi-detector. In
the following sections, multiple ways of combining equations (2.69-2.70) will be shown to
separate the nuclear structural, electron magnetic and nuclear spin scattering depending
on the system being studied. In addition, it will be assumed that none of the systems
exhibit ordering of the nuclear spins. The spin of the nuclei in most samples only order at
temperatures in the µK or even nK regime, much lower than typical neutron experiments
(at the ILL in France, experiments are performed at temperatures not lower than 40-
50 mK). At higher temperatures, the nuclear spin behaves as a paramagnet and the
cross-section studied is known as nuclear spin-incoherent (SI) scattering [167].

Figure 2.13: The geometry of an XYZ-polarisation analysis experiment. The incident
polarisation is oriented alternately along the orthogonal x’, y’ and z, directions. The
Schärpf angle α is the angle between Q and the arbitrarily positioned x’ axis. Figure

acquired from [167].
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2.5.2.1 Powder samples

Since a powder sample has orientational averaging, it is not possible to distinguish
the different components of M⊥. The information about the in-plane magnetic intensi-
ties is recovered from M2

⊥x′ + M2
⊥y′ =

(
sin2 (α) + cos2 (α)

)
M2
⊥y. As such, in a powder

sample with no nuclear spin ordering, the electron magnetic, nuclear spin-incoherent and
structural nuclear can be separated using [181]

(
dσ

dΩ

)
|M⊥|2

= 2

((
dσ

dΩ

)x′
u→v

+

(
dσ

dΩ

)y′
u→v
− 2

(
dσ

dΩ

)z
u→v

)

= −2

((
dσ

dΩ

)x′
u→u

+

(
dσ

dΩ

)y′
u→u
− 2

(
dσ

dΩ

)z
u→u

)
(

dσ

dΩ

)
SI

=
3

2

(
−
(

dσ

dΩ

)x′
u→v
−
(

dσ

dΩ

)y′
u→v

+ 3

(
dσ
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)z
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)
(

dσ

dΩ

)
Nuc

=

(
dσ

dΩ

)z
u→u
− 1

2

(
dσ

dΩ

)
|M⊥|2

− 1

3

(
dσ

dΩ

)
SI

(2.72)

for a guide filed that is too weak to induce any significant sample magnetisation, resulting
in the intensities not being affected by a polarisation reversal and thus u → u = v → v
and u → v = v → u. While strong fields invalidate this, their use allows for the study
of correlation and interferences between the nuclear and magnetic scattering through
the comparison of the intensities in polarisation reversal. Finally, since the equations
above have no α dependence, this method applies for an arbitrarily rotated system in the
scattering plane [181].

2.5.2.2 Single crystals

The intrinsic anisotropy and possible polarity of a single crystal may give rise to
antisymmetric contributions even in a weak applied field. As such u → u 6= v → v and
u → v 6= v → u for most samples (unless the crystal has no chirality or NMI). In such
cases, the quantities [181]

Σβ
NSF =

1

2

((
dσ

dΩ

)β
u→u

+

(
dσ

dΩ

)β
v→v

)

Σβ
SF =

1

2

((
dσ

dΩ

)β
u→v

+

(
dσ

dΩ

)β
v→u

) (2.73)

where β = x, y and z, need to be used. For a Cartesian coordinate system (x′, y′, z)
rotated by the Schärpf angle α around the vertical z-axis with respect to x parallel to Q,
all the scattering contributions can be separated using [181]
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(
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2
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−
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dσ

dΩ

)
Nuc

(2.74)

for a single crystal with no nuclear spin ordering, and where M⊥x′ = sin (α)M⊥y and
M⊥y′ = cos (α)M⊥y. If there are no magnetic-nuclear interference or chirality effects,

which is the case for the systems discussed in this thesis, then Σβ
NSF =

(
dσ
dΩ

)β
u→u =

(
dσ
dΩ

)β
v→v

and Σβ
SF = 1

2

(
dσ
dΩ

)β
u→v =

(
dσ
dΩ

)β
v→u.
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Chapter 3

Instrumentation and computational
modelling

3.1 Instrumentation
The experiments that will be discussed in this thesis were performed at the Insititut

Laue-Langevin (ILL) in France, ISIS in the United Kingdom and the Spallation Neutron
Source (SNS) in the USA.

At the ILL, neutrons are produced in a reactor through fission. Fission sources produce
a continuous flux of neutrons with time, meaning that while the reactor runs, the beam of
neutrons will not stop [46]. The ILL reactor uses the decay of 235U with a slow neutron to
produce, on average, 2.5 fast neutrons plus the daughter nuclei, which can further decay
to produce more neutrons. These neutrons will interact with more 235U causing a chain
reaction of decays. Since the neutrons produced in the reactions have an energy in the
MeV range, moderators are used to “cool” down the neutrons to the meV range. Some
of these neutrons are used to continue the chain of decays, while the rest are “extracted”
and guided to the instruments. The ILL has three different moderators: liquid hydrogen
at 25 K, liquid D2O at 300 K and a 2400 K graphite source. The neutrons emerging from
these moderators are termed cold, thermal, and hot respectively. The reactor at the ILL
can operate at a maximum output power of 58 MW, producing a steady flux of neutrons
of 1.5 · 1015cm−2s−1 [183].

On the other hand, SNS and ISIS are pulsed spallation sources. Both of these facilities
use a technique called spallation [46] where an accelerator is used to produce pulses of
protons that travel at velocities close to the speed of light. These protons collide on to a
target made of heavy metals. The protons enter the nucleus of the heavy metal, putting
the target into a highly excited state which rapidly decays into lighter nuclei and neutrons
[46]. Each proton collision produces around 30 neutrons with energies in the MeV range
which are slowed down in moderators similar to those used in reactor sources. In contrast
to the ILL reactor, ISIS and SNS do not produce a continuous source of neutrons. Instead,
a train of pulses of neutrons are produce with a frequency of 50 Hz and 60 Hz for ISIS
and SNS respectively [184, 185].

At pulsed spallation sources, Time-of-Flight (ToF) instruments are used. In this case,
the flight time of the neutron over a known distance, usually the distance between the
moderator and the detector, is used to determine the neutron wavelength using [147]
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λ =
th

mnL
(3.1)

where t is the time of flight of the neutron, mn is the mass of the neutron, L is the total
length the neutron has to travel, h is Planck’s constant and λ is the wavelength of the
incident neutron. For elastic scattering, Bragg’s law can then be applied to convert the
time at which neutrons arrive at a detector into Q space [147]. If inelastic scattering
experiments are performed, a monochromator is needed to select the energy of either the
incident or the scattered neutron [147]. The case for an instrument with a monochromator,
such as a Fermi chopper, before the sample is shown in figure 3.1. In this case, the final
energy is determined using [150]

t =
mn

h
(L1λi + L2λf ) (3.2)

where L1 is the distance between the monochromator and the sample, L2 is the distance
between the sample and the detector, λi is the incident neutron wavelength and λf is the
scattered neutron wavelength.

In the following sections, brief descriptions of the instruments used to collect the data
shown in this thesis are given.

3.1.1 ISIS: SXD
The Single-Crystal Diffractometer SXD instrument is designed to analyse large vol-

umes of reciprocal space of a single-crystal sample [186]. This makes it ideal for studying
materials with a defect structure, since it gives the option of comparing the results from
computational modelling with many reciprocal planes. Figure 3.2a shows the detectors
and, in the centre, the space where the different sample environments are inserted. SXD
can use different types of sample environments, such as several types of cryostats and
refrigerators, allowing control of the pressure and temperature. Because the detectors
are not able to cover all of reciprocal volume from a single measurement, the sample is
rotated within the sample environment to fill in the gaps left between the detectors.

With SXD, a polychromatic beam (0.2–10 Å [187]) of neutrons incident on a single-
crystal sample and the scattered neutrons are collected in large-area position-sensitive

(a)

Figure 3.1: Schematic of the time-of-flight spectrometers. Image acquired from [147].
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(a) (b)

Figure 3.2: (a) Schematic of the SXD instrument and (b) location of the detectors.
Figures acquired from [186].

detectors (PSDs) as a function of neutron time-of-flight (the time the neutron takes to
reach the detectors from the spallation target, via the sample), which means that the
data from each detector pixel consists of a time-of-flight spectrum [186]. Figure 3.2b
shows the detector arrangement. These detectors are arranged to maximise the amount
of scattering area detected (around 49.4% according to [186]). Due to the large detector
coverage, more Bragg reflections are collected in each crystal orientation, increasing the
speed of data collection.

3.1.2 ILL: D7
The D7 instrument is a wide angle multi-detector diffractometer capable of perform-

ing polarisation analysis optimised for studying diffuse scattering of single crystals and
powder samples. D7 can use neutrons at 3 individual wavelengths that are selected with
a monochromator and beryllium filter. The beam is then polarised by going through a
focusing bender supermirror, selecting only the neutrons in a spin u state. A guide field
is then used to maintain beam polarisation. Finally, just before reaching the sample, the
neutrons go through a Mezei-flipper used to flip the spin state of the incoming neutrons
[188]. This flipper is used to control the type of scattering: when the flipper is on, SF
scattering (v → u) is measured, and when the flipper is off, NSF scattering (u → u)
is measured. To perform low temperature measurements, D7 can use different sample
environments, such as an orange cryostat, that allows measurements down to 1.5 K, and
a dilution fridge that allows measurements down to 40–50 mK [189]. A detailed diagram
with the different components that form D7 is shown in figure 3.3a. D7 contains a set of
XYZ-coils surrounding the sample that produce guide fields used to rotate the incoming
polarised beam so that NSF and SF scattering can be measured in 3 orthogonal directions.
With this, D7 is capable of performing both uniaxial and XYZ-PA, ideal for separating
structural, electron magnetic and nuclear magnetic scattering.

After interacting with the sample, the neutrons can scatter into 132 detectors separated
into 3 banks, covering a 2θ detection range of around 6◦ to 141◦. Since D7 is a multi-
detector instrument, the polarisation vector cannot be parallel to all Q vectors. As such,
an offset angle α needs to be defined for each detector. As figure 3.3b shows, the D7 α
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(a) (b)

Figure 3.3: (a) Top view diagram of the D7 diffractometer. (b) Relation between the
scattering vectors ki, kf and Q, and the polarisation directions x′ and y′ in the

scattering plane. Figures acquired from [190] and [191] respectively.

angle is defined as the sum of the angle between the x′ polarisation direction and ki and
the angle between Q and ki. Since the angle between x′ and ki is fixed at 45◦

α =
2θ

2
− 90◦ − 45◦ =

2θ

2
− 3π

4
(3.3)

where 2θ is the scattering angle. Finally, just before the detectors, D7 has 66 Schärpf-type
bender analysers. These analysers are very similarly to the supermirror polariser before
the sample, since they are used to only reflect the spin u neutrons into the detectors.

Unlike SXD, on D7 only a single plane of reciprocal space can be measured at a time.
This plane is selected by aligning the sample with respect to the incoming beam before
inserting it into the sample environment. Finally, D7 has a Fermi chopper which can be
used to operate the instrument as a time-of-flight spectrometer with permanent polarisa-
tion analysis. However, the Fermi chopper reduces the incident beam flux substantially,
and thus spectroscopy measurements need substantially more measurement time [189].

3.1.3 ISIS: POLARIS and SNS: NOMAD
POLARIS (figure 3.4a) is a high intensity powder diffractometer at ISIS optimised for

the rapid characterisation of structures. The high incident neutron flux combined with
a large angle detector coverage enables the rapid collection of high quality diffraction
data suitable for structure refinement. POLARIS contains 5 large banks covering a 2θ
detection range of around 6◦ to 168◦ [192]. Just like SXD, POLARIS uses an incident
polychromatic neutron beam (0.1–6 Å) [194].

Similarly, the Nanoscale Ordered MAterial Diffractometer (NOMAD) (figure 3.4b) at
SNS uses a large bandwidth (0.1–3 Å) of neutron wavelengths and extensive detector
coverage to enable structural determinations of local order in crystalline and amorphous
materials. NOMAD contains 6 large banks covering a 2θ detection range of around 3◦ to
175◦ [195].

Unlike SXD, which can analyse large volumes of reciprocal space (3D data), or D7
which has access to a single planes (2D data), POLARIS and NOMAD are used for powder
diffraction, and thus 1D data is collected as a function of magnitude of Q. These data
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(a) (b)

Figure 3.4: (a) Schematic diagrams showing the layout of the (a) POLARIS and (b)
NOMAD instruments. Figures acquired from [192] and [193] respectively.

then give access to high-resolution PDFs.

3.1.4 ISIS: MARI and SNS: SEQUOIA
The Multi-Angle Rotor Instrument (MARI) at ISIS is a time-of-flight direct geometry

chopper spectrometer used for studies of magnetic excitations in powder and polycrys-
talline materials [198]. MARI uses a Fermi chopper to monochromate the incident neutron
beam with incident energies (Ei) in the range 7 meV to 1000 meV, and contains a detec-
tor array covering a 2θ detection range of around 3◦ to 135◦ with an energy resolution of
1.5–8% [199]. These detectors are arranged in a vertical scattering plane, as figure 3.5a
shows.

Similarly, SEQUOIA (figure 3.5b) is a direct geometry time-of-flight chopper spectrom-
eter at SNS optimised for high-resolution inelastic neutron scattering studies of magnetic
excitations and lattice vibrations [200]. SEQUOIA also has the option of selecting, with
the help of a Fermi chopper, a wide range of possible Ei of the incoming neutron beam,
between 8 meV and 2000 meV. This allows for the study of many possible inelastic events.
SEQUOIA contains a detector array covering a 2θ detection range of around -30◦ to 60◦

with an energy resolution of 1–5% [200].

(a) (b)

Figure 3.5: (a) Schematic diagrams showing the layout of the (a) MARI and (b)
SEQUOIA instruments. Figures acquired from [196] and [197] respectively.
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Unlike the instruments described so far, SEQUOIA and MARI are designed for in-
elastic scattering measurements, meaning that the data collection is as a function of both
wave vector and energy.

3.1.5 ISIS: LET
LET is a time-of-flight direct geometry cold neutron multi-chopper spectrometer at

ISIS that, just like MARI and SEQUOIA, is used for the study of dynamics in condensed
matter systems [201]. However, LET differs from SEQUOIA and MARI in a few key
aspects. LET is optimised to study low energy transfer events with a very high energy
resolution. As such, the range of possible incident energies is much smaller, between
0.6 meV and 80 meV, and thus the use of cold neutrons from the second target station.
LET contains a detector array covering a 2θ detection range of around -40◦ to 140◦ with
an energy resolution no higher than 0.8% [202]. The LET detector tank is shown in
figure 3.6. In addition, LET does not use a Fermi chopper. Instead, LET uses two
sets of fast counter-rotating disk choppers to monochromate the incident beam. This
allows control over the pulse width and shape, and maximises the flux for any given
resolution [203]. Finally, LET has the option of performing full neutron uniaxial PA
using a supermirror polariser and 3He spin filter analyser for the incoming and scattered
beam respectively. However, unlike D7 which can perform polarisation analysis down to
40–50 mK, the LET sample environment only permits temperatures no lower than 1.6 K
when the polarisation analysis option is used [201].

3.2 Computational modelling
Multiple computational methods were used to model the systems studied and interpret

the collected data. For this, programs written by myself and software developed outside
the project were used. In the following sections, a brief description of the models used to
simulate and analyse the collected data is given.

Figure 3.6: Inside the LET detector tank. Figure acquired from [201].
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3.2.1 Monte Carlo and Reverse Monte Carlo
Monte Carlo (MC) and Reverse Monte Carlo (RMC) methods are a broad class of

computational algorithms that rely on repeated random sampling to obtain numerical
results [204, 205]. Because of this, MC and RMC algorithms are extremely useful for
simulating systems with many coupled degrees of freedom, such as disordered systems. In
this thesis, the discussion on MC and RMC to study disordered systems will be restricted
to their use in nuclear structures. However, it is worth noting that it is very commonly
used in modelling the magnetism of spin ice systems.

The starting point of the MC and RMC approach is the same: a supercell formed by
Ni×Nj×Nk unit cells of the system being studied is constructed. If the system contains
vacancies, ions are removed at random within the supercell until the desired concentration
of vacancies is acquired. The same procedure is followed for substituting a type of ion by
another. The ions in the supercell are then moved at random, but the acceptance of the
movement changes depending on the method.

MC works on an energy minimisation procedure. In this thesis a “balls and springs”
model was used to calculate the energy of each configuration, where the ions are treated
as spherical balls and are connected to their neighbours by a spring with a certain spring
constant. The spring constant defines the strength of the bond between two ions. The
energy of a single ion i is then calculated using

E =
∑
j

1

2
kij∆x

2
ij (3.4)

where the summation runs over all the neighbouring ions, kij is the spring constant and
∆xij is the change in bond length. With the bond lengths and spring constants defined,
the MC process works as follows. First, an ion is chosen at random and its energy E1

is calculated using equation (3.4). The same ion is then moved in an arbitrary direction
and the new energy E2 is calculated. If E2 − E1 < 0, i.e. the energy of the system
is lowered, the move is accepted. If E2 − E1 > 0, i.e. the energy of the system is
increased, the move is accepted with a probability given by e(−∆E/kBT ) where ∆E is the
difference in energy before and after the movement, kB is the Boltzmann constant and
T is the temperature. This method, commonly known as the Metropolis MC algorithm
[204], ensures that the model does not get trapped in a local minimum, and enables the
model to converge towards the global minimum. Once the MC procedure is finished, the
scattering is computed from the supercell with the ions in the new locations.

In this thesis, a MC program developed in C++ by Sala [112] and Bowman [206]
was used for some preliminary calculations. In this program, when an ion was selected to
become a vacancy, instead of “removing” the springs connected to such an ion, the springs
(bonds) were retained in order to avoid lattice instabilities. However, its occupancy was
set to zero in order to remove it from the diffuse scattering calculations at the end of the
MC process.

On the other hand, instead of the energy minimisation of MC, the goodness of fit to
the data is optimised in RMC. During the RMC simulation, ions selected at random are
displaced in arbitrary directions. After each movement, a quantity such as the PDF or the
diffuse scattering is calculated and compared with the experimental data. In this thesis,
the RMCprofile program [207] was used to perform RMC simulations, which calculates
the agreement between the calculated and experimental variable using
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χ2 =
n∑
i=1

(Yexp,i − Ycalc,i)
2

σi
(3.5)

where the summation runs over all the data points, Y 2
exp,i and Y 2

calc,i are the ith experimental
and calculated data points respectively and σi is some weighting factor, usually defined by
the experimental uncertainty. Similarly to MC, if the movement of the ions decreases χ2,
the change is accepted. If this is not the case, the change is accepted with a probability

given by e(−∆χ2/2) where ∆χ2 is the change in the goodness-of-fit factor.

The halting procedure of both the MC and RMC approach changes depending on the
program used. For the MC program used in this thesis, the stopping condition is defined by
the number of movements, i.e. the program stops when x number of movements (accepted
and rejected) have been performed. On the other hand, the RMCprofile program is time
based, meaning that it will run only for the amount of time given in the input. In
RMCprofile, the evolution of χ2 with time can be monitored. In this thesis, the criterion
for whether the running time for the RMCprofile is long enough is given by χ2 converging
to a constant value.

3.2.2 Density Functional Theory
The wave function of a system with N electrons and I nuclei is expressed, neglecting

time dependence, as a function of the position of all the electrons rN and nuclei RI .
However, in the Born-Oppenheimer approximation it is assumed that the nuclei are sta-
tionary in time due to them being much more massive than the electrons. Thus, the
nuclear degrees of freedom can be separated from the electronic ones and a many-electron
and many-nuclei wave function can be written as ψ and φ, respectively. In this approxi-
mation, the properties of any material can be studied by solving the time dependent and
time independent Schrödinger equation [208]. In the Born-Oppenheimer approximation,
the Hamiltonian of a system contains three components: the kinetic energy T , the exter-
nal potential Vext (which may be internal to the sample from the nuclei or external to the
sample such as applied fields), and the electron-electron interaction potential Ve−e. This
is written as [209]

Hψ (r1, r2, ..., rN) = [T + Vext + Ve−e]ψ (r1, r2, ..., rN) = Eψ (r1, r2, ..., rN) (3.6)

In reality, the nuclear-nuclear interaction potential and the nuclear kinetic energy are
also present, but in this approximation the nuclear-nuclear interactions can be taken as
a constant and the nuclear kinetic energy can be taken to be zero. Despite the simpli-
fications, exact solutions of this equation have only been found for simple systems with
simple potentials, such as an electron in a potential well. More complicated systems can-
not be solved analytically and require numerical solutions, which can be computationally
expensive. Over the last 50 years, the method of choice for solving such systems has been
density functional theory (DFT) [210].

DFT is a method for first principle (ab initio) calculations of structures of, amongst
others, crystals, and their interactions. The basis of DFT is the Hohenberg-Kohn (HK)
theorem [211], which states that the total energy of a system with a static potential (such
as the one from the nuclei) is a unique functional of the charge density, and the minimum
value of the total energy functional is the ground state energy of the system. In other
words, DFT attempts to solve equation (3.6) in terms of an electron density.
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Many methods exist of applying DFT, but one of the most commonly used is via the
Kohn-Sham (KS) equations [212], in which N Schrödinger-like equations of the form

HKSψ (r)i = εiψ (r)i (3.7)

are solved for N non-interacting electrons. The electron density is then written as [208]

ρ (r) =
N∑
i=1

fiψ (r)∗i ψ (r)i (3.8)

where fi are the fractional occupations which are used for systems with degeneracy, i.e.,
if ψ (r)i and ψ (r)i+1 have the same energy. Otherwise, fi = 1 for all wave functions [210].
HKS is written as [210]

HKS = − ~2

2m
∇2 + Vext + VH + VXC (3.9)

where the first term on the right-hand side is the kinetic energy, with m the mass of the
electron, the second term is the external potential, the third term is the Hartree potential,
arising from the Coulomb interaction between one electron and the electron density, and
the last term is the exchange-correlation potential, which is a term required to make the
non-interacting electrons behave as if they are interacting [209]. While this method is very
much an approximation, since it needs a fictitious potential VXC to account for electronic
interactions, it has still provided surprisingly accurate predictions when compared with
experiments [210]. The correct choice of these potentials will, in theory, give exact results
that would be solutions to the Schrödinger equation, and developing the best potentials
is an active area of research.

