
Modelling Cryptographic Attacks

by Powerful Adversaries

Marcel Armour

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

Department of Mathematics

Royal Holloway, University of London

2023



Declaration

These doctoral studies were conducted under the supervision of Dr. Bertram Poet-

tering, Dr. Elizabeth Quaglia and Prof. Carlos Cid.

The work presented in this thesis is the result of original research carried out by my-

self, in collaboration with others, whilst enrolled in the Department of Information

Security as a candidate for the degree of Doctor of Philosophy. This work has not

been submitted for any other degree or award in any other university or educational

establishment.

Marcel Armour

October, 2022

2



Abstract

In this work we consider the ability of powerful adversaries to conduct attacks tar-

geting cryptography. The archetype for a powerful adversary is a nation state actor

that has access to resources (in terms of funding, computation, expertise and state

apparatus) of a magnitude greater than even well-organised, well-funded and tech-

nically proficient “professional” adversaries. The attacks we consider in this work

arise from a consideration of motives particular to such powerful adversaries (mod-

elling the interests and capabilities of nation state agencies): firstly, to conduct

mass surveillance against populations; and secondly, to restrict access to the wider

internet.

The main part of this work considers Algorithm Substitution Attacks (ASAs) against

encrypted communication. In light of revelations concerning mass surveillance,

ASAs were initially introduced by Bellare, Paterson and Rogaway (Crypto’14) as

a novel attack class against the confidentiality of encryption schemes. Such an at-

tack replaces one or more of the regular scheme algorithms with a subverted version

that aims to reveal information to an adversary (engaged in mass surveillance), while

remaining undetected by users. In this work, we begin by describing a unified frame-

work that provides a generic syntax for ASAs targeting a communication channel

between sender and receiver. Our generic syntax allows for formal definitions of the

adversary’s aims (successful subversion and undetectability). Our framework applies

to message authentication schemes (MACs), authenticated encryption (AEAD) and

3



Public-Key Encryption (PKE).

To introduce some intuition around ASAs, we consider the case study of subverting

deniable encryption. Deniable Public Key Encryption (DPKE) is a cryptographic

primitive that allows the sender of an encrypted plaintext message to later claim that

a different faked plaintext was sent – useful for evading censorship and as a tool for

coercion free elections. Discussing deniable encryption allows us to introduce notions

of subversion with an interesting example, although the practical implications are

limited as no practical DPKE schemes have been proposed to date.

Our main contribution is to present a new class of attack that targets the receiver of a

communication between two parties. Our work provides a generic attack that applies

to any scheme where a secret key is held by the receiver. Our results rely on the

adversary having access to a ‘receiver oracle’, an interface that allows them to observe

whether the receiver algorithm outputs success or failure. By exploiting this receiver

oracle, a subverter is able to create a subliminal channel which can leak secret keys.

Our generic framework applies to authenticated encryption with associated data,

message authentication schemes, public key encryption and Key/Data Encapsulation

Mechanism (KEM/DEM) constructions.

We end with a consideration of a class of attack, relying on so-called “partitioning

oracles”, that continues the theme of powerful adversaries undermining the privacy of

users. This class of attack furthermore relies on a similar receiver oracle to the ASAs

we consider earlier. Our interest in partitioning oracle attacks arises through the

fact that they can be used to prevent users bypassing censorship, by attacking proxy

servers (offering users the ability to bypass filtered or censored internet connections).

Partitioning oracles were introduced by Len et al. [89] in exactly such a scenario and

conceptually take a ciphertext as input and output whether or not the decryption key

belongs to some known subset of keys, allowing an adversary to query multiple keys

simultaneously. This leads to practical attacks against low entropy keys (e. g., those

4



derived from passwords), and we discuss some practical scenarios. We show how so-

called weak key forgeries against polynomial hash based Authenticated Encryption

(AE) schemes, such as AES-GCM, can be leveraged to launch partitioning oracle

attacks. A weak key forgery is essentially a MAC forgery that effectively tests

whether the key is in some arbitrary set of (‘weak’) keys.

Our work examines the capability of powerful attackers to undermine cryptography.

We are interested in strong adversarial models that extend the “traditional” security

model to take into account stronger adversaries. The main contribution of our

work is to refine the ASA model and contribute to an ongoing investigation raising

awareness and understanding about what is possible with ASAs.

5



Acknowledgements

Thank you to my supervisors for your support, guidance and inspiration. In chrono-

logical order: first year supervisor Kenny Paterson and PhD supervisors Bertram

Poettering, Liz Quaglia, Carlos Cid and Liz Quaglia. Thank you to my PhD col-

leagues, in particular those in the 2017 cohort and those doing cryptography (es-

pecially everyone who attended and/or organised the cryptography reading groups,

ACRG and YACRG). Thank you also to the CDT for all the opportunities and

the many conferences; SPOTNIQ, RWC and Crypto’18 were particular highlights.

Thank you to all the ISG staff, who make the ISG the place it is. A special thank

you to Claire Hudson for keeping everything running smoothly.

Thank you to the EPSRC for the funding. Thank you to Jean-Paul Degabriele,

Christian Janson and Sogol Mazaheri for inviting me to speak at the Darmstadt

cryptography seminar. Thank you to Shahram Mossayebi and my colleagues at

Crypto Quantique for the internship. Thank you to all the anonymous reviewers.

Doing a PhD in a global pandemic hasn’t been easy, but I got there in the end.

Thank you to my friends and family for your support. Thank you to my wife Rachel

for putting up with me and keeping me going. Thank you to my son Arthur for

always cheering me up. Thank you to my parents and my brother for always being

there to encourage me. Thank you to my in-laws for all your help and support.

Thanks to all my friends for enriching my life.

6



Thank you to my examiners, Ben Dowling and Darren Hurley-Smith, and the inde-

pendent chair Keith Martin.

7



Contents

1 Introduction 16

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Thesis Structure and Contributions . . . . . . . . . . . . . . . . . . . 19

1.3 Associated Publications . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Preliminaries 23

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Provable Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Provable Security Framework . . . . . . . . . . . . . . . . . . 25

2.2.2 Computational Security . . . . . . . . . . . . . . . . . . . . . 27

2.3 Standard Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Pseudo-Random Functions and Permutations . . . . . . . . . 27

2.3.2 Hash Function . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Message Authentication Schemes . . . . . . . . . . . . . . . . 31

2.3.5 AEAD Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.6 Public-Key Encryption Schemes . . . . . . . . . . . . . . . . 36

2.3.7 IND-CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Algorithm Substitution Attacks 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . . 41

3.2 Notions of Subversion Attacks . . . . . . . . . . . . . . . . . . . . . . 42

8



CONTENTS

3.2.1 Undetectable Subversion . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Subversion Leading to Subliminal Information Exfiltration . . 48

3.2.3 Generic Method: Rejection Sampling . . . . . . . . . . . . . . 50

3.2.4 Cryptographic vs. Non-Cryptographic Subversion . . . . . . . 52

3.3 Subverting Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Applying our Syntax . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Public-Key Encryption . . . . . . . . . . . . . . . . . . . . . . 61

3.4.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.4 Defending Against Subversion Attacks . . . . . . . . . . . . . 63

4 Subverting Deniability 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . . 67

4.2 Case Study: Subverting Deniable Symmetric Encryption . . . . . . . 68

4.2.1 Subverting Deniability of Symmetric Encryption . . . . . . . 70

4.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Deniable Public-Key Encryption . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Definition of Deniable PKE Schemes . . . . . . . . . . . . . . 74

4.3.2 Parity Scheme of Canetti, Dwork, Naor, Ostrovsky . . . . . . 76

4.4 Subverting deniable PKE . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Subverting Deniable PKE . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Subverting CDNO Parity Scheme . . . . . . . . . . . . . . . . 78

4.4.3 Subversion Resilient Deniable PKE Schemes . . . . . . . . . . 80

4.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Concrete Subversion Attacks via Acceptance vs. Rejection 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9



CONTENTS

5.1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . . 84

5.2 Adversarial Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Subversion Leading to Key Recovery . . . . . . . . . . . . . . 85

5.2.2 Hybrid Subversion . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Breaking Security without Extracting the Full Key . . . . . . 89

5.3 Concrete Subversion Attacks via Acceptance vs. Rejection . . . . . . 92

5.3.1 Combinatorics: Coupon Collection . . . . . . . . . . . . . . . 94

5.3.2 Passive Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.3 Active Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Mitigating Subversion . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.1 AEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.2 MACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6.3 PKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Partitioning Oracles 114

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . . 118

6.2 Background: Polynomial Hashing . . . . . . . . . . . . . . . . . . . . 119

6.2.1 MACs from Polynomial Hashing . . . . . . . . . . . . . . . . 119

6.2.2 AEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.3 AES-GCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.4 Key Commitment . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.5 Weak Key Forgeries . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Partitioning Oracle Attacks . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.1 Formal Definition of a Partitioning Oracle . . . . . . . . . . . 128

6.3.2 Multi-Key Contingent Forgeries . . . . . . . . . . . . . . . . . 129

6.4 Partitioning Oracle Attacks from Weak Key Forgeries . . . . . . . . 130

10



CONTENTS

6.4.1 Targeted Key Contingent Forgery Testing ℓ keys . . . . . . . 133

6.4.2 Targeted Key Contingent Forgery Passing Format Checks . . 135

6.5 Partitioning Oracle Attacks against Shadowsocks . . . . . . . . . . . 136

6.5.1 Our Attack: Partitioning Oracles from Weak Key Forgeries . 139

6.5.2 Other Proxy Servers (VPNs) . . . . . . . . . . . . . . . . . . 142

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Conclusion 145

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography 148

A Appendix 162

A.1 Trapdoor Permutations . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.1.1 One-Way Permutation . . . . . . . . . . . . . . . . . . . . . . 162

A.1.2 Trapdoor Permutation . . . . . . . . . . . . . . . . . . . . . . 163

A.1.3 Hardcore Predicate . . . . . . . . . . . . . . . . . . . . . . . . 163

A.2 Key and Data Encapsulation Mechanisms . . . . . . . . . . . . . . . 164

A.2.1 Key Encapsulation Mechanisms . . . . . . . . . . . . . . . . . 164

A.2.2 Data Encapsulation . . . . . . . . . . . . . . . . . . . . . . . 166

A.3 Example Ciphertext Sparse PKE Schemes . . . . . . . . . . . . . . . 168

A.4 Plaintext Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

11



List of Figures

2.1 Games to define security of pseudo-random functions and permuta-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Games modelling privacy (IND-CCA) for symmetric encryption, AEAD

and PKE schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Games modelling authenticity (AUTH) for an AEAD scheme and

unforgeability (UF) for a MAC scheme . . . . . . . . . . . . . . . . 33

3.1 Games modelling undetectability for key generation, sender and re-

ceiver algorithms for cryptographic scheme Π . . . . . . . . . . . . . 46

3.2 Game modelling hybrid subversion undetectability for cryptographic

scheme Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Game MRµ modelling subliminal message recoverability for passive

adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Rejection sampling subversion Π.Si of an encryption algorithm Π.S 51

3.5 Games modelling privacy (subIND-CCA) for symmetric encryption

and AEAD schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Games modelling authenticity (subAUTH) for a subverted AEAD

scheme and unforgeability (subUF) for a subverted MAC scheme . . 59

3.7 Game modelling privacy (IND-CCA) for a PKE scheme . . . . . . . 59

4.1 Games modelling deniability of a dPKE scheme and a subverted

dPKE scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Subverting the CDNO Parity Scheme . . . . . . . . . . . . . . . . . 77

12



5.1 Games KRP and KRA modelling key recoverability for passive and

active attackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Coupon collector experiment . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Passive subversion of the receiver algorithm Π.R of a scheme Π . . . 96

5.4 Detection adversaries for passive and active attacks . . . . . . . . . 100

5.5 Active subversion of the receiver algorithm Π.R of a ciphertext ε-

sparse scheme Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Results of a test implementation demonstrating the effectiveness of

our passive attack against AES-GCM . . . . . . . . . . . . . . . . . 107

5.7 Results of a test implementation demonstrating the effectiveness of

our active attack against AES-GCM . . . . . . . . . . . . . . . . . . 108

6.1 Game modelling targeted multi-key contingent forgery resistance for

an AEAD scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Game modelling multi-key contingent forgery resistance for an AEAD

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 Games modelling privacy (IND-CCA) for a KEM and a subverted

KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2 Games modelling privacy (IND-CCA) for a DEM and a subverted

DEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.3 Cramer-Shoup PKE scheme . . . . . . . . . . . . . . . . . . . . . . 169

A.4 Game modelling plaintext awareness for a PKE scheme . . . . . . . 171

13



Acronyms

This thesis repeatedly uses a number of terms which are explained in this section.

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

API Application Programming Interface

ASA Algorithm Substitution Attack

ASIC Application Specific Integrated Circuit

CBC Chained Block Cipher

CCA Chosen-Ciphertext Attack

CPA Chosen-Plaintext Attack

DEM Data Encapsulation Mechanism

DPKE Deniable Public-Key Encryption

EtM Encrypt-then-MAC

FHE Fully Homomorphic Encryption

FPGA Field-Programmable Gate Array

iO Indistinguishability Obfuscation

IV Initialisation Vector

14



KEM Key Encapsulation Mechanism

MAC Message Authentication Code

NIST National Institute of Standards and Technology

OS Operating System

PAKE Password-Authenticated Key Exchange

PC Personal Computer

PKE Public-Key Encryption

PQC Post-Quantum Cryptography

PRF Pseudo-Random Function

PRNG Pseudo-Random Number Generator

PRP Pseudo-Random Permutation

TPM Trusted Platform Module

15



Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Thesis Structure and Contributions . . . . . . . . . . . . 19

1.3 Associated Publications . . . . . . . . . . . . . . . . . . . . 21

This chapter lays out the motivation behind the thesis, and describes the structure of

the document and its contributions. In this work, we consider cryptographic primi-

tives designed to protect the communication of two parties – arguably, the fundamen-

tal task of cryptography. We are interested in notions of privacy and confidentiality

in the presence of well-resourced adversaries who are interested in surveillance and

censorship, such as a state level actor.

1.1 Motivation

Our work is motivated by a number of recent incidents demonstrating the difficulty

in securing communications against highly motivated and powerful adversaries. In

particular, our adversary definitions model ‘state level actors’ who present the most

sophisticated capabilities and who are able to access resources at a level of magnitude

greater than non-state actors. Our main contributions centre around a new class

of cryptographic attack that was missed by prior work, and which demonstrate the

need for definitions that better model adversarial capabilities. Our work advances

16



1.1 Motivation

knowledge by refining the definitional framework modelling mass surveillance ad-

versaries, and hopefully serves to raise awareness of the need for cryptography that

is resilient against such threats. Our work follows a line of enquiry within cryp-

tography that began with a series of work by Young and Yung [120, 119] and was

reignited by the Snowden revelations [14, 73, 77]. The Snowden revelations pre-

sented evidence of widespread mass surveillance by the national security agencies of

several allied governments. However, the motivation for this thesis is much broader

and we consider powerful state-level actors in an abstract sense.

There are many documented examples of states (mis-)using their power to abuse

the rights of citizens – for example, the recent case of Pegasus spyware being used

to target journalists, activists, opposition politicians and state officials, among oth-

ers [79]. This illustrates the fact that the greater resources available to state-level

actors compared to “regular” adversaries results in a qualitative change in the ad-

versarial strategies that they can employ. These resources are not simply more

computational ability. Powerful adversaries have the means to insert unreliability

into cryptography via external (“real-world”) infrastructure: whether by requesting

encryption keys from corporations, influencing standards bodies to adopt “back-

doored” parameters, inserting exploitable errors into software implementations, or

compromising supply chains to interfere with hardware. The Snowden revelations

showed that this is indeed the case, and that large and powerful adversaries (inter-

ested in mass surveillance) have sought to circumvent cryptography in an attempt

to undermine the security and privacy of users.

Two interesting case studies for subverted encryption are the Dual-EC Pseudo-

Random Number Generator (PRNG) incident and the recently surfaced story of

Crypto AG.

Dual-EC PRNG Incident. A PRNG should provide a source of random looking

17



1.1 Motivation

numbers, but the Dual-EC PRNG, a pseudo-random generator that was approved

in the NIST SP 800-90A standard [117], had a built in weakness with the choice

of elliptic curve points that parametrise the algorithm. The weakness was such

that it is possible to choose points in a way that establishes a backdoor – allowing

outputs of the PRNG to be predicted. Given a single output from the generator,

it is possible (with some computational effort) to recover the algorithm’s state, and

therefore all future output. The backdoor was practically exploitable due to the fact

that protocols like SSL / TLS directly expose PRNG outputs in protocol messages

[44].

Crypto AG. The Swiss company Crypto AG built encryption devices that were

supplied to more than 120 countries and used to encrypt governmental communi-

cations. However, it turns out that Crypto AG was secretly owned by the United

States Central Intelligence Agency (CIA) and West German Federal Intelligence

Service (Bundesnachrichtendienst, BND). The encryption devices were backdoored,

allowing the CIA and BND to read messages [61, 92]. Both of these examples illus-

trate that it is easier to subvert cryptography than to break it; in particular, one

of the silver linings of the Snowden revelations was that there is no evidence that

cryptographic hardness assumptions do not hold.

In this thesis, we consider a security model that extends the traditional cryptographic

model by considering strong adversaries who are interested in undermining users’

security. The traditional model in cryptography, following Kerckhoffs’ principle1,

allows an adversary to play a game in which they try to break security (informally:

do or learn something that they shouldn’t be able to) whilst having full knowledge

about the specification of the scheme or protocol. The adversary is usually allowed to

observe all outputs, and may even be allowed query access to an oracle. The scheme

or protocol is considered secure if the adversary is unable to break the security
1That the security of a cryptosystem should depend only on the secret key(s) used.

18



1.2 Thesis Structure and Contributions

without knowing the key. However, the assumption that an adversary will play by

the rules of a security game does not hold in the real world, given the evidence of

the scale of attempts to subvert cryptography. Our work continues a line of study –

which we refer to as the ASA framework – that considers adversaries that attack the

assumption of trusted cryptographic implementations. The ASA framework removes

the clearly delineated boundary between what the adversary is and isn’t allowed to

do.

1.2 Thesis Structure and Contributions

The thesis is organised as follows.

We begin with the requisite background material in Chapter 2: Standard definitions,

including notation, standard primitives and cryptographic security notions.

Chapter 3 introduces Algorithm Substitution Attacks. After discussing related lit-

erature, we provide formal definitions for subversion attacks against generic cryp-

tographic primitives consisting of a sender and receiver – including notions of un-

detectability and adversarial goals. Our syntax allows for both the sending and

receiving party to be subverted, in contrast to previous work in this area which con-

sidered only subversion of the sender. As such, our definitions are a subtle extension

of prior work which allow for a class of attack that was previously missed. We discuss

a generic subversion method (rejection sampling) and show that our syntax applies

to the primitives considered in this work: symmetric encryption, MACs and PKE

schemes. By extending the definitions to capture a broader class of attack, we add

to the understanding of the adversarial model.

Chapter 4 provides an introductory case study demonstrating what is possible with

19



1.2 Thesis Structure and Contributions

ASAs and illustrating the techniques and framework. We consider subverting De-

niable Public-Key Encryption (DPKE) schemes, a primitive that allows the sender

of an encrypted plaintext message to later claim that a different plaintext was sent.

We work up to the main result gently, beginning with a simpler case study before

recalling the definition of DPKE and showing how ASAs against DPKE schemes can

subvert deniability. This chapter, beyond providing an introduction to the power

of ASAs, demonstrates that subversion attacks should be considered part of the ad-

versarial model for deniability and should be considered in the design of deniable

schemes.

Chapter 5 discusses our subversion attacks targeting the receiver. Our subversion

attack allows an adversary to learn the user’s secret key by observing their communi-

cation; once the adversary has learnt the key, the user’s cryptography is completely

undermined. We consider a passive adversary, following prior work which considers

a mass surveillance adversary to be engaged in eavesdropping on a huge scale, but

we also consider an active variant. The active variant allows an adversary to target

users far more effectively, which makes the attack attractive from the point of view

of an adversary. Our attacks work by altering the behaviour of the receiver’s algo-

rithm to leak information through (artificially induced) decryption error events – the

subverted algorithm either rejects (particular, “trigger”) valid ciphertexts or accepts

(particular, “trigger”) bogus ciphertexts. An adversary observing the receiver who

is able to determine whether a ciphertext has been accepted or rejected learns some

information; this subliminal channel can be used to exfiltrate the user’s key. Our

attack, targeting the receiver, is a new class of attack that was missed by previous

work.

Chapter 6 continues the theme of powerful adversaries undermining privacy of users.

Our attacks in Chapter 5 rely on the assumption that an adversary has access to a

decryption oracle – that is, can observe whether a receiver’s algorithm implementa-

20



1.3 Associated Publications

tion accepts or rejects a ciphertext. In Chapter 6, we discuss an attack class that

gives a practical illustration of decryption oracles, which gives some support to the

assumption that an adversary can utilise decryption oracles. We show how alge-

braic properties of polynomial hash-based Authenticated Encryption (AE) schemes

can be leveraged to launch so-called partitioning oracle attacks. Partitioning ora-

cle attacks conceptually take a ciphertext as input and output whether or not the

decryption key belongs to some known subset of keys. Partitioning oracle attacks

allow an adversary to query multiple keys simultaneously, leading to practical at-

tacks against low entropy keys (e. g., those derived from passwords). As users often

choose low quality passwords, this presents a practical avenue of attack. We consider

the practical setting where proxy servers are used to bypass censorship and where

an adversary is actively engaged in targeting users. Our work adds to the under-

standing of the adversarial model and helps to highlight the criteria for designing

cryptographic primitives and protocols.

1.3 Associated Publications

This thesis incorporates the following work.

• The basis for Chapters 3 and 5 is provided by:

Marcel Armour and Bertram Poettering. “Algorithm Substitution

Attacks against Receivers”. In: International Journal of Information

Security, June 2022.

This is a journal paper that gives a unified framework bringing together two

prior publications (targeting MAC schemes and AEAD schemes) and extending

them by showing that public-key encryption may also be targeted. The two

publications are:

21



1.3 Associated Publications

1. Marcel Armour and Bertram Poettering. “Subverting Decryption in

AEAD”. in: 17th IMA International Conference on Cryptography and

Coding. Ed. by Martin Albrecht. Vol. 11929. Lecture Notes in Computer

Science. Springer, Heidelberg, Dec. 2019

2. Marcel Armour and Bertram Poettering. “Substitution Attacks against

Message Authentication”. In: IACR Transactions on Symmetric Cryp-

tology 2019.3 (2019). issn: 2519-173X

• Chapter 4 comprises an extended version of :

Marcel Armour and Elizabeth A. Quaglia. “Subverting Deniabil-

ity”. In: Provable and Practical Security. Ed. by Chunpeng Ge and

Fuchun Guo. Cham: Springer Nature Switzerland, 2022.

• Chapter 6 is comprised of:

Marcel Armour and Carlos Cid. “Partition Oracles from Weak Key

Forgeries”. In: Cryptology and Network Security. Ed. by Mauro

Conti, Marc Stevens, and Stephan Krenn. Cham: Springer Interna-

tional Publishing, 2021.

22



Chapter 2

Preliminaries

Contents

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Provable Security . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Provable Security Framework . . . . . . . . . . . . . . . . . 25

2.2.2 Computational Security . . . . . . . . . . . . . . . . . . . . 27

2.3 Standard Primitives . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Pseudo-Random Functions and Permutations . . . . . . . . 27

2.3.2 Hash Function . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Message Authentication Schemes . . . . . . . . . . . . . . . 31

2.3.5 AEAD Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.6 Public-Key Encryption Schemes . . . . . . . . . . . . . . . 36

2.3.7 IND-CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

This chapter provides an overview of the notation used within the thesis. We also

recall standard cryptographic definitions and give a brief description of the provable

security framework that we operate within.

23



2.1 Notation

2.1 Notation

Strings. We refer to an element x ∈ {0, 1}∗ as a string, and denote its length

by |x|; ε denotes the empty string. The set of strings of length ℓ is denoted {0, 1}ℓ.

In addition, we denote by ⊥ /∈ {0, 1}∗ a reserved special symbol. For x ∈ {0, 1}∗,

we let x[i] denote the i-th bit of x, with the convention that we count from 0, i. e.,

we have x = x[0] . . . x[|x| − 1]. For two strings x, x′ we denote by x ∥ x′ their

concatenation.

Numbers. Arbitrary finite fields are denoted by F, or when we specify its charac-

teristic by Fpr , with p prime.

Algorithms. We use code-based notation for probability and security experiments.

We write ← for the assignment operator (that assigns a right-hand-side value to a

left-hand-side variable). If S, S′ are sets, we write S ∪← S′ shorthand for S ← S∪S′.

If S is a finite set, then s←$ S denotes choosing s uniformly at random from S. We

denote a γ-biased Bernoulli trial by B(γ), i.e., a random experiment with possible

outcomes 0 or 1 such that Pr[b ← B(γ) : b = 1] = γ. The assignments b ←$ {0, 1}

and b← B(1/2) are thus equivalent. In security games we use superscript notation

AO1,...,Oc ⇒ 1 to denote the event that the adversary outputs 1 after being given

access to the c oracles. For a randomised algorithm A we write y ←$ A(x1, x2, . . .) to

denote the operation of running A with inputs x1, x2, . . . and assigning the output

to variable y. An experiment terminates with a “stop with x” instruction, where

value x is understood as the outcome of the experiment. We write “win” (“lose”) as

shorthand for “stop with 1” (“stop with 0”). We write “require C”, for a Boolean

condition C, shorthand for “if not C: lose”. (We use require clauses typically to

abort a game when the adversary performs some disallowed action, e.g.one that

would lead to a trivial win.) We use Iverson brackets [·] to derive bit values from

24



2.2 Provable Security

Boolean conditions: For a condition C we have [C] = 1 if C holds; otherwise we

have [C] = 0. The “:=” operator creates a symbolic definition; for instance, the code

line “A := E” does not assign the value of expression E to variable A but instead

introduces symbol A as a new (in most cases abbreviating) name for E.

2.2 Provable Security

2.2.1 Provable Security Framework

In this section, we give an overview of the provable security paradigm; much of the

discussion is drawn from Katz and Lindell [83]. Provable security is an approach

that, as the name suggests, provides a rigorous (mathematical logical) framework

to provide arguments for a cryptographic scheme’s security. The paradigm shift to

provable security is credited to Goldwasser and Micali’s 1982 paper [71], although

the origins can be traced to the work of Shannon [110] who was the first to pursue a

rigorous approach based on precise definitions and mathematical proofs [83]. Prior

to the shift, cryptographic schemes were essentially deemed secure if no attacks had

been found against the scheme; if attacks were found, the scheme would be patched

to restore security. This state of affairs meant that there was no rigorous way to

constructively argue for the security of a particular scheme.

Provable security provides a systematic way to argue for the security of a crypto-

graphic scheme, and relies on three principles: a precise description of the protocol

and security definitions to be achieved, precise assumptions and the security proof

itself. Requiring rigorous definitions and assumptions allows security to be demon-

strated by a valid proof that is correct. In theory at least, logical soundness means

that the conclusion (scheme X is secure) holds as long as the assumptions are true.

This has two effects: firstly, security reduces to an underlying computational hard-

25



2.2 Provable Security

ness assumption; secondly, verifying that a scheme is secure involves checking a

mathematical proof – something that could potentially be automated by a formal

verification tool. This would seem to suggest that a cryptographic scheme that has

been proven secure in the provable security framework is “secure” in the intuitive

sense – however, this is not necessarily the case as Koblitz and Menezes argue in a se-

ries of papers taking “Another Look at Provable Security” (see [85] for an overview).

As they point out, things can go badly wrong in many different ways [85]:

1. The protocol description might implicitly assume that something is of the

proper form, but attacks become possible in reality if that is not the case.

2. The definitions might not adequately model real-world adversaries.

3. The evidence for the assumptions might be weak, and we might need to assume

that certain components of the protocol behave in an ideal fashion.

4. The proof might have a gap or fallacy.

The criticism presented by Koblitz and Menezes by no means invalidates the provable

security framework; by highlighting the inherent limitations, it redirects attention to

the possible locations where security may fail. An alternative way to formulate this

is that provable security guarantees security against any attack in a given class [116].

In this work, we look at a set of definitions that, we argue, do not adequately model

real-world adversaries (Line 2 of the list above). In particular, we consider power-

ful adversaries that have the means to undermine the integrity of design processes

and supply chains to insert unreliability into the implementation of cryptographic

primitives and schemes.