Many DFT implementations exist for solving these kinds of equations. Throughout
this thesis, the CASTEP program [213] has been used for geometrical optimisation. The
methodology implemented in CASTEP is the KS-DFT approach just described, where a
set of one-electron Schrödinger KS equations are solved using the plane-wave pseudopo-
tential approach in which each wave function is written in a plane wave basis set defined
by use of periodic boundary conditions. Furthermore, a pseudopotential is used to re-
place the atomic nucleus and core electrons by a fixed effective potential to increase the
calculation efficiency [208].

It is worth noting that, unlike RMC or MC approaches which can model systems with
many ions (� 104), DFT can only model systems with (usually) no more than 1000 ions.
This is due to the large number of Schrödinger equations that need to be solved and, thus,
the large amount of time and computational power needed.

3.2.3 Crystal electric field analysis
To determine the crystal electric field (CEF) levels and the CEF spectrum, the first

step is to determine the CEF-Hamiltonian (HCEF ). The HCEF of a magnetic ion is
obtained by integration of the CEF potential over the distribution of electrons [46]. If
the surrounded ions are treated as isolated charges, neglecting the overlap of orbitals and
relativistic effects, the HCEF of a magnetic ion with a weak CEF (weak coupling scheme
[46, 214]) can be written as [215]
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HCEF =
∑
n,m

Bm
n Ô

m
n (3.10)

where n = 2, 4 and 6, m = −n to n in steps of 1, Bm
n are the crystal field parameters

or B-parameters and Ôm
n are the Steven Operators that depend on the total angular

momentum quantum number J and have already been tabulated [160, 215, 216]. This
form of HCEF arises as an expansion of the Coulomb potential of the crystal based on the
symmetry surrounding the magnetic ion [112]. The number of B-parameters needed to
extract the Hamiltonian of an ion in a particular system depends not only on the symmetry
of a system, but also on its orientation and origin. In a pyrochlore system with magnetic
ions at the A sites, if only the nearest neighbour O(1) and O(2) ions are considered, the
expression for the CEF-Hamiltonian only contains six different B parameters [217]

HCEF−SI = B0
2Ô

0
2 +B0

4Ô
0
4 +B3

4Ô
3
4 +B0

6Ô
0
6 +B3

6Ô
3
6 +B6

6Ô
6
6 (3.11)

This is because the surrounding O ions form a scalenohedron which belongs to the D3d

symmetry point group, and therefore only the 6 B-parameters in equation (3.11) are
needed [160]. However, this simple expression is only achieved if the origin of the sys-
tem is translated to an A site and the system is rotated such that the z-axis is along
the O(1)-A-O(1). This is called Prather’s convention [112]. In general, the number of
B-parameters needed to fully describe a system decreases with increasing symmetry [160].

HCEF can be diagonalised to extract the eigenvalues (energy levels) and eigenvectors.
The eigenvalues (Ei) and eigenvectors (Γi) are used to calculate the resulting energy
spectrum for a constant temperature and Q using [217]

S(Q, ~ω) =
∑
i,i′

(∑
α

∣∣∣ 〈Γi|Ĵα|Γi′〉∣∣∣2) e−βEi∑
j e
−βEj

F (Ei − Ei′ + ~ω) (3.12)

where i, i′ and j index the different energy values and their respective eigenvectors,
β = 1/kBT , α = x, y and z, and F (Ei − Ei′ + ~ω) is a convolution of a Lorentzian and
Gaussian function to account for energy transition lifetime and instrumental resolution.
B-parameters can thus be fitted to the CEF spectrum from an experiment to extract the
CEF-Hamiltonian, and with it, the energy levels and eigenvalues of the magnetic ions in
the system can be studied.

A method of calculating the B-parameters from first principles is through the point-
charge-model (PCM) where the ions surrounding the magnetic ion of interest are treated
as point charges. In the PCM, the B-parameters in units of meV are calculated using
[214]

Bm
n = 1.44 × 104(0.5292)n (γm,nCm,n〈rn〉θn) (3.13)

where 〈rn〉 is the expectation value of the radial part of the wave function, θn is a numerical
factor that depends on the magnetic ion and Cm,n is a normalisation factor. Cm,n, θn and
〈rn〉 are tabulated values that can be found in [215, 218]. Finally

γm,n = −
k∑
i

qi

Rn+1
i

4π

2n+ 1
Zn,m (xi, yi, zi) (3.14)
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where the summation is over all the neighbouring atoms (ligands), Ri is the distance from
the magnetic ion to the ligand, qi is the charge of the ligand and Zn,m (xi, yi, zi) is the
tesseral harmonic.

3.2.4 Rietveld refinement
A common method for the study of crystal structures is the powder diffraction method,

in which a crystal ground into a powder is used. Total scattering is then used to acquire
a 1D diffraction pattern with all reflections of the crystallographic planes visible. In
this thesis, total scattering measurements were performed with the Time-of-Flight (ToF)
technique previously described.

Multiple methods exist for modelling the diffraction pattern and extracting the struc-
tural information. In this thesis, the main technique used was the Rietveld refinement
method [219, 220], sometimes also called Bragg refinement. In this method, a diffraction
pattern is calculated from an initial guess of possible structures. This calculation con-
tains, not only the Bragg reflections, but also the background of the measurements, the
broadening of the peaks due to instrumental resolutions and so on. Just as with RMC,
the least square approach is then used to refine the guessed structure until the calculated
pattern matches the experimental pattern. One of the parameters used to assess how
close the model is to the data is χ2 [221]

χ2 =

n∑
i=1

wi (Yexp,i − Ycalc,i)
2

m− n
(3.15)

where m is the total number of points used in the refinement, n is the number of re-
fined parameters, Y 2

exp,i and Y 2
calc,i are the ith experimental and calculated data points

respectively, and wi = 1/σ2
exp,i where σexp,i is the experimental uncertainty in the ith ex-

perimental data point. The single-crystal literature often uses the term “goodness of fit”
G which is defined by G2 = χ2. Another parameter commonly used to determine how
good a fit is to the experimental data is the weighed profile R-factor (in %) [221]

Rwp = 100 ·


n∑
i=1

wi (Yexp,i − Ycalc,i)
2

h∑
i=1

wiY
2

exp,i


1/2

(3.16)

The goal with both of these parameters is for χ2 → 1 and Rwp → 0. If χ2 < 1, then either
too many variables are being used and the model is fitting to the noise or the standard
deviation of the data is overestimated [221]. However, it is worth mentioning that these
parameters are only used for guidance in the refinement. It is possible for the calculated
pattern to be close to the experimental pattern and still have a large value of χ2 or Rwp,
either because the standard deviations are underestimated or the model is incomplete.

In this thesis, the program used to perform Rietveld refinements is FullProf [222].
FullProf is capable of performing Rietveld analysis of single crystal or powder diffraction
data collected either with neutrons (constant wavelength or time of flight) or X-ray powder
diffraction data collected at constant or variable step in scattering angle 2θ. FullProf
allows for the refinement of both nuclear and magnetic structure. Furthermore, some
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systems may contain multiple phases (structures), and FullProf allows for the simultaneous
refinement of all phases as well as their relative contribution. Finally, FullProf has a wide
range of tools for computing and fitting a background to the data, as well as a wide range
of functions to account for external inputs such as instrumental resolution and peak shape.
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Chapter 4

Structural disorder in
Ho2Ti2−xScxO7−x/2

The effect of structural disorder in Ho2Ti2O7 was studied by the controlled introduc-
tion of Sc ions on the B-sites. Due to the charge difference between the Ti and Sc ions,
charge compensating oxygen vacancies were needed to maintain sample charge neutrality.
Through total scattering measurements performed on Ho2Ti2−xScxO7−x/2 (HTSO) with
x = 0.0, x = 0.1 and x = 0.5 using POLARIS at ISIS, not only was it found that the
oxygen vacancies are located at the O(2) sites, but a small percentage of extra O(2) ions
are displaced to the centre of the tetrahedra formed by the B-sites, known as 8a site.
Density functional theory (DFT) calculations performed in parallel also predicted that,
to minimise the energy of the system, an O(2) vacancy is needed with an extra O(2)
displaced to an 8a site. Calculations of the structural diffuse scattering were performed
with the final DFT structure, which were in excellent agreement with structural diffuse
scattering measurements of the x = 0.5 HTSO sample performed using SXD and D7 at
ISIS and the ILL respectively. Finally, RMC fits were performed to the total scattering
data and diffuse scattering simultaneously. These fits predicted that the Sc ions do not
form clusters, and are distributed on the B-sites randomly.

4.1 Introduction
Disorder is often regarded as a nuisance in the study of classical and quantum spin

liquids, and much effort has been devoted in the past to reduce it as much as possible.
However, it has become apparent that it can also be used as a resource to highlight the
underlying spin liquid and emergent topological behaviour and to induce altogether new
interesting physics phenomena. Recent theoretical calculations show that for spin ice ma-
terials with non-Kramers ions, such as Ho2Ti2O7, it is possible to tune to a quantum spin
liquid state with no long range order by the controlled introduction of structural disorder
[145]. One type of disorder that may induce this type of behaviour is the introduction of
substitutions or vacancies on the non-magnetic Ti or O sites [145].

The presence of this type of disorder has been studied on other pyrochlores, such as the
Y2Ti2O7−δ system studied by Sala et al. [223] and Yb2Ti2O7−δ studied by Bowman et al.
[224]. These disordered oxygen-depleted samples were grown and annealed in a reducing,
flowing mixed gas of hydrogen and argon [223]. In each case, it was found that the
location of the vacancy changed. As figure 4.1 shows, the Y2Ti2O7−δ system contained
vacancies at the O(1) sites, at the centre of the Y tetrahedra, while the Yb2Ti2O7−δ
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(a) (b)

Figure 4.1: (a) Schematic diagram of O(1) vacancies in Y2Ti2O7−δ and the associated
distortion of the surrounding ions, with displacements indicated by green arrows. (b)

Schematic diagram of O(2) vacancies in Yb2Ti2O7−δ and the associated distortion of the
surrounding ions, with displacements indicated by black arrows. Figures acquired from

[223] and [224] respectively.

system contained vacancies at the O(2) sites. Neutron diffuse scattering is an excellent
tool to study disorder due to oxygen vacancies, since neutrons are particularly sensitive
to vacancies and displacement of oxygen ions. This can be seen in the (h,k,7) structural
diffuse scattering planes, shown in figure 4.2, performed on Y2Ti2O7−δ and Yb2Ti2O7−δ.
These systems produce very different diffuse scattering, with the Y2Ti2O7−δ containing
a figure-of-eight pattern with a gap near (0,7,7) and symmetrically equivalent points,
while the Yb2Ti2O7−δ system not only has intensity around (0,7,7) and symmetrically
equivalent points, but the scattering at high Q is much more pronounced.

A similar type of disorder was studied in Ho2Ti2O7 where charge compensating oxygen
vacancies were introduced in a controlled and uniform manner by changing a percentage
of Ti4+ ions by the Sc3+ ions. To do this, different amounts of the precursors materials

(a) (b)

Figure 4.2: The structural diffuse scattering measured on SXD at ISIS of (a) Y2Ti2O7−δ
and (b) Yb2Ti2O7−δ. The lower half panels show Monte-Carlo (MC) calculations used to

determine the location of the oxygen vacancy. Figures acquired from [223] and [224]
respectively.
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were mixed until the wanted concentration of Sc ions was achieved. Using this method,
disorder will not only arise due to the presence of vacancies, but also due to the difference
in ionic radii and charge between the Sc and Ti ions.

This chapter presents neutron scattering data on disordered spin ice Ho2Ti2−xScxO7−x/2
(HTSO) with x = 0.0, x = 0.1, x = 0.5. I will present total scattering measurements
on powders of all three samples, alongside Bragg refinements performed to such data to
analyse the origin of disorder and to extract the pair distribution functions (PDFs) of
all three samples. Structural diffuse scattering measurements were performed on a single
crystal of the x = 0.5 HTSO sample. The results were analysed with support of geomet-
rical optimisation density functional theory (DFT) calculations, and reverse Monte-Carlo
(RMC) fits performed to the SXD and PDF data simultaneously.

4.2 Total scattering measurements
Disorder was induced in Ho2Ti2O7 by doping with Sc ions on the B-sites. Due to

the charge difference between the Ti4+ and Sc3+, this doping left the system negatively
charge and charge-compensating oxygen vacancies were needed. However, a pyrochlore
contains two distinct oxygen sites, O(1) sites at the centre of the tetrahedra formed by
Ho ions, and O(2) sites forming octahedra surrounding the Ti/Sc ions. To determine
the location of the oxygen vacancy, total scattering measurements on powder crystals of
Ho2Ti2−xScxO7−x/2 (HTSO) with x = 0.0, x = 0.1 and x = 0.5 were performed at room
temperature using the POLARIS instrument at ISIS. For this experiment, 3.9 g, 3.1 g
and 4.3 g of the x = 0.0, x = 0.1 and x = 0.5 HTSO samples were used respectively,
grown by Dharmalingam Prabhakaran using the floating zone method at the Clarendon
Laboratory, Oxford University.

The intensity as a function of time of flight (ToF) normalised to the mass of the x = 0.0
HTSO sample from detector banks 1 (smallest ToF) and 5 (largest ToF) are shown in
figure 4.3. Figure 4.4 shows the combined data from all 5 banks converted to Q-space
units. The ToF to Q-space unit conversion was performed using the GudrunN program,
where measurements of the empty canister and a vanadium standard sample are used to
correct and put the data on an absolute scale. The large difference in scattering between
the x = 0.5 and x = 0.0 HTSO Bragg-scattering data is indicative of the large amount
of disorder that has been introduced in this system by the presence of vacancies and Sc

(a) (b)

Figure 4.3: Total scattering data of the x = 0.0, x = 0.1 and x = 0.5 HTSO samples
normalised to the mass of the x = 0.0 HTSO sample acquired with POLARIS from

detector banks (a) 1 and (b) 5.
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Figure 4.4: Merged corrected data from all 5 banks of the POLARIS instrument and
converted to Q-space units.

doping. Not only is there a significant change in the Bragg peak intensities and shapes,
but the intensity in between Bragg peaks is also higher due to the large amount of diffuse
scattering arising from the disorder. The x = 0.1 HTSO Bragg-scattering data on the
other hand is still very similar to the x = 0.0 HTSO data, indicating that the doping in
this system was not enough to cause large changes to the average structure. Since the
level of doping of the x = 0.1 HTSO system is an intermediate point between the other
two, the scattering in between Bragg peaks of the x = 0.1 HTSO data is in between the
x = 0.0 and x = 0.5 HTSO data, as figure 4.4 shows. Finally, there seems to be a small
shift in the location of the Bragg peaks, especially noticeable for Bragg peaks at large
ToF in bank 5. This is an indication of the lattice parameter of the unit cell changing
due to the doping and vacancies.

To further analyse the data and extract information such as the true concentration
of Sc, as well as the location of the vacancies (O(2) or O(1) sites), Bragg refinements
were performed using the FullProf suite [222]. For simplicity, when performing the Bragg
refinements, the concentration of Sc and O vacancies was constrained to maintain charge
neutrality. In other words, the concentration of Sc (Ti) ions increased (decreased) at the
same rate as the concentration of O vacancies increased. Other parameters of interest
were also refined, such as the lattice constant and the x coordinate of the O(2) ions, as
well as background and instrumental aspects. Since 5 different spectra were measured
(one for each POLARIS detector bank), each with a different ToF range, all 5 patterns
were refined simultaneously to further constrain the refined parameters.

The first data refined were the x = 0.5 HTSO sample data. Two separate refinements
were performed, as figure 4.5 and 4.6 show: having vacancies at the O(1) sites (O(1)
vacancies) and vacancies at the O(2) sites (O(2) vacancies). As figure 4.5 shows, in bank
5 both models produced similar fits, with the higher ToF Bragg peaks fitting marginally
better with the O(2) vacancy model. This is in agreement with the Bragg R-factors (where
the measured and calculated integrated Bragg peak intensities are compared) extracted
from FullProf, being smaller for the O(2) vacancy model (RBragg = 8.24%) than for the
O(1) vacancy model (RBragg = 11.75%). Both models also produced similar refinements
for the bank 1 data, as figure 4.6 shows. The biggest difference can be found at around
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(a)

(b)

Figure 4.5: Bragg refinement of the x = 0.5 HTSO data from bank 5 using (a) O(1)
vacancies and (b) O(2) vacancies. The black vertical markers are the Bragg positions.

2700 µs, where the O(1) vacancy model indicates the presence of an extra Bragg peak
while the O(2) vacancy model is almost flat. Because of this, the O(1) vacancy model was
discarded, and further analyses were performed only considering O(2) vacancies. Further
preference for an O(2) vacancy model was found when comparing the Bragg R-factors,
smaller for the O(2) vacancy model (RBragg = 2.15%) than for the O(1) vacancy model
(RBragg = 3.36%). In addition to this, a refinement was performed assuming a perfect
crystal with no vacancies and Sc ions, resulting in a Bragg R-factors of 45.26% and 31.36%
for banks 1 and 5 respectively.

With the O(2) model confirmed, one extra parameter of the x = 0.5 HTSO system
was refined: the presence of O ions at the centre of the tetrahedra of B-sites (8a sites).
Due to the proximity of O(2) and 8a sites, it is possible for an O(2) ion to migrate to an 8a
site in the presence of disorder. In the Bragg refinement, this displacement was refined by
decreasing the concentration of O(2) ions and increasing the concentration of 8a ions. This
resulted in a small improvement of the refinement, mostly visible in bank 1, as figure 4.7
shows. Furthermore, the inclusion of this displacement decreased the Bragg R-factor of
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(a)

(b)

Figure 4.6: Bragg refinement of the x = 0.5 HTSO data from bank 1 using (a) O(1)
vacancies and (b) O(2) vacancies. The black vertical markers are the Bragg positions.

the bank 1 fit to 1.71%. This confirms that the origin of the disorder in this system arises
from both, the removal of O(2) ions and the displacement of extra O(2) ions to the 8a
site. A representation of this is shown in figure 4.8. The inclusion of O(2) ions displacing
to the 8a sites was also tested in the O(1) vacancy model, but this only decreased the
intensity of the 2700 µs peak by a small amount. Table 4.1 shows the concentration of
the vacancies as well as other refined parameters. The final Sc concentration of 23.4%,
equivalent to x = 0.468 in the sample formula, is close to the nominal 25% that was
initially expected.

The possibilities of an extra phase appearing in this system due to the migration of
O(2) ions to 8a sites was disregarded, since no new Bragg peaks appear. Finally, all the
peaks follow the same width relation, unlike the case of Ho2 (Ti1.33Ho0.67) O6.67 studied
by Lau et al. [27], where there is a mixture of sharp fluorite peaks and broad peaks from
small domains of pyrochlore. This is a good indication that the system is formed fully by
a pyrochlore phase, and there is no phase mixing of pyrochlore and fluorite. Finally, the
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Table 4.1: Refined parameters of all 3 HTSO samples studied.

x = 0.5 x = 0.1 x = 0.0
HTSO sample HTSO sample HTSO sample

Lattice parameter (Å) 10.15(2) 10.10(4) 10.10(6)
x coordinate 0.334(1) 0.329(4) 0.330(1)

Sc concentration (%) 23.4(2) 3.28(1) –
O(2) vacancy concentration (%) 3.9(2) 0.64(5) 0.52(8)

O(2) ions displaced (%) 0.65(9) 0.13(5) 0.11(6)
RBragg (bank 1) 1.71% 1.14% 1.87%

possibility of intersite mixing between the Ho and Ti/Sc ions was also considered in the
O(1) and O(2) vacancy model, but the Bragg refinement was not able to detect any.

(a)

(b)

Figure 4.7: Bragg refinement of the x = 0.5 HTSO data from bank 1 using O(2)
vacancies (a) with out and (b) with extra O(2) ions displaced to the 8a sites. The black

vertical markers are the Bragg positions.
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Figure 4.8: Disorder model. Green is the A sites, grey the B sites, brown the O(1) site,
blue the 8a site, yellow the vacancies and the arrow indicates the displacement direction.

A similar process was followed with the x = 0.1 HTSO data, refining the same pa-
rameters as with the x = 0.5 HTSO sample with O(1) and O(2) vacancies and with O(2)
displacements to 8a sites. As figure 4.9 shows for detector banks 1 and 5, both models
produce very similar fits to the data. Furthermore, the resulting Bragg R-factors were also
very similar, with the O(1) model RBragg (0.9%) being marginally smaller than the O(2)
model RBragg (1.1%) for bank 1, but vice versa for bank 5 (4% for the O(1) vacancy model
and 3.8% for the O(2) vacancy model). The main difference between both models was
found in the vacancy concentration, 0.64(5)% for the O(2) vacancy model and 3.0(1)% for

(a) (b)

(c) (d)

Figure 4.9: Bragg refinement of the x = 0.1 HTSO data from bank 1 using (a) O(1)
vacancies and (b) O(2) vacancies, and from bank 5 using (c) O(1) vacancies and (d)

O(2) vacancies. In all cases, the displacements of O(2) ions to 8a sites was also refined.
The black vertical markers are the Bragg positions.
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the O(1) vacancy model. For the x = 0.1 HTSO system, the expected nominal vacancy
concentrations would be 0.83% for O(2) vacancies or 5% for O(1) vacancies. Since the
O(2) vacancy model produced a value that is closer to the expected concentration, and
due to the Bragg refinement of the x = 0.5 HTSO system suggesting O(2) vacancies,
it was assumed that the x = 0.1 HTSO system also contains O(2) vacancies, with an
extra 0.13(5)% of O(2) ions moving towards the 8a sites. Finally, and just as with the
x = 0.5 HTSO system, no intersite mixing between the A and B sites was found. Table 4.1
shows the concentration of the vacancies as well as other refined parameters. In addition,
a refinement was performed assuming a perfect crystal with no vacancies and Sc ions,
resulting in a Bragg R-factors of 5.06% and 5.51% for banks 1 and 5 respectively.