26



2.3 Standard Primitives

2.2.2 Computational Security

Computational security recognises that cryptographic schemes should be considered

secure if an adversary with bounded computational power is able to break secu-

rity with some small probability. Considering an encryption scheme for example, a

scheme that allows an eavesdropper to learn an underlying plaintext with probabil-

ity 2−60 after expending 200 years of computational effort with the fastest available

supercomputer should reasonably be considered secure. Security definitions for com-

putational security are given in the form of games (also known as experiments) in

which an adversary, which we denote A, interacts with a challenger. The challenger

generates secret values, and the adversary is given oracle access to algorithms and

seeks to “win”. Deviating slightly from common usage, we use informal notions

to describe the capabilities of an adversary. Our informal notions (“realistic” and

“practical”) are easily reformulated in terms of probabilistic polynomial-time (PPT)

algorithms for readers who prefer a treatment in the asymptotic framework. Given

that asymptotic notions don’t reflect practice particularly well, we prefer to use the

informal terms.

Definition 2.1. A function f : N → R is negligible if for every positive polynomial

p there is an N such that for all integers n > N it holds that

f(n) <
1

p(n) .

2.3 Standard Primitives

2.3.1 Pseudo-Random Functions and Permutations

We recall standard notions of pseudo-random functions and permutations.

27



2.3 Standard Primitives

Intuitively, a pseudo-random function is a “random-looking” function. This means

that an adversary interacting with a PRF should be unable to predict outputs of

the function. We model this by tasking the adversary with distinguishing between

a given PRF and a function chosen at random from the space of all functions with

the same domain and range. It makes little sense to talk about a particular function

being pseudo-random, and to overcome this we consider a family of PRFs that are

parameterised by a secret key.

A particular case is given by functions where the domain and range are the same.

These are pseudo-random permutations (PRPs).

2.3.1.1 PRFs

A keyed pseudo-random function (PRF) for range R is an efficiently computable

function F : {0, 1}ℓ × {0, 1}∗ → R taking a key L ∈ {0, 1}ℓ and input s ∈ {0, 1}∗ to

return an output F (L, s) ∈ R. Consider game PRF(D) in Figure 2.1 (left) associated

to function F and distinguisher D. For any adversary D we define the advantage

Advprf
F (D) :=

∣∣∣Pr
[
PRF0(D)

]
− Pr

[
PRF1(D)

]∣∣∣
and say that function F is pseudorandom if Advprf

F (D) is negligibly small for all

realistic D.

2.3.1.2 PRPs

A keyed length-preserving pseudo-random permutation (PRP) is an efficiently com-

putable function E where E : {0, 1}ℓ ×{0, 1}∗ → {0, 1}∗ takes a key L ∈ {0, 1}ℓ and

input s ∈ {0, 1}∗ to return an output E(L, s) ∈ {0, 1}|s|. We require that any keyed

28



2.3 Standard Primitives

instance of E is a permutation on {0, 1}n for all n ∈ N and also that its inverse E−1

is efficiently computable. Consider game PRP(D) in Figure 2.1 (right) associated

to function E and distinguisher D. For any adversary D we define the advantage

Advprp
F (D) :=

∣∣∣Pr
[
PRP0(D)

]
− Pr

[
PRP1(D)

]∣∣∣
and say that function E is pseudorandom if Advprf

E (D) is negligibly small for all

realistic D.

Game PRFb(D)
00 L←$ {0, 1}ℓ, S ← ∅
01 b′ ← DFunc

02 stop with b′

Oracle Func(s)
03 if (b = 1) then ys ← F (L, s)
04 else
05 if s /∈ S then ys ←$ R
06 S ← S ∪ {s}
07 return ys

Game PRPb(D)
00 L←$ {0, 1}ℓ, S ← ∅
01 b′ ← DPerm

02 stop with b′

Oracle Perm(s)
03 if (b = 1) then ys ← E(L, s)
04 else
05 if s /∈ S then ys ←$ {0, 1}|s|

06 S ← S ∪ {s}
07 return ys

Figure 2.1: Games to define prf and prp advantage of D with respect to F, E.

2.3.1.3 Block Ciphers

A block cipher enc is a family of permutations on {0, 1}n, with each permutation

indexed by a key k ∈ K, where the key space K = {0, 1}ℓ for some fixed key length ℓ.

The application of a block cipher to input x ∈ {0, 1}n using key k will be denoted

by Ek(x). In practice, block ciphers are designed to be secure instantiations of

pseudorandom permutations with some fixed key length and block length.

29



2.3 Standard Primitives

2.3.2 Hash Function

A secure cryptographic hash function with output length ℓ is a deterministic function

h : {0, 1}∗ → {0, 1}ℓ that takes an arbitrary-length input x and outputs a string

h(x) = y of length ℓ such that:

1. Given y, no realistic adversary can find x (pre-image resistance).

2. Given x, y, no realistic adversary can find an x′ ̸= x such that h(x′) = y

(second pre-image resistance).

3. No realistic adversary can find any x, x′ such that h(x) = h(x′) (collision

resistance).

2.3.3 Symmetric Encryption

We require a generic symmetric encryption algorithm for Section 4.2, where we

discuss subverting symmetric encryption as an illustrative case study to introduce

the concepts of deniability and subversion.

Symmetric encryption allows a sender and receiver who share a secret key to hide

the contents of their communications from eavesdroppers. This is modelled using

the notion of indistinguishability under chosen-ciphertext attack. The adversary is

tasked distinguishing between the encryptions of two different messages; if they are

unable to do so, the scheme is considered to be secure (provide confidentiality). We

allow the adversary to choose the messages to distinguish between, and we also let

the adversary interact with oracles to encrypt and decrypt. Of course, the adversary

would trivially be able to distinguish if they query encryptions of the messages they

are distinguishing between. As we don’t consider this to have broken security in

any meaningful sense, this trivial case is ruled out by keeping track of ciphertexts

30



2.3 Standard Primitives

that the adversary has encrypted and ensuring that these are not forwarded to the

decryption oracle.

Our syntax for symmetric encryption surfaces the randomness. Formally, an en-

cryption scheme SE consists of algorithms SE.gen, SE.enc, SE.dec. Furthermore, the

scheme has associated spaces K,R,M, C. The key generation algorithm SE.gen

outputs a key k ∈ K. The encryption algorithm SE.enc takes key k ∈ K, ran-

domness r ∈ R and message m ∈ M, to produce ciphertext c ∈ C. We write

c ← SE.enc(k, m; r); dropping the last input is equivalent to r ←$ R. The de-

cryption algorithm SE.dec takes key k and ciphertext c ∈ C to output either a

message m ∈M or the special symbol ⊥ /∈M to indicate rejection.

We formalise indistinguishability under chosen-ciphertext attack for a symmetric

encryption scheme via the game IND-CCA in Figure 2.2 (left). For any adversary A

we define the advantage

Advind-cca
SE (A) :=

∣∣∣Pr
[
IND-CCA0(A)

]
− Pr

[
IND-CCA1(A)

]∣∣∣
and say that scheme SE is indistinguishable against chosen-ciphertext attacks if

Advind-cca
SE (A) is negligibly small for all realistic A.

2.3.4 Message Authentication Schemes

Message authentication schemes are a cryptographic primitive designed to provide

authentication guarantees (that a message has not been forged or tampered with).

MACs can be generically combined with encryption schemes to provide authenti-

cated encryption – however, dedicated schemes providing authenticated encryption

(AEAD) offer better performance. We recall definitions for AEAD in Section 2.3.5.

31



2.3 Standard Primitives

Game IND-CCAb(A)
00 C ← ∅
01 k ←$ SE.gen
02 b′ ← AEnc,Dec

03 stop with b′

Oracle Enc(m0, m1)
04 c← SE.enc(k, mb)
05 C ∪← {c}
06 return c

Oracle Dec(c)
07 require c /∈ C
08 m← SE.dec(k, c)
09 return m

Game IND-CCAb(A)
00 C ← ∅, N ← ∅
01 k ←$ AEAD.gen
02 b′ ← AEnc,Dec

03 stop with b′

Oracle Enc(n, d, m0, m1)
04 require n /∈ N
05 N ∪← {n}
06 c← AEAD.enc(k, n, d, mb)
07 C ∪← {(n, d, c)}
08 return c

Oracle Dec(n, d, c)
09 require (n, d, c) /∈ C
10 m← AEAD.dec(k, n, d, c)
11 return m

Game IND-CCAb(A)
00 C ← ∅
01 (pk, sk)← PKE.gen
02 b′ ← AEnc,Dec(pk)
03 stop with b′

Oracle Enc(m0, m1)
04 c← PKE.enc(pk, mb)
05 C ∪← {c}
06 return c

Oracle Dec(c)
07 require c /∈ C
08 m← PKE.dec(sk, c)
09 return m

Figure 2.2: Games modelling indistinguishability under chosen-ciphertext attacks
(IND-CCA). Left: For a symmetric encryption scheme SE, as described in Sec-
tion 2.3.3. Centre: For an authenticated encryption scheme with associated data
AEAD, as described in Section 2.3.5.1. Right: For a public-key encryption scheme
PKE, as described in Section 2.3.7.

Given a key k and a message m, a tag t is deterministically derived as per t← tag(k, m).

The (textbook) method to verify the authenticity of m given t is to recompute

t′ ← tag(k, m) and to consider m authentic if and only if t′ = t. If this final tag

comparison is implemented carelessly, a security issue might emerge: A natural

yet naive way to perform the comparison is to check the tag bytes individually in

left-to-right order until either a mismatch is spotted or the right-most bytes have

successfully been found to match. Note that, if tags are not matching, such an im-

plementation might easily give away, as timing side-channel information, the length

of the matching prefix, allowing for practical forgery attacks via step-wise guessing.

This issue is understood by the authors of major cryptographic libraries, which thus

contain carefully designed constant-time string comparison code. A consequence is

that services for tag generation and verification are routinely split into two separate

functions tag and vfy.1 Our notion of a message authentication scheme follows this
1See https://nacl.cr.yp.to/auth.html for an example.

32

https://nacl.cr.yp.to/auth.html


2.3 Standard Primitives

Game AUTH(A)
00 k ←$ AEAD.gen
01 C ← ∅, N ← ∅
02 AEnc,Dec

03 lose

Oracle Enc(n, d, m)
04 require n /∈ N
05 N ∪← {n}
06 c← AEAD.enc(k, n, d, m)
07 C ∪← {(n, d, c)}
08 return c

Oracle Dec(n, d, c)
09 m← AEAD.dec(k, n, d, c)
10 if m ̸= ⊥ ∧ (n, d, c) /∈ C:
11 win
12 return m

Game UF(A)
00 k ←$ MAC.gen
01 C ← ∅
02 ATag,Vfy

03 lose

Oracle Tag(m)
04 t← MAC.tag(k, m)
05 C ∪← {(m, t)}
06 return (m, t)

Oracle Vfy(m, t)
07 m← MAC.vfy(k, m, t)
08 if [m ̸= ⊥] ∧ [(m, t) /∈ C]:
09 win
10 return m

Figure 2.3: Left: Game modelling authenticity (AUTH) of an authenticated en-
cryption scheme with associated data AEAD, as described in Section 2.3.5.2. Right:
Game modelling unforgeability (UF) of a message authentication scheme MAC, as
described in Section 2.3.4.

approach.

Formally, a scheme MAC providing message authentication consists of algorithms

MAC.gen, MAC.tag, MAC.vfy and associated spaces K,M, T . The key generation

algorithm MAC.gen outputs a key k ∈ K. The tagging algorithm MAC.tag takes a

key k ∈ K and a message m ∈M, and returns a message, tag pair (m, t) ∈M×T .

The verification algorithm MAC.vfy takes a key k ∈ K, a message m ∈M, and a tag

t ∈ T , and returns either the message m (indicating that the tag is accepted) or the

special symbol ⊥ to indicate rejection.2 A shortcut notation for this syntax is

MAC.gen→ K and K ×M→ MAC.tag→M×T

and K ×M× T → MAC.vfy→M∪ {⊥} .

2It is more common to consider the output of a MAC verification algorithm to be a
bit representing acceptance or rejection; this can be obtained from our syntax by evaluating
[MAC.vfy(k, m, t) = m].

33



2.3 Standard Primitives

We formalise the (strong) unforgeability of a message authentication scheme via the

game UF in Figure 2.3 (right). The adversary is tasked with producing a forgery.

They are allowed to interact with oracles to tag messages and verify tags. For

any adversary A we define the advantage Advuf
MAC(A) := Pr[UF(A)] and say that

the scheme MAC is (strongly) unforgeable if Advuf
MAC(A) is negligibly small for all

realistic A.

2.3.5 AEAD Schemes

Authenticated Encryption (with associated data) is a symmetric encryption primi-

tive that in addition to providing confidentiality, provides the guarantee that mes-

sages were not tampered with. The notions of confidentiality and authenticity are

modelled using the same games as for symmetric encryption (indistinguishability

under chosen-ciphertext attacks) and message authentication codes (authenticity).

We recall standard notions of (deterministic) nonce-based AEAD, as per [102]. For-

mally, a scheme AEAD providing authenticated encryption with associated data

consists of algorithms AEAD.gen, AEAD.enc, AEAD.dec. The scheme has associated

spaces K,N ,D,M, C. The key generation algorithm AEAD.gen outputs a key k ∈ K.

The encryption algorithm AEAD.enc takes key k ∈ K, nonce n ∈ N , associated data

d ∈ D and message m ∈ M, to produce ciphertext c ∈ C. The decryption algo-

rithm AEAD.dec takes key k, nonce n ∈ N , associated data d ∈ D and cipher-

text c ∈ C to output either a message m ∈ M or the special symbol ⊥ /∈ M to

indicate rejection. A shortcut notation for this syntax is

AEAD.gen→ K, K ×N ×D ×M→ AEAD.enc→ C

and K ×N ×D × C → AEAD.dec→M∪ {⊥} .

Scheme AEAD is said to be δ-correct if for k ←$ AEAD.gen and c← AEAD.enc(k, n, d, m)

34



2.3 Standard Primitives

for some (n, d, m) and m′ ← AEAD.dec(k, n, d, c) the probability that m′ ̸= m is

upper-bounded by δ, where the probability is over all coins involved.

2.3.5.1 IND-CCA

We formalise indistinguishability under chosen-ciphertext attack for an AEAD scheme

via the game IND-CCA in Figure 2.2 (centre). For any adversary A we define the

advantage

Advind-cca
AEAD (A) :=

∣∣∣Pr
[
IND-CCA0(A)

]
− Pr

[
IND-CCA1(A)

]∣∣∣

and say that scheme AEAD is indistinguishable against chosen-ciphertext attacks if

Advind-cca
AEAD (A) is negligibly small for all realistic A.

2.3.5.2 Authenticity

We formalise the authenticity of an AEAD scheme via the game AUTH in Figure 2.3

(left). For any adversary A we define the advantage

Advauth
AEAD(A) := Pr[AUTH(A)]

and say that AEAD provides authenticity if Advauth
AEAD(A) is negligibly small for all

realistic A.

35



2.3 Standard Primitives

2.3.6 Public-Key Encryption Schemes

A public key (or asymmetric) encryption scheme allows secure communication be-

tween parties that have not shared a secret key with one another. PKE works by

having two keys: the public key is used to encrypt messages and the private key is

used to decrypt. The security of a PKE scheme is determined by the difficulty of

determining any information about underlying messages for a given ciphertext. This

is modelled using indistinguishability under chosen-ciphertext attacks, analogously

to symmetric encryption.

Due to the high overheads associated with PKE, symmetric encryption is better

suited to bulk communication. In most practical settings, PKE is used to establish

a shared secret between the sender and receiver, so that the shared secret may

be used as a key for communicating via symmetric encryption. This notion of

sending keys for symmetric encryption via public key methods is formalised as a

Key Encapsulation Mechanism (KEM). KEMs are typically used together with a

Data Encapsulation Mechanism (DEM) in a so-called hybrid encryption scheme to

PKE-encrypt messages. For completeness, a treatment of KEMs and DEMs is given

in Appendices A.2.1 and A.2.2.

A PKE scheme PKE = (PKE.gen, PKE.enc, PKE.dec) consists of a triple of algorithms

together with key spaces KS,KR, a message spaceM and a ciphertext space C. The

key-generation algorithm PKE.gen returns a pair (pk, sk) ∈ KS × KR consisting of

a public key and a private key. The encryption algorithm PKE.enc takes a public

key pk and a message m ∈M to produce a ciphertext c ∈ C. Finally, the decryption

algorithm PKE.dec takes a private key sk and a ciphertext c ∈ C, and outputs either a

message m ∈M or the special symbol ⊥ /∈M to indicate rejection. The correctness

requirement is that for (pk, sk) ←$ gen and m ∈ M and c ← PKE.enc(pk, m) and

m′ ← PKE.dec(sk, c) the probability that m′ ̸= m is upper-bounded by δ, where the

36



2.3 Standard Primitives

probability is over all coins involved.

2.3.7 IND-CCA

We formalise the indistinguishability under chosen-ciphertext attack of a PKE scheme

via the game IND-CCA in Figure 2.2 (right). For any adversary A we define the

advantage

Advind-cca
PKE (A) :=

∣∣∣Pr
[
IND-CCA0(A)

]
− Pr

[
IND-CCA1(A)

]∣∣∣
and say that scheme PKE is indistinguishable against chosen-ciphertext attacks if

Advind-cca
PKE (A) is negligibly small for all realistic A.

37



Chapter 3

Algorithm Substitution Attacks

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . 41

3.2 Notions of Subversion Attacks . . . . . . . . . . . . . . . . 42

3.2.1 Undetectable Subversion . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Subversion Leading to Subliminal Information Exfiltration . 48

3.2.3 Generic Method: Rejection Sampling . . . . . . . . . . . . . 50

3.2.4 Cryptographic vs. Non-Cryptographic Subversion . . . . . . 52

3.3 Subverting Primitives . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Applying our Syntax . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Public-Key Encryption . . . . . . . . . . . . . . . . . . . . . 61

3.4.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.4 Defending Against Subversion Attacks . . . . . . . . . . . . 63

This chapter introduces ASAs. We provide formal definitions for subversion attacks

against generic cryptographic primitives consisting of a sender and receiver – includ-

ing notions of undetectability and adversarial goals. Our syntax allows for both the

sending and receiving party to be subverted, in contrast to previous work in this area

which considered only subversion of the sender. As such, our definitions present a

38



3.1 Introduction

subtle extension of prior work; in particular, they allow for a class of attack that was

previously missed. We discuss a generic subversion method (rejection sampling) and

show that our syntax applies to the primitives considered in this work: symmetric

encryption, MACs and PKE schemes. We also give a brief overview of the history

of the concept and situate our work in relation to other literature.

3.1 Introduction

Consider two parties communicating over an untrusted channel (in the presence of

an adversary). Desired security properties for this scenario include confidentiality

and integrity. Confidentiality means that the adversary is unable to learn anything

about the messages sent between the parties. Integrity means that the parties can be

sure that the messages have not been tampered with in transit. Both confidentiality

and integrity are well-studied problems and there are many reliable and provably

secure cryptographic solutions. These solutions rely on the assumption that the

software or hardware in which they are implemented behaves as expected. However,

we know that in the real world this assumption does not necessarily hold. As we

discussed in Section 1.1, powerful adversaries have the means to insert unreliability

into cryptography via external (“real-world”) infrastructure: whether by influencing

standards bodies to adopt “backdoored” parameters, inserting exploitable errors into

software implementations, or compromising supply chains to interfere with hardware.

The Snowden revelations showed that this is indeed the case, and that large and

powerful adversaries (interested in mass surveillance) have sought to circumvent

cryptography.

In the non-ASA setting, security is considered broken if the adversary has some

non-negligible advantage in the security game. Translating this directly to the ASA

setting, giving the adversary the additional power to replace an algorithm with a

39



3.1 Introduction

subverted implementation, we can say that the adversary’s aim is again to break

a scheme’s security guarantees. To make the discussion more concrete, let us con-

sider the example of a symmetric encryption algorithm being used by a sender and

receiver who share a secret key. In the non-ASA setting, let us assume that the en-

cryption algorithm has been proven secure under chosen-ciphertext attacks. In the

ASA setting, the adversary is allowed to replace the users’ algorithms with subverted

implementations. At first glance, it seems that this gives the adversary unlimited

power to undermine confidentiality. As an example, what is stopping the adver-

sary from simply not encrypting messages at all? So then, when a user encrypts

their plaintext using the subverted encryption algorithm, the output “ciphertext” is

simply the plaintext. When the user sends the “ciphertext” to the receiver, the ad-

versary can simply read the plaintext in transmission and the communicating parties

have no confidentiality at all. From the point of view of an adversary, this scenario

(whilst a “successful subversion”) is unsatisfactory for two reasons: firstly, it is triv-

ially obvious that the subverted implementation is not working “as it should”. That

is, the subversion is easily detected as the implementation is quite clearly deviating

from the algorithm’s specification. Secondly, the adversary may want to preserve

the users’ confidentiality with respect to other eavesdroppers – recalling the case of

Crypto AG (Section 1.1) for example. We conclude that although an adversary’s

aim is to “be able to undermine security”, they would like to do this in a way that

is hidden from users (or more generally, security auditors). We use the term “un-

detectability” to describe this notion. There is clearly a tension between successful

subversion and detectability – intuitively, the less detectable a subversion is, the less

scope for deviating from the implementation and thus successfully compromising

users’ communications. From the point of view of the adversary, the aim is to be as

successful as possible whilst remaining as undetectable as possible.

Lastly, it is worth unpacking the notion of adversarial success. As we noted, in the

non-ASA setting, security guarantees are very strict – continuing our example of

40



3.1 Introduction

symmetric encryption, an adversary is considered to have broken security if they

are able to distinguish between the encryptions of two different plaintexts. For the

ASA adversaries that we are considering, that is a very weak goal and hardly worth

committing the resources required to carry out the subversion attack. Considering

that the aim is (mass) surveillance, the adversary ideally wants to know the under-

lying messages that the users are sending. The most efficient way of doing this is

to learn the secret key that is used to encrypt messages. If the adversary learns

the secret key, they can decrypt all the communication and obtain the full plaintext

correspondence. We discuss adversarial goals in more detail in Section 5.2.

3.1.1 Structure of the Chapter

We give an abstract description of an ASA targeting generic cryptographic schemes

consisting of a sender and receiver in Section 3.2, together with notions of unde-

tectability (Section 3.2.1) and adversarial goals (Section 3.2.2); we also briefly de-

scribe rejection sampling, a generic subversion technique, in Section 3.2.3. We show

that our generic syntax and ASA notions apply to AEAD schemes (Section 3.3.1.2),

MAC schemes (Section 3.3.1.3) and PKE schemes (Section 3.3.1.4).

We finish by describing related work in Section 3.4, focussing on ASAs that target

symmetric encryption, PKE and MACs. We also discuss defending against ASAs

(Section 3.4.4) and consider some practical aspects of subversion through the dis-

cussion of “cryptographic versus non-cryptographic subversion” (Section 3.2.4).

The basis for this chapter is provided by:

Marcel Armour and Bertram Poettering. “Algorithm Substitution At-

tacks against Receivers”. In: International Journal of Information Secu-

rity, June 2022.

41



3.2 Notions of Subversion Attacks

3.2 Notions of Subversion Attacks

In this section, we provide formal definitions of success and undetectability for an

ASA, as discussed in Section 3.1. We first need to introduce our syntax. We con-

sider subversions of cryptographic schemes implementing encrypted communication

between two parties: a sender and receiver. Abstractly, we consider a cryptographic

scheme Π = (Π.gen, {Π.S(i)}0≤i<n, Π.R) consisting of three components: a key gen-

eration algorithm, together with a collection of n ∈ N>0 algorithms on the sender

side and an algorithm on the receiver side. This abstraction is designed to be general

enough to encompass the primitives that we are interested in: symmetric encryption

(including AEAD), MACs and PKE, where there is only one sender algorithm; and

deniable PKE, which has multiple sender algorithms.1 Our abstract framework will

be particularly useful in Chapter 5, where we describe a specific ASA that applies to

any cryptographic scheme meeting our syntax and where the receiver holds a secret

key: this means that our ASA applies automatically to AEAD, MACs and PKE.

In light of the fact that we mainly consider encryption schemes, we let Π.S(0) repre-

sent encryption and write Π.S := Π.S(0); we will use the same convention for MAC

schemes, where Π.S := Π.S(0) represents the tagging algorithm. We note that our

generic syntax allows for the inclusion of randomness generators as well as applying

to schemes such as Deniable PKE and FHE which require additional sender algo-

rithms. The receiver algorithm Π.R represents decryption (or verification in the case

of MACs).

We give a generic syntax to the scheme Π as follows: Key generation Π.gen outputs

a key pair (kS, kR) ∈ KS × KR. Each sender algorithm Π.S(i), for 0 ≤ i < n, has

associated input and output spaces X (i),Y(i) (respectively) and takes as input a

sender key kS ∈ KS x ∈ X (i), outputting y ∈ Y(i); we write X := X (0),Y := Y(0).
1We note that Fully Homomorphic Encryption (FHE) also fits into this rubric, with multiple

sender algorithms, although we do not consider FHE in this work.

42



3.2 Notions of Subversion Attacks

The receiver algorithm has associated input and output spaces Y := Y(0),X ′ := X ′(0)

(respectively). In the event that n > 0, we specify the syntax of the additional sender

algorithms {Π.Si}1≤i≤n as needed. We note that X ⊊ X ′; in particular, ⊥ ∈ X ′ \X .

This reflects the fact that ⊥ is a special symbol that denotes rejection, and is not part

of the message space. The receiver algorithm takes as input a receiver key kR ∈ KR

and y ∈ Y, outputting x ∈ X ′; the special symbol ⊥ is used to indicate failure. A

shortcut notation for this syntax is

Π.gen→ KS ×KR, KS ×X (i) → Π.S(i) → Y(i), and KR × Y → Π.R→ X ′.

Lastly, we foreground the randomness used during encryption in our notation by

writing y ← Π.S(kS, x; r) for some randomness space R where we split the input

space accordingly as X ∼= X̃ × R; dropping the last input is equivalent to r ←$ R.

This allows us to discuss particular values of r that arise during encryption, which

will be particularly useful in the discussion of generic rejection sampling techniques

(Section 3.2.3) and deniable PKE schemes (Chapter 4).

A scheme Π is said to be δ-correct if for all (kS, kR)← Π.gen and (x, r) ∈ X ∼= X̃ ×R,

y ← Π.S(kS, x; r) and x′ ← Π.R(kR, y) we have Pr [x′ ̸= x] ≤ δ , where the probability

is over all random coins involved. In the case that δ = 0, the scheme is said to be

perfectly correct. We note that this generic syntax applies to public-key encryption

(Section 2.3.6) as well as symmetric encryption (Section 2.3.3), in which case we

require kS = kR.

Having defined the syntax of the cryptographic schemes we consider, we now go on

to give formal definitions for subversion of key generation, sender and receiver algo-

rithms, together with the notion of undetectability (UD). In a nutshell, a subversion

is formalised as undetectable if distinguishers with black-box access to either the

original scheme or to its subverted variant cannot tell the two apart. Of course, the

43



3.2 Notions of Subversion Attacks

adversary should be able to distinguish between a subverted implementation and

an instantiation of the original scheme – in fact, their aim is to do substantially

more than this, for example learn information about underlying plaintexts for the

subverted version. The apparent contradiction – that a subversion should exhibit a

dedicated functionality for the subverting party, but simultaneously be undetectable

for all others – is resolved by parameterising the subverted algorithm with a secret

subversion key, knowledge of which enables the extra functionality. In what follows

we denote the corresponding subversion key spaces with Igen, IS and IR.

In this section we also specify, by introducing notions of subliminal information

exfiltration Section 3.2.2, how we measure the quality of a subversion from the point

of view of the subverting adversary (who is assumed to know the subversion keys).

We measure success from the point of view of the adversary by the extent to which

they can exfiltrate arbitrary strings – also referred to as a subliminal channel. A

special case is obtained when the information exfiltrated is the secret key, discussed

in Section 5.2.1, or a string that allows recovery of the secret key (discussed in

Section 5.2.1.1).

3.2.1 Undetectable Subversion

We first define undetectability notions for subverted key generation, sender and

receiver algorithms separately. We then offer a joint definition. Our definitions

are inherited from prior work [23, 20, 51]. Whereas previous work assumed that

only the sender algorithm might be subverted, we have generalised the definitions

to reflect the possibility that any component (one or multiple) of the scheme could

be subverted. Our undetectability games work by giving a detector A oracle access

to either the specification algorithm or a subverted implementation (keyed with an

index that is unknown to the detector). The detector interacts with its oracle and

44



3.2 Notions of Subversion Attacks

outputs whether it believes the algorithm is real or subverted. In prior work [23, 51],

undetectability is defined with respect to uniform keys. As code auditors and other

security researchers looking for subversion attacks can specify keys during black-box

testing according to their preferred distribution, we consider uniform-key constraints

a rather severe limitation of undetectability notions. In particular, subversions that

rely on “hiding” the subverted behaviour in a particular subset of the keyspace – that

is, if the subverted algorithm behaves correctly when keyed with a non-triggering

key, and deviates when keyed with a triggering key in the subset – would be detected

more effectively with our notion. As a trivial example, consider a class of subversion

that simply outputs the key rather than encrypting a message when the key used is

in some subset of the keyspace.2

Subverted Key Generation. A subversion of the key generation algorithm Π.gen

of a cryptographic scheme consists of a finite index space Igen and a family of algo-

rithms Gen = {Π.geni}i∈Igen with

Π.geni → KS ×KR.