The x = 0.0 HTSO sample was also refined following a similar process, but with no Sc
doping and thus no constraint on the O(1) and O(2) concentration. This refinement was
performed to determine if the sample studied had any significant intrinsic disorder that
could affect the crystal electric field measurements that will be discussed in the following
chapter. The presence of vacancies was considered in this system, since previous studies
on the related system Dy2Ti2O7 by Sala et al. [223] inferred a small concentration of O(1)
vacancies. The final fits are shown in figure 4.10. Just as with the x = 0.1 HTSO system,
both models produce very similar fits to the data, with the Bragg R-factor being smaller
for the O(2) vacancy model (1.86% with O(2) vacancies over 1.93% with O(1) vacancies
for bank 1 and 3.27% with O(2) vacancies over 3.52% with O(1) vacancies for bank
5). Furthermore, the O(2) vacancy model predicted a 0.52(8)% vacancy concentration,

(a) (b)

(c) (d)

Figure 4.10: Bragg refinement of the x = 0.0 HTSO data from bank 1 using (a) O(1)
vacancies and (b) O(2) vacancies, and from bank 5 using (c) O(1) vacancies and (d)

O(2) vacancies. In all cases, the displacements of O(2) ions to 8a sites was also refined.
The black vertical markers are the Bragg positions.
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while the O(1) vacancy model predicted a 2.80(5)% vacancy concentration, similar to
the concentrations found for the x = 0.1 HTSO system. Such similarities explain why
the measured data of both systems are so similar. Due to the likeness to the x = 0.1
HTSO system, and the results from the x = 0.5 HTSO system Bragg refinement, it was
concluded that the x = 0.0 HTSO system also contains O(2) vacancies, with an extra
0.11(6)% of O(2) ions moving towards the 8a sites. Lastly, and just as with the x = 0.5
HTSO system, no intersite mixing between the A and B sites was found. Table 4.1
shows the concentration of the vacancies as well as other refined parameters. In addition,
a refinement was performed assuming a perfect crystal with no vacancies and Sc ions,
resulting in a Bragg R-factors of 2.48% and 3.25% for banks 1 and 5 respectively. The
fact that these Bragg R-factors are close to the ones achieved when a small concentration
of vacancies is included is expected, since this is the stoichiometric sample.

With the Bragg refinement finished and knowing the concentration of Sc and vacancies
in all three samples, the POLARIS ToF experimental data were converted to a Pair
Distribution Function (PDF) data as a function of real space r(Å). This conversion was
performed by Helen Playford, one of POLARIS local contacts. To convert the data, the
program GudrunN was used. To do this, not only the experimental data and the Bragg
refinement information was used, but extra experimental parameters such as the sample
mass, container shape and dimensions, and instrumental calibration parameters were also
needed. The PDF (G(r)) and reduced PDF (D(r)) of all three samples are shown in
figure 4.11. One of the parameters that the GudrunN program needs is the Fourier filter
or Minimum radius. This parameter is used to filter out low-r noise/unphysical features
from the PDF, and it has to be below the first correlation length in the sample. From
published PDFs of other pyrochlores, it was decided that a minimum radius of 1.6 Å was
sufficient.

As it was described in 2.4.2, a PDF shows the correlations in a system or the probability
of finding an ion at a distance r from the centre of a random atom. Thus, for an ideal
system with no intrinsic or extrinsic disorder with all the unit cells repeating perfectly,
the G(r) should be zero with sharp peaks at certain distances. However, in real systems
ions are displaced from their ideal position due to vibrations and the presence of disorder,
which results in a broadening of the peaks. This is what is observed with the PDF and
reduced PDF of the x = 0.0 HTSO sample. Similarly, the x = 0.1 HTSO sample produced
a PDF very similar to the x = 0.0 HTSO sample PDF, since the level of disorder is similar
to the intrinsic disorder in this system. The main difference between the two is in the
reduced size of the peaks in G(r) of the x = 0.1 HTSO sample compared to the x = 0.0
HTSO sample, due to the presence of Sc ions in the system. On the other hand, the
x = 0.5 HTSO sample has so much disorder that not only the peaks are much broader
than the x = 0.0 and x = 0.1 HTSO samples, but the locations of the peaks are also
shifted due to the presence of large amounts of Sc doping and vacancies, which causes
major distortions to the position of the nearest neighbour ions.

4.3 Structural diffuse scattering measurements
To study the structural diffuse scattering of the x = 0.5 HTSO sample in more detail,

measurements on a single crystal of this system were performed using the Single-Crystal
Diffractometer SXD at ISIS. This allowed us to measure volumes of reciprocal space, giving
access to the structural diffuse scattering in any plane in the volume. As such, there is no
need to insert the crystal in any particular orientation. Measurements were performed at
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30 K and room temperature. At 30 K, the measurements were performed by rotating the
crystal in steps of 20◦, with each orientation measuring for 1.5 hours. This was enough to
cover all the gaps in between the detectors. On the basis of these data, it was decided that
a 40◦ step size, also each orientation being measured for 1.5 hours, would be sufficient at
room temperature. The single crystal was grown by Dharmalingam Prabhakaran using
the floating zone method at the Clarendon Laboratory, Oxford University. The data was
treated using the SXD2001 software developed by Matthias Gutmann, local contact for
SXD, where measurements of the background and a vanadium standard sample are used
to process the data. In this program, all the orientations measured were combined and the
volume was symmetrised using the Fd3̄m symmetry, the appropriate crystal symmetry
for this system [6].

The 30 K and room temperature data were compared to see if there was any significant
phononic contribution, since phononic effects increase in intensity with temperature, and
thus features present at room temperature and not at 30 K could be ignored in the
diffuse scattering modelling. However, as figure 4.12 and 4.13 show, the change in diffuse
scattering with temperature is negligible, and thus the phononic effects can be ignored.
It is worth pointing out that the structural diffuse scattering found in the (h,k,7) plane
is very similar to the structural diffuse scattering measured by Sala et al. [223] in the

(a) (b)

(c) (d)

Figure 4.11: (a) and (b) show the PDF (G(r)) and (c) and (d) the reduced PDF (D(r))
of the x = 0.0, x = 0.1 and x = 0.5 HTSO data.
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(a) (b)

(c) (d)

Figure 4.12: Structural diffuse scattering of the x = 0.5 HTSO sample acquired with
SXD. (a) and (c) show the structural diffuse scattering of the (h,k,7) and (h,k,6.5) planes

at 30 K and (b) and (d) the same planes but at room temperature. In this particular
comparison, only the orientations measured at 30 K and room temperature are used.

same plane with Y2Ti2O7−δ, both producing a very similar figure-of-eight pattern. This
was surprising since in this system, Bragg refinements and DFT calculations, described
in the following section, predict vacancies at O(2) sites, while Sala et al. [223] predicted
vacancies at O(1) sites for Y2Ti2O7−δ. Nevertheless, some differences do exist between the
two, such as more pronounced diffuse scattering around (4,4,7), (6,3,7) and symmetrically
equivalent points for the HTSO diffuse scattering, and a less defined figure-of-eigth gap
at (0,7,7) and symmetrically equivalent points.

We were also interested in the low Q structural diffuse scattering for later comparison
with structural diffuse modelling. To do this, the same crystal was measured with the D7
instrument at the ILL. While with D7 only one plane in reciprocal space can be measured
at a time, as opposed to SXD which measures volumes of reciprocal space, the low Q
resolution is better, as figure 4.14 shows. Furthermore, the ability to isolate the structural
scattering from the paramagnetic background using polarisation analysis greatly improves
signal-to-noise and this is particularly helpful at low Q, where the magnetic scattering is
strongest. The structural diffuse scattering in the (h,h,l) plane at 220 K acquired with
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(a) (b)

(c) (d)

Figure 4.13: Structural diffuse scattering of the x = 0.5 HTSO sample acquired with
SXD. (a) and (c) show the structural diffuse scattering of the (h,k,5.5) and (h,k,4.5)
planes at 30 K and (b) and (d) the same planes but at room temperature. In this

particular comparison, only the orientations measured at 30 K and room temperature
are used.

D7 is shown in figure 4.14b. More details of the D7 experiment and the data processing
will be given when discussing the magnetic diffuse scattering in the following chapter.

4.4 RMC and DFT analysis
To model the diffuse scattering and test if the disorder model from figure 4.8 produces

a diffuse scattering like the one measured with SXD and D7, reverse Monte-Carlo (RMC)
fits to the diffuse scattering and PDF were performed. To perform these calculations, the
program RMCprofile was used [207]. This program, which results from a collaboration
between, amongst others, scientists at ISIS and SNS, was chosen because one of the
developers is Helen Playford, who was able to provide guidance on which initial settings
to use for modelling this system. The way this program works is as follows: anNi×Nj×Nk

supercell is created either by the user independently or using an inbuilt subroutine of the
program that reads a .cif file (a file that contains the structural information of the system
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(a) (b)

Figure 4.14: Structural diffuse scattering in the (h,h,l) plane of the x = 0.5 HTSO
sample. (a) Data acquired with SXD at 30 K and (b) data acquired with D7 at 220 K.

being modelled) and with the information it creates the supercell. This subroutine is useful
because the user can specify information such as substituting an ion by another with a
certain concentration, or substituting an ion by a vacancy with a certain concentration.
Once the supercell is created, the RMC process starts, in which a certain number of ions
are displaced in random directions.

Once the ions are displaced, the program calculates aspects specified by the user,
such as PDFs and diffuse scattering. The program compares the calculated parameters
with the experimental data and if the χ2 is minimised the displacements are accepted,

if not the displacements are accepted with a probability given by e(−∆χ2/2). RMCprofile
is time based, so this process is repeated for an amount of time specified by the user.
With RMCprofile, how χ2 changes with time can be monitored, and its convergence to a
constant value can be used to determine how long the program needs to run. In addition
to displacing ions, the program also allows swapping ions, meaning that it will also swap
the location of two specified ions with a given probability. Finally, the displacement of the
ions can be constrained by specifying the max distance an ion can move in each iteration
and by specifying the minimum distance between two ions.

For the x = 0.5 HTSO system, a 10 × 10 × 10 supercell was created with the con-
centration of Sc and O(2) vacancies found in the Bragg refinement. Both, the PDF and
structural diffuse scattering were fitted simultaneously. An issue with RMC fitting is that,
if no constraints are given, the ions will be displaced as much as needed to get a good
fit to the experimental data. This can result in unphysical displacements, such as having
multiple ions in the same position or ions being displaced long distances. However, in
this case, I gave the program enough data to self-constrain the displacement of the ions.
The only constraint added was to the vacancies, where it was specified that vacancy sites
cannot be displaced, only swapped. With all this information, allowing Ti ions to swap
locations with Sc ions and allowing O(2) ions to swap location with vacancies, I found
that fitting to the data for 80 hours was enough for the χ2 to converge to a constant value.

Three different sets of fittings were performed: fitting simultaneously the PDF, the
SXD (h,k,7) plane and the SXD (h,k,6.5) plane, fitting simultaneously the PDF, the SXD
(h,k,5.5) plane and the SXD (h,k,4.5) plane, and fitting simultaneously the PDF and the
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(a) (b)

(c) (d)

Figure 4.15: RMC fit to the structural diffuse scattering in the (top) (h,k,7) and
(botom) (h,k,6.5) planes of the x = 0.5 HTSO sample. (left) Experimental data and

(right) RMCprofile fit.

D7 (h,h,l) plane. The resulting fits to the diffuse scattering are shown in figures 4.15
to 4.17. The fits to the SXD data are good, reproducing all the main features seen in the
experimental data. The biggest difference between the RMC fit and the SXD data is in the
(h,k,6.5) data, where the RMC fit produces a set of sharp Bragg peaks that are not present
in the experimental data. The (h,k,4.5) and (h,k,5.5) data were fitted simultaneously, and
since none of them have Bragg peaks in the experimental data, the RMC program did not
reproduce them. However, the (h,k,6.5) data were fitted simultaneously with the (h,k,7)
data, which has very pronounced Bragg peaks, and it is possible that the Bragg peak
intensity from the (h,k,7) plane leaked into the (h,k,6.5) plane. This was confirmed by
doing an RMC fitting just with the (h,k,6.5) data. Finally, the fit to the D7 data is not as
good as the fits to the SXD data. It produces vertical and horizontal streaks emanating
from the Bragg peaks. This could be artefacts produced by the program when performing
fittings to low Q data, since the other planes which are at higher Q values do not have
this issue.
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(a) (b)

(c) (d)

Figure 4.16: RMC fit to the structural diffuse scattering in the (top) (h,k,5.5) and
(bottom) (h,k,4.5) planes of the x = 0.5 HTSO sample. (left) Experimental data and

(right) RMCprofile fit.

Conversely, the resulting fits to the PDFs, shown in figure 4.18, are all very similar
independent of the plane, with the PDF fitted with the (h,h,l) plane marginally better
than the other two. The PDF fit performed with the (h,h,l) plane being the best one was
a surprise, since the diffuse scattering is the worst when compared with the other two
calculations. A reason behind this could be due to the weighting given by the program
in the calculation. The RMCprofile program was set up so that the χ2 contribution
from the PDF and diffuse scattering was weighted differently, and in each iteration the
program changed the weighting automatically. Thus, it is possible that the RMCprofile
program gave more weighting to the PDF since it was unable to get a good fit to the
(h,h,l) diffuse scattering. Finally, bond length distributions, examples of which will be
shown later when discussing the DFT calculations, were examined. All three calculations
produced the same bond length distributions. This comparison was performed to confirm
that all three calculations had the same minima, and that the RMC did not have different
solutions for each scattering plane.
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(a) (b)

Figure 4.17: RMC fit to the structural diffuse scattering in the (h,h,l) plane of the
x = 0.5 HTSO data. (a) Experimental data and (b) RMCprofile fit.

(a) (b)

(c)

Figure 4.18: RMCprofile fit to the PDF of the x = 0.5 HTSO system. (a) PDF fitted
with the SXD (h,k,7) and (h,k,6.5) planes, (b) PDF fitted with the SXD (h,k,5.5) and

(h,k,4.5) planes and (c) PDF fitted with the D7 (h,h,l) plane.
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In addition to the RMC fits, density functional theory (DFT) calculations were also
performed to model the diffuse scattering of the x = 0.5 HTSO system. The calculations
were performed using Y instead of Ho, since Y is much lighter than Ho and non-magnetic,
and thus the calculations converge faster. These calculations were performed by Thomas
Hicken from Royal Holloway University of London. DFT calculations are ab initio calcula-
tions, meaning that, other than the starting structure, there are no assumptions from the
user. In the calculations, a single unit cell of Y2Ti2O7 was used with two Ti ions changed
by Sc ions and with one O vacancy. 47 inequivalent ways exist of substituting two Ti ions
by two Sc ions and removing an O ion. All the DFT calculations with an O(2) vacancy
produced a lower energy than the calculations with an O(1) vacancy. Furthermore, the
configuration that produced the lowest DFT energy also contained an O(2) ion displaced
towards an 8a site. This is in perfect agreement with the Bragg refinements.

With this disordered structure, the structural diffuse scattering was computed by
using the difference method described in section 2.4.1, but instead of using the scattering
length of Y, using the scattering length of Ho. In this case, the structure that was being
subtracted was one with a perfect Ho2Ti2O7. This is equivalent to assuming that the size
of the disordered region is comparable to the conventional unit cell, with the rest of the
lattice taken to be a perfect Ho2Ti2O7 structure. Since this disordered structure will be
present in the real system in any possible allowed orientation, multiple calculations were
performed with the unit cell of the disordered structure in all 48 allowed symmetrically
equivalent orientations, with all the calculated patterns added incoherently. The resulting
diffuse scattering is shown in figure 4.19. For an ab initio calculation and using Y instead
of Ho, DFT is in remarkably good agreement with the experimental diffuse scattering,
capturing all the features in the (h,h,l) plane, and it is in some qualitative agreement
with the scattering for (h,k,7). There are some subtle differences between both, such as
the calculations around (1,1,1) in the (h,h,l) plane predicting diffuse scattering closer to
the origin than the experimental data, and as Q increases, this differences becomes more
pronounced.

Figure 4.20 shows a comparison between the Sc-O(2) and Ti-O(2) bond length distri-
butions predicted by DFT and the RMC fit. Only the occupied O(2) sites were used to
extract the distributions, the vacant sites were ignored. Both calculations predict very
similar displacements, showing consistency between the different types of procedures used
to model the data. Furthermore, figure 4.20 shows the change in the B-O(2) bond length
when disorder is introduced. While most of the Ti ions have not changed, still main-
taining the stoichiometric Ti-O(2) bond length, there is a clear increase in the Sc-O(2)
bond length. This increase is most likely due to the increase in ionic radius of the Sc ion
compared to Ti [225] and the decrease in charge.

Finally, both the RMC fits and DFT calculations suggest that there is no particular
Sc–Sc correlation. The resulting RMC calculations suggest that the Sc ions are distributed
on the B-site tetrahedra randomly, with most of the tetrahedra having either one or no
Sc ions, and very few having two or three. This was confirmed by performing a separate
calculation where Sc ions were inserted on the B sites of a pyrochlore randomly. The
resulting Sc distribution in each tetrahedron matched the RMC fits prediction. Similarly,
the DFT is able to reproduce the experimental data using isolated cluster models (isolated
clusters of two Sc ions and one vacancy), which is consistent with random occupation of
Sc sites. Furthermore, there is nothing in the experimental data to suggest that there are
any Sc correlations such as sharper superlattice reflections, so a random distribution of
Sc ions on the B sites seems to be a good assumption.
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4.5 Summary
The effect of disorder on Ho2Ti2O7 was studied by doping with Sc ions, which resulted

in the introduction of charge compensating oxygen vacancies. Total scattering measure-
ments on Ho2Ti2−xScxO7−x/2 (HTSO) with x = 0.0, x = 0.1 and x = 0.5 were performed
using the POLARIS instrument from ISIS. The resulting data showed that while the
x = 0.0 and x = 0.5 HTSO samples produced very different scattering, the x = 0.1 HTSO
sample produced scattering very similar to the x = 0.0 HTSO sample. Bragg refinements
were performed to determine the location of the vacancies. With the x = 0.5 HTSO
system, not only was it found that the vacancies are located at O(2) sites, with a con-
centration of 3.9%, close to the nominal 4.17% that was initially expected, but an extra
0.65% of different O(2) were displaced towards the centre of the tetrahedra formed by
the B-sites, known as an 8a site. On the other hand, the Bragg refinements performed to

(a) (b)

(c) (d)

Figure 4.19: Comparison between the (left) experimental structural diffuse scattering
and (right) the DFT calculations. (Top) shows the (h,h,l) plane at 220 K and (bottom)

the (h,k,7) plane at 30 K.
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the x = 0.0 and x = 0.1 HTSO data produced very similar results if either O(1) or O(2)
vacancies were chosen, with the percentage of O(2) vacancies being marginally closer to
the nominal expected values. Because of this and from the results from the refinement to
the x = 0.5 HTSO data, it was concluded that the x = 0.0 and x = 0.1 HTSO samples
also contained O(2) vacancies.

The Bragg refinements and total scattering data were used to extract the pair distri-
bution functions (PDFs) of all three samples. The PDF data of the x = 0.5 HTSO sample
was used in conjunction with structural diffuse scattering acquired with SXD from ISIS
and D7 from the ILL to perform RMC fits. While the resulting calculations produced
excellent fits to planes at large (h,k,l) values, the fit to the (h,h,l) plane did not reproduce
all the features, producing streaks emanating from Bragg peaks. The reason behind this
is unknown, but it is suspected to be an artefact of the fitting program.

(a) (b)

(c) (d)

Figure 4.20: Comparison between the RMC fit (up) and DFT (down) bond length
distributions for the (left) Sc-O(2) bond lengths and (right) Ti-O(2) bond lengths.
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In conjunction to this, density functional theory (DFT) calculations of a unit cell of
Y2Ti2O7 were performed, but with two Ti ions changed by Sc ions and oxygen vacancies
in different locations. It was found that to minimise the energy of the system, an O(2)
vacancy and an O(2) displacement to an 8a site is needed, in perfect agreement with the
Bragg refinements. Structural diffuse scattering calculations were performed using the
disordered structure predicted by the DFT calculation, which were in remarkably good
agreement with the experimental data. Finally, both the RMC and DFT do not predict
any kind of Sc–Sc correlation, suggesting that the Sc ions are distributed randomly in the
B-site tetrahedra.
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Chapter 5

Magnetic disorder in
Ho2Ti2−xScxO7−x/2

The effect of structural disorder on the magnetic properties of Ho2Ti2O7 was studied
by the introduction of Sc ions and oxygen vacancies. Crystal electric field (CEF) measure-
ments of Ho2Ti2−xScxO7−x/2 (HTSO) with x = 0.0, x = 0.1 and x = 0.5 were performed
using the MARI spectrometer from ISIS to study the effect of the vacancies on the CEF
levels of Ho. It was found that the presence of vacancies produced a weak splitting of the
ground state doublet of the Ho ions into two singlets separated by an energy of 0.12 meV.
Due to the small energy difference between the new ground state and first excited state,
it was found through magnetisation calculations that an applied field of 0.1 T is strong
enough to mix the ground and first excited sates generating a moment that points along
the line connecting the centres of tetrahedra, but with a tilt towards the location of the
vacancy. Thus, it is possible that the internal exchange and dipolar fields are strong
enough to produce these same effects on the Ho ions next to a vacancy. Magnetic diffuse
scattering measurements performed at 50 mK using D7 at the ILL show that while the
scattering from the x = 0.1 and x = 0.5 HTSO systems is qualitatively very similar to the
scattering from the stoichiometric Ho2Ti2O7 system measured by Fennell et al. [1] and
Chang et al. [2], the width of the HTSO pinch point increases as the level of Sc doping
increases. This is different to the Ho2−xYxTi2O7 system studied by Chang et al. [116],
where the width of the pinch point did not change with increasing levels of Y. It was
proposed that the broadening of the pinch point is caused by the presence of the tilted
moments.

5.1 Introduction
Recently, it has been proposed that in Ho2Ti2O7 the introduction of disorder leads

to new degrees of freedom and the formation of topological spin glasses [226]. Sen et al.
[226] studied theoretically the Ho2Ti2O7 system where some of the Ho ions were replaced
by non-magnetic ions. They proposed that instead of modelling this system in terms
of the remaining spins, the system could be modelled in terms of the missing spins, as
figure 5.1b and 5.1c show. In the case of classical spin ice, the chemical substitution of
a magnetic ion by a non-magnetic ion leads to the formation of “ghost” spins. Just like
in a semiconductor where removing an electron leaves behind a hole that behaves like an
electron, in classical spin ice systems, the removal of a spin leaves behind a ghost spin
that behaves similarly to a real spin.
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Figure 5.1: (a) Projection of spin ice onto the two-dimensional plane. (b) A spin ice
with missing spins (crossed out). (c) A spin ice with missing spins but represented by a

small density of ghost spins. (d) Spin ice where the spin have been replaced by
dumbbells of equal and opposite magnetic charges (dumbbell model [105]). Figures

acquired from [226].

The ghost spins do not disrupt the correlations in spin ice, since they have zero net
magnetic charge, so that the pinch points observed in neutron scattering remain intact.
This can be understood by the dumbbell model, shown in figure 5.1d. Removing a spin
is the same as removing two magnetic charges of opposite sign, which leaves the overall
magnetic charge of the system unchanged. This is found to be the case experimentally for
the diluted spin ice Ho2−xYxTi2O7 (HYTO) studied by Chang et al. [116], with x = 0.0,
x = 0.3 and x = 1.0. All three systems produce scattering data very similar to the
one shown in figure 5.2a. The similarities with the stoichiometric x = 0.0 system are
reinforced by the small effect that the Y doping has on the width of the pinch points,
as shown in figure 5.2b. Furthermore, the HYTO measurements at 2 K also show a
pattern very similar to the one measured by Fennell et al. [1] shown in the introductory
chapter, showing a crossover from the dipolar spin-ice model (DSM) regime to the nearest
neighbour spin ice model (NNSM) regime [68].

The effect of introducing oxygen vacancies and Sc ions on the magnetic properties
of the Ho ions was studied in Ho2Ti2−xScxO7−x/2 with x = 0.0, x = 0.1 and x = 0.5.
Unlike with Ho2−xYxTi2O7, where the magnetism of particular Ho ions is switched off by
replacing them with an Y ion, in this system it is the presence of disorder around the
Ho ions which is expected to cause changes to the ground state of Ho. Previous point-
charge-model (PCM) calculations performed by Sala et al. [223] of the crystal electric
field (CEF) energy levels of a Ho in a Ho2Ti2O7 next to an O(1) vacancy suggested that
these Ho ions become non-magnetic.

This chapter presents neutron scattering data on the disordered spin ice
Ho2Ti2−xScxO7−x/2 (HTSO) with x = 0.0, x = 0.1 and x = 0.5. CEF excitation measure-
ments were performed on the three samples in powder form using the MARI spectrometer
from ISIS to study the effect of the disorder discussed in the previous chapter on the single-
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(a) (b)

Figure 5.2: (a) Experimental neutron SF scattering of Ho2−xYxTi2O7 with x = 0.3 at
400 mK. (b) Transverse scan of the (0,0,2) pinch point with 3 levels of Y doping
extracted from the SF data at low T (x = 0 and 1 at T = 30 mK and x = 0.3 at

T = 400 mK). Figures acquired from [116].

ion magnetic properties of the system. Knowing the effects, the cooperative magnetism
in the x = 0.1 and x = 0.5 HTSO samples was studied by performing magnetic diffuse
scattering measurements on single crystals using the D7 instrument at the ILL.

5.2 CEF excitation measurements
To study the effects of the disorder determined in the previous chapter on the single

ion magnetism of the Ho ion in Ho2Ti2−xScxO7−x/2 (HTSO) with x = 0.0, x = 0.1 and
x = 0.5, crystal electric field (CEF) measurements were performed using the ToF spec-
trometer MARI at ISIS. All of the data acquired with MARI shown in this section is on
an absolute scale, normalised to a monochromatic vanadium measurement. Powder forms
of all samples were studied, with the addition of a powder Y2Ti2O7 sample. Y2Ti2O7

was used as a phonon blank, this is, a sample that does not have magnetism and is used
to correct the phononic contribution in the magnetic sample. When studying any of the
three HTSO samples, the resulting data will have both CEF and phononic contribution.
However, the phononic contribution can sometimes mask the CEF contribution, which
would make modelling the single ion magnetism of this system more challenging. Because
of this, Y2Ti2O7, which has no magnetic scattering, is used to subtract the phononic con-
tribution from the HTSO data. All samples were grown by Dharmalingam Prabhakaran
using the floating zone method at the Clarendon Laboratory, Oxford University.

Table 5.1 shows the temperature and incident energies at which the samples were
studied. The S(Q, ω) spectra of all 4 samples at 5 K with Ei = 120 meV are shown in
figure 5.3. As the figure shows, the x = 0.0 and x = 0.1 HTSO data are very similar,
most likely due to the structural similarities found in the previous chapter between both
systems. On the other hand, the x = 0.5 HTSO sample has a very different spectrum,
defined by the lack of low Q excitations below 50 meV and above 70 meV and a very
broad feature around 60 meV. Finally, the Y2Ti2O7 spectrum has no intensity at low Q,
as expected for a system with no magnetism, and all the features increase in intensity
with Q, as expected for phononic scattering.

CEF excitations occur at a single site in the crystal and as such are dispersionless
and do not have any Q dependence. Furthermore, because the CEF excitations are
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Table 5.1: Temperatures and neutron incident energies used to study all four samples.

5 K 30 K 150 K

HTSO x = 0.0 7, 10.5, 25, 7, 10.5, 25,
40 and 120 meV 40 and 120 meV

HTSO x = 0.1 7, 10.5, 14, 10.5, 25 and
25, 40 and 120 meV 120 meV

7, 10.5, 11.7, 7, 10.5, 7, 10.5,
HTSO x = 0.5 25, 29.9, 40, 25, 40 and 25, 40 and

120 and 180.4 meV 120 meV 120 meV
7, 10.5, 11.7, 7, 10.5,

Y2Ti2O7 25, 29.9, 40, 25, 40 and
120 and 180.6 meV 120 meV

magnetic, their intensity falls with Q according to the form factor and will thus only
have considerable contribution at very low Q values. Conversely, the phonoic intensity
increases with Q2. From this, it is clear that the low Q features around 20 meV to 30 meV,
60 meV, 75 meV and 80 meV for the x = 0.0 and x = 0.1 HTSO samples and around

(a) (b)

(c) (d)

Figure 5.3: Inelastic neutron data of Ho2Ti2−xScxO7−x/2 with (a) x = 0.0, (b) x = 0.1,
(c) x = 0.5 and (d) Y2Ti2O7 at 5K with an incident neutron energy of 120 meV acquired

with MARI.

108



60 meV for the x = 0.5 HTSO samples are CEF excitations. The high Q intensity is
all phononic. The Y2Ti2O7 sample, however, is purely phononic, which explains the lack
of low-Q features. One-dimensional plots of intensity as a function of energy transfer

integrated over the full range of Q and by integrating just from 0 Å
−1

to 2 Å
−1

are shown
in figure 5.4. These figures show better the Q dependence of the magnetic and phononic
contributions. The HTSO samples look similar if they are integrated over the reduced
low Q or full Q range. However, the Y data is almost flat when it is integrated only over
the reduced low Q range but it has more features/peaks when the full Q range is used.

When choosing a phonon blank to correct the CEF data from phonons, it is common
to use a non-magnetic ion that is close in the periodic table to the magnetic ion. With
Ho this is difficult, since there are not many non-magnetic ions close to Ho that will
form a pyrochlore structure with Ti ions. As such, Y2Ti2O7 was chosen for convenience.
Unfortunately, due to the mass difference between the Y and the Ho, the Y2Ti2O7 data
cannot be simply subtracted from the HTSO data, since it could over-correct important
features. To get the proper multiplication coefficient for the Y2Ti2O7, David Voneshen, an
instrument scientist from ISIS, extracted the phonon density of states (PDoS) of Y2Ti2O7

(a) (b)

(c) (d)

Figure 5.4: 1D cuts of the spectrum data collected with (top) Ei = 120 meV and with
(bottom) Ei = 40 meV acquired with MARI. (a) and (c) integrating only the data from

0 Å
−1

to 2 Å
−1

and (b) and (d) integrating over the full Q range.
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Figure 5.5: Comparison of the two DFT neutron weighted PDoS calculations of
Ho2Ti2O7 and Y2Ti2O7 for an incident energy of 120 meV.

and Ho2Ti2O7 with DFT calculations, shown in figure 5.5. With this calculation, the
phonon subtraction of the Ho data was performed by first multiplying the Y2Ti2O7 data
by the ratio of the Ho2Ti2O7 DFT PDoS to the Y2Ti2O7 DFT PDoS. This would then be
subtracted from the HTSO data. However, as it can be seen in figure 5.6 for the x = 0.0
HTSO data with Ei = 120 meV, due to the large intensity of the Y2Ti2O7 experimental
data compared with the HTSO data, this subtraction made a large portion of the resulting
spectrum negative. Because of this, the Y2Ti2O7 data multiplied with the ratio of the
PDoS had to be multiplied by an extra constant called the “self-shielding parameter”.
This parameter depends on aspects such as how much sample was used, the absorption of
the material and the shape of the sample holder [227], and thus it was different for each
of the three HTSO samples studied.

The phonon correction was performed twice, once with the data integrated over the full

Q range and once integrating only from 0 Å
−1

to 2 Å
−1

. The resulting phonon corrected
data is shown in figure 5.7. The reason for looking at two different Q integration ranges

Figure 5.6: Phonon correction of the x = 0.0 HTSO sample with no self-shielding
parameter.
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(a)

(b)

Figure 5.7: 1D cuts of the phonon corrected inelastic scattering data of all 3 HTSO
samples at 5 K with an incident energy of 120 meV acquired with MARI (a) integrating

over the full Q range and (b) integrating from 0 Å
−1

to 2 Å
−1

.

is to confirm that all the phononic contribution is properly removed. When comparing
the data of the x = 0.0 HTSO system with previous measurements by Rosenkranz et
al. [91] of the same system it was found that our corrected data integrated over the full
Q range had two extra peaks at around 8 meV and 18 meV. To see if these extra peaks
were phonons that the correction method did not take into account, the same procedure of

phonon subtraction was followed, but only using the data integrated from 0 Å
−1

to 2 Å
−1

.
Due to the different Q dependence of the magnetic excitations and the phonons mentioned
above, it was expected that at such low Q regions all the phononic contributions should
be suppressed, and only magnetic excitations should be present. As figure 5.7b shows,
the two peaks at 8 meV and 18 meV present in the data integrated over the full Q range
are no longer present in the data integrated over the reduced low Q range, confirming
that indeed these two extra peaks arise due to phononic scattering and were not properly
corrected with the Y2Ti2O7 sample. Figure 5.7 also shows how similar the x = 0.0 and
x = 0.1 HTSO data are, both producing very similar spectra, with the general reduction
of the intensity from the x = 0.1 HTSO sample being attributed to the presence of Sc
doping.

The CEF excitations were analysed using Steven’s formalism described in section

111



3.2.3 by performing individual fits to the data. For this, the Hamiltonian of the Ho ions
with and without vacancies are used as a function of the CEF parameters. With the
Hamiltonian, the energy levels and CEF spectrum can be calculated and compared with
the experimental data.

To model the CEF excitations of a Ho with no nearest neighbour (NN) vacancies
(“ideal” Ho site), a D3d symmetry was assumed (see figure 5.8a). This means that only 6
CEF parameters (B0

2 , B0
4 , B3

4 , B0
6 , B3

6 and B6
6) are needed to extract the Hamiltonian of

a Ho in such a site, and thus only 6 CEF parameters were fitted to the data. Alongside
the CEF parameters, a scaling constant and the peak shape were also fitted. For the
shape of the peaks, a convolution of a Gaussian with a Lorentzian function was used. The
Gaussian function accounted for the experimental resolution, with a known Full Width
at Half Maximum (FWHM) given by the instrument. The Lorentzian was purely sample
dependant and accounted for aspects such as the lifetime of the excitation and the presence
of intrinsic and extrinsic disorder.

For this particular Ho site, the x = 0.0 HTSO data was used in the fitting, since it was
assumed that most of the CEF contribution would come from a Ho with no vacancies,
and the presence of intrinsic disorder or vacancies would be minimal. In addition, the
data used in the fitting procedure were not all collected with the same incident energy,
but the data at energy transfers between 0 and 35 meV collected with Ei = 40 meV
were combined with the data at energy transfers from 35 meV onwards collected with
Ei = 120 meV. This is because, as figure 5.4 shows, at low energies the resolution of
the Ei = 120 meV data is not as good and the peaks in between 20 and 30 meV are
merged together, while with Ei = 40 meV the resolution is enough to resolve the data
into multiple clear peaks.

The CEF-spectrum fitted to the x = 0.0 HTSO system compared with the experimen-
tal data is shown in figure 5.9a. The extra intensity below 60 meV is believed to arise
from intrinsic disorder such as impurities or extra vacancies. This extra intensity was also
found by Rosenkranz et al. [91] when studying the same compound. Nevertheless, the
calculated spectrum is in very good agreement with the measured data, capturing all the
main CEF excitations. Finally, table 5.2 shows a comparison between the fitted CEF pa-
rameters with the ones found by Rosenkranz et al. [91]. The energy levels resulting from
the fitted CEF-Hamiltonian are shown in table 5.4. Since the Ho ions sit in a site with
a D3d symmetry, the energy levels are composed of 5 singlets and 6 doublets [160]. The
ground state is a well separated doublet composed almost entirely of the |J, Jz〉 = |8,±8〉
state, which means that this Ho can be model as having an Ising moment [145]. As
mentioned before, Ho3+ has an even number of electrons and is thus a non-Kramers ion.
Since the ground state is a doublet, as table 5.4 shows, we can conclude that the Ho ions
with no NN vacancies are magnetic.

Table 5.2: Fitted B-parameters of the Ho with no NN vacancies in meV.

Index Fitted Rosenkranz et al. [91]

B0
2 -0.067(2) -0.07577

B0
4 -0.00118(3) -0.00114

B3
4 -0.0071(7) -0.00824

B0
6 −7.095(2) × 10−6 −7.0183 × 10−6

B3
6 1.063(5) × 10−4 1.0356 × 10−4

B6
6 −1.232(3) × 10−4 1.2486 × 10−4
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The x = 0.5 HTSO data was used to extract the CEF levels of a Ho next to an oxygen
vacancy. However, as figure 5.8 shows, any given Ho has 6 NN O(2) ions, and the effect
on the CEF levels due to having one vacancy will be different than the effect due to two
or more vacancies. As such, Monte-Carlo (MC) calculations were performed to determine
the concentration of Ho ions next to one, two or more vacancies and how much they
would contribution to the measured CEF spectrum. For this, O(2) ions were removed at
random from a 64 × 64 × 64 supercell until the concentration of O(2) vacancies matched
the concentration found in the Bragg refinement. This was performed 1000 times, each
time calculating the percentage of Ho ions next to zero, one, two or more vacancies. The
average percentage from all 1000 calculations was extracted, resulting in 75.61% of the Ho
sites with no NN vacancies, 21.64% with one NN vacancy, 2.58% with two NN vacancies
and 0.17% with more than two NN vacancies. Since the percentage of Ho ions next to
two or more vacancies was so small, it was assumed that the CEF excitations measured
in the x = 0.5 HTSO data were mainly due to the Ho ions with no vacancies and the Ho
ions with one NN vacancy. Similarly, for the x = 0.1 HTSO system assuming also O(2)
vacancies, the MC calculations predicted 95.16% of the Ho sites with no NN vacancies,
4.74% with one NN vacancy and less than 0.1% with two or more NN vacancies.

To extract the CEF levels of a Ho next to a vacancy, the first step was to determine the
number of CEF parameters needed in the fitting procedure. For this, a PCM calculation
was performed with the structure shown in figure 5.8b to see how many CEF parameters
were non-zero. The calculations predicted that all the CEF parameters with an even n
and positive m were non-zero. Thus, Bm

2 with m going from 0 to 2 in steps of 1, Bm
4

with m going from 0 to 4 in steps of 1, and Bm
6 with m going from 0 to 6 in steps of 1

were needed to extract the CEF levels of a Ho next to a vacancy. All 15 possible CEF
parameters were required because once an O(2) ion is removed, the symmetry of the
system is completely broken and the Ho sits in a site with the lowest possible symmetry.

Knowing which CEF parameters were needed, the CEF levels of a Ho next to a vacancy
were extracted by fitting to the x = 0.5 HTSO data the sum of the spectrum from a Ho ion

(a) (b)

Figure 5.8: Ho ion in a D3d symmetry site (a) without and (b) with an O(2) vacancy.
Red are the O(2) ions, blue the O(1) ions, light green the doublet ground state Ho ions,

dark green the singlet ground state Ho ions, and yellow the O(2) vacancy.
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with no NN vacancies with the spectrum of a Ho ion with a NN vacancy. Just as with the
x = 0.0 HTSO data, the Lorentzian widths of the CEF excitations and a scaling constant
were also fitted. The resulting fit is shown in figure 5.9c and the fitted CEF parameters
are shown in table 5.3. As table 5.3 shows, no error bars were included with the fitted

(a)

(b)

(c)

Figure 5.9: Best fits to the inelastic scattering (a) x = 0.0 (b) x = 0.1 and (c) x = 0.5
HTSO data at 5 K acquired with MARI.
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CEF parameters. This was in part due to the instability of the fit. While the fitting
procedure was reproducible, the resulting errors not only changed from fit to fit, but also
varied widely from CEF parameter to CEF parameter between 0% and 70000%. This was
attributed to the large number of fitting parameters needed. Further experimental data,
such as magnetization measurements, is needed to constrain the fitting and increase the
confidence in the resulting CEF parameters. From the MC calculation, it was assumed
that around 75% of the final spectrum would be from the Ho ions with no vacancies
and close to 25% from the Ho ions with one vacancy. However, the fitted contribution
from each type of Ho ion to the data was 62.17% from the Ho ions with no vacancies
and 37.83% from the Ho ions with one vacancy. The energy levels of the Ho ions with a
vacancy are shown in table 5.4. As the table shows, all the energy levels of these Ho ions
are singlets, including the ground state. This is because the presence of an O(2) vacancy
breaks the symmetry of the site, which in turn also breaks the degeneracy of all the Ho
ion CEF levels. Thus, following the above description of non-Kramers ions, a Ho next to
a vacancy is no longer magnetic. However, it is worth noting that the energy difference
between the ground state and first excited state of the Ho ions is small, meaning that the
presence of a vacancy simply produces a weak splitting of the ground state doublet. As it
will be shown later, this will have an effect on the magnetic correlations of these systems.

Once the CEF parameters of the Ho ions with and without vacancies were known,
the x = 0.1 HTSO data was fitted by assuming that this system would also have O(2)
vacancies. In this case, since the CEF-Hamiltonians were already known, only the peak
widths and the relative contribution from the zero and one vacancy spectra were fitted.
The resulting fit, shown in figure 5.9b, is in good agreement with the experimental data,
showing a clear broadening of the CEF levels with respect to the x = 0.0 HTSO data due
to the higher degree of disorder in the system. In addition, the contribution of Ho ions
with vacancies starts to become more visible, with some extra peaks around 50 meV not
present in the x = 0.0 HTSO fit. The idea with this fit was that, since this system has
5 times less doping than the x = 0.5 HTSO system, the contribution from the Ho ions
with one vacancy should be 5 times smaller. However, the final contribution was 79.26%
from the Ho ions with no vacancies and 20.74% from the Ho ions with one vacancy. As
discussed below, this is likely related to the presence of intrinsic disorder.

One can see that in the fittings performed to both the x = 0.0 and x = 0.1 HTSO data,
there is some extra intensity just below 60 meV that is not accounted for by the fitted
spectra. This could be due to intrinsic disorder. In the x = 0.0 HTSO data, the intensity

Table 5.3: Fitted B-parameters of the Ho with one NN O(2) vacancies in meV.

B0
2 B1

2 B2
2

-0.31718 0.23593 -0.30721

B0
4 B1

4 B2
4

−1.29213 × 10−3 −4.76717 × 10−4 1.90447 × 10−4

B3
4 B4

4 B0
6

8.73568 × 10−3 3.58626 × 10−4 1.52823 × 10−5

B1
6 B2

6 B3
6

−1.46168 × 10−5 −6.30729 × 10−5 −1.98609 × 10−4

B4
6 B5

6 B6
6

1.02933 × 10−6 −4.58335 × 10−5 −3.59492 × 10−5
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Table 5.4: Energy levels of the Ho ion with and without an O(2) vacancy.

Energy levels of Ho with Energy levels of Ho with
no NN vacancies (meV) one NN (meV)

0 0
0 0.124645

20.4141 0.608191
21.9727 0.648415
21.9727 10.9612
26.2378 12.7605
26.2378 47.7667
27.8088 51.7882
59.6323 55.541
59.6323 61.2649
68.1543 67.2132
70.6526 86.4189
71.126 101.612
71.126 107.148
76.9324 111.763
76.9324 115.332
80.8473 120.002

below 60 meV arises most likely due to intrinsic disorder present in the sample such as
impurities and the small fraction of O vacancies that was found in the Bragg refinement.
In the x = 0.1 HTSO data the presence of O(2) vacancies increases and thus we start to
see some additional contribution to the intensity below 60 meV, but most of the intensity
still arises from intrinsic disorder. As mentioned in the previous chapter, the x = 0.0
and x = 0.1 HTSO systems have a similar concentration of vacancies, and thus the extra
intensity below 60 meV is very similar between both measurements, as can be seen in
figure 5.7a. Finally, the x = 0.5 HTSO sample contains enough O(2) vacancies that the
majority of the intensity below 60 meV arises from these defects, while the intensity from
intrinsic defects now is negligible in comparison. This could also explain why the relative
contribution of the zero and one vacancy spectrum fitted to the x = 0.5 HTSO data does
not match the percentages found in the MC calculation, and also why the contribution
of the one vacancy spectrum found in the fitting to the x = 0.1 HTSO data is not 5
times smaller than the contribution to the x = 0.5 HTSO spectrum. Finally, it was found
that as the concentration of Sc ions and vacancies increased, the Lorentzian widths of the
peaks also increased. This is in agreement with other CEF measurements performed in
other disordered pyrochlores, such as Yb stuffed Yb2Ti2O7 [217].

Knowing the CEF parameters of the Ho ions with and without vacancies, the mag-
netisation vector of each Ho ion in a magnetic field was calculated using [214]

Mα = gJ〈JM,α〉 (5.1)

where α = x, y, z, gJ = 1.25 is the Landé factor for Ho and

〈JM,α〉 =
∑
i

e−βEi 〈Γi|Ĵα|Γi〉 /Z (5.2)
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where Z is the partition function, β = 1/kBT , and Ei and Γi are the eigenvalues and
eigenvectors extracted from

HM = HCEF + gJµBB · J (5.3)

where µB is the Bohr magneton in units of meV/T, B is the applied magnetic field

vector and J =
(
Ĵx, Ĵy, Ĵz

)
. The magnetisation calculations were performed at 0.5 K and

by applying magnetic fields in random directions with a magnitude of 0.1 T. This helps
illustrate the behaviour of the magnetic moment as a function of direction of the field. The
calculations for the zero and one vacancy Ho ions are shown in figure 5.10. For the zero
vacancy case, the moment points along the z axis in the D3d symmetry, which corresponds
to the Ho ion having a strong Ising easy-axis behaviour along the 〈111〉 direction of the
tetrahedra in the conventional pyrochlore unit cell. From these calculations it was found
that, at 0.5 K and with an applied field of 0.1 T, the Ho magnetic moment is 8.4 µB, 16%
smaller than the calculated 10 µB [95, 96] for Ho2Ti2O7.