That is, for all i ∈ Igen the algorithm Π.geni can syntactically replace the algo-

rithm Π.gen.

As a security property we require that also the observable behaviour of Π.gen

and Π.geni be effectively identical (for uniformly chosen i ∈ Igen). This is for-

malised via the games UDG0, UDG1 in Figure 3.1 (left). For any adversary A we
2We note as an aside, that this class of subversion is quite plausible. There are known cases of

weak key attacks against cryptographic schemes (see Section 6.2.5). An adversary could plausibly
hide artificially introduced weak key behaviour when designing a subversion attack – although, this
is outside of the black-box model that we consider here. As an attack vector, leveraging known
cryptographic weaknesses to deliberately introduce subversion that retains “plausible deniability”
would appear to be a sensible strategy for an ASA adversary.

45



3.2 Notions of Subversion Attacks

Game UDGb(A)
00 i←$ Igen
01 gen0 := Π.geni

02 gen1 := Π.gen
03 b′ ← AGen,Send,Recv

04 stop with b′

Oracle Gen
05 (kS, kR)←$ genb

06 return (kS, kR)

Oracle Send(kS, x)
07 y ← Π.S(kS, x)
08 return y

Oracle Recv(kR, y)
09 x← Π.R(kR, y)
10 return x

Game UDSb(A)
00 i←$ IS
01 S0 := Π.Si

02 S1 := Π.S
03 b′ ← AGen,Send,Recv

04 stop with b′

Oracle Gen
05 (kS, kR)←$ Π.gen
06 return (kS, kR)

Oracle Send(kS, x)
07 y ← Sb(kS, x)
08 return y

Oracle Recv(kR, y)
09 x← Π.R(kR, y)
10 return x

Game UDRb(A)
00 i←$ IR
01 R0 := Π.Ri

02 R1 := Π.R
03 b′ ← AGen,Send,Recv

04 stop with b′

Oracle Gen
05 (kS, kR)←$ Π.gen
06 return (kS, kR)

Oracle Send(kS, x)
07 y ← Π.S(kS, x)
08 return y

Oracle Recv(kR, y)
09 x← Rb(kR, y)
10 return x

Figure 3.1: Games UDG, UDS and UDR modelling undetectability for the subver-
sion of (respectively) key generation, sender and receiver algorithms for a crypto-
graphic scheme Π. See Section 2.1 for the meaning of “:=”. Note that in each game,
the two unsubverted oracles are actually redundant.

define the advantage

Advudg
Π (A) :=

∣∣∣Pr[UDG1(A)]− Pr[UDG0(A)]
∣∣∣

and say that family Gen undetectably subverts algorithm Π.gen if Advudg
Π (A) is

negligibly small for all realistic A.

Subverted Sender. A subversion of the sender algorithm Π.S of a cryptographic

scheme consists of a finite index space IS and a family S = {Si}i∈IS of algorithms

KS ×X → Π.Si → Y.

That is, for all i ∈ IS the algorithm Π.Si can syntactically replace the algorithm Π.S.

As a security property we also require that the observable behaviour of Π.S and Π.Si

46



3.2 Notions of Subversion Attacks

be effectively identical (for uniformly chosen i ∈ IS). This is formalised via the games

UDS0, UDS1 in Figure 3.1 (centre). Note that, in contrast to prior work like [23,

51], our distinguishers are given free choice over the keys to be used.

For any adversary A we define the advantage

Advuds
Π (A) :=

∣∣∣Pr[UDS1(A)]− Pr[UDS0(A)]
∣∣∣

and say that family S undetectably subverts algorithm Π.S if Advuds
PKE(A) is negligibly

small for all realistic A.

Subverted Receiver. A subversion of the receiver algorithm Π.R of a crypto-

graphic scheme consists of a finite index space IR and a family R = {Π.Ri}i∈IR of

algorithms

KR × Y → Π.Ri → X ′.

That is, for all i ∈ IR the algorithm Π.Ri can syntactically replace the algorithm Π.R.

As a security property we also require that the observable behaviour of Π.R and Π.Ri

be effectively identical (for uniformly chosen i ∈ IR). This is formalised via the

games UDR0, UDR1 in Figure 3.1 (right). For any adversary A we define the ad-

vantage

Advudr
Π (A) :=

∣∣∣Pr[UDR1(A)]− Pr[UDR0(A)]
∣∣∣

and say that family R undetectably subverts algorithm Π.R if Advudr
PKE(A) is negli-

gibly small for all realistic A.

The above undetectability notions demand that subversions do not change the ob-

servable behaviour of the key generation, sender and receiver algorithms. A conse-

quence of this is that none of the correctness or security properties of the scheme

are noticeably harmed by subversion. For each of the security properties associated

47



3.2 Notions of Subversion Attacks

with the schemes we consider in this thesis (described in Section 2.3) there is a cor-

responding subverted security property, which is obtained by allowing the attacker

to play the security game against the subverted implementation. The subverted

security games are given in Section 3.3.

3.2.1.1 Hybrid Subversion of Key Generation, Sender and Receiver Algorithms

We give a joint definition of undetectability, in the case where the key generation,

sender and receiver algorithms are subverted. This is the most general definition; in

particular contexts it may not be appropriate to consider subversion of a particular

algorithm – we discuss this below in Sections 3.3.2.1 to 3.3.2.3 and 5.2.2.

Game UDb in Figure 3.2 (left) combines games UDGb, UDSb and UDRb into one.

We define

Advud
Π (A) :=

∣∣∣Pr[UD1(A)]− Pr[UD0(A)]
∣∣∣ .

By a hybrid argument, for all adversaries A there exist adversaries A′,A′′,A′′′ such

that

Advud
Π (A) ≤ Advudg

Π (A′) + Advuds
Π (A′′) + Advudr

Π (A′′′).

The hybrid argument proceeds by considering a series of games subverting each

component (key generation, sender algorithm, receiver algorithm) in turn. Applying

the triangle inequality results in the relationship given above.

3.2.2 Subversion Leading to Subliminal Information Exfiltration

We observed above that if the sender component Π.S of a cryptographic scheme Π

is undetectably subverted, with uniformly chosen index iS that remains unknown to

48



3.2 Notions of Subversion Attacks

Game UDb(A)
00 igen ←$ Igen; iS ←$ IS; iR ←$ IR
01 (gen0, S0, R0) := (Π.genigen , Π.SiS , Π.RiR)
02 (gen1, S1, R1) := (Π.gen, Π.S, Π.R)
03 b′ ← AGen,Send,Recv

04 stop with b′

Oracle Gen
05 (kS, kR)←$ genb

06 return (kS, kR)

Oracle Send(kS, x)
07 y ← Sb(kS, x)
08 return y

Oracle Recv(kR, y)
09 x← Rb(kR, y)
10 return x

Figure 3.2: Game UD modelling hybrid subversion undetectability for a crypto-
graphic scheme Π. Note that not all of the algorithms need necessarily be subverted,
although the syntax allows for this. See the discussion at Sections 3.3.2.1 to 3.3.2.3.

the participants, then all security guarantees are preserved from the original scheme.

This may be different if iS is known to an attacking party, and indeed we assume

that mass-surveillance attackers leverage such knowledge to conduct attacks.

Abstractly, the aim of an adversary is to exfiltrate some subliminal information. In

the context of prior work considering symmetric encryption, this information typi-

cally represents the secret key. We formalise this goal as the MRµ game in Figure 3.3

(left), which assumes a passive attack in which the adversary eavesdrops on com-

munication, observing the transmitted ciphertexts. We allow the adversary some

influence over sender inputs, with the aim of closely modelling real-world settings.

This influence on the sender inputs x is restricted by assuming a stateful “mes-

sage sampler” algorithm MS (reflecting the fact that, in the contexts we consider,

inputs to Π.S typically represent messages) that produces the inputs to Π.S used

throughout the game. The syntax of this message sampler is

Σ×A→ MS→ Σ×X ×B, (σ, α) 7→ MS(σ, α) = (σ′, x, β),

49



3.2 Notions of Subversion Attacks

Game MRµ(A)
00 i←$ IS
01 (kS, kR)←$ Π.gen; σ ← ⋄
02 µ′ ← ASend(i)
03 stop with [µ′ = µ]

Oracle Send(α)
04 (σ, x, β)← MS(σ, α)
05 y ← Π.Si(kS, x)
06 return (y, β)

Figure 3.3: Game MRµ modelling subliminal message recoverability for passive ad-
versaries. As we discuss, in the settings we consider the subliminal message will
consist of the user’s secret key, knowledge of which allows the adversary to com-
pletely break the security of the subverted scheme.

where σ, σ′ ∈ Σ are old and updated state, input α ∈ A models the influence that

the adversary may have on message generation, and output β ∈ B models side-

channel outputs. In Figure 3.3 we write ⋄ for the initial state. Note that while we

formalise the inputs α and the outputs β for generality (so that our models cover

most real-world applications), our subversion attacks are independent of them. For

any message sampler MS and adversary A we define the advantage

Advmr
Π,MS,µ(A) := Pr[MRµ(A)].

We say that subversion family S is key recovering for passive attackers if for all

practical MS there exists a realistic adversary A such that Advmr
Π,MS,µ(A) reaches a

considerable value (e.g., 0.1).3

3.2.3 Generic Method: Rejection Sampling

We describe a generic method to embed a subliminal message µ with |µ| = ℓµ into

ciphertexts of an encryption scheme Π.S. Essentially, when computing a ciphertext,
3As discussed in Section 2.2.2, we prefer to use informal notions (“realistic” and “practical”)

which are easily reformulated in terms of probabilistic polynomial-time (PPT) algorithms for readers
who prefer a treatment in the asymptotic framework.

50



3.2 Notions of Subversion Attacks

Proc Π.Si(kS, x, µ)
00 while [t ̸= µ]:
01 r ←$ R
02 y ← Π.Si(kS, x; r)
03 t← Fi(y)
04 return y

Proc A(i)
00 pick any α
01 (y, β)← Send(α)
02 µ← Fi(y)
03 return µ

Figure 3.4: Rejection sampling subversion Π.Si of encryption algorithm Π.S. Left:
Subverted encryption algorithm as in Section 3.2.1. Right: Message recovering
adversary for game MR as in Section 3.2.2. The adversary need not have any
influence over messages (modelled by α; see the discussion at Section 3.2.2).

the subverted algorithm uses rejection sampling to choose randomness that results

in a ciphertext that encodes the subliminal message. We define a subversion of the

encryption algorithm Π.S of a scheme Π in Figure 3.4 (left). It is parameterised by

a large index space I, a constant ℓµ and a PRF Fi. For the PRF we require that it

be a family of functions Fi : Y → {0, 1}ℓµ (that is: a pseudo-random mapping from

the ciphertext space to the set strings of length ℓµ). We write Π.Si for the subverted

algorithm. We give a corresponding message recovery adversary in Figure 3.4 (right).

We note that the subverted encryption algorithm Π.Si will resample randomness 2ℓµ

times on average. This means that longer messages result in exponentially slower

running times of the algorithm; in practice, this means that the attack is limited to

short messages (a few bits at most). We note that this technique embeds a message

of length ℓµ in each ciphertext; in later sections we use this idea to exfiltrate a

message that is derived from the plaintext being encrypted. More generally, each

subliminal message µ could be the fragment of a larger message µ′ (e.g. representing

the secret key, as is the approach in prior work targeting symmetric encryption). It

is straightforward to see how this would work for a stateful algorithm (simply send

the bits in order); for a stateless algorithm, Bellare et al. [20] show that if individual

ciphertexts embed messages of length ℓµ then it is possible to exfiltrate a string µ′

of length 2ℓµ by letting each individual µ encode the ℓµ
th bit of µ′.

51



3.2 Notions of Subversion Attacks

3.2.4 Cryptographic vs. Non-Cryptographic Subversion

In the literature on cryptography, the notion of an ASA assumes the malicious re-

placement of one or more algorithms of a scheme by a backdoored version, with

the goal to leak key material, or at least to weaken some crucial security prop-

erty. Different types of substitution attack appear in other areas of computing and

communication. We discuss some examples in the following.

Program code in the domain of computer malware routinely modifies system func-

tions to achieve its goals, where the latter comprises delivering some damaging pay-

load, ensuring non-detection and thus survival of the malware on the host system,

and in some cases even self-reproduction. Numerous techniques towards suitably

modifying a host system have been developed and reported on by academic re-

searchers and hackers. Standard examples include redirecting interrupt handlers,

changing the program entry point of an executable file, and interfering with the

OS kernel by overwriting its data structures [72].

Malicious modifications of implemented functionality are also a recognised threat in

the hardware world. It is widely understood that circuit designers who do not possess

the technical means to produce their own chips but instead out-source the production

process to external foundries, risk that the chips produced might actually implement

a maliciously modified version of what is expected. A vast number of independent

options are known for when (within the production cycle) and how (functionally)

subversions could be conducted. For instance, the survey provided in [33] reports

that circuit design software (CAD) could be maliciously altered, that foundries could

modify circuits before production, and that after production commercial suppliers

could replace legitimate chips by modified ones. Further, [33] suggests that appeal-

ing types of functionality modification include deviating from specification when

particular input trigger events are recognised, and/or to leak values of vital internal

52



3.2 Notions of Subversion Attacks

registers via explicitly implemented side channels. Any such technique (or combi-

nation thereof) has an individual profile regarding the associated costs and attack

detectability. Which of the many options is most preferable depends on the specific

attack scenario and target.

We refer to the software and hardware based subversion techniques discussed above

as “technology driven”. This is in contrast to the techniques considered in this thesis

which we refer to as “semantics driven”. We consider the two approaches orthogonal:

Our (semantics driven) proposed subversion can be implemented using techniques

from e.g. [72, 33] (but likewise also through standard methods), and technology

driven subversion proposals can be applied against cryptographic implementations

(but likewise also against any other interesting target functionality). Our semantics

driven approach in fact aims to maximise technology independence. As a conse-

quence, the line of attacks proposed in this thesis can be implemented easily in

software (e.g. in libraries or drop-in code), in hardware (e.g. in ASICs and FPGAs),

and in mixed forms (e.g. firmware-programmed microcontrollers). The strategy

to achieve this independence is to base the attacks and corresponding notions of

(in)security on nothing but the abstract functionalities of the attacked scheme as

they are determined by their definitions of syntax and correctness.

As the technology driven and semantics driven approaches are independent, they

can in particular be combined. This promises particularly powerful subversions. For

instance, consider that virtually all laptops and desktop PCs produced in the past

decade are required to have an embedded trusted platform module (TPM) chip that

supports software components (typically boot loaders and operating systems) with

trusted cryptographic services. In detail, software can interact with a TPM chip

through standardised API function calls and have cryptographic operations applied

to provided inputs, with all key material being generated and held exclusively in

the TPM. As TPMs are manufactured in hardware, it seems that the (technology

53



3.3 Subverting Primitives

driven) subversion options proposed in [33] would be particularly suitable. However,

as most of the attacks from [33] require physical presence of the adversary (e.g., to

provide input triggers via specific supply voltage jitters or for extracting side channel

information by operating physical probes in proximity of the attacked chip), only

those options seem feasible where all attack conditions and events can be controlled

and measured via the software interface provided by the API. This is precisely what

our semantics driven attacks provide. We thus conclude by observing that dedicated

cryptographic hardware like TPMs can only be trusted if extreme care is taken during

design and production.

3.3 Subverting Primitives

In this section we note that our abstract syntax accommodates AEAD, MACs and

PKE. In Chapter 5 we discuss a class of subversion attacks that generically tar-

gets any scheme meeting our syntax which thus applies to AEAD, PKE and MAC

schemes.

3.3.1 Applying our Syntax

We note that the generic syntax introduced above in Section 3.2 is satisfied by sym-

metric encryption schemes, AEAD schemes, MAC schemes and PKE schemes. We

may thus apply the generic notions of subversion and undetectability introduced in

Section 3.2.1. For each primitive, we specify the subverted security games corre-

sponding to the security properties given in Section 2.3. Each subverted security

game models the adversary’s ability to compromise the expected security properties

of a scheme Π when that scheme has been subverted.

54



3.3 Subverting Primitives

3.3.1.1 Symmetric Encryption

We note that symmetric encryption satisfies the generic syntax, with key generation

algorithm Π.gen = SE.gen, sender algorithm Π.S = SE.enc and receiver algorithm

Π.R = SE.dec. We specify the game subIND-CCA in Figure 3.5 (left).

3.3.1.2 AEAD

We note that AEAD satisfies the generic syntax, with key generation algorithm

Π.gen = AEAD.gen, sender algorithm Π.S = AEAD.enc and receiver algorithm Π.R =

AEAD.dec. We specify the games subIND-CCA and subAUTH in Figure 3.5 (right)

and Figure 3.6 (left), respectively.

3.3.1.3 MACs

We note that MACs satisfy the generic syntax, with key generation algorithm

Π.gen = MAC.gen, sender algorithm Π.S = MAC.tag, receiver algorithm Π.R =

MAC.vfy. We specify the game subUF in Figure 3.6 (right).

3.3.1.4 PKE Schemes

We note that PKE schemes satisfy the generic syntax, with key generation algorithm

Π.gen = PKE.gen, sender algorithm Π.S = PKE.enc, and receiver algorithm Π.R =

PKE.dec. See Figure 3.7 for the game subIND-CCA.

55



3.3 Subverting Primitives

3.3.2 Discussion

3.3.2.1 Symmetric Encryption and AEAD

We note that for symmetric primitives, key generation is unlikely to be subverted

in practice as symmetric keys are typically generated by some external means not

connected with or influenced by the scheme itself — e.g. through key agreement

protocols, or by a trusted platform module. Nevertheless, we retain a syntax that

allows for the more general case.

3.3.2.2 MACs

We note that for symmetric primitives, key generation is unlikely to be subverted,

leaving us with the possibility that either the tagging or the verification algorithm

(or both) could be subverted. However, as tagging and verification are typically

performed by distinct, remote parties, successfully conducting such attacks would

require replacing implementations of two participants, which we think is considerably

more demanding for an adversary than replacing only one implementation.

3.3.2.3 PKE schemes

Berndt and Liśkiewicz [27] show that a generic ASA against an encryption scheme

can only embed a limited number of bits per ciphertext. More concretely, they show

that no universal and consistent4 ASA is able to embed more than log(κ) bits of

information into a single ciphertext in the random oracle model [27, Theorem 1.4],
4Here universal means that the ASA applies generically to any encryption scheme, and consistent

essentially means that the ASA outputs genuine ciphertexts. We note that the rejection sampling
ASA (Section 3.2.3) is universal and consistent, whereas IV replacement attacks (e.g. as discussed
in Section 4.2) are not, failing to be universal.

56



3.4 Related Work

where κ is the key length of the encryption scheme. In the setting of symmetric

key encryption, this is sufficient to successfully leak the secret key over multiple

ciphertexts ([23, 20]). However, for asymmetric primitives, subverting ciphertexts

to leak the encryption key makes little sense as it is public; leaking plaintext messages

is not possible due to the limited bandwidth. Thus for generic ASAs against PKE,

the best possible adversarial goal is to exfiltrate sufficient information to compromise

confidentiality – knowledge of one or two bits of the underlying plaintext message

is sufficient to allow an adversary to break confidentiality in the sense of IND-

CPA or IND$.5 But as Bellare et al. [20] argue, this is not an attractive goal for

a mass surveillance adversary, who would rather break confidentiality completely

and recover plaintext messages. Thus for PKE schemes, subverting the receiver

algorithm to leak secret keys is the only possible option for an effective ASA.

For PKE schemes, in contrast to symmetric encryption, subverting the key genera-

tion algorithm is a meaningful option, and we explain in Section 5.2.2 how subversion

attacks can be amplified when applied together with a subverted key generation algo-

rithm. In Chapter 4 we furthermore consider DPKE, a special type of PKE scheme

that allows users to plausibly deny the message that they sent. As DPKE is not a

standard notion, we leave the definition to Section 4.3, where we also introduce the

notion in some depth.

3.4 Related Work

In this section, we give a brief overview of the history of ASAs, focussing on sym-

metric encryption and PKE, and situate our work in relation to other literature.
5Chen et al.[45] overcome these limitations by using non-generic techniques against KEM-DEM

constructions to leak underlying plaintext messages representing (session) keys.

57



3.4 Related Work

Game subIND-CCAb(A)
00 igen, iS, iR ←$ Igen × IS × IR
01 C ← ∅
02 k ← SE.genigen

03 b′ ← AEnc,Dec

04 stop with b′

Oracle Enc(m0, m1)
05 c← SE.enciS(k, mb)
06 C ∪← {c}
07 return c

Oracle Dec(c)
08 require c /∈ C
09 m← SE.deciR(k, c)
10 return m

Game subIND-CCAb(A)
00 igen, iS, iR ←$ Igen × IS × IR
01 C ← ∅, N ← ∅
02 k ← AEAD.genigen

03 b′ ← AEnc,Dec

04 stop with b′

Oracle Enc(n, d, m0, m1)
05 require n /∈ N
06 N ∪← {n}
07 c← AEAD.enciS(k, n, d, mb)
08 C ∪← {(n, d, c)}
09 return c

Oracle Dec(n, d, c)
10 require (n, d, c) /∈ C
11 m← AEAD.deciR(k, n, d, c)
12 return m

Figure 3.5: Games modelling subverted indistinguishability under chosen-ciphertext
attacks (subIND-CCA). Left: For a subverted symmetric encryption scheme SE,
as described in Section 3.3.1.1. Right: For a subverted authenticated encryption
scheme with associated data AEAD, as described in Section 3.3.1.2.

3.4.1 Symmetric Encryption

The idea that an adversary may embed a backdoor or otherwise tamper with the

implementation or specification of a cryptographic scheme or primitive predates the

Snowden revelations, and was initiated in a line of work by Young and Yung that

they named kleptography [120, 119]. This area of study can be traced back to Sim-

mons’ work on subliminal channels, e.g. [111], undertaken in the context of nuclear

non-proliferation during the Cold War. In the original conception [120], kleptogra-

phy considered a saboteur who designs a cryptographic algorithm whose outputs are

computationally indistinguishable from the outputs of an unmodified trusted algo-

rithm. The saboteur’s algorithm should leak private key data through the output

of the system, which was achieved using the same principles as Simmons’ earlier

subliminal channels. Post-Snowden, work in this area was reignited by Bellare, Pa-

terson and Rogaway (BPR) [23], who formalised the study of so-called Algorithm

58



3.4 Related Work

Game subAUTH(A)
00 igen, iS, iR ←$ Igen × IS × IR
01 k ←$ AEAD.genigen
02 C ← ∅, N ← ∅
03 AEnc,Dec

04 lose

Oracle Enc(n, d, m)
05 require n /∈ N
06 N ∪← {n}
07 c← AEAD.enciS(k, n, d, m)
08 C ∪← {(n, d, c)}
09 return c

Oracle Dec(n, d, c)
10 m← AEAD.deciR(k, n, d, c)
11 if m ̸= ⊥ ∧ (n, d, c) /∈ C:
12 win
13 return m

Game subUF(A)
00 igen, iS, iR ←$ Igen × IS × IR
01 k ←$ MAC.genigen
02 C ← ∅
03 ATag,Vfy

04 lose

Oracle Tag(m)
05 t← MAC.tagiS(k, m)
06 C ∪← {(m, t)}
07 return (m, t)

Oracle Vfy(m, t)
08 m← MAC.vfyiR(k, m, t)
09 if [m ̸= ⊥] ∧ [(m, t) /∈ C]:
10 win
11 return m

Figure 3.6: Left: Game modelling authenticity (subAUTH) of a subverted authenti-
cated encryption scheme with associated data AEAD, as described in Section 3.3.1.2.
Right: Game modelling unforgeability (subUF) of a subverted message authentica-
tion scheme MAC, as described in Section 3.3.1.3.

Game subIND-CCAb(A)
00 igen, iS, iR ←$ Igen × IS × IR
01 C ← ∅
02 (pk, sk)← PKE.genigen

03 b′ ← AEnc,Dec(pk)
04 stop with b′

Oracle Enc(m0, m1)
05 c← PKE.enciS(pk, mb)
06 C ∪← {c}
07 return c

Oracle Dec(c)
08 require c /∈ C
09 m← PKE.deciR(sk, c)
10 return m

Figure 3.7: Game modelling indistinguishability under chosen-ciphertext attacks
(IND-CCA) for a subverted public-key encryption scheme PKE.

Substitution Attacks (ASAs) through the example of symmetric encryption schemes.

59



3.4 Related Work

BPR [23] demonstrate an attack against certain randomised encryption schemes that

relies on influencing the randomness consumed in the course of encryption. Their

attack, which they call the “biased-ciphertext attack”, is a generic method that

relies on rejection sampling. Randomness is resampled until ciphertexts satisfy a

particular format (for example, implanting information in the least significant bits),

resulting in a subliminal channel.

There is a tension for “Big Brother” between mounting a successful attack and being

detected; clearly an attack that simply replaces the encryption algorithm with one

that outputs the messages in plaintext would be devastating yet trivially detectable.

BPR stipulate that ciphertexts generated with a subverted encryption algorithm

should at the very least decrypt correctly with the unmodified decryption routine,

in order to have some measure of resistance to detection. Furthermore, BPR define

the success probability of a mass surveillance adversary in carrying out a successful

attack, as well as the advantage of a user in detecting that a surveillance attack

is taking place. The attack of BPR was later generalised by Bellare, Jaeger and

Kane (BJK) [20] whose attack applies to all randomised schemes. Furthermore,

whereas the attack of BPR is stateful and so vulnerable to detection through state

reset, the BJK attack is stateless. BJK [20] later formalised the goal of key recovery

as the desired outcome of an ASA from the point of view of a mass surveillance

adversary. Lastly, BPR also establish a positive result that shows that under certain

assumptions, it is possible for authenticated encryption schemes to provide resistance

against subversion attacks.

Degabriele, Farshim and Poettering (DFP) [51] critiqued the definitions and under-

lying assumptions of BPR. Their main insight is that the perfect decryptability —a

condition mandated by BPR— is a very strong requirement and artificially limits

the adversary’s set of available strategies. In practice, a subversion with negligible

60



3.4 Related Work

detection probability, say 2−128, should be considered undetectable.6 As DFP note,

decryption failures may happen for reasons other than a subverted encryption al-

gorithm, and if they occur sporadically may easily go unnoticed. Thus a subverted

encryption scheme that exhibits decryption failure with a very low probability is a

good candidate for a practical ASA that is hard to detect. DFP demonstrate how

this can be achieved with an input-triggered subversion, where the trigger is some

message input that is difficult to guess, making detection practically impossible.

Our work complements the trigger message approach of DFP by limiting ciphertext

integrity and establishing a covert channel through decryption error events.

3.4.2 Public-Key Encryption

Yung and Young (YY) in [120] examine subverting asymmetric protocols in so-called

“SETUP” attacks. Their core idea is to encode some information within the public

key that allows the private key to be reconstructed. As a simple example, let the

public key encode the encryption of the user’s private key under the adversary’s key.

Subverted keys should be indistinguishable from real keys and only the adversary

should be able to recover a user’s private key from the subverted public key. As

well as showing how to subvert RSA keys, YY also give examples of attacks against

ElGamal, DSA and Kerberos. Later, Crépeau and Slakmon [49] gave an improved

subversion attack against RSA which works by hiding half of the bits of p in the rep-

resentation of the RSA modulus N = pq. Using Coppersmith’s partial information

attack [46], it is then possible to recover p and q.

For the prior work on symmetric encryption discussed above, the techniques can be

translated naturally into a PKE setting. Attacks against the encryption algorithm

of a PKE scheme however do not present an attractive attack to a mass surveillance
6This is analogous to the fundamental notion in cryptography that a symmetric encryption

scheme be considered secure even in the presence of adversaries with negligible advantage.