Furthermore, the Ho ion with one vacancy also produced a magnetisation with a major
preference in the z axis (easy axis) but canted in one direction, as figure 5.10b shows.
This was a surprise since, as it was described before, the Ho ions next to a vacancy are
non-magnetic and thus should not produce a magnetisation. The presence of non-zero
magnetisation even with a singlet ground state is due to the small gap between the ground
states and the first excited state. When a magnetic field is applied, the wave functions
of the ground state and the excited state will mix. These wave functions can mix in such
a way that a magnetic moment is developed. Six different point-charge-model (PCM)
calculations of this system were performed, each calculation having a different O(2) ion
removed from the ring of O(2) ions surrounding the Ho ion. The PCM calculations not
only produced a singlet ground state for the Ho ion, but magnetisation calculations at
0.5 K and with an applied field of 0.1 T also produced a similar tilting to the one shown
in figure 5.10b. Moreover, it was found that the tilting of the magnetisation was always
in the direction of the missing O(2). In the real system this could mean that, since every
O(2) vacancy has two NN Ho ions, the moments of each Ho would tilt towards each
other, making them more antiparallel, as figure 5.11 shows. Finally, these calculations
show that, at 0.5 K and with an applied field of 0.1 T, the Ho ions next to a vacancy have
a magnetic moment of 6.2 µB in magnitude, close to 40% smaller than the total moment

(a) (b)

Figure 5.10: Magnetisation of the Ho moment (a) with no vacancies and (b) with one
vacancy at 0.5 K and with a field of 0.1 T.
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Figure 5.11: Tilting of the spins at Ho sites due to the presence of a NN O(2) vacancy.
Blue are the O(1) ions, light green the doublet ground state Ho ions, dark green the

singlet ground state Ho ions, yellow the O(2) vacancy and the yellow arrows represent
the spins.

but comparable with the calculations of the moment of the Ho ions with no NN vacancies,
and with a 15.2◦ tilt away from the 〈111〉 axis.

5.3 Magnetic diffuse scattering
Knowing the effects of the vacancy on the single ion magnetism, the cooperative

magnetism of the system was studied. For this, magnetic diffuse scattering measurements
were performed on single crystals of the x = 0.1 and x = 0.5 HTSO samples using the D7
instrument at the ILL. Both single crystals were grown by Prabahkaran at the Clarendon
Laboratory, Oxford University, with the x = 0.5 HTSO crystal being the same crystal
studied in the SXD experiment discussed in the previous chapter.

Because with D7, unlike SXD, only one plane of reciprocal space is accessible, the
single crystals had to be aligned so that the reciprocal space plane of interest, in this
case the (h,h,l) plane, was the one measured. The Laue diffractometer OrientExpress at
the ILL, which uses a beam of neutrons with wavelengths from 0.8 Å to 3.2 Å, was used
to rotate the crystals until the z-axis contained the [1-10] direction, the x-axis the [110]
and the y-axis the [001]. Figure 5.12 shows both samples already aligned in the copper
sample-mount, fixed by nylon screws. The crystals had to be covered with copper foil
to improve thermal contact, so that when the temperature is reduced the entire sample
reaches a similar temperature and not just the part that is in direct contact with the
sample holder.

Just as with SXD, the sample had to be rotated in the sample environment to cover
the measured reciprocal plane. Since D7 contains a horizontal line of detectors, and not
planes of detectors as with SXD, a single 1D line of the (h,h,l) plane would be measured
if the sample is not rotated. Thus, by rotating the sample, different 1D cuts of the (h,h,l)
plane can be collected and then recombined to get a full image of the plane. Through
the entire experiment, the samples were rotated in steps of 1◦, with a neutron incident

wavelength of 4.8 Å, which allows for a maximum |Q| of 2.5 Å
−1

.

The first system studied was the x = 0.1 HTSO sample. This sample was studied us-
ing only uniaxial polarisation analysis (PA) so that only spin-flip (SF) and non-spin-flip
(NSF) scattering was measured in the Z direction. This analysis was performed with the
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(a) (b)

Figure 5.12: Single-crystal samples of Ho2Ti2−xScxO7−x/2 with (a) x = 0.1 and (b)
x = 0.5.

sample at 50 mK, 650 mK, 5 K, 10 K and 100 K. Since the 50 mK and 650 mK data
look identical, figure 5.13 shows only the SF and NSF data at 50 mK. Likewise for the
5 K and 10 K data. The SF data contains the y component of the magnetisation (M⊥y)
and 2/3 of the spin-incoherent scattering, while the NSF data contains spin-independent
nuclear scattering including coherent structural information and isotopic incoherent scat-
tering, the z component of the magnetisation (M⊥z) and the rest of the spin-incoherent
contribution [46].

As the figure shows, the scattering at 50 mK and 650 mK produce well-defined pinch
points despite the Sc doping and the presence of vacancies. At this temperature, the data
are qualitatively similar to the measurements of stoichiometric Ho2Ti2O7 performed by
Chang et al. [2] and Fennell et al. [1], both producing well-defined pinch points in the SF
scattering and a checker-board-like structure in the NSF scattering. As the temperature
is increased, the dipolar correlations disappear, producing less pronounced pinch points in
the SF cross-section and a less pronounced checker-board-like pattern in the NSF cross-
section. At 100 K the sample is well above its Curie-Weiss temperature, and thus it is in
a paramagnetic phase. Because of this, we expected the SF and NSF scattering to be flat
since at 100 K the electronic and nuclear spin should be incoherent and, from the previous
chapter, the diffuse scattering should be negligible. However, as figure 5.14 shows, this
is not the case, since there seems to be regions of higher intensity along the [1,1,0] and
[-1,-1,1] directions. This extra scattering arises from the spin-incoherent contribution from
the nylon screw. This will be made more clear when discussing the x = 0.5 HTSO system.

Figure 5.15 shows 1D cuts of all the SF data acquired for the x = 0.1 HTSO sample
through the (0,0,2) pinch point. At 50 mK and 650 mK the presence of the pinch point
produces a very clear saddle point, with a very sharp maximum at (0,0,2) in the transverse
scan and minimum close to (0,0,2) in the longitudinal scan. However, as the temperature
increases the feature starts to disappear until at 100 K a simple flat background is left.
This is due to the redistribution of magnetic intensity from the low-temperature phase,
where the spins are frozen due to the system being below or at its freezing temperature,
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(a) (b)

(c) (d)

Figure 5.13: Diffuse scattering data in the (h,h,l) plane of the x = 0.1 HTSO sample
acquired with D7. (a) and (b) show the SF and NSF scattering at 50 mK respectively,

and (c) and (d) the SF and NSF data at 5 K.

to a flat scattering from a paramagnet. This transition is visible with the large change
between the 650 mK and 5 K data. Due to the low Q-resolution of D7, it is difficult
to resolve and extract the temperature evolution of the pinch point width, and thus
comparison with the temperature evolution measured by Fennell et al. [1] in stoichiometric
Ho2Ti2O7 is not possible. Furthermore, the extra scattering from the nylon screws makes
comparisons with pinch point measurements performed by Fennell et al. [1] and Chang
et al. [116] of stoichiometric and Y diluted Ho2Ti2O7 more complicated.

With the x = 0.5 HTSO sample, measurements were also performed at 50 mK, 650 mK,
5 K and 10 K using uniaxial PA, but an extra XYZ-PA measurement was performed at
220 K. Unlike with the uniaxial analysis, with the XYZ-PA data full separation of the
structural, magnetic and spin-incoherent scattering is possible. The structural diffuse
scattering cross-section at 220 K is shown in figure 4.14b, the spin-incoherent scattering
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(a) (b)

Figure 5.14: (a) SF and (b) NSF (h,h,l) diffuse scattering data of the x = 0.1 HTSO
sample acquired with D7 at 100 K.

cross-section in figure 5.16 and the magnetic diffuse scattering cross-section in figure 5.17d.
To perform this separation, equations (2.72) for a powder sample were used since these
equations can also be used for systems in the paramagnetic phase, which the sample was
assumed to be in due to the high temperatures.

The spin of the nuclei only orders at temperatures in the µK or even nK regime, well
below the temperature at which the nuclear spin cross-section was measured. As such,
these measurements should produce a flat incoherent scattering. However, as figure 5.16
shows, the measured nuclear spin cross-section has some structure. After further investi-
gation, it was found that the shapes seen in the spin-incoherent channel arises from the
nylon screws. This is because, as the sample is rotated, the screws will move in and out of
the incoming beam. When the beam is rotated in such a way that the beam goes through
the nylon screw, the spin-incoherent scattering will be larger in that region of Q space.
With this isolated spin-incoherent cross-section at 220 K, the magnetic diffuse scattering

(a) (b)

Figure 5.15: Temperature evolution of the (0,0,2) pinch point from the SF data of the
x = 0.1 HTSO sample acquired with D7. (a) Transverse [h,h,2] cuts and (b) longitudinal

[0,0,l] cuts.
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Figure 5.16: Spin-incoherent scattering of the x = 0.5 HTSO sample acquired with D7
at 220 K.

at the lower temperatures was extracted from the Z-SF data by using [167](
dσ

dΩ

)
SF

=
1

3

(
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)
Mag

+
2

3

(
dσ

dΩ

)
SI

(5.4)

where
(

dσ
dΩ

)
SF

is the spin flip scattering cross-section,
(

dσ
dΩ

)
Mag

is the electronic magnetic

scattering cross-section and
(

dσ
dΩ

)
SI

the spin-incoherent scattering cross-section. This sub-
traction was performed for the SF data at all measured temperatures by assuming that
the spin-incoherent scattering is temperature independent.

Since, at most temperatures, only half of the (h,h,l) plane was measured, producing
data like the one shown for the x = 0.1 HTSO sample at 5 K (figure 5.13c) and 100 K
(figure 5.14a), the resulting scattering had to be symmetrised. This was achieved by first
“folding” the four quadrants of the plane into one quadrant by averaging them, and then
“unfolding” to cover the entire plane. This was performed using a function available in
the LAMP program. LAMP (Large Array Manipulation Package) is an IDL based data
reduction package written at the ILL. It is used to process the measured data and to save it
in a more user-friendly way, plot the 2D data and perform 1D cuts, etc. The temperature
evolution of the symmetrised magnetic diffuse scattering is shown in figure 5.17. Just as
with the x = 0.1 HTSO sample, only the 50 mK data is shown because the 50 mK and
650 mK data look identical.

The fully symmetrised data at 50 mK (figure 5.17a) is very similar to the HYTO
data from figure 5.2a measured by Chang et al. [116]. Both produce a very similar
pattern at low Q, with a ring of diffuse scattering close to the origin and higher intensity
around the (±1,±1,0) and (0,0,±1) points. This same pattern was also observed in the
SF measurements at 30 mK of the stoichiometric system performed by Chang et al. [2]
and in Bramwell et al. [68] dipolar spin ice calculations at 0.6 K. At higher Q, on the
other hand, the shape of the scattering around (0,0,3), (3/2,3/2,3/2) and symmetrically
equivalent points is different, with the x = 0.5 HTSO system having a more diamond-like
structure, while the stoichiometric and HYTO systems [2, 116] produced more rounded
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(a) (b)

(c) (d)

Figure 5.17: Temperature evolution of the spin-flip magnetic data (transverse
component) in the (h,h,l) plane of the x = 0.5 HTSO sample acquired with D7. Data

acquired at (a) 50 mK, (b) 5 K, (c) 10 K and (d) 220 K.

shapes. Similarly, the 5 K data shown in figure 5.17b is very similar to the SF scattering
data acquired by Fennell et al. [1] at 1.7 K, with the main difference being that Fennell
et al. have more pronounced pinch points due to the lower temperatures. Furthermore,
the calculations in Bramwell et al. [68] of the stoichiometric system using the NNSM also
produce a very similar structure to the measured 5 K x = 0.5 HTSO data. The difference
between the 50 mK and 5 K system clearly show the transition from a dipolar spin ice
system to a nearest neighbour spin ice system. At 10 K, the nearest neighbour exchange
interactions are much weaker than kBT and the system transitions into its paramagnetic
phase. Thus, the characteristic bow-tie-like structure and pinch points are much less
pronounced than at lower temperatures. Finally, at 220 K, the system is well into its
paramagnetic phase, and only incoherent scattering is measured.

Figure 5.18 shows 1D cuts of all the magnetic diffuse scattering data of the x = 0.5
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(a) (b)

Figure 5.18: Temperature evolution of the (0,0,2) pinch point from the corrected
magnetic diffuse scattering data of the x = 0.5 HTSO sample acquired with D7. (a)

Transverse [h,h,2] cuts and (b) longitudinal [0,0,l] cuts.

HTSO sample along the (0,0,2) pinch point. Just as with the x = 0.1 HTSO sample, at
50 mK and 650 mK the pinch points are clearly visible, with a very sharp maximum at
(0,0,2). As the temperature increases, the pinch points mix with the background due to
the redistribution of magnetic intensity from the low-temperature phase to a flat scattering
from a paramagnet. Finally, at 220 K the system is deep into its paramagnetic phase and a
flat scattering is left. Figure 5.19 shows a comparison of the transverse scan of the (0,0,2)
pinch point of the x = 0.1 and x = 0.5 HTSO systems at 50 mK. These data are also
compared with the D7 instrumental resolution, showing that at 50 mK the pinch points in
these systems are not resolution limited. As the figure shows, there is a clear broadening
of the pinch point as the level of Sc doping increases. This is very different to the HYTO
system studied by Chang et al. [116], where the width of the pinch points show very little
change even with 50% of the spins removed (x = 1.0 doping), as figure 5.2b shows. A fit
to the x = 0.5 HTSO pinch point was performed with a Lorentzian function to extract the

Figure 5.19: Comparison between the transverse scan of the (0,0,2) pinch points of the
x = 0.1 and x = 0.5 HTSO systems at 50 mK and the D7 instrumental resolution.
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Full-Width-at-Half-Maximum (FWHM). This resulted in a FWHM of 0.36(4) reciprocal
lattice points, almost double the width of the pinch points measured by Chang et al. [116]
at 30 mK and by Fennell et al. [1] at 1.7 K for the stoichiometric system.

Finally, the presence of such sharp pinch points in the magnetic diffuse scattering at
50 mK for the x = 0.5 HTSO system, despite the large disorder from the Sc doping,
the vacancies, and the presence of non-magnetic Ho ions, is a remarkable result. As
mentioned before, from the MC calculations, close to 25% of the Ho ions are next to at
least one O(2) vacancy, meaning that around 25% of the Ho ions in this system may have
a singlet ground state and are thus non-magnetic. However, as the CEF analysis showed,
the presence of vacancies produced a weak splitting of the doublet ground state, resulting
in a small energy difference between the ground and first excited state. Due to the Ho
ions having such a weak doublet splitting, a magnetic field is able to mix the ground state
and first excited state wave functions to generate a magnetic moment.

Since the exchange and dipolar interactions behave similarly to an applied field [228,
229], we concluded that these interactions could also mix these states. As such, at low
temperatures we expect that the singlet ground state will mix with the first excited state,
and therefore the system will prefer to develop magnetic moments rather than not. This
is possible since the splitting is weaker than the nearest neighbour exchange fields of the
Ho ions (around 0.15 meV in Ho2Ti2O7 [68]). These newly generated moments are very
similar to the moments from a doublet-ground state Ho ion, with the moment pointing
mainly along the 〈111〉 axis but with a tilt towards the location of the O(2) vacancies.
These tilted moments can be decomposed into a longitudinal component along the 〈111〉
direction, which obeys the ice rules at low temperatures, and a transverse component. The
key difference between the moments in an ideal spin ice and in the x = 0.1 and x = 0.5
HTSO is the presence of this extra transverse component at sites next to vacancies. Thus,
the broadening of the pinch points with increase in doping could be caused by the presence
of the extra transverse moment in conjunction with the disorder caused by the vacancies
and Sc doping.

Since the newly generated moments still point mainly along the 〈111〉 direction, at
very low temperatures the direction of the moments will be governed by the ice-rules,
due to the exchange with dipolar fields trying to satisfy the ice-rules as best as possible.
Thus, at low temperature, one would expect dominant spin-ice behaviour. This means
that the system will have essentially no monopoles, and we would expect every Ho atom
to have a moment close to their full value. Furthermore, it is possible that due to the
presence of these defect sites, a new type of excitation exists with respect to spin ice. In
an ideal spin ice system, the only possible excitation is flipping a single spin to generate a
pair of monopoles (monopole-antimonopole creation). However, in this system, it would
require half the energy to reduce the magnetic moment of a Ho ion next to a vacancy
to zero. This suggests that it would be interesting to estimate the temperature variation
of the average magnetic moment. As the temperature increases, the moments next to
vacancies are gradually switched off, until all these moments become zero. This is similar
to a system where the density of non-magnetic substitutions on the A sites increases with
temperature. Once all the moments next to vacancies are switched off, the orphan spin
picture described by Sen et al. [226] is recovered.
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5.4 Summary
Crystal electric field (CEF) measures of Ho2Ti2−xScxO7−x/2 (HTSO) with x = 0.0,

x = 0.1 and x = 0.5 were performed using the MARI instrument at ISIS to determine
the effect of O(2) vacancies on the CEF levels of Ho ions. Monte-Carlo (MC) calculations
were performed to determine what percentage of Ho ions in the system have at least one
nearest neighbour (NN) vacancy. This resulted in around 25% of the Ho ions having at
least one NN vacancy in the x = 0.5 HTSO sample and close to 5% for the x = 0.1
HTSO sample. Through the CEF analysis, it was found that the Ho ions with no NN
vacancies had a well separated doublet ground state with an Ising moment, in agreement
with previous measurements performed by Rosenkranz et al. [91] on Ho2Ti2O7. On the
other hand, the CEF analysis also showed that the presence of an O(2) vacancy splits the
doublet ground state into two singlets, separated by 0.12 meV.

Magnetisation calculations of Ho ions with and without vacancies were performed to
study in which direction the magnetic moments point by applying a magnetic field in
random directions. It was found that both, the Ho ions with and without a NN vacancy,
have a moment. The moment in the Ho ion with a NN vacancy was generated due to the
weak splitting of the doublet. Since the energy difference between the ground state and
first excited state is low, the magnetic fields can mix the wave functions of both states,
generating a magnetic moment. However, while the moments of the Ho ions with no NN
vacancies pointed along the line connecting the O(1) ions, as for a Ho with no disorder,
the moments of the Ho ions with a NN vacancy also develop a moment mostly along the
line connecting the O(1) ions, but with a tilt towards the missing oxygen.

To understand the effect of disorder on the cooperative magnetism, magnetic diffuse
scattering measurements were performed on single crystals of the x = 0.1 and x = 0.5
HTSO systems using the D7 instrument. Qualitatively, both systems produce scattering
very similar to that measured by Fennell et al. [1] and Chang et al. [2, 116] in the stoi-
chiometric and Y doped Ho2Ti2O7 systems. However, a transverse scan along the (0,0,2)
pinch points shows a broadening of the pinch point as the Sc and vacancy concentration
increase, with the FWHM of the x = 0.5 HTSO system being almost twice the FWHM of
the stoichiometric Ho2Ti2O7 pinch point. This is in contrast to the Y doped Ho2Ti2O7,
which shows very little change in the pinch point width as the doping increases.

Since the exchange and dipolar interaction in this system behave like an applied field,
mixing the ground state and first excited state of the Ho ions next to a vacancy due to
these interactions is also possible. This would generate a moment at these sites which, as
the magnetisation calculations show, point mostly along the line connecting the O(1) ions
but with a tilt towards the O(2) vacancy. These tilted moments can be separated into
two components, a longitudinal component along the 〈111〉 direction, and a transverse
component. It is believed that it is this extra transverse component, in conjunction with
the Sc doping and vacancies, which causes a broadening of the pinch points with respect
to the stoichiometric Ho2Ti2O7 system.

Moreover, it may be possible to distinguish three regions in these systems. At very low
temperatures, the system behaves like an ideal spin ice, and thus sharp pinch points are
still observed. As the temperature increases, the moments of the singlet ions gradually
switch off until all these moments become zero. At this point, the ghost spin picture
proposed by Sen et al. [226] comes into play.
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Chapter 6

Structural disorder in Pr2ScNbO7

The structural arrangement of Sc and Nb ions in the highly substituted Pr2ScNbO7

system was studied by means of neutron scattering, density functional theory (DFT) anal-
ysis and RMC fits. The structural diffuse scattering was measured using SXD and D7
at ISIS and the ILL respectively. DFT calculations were performed with all 97 possible
configurations in which the Sc and Nb ions can be arranged on the B sites. It was found
that the configuration that produces the lowest total energy contains Sc and Nb ions
forming a charge ice structure in the tetrahedra and chains of alternating Sc–Nb. How-
ever, this structure is chemically frustrated, and the alternating chains are only observed
in particular orientations. Diffuse scattering calculations were performed using a single
unit cell of the lowest energy structure, which resulted in a very good agreement with the
experimental data. This suggests that Pr2ScNbO7 is formed by small domains containing
the lowest energy DFT configuration, separated by domain walls with a random arrange-
ment of the Sc and Nb ions. Total scattering measurements were compared with total
scattering calculations assuming long range order of the lowest energy DFT structure.
These calculations produced extra peaks not present in the experiment, confirming that
no long range order of this DFT structure exist in the system.

6.1 Introduction
For a long time, the search for quantum spin liquids in 2D and 3D materials has

been focused on defect free systems. This is because disorder induces competing glassy
states instead of entangled ones. However, recent theoretical predictions suggest that the
presence of structural disorder can be used to stabilise classical and quantum spin liquids,
and it can lead to new magnetic degrees of freedom and the formation of entirely novel
quantum spin liquids [145, 230]. In the case of spin ice materials with non-Kramers ions,
strains can introduce splitting of the ground state doublets akin to the effect of a local
disordered transverse field, thus potentially enhancing quantum mechanical effects [145].

One of the most compelling families of materials thought to exhibit a quantum spin
ice (QSI) behaviour are praseodymium-based pyrochlores, such as Pr2Zr2O7 [3], in which
disorder comes into play. Martin et al. [231] suggested that a quantum spin liquid state
emerges in this system due to the presence of structural disorder in the form of lattice
strains. According to Martin et al., the non-spin-flip diffuse scattering in the (h,h,l) plane,
shown in figure 6.1, shows anomalies in the (2,2,2), (3,1,1) and (4,0,0) Bragg peaks taking
the form of butterfly-like features, indicative of the presence of strains. However, the
strength of the disorder is weak and difficult to properly detect with standard diffraction
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Figure 6.1: Diffuse non-spin-flip scattering map in the (h,h,l) plane at 50 mK of
Pr2Zr2O7. Intensities are in arbitrary units. Figure acquired from [231].

measurements. The Pr2Hf2O7 system measured by Sibille et al. [4] and discussed in the
introduction chapter is also said to exhibit QSI behaviour. In this system, Sibille et al.
claimed that the QSI behaviour emerges through anisotropic exchange and not strains,
since high sample purity was inferred for this system. To better understand the effects of
strains in a praseodymium-based pyrochlore, the highly substituted Pr2ScNbO7 system
was studied. The combination of trivalent Sc3+ and pentavalent Nb5+ cations in equal
quantities is a way to introduce local strains without the complication of introducing
charge-compensating oxygen vacancies.