61



3.4 Related Work

adversary, as there is limited scope to undermine confidentiality. The covert chan-

nel usually has a bandwidth of a small number of bits per (subverted) ciphertext:

not enough to leak the underlying messages. Leaking the private key would allow

confidentiality to be broken completely, but the encryption algorithm does not have

access to the private key. Chen, Huang and Yung [45] overcome these limitations

by considering hybrid PKE constructions consisting of a KEM to send encapsulated

session keys which are used for symmetric encryption with a DEM. Their non-generic

attack applies to a particular class of practical KEM constructions and leaks session

keys, that in turn break the security of the DEM. In contrast, for a PKE primitive

not consisting of a hybrid KEM/DEM construction, targeting the decryption algo-

rithm remains the only way to subvert the encryption/ decryption facility of a PKE

scheme.

3.4.3 Further Work

Other works, briefly described here, consider subversion on different primitives and

in different contexts. Berndt and Liśkiewicz [27] reunite the fields of cryptography

and steganography. Goh, Boneh, Pinkas and Golle [70] show how to add key recovery

to the SSH and SSL/TLS protocols. Ateniese, Magri and Venturi [12] study ASAs

on signature schemes. Berndt et al. consider ASAs against protocols such as TLS,

WireGuard and Signal [28]. Dodis, Ganesh, Golovnev, Juels and Ristenpart [55]

provide a formal treatment of backdooring PRGs, another form of subversion. This

work was extended by Degabriele, Paterson, Schuldt and Woodage [52] to look at

robust PRNGs with input. Camenisch, Drijvers and Lehmann [38] consider Direct

Anonymous Attestation in the presence of a subverted Trusted Platform Module.

62



3.4 Related Work

3.4.4 Defending Against Subversion Attacks

Achieving security against adversaries mounting ASAs is difficult, and essentially

reduces to assuming trust in particular components or architectures. The three main

theoretical approaches to preventing or mitigating against ASAs in the literature are

reverse firewalls, self-guarding protocols and watchdogs. Other approaches include:

deterministic PKE schemes that defend against the subversion of random number

generators, as discussed by Bellare and Hoang [19]; large keys that make exfiltration

infeasible, as explored by Bellare, Kane and Rogaway [21]; the use of state reset to

detect ASAs, as studied by Hodges and Stebila [76].

Cryptographic reverse firewalls [93, 54, 90, 114, 37] represent an architecture to

counter ASAs against asymmetric cryptography via trusted code in network perime-

ter filters. At a high level, the approach is for a trusted third party to re-randomise

ciphertexts before transmission over a public network to destroy any subliminal mes-

sages. Fischlin and Mazaheri show how to construct ‘self-guarding’ ASA-resistant

(asymmetric) encryption and signature algorithms given initial access to a trusted

base scheme [67]. Their approach uses trusted samples to essentially perform re-

randomisation of ciphertexts.

In a series of works, Russell, Tang, Yung and Zhou [103, 105, 106, 104] study ASAs on

one-way functions, trapdoor one-way functions and key generation as well as defend-

ing randomised algorithms against ASAs using so-called watchdogs. The watchdog

model considers splitting a primitive into constituent algorithms that are run as

subroutines by a trusted “amalgamation” layer. This allows the constituent algo-

rithms to be individually checked and sanitised, in a variety of different assumptions

(e.g. on- or offline, black- or whitebox access). Combiners are often used to provide

subversion resilience, particularly in the watchdog model. A combiner [69, 98] essen-

tially combines the output from different algorithms (or runs of the same algorithm)

63



3.4 Related Work

in such a way as to produce secure (in this case, unsubverted) combined output

as long as any one of the underlying outputs is secure. Aviram et al. [13] consider

combining (potentially maliciously chosen) keys for post-quantum protocols such as

TLS. Bemman, Chen and Jager [26] show how to construct a subversion-resilient

KEM, using a variant of a combiner and a subversion resilient randomness generator.

Their construction considers Russell et al.’s watchdog from a practical perspective,

meaning an offline watchdog that runs in linear time. Another line of work, [65, 16,

57], examined backdoored hash functions, showing how to immunise hash functions

against subversion.

64



Chapter 4

Subverting Deniability

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . 67

4.2 Case Study: Subverting Deniable Symmetric Encryption 68

4.2.1 Subverting Deniability of Symmetric Encryption . . . . . . 70

4.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Deniable Public-Key Encryption . . . . . . . . . . . . . . 73

4.3.1 Definition of Deniable PKE Schemes . . . . . . . . . . . . . 74

4.3.2 Parity Scheme of Canetti, Dwork, Naor, Ostrovsky . . . . . 76

4.4 Subverting deniable PKE . . . . . . . . . . . . . . . . . . . 77

4.4.1 Subverting Deniable PKE . . . . . . . . . . . . . . . . . . . 78

4.4.2 Subverting CDNO Parity Scheme . . . . . . . . . . . . . . . 78

4.4.3 Subversion Resilient Deniable PKE Schemes . . . . . . . . . 80

4.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

This chapter provides an introduction to subversion, in preparation for the next
chapter where we give details of a specific ASA against receiver algorithms. We con-
sider DPKE as an interesting case study, with the ulterior motive of explaining the
intuition behind ASAs. Intuitively, DPKE is a cryptographic primitive that allows
the sender of an encrypted plaintext message to later claim that a different faked
plaintext was sent. DPKE schemes find their simplest application in the setting of
users communicating in the presence of repressive authorities that monitor commu-
nications, for example to suppress dissent or otherwise restrict the rights of their
citizens. We show that subversion attacks against DPKE schemes present an at-
tractive opportunity for such an adversary. We note that whilst deniable public key

65



4.1 Introduction

encryption is a widely accepted notion, there are as yet no practical DPKE schemes;
we demonstrate the feasibility of ASAs against deniable encryption using a repre-
sentative scheme as a proof of concept. We also provide a formal model and discuss
how to mitigate against ASAs targeting DPKE schemes.

4.1 Introduction

Deniable public-key encryption (DPKE) is a primitive that allows a sender to suc-
cessfully lie about which plaintext message was originally encrypted. DPKE schemes
find their simplest application in the setting of users communicating in the presence
of repressive authorities that monitor communications, for example to suppress dis-
sent or otherwise restrict the rights of their citizens.

In particular, suppose that Alice encrypts a plaintext m under some public key,
using randomness r, to give ciphertext c which she sends to Bob. At some point in
the future – perhaps Bob falls under suspicion of being a dissident, or harbouring
subversive beliefs – Alice is coerced to reveal the message she encrypted, together
with the randomness she used. DPKE allows Alice to claim that she sent m∗, by
providing r∗ such that enc(m∗, r∗) = enc(m, r). Beyond its immediate use case,
deniable encryption finds applications in electronic voting, where deniability allows
voters to cast their ballots without coercion and prevents vote-buying, as well as in
secure multiparty computation [39].

The adversarial model for deniable encryption assumes strong capabilities for the
adversary, in which they are able to coerce individuals to reveal the messages they
encrypted; it is therefore reasonable to consider other advanced adversarial capabil-
ities, such as the ability to subvert algorithms. Powerful adversaries, such as state
security services run by repressive regimes, have the means to insert unreliability
into cryptography via external infrastructure, as we discussed in Chapter 3. Deni-
able encryption thus provides an interesting case study to build some intuition on
how ASAs work.

As we discuss in Section 3.3.2.3, we usually consider the adversarial aim to be exfil-

66



4.1 Introduction

trating the user’s secret key. Indeed, our generic attacks against receivers (presented
in Chapter 5) apply to PKE schemes and thus DPKE as a special case and allows
an adversary to exfiltrate the receiver’s (private) key. This is one avenue to break
the deniability of user’s messages; an adversary who has learnt the private key effec-
tively undermines the confidentiality of a DPKE scheme and hence the deniability
guarantees. Simply put, if an adversary is able to read Alice’s messages as they are
sent, then Alice is unable to lie about those messages in the future.

In this chapter however, we are concerned with a different approach: we consider
subverting the sender with the specific aim of undermining deniability. In particu-
lar, our subversion attacks targeting deniability leave the confidentiality of messages
intact. We argue in this chapter that subversion attacks against DPKE schemes
present an attractive opportunity for an adversary, in particular since it seems that
deniable encryption requires large structured ciphertexts, which allow for exfiltration
of more than a few bits. An adversary who is able to monitor communications and
record ciphertexts may later coerce the participants to reveal their underlying plain-
texts; we show that a subverted deniable encryption scheme can embed information
into ciphertexts that undermines the sender’s ability to lie about which message was
sent.

4.1.1 Structure of the Chapter

Having previously covered the standard definitions needed (Chapter 2) and intro-
duced the concept of an ASA (Chapter 3), in this chapter we show that subverting
deniability is a well-defined concept. In doing so, we hope to give the reader a greater
intuition of ASAs. We first consider, in Section 4.2, subverting deniability in the
context of symmetric encryption as an illustrative case study. Section 4.3 discusses
deniable public-key encryption schemes, giving a definition and notions of security
(Section 4.3.1), as well as a brief survey of the literature and a description of the
“Parity Scheme” [42] of Canetti et al.(Section 4.3.2). Section 4.4 introduces notions
of subverted deniability, including adversarial goals (Section 4.4.1). As a proof of
concept, we show that the Parity Scheme is easily subverted (Section 4.4.2). We in-
dicate approaches to mitigate against subversion of deniable schemes in Section 4.4.3
and conclude in Section 4.4.4.

67



4.2 Case Study: Subverting Deniable Symmetric Encryption

This chapter consists of an extended version of:

Marcel Armour and Elizabeth A. Quaglia. “Subverting Deniability”. In:
Provable and Practical Security. Ed. by Chunpeng Ge and Fuchun Guo.
Cham: Springer Nature Switzerland, 2022.

4.2 Case Study: Subverting Deniable Symmetric Encryption

In this section we describe an illustrative case study that serves to introduce the
concepts of deniability and subversion; in order to highlight the intuition behind
our ideas, our discussion proceeds rather informally. We show how a subversion
attack against symmetric encryption schemes can undermine the deniability that
the scheme provides. Later, in Section 4.3, we develop the idea further and describe
subversion attacks against DPKE, where the notions of deniability are more nuanced
and require a formal treatment.

Symmetric encryption schemes are intuitively deniable, in the following sense: If
Alice and Bob share a secret key, then any ciphertext could have been created by
either party. If we consider messages in the direction from Alice to Bob, this means
that Bob is unable to present an adversary with a convincing proof that Alice sent
a particular message (by revealing a key, message and ciphertext that he claims
were sent by Alice). As a result, it is ineffective for an adversary to coerce Bob to
reveal Alice’s messages. Further, it also means that Bob is unable to convincingly
“frame” Alice for messages she didn’t send. The inherent deniability provided by
symmetric encryption is usually considered in the context of non-repudiation, where
it is regarded as a weakness. Non-repudiation can be achieved via digital signatures,
an asymmetric primitive that allows a signer to create signatures for messages such
that only the signer could have created the signature.

Consider a scenario where a symmetric encryption scheme is used for its deniabil-
ity property. We show that a subversion adversary who can subvert the scheme’s
encryption algorithms is able to undermine deniability by introducing a subliminal
channel. The subliminal channel can be used to provide a commitment to the mes-

68



4.2 Case Study: Subverting Deniable Symmetric Encryption

sages, in the form of a digital signature or a Message Authentication Code (MAC).
This means that if Bob reveals Alice’s messages, her ability to deny that she sent
the messages is undermined, as the adversary can check whether the message Alice
claims to have sent matches the commitment. Furthermore, this subliminal channel
committing ciphertexts to underlying messages is undetectable according to the un-
detectability notions of Section 3.2.1 – that is, any detector with black-box access to
the subverted scheme will be unable to determine whether the scheme is subverted.

We first describe two standard methods to implant a subliminal channel into cipher-
texts generated using symmetric encryption: rejection sampling and IV replacement.
We then go on to informally describe how to subvert deniability of symmetric en-
cryption schemes using a subliminal channel, which serves as a useful case study for
our results in Section 4.3.

Rejection Sampling. Rejection sampling, as discussed in Section 3.2.3, allows a
subliminal channel to be implanted in ciphertexts. The idea is that randomness is
resampled until the ciphertext encodes the subliminal channel (e.g. in the first bit,
or when a hash function is applied to the ciphertext). As noted before, in practice
the subliminal channel’s bandwidth needs to be small (one or two bits) in order to
ensure that the subverted algorithm is not prohibitively slow.

Initialisation Vector (IV) Replacement. IV replacement, following [23], utilises
the “randomness surfacing” property of some encryption schemes to directly implant
a subliminal message. Randomness surfacing schemes are such that the randomness
(usually referred to as an IV in this context) used in encryption can be directly
recovered from ciphertexts; a subversion adversary can simply replace the honestly
generated IV with their subliminal message. In practice, the adversary will want
to hide their message by encrypting so that the replacement IV still looks ran-
dom, to ensure that the subversion is undetectable. Consider a randomised stateless
symmetric encryption scheme SE = (SE.gen, SE.enc, SE.dec), following the notation
introduced in Section 2.3.3. We write c← SE.enc(k, m; IV ) to highlight the fact that
we surface the randomness input IV (for initialisation vector) to the encryption al-
gorithm. Such a scheme is said to surface its IV if there is an efficient algorithm
χ such that χ(SE.enc(k, m; IV )) = IV for all k, m, IV . The condition says that χ

can recover the IV from the ciphertext. A simple example of a scheme that surfaces

69



4.2 Case Study: Subverting Deniable Symmetric Encryption

its IV is CBC$, namely CBC mode with random IV. Another example is CTR$,
counter mode with random starting point.

4.2.1 Subverting Deniability of Symmetric Encryption

We assume that the adversary subverts the encryption algorithm SE.enc of a sym-
metric encryption scheme so that the ciphertexts contain a subliminal channel, either
using IV replacement or rejection sampling. Rather than using the channel to ex-
filtrate the user’s key, as is the approach in other settings,1 we let the adversary
transmit a commitment to the underlying message in the form of a MAC tag t.

Alice generates ciphertext c ← SE.enci(k, m) which encrypts a message m under
key k, using the subverted encryption algorithm SE.enci so that c encodes the tag t.
At a later point in time, the adversary can coerce Bob to reveal ciphertext, key,
message c∗, k∗, m∗ and can then compare the message m∗ to the tag encoded in the
ciphertext c∗. We note that for an adversary, knowing whether or not the message
that Bob claims was sent is the real message is sufficient to identify when Bob is
lying, implying that Alice and Bob exchanged illicit messages.

In more detail, assume that the adversary has subverted the encryption algorithm
SE.enc so that ciphertexts encode ℓ-bits of subliminal information. As per the discus-
sion in Section 3.2, we assume that the subverted algorithm has an embedded subver-
sion key i ∈ IS known only to the adversary. On input a message m, the subverted
encryption algorithm SE.enci first calculates an ℓ-bit MAC tag tℓ ← MAC.tagℓ(i, m).2

Then, using the subliminal channel, the tag tℓ is encoded into a valid ciphertext c.
An adversary who is given the ciphertext c and knows the subversion key i can
recover the tag tℓ and check (by recomputing the tag) that it verifies against the
message m∗ that Bob claims was encrypted.

1While leaking the secret key would allow an adversary to compromise users, we are looking
ahead to DPKE where the user’s key is public and thus pointless to leak.

2We write tagℓ to denote the tagging algorithm of a MAC scheme that outputs ℓ-bit tags. Such a
scheme can straightforwardly be instantiated from MAC scheme MAC with associated tag space T
by applying a cryptographically secure hash function H : T → {0, 1}ℓ to tags t ∈ T . In order
to verify a message, tag pair (m, tℓ), test whether H(MAC.tag(i, m)) = tℓ. If so, return m and
otherwise return ⊥.

70



4.2 Case Study: Subverting Deniable Symmetric Encryption

4.2.1.1 Success of the Subversion

We first note that the distribution of subverted ciphertexts is indistinguishable from
the distribution of unsubverted ciphertexts, assuming that the MAC scheme out-
puts tags whose distribution is (computationally) indistinguishable from random.3

In both cases (real or subverted), a distinguisher playing the subversion detection
game UDS observes ciphertexts that are indistinguishable from random. This means
that a detector with black box access to the subverted encryption algorithm is un-
able to distinguish SE.enc from SE.enci with any meaningful probability – that is,
the attack is undetectable according to the notion in Section 3.2.1.

Furthermore, the attack potentially allows the adversary to tell whether a particular
message corresponds to a ciphertext or not with some (non-negligible) probability.
Applying Kerckhoffs’ principle, we assume that the communicating parties (Alice
and Bob) know that the encryption is subverted, but do not have access to the secret
signing key i. In effect, we assume that Alice (and Bob) have black-box access to
the subverted encryption algorithm.4 This means that Alice and Bob have access
to an oracle that on input a message m returns a tag MAC.tagℓ(i, m). When Bob is
coerced by the adversary, in order to be convincing he will need to produce c∗, k∗, m∗

such that c∗ encodes tℓ with MAC.tagℓ(i, m∗, tℓ) ̸= ⊥. So now Bob plays the role of
adversary in an unforgeability game UF, as discussed in Section 2.3.4. Informally,
if the MAC scheme is secure then Bob’s advantage in this task is negligible. In the
scenario we have just discussed, we assume that Bob tries to construct a fake message
after being coerced. An alternative is for Alice to prepare a pair of messages m, m∗

in advance so that the tagℓ(m) = tagℓ(m∗); however, this too should be possible
only with negligible probability for a secure MAC scheme.

We thus conclude that the subverted encryption scheme is no longer inherently
deniable, and in fact the deniability of the subverted scheme reduces to the security
of the MAC scheme that the subverted algorithm runs as a subroutine. This security

3This requirement is equivalent to stating that the MAC scheme is a PRF, following the definition
at Figure 2.1. We note that while a MAC scheme is not necessarily a PRF, most MAC schemes
satisfy this property in practice. For example, Bellare [17] showed that HMAC is a PRF if the
underlying hash function is a PRF.

4This assumption is a common approach in work on ASAs, e.g.[23, 20]. The embedded subversion
key may be obfuscated in code or stored in a trusted execution environment that a user is unable
to tamper with. Using techniques from malware [72], this is a plausible outcome for an adversary.

71



4.2 Case Study: Subverting Deniable Symmetric Encryption

is a function of the length of tags, expressed above as ℓ.

4.2.2 Discussion

IV replacement allows for |IV | bits of information – commonly 128, if AES is the
block cipher used – to be encoded into ciphertexts, which would make it unrealistic
for Bob to deny messages (successfully evade the subverted deniability by forging a
128 bit tag). This case is less practically relevant, as IV surfacing schemes are not
widely used, but allows us to conclude that subverting deniability is a meaningful
concept. We note that the rejection sampling method allows only a few bits to be
implanted into the subliminal channel, which means that tags are not long enough to
be unforgeable by Bob. In particular, short tags increase the probability of collisions
which provide a generic method for Bob to construct a forgery. This means that the
subversion is unsuccessful from the point of view of an adversary. Of course, this
assumes that Alice and Bob are aware of the subversion and actively craft convincing
c∗, k∗, m∗ such that the encoded tag verifies over m∗. We note that in practice, it
may be the case that the subversion goes unnoticed by Alice and Bob – and for an
unscrupulous adversary this may be sufficient to undermine deniability in practice.

To conclude, in this section we discussed how the deniability of symmetric encryp-
tion schemes can be undermined if the algorithms are subverted. The subversion
techniques and deniability notions translate loosely onto deniable public-key en-
cryption, which we discuss in the next section. For DPKE, proposed schemes are
commonly IV surfacing, or else allow for a covert channel with a large bandwidth,
so that subverting deniability becomes more feasible – and is also highly relevant,
because we are then considering a primitive that is designed to provide deniability.

72



4.3 Deniable Public-Key Encryption

4.3 Deniable Public-Key Encryption

Deniable (public key) encryption allows a sender to lie about the messages that were
encrypted.5 In particular, suppose that a user encrypts message m to obtain c which
is sent to the recipient. Later, the user is required to reveal the randomness and
message that were used to derive the ciphertext c. Deniable encryption allows the
sender to choose a different message m∗ and reveal fake randomness r∗ which explains
c as the encryption of m∗. Notice that this necessarily implies that the scheme can’t
be perfectly correct as dec(enc(m∗, r∗)) = m. This counter-intuitive observation is
resolved by noticing that for a given message m, there are “sparse trigger” values
ri such that encrypting m with an ri results in an incorrect ciphertext. Deniable
public-key encryption schemes rely on the fact that finding such ri should be easy
with some trapdoor knowledge, and hard otherwise.

In this chapter we focus on non-interactive sender deniable public-key encryption,
as introduced by Canetti et al. (CDNO) [42], who showed that a sender-deniable
scheme can be used to construct receiver-deniable (and thus bi-deniable) schemes.
Other notions of deniability include weak (or “multi-distributional”) deniability in
which a sender uses an alternative (“fake”) encryption algorithm to encrypt deniable
messages – when coerced, they claim to have run the regular algorithm. Canetti et
al.describe such a scheme in [42]; later O’Neill et al.[95] proposed a non-interactive
encryption scheme with negligible deniability simulatable encryption. Another line
of work uses Indistinguishability Obfuscation (iO) to achieve deniable encryption:
Sahai and Water’s sender deniable scheme [108] and Canetti Park and Poburinnaya’s
bi-deniable interactive scheme [40]. However, the current state of iO means that
these result serve more as a theoretical feasibility result. De Caro, Iovino and O’Neill
[50] studied the notion of receiver deniable functional encryption, but instantiating
their constructions required fully fledged functional encryption, which in turn is
known to imply iO.

To date, no practical deniable schemes has been proposed. Either deniability is not
practically achievable, as in the case of the CDNO Parity Scheme whose ciphertexts

5We are considering sender-deniable encryption here, in which the sender is able to deny messages
that they encrypted. One can similarly consider receiver-deniable encryption, where a receiver is
able to deny a message that they received. Bi-deniable encryption combines both directions.

73



4.3 Deniable Public-Key Encryption

grow inversely proportional to the deniability probability, or else the construction
requires strong assumptions such as iO or functional encryption. Recent work by
Agrawal et al. [2] is promising in this regard, as their construction for deniable
fully homomorphic encryption (FHE) provides compact ciphertexts and is based on
the security of Learning with Errors. Nevertheless, their construction requires a
running time that is inversely proportional to detection probability. In the absence
of practical schemes, we demonstrate the feasibility of our ASA targeting deniable
encryption schemes (Section 4.4) by focussing on the illustrative case study of the
CDNO “Parity Scheme”. Our technique applies generically to any deniable PKE
scheme.

The remainder of this section sets the scene for our attack in Section 4.4; we first re-
cap the formal definition of a deniable PKE scheme in Section 4.3.1 before describing
the CDNO Parity Scheme in Section 4.3.2.

4.3.1 Definition of Deniable PKE Schemes

A deniable PKE scheme DE = (DE.gen, DE.enc, DE.dec, DE.Fake) consists of a tuple
of algorithms together with key spaces KS,KR, randomness space R, a message
space M and a ciphertext space C.

• The key-generation algorithm DE.gen returns a pair (pk, sk) ∈ KS × KR con-
sisting of a public key and a private key.

• The encryption algorithm DE.enc takes a public key pk, randomness r ∈ R
and a message m ∈M to produce a ciphertext c ∈ C.

• The decryption algorithm DE.dec takes a private key sk and a ciphertext c ∈ C,
and outputs either a message m ∈M or the special symbol ⊥ /∈M to indicate
rejection.

• Finally, the faking algorithm DE.Fake takes a public key pk, a pair of mes-
sages and randomness m, r as well as a fake message m∗, and outputs faking
randomness r∗ ∈ R.

74



4.3 Deniable Public-Key Encryption

Game INDEXPb(A)
00 (dpk, dsk)← DE.gen
01 b′ ← AExp(dpk)
02 stop with b′

Oracle Exp(m, m∗)
03 r ←$ R
04 r∗ ← DE.Fake(dpk, m, r, m∗)
05 if b = 0:
06 return (m∗, r, DE.enc(dpk, m∗; r))
07 else:
08 return (m∗, r∗, DE.enc(dpk, m; r))

Game subINDEXPb(A)
00 (dpk, dsk)← DE.gen; i ∈ IS
01 b′ ← AExp(dpk)
02 stop with b′

Oracle Exp(m, m∗)
03 r ←$ R
04 r∗ ← DE.Fake(dpk, m, r, m∗)
05 if b = 0:
06 return (m∗, r, DE.enci(dpk, m∗; r))
07 else:
08 return (m∗, r∗, DE.enci(dpk, m; r))

Figure 4.1: Games modelling the deniability (indistinguishability of explanation) of
a deniable PKE scheme (left) and a subverted deniable PKE scheme (right).

A scheme DE is correct and secure if the key generation, encryption and decryp-
tion algorithms considered as a PKE scheme (DE.gen, DE.enc, DE.dec) satisfy the
standard notions of correctness and IND-CPA security properties of public-key en-
cryption, as in Section 2.3.6. We formalise the deniability of the scheme via the
game INDEXP in Figure 4.1, using the standard definition from the literature [42].
Essentially, the INDEXP game is an indistinguishability game in which a distin-
guisher must choose between two cases: INDEXP0 represents the adversary’s view
of an honest encryption of m∗; INDEXP1 represents the adversary’s view when the
sender lies about the underlying plaintext. The corresponding advantage is, for any
distinguisher A, given by

Advindexp
DE (A) :=

∣∣∣Pr[INDEXP0(A)]− Pr[INDEXP1(A)]
∣∣∣

and say that scheme DE is deniable if Advindexp
DE (A) is negligibly small for all realis-

tic A.

Note that a scheme cannot simultaneously satisfy perfect correctness and deniability,
so negligible decryption error in correctness is inherent.

75



4.3 Deniable Public-Key Encryption

4.3.2 Parity Scheme of Canetti, Dwork, Naor, Ostrovsky

Here we describe the sender deniable “Parity Scheme” of Canetti et al.[42]. Infor-
mally, ciphertexts consist of a tuple of elements where each element is either chosen
randomly from a set T = {0, 1}τ or a so-called “translucent set” Sτ , where S satisfies
the following properties:

• Sτ ⊂ T and |Sτ | ≤ 2τ−k, for sufficiently large k.

• It is easy to generate random elements x ∈ Sτ .

• Given x ∈ T and trapdoor information dτ , it is easy to check whether x ∈ Sτ .

• Without dτ it is computationally infeasible to decide whether x ∈ Sτ .

For specificity, we consider the construction of translucent sets given in [42] based on
a trapdoor permutation f : {0, 1}s → {0, 1}s and its hard-core predicate B : {0, 1}s →
{0, 1} (see Appendix A.1 for the definition of trapdoor permutations and hard-core
predicates). Let τ = s + k. Represent each x ∈ T as x = x0 ∥ b1 ∥ b2 ∥ . . . ∥ bk,
where x0 ∈ {0, 1}s is followed by k bits. Then the translucent set is defined as:

S =
{

x = x0 ∥ b1 ∥ b2 ∥ . . . ∥ bk ∈ {0, 1}s+k|(∀i ≤ k)B(f−i(x0)) = bi

}
.

The trapdoor information dτ plays the role of a private key.

We give a description in pseudo-code of the encryption algorithm PS.enc in Fig-
ure 4.2. On input a bit value b, the encryption algorithm first chooses a random
number 0 < ℓ ≤ n with parity b in Line 00. Next, ℓ elements in S are generated in
Lines 02 to 06. Lastly, before outputting the ciphertext in Line 09, n − ℓ elements
in T are generated in Lines 07 and 08. We refer the reader to [42, 41] for full details
of the scheme, including decryption and faking algorithms as well as proofs of the
security and deniability of the scheme. In particular, it is shown that the Parity
Scheme is a 4/n-sender deniable encryption scheme, which means that the proba-
bility of a successful attack of a coercer vanishes linearly in the security parameter
n.

76



4.4 Subverting deniable PKE

Proc PS.enc(pk, m)

00 while ℓ mod 2 ̸= b:
01 ℓ←$ [0 .. n + 1]
02 for i ∈ [0 .. ℓ]:
03 x

(i)
0 ←$ {0, 1}s

04 for j ∈ [0 .. k]:
05 b

(i)
j ← B(f−j(x(i)

0 ))
06 x(i) ← x

(i)
0 ∥ b

(i)
0 ∥ . . . ∥ b

(i)
k

07 for i ∈ [ℓ .. n + 1]:
08 x(i) ←$ {0, 1}t

09 return c = (x(0), x(1), . . . , x(n))

Proc PS.enci(pk, m)
00 t← MAC.tag(n+1)s(ski, m)
01 while ℓ mod 2 ̸= b:
02 ℓ←$ [0 .. n + 1]
03 for i ∈ [0 .. ℓ]:
04 x

(i)
0 ←$ t[is : (i + 1)s]

05 for j ∈ [0 .. k]:
06 b

(i)
j ← B(f−j(x(i)

0 )).
07 x(i) ← x

(i)
0 ∥ b

(i)
0 ∥ . . . ∥ b

(i)
k

08 for i ∈ [ℓ .. n + 1]:
09 x

(i)
0 ←$ t[is : (i + 1)s]

10 x
(i)
1 ←$ {0, 1}k

11 x(i) ← x
(i)
0 ∥ x

(i)
1

12 return c = (x(0), x(1), . . . , x(n))

Figure 4.2: Left: CDNO Parity Scheme encryption algorithm PS.enc. Right: Sub-
verted encryption algorithm PS.enci.