This chapter presents neutron scattering data on the quantum spin liquid candidate
Pr2ScNbO7. I will present total scattering data acquired with NOMAD at SNS and
structural diffuse scattering data at multiple temperatures acquired with SXD from ISIS
and D7 from the ILL. These data were used along with multiple geometrical optimisation
density functional theory (DFT) calculations and RMC fits to study the arrangement of
the Sc and Nb ions on the B-sites. With the DFT, the configuration of Sc and Nb ions
that produced the lowest energy was found, with which diffuse scattering calculations were
performed and compared with the experimental data. Finally, RMC fits were performed
to the diffuse scattering and pair distribution function (PDF) data, assuming a random
arrangement of Sc and Nb ions and long range order of the lowest energy DFT structure.

6.2 Structural diffuse scattering measurements
Structural diffuse scattering measurements were performed on a single-crystal sample

of Pr2ScNbO7 grown by Dharmalingam Prabhakaran using the floating zone method at
the Clarendon Laboratory, Oxford University. This crystal was studied at 3 different tem-
peratures using the Single-Crystal Diffractometer SXD at ISIS: at room temperature with
the crystal in 13 different orientations, at 30 K with the crystal in 7 different orientations,
and at 4 K with the crystal in 4 different orientations. The sample was measured initially
at room temperature, and this told us how many orientations were needed at the other
two temperatures with the remaining time. The (h,k,4.5), (h,k,5.5) and (h,k,7) planes
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at 30 K and room temperature are shown in figure 6.2. The data was treated using the
SXD2001 software where all the measured orientations were combined, and the volume
was symmetrised using the Fd3̄m symmetry, the appropriate crystal symmetry for this
system [6]. It is worth noting that one needs to take care when symmetrizing diffuse
scattering data. In general, defect clusters have lower symmetry than the host lattice.
It is, therefore, necessary to average over all of the possible orientations of the cluster
relative to the lattice. If all possible orientations occur with equal probability, the diffuse
scattering data can be symmetrized using symmetry operations of the underlying lattice.
This assumption can be tested by inspection of unsymmetrized data. We find that fits of
the diffuse scattering and PDF data are not significantly affected by symmetrization, but
for the improvement in counting statistics and revealing the form of the diffuse scattering,
it is helpful to present the symmetrized results. In addition, the (h,h,l) plane, shown in
figure 6.3, was also studied at 50 mK using the D7 instrument at the ILL. More details
of the D7 experiment and the data processing will be given when discussing the magnetic
diffuse scattering in the following chapter. The diffuse scattering in the (h,h,l) plane is
significantly different from the Pr2Zr2O7 diffuse scattering in figure 6.1. The differences
between the data sets suggest that the intrinsic defects in Pr2Zr2O7 are different to the
strain fields in Pr2ScNbO7.

As figure 6.2 shows, the (h,k,7) plane has very strong features at odd integer values
of h and k. These are the tail ends of the Bragg peaks expected for an integer l plane.
On the other hand, if the crystal is much larger than the unit cell of the system, which is
the case for this sample, the Bragg scatting in the (h,k,4.5) and (h,k,5.5) planes should
be insignificant, since these are half-integer l planes and Bragg scattering is only found at
all integer values of h, k and l. However, these planes still contain very pronounced sharp
features at integer values of h and k, such as the (0,4,4.5), (4,8,4.5) and symmetrically
equivalent points. Upon further investigation, it was found that these sharp features
are truncation rods from the Bragg peaks due to the finite size of the system. This
can be seen in the (h,k,7) plane, how the width of some of the Bragg peaks span a
range of ±0.5 from an integer h or k value. The contamination of the data due to
phonons was also studied by comparing the 30 K and room temperature data. The change
in shape of the scattering around the (0,4,4.5), (4,8,4.5) and symmetrically equivalent
points is indicative of contamination by acoustic phonons. Similarly, the temperature
dependence of the broad features near the (±10,±10,4.5) Bragg points also suggest a
phononic contribution. All of this (phononic contribution and Bragg peak leakage) was
taken into account when comparing with the modelling of the structural diffuse scattering,
which aims to understand the temperature-independent features in between Bragg peaks.

One key difference between the diffuse scattering from this system and the previous
Sc doped Ho2Ti2O7 (HTSO) system studied, apart from the shape, is the strength. In
HTSO, the diffuse scattering was strong enough that it was clearly visible in integer l
planes, where the Bragg intensity is at its largest. However, in this Pr2ScNbO7 system,
the diffuse scattering is much weaker and the maximum contour intensity needs to be
reduced significantly. As such, when calculations or fittings to the diffuse scattering were
performed, the focus was mainly on planes of the form (h,k,l) with l a half-integer, since it
is in these planes where the Bragg intensity and acoustic phonons are at its lowest. This is
due to the type of disorder, since in the HTSO systems disorder arose not only from the Sc
doping, but also from the presence of vacancies. The presences of vacancies in the sample
causes additional constructively interfering diffuse scattering. On the other hand, in the
Pr2ScNbO7 system the combination of Sc and Nb ions in equal quantities means that
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(c) (d)

(e) (f)

Figure 6.2: Structural diffuse scattering of Pr2ScNbO7 in the (top) (h,k,4.5), (middle)
(h,k,5.5) and (bottom) (h,k,7) planes at (left) 30 K and (right) room temperature

measured on SXD at ISIS.
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Figure 6.3: Structural diffuse scattering in the (h,h,l) plane of Pr2ScNbO7 measured at
50 mK with D7 at the ILL.

there is no need to introduce vacancies and the disorder arises only from strain effects due
to the arrangement of the Sc/Nb ions on the B-sites. These strain effects cause a much
smaller displacement of the ions from their ideal sites when compared to displacements
due to vacancies. This results in a weaker disorder and a much weaker diffuse scattering
intensity. Furthermore, as figures 6.2 and 6.3 show, the diffuse scattering from the SXD
data is more pronounced than the diffuse scattering from the D7 experiment. This is
because the distortions produced by the B-sites disorder are similar in nature to the
displacements of atoms caused by phonons. Just as for phonons, the intensity of the
diffuse scattering from such a distortion field tends to increase as |Q|2.

In addition to the structural diffuse scattering, total scattering measurements were also

(a) (b)

Figure 6.4: (a) Total scattering data of Pr2ScNbO7 in bank 1 of the NOMAD
instrument and (b) the reduced PDF of the same sample.

131



Table 6.1: Refined parameters of the Pr2ScNbO7 sample.

Lattice x Sc/Nb concentration RBragg

parameter (Å) coordinate (%) bank 1

10.70(3) 0.329(2) 50/50 (fixed) 6.27 %

performed by Cole Mauws using the NOMAD instrument from SNS. The measurements
were performed at room temperature with a Pr2ScNbO7 powder. The Bragg refinement
was performed assuming a perfect 50/50 concentration of the Sc and Nb ions on the B-
sites for charge neutrality. The data from detector bank 1 from the NOMAD instrument
and the reduced PDF (D(r)) are shown in figure 6.4. The resulting refined parameters
are shown in table 6.1.

6.3 DFT and RMC analysis
Since, in this system, the diffuse scattering is present due to the Sc/Nb arrangement

on the B-sites, the effects of ordering the Sc and Nb ions in different ways was studied. In
a conventional unit cell, 97 symmetrically inequivalent arrangements of Sc and Nb exist.
Thus, DFT calculations of all the 97 possible structures were performed to determine
which structure produced the lowest energy, as well as the final displacements of the Sc,
Nb, O, and Pr ions from the ideal sites. These calculations were performed by Thomas
Hicken from Royal Holloway University of London.

Two parameters were used to characterise the distribution of energies in all the struc-
tures: the number of Sc ions on the B-site tetrahedra and on the B-site chains. Each B
ion is shared between three chains, and all the chains in each plane are separated by a
chain of Pr ions. Since, on average, the number of Sc ions in each tetrahedron and chain
would be the same as the number of Nb ions due to the 50/50 distribution, the energy
distribution was studied as a function of the variance of the number of Sc ions in each
tetrahedron (σ2

T) and as a function of the variance of the number of Sc ions in each chain
(σ2

C). For example, consider a system of 4 tetrahedra with the following distribution of
Sc ions in each tetrahedron: 1, 2, 3, 2. This will result in an average of 2 Sc ions per
tetrahedron and a σ2

T = 0.5 calculated using

σ2
T =

1

NT

NT∑
i=1

(xi − x̄)2 (6.1)

where NT is the number of tetrahedra, xi the number of Sc ions in each tetrahedron and
x̄ the average number of Sc ions per tetrahedron. The same analysis would follow for σ2

C.
The resulting energy distribution as a function of σ2

T and σ2
C is shown in figure 6.5. The

structures labelled with the square, triangle, rhombus and star are the 4 configurations
with a charge ice structure in the B sites, that is, all the tetrahedra have 2 Sc and 2
Nb, where the highest energy structure of the four (star) is one where B-site chains in
particular directions are formed by all-Sc or all-Nb ions.

As the calculations show, there is an overall 25 meV gap between the lowest energy
structure and the second lowest. The lowest energy configuration has σ2

T and σ2
C equal to

zero. This is charge ice ordering with alternating Sc–Nb on chains in particular directions,
as it will be discussed below. The DFT calculations are for a conventional unit cell and
they assume periodic boundary conditions. If the structure really did have such long-
range order, it would produce Bragg peaks with no diffuse scattering between them. The
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(a) (b)

(c) (d)

Figure 6.5: Conventional unit cell of Pr2ScNbO7 for the lowest energy DFT
configuration highlighting (a) a single tetrahedron and (b) a chain of B ions. The yellow
spheres are the Pr ions, violet the Sc and green the Nb. The oxygen ions were removed

for visual purposes. Difference in energy per formula unit (f.u.) with respect to the
lowest energy structure (E0) as a function of the variance of the number of Sc ions in

each (c) tetrahedron (σ2
T) and in each (d) chain (σ2

C) for each configuration. The
structures marked with the square, triangle, rhombus and star indicate structures with

charge ice ordering.

fact that the experimental diffuse scattering does not show sharp features representing
long range order, only broad features, implies that the Sc–Nb ordering found in the lowest
energy DFT structure is only over a short range.

The lowest energy configuration in an (a,b,c) orientation is shown in figure 6.6a, where
the (1,1,0) and (1,-1,0) chains have alternating Sc–Nb. However, this structure breaks ro-
tational symmetry, since the system no longer has alternating Sc–Nb in the corresponding
directions when the structure is rotated into a (b,c,a) orientation, as figure 6.6b shows.
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(a) (b)

Figure 6.6: Lowest energy structure predicted by the DFT calculations from two
different orientations. The yellow spheres are the Pr ions, violet the Sc and green the

Nb. The oxygen ions have been removed for visual purposes.

Thus, once a configuration like this is formed, the system “selects” a local z-axis, result-
ing in locally having a special axis, and at different locations in the system, the lowest
energy structure would have the special axis pointing in another direction. This is a form
of chemical frustration, which would result in this system having domains of the lowest
energy DFT structure, each domain having its own special axis, and the transition from
one domain to another (domain wall) having a random arrangement of Sc/Nb on each
site.

With this lowest energy structure, the structural diffuse scattering was computed by
using the difference method described in section 2.4.1. In this case, the structure that
was being subtracted was one with a perfect 50/50 distribution of Sc and Nb on the
B-sites. This is equivalent to having a system with a pure random alloy on the B-sites,
with the scattering length given by an average of the Sc and Nb scattering length, but
in one single location of this random alloy a unit cell that matches this lowest energy
structure is inserted. Thus, the size of the coherent defective region is assumed to be that
of the conventional unit cell. The justification for choosing just a single conventional unit
cell is that the width of the diffuse peaks in Q is comparable to the experimental widths.
However, the real system is most likely formed by many domains of the lowest energy
structure, each one with its own special axis pointing in different directions. As such, the
calculations were performed with the unit cell of the lowest energy structure in multiple
orientations, with all the calculated patterns added incoherently. As figure 6.7 shows, the
agreement with the (h,k,4.5) SXD data is good, specially at the higher Q values. The
agreement with the (h,k,5.5) is also good, but the calculation produces some features that
are not in the experimental data, such as the intensity around (±8,±8,5.5), and it misses
other features, for example around (±3,±3,5.5). Nevertheless, all the general shapes of
the diffuse scattering are properly reproduced. This is confirmation that the crystal most
likely is composed of small domains, in the order of one conventional unit cell, containing
the lowest energy DFT structure.

In addition to comparing the diffuse scattering calculation with experimental data,
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(c) (d)

Figure 6.7: Comparison between (left) the SXD experimental data at 30 K and (right)
the structural diffuse scattering calculated with the lowest energy DFT structure in the
(top) (h,k,4.5) and (bottom) (h,k,5.5) planes. The features from the experimental data
that were identified as truncation rods from the Bragg peaks and the phononic features

have been removed.

the total scattering data acquired with NOMAD was compared with the total scattering
calculations produced by a system with a random arrangement of Sc/Nb ions (perfect
alloy) and by a system with the lowest energy DFT structure in one particular orientation,
as figure 6.8 shows. The latter was calculated assuming that the lowest energy DFT
structure was repeated along the entire sample. In both cases, a P1 symmetry group was
used with the pyrochlore conventional unit cell (88 atoms) and the parameters found in
the refinements shown in table 6.1. Since this was just to compare the effect of having
long range order of the lowest energy DFT structure with a pure random alloy, no further
refinements were performed. The presence of extra peaks produced by the lowest energy
DFT structure shows that clearly the real system does not have any kind of long range
ordering of the lowest energy DFT structure in one particular orientation. It is thus more
likely to have domains of this structure separated by randomly arranged Sc/Nb ions. This
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(a)

(b)

Figure 6.8: Comparison of the experimental total scattering data measured with
NOMAD with the spectrum calculated using (a) a structure with a random

arrangement of Sc and Nb ions in the B sites, and (b) with long range order of the
lowest energy DFT structure. The black vertical markers are the Bragg positions.

is in agreement with the DFT calculations, where single unit cells of the lowest energy
structure were used.

Finally, two sets of RMC fits were performed: with the entire supercell formed exclu-
sively by the lowest energy DFT structure and with a supercell with a disorder distribution
of the Sc/Nb ions on the B-sites. These RMC fits were performed only to the NOMAD
reduced PDF data and the SXD (h,k,4.5) and (h,k,5.5) planes, where the intensity of the
diffuse scattering is strong. However, as figure 6.9 shows, the resulting fits to the diffuse
scattering are very similar, independent of the starting condition. One explanation for
this is that the change in diffuse scattering between having the lowest energy DFT struc-
ture and a disordered system is small, and the RMC calculations are not sensitive enough
to differentiate between both scattering patterns.
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(a) (b)
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Figure 6.9: RMC fits to (left) the SXD (h,k,4.5) and (right) (h,k,5.5) scattering planes
using a supercell formed (top) by a random arrangement of Sc/Nb ions on the B sites

and (bottom) using a supercell formed exclusively by the lowest energy DFT structure.

6.4 Summary
Structural diffuse scattering measurements of Pr2ScNbO7 were performed at 4 K, 30 K

and room temperature using SXD at ISIS and at 50 mK using D7 at the ILL. It was found
that, due to the type of disorder, the resulting experimental data produced weak diffuse
scattering masked by the presence of large Bragg peaks. As such, the analysis of the
diffuse scattering was focused on the (h,k,4.5) and (h,k,5.5) planes, where the diffuse
scattering is strongest and Bragg peaks weakest.

Since, in a conventional unit cell, the Sc and Nb ions can be arranged in 97 symmetri-
cally inequivalent ways, density functional theory (DFT) calculations of all configurations
were performed to study which arrangement produced the lowest energy. It was found
that the configuration of Sc/Nb ions that produced the lowest energy has charge ice order-
ing on the tetrahedra and alternating Sc–Nb on the B-site chains. However, this structure
is chemically frustrated, since the alternating chains are only observed when the lowest
energy DFT structure is in particular orientations.
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The diffuse scattering produced by the lowest energy DFT structure was compared
with the (h,k,4.5) and (h,k,5.5) planes from the SXD experiment, producing good agree-
ment with the experimental diffuse scattering. These calculations were performed by
assuming a crystal with a perfect random distribution of Sc and Nb ions on the B-sites,
but changing a unit cell of this structure by a unit cell of the lowest energy structure.
The calculations were repeated multiple times, with all possible orientations of the lowest
energy structure, and adding all the calculated patterns incoherently. From this, we con-
cluded that this system must be formed by small domains, of the order of one unit cell,
with the lowest energy DFT configuration, each domain being in a different orientation
and with the domain walls having a random distribution of Sc and Nb ions.

Finally, total scattering measurements were performed on powder Pr2ScNbO7 to ex-
tract the pair distribution function (PDF) of the system. The data was compared with
scattering calculated assuming a perfect random arrangement of Sc/Nb ions and assuming
long range order of the lowest energy DFT structure. The latter produced extra peaks not
present in the experimental data, while the former produced a much better agreement.
This is further confirmation that the lowest energy DFT structure cannot form any kind
of long range order. RMC fits were then performed to the reduced PDF data and the
(h,k,4.5) and (h,k,5.5) planes from the NOMAD and SXD experiments respectively. Two
calculations were performed: using a supercell cell with a random arrangement of Sc/Nb
ions and a supercell with long range order of the lowest energy DFT structure. Both
RMC calculations produced very similar results, indicative of these calculations not being
sensitive enough for this kind of disorder.
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Chapter 7

Magnetic defects and correlations in
Pr2ScNbO7

The effect of disorder on the magnetic properties of Pr2ScNbO7 were studied by means
of neutron scattering, point-charge-model (PCM) calculations and crystal electric field
(CEF) fitting. The single ion magnetic properties of this system were studied using the
SEQUOIA instrument from SNS. A set of CEF parameters were fitted to the data, as-
suming a D3d symmetry, resulting in a doublet ground state with the first excited state
at 2.7 meV. In addition, PCM CEF calculations were performed using the DFT struc-
ture with the arrangement of Sc and Nb ions which minimised the total energy, which
contains two inequivalent Pr sites, each of them forming one-dimensional chains. The
PCM calculations predicted both Pr sites to be singlets. It was proposed that, if these
calculations are correct, the transverse field generated from the Sc/Nb disorder could
mix the ground and first excited states of the Pr ions, generating a moment. Finally,
magnetic diffuse scattering measurements were performed using the D7 instrument, pro-
ducing uncorrelated scattering. These measurements were used to extract a Pr effective
magnetic moment of 2.10(8) µB. The measured uncorrelated scattering could be due to
quantum fluctuations from the one-dimensional chains, or due to the system being in
a paramagnetic phase as a consequence of the large degree of disorder from the Sc/Nb
ions. To differentiate between these two possibilities, low energy transfer measurements
were performed with the LET spectrometer from ISIS. These measurements revealed the
presence of a low energy transfer peak, believed to be a signature of quantum fluctuations
in other Pr based pyrochlores [3, 4].

7.1 Introduction
One of the most compelling pieces of evidence to date of quantum spin-ice correlations

has been provided by studies of Pr2Zr2O7, where the presence of structural disorder comes
into play [3, 231, 233], and Pr2Hf2O7, where high sample purity is inferred, and it is
claimed that anisotropic exchange is responsible for the quantum fluctuations [4]. Both
systems have very similar crystal electric field levels, as figure 7.1 shows, both having a
well separated ground state doublet with the first excited state at 9.5 meV and 9.1 meV
for the Pr2Zr2O7 and Pr2Hf2O7 system respectively. However, in the Pr2Zr2O7 system,
Martin et al. [231] suggest that the presence of strains caused by magneto-elastic coupling
[234] causes the ground state doublet to split into singlets in a random fashion. The wave
function of both singlet states recombined in tunnel-like states by creating superpositions
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(a) (b)

Figure 7.1: (a) Inelastic neutron scattering spectrum of Pr2Zr2O7 obtained by
combining T=7.8 K data for two incident beam energies: Ei = 40 meV and

Ei = 120 meV. The blue dashed line denotes fitted polynomial backgrounds. The red
solid line is the calculated best fit. (b) Inelastic neutron scattering spectrum of

Pr2Hf2O7 obtained at 10 K with Ei = 136 meV. The red solid line is the calculated best
fit. Figures acquired from [3] and [232] respectively.

within states, i.e. the new wave functions are form by superpositions of the old wave
functions. Furthermore, the very low energy transfer data of the Pr2Zr2O7 and Pr2Hf2O7

(a)

(b)

Figure 7.2: (a) Inelastic neutron scattering spectra of Pr2Zr2O7 at Q=(0,0,3) and at
T=0.1 K (solid circle) and 2.0 K (open circle) after subtraction of the 15 K data at the

same Q. (b) Inelastic neutron scattering spectra of Pr2Hf2O7 at T=0.05 K. Figures
acquired from [3] and [4] respectively.
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samples, shown in figure 7.2, highlight the existence of an extra feature at around 0.2 meV,
which was interpreted for both systems as a signature of cooperative quantum fluctuations
[235].

Finally, Wen et al. [233] and Sibille et al. [4] performed studies of the magnetic
diffuse scattering in the (h,h,l) plane on the Pr2Zr2O7 and Pr2Hf2O7 systems with different
neutron energy transfers, as figure 7.3 shows. At zero energy transfer (elastic channel)
pinch points are still visible (see figure 1.26a for Pr2Hf2O7), but as the energy transfer is
increased, the pinch points broaden until the starfish like structure shown for an energy
transfer of 0.2 meV appears. At much higher energy transfers, the scattering becomes
featureless, as it is shown for an energy transfer of 0.5 meV. Wen et al. [233] claimed that
this is due to the continuum of fractional excitations which, just as with the excitation
found at 0.2 meV in both systems, is associated with quantum fluctuations.

To separate the contribution from structural disorder and anisotropic exchange, the
highly substituted Pr2ScNbO7 system was studied. The strain from the difference in

(a) (b)

(c) (d)

Figure 7.3: Scattering data of Pr2Zr2O7 in the (h,h,l) plane at the fixed energy transfers
of (a) 0.2 meV and (b) 0.55 meV. Scattering data of Pr2Hf2O7 in the (h,h,l) plane at

fixed energy transfers of (c) 0.2 meV and (d) 0.5 meV. For both systems the data were
collected on single-crystal samples using time-of-flight inelastic neutron scattering at

50 mK with unpolarised neutrons. Figures (a) and (b) acquired from [233] and figures
(c) and (d) acquired from [4].
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the ionic radii and the modulation in charge from the Sc3+ and Nb5+ ions will tune the
exchange and the CEF with the prospect of inducing novel quantum spin liquid behaviour.

This chapter presents magnetic neutron scattering data on the quantum spin liquid
candidate Pr2ScNbO7. I will present magnetic excitation measurements performed using
the SEQUOIA instrument from SNS to study the single-ion magnetic properties of the
system. The CEF excitations were analysed by performing individual fits to the data and
point charge calculations using the lowest energy DFT structures from the previous chap-
ter. To study the magnetic correlations in this system, diffuse scattering measurements
were performed on a single crystal using the D7 instrument at the ILL. From the analysis
of these data, further study of the low energy excitations were performed using the LET
spectrometer at ISIS.

7.2 CEF excitation measurements
To study the effect of the strains due to the B-site disorder on the single-ion magnetism

of Pr ions, CEF measurements were performed on a Pr2ScNbO7 powder sample using the
SEQUOIA instrument at SNS in the USA. All of the data acquired with SEQUOIA
shown in this section is on an absolute scale, normalised to a monochromatic vanadium
measurement. A non-magnetic La2ScNbO7 powder sample was also measured to subtract
the phonon contribution from the magnetic Pr2ScNbO7 sample. A benefit of the proximity
of Pr to La in the periodic table is that it is not necessary to correct for mass difference
by performing DFT calculations of the phonon density of states. As such, the La2ScNbO7

data, multiplied by a self-shielding factor if needed, can be directly subtracted from the
Pr2ScNbO7 sample to remove the phononic contribution. All the samples were grown by
Dharmalingam Prabhakaran using the floating zone method at the Clarendon Laboratory,
Oxford University.

Both powder samples were measured at 5 K with incident energies of 11.5 meV,
25 meV, 60 meV, 120 meV, 350 meV and 500 meV, and at 30 K with incident ener-
gies of 25 meV, 60 meV and 120 meV. The S(Q, ω) spectra for Pr2ScNbO7 are compared
with those of La2ScNbO7 with Ei = 25 meV and 120 meV at a temperature of 5 K
in figure 7.4. The phonon corrected data was obtained by subtracting the La2ScNbO7

data directly from the Pr2ScNbO7 data, and the resulting plots of S(Q, ω) are shown for
Ei = 25 meV and 120 meV at 5 K in figure 7.5. One-dimensional plots of intensity as a
function of energy transfer integrated over the full range of Q are also shown.

CEF fits were performed to the phonon corrected data to extract the CEF levels of
the Pr ions. Despite the presence of the disorder, and for simplicity, it was assumed
that the Pr environment still maintained a D3d symmetry. Thus, only 6 CEF parameters
were needed to fit a Pr CEF-Hamiltonian to the data. Since Pr3+ has J = 4 and it is a
non-Kramers ion, only 6 levels are allowed (ground state and 5 excited states), 3 doublets
and 3 singlets [160]. From figure 7.5a, it is clear that the features around 2.5 meV,
6.5 meV and 13.5 meV are magnetic, since the decrease in intensity with Q is the same as
the Pr3+ magnetic form factor squared, as figure 7.6 shows. Figure 7.5b contains multiple
extra features that could possibly be magnetic. The features near 57.5 meV and 90 meV
are also magnetic, since the intensity decay with Q is the same as the Pr3+ form factor
squared, as figure 7.6 shows. The one-dimensional cuts shown in figure 7.6 were extracted
by integrating in energy the intensity as a function of Q around the energy where the
features are found. It was found that the best comparison resulted when the upper and
lower limits of the energy integration were 1–2 meV away from the location of the feature.
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(a) (b)

(c) (d)

Figure 7.4: Inelastic scattering data of (left) Pr2ScNbO7 and (right) La2ScNbO7 at 5 K
with an incident energy of (top) 25 meV and (bottom) 120 meV acquired with

SEQUOIA.

The three additional features at 45 meV, 75 meV, 105 meV were excluded from the fit.
The faint features at 75 meV and 105 meV were difficult to differentiate from the strong
57.5 meV and 90 meV peaks or to compare with the Pr3+ magnetic form factor. Similarly,
the data around 45 meV was very noisy, and thus it was difficult to compare with the
Pr3+ magnetic form factor. Figure 7.7 shows the phonon corrected Pr2ScNbO7 data with
incident energies of 120 meV at a temperature of 30 K. The fact that the intensity of
the 45 meV feature increases with temperature is inconsistent with a purely magnetic
excitation from the ground state.

Hence, in the initial modelling and for simplicity, it was assumed that only the 2.5 meV,
6.5 meV, 13.5 meV, 57.5 meV and 90 meV excitations are real magnetic features and the
rest can be treated as a background. A convolution of a Gaussian and Lorentzian was
assumed for the shape of the peaks, with the Gaussian width given by the instrument
resolution and the Lorentzian width being a fitting parameter. Since the resolution of
the Ei = 120 meV data at low energy transfers is not as good as the resolution of
the Ei = 25 meV data at the same energy transfers, the data used in the fitting was
formed by combining the Ei = 25 meV data (0 meV to 23 meV energy transfer) with
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(a) (b)

(c) (d)

Figure 7.5: Phonon corrected Pr2ScNbO7 data at 5 K acquired with SEQUOIA with
incident energies of (a) 25 meV and (b) 120 meV. Intensity as a function of energy

spectrum integrated over the full Q range measured at 5 K with incident energies of (c)
25 meV and (d) 120 meV.

the Ei = 120 meV data (23 meV to 116 meV energy transfer). The resulting fit is shown
in figure 7.8, the fitted B-parameters in table 7.1 and the calculated energy levels in
table 7.2. This analysis suggests that not only the ground state is a magnetic doublet,
but also it is composed almost entirely of the |J, Jz〉 = |4,±4〉 state, just like the Pr3+ in
Pr2Zr2O7. This means that, under the assumption that the D3d symmetry is preserved,
the magnetic moments of this system have a strong 〈111〉 Ising anisotropy, as in a classical
spin ice systems.

Finally, as it can be seen in figure 7.8, a complex background had to be chosen to
get a good fit to the data. It is possible that, due to the disorder, the Pr ions sit in
multiple environments, each with a different distortion of the surrounding O ions due
to the Sc/Nb arrangement, and thus each producing a different CEF spectrum. This
would mean that the energy levels in table 7.2 correspond to the levels of Pr in the most
common environment, with sharper features, while the background is formed by the CEF
contribution from other less common environments, with broader features. This would
explain the presence of the peak like feature around 6 meV in figure 7.8 needed for the
background. A similar argument was also used by Mauws et al. [236] when studying
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Nd2ScNbO7, where a set of CEF excitations sat on top of a much broader excitation.
This is consistent with the findings in the previous chapter of having small domains of
the lowest energy DFT structure with a random arrangement of the Sc/Nb ions in the
domain walls.

(a) (b)

(c) (d)

(e)

Figure 7.6: Comparison between the form factor of Pr3+ and one-dimensional plots of
intensity as a function of Q integrated over a small energy range around the (a) 2.5 meV,
(b) 6.5 meV, (c) 13.5 meV, (d) 57.5 meV, (e) 90 meV features of the data in figure 7.5.
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(a) (b)

Figure 7.7: (a) Phonon corrected Pr2ScNbO7 data at 30 K acquired with SEQUOIA
with incident energies of 120 meV. (b) Intensity as a function of energy spectrum

extracted by integrating through the full Q range.

In addition to this fit, point-charge-model (PCM) calculations were also performed
using the lowest energy DFT structure discussed in the previous chapter. According to
the DFT, two inequivalent Pr sites exist, each one having the nearest neighbour O(1)
and O(2) ions at different distances, as it can be seen in figure 7.9. Furthermore, both
Pr sites had a disordered arrangement of O ions, and thus none of them preserved the
D3d symmetry. This not only meant that in the PCM calculations all the available CEF
parameters could be used, but also that all the energy levels become singlets. In the real
system, the presence of distortions intrinsic in the lattice could make the Pr ions non-
magnetic. A similar effect was observed by Foronda et al. [237] in Pr2Zr2O7, where the
distortions due to muons also invoke singlet ground states. Since Pr3+ is a non-Kramers
ion, both of the Pr ions in the lowest energy DFT structure are non-magnetic. This is
consistent with the Pr2Zr2O7 system where, by virtue of the magneto-elastic coupling, the
strains split the non-Kramers doublet of the rare-earth ions in a random fashion [231].
The energy levels for both Pr sites are shown in table 7.3.

Figure 7.8: Fit to the phonon corrected Pr2ScNbO7 data at 5 K acquired with
SEQUOIA showing the used background. Spectrum obtained by combining the

Ei = 25 meV data with the Ei = 120 meV data.
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Table 7.1: Fitted B-parameters of Pr in meV.

B0
2 B0

4 B3
4 B0

6 B3
6 B6

6

-0.81(1) -0.0095(6) -0.21(2) 0.0015(3) -0.008(2) -0.0012(5)

Table 7.2: Energy levels of the Pr ions in meV from the fitted B-parameters assuming a
D3d symmetry. The first column contains the energy levels of the doubly degenerate
states, while the second column contains the levels of the singly degenerate states.

Doublet Singlet

0.0 2.73106
57.9158 6.3775
90.1777 13.6608

The excitation spectrum produce by the lowest energy DFT structure was calculated
and compared with the experimental data. This calculation was also performed for an
average of all possible Sc/Nb configurations, where the spectra produced by the Pr ions
in each of the 97 DFT structures was computed. With this, the average of all spectra,
weighted by the number of realisations for each Sc/Nb arrangement, was calculated. This
average structure spectrum was assumed to be equivalent to the spectrum produced by
a system with a perfectly disordered arrangement of Sc and Nb ions on the B-sites. As
figure 7.10 shows, the low energy DFT structure produces an excitation spectrum with
features that, while not at the correct locations and not with the correct intensities, are
qualitatively similar to the ones from the experimental data. The similarities between the
PCM calculation and the experiment are especially pronounced at low energy transfers.
Furthermore, the average structure spectrum is similar to the background chosen to fit
the data from figure 7.8. A possible explanation for this is that this system has some short
range order that gives us the main peaks, but it is sitting on top of something relatively
random. This is consistent with the idea proposed of having domains containing the
lowest energy DFT structure, and the domain walls having a random arrangement of
Sc/Nb ions on the B-sites. It is worth noting that one feature that the low energy DFT
structure spectrum and the average structure spectrum have in common is the lack of a

(a) (b)

Figure 7.9: The two Pr environments found by CASTEP in the lowest energy DFT
structure.
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Table 7.3: Energy levels of the two inequivalent Pr sites in the lowest energy DFT
structure.

Pr1 (meV) Pr2 (meV)

0 0
1.203 4.567
24.232 12.874
62.830 60.636
71.669 70.896
100.476 92.817
115.471 97.635
117.235 112.523
122.851 116.987

Figure 7.10: Comparison of the normalized experimental inelastic data of Pr2ScNbO7

acquired with SEQUOIA with the PCM calculation using the lowest energy DFT
structure and an average of all 97 structures. (a) to (c) for the Ei = 25 meV data and

(d) to (f) for the Ei = 120 meV data.
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peak around 45 meV. This could be indicative that, as previously discussed, this feature
is not of pure magnetic origin.

From these PCM calculations, it could be that the first excited state from the CEF
fitting corresponds to the Pr1 first excited state, the second excited state from the fitting
corresponds to the Pr2 first excited state and the third excited state from the fitting
corresponds to the Pr2 second excited state. One issue with these PCM calculations
is that both of the Pr ions have a singlet ground state, and therefore should be non-
magnetic. However, the D7 experiment discussed below clearly shows a magnetic signal in
the magnetic cross-section. One possible explanation for this is that the system is mixing
the ground state and first excited state, which could generate a magnetic moment. This
is very similar to the Ho ions next to a vacancy in HTSO and will be explained in more
detail later on in this chapter.

7.3 Magnetic diffuse scattering
Knowing the effects of the disorder on the single ion magnetism of this system, a

7.05 g single crystal of Pr2ScNbO7 was studied with the D7 diffractometer at the ILL to
determine the effects of the disorder on the cooperative magnetism of the system. The
crystal was grown by Dharmalingam Prabhakaran using the floating zone method at the
Clarendon Laboratory, Oxford University. Since the plane of interest was the (h,h,l) plane,
the Laue diffractometer OrientExpress was used to properly align the sample. Figure 7.11
shows the aligned sample on the sample mount, where the crystal is covered in copper foil
to improve thermal contact and a brass screw is used to hold the sample in the correct
orientation. The reason the mount is holding the crystal from the middle and not from
one end is due to the large tilt and the size of the sample environment. The dilution
fridge insert used in this experiment has a diameter of around 36 mm. If this crystal
was attached to the sample mount by one end, the circle formed by the other end of the
crystal as it is rotated would have a diameter larger than the dilution insert. Thus, the
sample mount shown in the figure was constructed to shift the centre of rotation. An issue
with this sample mount is that the sample now has an irregular shape and, at certain

Figure 7.11: Single crystal Pr2ScNbO7 on its mount.
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orientations, the beam of neutrons will need to traverse the screw and part of the sample
mount before reaching the crystal. As it will be shown, this will have an effect on the
final scattering.

Measurements were performed with a neutron incident wavelength of 4.8 Å and ro-
tating the sample in steps of 1◦. According to susceptibility measurements performed by
Kimura et al. [3] on Pr2Zr2O7, Pr3+ has a magnetic moment of 2.5 µB, 4 times smaller
than the magnetic moment of the Ho ion or, due to the µ2

B dependence of the magnetic
intensity [46], a magnetic intensity 16 times weaker. As such, the Pr2ScNbO7 single
crystal was measured only at 50 mK for an entire week using XYZ polarisation analysis
(XYZ-PA) to get good data and statistics. The resulting measured magnetic, structural
and nuclear spin-incoherent scattering cross-sections are shown in figure 7.12, extracted
using equations (2.74) for a single crystal.

In this system, the spin-incoherent scattering can arise from the Pr, O, Nb and Sc

(a) (b)

(c) (d)

Figure 7.12: (a) Structural, (b) spin-incoherent, (c) M⊥y and (d) M⊥z scattering of
Pr2ScNbO7 at 50 mK acquired with D7 at the ILL.
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in the sample, from the Cu in the sample mount and from the Zn in the brass screws
holding the sample. Of all these, the ion with the largest spin-incoherent cross-section is
Sc, with Cu an order of magnitude lower and the rest being negligible. The absence of
correlations means that the intensity of spin-incoherent scattering is expected to be flat.
However, as figure 7.12b shows, the spin-incoherent data is not flat, but it has regions
with higher and lower intensity which approximately match the high and low intensity
regions of the magnetic and structural scattering. Upon further investigation, it was
found that this change in intensity is due to absorption. Because the spin-incoherent
scattering is dominated by scattering from the sample, the spin-incoherent scattering was
used to correct for absorption by dividing the different scattering cross-sections by it. This
can be understood as follows. The measured spin-incoherent is given by the real spin-
incoherent, which is flat, with absorption. The measured magnetism is also given by the
real magnetism and that same absorption. By dividing the measured magnetism over the
measured spin-incoherent scattering, the absorption is cancelled out, and since the spin-
incoherent is flat, dividing the real magnetism by the real spin-incoherent simply gives
the real magnetism. The same procedure follows for the structural scattering. However,
the spin-incoherent data shown in figure 7.12b were not used to correct the data, since
these data are very noisy. Instead, a phenomenological function was fitted to the spin-
incoherent data to smooth the features, and the resulting fit was used to correct the
magnetic and structural data.

The resulting corrected structural and magnetic diffuse scattering cross-sections are
shown in figures 6.3 and 7.13 respectively. As the figure shows, apart from some addi-
tional scattering that can be attributed to noise and bad correction from the background
subtraction and the mount, the magnetic diffuse scattering seems to be featureless, with
all the features observed previously for Pr2Zr2O7 and Pr2Hf2O7 [3, 4, 233], such as the
pinch points in the elastic scattering channel and the starfish-like pattern in the inelastic
line shown in figure 7.3, absent.

Furthermore, the powder average of the magnetic data, shown in figure 7.13c, also
does not have any strong variations in the intensity with Q. These data were extracted

by first combining the magnetism in two directions using
√
M2
⊥y +M2

⊥z, and averaging

all the intensities at the same Q value. The powder average data was compared with the
Pr3+ magnetic form factor squared, as figure 7.13c shows. If the spins were uncorrelated,
such as for a paramagnet or uncorrelated quantum fluctuations, the Q dependence would
follow the magnetic form factor from a single ion [46]. While this seems to be the case
for this system, since the comparison in the figure shows a good agreement between the
experimental data and the magnetic form factor, the data is very noisy to exclude the
possibility of the data not following the magnetic form factor indicating other forms of
cooperative magnetism. Assuming good agreement between the powder averaged data
and the magnetic form factor, the effective Pr magnetic moment µeff was extracted using
[46]

dσ

dΩ
(|Q| = 0) =

2

3

(γr0

2

)2

µ2
eff (7.1)

where, from figure 7.13c, dσ
dΩ

(|Q| = 0) ≈ 0.42(5) barn/sr/f.u., r0 = 2.818 fm and γ = 1.913.
This gives, for the 7.05 g crystal used in this experiment, a Pr effective magnetic moment of
µeff = 2.10(8) µB, close to the 2.5 µB measured by Kimura et al. [3] from the susceptibility
measurements of Pr2Zr2O7.
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(a) (b)

(c)

Figure 7.13: Corrected (a) M⊥y and (b) M⊥z scattering acquired with D7. (c)
Comparison of the powder average corrected magnetic diffuse scattering data of

Pr2ScNbO7 with the form factor of Pr3+. The data shown in (c) is in absolute units.

As it was shown in the introduction of this chapter, three distinct regimes exist in the
magnetic diffuse scattering of Pr2Zr2O7 and Pr2Hf2O7: the elastic line where pinch points
are visible [3, 4], with an energy transfer of 0.2 meV where a starfish-like pattern emerges
[4, 233], and with an energy transfer of 0.5 meV where the scattering is featureless which
is attributed to uncorrelated quantum fluctuations [4, 233]. In the D7 experiment, on
the other hand, the energy analysis option was not used. Since the neutrons used in the
experiment had an incident wavelength of around 4.8 Å, the intensity shown in figures 7.13
is actually the intensity integrated from -10 meV to around 3.55 meV energy transfer.
As such, the results could be consistent with either enhanced quantum fluctuations by
the strains, since it looks very similar to the 0.55 meV data measured by Wen et al.
[233], or the system being in a paramagnetic phase due to the large strains (too much
disorder) [145]. However, the CEF data clearly shows a CEF excitation around 2.5 meV,
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below the integration limit of the D7 experiment. As such, the data shown in figure 7.13
also contains CEF excitation information. Thus, if the magnetic scattering below the
excitation has a weak Q dependence, it might be hidden by the presence of the much
larger CEF excitation. Furthermore, including this excitation in the data would add a
form factor decay to the magnetism below it. This means that it is possible for the
effective Pr magnetic moment to be smaller than what was extracted from the powder
average data.

7.4 Low energy excitations
To distinguish if the uncorrelated magnetic scattering measured with D7 is due to the

system being in a paramagnetic phase or is a quantum spin liquid, low energy transfer
measurements were performed with the LET spectrometer from ISIS. With LET, a powder
sample of Pr2ScNbO7 was studied at multiple temperatures between 50 mK and 200 K,
with multiple incident energies, as figure 7.14 shows. All of the data acquired with LET
shown in this section is on an absolute scale, normalised to a monochromatic vanadium
measurement. A powder sample of La2ScNbO7 used for phonon subtraction was also
analysed at the same incident energies and at temperatures between 1.7 K and 200 K.
Both samples were grown by Cole Mauws using the floating zone method at the Clarendon
Laboratory, Oxford University.

The resulting one-dimensional energy cuts extracted by integrating over the full mea-
sured Q range is shown in figure 7.14. As the figures show, all the data at 30 K and below
converge to zero intensity at zero energy transfers, but the 100 K and 200 K data converge
to a non-zero value. This is easily seen in the 1.45 meV, 2.2 meV and 3.7 meV incident
energy data. The same effect was observed by Sibille et al. [4, 235] when studying the low
energy excitations of Pr2Hf2O7 and by Mook et al. [238] in EuO when studying spin waves
above and below its critical temperature. Collins et al. [239] theoretical studies suggest
that, in the paramagnetic regime, quasi-elastic scattering is developed with a shape that
is approximately Gaussian centred at zero. Thus, the non-zero intensity convergence at
low energy transfers for the 100 K and 200 K measurements, in the paramagnetic phase
of this system, can be attributed to the development of quasi-elastic scattering.

In addition, differences were found between the SEQUOIA data acquired at 5 K and
Ei = 25 meV and the LET measurements at 5 K and Ei = 22.78 meV. Both produce
peaks at similar locations, but the intensity is not the same. In the SEQUOIA data
there is a clear difference between the intensities of the 2.5 meV and 6.5 meV peaks,
while in the LET data both peaks are of similar intensity. In addition, the LET peak at
13.5 meV is sharper and more intense, while the same peak measured with SEQUOIA
is broader and less intense. The possibility of this being an artefact of both instruments
having different instrumental resolution was discarded since, not only both instruments
have very similar resolution, but also these features are not resolution limited. This was
confirmed by doing measurements in high flux/lower resolution mode and in intermediate
flux/higher resolution mode and seeing no significant change between both measurements.
The differences are most likely due to differences between the two samples. In particular,
there is a relatively high magnetic background due to structural disorder at low energy
transfers according to the PCM calculations, and this could be the origin of the difference.
It is possible that the sample measured with SEQUIA has fewer domains with the lowest
energy DFT structure and a more random distribution of the Sc and Nb ions. Thus, the
peak at low energies predicted by DFT for the random distribution is stronger in this
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(a) (b)

(c) (d)

(e) (f)

Figure 7.14: Temperature evolution of the phonon corrected LET data of Pr2ScNbO7 at
incident energies of (a) 1.03 meV, (b) 1.45 meV, (c) 2.2 meV, (d) 3.7 meV, (e) 7.52 meV

and (f) 22.78 meV. For visual purposes, the error bars have been excluded.
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Figure 7.15: Temperature evolution of the phonon corrected LET Pr2ScNbO7 data with
Ei = 3.7 meV after subtracting the 5 K data. For visual purposes, the error bars have

been excluded.

sample, making the 2.5 meV peak stronger.