4.4 Subverting deniable PKE

A first approach to subvert a deniable PKE scheme is to target the faking algorithm.
A subverted faking algorithm DE.Fakei(pk, m, r, m∗) could output subverted r∗ which
alerts the adversary to the fact that m∗, r∗ are fake; for example, if r∗ commits to the
real message m. However, this fake randomness r∗ still needs to be convincing from
the point of view of the deniability of the scheme – the scheme’s security properties
should be maintained by the subversion, otherwise a detector playing the UDS game,
in which they are tasked with differentiating between a subverted algorithm and
a reference version (see Section 3.2.1), will be able to tell that the algorithm is
subverted. In particular, r∗ should satisfy DE.enc(pk, m∗, r∗) = c. However, for a
deniable PKE scheme there is no reason why this should hold for an arbitrary value
of r∗. This approach does not seem to be workable without adding considerable
structure to the subverted scheme that means it would be easily detected.6

A second approach turns out to be a feasible attack route: subverting the scheme
6As an interesting aside, the approach for iO deniability schemes is to hide an encoding of the

faked ciphertext within randomness; the encryption algorithm first checks whether the randomness
encodes a ciphertext c and if so outputs c; if not, it proceeds to encrypt the message. The security
follows from the fact that iO obfuscates the inner working of the algorithm so that it appears as
a black box. This results in large, structured randomness inputs which would seem to facilitate
subversion against iO based deniable schemes.

77



4.4 Subverting deniable PKE

to let randomness commit to the message. This way, when Alice is coerced by
the adversary to reveal her message and randomness, the adversary is able to test
whether this is the case. If Alice is trying to lie about her message and randomness,
she will be unable to provide the adversary with randomness that commits to the
message. This means that an adversary playing the INDEXP game (Figure 4.1)
is able to distinguish between real and fake cases and win the game with non-
negligible probability. We demonstrate this approach in the case of the CDNO
Parity Scheme (Section 4.3.2) as an illustrative example. As the scheme surfaces
its randomness, the ciphertexts reveal the underlying randomness making it easy
to embed a subliminal channel. For a scheme that is not randomness surfacing,
Alice has to reveal the randomness (either real or fake) when coerced; thus the issue
remains that if randomness is subverted, then deniability can be undermined.

4.4.1 Subverting Deniable PKE

We note that a deniable PKE scheme satisfies the generic syntax introduced above
in Section 3.2, with key generation algorithm Π.gen = DE.gen, sender algorithms
(Π.S0, Π.S1) = (DE.enc, DE.Fake) and receiver algorithm Π.R = DE.dec. We may
thus apply the generic notions of subversion and undetectability introduced in Sec-
tions 3.2.1 and 3.2.2. We obtain the game subINDEXP given in Figure 4.1 (right),
modelling the adversary’s ability to compromise the deniability property of a sub-
verted scheme.

4.4.2 Subverting CDNO Parity Scheme

In Figure 4.2 (right), we give a subversion attack against the CDNO Parity Scheme,
described in Section 4.3.2. At a high level, we subvert randomness so that it encodes
a commitment to the original message in the form of a MAC tag. Our technique is
analogous to the IV replacement attack described in Section 4.2.

On input a public key and bit message m, the subverted algorithm first generates
a tag of length (n + 1)s bits over the plaintext m using its secret subversion key i

78



4.4 Subverting deniable PKE

(Line 00). This tag will be embedded into the “random” elements that constitute
the ciphertext in chunks. When generating elements from S in Lines 03 to 07,
the subverted encryption algorithm uses chunks of the tag (Line 04) rather than
sampling a random element. Lines 05 to 07 ensures that we are generating elements
in S. When generating elements from T in Lines 08 to 11, the subverted encryption
algorithm sets the first s bits to be a chunk of the tag, then samples the remaining
bits at random. Finally, the subverted algorithm outputs the ciphertext in Line 09.

We note that ciphertexts are well-formed and the subverted ciphertext c encrypts
the message m as intended. To see this, the recipient with knowledge of the trapdoor
dτ will be able to identify which elements are in S.

4.4.2.1 Success of the Subversion

We first note that the distribution of subverted ciphertexts is indistinguishable from
the distribution of unsubverted ciphertexts, assuming that the message authentica-
tion scheme outputs tags whose distribution is (computationally) indistinguishable
from random.7 In both cases (real or subverted), a distinguisher without knowledge
of the trapdoor dτ playing the subversion detection game UDS observes ciphertexts
that are indistinguishable from random. This means that a detector with black
box access to the subverted encryption algorithm is unable to distinguish PS.enc
from PS.enci with any meaningful probability – that is, the attack is undetectable
according to the notion in Section 3.2.1.

An adversary who is given the ciphertext c (or indeed the randomness r) and knows
the subversion key i can recover the tag t and check (using the subversion key i) that
it verifies against the message m∗ that Bob claims was encrypted. More formally, a
subversion adversary playing the subINDEXP game from Figure 4.1 (right) is able
to distinguish between (m∗, r, DE.enci(dpk, m∗; r)) and (m∗, r∗, DE.enci(dpk, m; r))
by recovering t from the randomness and testing whether MAC.vfy(i, m∗, t) verifies.
We note that as the randomness encodes the tag, recovering the tag is independent
of the ciphertext and this method applies generically even to encryption schemes
that do not surface their randomness.

7See the discussion at Footnote 4.

79



4.4 Subverting deniable PKE

Lastly, we note that even if Alice is aware that her encryption algorithm is subverted,
as long as she does not have access to the secret subversion key i she is unable to
forge a tag which would allow her to claim she sent a fake message. We thus conclude
that the subverted scheme is no longer deniable, and in fact the deniability of the
subverted scheme reduces to the security of the MAC scheme that the subverted
algorithm runs as a subroutine. Thus security is a function of the length of the tag
– in the example of the Parity Scheme, this is sufficiently large to give a meaningful
success probability to the adversary.

4.4.3 Subversion Resilient Deniable PKE Schemes

Following the discussion in Section 3.4.4, we may apply any of the standard ap-
proaches (reverse firewalls, self-guarding protocols or watchdogs) to sanitise the
scheme and prevent subliminal channels in ciphertexts. One way to achieve this
generically is to simply compose the deniable PKE scheme DE with a subversion re-
silient PKE scheme PKESR so that the output of DE.enc is encrypted under PKESR

before being sent to the receiver. Particular deniable PKE constructions may allow
a more efficient approach; for example, reverse firewalls apply directly to deniable
FHE.

However, subliminal channels is not sufficient to protect against subversion as the
adversary is still able to coerce the sender to reveal randomness at some point in
the future. To mitigate against this, deniable PKE constructions should explicitly
separate randomness generation from encryption so that DE.enc is deterministic, fol-
lowing the approach of [19]. This does not necessarily result in ciphertexts that are
free of a subliminal channel, however – whilst it protects against the rejection sam-
pling method, other non-generic methods, such as [118], could potentially result in
subverted ciphertexts. Thus, a combination of mitigating measures are appropriate.

80



4.4 Subverting deniable PKE

4.4.4 Conclusion

In this chapter, we have explored the notion of ASAs and we have seen that the
security provided by a scheme (such as deniability) no longer holds if the adversary
is given control over the implementation of the algorithms used. Our treatment
of subversion attacks in this chapter is quite informal, with the view of building
intuition. In the next chapter, we consider a more concrete ASA.

In this chapter, we have also taken a look at deniable encryption, one particular
primitive providing deniability whose definition is widely agreed upon in the liter-
ature and for which the applications are clear (including in e-voting, multi-party
computation and to protect against coercion). The threat model for deniable en-
cryption usually considers an adversary who is willing to coerce users; in this chapter
we extend the model to consider adversaries who also undermine deniability by using
subversion attacks. This seems a reasonable additional assumption to make of an
adversary who is willing to coerce users. We hope that showcasing how to subvert
deniability can help to enable a better understanding of what deniable communica-
tion should provide.

Deniable communication more generally is a subtle concept and it is unclear what
it should mean “in the real world”. Intuitively, the notion is clear: deniability
should allow Alice to plausibly claim that she is not a participant in a particular
communication [66]. However, the adversarial model and evaluation of real world
protocols claiming deniability is not agreed upon; Celi and Symeonidis [43] give an
overview of the current state of play and a discussion of open problems.

81



Chapter 5

Concrete Subversion Attacks
via Acceptance vs. Rejection

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . 84

5.2 Adversarial Goals . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Subversion Leading to Key Recovery . . . . . . . . . . . . . 85

5.2.2 Hybrid Subversion . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Breaking Security without Extracting the Full Key . . . . . 89

5.3 Concrete Subversion Attacks via Acceptance vs. Rejection 92

5.3.1 Combinatorics: Coupon Collection . . . . . . . . . . . . . . 94

5.3.2 Passive Attack . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.3 Active Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Mitigating Subversion . . . . . . . . . . . . . . . . . . . . . 109

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.1 AEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.2 MACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6.3 PKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

This chapter discusses our subversion attacks targeting the receiver. Concretely, we

alter the behaviour of the receiver’s algorithm to leak information through (artificially

82



5.1 Introduction

induced) decryption error events – the subverted algorithm either rejects (particular)

valid ciphertexts or accepts (particular) bogus ciphertexts. These particular cipher-

texts can be thought of as “trigger” values. An adversary observing the receiver who

is able to determine whether a ciphertext has been accepted or rejected learns some

information; this subliminal channel can be used to exfiltrate the user’s key.

5.1 Introduction

In this chapter, we describe how an ASA against the receiver can be used to exfiltrate

the (receiver’s) key, which represents the most effective attack from the point of view

of an attacker (and the most devastating from the point of view of the users). The

framework for ASAs against receivers was introduced in Chapter 3, where we showed

that the syntax is met by symmetric encryption, PKE and MACs.

Concretely, we alter the behaviour of the receiver’s algorithm to leak information

through (artificially induced) decryption error events – the subverted algorithm ei-

ther rejects (particular) valid ciphertexts or accepts (particular) bogus ciphertexts.

These particular ciphertexts can be thought of as “trigger” values. An adversary

observing the receiver who is able to determine whether a ciphertext has been ac-

cepted or rejected learns some information; this subliminal channel can be used to

exfiltrate the user’s key. The assumption that a surveillance adversary is able to ob-

serve whether a receiver’s algorithm implementation accepts or rejects a ciphertext

is a mild one in many practical scenarios; for example, a decryption error may result

in a network packet being dropped and automatically retransmitted. A subverted

algorithm could, furthermore, go beyond this by e.g.influencing timing information

in future messages sent to the network. We conclude that this attack represents an

attractive and easy to implement opportunity for a mass surveillance adversary.

83



5.1 Introduction

5.1.1 Structure of the Chapter

We first discuss adversarial goals. In Section 3.2.2 we gave the most general adver-

sarial goal, namely to leak some arbitrary information. For this chapter, we consider

the aim of an adversary to undermine confidentiality of encryption communication

(or authenticity in the case of MACs). As such, the most efficient way to achieve this

is usually to leak the secret key; in some cases, the scheme to be subverted exhibits

some additional structure that allows security to be broken more efficiently than

leaking the secret key. We discuss two such scenarios in Sections 5.2.2 and 5.2.3.

We go on to describe our concrete subversion attacks, in two variants: a passive

attack (Section 5.3.2) and an active attack (Section 5.3.2) quantifying the success

probability of an adversary and the detectability of the subversion.

Lastly, in Section 5.4 we describe the results of an experiment where we ran a

proof-of-concept implementation of our attack against AES-GCM. Our experimental

results conform to the theoretical results of Section 5.3.

We end the chapter by discussing mitigation of subversion attacks in Section 5.5

before making some concluding remarks in Section 5.6.

The basis for this chapter is provided by:

Marcel Armour and Bertram Poettering. “Algorithm Substitution At-

tacks against Receivers”. In: International Journal of Information Secu-

rity, June 2022.

Additionally, the proof-of-concept implementation (Section 5.4) is taken from:

Marcel Armour and Bertram Poettering. “Subverting Decryption in

84



5.2 Adversarial Goals

AEAD”. in: 17th IMA International Conference on Cryptography and

Coding. Ed. by Martin Albrecht. Vol. 11929. Lecture Notes in Com-

puter Science. Springer, Heidelberg, Dec. 2019

5.2 Adversarial Goals

In Section 3.2.2 we gave the most general adversarial goal, namely to leak some

arbitrary information. This arbitrary information might for example be the user’s

encryption key for another application, or the internal state of its random number

generator. But as Bellare et al. [20] argue, this is not an attractive goal for a

mass surveillance adversary, who would rather break confidentiality completely and

recover plaintext messages. For this chapter, we thus consider the special case

where the information leaked leads to a complete break of security (confidentiality

for encryption schemes and authenticity for MAC schemes).

5.2.1 Subversion Leading to Key Recovery

We observed above that if any of the components Π.gen, Π.S, Π.R of a cryptographic

scheme Π is undetectably subverted, with uniformly chosen indices igen, iS, iR that

remain unknown to the participants, then all security guarantees are preserved from

the original scheme. This may be different if (any of) igen, iS, iR are known to an

attacking party, and indeed we assume that mass-surveillance attackers leverage such

knowledge to conduct attacks. For any cryptographic scheme, the most devastating

attack goal for an attacker is key recovery (KR): Users generate keys using their key

generation algorithm (kS, kR)←$ Π.genigen .1 Generated secret keys are kept hidden,
1To preserve generality, our syntax suggests that key generation is subverted, however this need

not be the case. Simply set Π.genigen := Π.gen for all igen ∈ Igen. This applies similarly to Π.S and
Π.R.

85



5.2 Adversarial Goals

and the adversary aims at recovering these keys through the subversion. Note that

in the symmetric case, kS = kR, whereas in the asymmetric case the receiver’s key

kR represents the private key. In either case, the value kR is the target of a KR

adversary.

We formalise this attack goal in two versions. The KRP game in Figure 5.1 (centre)

assumes a passive attack in which the adversary cannot manipulate inputs or out-

puts (typically representing messages or ciphertexts) to the sender or receiver, and

the KRA game in Figure 5.1 (right) assumes an active attack in which the adversary

can inject and test arbitrary receiver inputs (which potentially correspond to sender

outputs). In both cases, with the aim of closely modelling real-world settings, we

restrict the adversary’s influence on the sender inputs x by assuming a stateful “mes-

sage sampler” algorithm MS (reflecting the fact that, in the contexts we consider,

inputs to Π.S typically represent messages) that produces the inputs to Π.S used

throughout the game. The syntax of this message sampler is

Σ×A→ MS→ Σ×X ×B, (σ, α) 7→ MS(σ, α) = (σ′, x, β),

where σ, σ′ ∈ Σ are old and updated state, input α ∈ A models the influence that

the adversary may have on message generation, and output β ∈ B models side-

channel outputs. In Figure 5.1 we write ⋄ for the initial state. Note that while we

formalise the inputs α and the outputs β for generality (so that our models cover

most real-world applications), our subversion attacks are independent of them.2 For

any message sampler MS and adversary A we define the advantages

Advkrp
Π,MS(A) := Pr[KRP(A)] and Advkra

Π,MS(A) := Pr[KRA(A)].

We say that subversion family Gen,S,R is key recovering for passive attackers if

for all practical MS there exists a realistic adversary A such that Advkrp
MS(A) reaches

2. . . meaning that the reader may safely choose to ignore them.

86



5.2 Adversarial Goals

a considerable value (e. g., 0.1).3 The key recovery notion for active attackers is

analogous.

5.2.1.1 Discussion

We note that the adversary need not necessarily exfiltrate each individual bit of the

user’s key,4 in order to successfully recover it – this is implicit in our definitions of

key recovery. To formalise this, we let the “leakage key” kℓ ∈ {0, 1}λ be a string

such that knowledge of kℓ is sufficient for an adversary to break the security of

the primitive. At worst, from the perspective of the adversary, the leakage key may

simply be the bit representation of the user’s key. We note that in practice a leakage

key consisting of most of the user’s key is sufficient for an adversary to recover the full

key using brute force; the exact number of bits to be brute forced would depend on

the context and would involve a trade-off for the adversary. Nevertheless, the notion

is intuitively clear. Note that in the key recovery games in Figure 5.1 the “leakage

key” is implicit: the game ends with the adversary returning (their approximation

to) the user’s secret key. This may well have been recovered by reconstructing the key

from the sufficient information encoded in a “leakage key” during the experiment.

Furthermore, in some contexts there may be some redundancy or structure that

allows for a shorter leakage key. As an example, one may consider DES keys as being

64-bit strings with 8 bits of redundancy, so that an effective leakage key would be of

size 56 bits. As another example, the private key in RSA encryption is knowledge

of the factorisation of the public modulus N = pq. Supposing that the modulus N

can be represented using n = ⌊log N⌋-bits, one may consider RSA private keys as

being n/2 = ⌊log p⌋-bit strings. However, knowledge of around half the bits of p is
3Our informal notions (“realistic” and “practical”) are easily reformulated in terms of proba-

bilistic polynomial-time (PPT) algorithms for readers who prefer a treatment in the asymptotic
framework. Given that asymptotic notions don’t reflect practice particularly well, we prefer to use
the informal terms.

4or a bit representation thereof, if it is not a bit string

87



5.2 Adversarial Goals

sufficient to be able to factorise N using Coppersmith’s partial information attack

[46], so that an effective leakage key might have length λ = ⌊log p⌋/2.5

A different approach might be to leak, for example, the seed of a pseudo-random

number generator. We discuss breaking security without extracting the full key

further in Section 5.2.3.

Game KRP(A)
00 C ← ∅
01 igen, iS, iR ←$ Igen × IS × IR
02 (kS, kR)←$ Π.genigen ; σ ← ⋄
03 k′ ← ASend,Recv(igen, iS, iR)
04 stop with [k′ = kR]

Oracle Send(α)
05 (σ, x, β)← MS(σ, α)
06 y ← Π.SiS(kS, x)
07 C ∪← {y}
08 return (y, β)

Oracle Recv(y)
09 require y ∈ C
10 x← Π.RiR(kR, y)
11 return x

Game KRA(A)
00 C ← ∅
01 igen, iS, iR ←$ Igen × IS × IR
02 (kS, kR)←$ Π.genigen ; σ ← ⋄
03 k′ ← ASend,Recv(igen, iS, iR)
04 stop with [k′ = kR]

Oracle Send(α)
05 (σ, x, β)← MS(σ, α)
06 y ← Π.SiS(kS, x)
07 C ∪← {y}
08 return (y, β)

Oracle Recv(y)
09 require y ∈ C
10 x← Π.RiR(kR, y)
11 return x

Figure 5.1: Games KRP and KRA modelling key recoverability for passive and active
attackers, respectively. Note that the adversary’s aim is to recover the receiver’s key
kR, as in both symmetric and asymmetric settings this value is secret.

5.2.2 Hybrid Subversion

Previous work on subversion has looked at either subverted key generation6 or sub-

verted encryption/ decryption, but not considered the case where these are subverted

in tandem. For key generation, this has meant that the subverted algorithm needs

to leak the whole key in a single operation. This setting was studied by Young and

Yung [120] under the name “kleptography”, and they showed how it is possible to
5We note that in practice the security for an RSA modulus of size n is far less than n/2 bits; for

example, an RSA modulus of size 1024 is believed to have security at most 80 bits [15], corresponding
to the computational effort required to factorise an RSA modulus.

6and potentially, the associated public parameters if those form part of the formalisation used.

88



5.2 Adversarial Goals

subvert key generation such that the adversary is able to recover the private key

sk from the public key pk (together with any public parameters and knowledge of

secret trapdoor information). They show how such attacks against key generation

could look in the case of RSA and ElGamal cryptosystems. Such subversion imposes

a large cost on the subverter: requiring that all key bits are leakable in one opera-

tion means that the subverted keys are given some structure (e. g., the public key

is the encryption of the secret key under the attacker’s key). This overhead would

likely lead to detection in a real world setting (using either timing information, code

review or hardware inspection). Considering the subversion of key generation and

sender/receiver algorithms in tandem, it is possible to reduce this overhead.

Generically, this tandem subversion can be achieved by subverting key generation

to produce weaker keys and combining this with a subverted sender and/or receiver

that provides a subliminal channel. Consider a subverted key generation algorithm

Π.geni that outputs (receiver keys) in some reduced key set K̃R ⊂ KR. The smaller

this subverted key set K̃R, the less information needs to be leaked via the subliminal

channel. One method to implement such a subverted key generation algorithm is to

use the rejection sampling method described in Section 3.4.1, so that Π.geni runs

the unsubverted algorithm Π.gen as a subroutine and resamples until keys are in

K̃R. There are certainly more targeted attacks that take into account the specific

structure of keys being generated – and that may leverage more specific attacks than

the generic weakening of keys.

5.2.3 Breaking Security without Extracting the Full Key

The KRA and KRP notions introduced in Section 5.2.1 assume that key recovery is

the ultimate goal in subversion. This suggests that longer keys make a scheme more

resilient, an approach explored in big key cryptography [21]. In practice, it may be

89



5.2 Adversarial Goals

more efficient to exploit non-generic features of a particular scheme to minimise the

information to be leaked. In this section, we will consider AEAD schemes as an

illustrative example.

As we detail, many current AEAD schemes have inner building blocks that maintain

their own secret values, and scaling up key sizes does not automatically also increase

the sizes of these internal values. We note that proposed ASAs against AEAD

schemes (including our attacks presented in Section 5.3) can easily be adapted to

leak this internal information instead of the key. As the recovery of such values

might not always directly lead to full message recovery, the assessment of whether

the resulting overall attack is more or less effective than our generic attacks has

to be made on a per scheme basis. We exemplify this on the basis of two of the

currently best-performing AES-based AEAD schemes: GCM [60] and OCB3 [88].

In both cases, the size of the crucial internal value and the block size of the cipher

have to coincide and the latter value is fixed to 128 bits for AES (independently of

key size).

AES-GCM. We consider the following abstraction of GCM. The AEAD key k is

used directly to create an instance Ek of the AES blockcipher. To encrypt a mes-

sage m with respect to associated data d and nonce n, Ek is operated in counter

mode, giving a pad Ek(n + 1) ∥ Ek(n + 2) ∥ . . . , where a specific nonce encod-

ing ensures there are no collisions between counter values of different encryption

operations. The first part c1 of the ciphertext c = c1c2 is obtained by XOR-

ing the pad into the message, and finally the authentication tag c2 is derived by

computing c2 ← Ek(n) + Hhk(d, c1). Here Hhk is an instance of a universal hash

function H indexed (that is, keyed) with the 128-bit value hk = Ek(0128). Con-

cretely, Hhk(d, c1) = ∑l
i=1 vih

l−i+1, where coefficients v1, . . . , vl are such that a

prefix v1 . . . vj is a length-padded copy of the associated data d, the middle part

vj+1 . . . vl−1 is a length-padded copy of ciphertext component c1, and the last item vl

90



5.2 Adversarial Goals

is an encoding of the lengths of d and c1. The addition and multiplication operations

deployed in this computation are those of a specific representation of the Galois field

GF(2128).

In executing a practical ASA against AES-GCM, it might suffice to leak the value hk

(which has length 128-bits independently of the AES key length, and furthermore

stays invariant across encryption operations). The insight is that if the key of a

universal hash function is known, then it becomes trivial to compute collisions.

Concretely, assume the adversary is provided with the AES-GCM encryption c =

c1c2 = enc(k, n, d, m) for unknown k, m but chosen d, n. Then by the above we have

c2 = R + ∑j
i=1 vih

l−i+1 where the coefficients v1 . . . vj are an encoding of d and R is

some residue. If, having been successfully leaked by the ASA, the internal value h is

known, by solving a linear equation it is easy to find an associated data string d′ ̸= d,

|d′| = |d|, such that for its encoding v′
1 . . . v′

j we have ∑j
i=1 v′

ih
l−i+1 = ∑j

i=1 vih
l−i+1.

Overall this means that we have found d′ ̸= d such that enc(k, n, d′, m) = c =

enc(k, n, d, m). In a CCA attack the adversary can thus query for the decryption

of c with associated data d′ and nonce n, and thus fully recover the target message m.

We finally note that this attack can be directly generalised to one where also the c1

and c2 components are modified, resulting in the decryption of a message m′ ̸= m

for which the XOR difference between m and m′ is controlled by the adversary.

OCB3. Multiple quite different versions of the OCB encryption scheme exist [78],

but a common property is that the associated data input is incorporated via “cipher-

text translation” [102]. To encrypt a message m under key k with associated data d

and nonce n, in a first step the message m is encrypted with a pure AE scheme7)

to an intermediate ciphertext c∗ ← enc∗(k, n, m). Then to obtain the final cipher-

text c, a pseudo-random function value Fk(d) of the associated data string is XORed
7Assuming the above notation for AEAD schemes, we give a similar syntax to AE schemes:

an AE scheme encrypts a message m under key k with nonce n to produce a ciphertext denoted
enc∗(k, n, m).

91



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

into the trailing bits of c∗. Concretely, in OCB3 we have Fk(d) = ∑l
i=1 E(vi + Ci)

where all addition operations are XOR combinations of 128 bit values, Ek(·) stands

for AES enciphering with key k, values v1, . . . , vl represent a length-padded copy of

associated data d, and coefficients C1, . . . , Cl are (secret) constants deterministically

derived from the value L = E(0128).

In the context of an ASA we argue that it is sufficient to leak the 128 bit value L.

The attack procedure is, roughly, as in the AES-GCM case. Assume the adversary is

provided with the OCB3 encryption c = enc(k, n, d, m) for unknown k, m but chosen

d, n, and assume the adversary knows L and thus C1, . . . , Cl. Now let 1 ≤ s < t ≤ l

be any two indices, let ∆ = Cs + Ct and let d′ ̸= d, |d′| = |d|, be the associated data

string with encoding v′
1, . . . , v′

l such that we have v′
s = vt + ∆ and v′

t = vs + ∆ and

v′
i = vi for all i ̸= s, t. Then we have Ek(v′

s + Cs) = Ek(vt + ∆ + Cs) = Ek(vt + Ct)

and Ek(v′
t +Ct) = Ek(vs +∆+Ct) = Ek(vs +Cs), which leads to Fk(d) = Fk(d′) and

ultimately enc(k, n, d′, m) = enc(k, n, d, m). In a CCA attack environment, this can

immediately be leveraged to the full recovery of m. As in the AES-GCM case, we

note that many variants of our attack exist (against all versions of OCB), including

some that manipulate message bits in a controlled way.

5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

We assume that the objective of a subverted receiver algorithm is to leak a bit string

kℓ ∈ {0, 1}λ representing either some leakage that will enable recovery of the secret

(private) key kR, following the discussion at Sections 5.2.1.1 and 5.2.2, or else a

string that is sufficient to break security in the sense of Section 5.2.3. We refer to kℓ

as the leakage key in what follows. At worst, from the subverter’s perspective, the

leakage key will simply be a bit string representation of kR.

92



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

We propose two key-recovering subversion attacks against a scheme Π = (Π.gen, Π.S, Π.R)

satisfying the syntax given in Section 3.2. While both attacks subvert the receiver

algorithm only, they differ in that our first attack is passive (can be mounted by

a mass surveillance adversary who eavesdrops) and our second attack is active (re-

quires intercepting and modifying sender outputs in transmission – i. e., ciphertexts,

in the case of AEAD or PKE, or message-tag pairs in the MAC case.). The driv-

ing principles behind the two attacks are closely related: In both cases the receiver

algorithm of the attacked scheme is manipulated such that it marginally deviates

from the regular accept/reject behaviour; by making these deviations depend on the

leakage key, the bits of the latter are leaked one by one.

Our passive attack rejects a sparse subset of the receiver inputs that the unmodified

algorithm would accept. Our active attack does the opposite by accepting certain

receiver inputs that the unmodified algorithm would reject. A property of the former

(passive) attack is that the scheme’s probability of incorrect decryption is increased

by a small amount (rendering it detectable with the same probability); we believe

however that in settings where rejected messages are automatically retransmitted by

the sender (for example, in low-level network encryption like IPSec), this attack is

still practical and impactful. Our active attack does not influence correctness. How-

ever, as key bits are leaked only when the receiver algorithm is exposed to bogus

inputs, successful adversaries are necessarily active. The active attack furthermore

has the following attractive property: The underlying receiver outputs (i. e., mes-

sages) corresponding to the injected inauthentic receiver inputs are not arbitrary

(and thus unexpected to the processing application), but identical with sender in-

puts previously sent by the sender algorithm. This allows attacks to be kept “under

the radar”: the receiver will not realise that an attack has been mounted, as all

accepted messages it receives will be those sent by the sender.

We note that both of our subversions are stateless, which not only allows for much

93



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

easier backdoor implementation from a technical perspective but also should de-

crease the likelihood that an implemented attack is detected through code review or

observing memory usage. That said, our passive attack also has a stateful variant

with an interesting additional practicality feature. We discuss this further below.

We note that our subversion approach, for leaking at most one bit per operation,

remains on the conservative side. Depending on the circumstances, in practice, more

aggressive methods that leak more than one bit per operation, are expected to be

easily derived from our subversion proposals.

5.3.1 Combinatorics: Coupon Collection

The passive and active attacks both exfiltrate secret key material one bit at a time.

The following lemma recalls a standard coupon collector statement that will help

analysing the efficiency of this approach, in particular how long it takes until all bits

are extracted. For a proof of the lemma, see e.g. [80, §8.4].

Lemma 5.1. Fix a finite set S (of “coupons”) and a probability 0 < η ≤ 1. Ex-

periment CC(S, η) in Figure 5.2 measures the number of iterations it takes to visit

all elements of S (“collect all coupons”) when picked uniformly at random and con-

sidered with probability η. The expected number of iterations is given by O(n log n),

where n = |S|. More precisely we have

E[CC(S, η)] = |S|
η

(1
1 + 1

2 + . . . + 1
|S|

)
= O(n log n).

Note that parameter η is fully absorbed by the O(·) notation.

94



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

Exp CC(S, η)
00 S′ ← ∅; l← 0
01 while S′ ⊊ S:
02 s←$ S
03 if B(η):
04 S′ ∪← {s}
05 l← l + 1
06 stop with l

Figure 5.2: Coupon collector experiment (see Lemma 5.1). Recall that B(η) denotes
a Bernoulli trial with success probability η (see Section 2.1).

5.3.2 Passive Attack

We first give an intuition of our passive attack. Our attack subverts the receiver

algorithm so that an adversary who observes decryption error events in a “normal”

run of communication between sender and receiver is able to learn bits of the leak-

age key. The subverted receiver monitors incoming ciphertexts. It applies a hash

function to each of them to obtain a pointer to a bit of the leakage key. It then, with

a configurable probability, artificially rejects the ciphertext if the indicated bit of

the leakage key does not match some hard-coded reference value. The adversary is

able to apply the same hash function to the ciphertext and thus learns whether the

bit position deviates from the reference value. By bit-wise learning the difference

between the leakage key and the reference value, eventually the adversary can put

the complete leakage key together.

In the remaining part of this section, we describe the specification of our subversion

and KRP adversary in detail, and analyse their effectiveness.

95



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

5.3.2.1 Description of our Passive Attack

We define our passive subversion of the receiver algorithm Π.R of a scheme Π in

Figure 5.3 (left). It is parameterised by a probability 0 ≤ γ ≤ 1, a large index

space IR, a PRF (Fi)i∈IR , and a family (Gi)i∈IR of random constants. For the PRF

we require that it be a family of functions Fi : Y → [0 .. λ− 1] (that is: a pseudo-

random mapping from the ciphertext space to the set of bit positions of a leakage key

kℓ), and for the constants we require that Gi ∈ {0, 1}λ (that is: a random element

of the set of leakage keys {0, 1}λ). (That we use the same index space IR for two

separate primitives is purely for notational convenience; our analyses will actually

assume that (Fi) and (Gi) are independent.8)

Proc Π.Ri(kR, y)
00 kℓ

′ ← Gi

01 x← Π.R(kR, y)
02 if x = ⊥: return x
03 if B(γ):
04 ι← Fi(y)
05 if kℓ

′[ι] ̸= kℓ[ι]:
06 x← ⊥
07 � kℓ

′[ι]← ! Gi[ι]
08 return x

Proc A(i)
09 kℓ

′ ← Gi

10 while kℓ
′ incorrect:

11 pick any α ∈ A
12 (y, β)← Send(α)
13 x′ ← Recv(y)
14 if x′ = ⊥:
15 ι← Fi(y)
16 kℓ

′[ι]← ! Gi[ι]
17 return kℓ

′

Figure 5.3: Passive subversion of the receiver algorithm Π.R of a scheme Π. As in
Figure 5.2, B(·) denotes a Bernoulli trial. We let ! b := 1 − b denote the inversion
of a bit value b ∈ {0, 1}. Left: Decryption subversion as in Section 3.2.1. Line 07
is redundant if the attack is stateless; in a stateful attack this line is meaningful
– see the discussion below. Right: Key recovering adversary for game KRP as in
Section 5.2.1.

We provide details on our attack. The idea is that kℓ
′ (Line 00), which is shared

by the subverted algorithm and the key recovering adversary through knowledge

of Gi, represents an initial reference key9; the key recovery adversary, throughout
8At the expense of introducing more symbols we could also have formally separated the index

spaces of (F ) and (G). We believe that our concise notation adds significantly to readability.
9For generality, we consider G a keyed family of constants. The simplest case would have all

constants fixed to the same hardcoded string (say, the string of all zeroes), which would aid in

96



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

the attack, learns the bits that differ between kℓ and kℓ
′. This means that the

subversion only needs to leak (on average) half as many bits compared to leaking

the whole of kℓ. The Bernoulli trial (Line 03) controls the rate with which such

differing bits are exfiltrated, and the PRF (Line 04) controls which bit position ι

is affected in each iteration. By PRF security, these bit positions can be assumed

uniformly distributed (though knowledge of the subversion index i allows tracing

which ciphertext is mapped to which position). Any bit difference is communicated

to the adversary by artificially rejecting (Line 06) the ciphertext, although it is

actually valid.

We specify a corresponding KRP adversary in Figure 5.3 (right). It starts with the

same random string Gi as the subversion and traces the bit updates of Π.Ri until

eventually the full key kℓ is reconstructed. We assume that A can tell whether the

full leakage key kℓ has been recovered (Line 10), e. g., by recovering the secret key

kR from kℓ and verifying one or more recorded authentic outputs with it.

Note that our adversary A does not need to know the sender inputs x ∈ X , which

typically represent plaintext messages in the settings we consider, emerging through-

out the experiment: The core of the attack, in Line 13 to Line 16, is independent

of the value of x. This considerably adds to the practicality of our attack: While

messages are not always secret information, in practice they might be hard to ob-

tain. Conducting mass-surveillance attacks is certainly easier if the attacks depend

exclusively on the knowledge of ciphertexts (like in our case, Line 15).

While we present our subversion as stateless (i. e., the reference key is kept static

between invocations), it also works if the Π.Ri algorithm maintains state between

any two invocations and remembers which differing bit positions have already been

communicated. Activate Line 07, and execute Line 00 only during the first invo-

cation, to obtain the stateful attack. With respect to the detectability and key

reducing the size of the implementation code.

97



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

recovery notions from Section 3.2, the attack’s performance is the same whether

the subversion is stateful or not. The stateful version offers better correctness af-

ter exfiltration, in the sense that the algorithm will only behave unexpectedly at

most |kℓ| = λ occasions; once the leakage key kℓ has been exfiltrated, the subverted

scheme Π.Ri behaves identically to the honest scheme Π.R. (This case is practically

less relevant and not covered by our formal models.)

We establish the following statements about the key recoverability and undetectabil-

ity of our passive subversion attack.

Theorem 5.2. For a δ-correct scheme Π, let Π.Ri be defined as in Figure 5.3 (left)

and A as defined in Figure 5.3 (right). If Fi behaves like a random function and

constants Gi are uniformly distributed, then for any message sampler MS, the key

recovery advantage Advkrp
MS(A) is expected to reach value 1 once the receive algorithm

was invoked on O(λ log λ) different inputs.

Proof. We model algorithm A(i) by experiment CC(S, η) from Figure 5.2, with S =

[0 .. λ− 1] and η = 1− (δ−1)(γ/2−1). The (pseudo-)randomness of Fi ensures that

elements of s ∈ S, here representing the possible values of the index ι (Line 04), are

picked uniformly at random. The probability η = 1−(δ−1)(γ/2−1) = δ+(1−δ)(γ/2)

arises through success of the CC experiment being equivalent to the Π.Ri outputting

x = ⊥. This occurs either:

• Through an early exit with ⊥ = Π.R(kR, y) at Line 02, which has probability δ.

• Else, continuing to Line 03 with ⊥ ≠ Π.R(kR, y) and triggering both Line 03

(with probability γ) and Line 05 (with probability 1/2, as Pr
[
kℓ

′[ι] ̸= kℓ[ι]
]

for

ι← Fi(t) is 1/2).

Applying Lemma 5.1 gives the expected number of messages to be sent as O(λ log λ).

98



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

Theorem 5.3. Let A be an adversary playing the UDR game (as in Figure 3.1,

right), such that A makes at most q queries to the receiver oracle Recv. The un-

detectability advantage of the subversion Π.Ri, as defined in Figure 5.3 (left), is

bounded by

AdvUDR
Π (A) ≤ 1− (1− γ)q.

Proof. Any adversary playing the UDR game against the subverted Π.Ri must, in

order to win, trigger x = ⊥ with a valid sender output (receiver input) y. More pre-

cisely, the adversary A must find y such that Π.R(kR, y) ̸= ⊥ but

Π.Ri(kR, y) = ⊥. Figure 5.4 (left) shows the (obviously) best adversarial strategy.

Even if the adversary can submit y such that ι← Fi(y) would be assigned in Line 04

(Figure 5.3), this is contingent on B(γ) succeeding in Line 03; thus Pr[x = ⊥] ≤ γ

in Line 05 (Figure 5.4). Clearly, detection adversary A (Figure 5.4, left) always re-

turns 1 when interacting with the unsubverted receiver algorithm, as always x ̸= ⊥.

Thus,

AdvUDR
Π (A) = |Pr[UDR1(A)]− Pr[UDR0(A)]| ≤ 1− (1− γ)q.

5.3.3 Active Attack

In this section we describe our second subversion attack. In contrast to the previous

attack, key recovery requires an active adversary, i. e., one who injects crafted ci-

phertexts into the regular transmission stream. Our ASA has the desirable property

(from the point of view of the subverter) that correctness is maintained.

We give an overview of our attack for the case of AEAD. (The generalisation to MAC

and PKE is immediate; for the generic version following our abstract syntax see Fig-

99



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

Proc A
00 (kS, kR)←$ Π.gen
01 repeat q times:
02 pick any x ∈ X
03 y ← Π.S(kS, x)
04 x← Recv(kS, y)
05 if x = ⊥:
06 return 0
07 return 1

Proc A
00 (kS, kR)←$ Π.gen
01 S ← {y}
02 ct = 0
03 while ct < q:
04 pick any x ∈ X
05 y ← Π.S(kS, x)
06 y′ ←$ Y \ S
07 if Π.R(y′) = ⊥:
08 ct← ct + 1
09 x← Recv(kS, y′)
10 S ∪← {y′}
11 if x ̸= ⊥:
12 return 0
13 return 1

Figure 5.4: Detection adversaries for Game UDR as in Figure 3.1. Left: For the
passive attack from Figure 5.3. Right: For the active attack from Figure 5.5.

ure 5.5.) A prerequisite of the attack is a keyed random permutation Pi of the AEAD

ciphertext space. The key is known exclusively to the subversion adversary. The

AEAD encryption algorithm S remains unmodified. For honestly generated cipher-

texts, the (subverted) algorithm Ri implements the unmodified AEAD decryption

routine R. This ensures correctness.

To start a key recovery attack, the subversion adversary waits for an honest cipher-

text c and replaces it with Pi(c). That is, the adversary suppresses the delivery of

c and instead injects a “randomised same-length version” of the ciphertext. By the

authenticity property of the AEAD scheme, the unmodified R algorithm would reject

this ciphertext. This is where the (subverted) Ri deviates from R: If any incoming

ciphertext is deemed invalid upon decryption with R, with the expectation that this

could be the case due to a KRA attack being in operation, Ri applies P −1
i to c and

tries to decrypt the result (with R). If R rejects, Ri rejects also (interpretation: c

was simply a random ciphertext, not injected by the KRA adversary). If however

R accepts, then Ri concludes that a KRA attack is in operation, and that it (Ri) is

100



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

supposed to leak key material.10 Observing that Ri just recovered the originally en-

crypted message m, we let Ri either deliver that message, or we let it return ⊥, i. e.,

indicate decryption failure. That way, if a message is delivered by Ri, it is always

correct. As in Section 5.3.2, we modulate key bits into the decision of delivering vs

rejecting.

The above should make clear how the attack works. Details, and the generic version,

are in Section 5.3.3.2. We note that a technical prerequisite of the attack is that for

valid ciphertexts c, Pi(c) should not also be a valid ciphertext. As P is a random

permutation, the standard AUTH and UF properties of AEAD and MAC ensure this.

However, the situation is different for PKE where it is easy to define schemes that

accept every ciphertext input, e. g., by outputting a valid but dummy message. We

resolve this technicality by requiring the mild assumption of ciphertext sparseness:

We say that a PKE scheme has a sparse ciphertext space if the decryption algorithm

makes an internal decision about the validity of an incoming ciphertext, with the

property that uniformly picked ciphertexts are deemed invalid with overwhelming

probability.

We studied a range of practically relevant PKE schemes and observe that all of them

satisfy the ciphertext sparseness demand. For reference we provide corresponding

details for OAEP and Cramer-Shoup encryption in Appendix A.3. We further ob-

serve that the general classes of plaintext-aware schemes [22] (see also Appendix A.4)

and of schemes with publicly verifiable ciphertexts [94] have this property as well.

We confirm also for all four of the NIST post-quantum cryptography round 3 final-

ists11, that are specifically designed to mask decryption failures by accepting every

ciphertext and outputting a random value rather than the rejection symbol, that
10Multiple options for this exist, for instance could the full kR be embedded into the returned m;

this would be powerful, but also has practical disadvantages that would hinder effectiveness. We
hence pursue a different, milder approach.

11Classic McEliece, CRYSTALS-KYBER, NTRU and SABER. Detailed information on the
submissions, in particular their specifications, are available at the NIST PQC website https:
//csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

101

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

they provide ciphertext sparseness: The mechanics of the decryption/decapsulation

algorithms are such that first an internal yet explicit ciphertext validity decision is

made and then either the correct or an independent, randomised value is output.

Our subversions can easily adapt to such specifications and be directly based on the

outcome of the validity check.

Lastly, we note that for the active attack there is no advantage to the subverted

receiver keeping state. This is because the subverted receiver reveals key bits only

when explicitly queried by the adversary – thus, the adversary is able to maintain all

necessary state. Note this is in contrast to our passive attack where the adversary

observes the receiver but does not interact with it, and ultimately thus the attack

could benefit mildly from the subversion Ri keeping state.

In the remaining part of this section, we define ciphertext sparseness, describe the

specification of our subversion and KRA adversary, and analyse their effectiveness.

5.3.3.1 Ciphertext Sparseness

We define ciphertext sparseness for a scheme Π as follows: We say that Π =

(Π.gen, Π.S, Π.R) is ciphertext ε-sparse if Pr [R(y) ̸= ⊥] ≤ ε for y ←$ Y. If ε is

negligibly small, we refer to the scheme as being ciphertext sparse. For AEAD

and MAC schemes, ciphertext sparseness is a corollary of the unforgeability (au-

thenticity) properties. In particular: an AEAD scheme that has Advauth
AEAD(A) ≤ ε

is ciphertext ε-sparse, as if Pr [R(y) ̸= ⊥] > ε for y ←$ Y, then an adversary who

simply chooses an element of Y uniformly at random would win the AUTH game

with probability greater than ε. Similarly, a MAC scheme with Advuf
MAC(A) ≤ ε

is ciphertext ε-sparse. As discussed above, ciphertext sparseness is a reasonable

assumption also for many practical PKE schemes.

102



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

Proc Π.Ri(kR, y)
00 kℓ

′ ← Gi

01 x← Π.R(kR, y)
02 if x ̸= ⊥:
03 return x
04 y′ ← P −1

i (y)
05 x′ ← Π.R(kR, y′)
06 if x′ = ⊥:
07 return ⊥
08 ι← Fi(y′)
09 if kℓ[ι] ̸= kℓ

′[ι]:
10 return x′

11 return ⊥

Proc A(i)
12 kℓ

′ ← Gi

13 while kℓ
′ incorrect:

14 pick any α
15 (y, β)← Send(α)
16 y′ ← Pi(y)
17 if y′ = y, jump to line 14
18 x← Recv(y′)
19 if x ̸= ⊥:
20 ι← Fi(y′)
21 kℓ

′[ι]← ! Gi[ι]
22 return kℓ

′

Figure 5.5: Active subversion of the receiver algorithm Π.R of a ciphertext ε-sparse
scheme Π (see the discussion at Section 5.3.3). Left: Decryption subversion as in
Section 3.2.1. Right: Key recovering adversary for game KRA as in Section 5.2.1.
The adversary needs to have no influence over messages (modelled by α; see the
discussion at Section 5.2.1). As before we let ! denote the inversion of a bit value.

5.3.3.2 Description of our Active Attack

We define our active subversion of the receiver algorithm of ciphertext-sparse scheme

Π in Figure 5.5 (left). It is parameterised by a large index space IR, a PRF (Fi)i∈IR ,

a PRP (Pi)i∈IR , and a family (Gi)i∈IR of random constants. (As in Section 5.3.2,

our analyses will assume that (Fi) and (Pi) and (Gi) are independent.) For the PRF

we require that it be a family of functions Fi : Y → [0 .. λ− 1] (that is: a pseudo-

random mapping from the output space to the set of bit positions of a leakage

key kℓ ∈ {0, 1}λ), for the PRP we require that it be a family of length-preserving

permutations Pi : Y → Y (that is: a pseudo-random bijection on the sender output

space), and for the constants we require that Gi ∈ {0, 1}λ (that is: a random element

of the set of leakage keys).

The idea of our attack is as follows. Lines Line 01 to Line 03 of Π.Ri ensure that au-

thentic receiver inputs are always accepted (no limitation on correctness). If however

a receiver input (sender output) y is identified as not valid, i. e., is unauthentic, then

103



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

a secret further check is performed: The original value y is mapped to an unrelated

value y′ using the random permutation (Line 04), and the result y′ is checked for

validity (Line 05). For standard (invalid) sender outputs y this second validity check

should also fail, and in this case algorithm Π.Ri rejects as expected (lines Line 06

and Line 07). The normally not attainable case that the second validity check suc-

ceeds is used to leak key bits. The mechanism for this (Line 08 to Line 11) is as in

our passive attack from Section 5.3.2, namely by communicating via accept/reject

decisions the positions where the bits of a hard-coded random reference value kℓ
′

and the to-be-leaked key kℓ differ.

The corresponding key recovery adversary crafts these required bogus receiver inputs

by obtaining a valid sender output12 y (Line 15) and modifies it in Line 16. The

information thus leaked by the validity checking routine is used to reconstruct target

leakage key kℓ in the obvious way (Line 19 to Line 21).

We establish the following statements about the key recoverability and undetectabil-

ity of our active subversion attack.

Theorem 5.4. For an ε-sparse scheme Π, let Π.Ri be defined as in Figure 5.5 (left)

and A as in Figure 5.5 (right). If Fi and Pi behave like random functions, and

constants Gi are uniformly distributed, then for any message sampler MS, the key

recovery advantage Advkra
MS(A) is expected to reach value 1 once the receive algorithm

was invoked on O(λ log λ) different inputs.

Proof. By the ciphertext ε-sparseness of the scheme Π, each invocation of algo-

rithm Π.Ri in an execution of attack A(i) has x ̸= ⊥ in Line 02 (Figure 5.5) with

probability ε and thus Line 04 is reached with probability 1 − ε. We model algo-
12Note that in the symmetric case, such authentic outputs are obtained by intercepting valid

communications between the sender and receiver; in the public key case, an adversary can easily
craft their own authentic outputs using the public key. We consider adversaries that have no
influence on message choices for the most powerful attack (hence the arbitrary value of α in Line 14);
adversaries who are able to utilise α (and β) may be even more effective.

104



5.3 Concrete Subversion Attacks via Acceptance vs. Rejection

rithm A(i) by the experiment CC(S, η) from Figure 5.2, with S = [0 .. λ− 1] and

η = (1− ε)/2. The (pseudo-)randomness of Fi ensures that elements of s ∈ S, here

representing the possible values of the index ι (Line 20), are picked uniformly at

random. The probability 1/2 arises through success of the CC experiment being

equivalent to the condition x ̸= ⊥ in Line 19. This occurs precisely when Π.Ri

returns x′ ̸= ⊥ in Line 10, which is conditional on Π.Ri reaching past Line 07. The

probability that x ̸= ⊥ in Line 19 is 1/2 as this is the probability that for any sender

output y′ and ι ← Fi(y′), kℓ[ι] ̸= Gi[ι] (Line 09). We now apply Lemma 5.1, which

gives us that the expected number of messages to be sent is O(λ log λ).

Theorem 5.5. Let A be an adversary playing the UDR game (as in Figure 3.1,

right), such that A makes at most q queries to the verification oracle Recv. If Pi

behaves like a random function, and the scheme Π is ciphertext ε-sparse, then the

undetectability advantage of the subversion Π.Ri, as defined in Figure 5.5 (left), is

given by Advudr
Π (A) ≤ 1− (1− ε)q.

Proof. Any detection adversaryA playing the UDR game against the subverted Π.Ri

must, in order to win, trigger Π.Ri(y) ̸= ⊥ with a bogus y. That is, a sender output

y with Π.R(kR, y) = ⊥ but Π.Ri(kR, y) ̸= ⊥. This will occur if y = Pi(y′), where

Π.R(kR, y′) ̸= ⊥. As i is chosen uniformly randomly from IR and P is a (pseudo-

)random function, the optimal strategy is to sample values of y′ and test whether

Recv(kR, y′) ̸= ⊥. Algorithm A in Figure 5.4 (right) shows this strategy. When A

interacts with the unsubverted receiver algorithm, we have that Pr[UDR1(A)] = 1 by

construction. When interacting with the subverted receiver algorithm, A returns x ̸=

⊥ by either triggering Line 02 or Line 10 of Π.Ri. By the ciphertext sparseness of

the scheme, Line 02 is triggered with probability 1− ε. Triggering Line 10 happens

with probability ≤ ε. Thus we have

105



5.4 Implementation

AdvUDR
Π (A) = |Pr[UDR1(A)]− Pr[UDR0(A)]| ≤ 1− (1− ε)q .

5.4 Implementation

We implemented our attacks in proof-of-concept Python code (for the specific case

of an AEAD scheme, as a representative case) to verify their functionality and

effectiveness. The particular AEAD scheme we attack is AES-GCM [60], using

black-box access to the implementation provided by [121]. We simulated both active

and passive attacks 10,000 times, and recorded the number of queries for successful

extraction of a 128-bit key (thus, ℓ = 128). Messages, nonces and associated data

were generated using the random.getrandbits method from the Crypto.Random

library. The plots in Figures 5.6 and 5.7 are of histograms showing the distribution

(in blue) of the recorded number of queries q, and (in red) the cumulative success

probability as a function of q. Note that the variable being measured (number of

queries) is a discrete value that is measured exactly.

Our results confirm the theoretical estimates from Theorems 5.2 and 5.4; in partic-

ular, the exponential success rate. While the attacks have different application and

success profiles, both reliably recover keys.

Passive. The expected number of calls to the transcript oracle for successful exfil-

tration is given by 2ℓ
η

∑ℓ
i=1

1
i (see proof of Thm. 5.2). We set δ = 0 and γ = 0.2 for

illustration. This gives us an expected value of q = 13910 compared to the recorded

mean of 13920.59. Alternatively, the result from Thm. 5.2 gives a key recovery ad-

vantage of ≈ 1/2 with q = 14000, compared to the recorded median of 13380. The

106



5.4 Implementation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·10−4

R
el

at
iv

e
Fr

eq
ue

nc
y

Passive Attack Implementation

1 1.5 2 2.5 3 3.5
·104

0

0.2

0.4

0.6

0.8

1

Transcript Oracle Queries q

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

of
Su

cc
es

sf
ul

K
ey

E
xfi

ltr
at

io
n

Figure 5.6: Results of running an implementation of the passive attack 10,000 times.
Key length ℓ = 128, and parameter δ = 0.1. Left axis: The blue histogram shows
the distribution of the number of queries required for successful key exfiltration. The
data has been sorted into 50 bins. Right axis: The red curve shows the cumulative
probability of successful key exfiltration against q.

107



5.4 Implementation

0

0.5

1

1.5

2

2.5

3
·10−3

R
el

at
iv

e
Fr

eq
ue

nc
y

Active Attack Implementation

400 600 800 1,000 1,200 1,400 1,600 0

0.2

0.4

0.6

0.8

1

Encryption Oracle Queries q

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

of
Su

cc
es

sf
ul

K
ey

E
xfi

ltr
at

io
n

Figure 5.7: Results of running an implementation of the active attack 10,000 times
with key length ℓ = 128. Left axis: The blue histogram shows the distribution of
the number of queries required for successful key exfiltration. The data has been
sorted into 50 bins. Right axis: The red curve shows the cumulative probability
of successful key exfiltration against q.

discrepancy is due to the exponential approximation in the proof.

Active. For the purposes of illustration, we set ε = 0. We assume that for AES-

GCM, Advauth
AEAD(A) ≈ 0 for any realistic adversary A. The expected number of

encryption calls for successful exfiltration is then ℓ
∑ℓ

i=1
1
i (see proof of Theorem 5.4).

This gives an expected value of q = 696 compared to the recorded mean of 695.05.

Alternatively, the result from Thm. 5.4 gives a key recovery advantage of ≈ 1/2 with

q = 710 compared to the recorded median of 670. Again, the difference is due to

exponential approximation.

108



5.5 Mitigating Subversion

5.5 Mitigating Subversion

As the discussion of cryptographic (“semantics driven”) vs.non-cryptographic (“tech-

nology driven”) subversion in Section 3.2.4 shows, achieving security against ad-

versaries mounting ASAs is difficult, and essentially reduces to assuming trust in

particular components or architectures. The three main theoretical approaches to

preventing or mitigating against ASAs in the literature, discussed above in Sec-

tion 3.4.4, are reverse firewalls, self-guarding protocols and watchdogs. We note

that these approaches apply in the main to asymmetric primitives, and so (appro-

priately adapted to target receiver algorithms) would be suitable to defend against

our attack against asymmetric schemes in Section 2.3.6.

Defending against our attacks on AEAD and MACs is more difficult. We note

that the watchdog model applies in theory, while reverse firewalls and self-guarding

approaches are ineffective against symmetric primitives. The watchdog model con-

siders splitting a primitive into constituent algorithms that are run as subroutines

by a trusted “amalgamation” layer. This allows the constituent algorithms to be

individually checked and sanitised. Considering the verification algorithm of a MAC

scheme as an example, the canonical approach of recalculating and checking the tag

is modelled by letting the verification algorithm be a trusted amalgamation of the

tagging algorithm with an identity test. The tagging algorithm typically runs a

hash function as a subroutine, and so applying results from [65, 16, 57] would allow

for the claim that the verification algorithm can be made subversion-resilient in the

watchdog model. The assumption of a trusted amalgamation is precisely what makes

our attack infeasible, but this assumption is questionable in real world settings. In

particular, as we discussed above, the presence of non-cryptographic vectors makes

this assumption unlikely to hold in practice.

Lastly, we note that none of the theoretical approaches are fully satisfying, requiring

109



5.6 Conclusion

strong or impractical assumptions. Indeed, it is telling that there are no implemen-

tations of subversion-resilient primitives to date, although some recent work seems

promising in this regard [37, 26]. The best defense seems to be the unglamorous

task of minimising risk by implementing a variety of control mechanisms across the

whole infrastructure, in a process of security management. In particular: software

implementations could be protected by measures including regular integrity tests

and secure boot, hardware implementations could be protected by technical con-

trols such as threshold implementations or testing amplification [62], and both cases

can be strengthened by relying on open source implementations and verified sup-

ply chains. Whilst such measures can go some way towards minimising risk, we

emphasise that there are no security guarantees.

5.6 Conclusion

In this chapter we described a class of attack targeting the receiving party, a class

of ASA that was missed by previous work. Our class of attack applies to any

scheme meeting the syntax introduced in Chapter 3 – in particular, AEAD, MACs

and PKE. We conclude this chapter with some remarks regarding our ASA when

applied to each scheme in turn. In Chapter 7 we discuss defending against our

proposed subversion attacks.