Just as Kimura et al. [3] did with Pr2Zr2O7, the 5 K phonon corrected data was
subtracted from the lower temperature phonon corrected data. The subtraction of the
5 K data was performed because, according to Kimura et al. [3], this leaves behind the low
energy quantum fluctuations. As figure 7.15 shows for the Ei = 3.7 meV data, there is a
clear feature around 0.7 meV after the 5 K data is subtracted. This feature is very similar
to the one found by Kimura et al. [3] for Pr2Zr2O7 and Sibille et al. [4] for Pr2Hf2O7 in
figures 7.2a and 7.2b respectively. Both Kimura and Sibille interpret this extra peak at
0.2 meV as a signature of cooperative quantum fluctuations. It is reasonable to conclude
that Pr2ScNbO7 behaves similarly to Pr2Zr2O7.

To understand a possible origin of the uncorrelated quantum magnetism, it is instruc-
tive to examine the lowest energy structure identified by the DFT calculations discussed
in the previous chapter. Figure 7.16a shows the tetrahedra form by the two Pr ions and
their bond lengths, and figure 7.16b shows the lowest energy DFT structure with the
arrangement of the two Pr ions in the unit cell. The chain of constant 3.73 Å bond
lengths is formed by alternating Pr sites, and it is parallel to the chain of alternating
Sc–Nb ions in figure 6.6a. The shortest bond lengths, 3.69 Å and 3.71 Å, shown in dark
and light blue in figure 7.16b connect Pr1 and Pr2 ions and form chains in a direction
roughly perpendicular to the alternating Sc–Nb ions. Since the exchange interaction falls
off exponentially with distance [1], the chains with the shortest bond lengths may well
dominate.

If the “PCM CEF calculations” picture is to be believed, the Pr ions would need to
develop a magnetic moment, since with the diffuse scattering measurements, a magnetic
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(a) (b)

Figure 7.16: (a) Bond lengths between the two Pr environments found in the lowest
energy DFT structure. (b) Arrangement of the Pr tetrahedra in a unit cell.

signal is detected. For this to be possible, the ground state and first excited state would
have to mix and generate a moment. It was first considered the possibility of the exchange
interaction between the Pr ions to be strong enough to mix the wave functions of the
ground state and first excited state, generating a moment. However, for this to be possible
and generate moments at least along the chain of Pr1 ions, the exchange constant of the
Pr ions needs to be on the order of the energy gap between the ground state and first
excited state. This is not the case for Pr3+ since, according to thermal conductivity
measurements on Pr2Zr2O7 performed by Tokiwa et al. [240], the Pr exchange constant is
on the order of 0.1 meV, smaller than the energy gap of the Pr1 sites. Thus, the exchange
fields by themselves are not strong enough to mix the ground state and first excited state
and generate a moment.

Another method in which these two states could mix is through the disorder transverse
field proposed by Savary et al. [145]. The disorder of the Sc and Nb ions around the Pr
sites will act as a transverse field which could mix both states in “tunnel-like” states, just
as Martin et al. [231] found with Pr2Zr2O7. Nevertheless, the effect would be similar
to the one described with the HTSO system, mixing the ground and first excited state
wave functions and generating moments at the Pr sites. On the other hand, if the “CEF
fitting” picture is trusted, then no extra transverse fields would be needed since the Pr
ions are already predicted to be magnetic. Regardless of the picture, it may be possible
for the Pr ions in this system to form one-dimensional magnetic chains that do not order
and instead exhibit quantum fluctuations. Hence, it is conceivable that one-dimensional
magnetism is responsible for the observed quantum fluctuations in this system.

7.5 Summary
CEF excitation measurements on Pr2ScNbO7 were performed using the SEQUOIA

spectrometer from SNS. The data was first analysed by assuming a D3d symmetry and
fitting 6 B-parameters. Due to this symmetry constraint, the fitting predicted a doublet
ground state with the first excited state at 2.7 meV. However, to do this, a complex
background had to be chosen to get a good fit. In addition to this fitting, point-charge-
model (PCM) calculations were performed with the Pr ions from the lowest energy DFT
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structure described in the previous chapter. According to the DFT calculations, the
lowest energy structure contained two inequivalent Pr sites, both of them with a D3d

broken symmetry. As such, the PCM calculations of both Pr ions produced non-magnetic
singlet ground states, with the first excited state at 1.2 meV and 4.6 meV above the
ground state.

The excitation spectrum produced by the lowest energy DFT structure was computed,
producing a very similar pattern to the experimental data, but with the wrong intensity.
In addition, the excitation spectrum given by the average of the 97 different DFT calcu-
lations performed for all the possible Sc/Nb arrangements was also computed, with the
assumption that this would be the spectrum produced by a perfectly disordered Sc/Nb
system. The resulting spectrum resembled the background that had to be used in the
initial fitting. This is in agreement with the idea of the system having domains of the
lowest energy DFT structure, with a random arrangement of Sc and Nb ions on the B
sites in between the domains.

The magnetic correlations of this system were studied using D7. The measured mag-
netic cross-section resulted in flat, uncorrelated scattering. This featureless scattering
could represent either quantum fluctuations or a paramagnetic phase, since the disorder
of the B-sites is so high that all the fluctuations could have been washed out. To distin-
guish between these two possibilities, low energy inelastic measurements were performed
at multiple temperatures using the LET spectrometer from ISIS. The subtraction of the
5 K data from the low temperature data resulted in a hidden feature around 0.7 meV.
Kimura et al. [3] and Sibille et al. [4] also found a similar feature when studying Pr2Zr2O7

and Pr2Hf2O7 respectively, and suggested that these features could be due to quantum
fluctuations. Finally, the magnetic diffuse scattering data was used to extract a Pr effec-
tive magnetic moment of 2.10(8) µB.

In the lowest energy DFT structure, the two distinct Pr sites form one-dimensional
chains. If one of the Pr sites was magnetic, this system would be formed by one-
dimensional magnetic chains which never order and would be responsible for the observed
quantum fluctuations in this system. However, according to the PCM calculations, none
of the Pr ions are magnetic. Only through the mixing of the ground state and first ex-
cited state, these ions could generate a moment. One mechanism in which this can be
achieved is through the transverse field in the system generated by the Sc/Nb disorder.
This field could mix both states in “tunnel-like” states, just as Martin et al. [231] found
with Pr2Zr2O7.
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Chapter 8

Conclusion and future work

8.1 Ho2Ti2−xScxO7−x/2
8.1.1 Conclusion

The effect on the magnetism due to substitution and vacancies in Ho2Ti2−xScxO7−x/2
(HTSO) with x = 0.0, x = 0.1 and x = 0.5 was studied, where Ti4+ ions were replaced
by Sc3+ ions in the stoichiometric system. Due to the charge difference between the Sc
and Ti ions, this doping resulted in the need of charge compensating oxygen vacancies to
maintain sample charge neutrality. Total scattering measurements and Bragg refinements
were used to determine the location of the vacancies. For the x = 0.5 HTSO system
not only was it found that the charge compensating oxygen vacancies are located at the
O(2) sites, with a concentration of 3.9%, close to the nominal 4.17% that was initially
expected, but, in addition, an extra 0.65% of different O(2) ions were displaced towards
the centre of the tetrahedra formed by the B-sites, known as 8a sites. On the other hand,
Bragg refinements performed on the x = 0.1 and x = 0.0 HTSO systems showed that
both have similar levels of O(2) vacancies, explaining the similarities in the measured
spectrum. Furthermore, no A-B intersite mixing was found in any sample. In addition,
DFT calculations predict that to minimise the energy, an O(2) vacancy and an O(2) ion
displaced towards an 8a site are needed, in perfect agreement with the Bragg refinement.
The resulting structural diffuse scattering calculations using the DFT structure are in
excellent agreement with the measured data. Finally, the DFT calculations and RMC fits
to the structure diffuse scattering and PDF predict no correlations between the Sc ions.

Knowing the location of the oxygen vacancies, their effects on the single-ion magnetism
was studied. It was found that, while the Ho ions with no nearest neighbour vacancies
have a doublet ground state with a strong 〈111〉 Ising anisotropy, in excellent agreement
with previous measurements performed by Rosenkranz et al. [91] on the same system, the
ground state of the Ho ions next to a single vacancy is split into two singlets separated
by 0.12 meV. Due to such a weak splitting, magnetisation calculations at 0.5 K and with
a 0.1 T applied field resulted in the Ho ions with a vacancy developing a 6.2 µB moment
mainly pointing along the 〈111〉 direction, but with a 15.2◦ tilt towards the location of the
vacancy. The contribution to the CEF spectrum from Ho ions next to 2 or more vacancies
was ignored, since their contribution to the experimental data is minimal.

Despite this, magnetic diffuse scattering measurements on the x = 0.1 and x = 0.5
HTSO systems still produce scattering qualitatively very similar to the ones measured by
Fennell et al. [1] and Chang et al. [2, 116] in the stoichiometric and Y diluted Ho2Ti2O7.
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However, unlike the Y diluted Ho2Ti2O7 systems, where the pinch point width does
not change with increasing levels of doping, the pinch point width of the HTSO system
increased as the number of vacancies increased. It is possible that the exchange and dipolar
fields of the Ho ions are sufficiently strong to mix the wave functions of the ground and
first excited states, generating the tilted magnetic moment found in the magnetisation
calculations. As such, it was proposed that the tilted moments at the defect Ho sites
could be responsible for the broadening of the pinch points. It was also predicted that
three regions could exist in these systems: a low temperature regime, where the system
behaves like an ideal spin ice, an intermediate temperature regime, where the moments
at the defect sites are gradually switched off until all these moments become zero, and a
high temperature regime, where the ghost spin picture proposed by Sen et al. [226] comes
into play.

8.1.2 Future work
Since the DFT calculations were performed using Y2Ti2O7, these need to be repeated,

but with the correct chemical composition. DFT calculations with magnetic rare-earth
ions are complex to perform due to the size and spin state of the ions. Furthermore, the
DFT calculations will allow to fully determine the presence of any kind of Sc ordering.

To fully characterise the effect of O(2) vacancies and tilted moments on these systems,
further measurements are still needed. Magnetisation measurements of these systems
would also be of great use, since it would allow to further constrain the CEF modelling,
resulting in a more precise determination of the CEF levels and magnetic moments. Due
to the presence of two types of moments, tilted and non-tilted, it might be possible to
observe two plateaus in the magnetisation, one for each type of moment. To study the
dynamics of these systems, µSR and ac-susceptibility measurements would be of great
use, since they would provide valuable information on the propagation of monopoles in
the presence of this type of disorder.

Finally, heat capacity measurements in conjunction with the ac-suspectivility findings
would allow the characterisation of the temperature dependence of the spin dynamics
in these systems. In particular, it might be possible to distinguish the three different
temperature regions described above. From a computational modelling point of view,
MC calculations of the magnetic diffuse scattering may be useful to determine if it is the
presence of the tilted moments that causes the broadening of the pinch points. For this,
calculations of the stoichiometric Ho2Ti2O7, of HTSO with no spins at the Ho sites next
to a vacancy (ghost spin picture) and of HTSO with tilted moments at the Ho sites next
to a vacancy would be ideal to compare the widths of all pinch points.

8.2 Pr2ScNbO7

8.2.1 Conclusion
Structural and magnetic studies were performed on the highly substituted Pr2ScNbO7

system, where the combination of trivalent Sc3+ and pentavalent Nb5+ cations in equal
quantities is a way to introduce local strains without the complication of introducing
charge-compensating oxygen vacancies. Through DFT calculations, it was found that
the lowest energy configuration has charge ice ordering, with alternating Sc-Nb ions on
the chains. However, this structure is chemically frustrated, since the alternating chains
cannot be accommodated in all directions. Furthermore, this ordering is only over a short
range, since the diffuse scattering is broad. If it was obeyed over long distances, the
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scattering would produce sharp superstructure peaks with very little diffuse scattering
between them. The resulting structural diffuse scattering calculations using a single unit
cell of the lowest energy structure are in excellent agreement with the measured data.
From this, it was concluded that this system is formed by small domains of the lowest
energy DFT structure, each domain with the structure in different orientations, and with
the domain walls having a random arrangement of the Sc and Nb ions. Finally, total
scattering measurements of this system were compared with calculations assuming long
range order of the lowest energy DFT structure. These calculations produce extra peaks
not present in the experimental data, confirming that long range order of this structure
does not exist.

To study the effect of the disorder on the single-ion magnetic properties of Pr2ScNbO7,
CEF measurements were performed to determine the CEF excitations of the Pr ions. To
do this, two different approaches were followed. First, a set of CEF parameters were
fitted to the data assuming a D3d symmetry. This produced a magnetic doublet ground
state with a strong 〈111〉 Ising anisotropy. In addition, point-charge-model (PCM) CEF
calculations were performed using the lowest energy DFT structure which contained two
inequivalent Pr sites, each forming one-dimensional chains. These calculations predicted
singlet ground states for both Pr sites, with the first excited state at 1.2 meV and 4.6 meV.
However, magnetic diffuse scattering measurements produce a measurable signal, indicat-
ing that the Pr ions have a moment.

Finally, the magnetic diffuse scattering measurements produced a flat scattering.
While this could be a signature of quantum fluctuations, it is also possible that, due
to the significant disorder from the Sc/Nb distribution, the system is in a paramagnetic
phase. Regardless of the origin of the signal, the data was used to extract an effective Pr3+

magnetic moment of 2.10(8) µB. To differentiate between paramagnetic and quantum fluc-
tuations, low energy transfer measurements were performed. Similar to what Kimura et
al. [3] did when studying the Pr2Zr2O7 system, the 5 K data was subtracted from the low
temperature data. This highlighted the existence of a peak around 0.7 meV. A similar
peak was found by Kimura et al. [3] and Sibille et al. [4] when studying Pr2Zr2O7 and
Pr2Hf2O7, respectively, both suggesting that this is a signature of cooperative quantum
fluctuations.

If the PCM calculations are to be believed, the Pr ions would need to develop a mag-
netic moment to explain the measured magnetic signature. Previous studies on Pr2Zr2O7

result in a Pr exchange constant in the order of 0.1 meV, much smaller than the excita-
tion gap, and thus the exchange interactions alone cannot generate a moment. It is thus
possible that the disorder transverse fields, generated due to the disordered arrangement
of the Sc and Nb ions, could be strong enough to mix the states and generate a magnetic
moment. If this is the case, the Pr ions could form one-dimensional magnetic chains
that do not order and instead exhibit quantum fluctuations. If the CEF fits are to be
believed, no transverse fields would be needed. Regardless of the origin, it is conceivable
that one-dimensional magnetism is responsible for the observed uncorrelated scattering.

8.2.2 Future work
To fully characterise the effect of the Sc/Nb disorder in this system, further measure-

ments are still needed. Low energy inelastic neutron scattering measurements of a single
crystal would be of great use to study the (h,h,l) plane at multiple neutron energy trans-
fers. Since with the D7 experiment the scattering measured is integrated up to 3.55 meV,
the magnetic diffuse scattering includes the first CEF level. As such, these measurements
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will allow the study of the magnetism below the first CEF excitation, resulting in a better
understanding of the Q dependence found in the D7 experiment and a correct extraction
of the Pr effective magnetic moment. Furthermore, the scattering along the 〈111〉, 〈001〉,
〈110〉 directions at different energies could be compared with theoretical calculations of
one-dimensional chains.

Theoretical calculations of this system are complicated due to the nature of the disor-
der. Since this system is formed by multiple domains with the lowest energy structure in
different orientations, the chain of Pr ions would not form long straight chains. In reality,
it most likely would form winding chains in 3D with 90◦ turns, which could complicate
the physics of the interactions.

Magnetisation measurements of this system would also be of great use, since it would
allow to further constrain the CEF modelling, resulting in a more precise determination
of the CEF levels. However, previous magnetisation measurements on Pr2Zr2O7 show
no saturation even at 10 T, and it is thus possible that large magnetic fields would be
needed. Finally, ac-susceptibility and heat capacity measurements would allow to fully
characterise the temperature dependence of the spin dynamics in this system. Unfortu-
nately, µSR measurements are difficult because, as it was found by Foronda et al. [237], it
is complicated to extract the intrinsic properties in Pr systems, since they are dominated
by the intrinsic distortions related to the muon.
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[159] Q. Berrod, K. Lagrené, et al., “Inelastic and quasi-elastic neutron scattering. Ap-
plication to soft-matter”. EPJ Web of Conferences, vol. 188, 2018.

[160] U. Walter, “Treating crystal field parameters in lower than cubic symmetries”. J.
Phys. Chem. Solids., vol. 45, no. 4, pp. 401–408, 1984.

[161] A. T. Boothroyd, C. H. Gardiner, et al., “Localized 4f States and Dynamic Jahn-
Teller Effect in PrO2”. Phys. Rev. Lett., vol. 86, pp. 2082–2085, 2001.

[162] B. Lake, Lecture notes in Measuring Spin-Waves. 2021.

[163] B. J. Campbell, R. Osborn, et al., “Structure of nanoscale polaron correlations in
La1.2Sr1.8Mn2O7”. Phys. Rev. B, vol. 65, 2001.

[164] R. A. Cowley, S. N. Gvasaliya, et al., “Relaxing with relaxors: a review of relaxor
ferroelectrics”. Adv. Phys., vol. 60, no. 2, pp. 229–327, 2011.

170



[165] M. T. Hutchings, K. Clausen, et al., “Investigation of thermally induced anion
disorder in fluorites using neutron scattering techniques”. J. Phys. C: Solid State
Phys., vol. 17, no. 22, pp. 3903–3940, 1984.

[166] S.-H. Lee, C. Broholm, et al., “Emergent excitations in a geometrically frustrated
magnet”. Nature, vol. 418, no. 6900, pp. 856–858, 2002.

[167] J. R. Stewart, P. P. Deen, et al., “Disordered materials studied using neutron po-
larization analysis on the multi-detector spectrometer, D7”. J. Appl. Crystallogr.,
vol. 42, no. 1, pp. 69–84, 2009.

[168] I. Mirebeau, “Diffuse scattering”. EPJ Web Conf., vol. 155, 2017.

[169] J. R. Stewart, “Disordered materials studied using neutron polarization analysis”.
Collection de la Société Française de la Neutronique, vol. 7, pp. 173–197, 2007.

[170] D. Hohlwein, J.-U. Hoffmann, and R. Schneider, “Magnetic interaction parameters
from paramagnetic diffuse neutron scattering in MnO”. Phys. Rev. B, vol. 68, 2003.

[171] D. A. Keen and A. L. Goodwin, “The crystallography of correlated disorder”.
Nature, vol. 521, no. 7552, pp. 303–309, 2015.

[172] J. P. Goff, W. Hayes, et al., “Defect structure of yttria-stabilized zirconia and
its influence on the ionic conductivity at elevated temperatures”. Phys. Rev. B,
vol. 59, pp. 14202–14219, 1999.

[173] D. A. Keen, “A comparison of various commonly used correlation functions for
describing total scattering”. J. Appl. Crystallogr., vol. 34, no. 2, pp. 172–177, 2001.

[174] H. E. Fischer, A. C. Barnes, and P. S. Salmon, “Neutron and x-ray diffraction
studies of liquids and glasses”. Rep. Prog. Phys., vol. 69, no. 1, pp. 233–299, 2005.

[175] G. M. King, Lecture notes in Introduction to Pair Distribution Function Analysis.
2015.

[176] X. Wang, S. Tan, et al., “Pair distribution function analysis: Fundamentals and
application to battery materials”. Chin. Phys. B, vol. 29, no. 2, 2020.

[177] J. Schweizer, “CHAPTER 4 - Polarized Neutrons and Polarization Analysis”. Neu-
tron Scattering from Magnetic Materials. Ed. by T. Chatterji. Amsterdam: Elsevier
Science, 2006.

[178] S. Langridge, Lecture notes in Polarised Neutrons: Theoretical and Experimental
Techniques for the Study of Atomic, Molecular and Nanoscale Systems. 2021.

[179] S. M. Blinder, “Chapter 18 - Nuclear magnetic resonance”. Introduction to Quan-
tum Mechanics (Second Edition). Ed. by S. M. Blinder. Second Edition. San Diego:
Academic Press, 2021.

[180] R. M. Moon, T. Riste, and W. C. Koehler, “Polarization Analysis of Thermal-
Neutron Scattering”. Phys. Rev., vol. 181, pp. 920–931, 1969.

[181] W. Schweika, “XYZ-polarisation analysis of diffuse magnetic neutron scattering
from single crystals”. J. Phys. Conf. Ser., vol. 211, 2010.

[182] O. Schärpf and H. Capellmann, “The XYZ-difference method with polarized neu-
trons and the separation of coherent, spin incoherent, and magnetic scattering cross
sections in a multidetector”. Phys. Status Solidi A, Applied Research, vol. 135,
no. 2, pp. 359–379, 1993.

171



[183] Description of the ILL high-flux reactor. https://www.ill.eu/reactor-and-sa
fety/high-flux-reactor/technical-characteristics. Accessed: 2022/02/20.

[184] Characteristics of a pulsed source. https://www.isis.stfc.ac.uk/Pages/

Characteristics-of-a-pulsed-source.aspx. Accessed: 2022/02/20.

[185] How SNS Works. https://neutrons.ornl.gov/content/how- sns- works.
Accessed: 2022/02/20.

[186] D. A. Keen, M. J. Gutmann, and C. C. Wilson, “SXD – the single-crystal diffrac-
tometer at the ISIS spallation neutron source”. J. Appl. Crystallogr., vol. 39, no. 5,
pp. 714–722, 2006.

[187] SXD. https://www.isis.stfc.ac.uk/Pages/sxd.aspx. Accessed: 2022/02/27.

[188] F. Mezei, “Neutron spin echo: A new concept in polarized thermal neutron tech-
niques”. Zeitschrift für Physik A Hadrons and nuclei, vol. 255, no. 2, pp. 146–160,
1972.

[189] D7 Diffuse Scattering Spectrometer. https://www.ill.eu/users/instruments/
instruments-list/d7/characteristics. Accessed: 2022/02/27.

[190] T. Fennell, L. Mangin-Thro, et al., “Wavevector and energy resolution of the po-
larized diffuse scattering spectrometer D7”. Nucl. Instrum. Methods. Phys. Res.
A, vol. 857, pp. 24–30, 2017.

[191] L. Mangin-Thro, “Ordre magnétique à q=0 dans les cuprates supraconducteurs
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