5.6.1 AEAD

Our results stand in opposition to previous work [23, 51, 20] which proposed subver-

sion resilience of a large class of AEAD schemes to which many if not all real-world

constructions such as GCM, CCM and OCB belong, as long as their nonces are

generated deterministically via a shared state maintained by both encryptor and

110



5.6 Conclusion

decryptor. The crucial observation to resolve this apparent contradiction is that

previous work has assumed, besides explicitly spelled out requirements like unique-

ness of ciphertexts and perfect decryptability, implicit notions such as integrity of

ciphertexts. In the ASA setting for AEAD where undermining the confidentiality

of a scheme is the primary goal of an adversary, it seems just as natural to assume

that the adversary is also willing to compromise the integrity guarantees as well.

The internal details of our attacks (described in Sections 5.3.2.1 and 5.3.3.2) are such

that we require a PRF (Fi)i∈IR to uniformly hash ciphertexts to bit positions. In

the AEAD setting, this requirement can be dropped where the AEAD scheme meets

the widespread design goal of IND$ security [102], i. e., ciphertexts indistinguishable

from random bits. Combined with the fact that symmetric keys are typically 256

bits, the first 8 bits of the (uniformly distributed) ciphertexts are sufficient to point

to the bit position. This allows for a reduced footprint (and thus significantly adds

to the practicability of the attack for an adversary).

5.6.2 MACs

Applying our attack to a MAC leaks the secret key to an adversary, allowing them

to forge any tag. This is an attractive goal for an adversary in real world settings,

as once integrity has been compromised this can often be leveraged to perform

any number of other attacks, for example: enabling attacks against (“encrypt-then-

MAC”) confidentiality; getting users to accept compromised (authenticated) soft-

ware updates; injecting malicious packets into (secured) communication streams to

de-anonymise users.

111



5.6 Conclusion

5.6.3 PKE

Our ASA attacks on PKE require a fairly large number of ciphertexts to be sent

and observed to reject erroneously in order for the private key to be exfiltrated

(e. g., 14000 to achieve a success probability of approximately 0.5 for the parameters

considered in Section 5.4). In practice, this condition will be met: consider a server

that hosts traffic for a large number of clients. The server will have a private/public

key pair which is held static over long periods of time. Observing the server receive

ciphertexts from many clients will allow an adversary to witness a large enough

amount of traffic to recover the server’s private key, rendering all communications

between clients and server compromised.

Due to the high overheads associated with PKE, symmetric encryption is better

suited to bulk communication. In most practical settings, PKE is used to establish

a shared secret between the sender and receiver, so that the shared secret may be

used as a key for communicating via symmetric encryption. This notion of sending

keys for symmetric encryption via public key methods is formalised as a KEM. We

show how our notions of subversion apply also to KEMs in Appendix A.2.1. KEMs

are typically used together with a data encapsulation mechanism (DEM) in a so-

called hybrid encryption scheme to PKE-encrypt messages. We give the definition

of a DEM in Appendix A.2.2 for completeness.

5.6.3.1 DPKE

We note that as DPKE (as discussed in Chapter 4) represents a special case of PKE,

our results apply there too. Exfiltrating the receiver’s key would allow the adversary

to break the confidentiality of encrypted messages, which in turn undermines the

deniability of the scheme. If the adversary knows which message was originally sent,

112



5.6 Conclusion

then the sender is unable to later claim that they sent an alternative, fake, message.

The absence of any practical DPKE schemes makes this a hypothetical scenario.

113



Chapter 6

Partitioning Oracles

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . 118

6.2 Background: Polynomial Hashing . . . . . . . . . . . . . . 119

6.2.1 MACs from Polynomial Hashing . . . . . . . . . . . . . . . 119

6.2.2 AEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.3 AES-GCM . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.4 Key Commitment . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.5 Weak Key Forgeries . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Partitioning Oracle Attacks . . . . . . . . . . . . . . . . . 125

6.3.1 Formal Definition of a Partitioning Oracle . . . . . . . . . . 128

6.3.2 Multi-Key Contingent Forgeries . . . . . . . . . . . . . . . . 129

6.4 Partitioning Oracle Attacks from Weak Key Forgeries . 130

6.4.1 Targeted Key Contingent Forgery Testing ℓ keys . . . . . . 133

6.4.2 Targeted Key Contingent Forgery Passing Format Checks . 135

6.5 Partitioning Oracle Attacks against Shadowsocks . . . . 136

6.5.1 Our Attack: Partitioning Oracles from Weak Key Forgeries 139

6.5.2 Other Proxy Servers (VPNs) . . . . . . . . . . . . . . . . . 142

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

In this chapter, we continue the theme of powerful adversaries undermining privacy

of users. Whereas earlier chapters focussed on the powerful adversaries who are

114



motivated to carry out mass surveillance, this chapter considers the related aim of

targeting users attempting to bypass internet censorship. We consider the specific

scenario of users accessing the wider, free, internet via a proxy server. We note that

the techniques and results we develop are of wider interest than the particular sce-

nario considered. Our focus is a particular class of attack that allows an adversary

to test whether a ciphertext was encrypted using any of a particular set of encryption

keys using only one decryption query. Such an attack is known as a partitioning ora-

cle attack, and was introduced by Len et al. (Usenix’21) as a new class of decryption

error oracle which, conceptually, takes a ciphertext as input and outputs whether or

not the decryption key belongs to some known subset of keys. Partitioning oracle

attacks allow for a more efficient brute force search of the key space than querying

one key per ciphertext, leading to practical attacks against low entropy keys (e. g.,

those derived from passwords). We discuss the applications to proxy servers and

other practical scenarios.

Our main contribution is to show that weak key forgeries against polynomial hash-

based AE schemes can be leveraged to launch partitioning oracle attacks. Weak

key forgeries were given a systematic treatment in the work of Procter and Cid

(FSE’13), who showed how to construct MAC forgeries that effectively test whether

the decryption key is in some (arbitrary) set of target keys. Consequently, it would

appear that weak key forgeries naturally lend themselves to constructing partition

oracles; we show that this is indeed the case.

Lastly, our attacks in Chapter 5 relied on the assumption that an adversary has

access to a decryption oracle – that is, can observe whether a receiver’s algorithm

implementation accepts or rejects a ciphertext. In this chapter, we give an illustra-

tion of how decryption oracles occur in practice, supporting the practicality of our

attacks in Chapter 5.

115



6.1 Introduction

6.1 Introduction

Authenticated Encryption (AE) schemes are designed to provide the core properties

of confidentiality and message integrity against chosen-ciphertext attacks (CCA). A

particularly important practical class of AE schemes offer Authenticated Encryp-

tion with Associated Data (AEAD); AEAD schemes are widely standardised and

implemented due to their efficiency and security. As a result of their widespread

adoption, AEAD schemes have in some cases been used in contexts that require ad-

ditional properties beyond standard CCA security. One particular property that has

attracted recent attention is key-commitment [74, 56, 3], also known as robustness

[63], which (informally) states that a ciphertext will only decrypt under the key that

was used to encrypt it.

A lack of key-commitment in particular AEAD schemes was exploited by Len et al.

who introduced a new class of attack they call “partitioning oracle attacks” [89].

Conceptually, a partitioning oracle takes as input a ciphertext and outputs whether

the decryption key belongs to some known subset of keys. Len et al. first construct

so-called “splitting ciphertexts” for AES-GCM and ChaCha20Poly1305 that decrypt

under every key in a set of target keys. This splitting ciphertext is submitted to a

decryption oracle; on observing whether the ciphertext is accepted or rejected, the

adversary learns whether or not the decryption key is in the set of target keys. As

a result, the adversary is able to query multiple keys simultaneously, speeding up

a brute force attack. Combining this with low entropy keys, such as those derived

from passwords, results in practical attacks. Len et al. give a number of examples

including against Shadowsocks [109], a censorship evasion tool, where the attack

results in key recovery.

The concept of weak keys shares some similarities with that of partitioning oracles.

While there is no precise definition in the literature, the concept is intuitively clear;

116



6.1 Introduction

Handschuh and Preneel [75] describe a weak key as a key that results in an algorithm

behaving in an unexpected way (that can easily be detected) – the idea is that a weak

key can be tested for with less effort than brute force. Procter and Cid [100] give

a framework that neatly captures weak key forgeries (forgeries that are valid if the

key is “weak”), which generalised previous attacks against polynomial hash-based

message authentication codes (MACs) by Handschuh and Preneel [75] and Saarinen

[107]. Procter and Cid’s results showed that for these cases the term is a misnomer:

in fact, for a polynomial hash-based MAC, any set of keys can be considered weak

using their forgery techniques.

Abstractly, weak key forgeries and splitting ciphertexts share the same structure:

ciphertexts whose successful decryption is contingent on the user’s key being in a set

of target keys. This suggests that weak key forgeries are a good candidate to carry

out partitioning oracle attacks; we show that this is indeed the case. As in previous

chapters, we are interested in powerful adversaries, modelling ‘state level actors’

who present the most sophisticated capabilities and who are able to access resources

at a level of magnitude greater than non-state actors.1 However, where earlier

chapters focussed on the powerful adversaries who are motivated to carry out mass

surveillance, this chapter considers the related aim of targeting users attempting to

bypass internet censorship. We consider the specific scenario of users accessing the

wider, free, internet via a proxy server. With that aim in mind, we first generalise the

attack formalisation of Len et al. to allow the adversary to act as a machine-in-the-

middle, in a more realistic reflection of an attacker’s capabilities. Our model of the

adversary’s capabilities and strategy is informed by observed adversarial strategies

against censorship evasion [31, 115].

As a result we obtain a more abstract definition that encompasses weak key forgeries

and splitting ciphertexts. We show how to carry out a partitioning oracle attack
1See the discussion at Section 1.1.

117



6.1 Introduction

using weak key forgeries, and discuss some practical applications of the attack. An

advantage of our attack is the control that an adversary obtains over underlying

plaintexts, allowing for partitioning oracle attacks in settings that are resistant to

the attack of [89], in particular where there are format requirements on underlying

plaintexts – including format requirements that are designed to render schemes key-

committing. Our results reinforce the conclusions of [89], especially on the danger of

deriving encryption keys from user-generated passwords. Furthermore, our results

suggest that resistance to weak key forgeries should be considered a related design

goal to key-commitment, particularly in settings that are vulnerable to partitioning

oracle attacks. Concretely, our results demonstrate – in contrast to the suggestions

of prior work – that adding structure to underlying plaintexts (e.g. packet headers

that prefix every plaintext message, or an appended block of all zeros) is not a

sufficient mitigation against partitioning oracle attacks.

6.1.1 Structure of the Chapter

We begin by providing the relevant background material on polynomial hash-based

schemes in Section 6.2. Partitioning Oracle Attacks are introduced in Section 6.3,

and our extension based on Weak Key Forgeries in Section 6.4. Section 6.5 describes

our experiments with Shadowsocks, as well as other protocols. The chapter ends

with some concluding remarks in Section 6.6.

This chapter comprises:

Marcel Armour and Carlos Cid. “Partition Oracles from Weak Key Forg-

eries”. In: Cryptology and Network Security. Ed. by Mauro Conti, Marc

Stevens, and Stephan Krenn. Cham: Springer International Publishing,

2021.

118



6.2 Background: Polynomial Hashing

6.2 Background: Polynomial Hashing

MACs (see Section 2.3.4) are a symmetric cryptographic primitive that allows two

parties sharing a secret key to communicate with the assurance that their messages

have not been tampered with. Many popular MAC schemes are constructed from

universal hash functions that are realised by polynomial evaluation; such MACs

based on polynomial hashing are discussed in Section 6.2.1. They are often used to

provide the authentication component for AEAD schemes, which are discussed in

Section 6.2.2, where we give an overview of the two most widely used polynomial

hash based AEAD constructions, McGrew and Viega’s Galois/Counter Mode (GCM)

[91] and Bernstein’s ChaCha20-Poly1305 [30].

6.2.1 MACs from Polynomial Hashing

A polynomial hash-based authentication scheme is built on a family of universal hash

functions that are based on polynomial evaluation. It takes as input an authentica-

tion key hk and message m (consisting of plaintext or ciphertext blocks depending

on context). Let m = m1 ∥ · · · ∥ m|p| ∥ m|p|+1 with m|p|+1 = len(m) and all mi con-

sidered as elements of a field F (typically F2n), and Gm(x) be the polynomial in F[x]

defined as Gm(x) = ∑|p|+1
i=1 mix

|p|+2−i. If we also consider hk ∈ F, the polynomial

hash Hhk(m) of m is calculated by evaluating Gm(x) at hk, i. e.,

Hhk(m) := Gm(hk) =
|p|+1∑
i=1

mihk|p|+2−i ∈ F .

The hash value is usually encrypted with a pseudo-random one-time pad, to provide

the output authentication tag.

The underlying properties of polynomials are inherited by the hash function and

119



6.2 Background: Polynomial Hashing

thus the authentication scheme; in particular, the fact that adding a zero valued

polynomial will not change the value of the hash (which gives rise to “weak key”

forgeries, discussed in Section 6.2.5) and the fact that it is possible to construct

a polynomial that passes through a set of given points (giving rise to multi-key

collisions, discussed in Section 6.2.4).

6.2.2 AEAD

In this section we consider two specific instantiations of AEAD schemes. See the

definitions at Section 2.3.5 for our syntax. A common paradigm for constructing

AEAD schemes is to use an Encrypt-then-MAC (EtM) construction with a stream

cipher for encryption and an authentication component from a polynomial based

universal hash function. Recall that in our notation, the encryption algorithm of

an AEAD scheme returns a single ciphertext c. For an AEAD scheme derived

from an EtM construction, output ciphertexts take the form c = (C, τ) consisting

of a constituent encryped component C and tag component τ . We now give a

brief overview of the most widely adopted and standardised schemes: McGrew and

Viega’s AES Galois/Counter Mode (AES-GCM) [91] and Bernstein’s ChaCha20-

Poly1305 [30, 99].

6.2.3 AES-GCM

We briefly discussed AES-GCM in Section 5.2.3; for this chapter we require a more

detailed exposition in order to clearly describe weak key forgeries. AES-GCM en-

cryption takes as input: an AES key k, a nonce n, plaintext p = p1 ∥ · · · ∥ p|p|

and associated data d = d1 ∥ · · · ∥ d|d|. The key is 128, 192 or 256 bits long, the

nonce n should preferably be 96 bits long although any length is supported. For

each i, |pi| = |di| = 128 except for perhaps a partial final block. With this input,

120



6.2 Background: Polynomial Hashing

AES-GCM returns a ciphertext C = C1 ∥ · · · ∥ C|p| (the same length as the plain-

text) and an authentication tag τ . From here on, we will omit associated data for

simplicity. The plaintext is encrypted using an instance of the AES in counter mode,

under key k with counter value starting at CTR1. If the nonce is 96 bits long the

initial counter value (CTR0) is n ∥ 0311, otherwise it is a polynomial evaluation-

based hash of n after zero padding (using the hash key described below). For each

i, CTRi = inc(CTRi−1), where inc(·) increments the last 32 bits of its argument

(modulo 232).

The authentication tag is computed from GHASH, a polynomial evaluation hash

(in F2128), described below. First, the ciphertext C is parsed as 128-bit blocks

(with partial final blocks zero padded) and each block is interpreted as an element

of F2128 . We denote by ℓ an encoding of the length of the (unpadded) ciphertext

and additional data. The hash key hk is derived from the AES block cipher key:

hk = Ek(0128). The hash function GHASH is then computed as:

Hhk(C) = ℓ · hk ⊕ C∗
|p| · hk2 ⊕ C|p|−1 · hk3 ⊕ · · · ⊕ C2 · hk|p| ⊕ C1 · hk|p|+1, (6.1)

where all operations are in F2128 , and C∗
|p| denotes the zero-padded last block. The

authentication tag is given by: τ = Ek(CTR0)⊕Hhk(C).

ChaCha20-Poly1305. Poly1305 is similar to GHASH, and to form AEAD

schemes it is most commonly combined with the ChaCha20 stream cipher [29],

although Poly1305-AES is also an option [30]. For concreteness, we will give a

description of ChaCha20-Poly1305 and note that the differences are trivial.

ChaCha20-Poly1305 encryption takes as input: a 32-byte ChaCha20 key k, a 12-byte

nonce n, plaintext p and additional data d. With this input, ChaCha20-Poly1305

returns a ciphertext C (the same length as the plaintext) and an authentication tag τ

of length 16 bytes. From here on, we will omit the associated data for simplicity.

121



6.2 Background: Polynomial Hashing

First, the plaintext is divided into 64 byte blocks, except perhaps for a partial final

block, and encrypted using the ChaCha20 stream cipher, under key k.

The authentication tag is next computed from a polynomial evaluation hash in the

finite field F2130−5. The ciphertext to be hashed is divided into 16-byte blocks with

any partial final block zero-padded to 16 bytes. We denote by ℓ an encoding of

the (unpadded) ciphertext and additional data. Each block is encoded as an integer

modulo 2130−5 by first appending 0x01 to each block, and interpreting the resulting

block as a little-endian integer Xi.

The authentication tag is computed from a polynomial evaluation hash (in F2130−5).

First we derive the hashing key r and the pseudo-random one time pad s: the first

32 bytes of hk = Ek(n0 ∥ n) is divided into two 16-byte strings r̃ and s. Here n0

represents 0 encoded as a 4-btye little-endian integer.

The hashing key r is obtained from the string r̃ by setting some of the bits to zero

in a process referred to as “clamping”; we gloss over the specific details. The hash

function is then computed as

Hr(C) = ℓ · r ⊕ C∗
|p| · r

2 ⊕ C|p|−1 · r3 ⊕ · · · ⊕ C2 · r|p| ⊕ C1 · r|p|+1,

where all operations are in F2130−5, and C∗
|p| denotes the last zero-padded block. The

authentication tag is given by:

τ = (s⊕Hr(C)) mod 2128 ,

where s and Hr(C) are interpreted as elements of F2128 , and the result as an integer

modulo 2128.

122



6.2 Background: Polynomial Hashing

6.2.4 Key Commitment

A committing AE scheme is one which satisfies the property of key commitment,

which (informally) states that a ciphertext will only decrypt under the key that was

used to encrypt it. Equivalently, for a committing AE scheme, it should be infea-

sible to find a ciphertext that will decrypt under two different keys. Security goals

for committing AE were first formalised by Farshim et al. [63] under the name “ro-

bustness”. Although key commitment is not part of the design goal of AE schemes,

there are natural scenarios where a lack of key commitment results in security is-

sues. Dodis et al. [56] and Grubbs et al. [74] show how to exploit non-committing

AE schemes in the context of abuse reporting in Facebook Messenger. Albertini et

al. [3] give some further practical examples where a lack of key commitment leads

to practical attacks, e. g., in the setting of paywalled subscription material where a

malicious publisher might prepare a ciphertext that decrypts to different content for

different users.

Generic AE solutions, the so-called generic composition constructions such as Encrypt-

then-MAC, can provide key-commitment, as shown by Farshim et al. [63] who sug-

gested using a keyed hash function such as HMAC [18] for authentication. However,

if a key-committing scheme is required for security in some particular setting, then

performance considerations may mean that switching to e. g., encrypt-then-HMAC

is not practical. This is illustrated by the choice of Facebook Messenger to use AES-

GCM to encrypt message attachments despite work showing that this was insecure.

Albertini et al. [3] propose two generic fixes that minimise the changes needed to add

key-commitment to widely deployed, highly efficient schemes such as AES-GCM:

1. Padding Fix. Prepend a constant string to messages before encrypting; check

for the presence of the constant string after decrypting. This fix is also given

in an early draft of an OPAQUE protocol RFC [87], and discussed in [89]. This

123



6.2 Background: Polynomial Hashing

solution – essentially adding redundancy to the message – is not generically

secure and must be analysed per scheme. Albertini et al. [3] perform this

analysis for AES-GCM and ChaCha20-Poly1305, showing that in both cases

the resulting scheme is key-committing.

2. Generic Fix. From a given key k, derive an encryption key kenc = Fenc(k)

and a commitment to the key kcom = Fcom(k). Here Fenc and Fcom are col-

lision resistant hash functions. Ciphertexts for the resulting key-committing

scheme consist of a regular ciphertext (for the underlying AEAD scheme) to-

gether with the commitment to the key. Albertini et al. [3] show that this

construction provides key-commitment, if the functions Fenc and Fcom used

to derive the encryption key and commitment are collision resistant pseudo-

random functions.

6.2.5 Weak Key Forgeries

In symmetric cryptography, a class of keys is called a weak key class if the algorithm

behaves in an unexpected way when operating under members of that class, and

this behaviour is easy to detect. In addition, identifying that a key belongs to

such a weak key class should require trying fewer than N keys by exhaustive search

(or verification queries), where N is the size of the class [75]. In the context of

polynomial hash-based authentication schemes, e.g. the GCM mode, Handschuh and

Preneel [75] and Saarinen [107] identified several weak key classes. In [100], Procter

and Cid proposed a generic framework to mount forgery attacks against polynomial-

based MAC schemes based on weak keys. Their framework encompasses the previous

forgery attacks from [75] and [107], as well as the earlier Joux’s Forbidden Attack

[82], and is based on a malleability property present in polynomial-based MAC

schemes.

124



6.3 Partitioning Oracle Attacks

6.2.5.1 Procter and Cid’s Weak Key Forgery Framework

If Hhk is a polynomial hash under key hk and m is a message input, let Hhk(m) =

Gm(hk), where Gm(x) = ∑|p|+1
i=1 mix

|p|+2−i ∈ F[x] and hk ∈ F (as in Section 6.2.1).

Now let Q(x) = ∑|p|+1
i=1 qix

|p|+2−i ∈ F[x] be a polynomial with constant term zero,

such that Q(H) = 0. Then

Hhk(m) = Gm(hk) = Gm(hk) + Q(hk) = Gm+q(hk) = Hhk(m + q),

where q = q1 ∥ q2 ∥ . . . ∥ qℓ and the addition m+q is done block-wise2. It follows that

given a polynomial Q(x) satisfying these properties, it is straightforward to construct

collisions for the hash function. In fact, we have that Q(x) is in the ideal ⟨x2−hkx⟩,

and any polynomial in this ideal can be used to produce collisions. On the other

hand, collisions in the hash function correspond to MAC forgeries, by substituting

the original message for the one that yields a collision in the polynomial hash. Thus

this method allows an adversary to create forgeries when they have seen a tuple of

(nonce, message, tag), by simply modifying the message, as above. Saarinen’s cycling

attacks [107] are a special case of this attack. Forgeries for GCM and variants are

presented in [100]. Later, an efficient method for constructing forgery polynomials

which have disjoint sets of roots (i.e. keys) was proposed in [1].

6.3 Partitioning Oracle Attacks

Partitioning oracles, introduced by Len et al. [89] are a class of decryption error

oracles which, conceptually, take a ciphertext and return whether the decryption

key belongs to some known subset of keys. This allows an adversary to speed

up an exhaustive search by querying multiple keys at once; in effect, partitioning
2The shorter message is zero-padded if required.

125



6.3 Partitioning Oracle Attacks

the key space. The approach of [89] relies on two conditions: (1) the non-key

committing property of polynomial hash-based AE schemes is exploited to craft

targeted “splitting” ciphertexts that will decrypt under multiple keys; and (2) a

decryption oracle that reveals whether decryption (with the user’s key) of such a

splitting ciphertext succeeds or not.

The partitioning oracle attack of Len et al. proceeds as follows. They construct a

ciphertext ĉ that decrypts under every key in a set of target keys K∗ = {k1, · · · , kℓ}

by constructing a linear equation whose variables are the blocks of ciphertext; ĉ

is the solution to the equation. We describe the technique using AES-GCM for

concreteness.

Given K∗ and nonce n, first derive the associated GHASH key hki = Eki
(0n) for

each ki ∈ K∗. Then construct the linear equation

τ = C1 · hk
|p|−1
i ⊕ · · · ⊕ C|p|−1 · hk2

i ⊕ ℓ · hki ⊕ Eki
(n ∥ 0311) ,

which is arrived at by assigning hki to hk in Equation (6.1) and substituting the

result into the expression for the tag T = Hhk(C) ⊕ Eki
(CTR0). The result is a

system of ℓ equations in ℓ unknowns which can be solved; this can be done more

efficiently using a clever trick (fixing τ and adding one block of ciphertext as a new

variable, giving a Vandermonde matrix). We refer the reader to [89] for further

detail.

Abstractly, a partitioning oracle will (in the optimal case) allow a binary search of

the key space, giving a logarithmic improvement over naïve exhaustive search. This

requires being able to query half the keys in the key space. In practice however,

there is a limit to the number of keys that can be queried at once – e. g., for AES-

GCM, messages are required to be less than approx. 64GB (239− 256 bits [59]), and

applications may impose further restrictions depending on context. Nevertheless, as

126



6.3 Partitioning Oracle Attacks

shown in [89], it is still possible to launch practical attacks by combining partitioning

oracles with knowledge of non-uniform key distributions, which arise in particular

when human memorable passwords are used to derive keys, and can be estimated

from password breaches [96].

We note that the conditions for a partitioning oracle attack can be satisfied with

weak key forgeries, following the work of Procter and Cid [100] (see Section 6.2.5).

Weak key forgeries require a valid ciphertext to construct the forgery; a crucial dif-

ference to [89], which considers adversaries that only have access to a decryption

oracle. In practice this is a limitation of the adversary that does not tally with

observed adversarial strategies against censorship evasion [31, 115]. We thus ex-

tend the model by allowing an adversary to obtain valid ciphertexts from chosen

plaintexts, a standard adversarial model for AE. In fact, this assumption is stronger

than required; as we later show, adversaries with only “machine-in-the-middle” ca-

pabilities can carry out effective partitioning oracle attacks using weak key forgeries.

Known and chosen plaintext capabilities lead to more powerful attacks, as we briefly

describe in Section 6.5.1.

Example: Generic Encryption. Consider a client and server communicating

with end-to-end encryption, using an AEAD scheme and a shared key k derived from

password pw. The client encrypts message p (together with any associated data d),

using key k and nonce n to obtain a ciphertext tag pair (C, τ)← AEAD.enc(k, n, d, p).

The conditions for a partitioning oracle attack are met if the server reveals whether

or not decryption succeeds; it might for example output an observable error message,

or reveal the information via a side-channel.

Example: Password-authenticated Key Exchange. A Password Authenti-

cated Key Exchange (PAKE) is a cryptographic key exchange protocol in which a

client authenticates to a server using a password pw that the server has stored (as

127



6.3 Partitioning Oracle Attacks

the equivalent of a hash). Len et al. show how to launch a partitioning oracle attack

against OPAQUE, a modern PAKE protocol currently undergoing standardisation.

OPAQUE uses an AEAD scheme as a component, and Len et al. show the necessity

of the AEAD scheme being key-committing by considering deviations from the spec-

ification in some early prototype implementations. OPAQUE works by composing

an oblivious PRF with an authenticated key exchange; Len et. al.’s attack relies on

the fact that the server sends a ciphertext C encrypted using the password during

an execution of the protocol.

6.3.0.1 Related Work

Bellovin and Merritt introduced partition attacks against encrypted key exchange:

trial decryption of intercepted traffic allowed multiple keys to be eliminated at once

[25]. Other oracle attacks include padding oracles [35, 113] or other format oracles

[5, 4, 68]; these attacks are similar to but distinct from partitioning oracles as they

recover information regarding plaintexts rather than secret keys.

6.3.1 Formal Definition of a Partitioning Oracle

Following [89], we consider settings in which an attacker targets AE and seeks to

recover a user’s key k ∈ K, where the key is deterministically derived from secret

password pw ∈ D. We write K(D) ⊆ K for the set of keys derived from passwords

and k(pw) ∈ K(D) to denote a key derived from password pw. The attacker is

given access to an interface that takes as input ciphertext c, and outputs whether or

not the ciphertext decrypts correctly (passing any format checks) under the user’s

key k(pw). The attacker is further given access to an interface that will encrypt

plaintexts of the attacker’s choosing and return the ciphertext. This set-up rep-

resents a “partitioning oracle” if it is computationally tractable for the adversary,

128



6.3 Partitioning Oracle Attacks

given any set K ⊆ K(D), to compute a value (n, d, ĉ) that partitions K into two

sets K∗ and K \K∗, with |K∗| ≤ |K \K∗|, such that AEAD.dec(k, n, d, ĉ) ̸= ⊥ for

all k ∈ K∗ and AEAD.dec(k, n, d, ĉ) = ⊥ for all k ∈ K \ K∗. We call such a ĉ a

splitting ciphertext and refer to |K∗| as the degree of ĉ. We distinguish between

targeted splitting ciphertexts, where the adversary can select the secrets in K∗, and

untargeted attacks.

In general, the definition can be applied to arbitrary cryptographic functionalities by

considering a Boolean function f that takes as input a string and a key, returning 1

if some cryptographic operation succeeds and 0 otherwise. The attacker has access

to an interface that takes as input a bit string V , and uses it plus k to output the

result of some Boolean function fk : {0, 1}∗ → {0, 1}. Here fk is an abstraction

of some cryptographic operations that may succeed or fail depending on k and

V ; set fk(V ) = 1 for success and fk(V ) = 0 for failure. We note that partitioning

oracles may output more than two possible outputs, for example if there are multiple

distinguishable error messages, following [36].

6.3.2 Multi-Key Contingent Forgeries

Central to launching a partitioning oracle attack is the ability to craft splitting

ciphertexts. This is formalised in the notion of “Targeted Multi-Key Contingent

Forgeries”, which quantifies an adversary’s advantage in crafting splitting ciphertexts

against a particular AEAD scheme, with oracle access to encryption. Our definition

is a slight generalisation of the “Targeted Multi-Key Collision” notion from [89]; their

notion can be obtained from ours by removing the adversary’s encryption oracle.3

Targeted multi-key contingent forgery resistance (TMKCR) security is defined by
3We hope the reader forgives our abuse of nomenclature; although we refer to both notions

as TMKCR, ours is a (slight) generalisation of Len et al.’s, and we use the term “key contingent
forgery” to encompass both.

129



6.4 Partitioning Oracle Attacks from Weak Key Forgeries

the game given in Figure 6.2. It is parameterised by a scheme AEAD and a tar-

get key set K∗ ⊆ K. A possibly randomised adversary A is given input a target

set K∗ and must produce nonce n∗, associated data d∗ and ciphertext C∗ such that

AEAD.dec(n∗, d∗, C∗) ̸= ⊥ for all k ∈ K∗. We define the advantage via

Advtmk-cr
AEAD,K∗(A) = Pr

[
TMKCRA

AEAD,K∗ ⇒ 1
]

(6.2)

where “TMKCRA
AEAD,K∗ ⇒ 1” denotes the event thatA succeeds in finding n∗, d∗, C∗

that decrypt under all keys in K∗. The event is defined over the coins used by A.

We can define a similar untargeted multi-key contingent forgery resistance goal,

called MKCRA
AEAD,κ. The associated security game, given in Figure 6.2, is the same

except that the adversary gets to output a set K∗ of its choosing in addition to the

nonce n∗, associated data d∗, and ciphertext C∗. The adversary wins if |K∗| ≥ κ

for some parameter κ > 1 and decryption of n∗, d∗, C∗ succeeds for all k ∈ K∗. We

define the advantage via

Advmk-cr
AEAD,κ(A) = Pr

[
MKCRA

AEAD,κ ⇒ 1
]

(6.3)

where “MKCRA
AEAD,κ ⇒ 1” denotes the event that A succeeds in finding K∗ and

n∗, d∗, C∗ that decrypt under all keys in K∗. The event is defined over the coins

used by A.

6.4 Partitioning Oracle Attacks from Weak Key Forgeries

At a high level, our attack works as follows: Construct key-contingent forgeries

from captured ciphertexts using weak-key forgery techniques and submit these to a

decryption oracle; that is, an oracle that reveals whether a ciphertext is accepted or

rejected. The weak key forgery ensures that the ciphertext will only be accepted if

130



6.4 Partitioning Oracle Attacks from Weak Key Forgeries

Game TMKCRA
AEAD,K∗

00 require K∗ ⊂ K
01 k ←$ K∗, N ← ∅
02 (n∗, d∗, C∗)← AEnc(K∗)
03 stop with [AEAD.dec([k]n∗, d∗, C∗ ̸= ⊥]

Oracle Enc(n, d, p)
04 require n /∈ N
05 N ∪← n
06 return AEAD.enc(k, n, d, p

Figure 6.1: Targeted Multi-Key Collision Resistance game modelling targeted multi-
key contingent forgery resistance for an AEAD scheme. Note that an adversary who
can produce a ciphertext C∗ that decrypts under every key in K∗ will win the game
with probability 1.

Game MKCRA
AEAD,κ

00 K∗ ←$ A(κ); require K∗ ⊂ K and |K∗| ≥ κ
01 k ←$ K∗, N ← ∅
02 (n∗, d∗, C∗)← AEnc(K∗)
03 stop with [AEAD.dec(k)(n∗, d∗, C∗) ̸= ⊥]

Oracle Enc(n, d, p)
04 require n /∈ N
05 N ∪← n
06 return AEAD.enc(k, n, d, p)

Figure 6.2: Multi-Key Contingent Forgery Resistance game modelling multi-key con-
tingent forgery resistance for an AEAD scheme. Note that Multi-Key Contingent
Forgery Resistance is a weaker notion than Targeted Multi-Key Collision Resis-
tance (fig. 6.1) which lets the adversary choose the set of target keys K∗.

131



6.4 Partitioning Oracle Attacks from Weak Key Forgeries

the user’s key is in the set of weak keys.

More specifically: (1) In an offline phase, the adversary pre-computes a set of ci-

phertext masks. Each mask corresponds to a set of passwords to be tested. (2) In

an online phase, the adversary intercepts a ciphertext and, using a ciphertext mask,

constructs a key-contingent forgery which it forwards to the partitioning oracle. Ob-

serving whether or not the key-contingent forgery is accepted reveals whether or not

the user’s key is in the set of target keys corresponding to the ciphertext mask. Our

attack relies on the ability of the adversary to act as a “machine-in-the-middle” be-

tween sender and receiver. We first give an abstract description of a key contingent

forgery consisting of ℓ ciphertext blocks which encompasses two special cases: a tar-

geted key-contingent forgery testing ℓ keys, (Section 6.4.1); and a targeted forgery

passing format requirements on underlying plaintexts, (Section 6.4.2).

1. Offline phase. The attack takes a set of target keys K∗ = {k1, . . . , kℓ−1}

as input and outputs a ciphertext mask. We note that one key is lost per

ciphertext block that is not a free variable.

(a) First derive the associated authentication (GHASH) keys by setting K∗
H =

{Ek(0128)|k ∈ K∗}.

(b) Set Q(x) =
ℓ∑

i=1
qi · xℓ+1−i = x ·

∏
hk∈K∗

H

(x⊕ hk) .

2. Online phase. The online phase takes as further input a valid nonce, ci-

phertext, tag tuple (n, C, τ) and outputs a key-contingent forgery consisting

of tuple (n, ĉ, τ). The key-contingent forgery is forwarded to the partitioning

oracle. In what follows, we assume that ℓ− 1 ≥ p = ⌈len(C/128)⌉

(a) First parse the captured ciphertext as C = C1 ∥ · · · ∥ C∗
|p|, i. e., as blocks

of the appropriate length. Let α = len(C) ⊕ len(ĉ) and β be constants.

132



6.4 Partitioning Oracle Attacks from Weak Key Forgeries

Now set Q′(x) = ∑ℓ+1
i=1 q′

i · xℓ+2−i = (a⊕ bx) ·Q(x), with

a = α · q−1
ℓ and b = β · q−1

2 ⊕ α · q1 · q−1
2 · q

−1
ℓ . (6.4)

Set q′ = q′
1 ∥ · · · ∥ q′

ℓ. Note that q′
ℓ+1 = qℓ ·a = α and q′

1 = a·q1⊕b·q2 = β.

This step can take place offline if len(C) is known in advance.

(b) Let ĉ = C∗ ⊕ q′, where C∗ = 0128 ∥ · · · ∥ 0128 ∥ C1 ∥ · · · ∥ C∗
|p| denotes

the ciphertext C padded (pre-pended) with blocks of zeros to match the

length of q′. As ℓ ≥ p + 1, at least one block of padding is pre-pended.

Note that if the user key k ∈ K∗ ∪ {Kℓ} ∪ {0}, where Kℓ = a · b−1, then

for hk = Ek(0128),

Hhk(ĉ) = len(ĉ) · hk ⊕ ĉ∗
ℓ · hk2 ⊕ ĉℓ−1 · hk3 ⊕ · · · ⊕ ĉ1 · hkℓ+1

= (α⊕ len(C)) · hk ⊕
(
C∗

|p| ⊕ q′
ℓ

)
· hk2 ⊕ · · · ⊕ (0128 ⊕ q′

1) · hkℓ+1

= Q′(hk)⊕Hhk(C).

Consequently, the tag is a valid forgery and AEAD.enc(k, n, ε, ĉ) ̸= ⊥.

6.4.1 Targeted Key Contingent Forgery Testing ℓ keys

We first consider key contingent ciphertext forgeries that test ℓ keys with no restric-

tions on the format of the underlying plaintext. Setting β = a · q2 · hk−1
ℓ ⊕ a · q1 in

Equation (6.4) for hkℓ = EKℓ
(0128) gives a = b · hkℓ. Thus,

Q′(x) = b · (x + hkℓ) · x ·
∏

hk∈K∗
H

(x⊕ hk) = b · x ·
∏

hk∈K∗
H∪{hkℓ}

(x⊕ hk) .

The ciphertext forgery ĉ is a valid forgery if k ∈ K∗ ∪ Kℓ ∪ {0}. Thus, we are in

effect able to test target key sets of size |K∗|+ 1 = ℓ.

133



6.4 Partitioning Oracle Attacks from Weak Key Forgeries

Performance. The attack description above is for a fixed set of target keys K∗; in

practice, an attacker would prepare a collection of ciphertext masks corresponding

to disjoint target key sets {K∗
i }i∈I , such that pi+1 ≥ pi for all i, where pi denotes

the aggregate success probability of target key set K∗
i . Given λ = |K∗| hashing

keys, the coefficients of the polynomial Q(x) can be computed using O(λ2) time

and O(λ) space. We note that the offline phase need only occur once, allowing the

adversary to amortise the upfront cost of pre-computation over multiple targets.

This is especially useful in cases where generating target keys from passwords is

particularly slow.

In the online phase, splitting ciphertexts are then submitted in order until a query is

successful; we note that a negative result is returned immediately. For a successful

query, we know that the key k ∈ K∗
i for some particular i. As our result relies on pre-

computation to be practical, in order to perform a binary search on K∗
i appropriate

forgery masks would have to be pre-computed – this would require O(λ log λ) space.

In most cases it is probably more efficient, once an adversary knows that k ∈ K∗
i , to

perform the first few iterations of a binary search (having precomputed the necessary

values) before switching to trial decryption of C with each key in K∗
i . We assume

that the cost of querying a ciphertext is low and that either (1) there is a steady

supply of ciphertexts to intercept or (2) it is possible to reuse the same nonce – the

server may or may not enforce unique nonces depending on context. Regarding point

(1), we note that a common adversarial model introduced by the BEAST attack [58]

gives an attacker the ability to inject arbitrary plaintexts via client-side JavaScript

in some window in the user’s browser (see e. g., [6, 5, 32]).

Our attack is limited to scenarios where keys are deterministically derived from

passwords; that is, if passwords are salted (using randomly generated salts) then

pre-computation is no longer feasible. This highlights the fact that whilst salts are

not secret values, they should be unpredictable when used to derive encryption keys

134



6.4 Partitioning Oracle Attacks from Weak Key Forgeries

from passwords, in a direct analogue to password storage. Better security in any

case is obtained by using password authenticated key exchange protocols such as

[81], rather than deriving session keys statically from passwords.

6.4.2 Targeted Key Contingent Forgery Passing Format Checks

The targeted multi-key contingent forgery attack from the previous section results

in ciphertexts that decrypt under the user’s key to plaintexts that are “garbage”.

This is a problem in cases where plaintexts are required to meet some format check.

The most common form of format check will be a header field containing (for exam-

ple) protocol data, sender and receiver addresses, serial numbers or integrity check

values. The weak key forgery method of [100] allows full control over the underlying

plaintext, with the caveat that the ciphertext forgery represents an (untargeted)

multi-key contingent forgery – for every block of underlying plaintext that is part

of the format check, the number of targeted keys being tested will decrease by one,

with one extra untargeted key gained. In practice this will not make much differ-

ence: usually, the prefix is designed to be as short as possible, which means one or

at most two blocks. We would typically expect splitting ciphertexts of degree ≈500

so that losing one or two blocks represents only a small fraction of the total.

Let us assume that the captured nonce, ciphertext, tag tuple (n, C, τ) corresponds to

some underlying plaintext matching the (known) required format. For concreteness,

assume that the first block of plaintext (respectively, ciphertext) corresponds to the

format to be checked. This means that we need to leave the first block of plaintext

unchanged. We thus set β = C1⊕0 in Equation (6.4) and note that the method may

easily be adapted to “flip bits” in the underlying plaintext by using a suitable value

of β = C1 ⊕ δ; furthermore, it is straightforward to extend the method to deal with

multiple blocks. By construction, ĉ1 = q′
1 = β, which gives ĉ = C1 ∥ ĉ2 ∥ · · · ∥ ĉℓ, i. e.,

135



6.5 Partitioning Oracle Attacks against Shadowsocks

a ciphertext forgery ĉ with the same first block of ciphertext (and thus underlying

plaintext) as the original intercepted ciphertext C. Note that we gain kℓ = a · b−1

as an untargeted key.

Len et al. [89] show how to craft (untargeted) multi-key collisions to pass format

checks with fixed prefixes, however their method is impractical for prefixes longer

than a couple of bytes; in contrast, our method can easily be applied to arbitary

prefixes and is targeted. Lastly, we observe that this method circumvents the key

committing “padding fix” discussed in Section 6.2.4, i. e., to prepend a constant

string to messages before encrypting. The ability to control underlying plaintexts

in this way allows an attacker to apply partitioning oracle attacks using weak key

forgeries where attacks based on exploiting non-committment are infeasible.

6.5 Partitioning Oracle Attacks against Shadowsocks

Originally written by a pseudonymous developer, Shadowsocks [109] is an encrypted

proxy for TCP and UDP traffic, based on SOCKS5. Shadowsocks was first built

to help evade censorship in China, and it underlies other tools such as Jigsaw’s

Outline VPN. To use Shadowsocks, a user first deploys the Shadowsocks proxy

server on a remote machine, provisions it with a static password and chooses an

encryption scheme to use for all connections. The most up-to-date implementations

only support AEAD schemes for encryption, with the options consisting of AES-

GCM (128-bit or 256-bit) or ChaCha20/Poly1305. Next the user configures the

Shadowsocks client on their local machine, and can then forward TCP or UDP

traffic from their machine to the Shadowsocks proxy server.

Len et al. [89] showed how to build a practical partitioning oracle attack against

Shadowsocks proxy servers. At a high level, their attack exploited the non-key com-

136



6.5 Partitioning Oracle Attacks against Shadowsocks

mitting property of the AEAD schemes used, making it possible to craft ciphertexts

which decrypt correctly under a set of target keys. Furthermore, the attack ex-

ploits the fact that the proxy server opens an ephemeral UDP port in response to a

valid request (and otherwise does not) which reveals whether a ciphertext has been

accepted or rejected. The attack depends on a particular configuration: password

derived keys and UDP traffic. As a response to [89], users are advised to miti-

gate against the attack by generating good quality passwords and disabling UDP

mode [7]. In this section, we first describe the Shadowsocks protocol and the parti-

tioning oracle attack of Len et al. before going on to describe how weak key forgeries

can be used to launch a partitioning oracle attack. We note that whilst our attack

is rendered impractical by the per-message salt used in the Shadowsocks protocol, a

description of a hypothetical attack still offers a useful case study, which we describe

below.

The Shadowsocks Protocol. The client starts by hashing the user password pw to

obtain a key k = H(pw). The client then samples a random sixteen-byte salt s and

computes a session key ks ← HKDF(k, s, info) using HKDF [86], where info is the

string ss-subkey. A new salt and session key are generated for every message. The

client encrypts its plaintext payload p by computing C ← AEAD.enc(ks, Z, ε, flag ∥

ip ∥ port ∥ payload) where Z denotes a nonce set to a string of zero bytes (12

for AES-GCM); the value ε empty associated data; and flag is a one-byte header

indicating the format of ip with the following convention: flag = 01 indicates that

ip is a 4-byte IPv4 address, flag = 03 indicates that ip consists of a one byte length

and then hostname, and flag = 04 indicates that ip is a 16-byte IPv6 address. The

port field port is two bytes long. The client sends (s, C) to the server via UDP. If the

client is using TCP, the process is the same except that the ciphertext is prefixed

with a two-byte encrypted length (and authentication tag) before being sent to the

server via TCP.

137



6.5 Partitioning Oracle Attacks against Shadowsocks

When the Shadowsocks server receives (s, C), it extracts the salt and uses it together

with pw to re-derive the session key ks. It decrypts the remainder of the ciphertext

with ks. If decryption fails, no error message is sent back to the client. If decryption

succeeds, the plaintext’s format is checked by verifying that its first byte is equal

to a valid flag value. If that check passes, the next bytes are interpreted as an

appropriately encoded address ip, and two-byte port number port. Finally, the rest

of the payload is sent to the remote server identified by ip and port. The proxy

then listens on an ephemeral source UDP port assigned by the kernel networking

stack for a reply from the remote server. When Shadowsocks receives a reply on

the ephemeral port, the server generates a random salt and uses it with pw to

generate a new session key. It then encrypts the response, and sends the resulting

salt and ciphertext back to the client. The same encryption algorithm is used in

both directions.

The Attack of Len et al. The proxy server opens an ephemeral UDP port in

repsonse to a valid request (and otherwise not). One can view this as a remotely

observable logical side-channel that reveals whether decryption succeeds. The at-

tacker starts with knowledge of a password dictionary D and an estimate p̂ of the

probability distribution over keys in the dictionary. The attack has two steps, a

pre-computation phase and an active querying phase.

In the pre-computation phase, the attacker chooses an arbitrary salt s and derives

a set of session keys K = K(D) by ki
s ← HKDF(H(pwi), s, ss-subkey) for all

pwi ∈ D; the nonce is set as a string of all zeroes. The adversary then outputs a

ciphertext ĉ of length 4093 (to meet the length restriction imposed by Shadowsocks

servers) and a set K∗ of 4091 keys such that ĉ decrypts under every key in S to give

a plaintext with first byte 01. We gloss over the details of how ĉ is constructed and

refer the reader to [89]; we note that the construction is not a targeted multi-key

collision.

138



6.5 Partitioning Oracle Attacks against Shadowsocks

In the querying phase, the attacker then submits (s∗, C∗) to the proxy server. Should

the user’s key be in the set of target keys, k(pw) ∈ K∗, the server will interpret the

decrypted plaintext as a 01 byte followed by a random IPv4 address, destination

port, and payload. The IPv4 and destination port will be accepted by the server’s

network protocol stack with high probability, and so the server will send the payload

as a UDP packet and open a UDP source port to listen for a response, which the

attacker can observe by port scanning.

We note that this assumes an attacker will be able to conduct arbitrary port scan-

ning reliably, which in practice is unlikely to be the case. Strict firewall rules, or

other defences such as software solutions, can disrupt or prevent port scanning.

Our attack, outlined in Section 6.5.1, does not require port scanning but relies on

the trivial assumption that IP addresses for receivers may be derived from packet

captures.

6.5.1 Our Attack: Partitioning Oracles from Weak Key Forgeries

We now describe how to launch a partitioning oracle attack using weak key forgeries

against Shadowsocks (in the same configuration as the attack of Len et al. described

above). As noted above, our attack is impractical as session keys are salted on a

per-message basis in the Shadowsocks protocol, making pre-computation of forgery

masks infeasible. Nevertheless, a weak key forgery partitioning oracle attack against

Shadowsocks is an instructive case study, demonstrating the feasibility of the ap-

proach and allowing us to point out some interesting features; in particular, we are

able to construct targeted multi-key contingent forgeries that meet arbitrary format

requirements as we explain below.

Basic Version. We separate the attack into two steps, a computation phase and

139



6.5 Partitioning Oracle Attacks against Shadowsocks

an active querying phase. The attacker starts with knowledge of a password dictio-

nary D and an estimate p̂ of the probability distribution over keys in the dictionary

and then intercepts a salt, ciphertext tuple (s, C).

In the computation phase, the attacker first chooses a set of passwords D∗ with

|D∗| = 4092, such that the set has the maximum aggregate probability according

to p̂. The attacker then derives a set of session keys K∗ from the salt s and set of

passwords D∗ by ki
s ← HKDF(H(pwi), s, ss-subkey); the nonce is set as a string

of all zeroes. Using the weak key forgery method described in Section 6.4.2, the

attacker outputs a ciphertext ĉ of length 4093 (to meet the length restriction imposed

by Shadowsocks servers) such that ĉ decrypts under the users key k if k ∈ K∗.

Furthermore, the underlying plaintext p← dec(k, ĉ) passes the format check.

In the querying phase, the attacker then submits (s, C∗) to the proxy server. Should

the user’s key be in the set of target keys, the server will interpret the decrypted

plaintext as flag ∥ ip ∥ port ∥ payload; that is, an IP address, destination port and

payload. Note that these are unchanged from the original plaintext that was sent

by the user, so will be accepted by the server’s network protocol stack. The server

will send the payload as a UDP packet and open a UDP source port to listen for a

response, which the attacker can observe by port scanning.

Extension 1: Redirection (Known Plaintext Attack). If the attacker knows

the first 7 bytes of an underlying plaintext, which we write as prefix, then they

can use the weak key forgery technique to redirect the user’s payload to arbitrary

destinations. In particular, the first 7 bytes can be modified to give 01 ∥ ip′ ∥ port′,

with ip′ a four-byte IPv4 address, and port′ a two-byte destination port. This is the

idea behind Peng’s “redirect attack” [64, 97], discovered in February 2020, which

exploited the use of stream ciphers without integrity protection in the Shadowsocks

protocol. Obtaining plaintexts with known prefix is relatively easy in the server to

140



6.5 Partitioning Oracle Attacks against Shadowsocks

client direction, as many common server protocols start with the same bytes (e. g.,

HTTP/1. for HTTP). In the client to server direction, underlying plaintexts will

be in the format [destination][payload], so that the adversary needs to know the

target address (and its encoding), perhaps through injecting plaintexts via client-

side JavaScript in some window in the user’s browser [6, 5, 32, 58]. Note that if

an adversary is able to launch chosen plaintext attacks, they could target the TCP

configuration of Shadowsocks (the recommended option) by crafting plaintexts with

the maximum length to overcome the fact that for TCP the length is sent encrypted

together with the encrypted payload.

The adversary intercepts a ciphertext C from server to client, and using weak key

forgery techniques modifies C to give a splitting ciphertext ĉ whose underlying plain-

text begins with prefix′ = 01 ∥ ip′ ∥ port′, i. e., an address that the adversary controls.

The splitting ciphertext is then sent to the Shadowsocks server: if the splitting ci-

phertext is accepted, the payload is sent to the adversary, revealing that the user’s

key is in the set of target keys associated to ĉ. To produce ĉ, we modify the basic

attack above as follows: when it comes to constructing the weak key forgery mask,

following the technique outlined in Section 6.4.2, we use a non-zero value of β in

Equation (6.4); specifically, β = prefix⊕ (01 ∥ ip′ ∥ port′), interpreted as an element

of F2128 . The effect is to flip some bits in the 7-byte prefix prefix, so that we obtain

the attacker’s address prefix′.

We note that this attack allows the adversary to efficiently and reliably determine

whether the ciphertext has been accepted; it is no longer necessary to scan the

server for open ports, which is time consuming and not necessarily completely re-

liable. Furthermore, if the splitting ciphertext is accepted, the adversary receives

the payload payload which means that it can efficiently test target keys against the

ciphertext by encrypting one block of plaintext and checking whether it matches.

Without this, the adversary would need to calculate the authentication tag of the

141



6.5 Partitioning Oracle Attacks against Shadowsocks

captured ciphertext for each target key.

Extension 2: Bypassing the Padding Fix. As discussed in Section 6.2.4, prior

work on non-key committing AEAD schemes showed that applying a “padding fix”,

that is prepending a fixed constant string to underlying plaintexts, transforms the

scheme to be key-committing. Applying a padding fix is recommended by Len et

al. as a way to mitigate against partitioning oracle attacks; however, a partitioning

oracle attack using weak key forgeries will still be successful despite that mitigation.

To see this, we simply modify the description of the “basic attack version” in the

previous subsection to leave one further block unaltered, at the cost of testing one

less key per ciphertext ĉ. We note that the reason our attack is impractical is due to

the salting of passwords to derive per-message ephemeral keys, rather than because

of the non-key committing property of the AEAD scheme used.

6.5.2 Other Proxy Servers (VPNs)

Virtual Private Networks (VPNs) are often used to achieve similar objectives to

Shadowsocks (allowing a user to access the internet via a proxy server), although

Shadowsocks was designed specifically to circumvent internet censorship, which is

not part of the threat model for VPNs. VPNs allow users to interact with what

appears to be a private network, despite the interaction taking place over a public

network (typically, the internet). This is achieved by encrypting packets in transit

so that the contents are hidden from the public network. VPNs have a number of

applications, including enabling users to remotely access local resources, or allowing

individuals to improve their anonymity and privacy online (by masking their IP and

hiding their traffic). Users connect to a proxy server via an encrypted tunnel, and

the proxy server acts as an intermediary for the client and the internet (or a portion

thereof). The most widely used protocols for VPNs are TLS and the IPsec protocol

142



6.6 Conclusions

At a high level, IPsec works as follows: the user first composes a TLS packet that

will be sent to the end destination. This is encapsulated in an IPsec Encapsulating

Security Payload (ESP) packet in tunnelling mode, which essentially adds a header

and encrypts the whole packet to give a ciphertext C. This encrypted packet C

is sent to the proxy server, where it is decrypted to recover the underlying TLS

packet. The proxy server now forwards the TLS packet to its intended destination.

There are many configuration options for how the user and proxy server authen-

ticate and/or encrypt the ESP packets, including to provision the user and proxy

server with static keys [84]. This is known as “manual management”, and is suited

to small static environments. However, the standard does not allow AES-GCM (or

ChaCha20-Poly1305) with manual keys, although they are available in other con-

figurations, due to concerns over the brittleness when a nonce/key combination is

reused. AES with HMAC is preferred, which happens to be both key-committing

and not vulnerable to weak key forgeries. Similarly, OpenVPN disallows AEAD ci-

pher mode with static keys to avoid the insecurity of potential nonce/key reuse. We

have thus not been able to find any vulnerable applications “in the wild”, but note

that partitioning oracle attacks are theoretically possible against implementations

incorrectly deviating from the specification. Following on from the discussion of

ASAs in Chapter 3, an attractive avenue for a malicious adversary would be to craft

an implementation that facilitates partition oracle attacks. This task is eased by the

fact that users typically download an implementation from code sharing sites, where

there are multiple implementations (in different programming languages, targeted

at different operating systems) to choose from.

6.6 Conclusions

In this chapter we considered an adversary that is willing to engage in active attacks

against users to block access to the wider internet and potentially de-anonymise

143



6.6 Conclusions

users. Censoring the internet can be considered a complementary approach to

conducting mass surveillance (the type of adversary considered in Chapter 5); de-

anonymising users is a related notion to undermining deniability of communication

(following the adversarial goals in Chapter 4). This chapter thus serves to broaden

the model of the motivations and approach of powerful adversaries, and continues

our investigation of cryptographic attacks available to such an adversary.

The main technical contribution of this chapter was to demonstrate a new class of

attack that extends prior work and to extend the definition of partitioning oracle

attacks. Prior work demonstrated that key commitment is an important security

property of AEAD schemes. Our results suggest that resistance to weak key forg-

eries should be considered a related design goal to key-commitment, particularly in

settings that are vulnerable to partitioning oracle attacks. Concretely, our results

demonstrate – in contrast to the suggestions of prior work – that structured un-

derlying plaintexts (e.g. packet headers that prefix every plaintext message, or an

appended block of all zeros) is not a sufficient mitigation against partitioning oracle

attacks.

Lastly, our discussion of partitioning oracles demonstrated that decryption oracles

are a practical concern in the sense that adversaries are able to determine whether or

not a ciphertext is accepted or not by observing some phenomenon. Our attacks in

Chapter 5 rely on the assumption that an adversary has access to a decryption oracle.

This chapter supports our assumption that an adversary has access to decryption

oracles.

144



Chapter 7

Conclusion

In this thesis, our motivation was to examine some aspects of security in the face

of adversaries who are powerful and determined. The archetype for a powerful

adversary is a nation state actor that has access to resources (in terms of funding,

computation, expertise and political capital) of a magnitude greater than even well-

organised, well-funded and technically proficient “professional” adversaries. The

attacks we considered in this work arise from a consideration of motives particular

to such powerful adversaries (modelling the interests and capabilities of nation state

agencies): firstly, to conduct mass surveillance against populations; and secondly, to

restrict access to the wider internet. Chapter 3 expanded the definitions modelling

mass surveillance adversaries, and Chapter 5 introduced a new class of practical

attack enabled by the expanded definition. Chapter 4 considered a novel setting of

interest to powerful adversaries: deniable encryption. Lastly, Chapter 6 focussed on

a different but related setting, censoring users’ internet access.

In the rest of this chapter, we will give a more detailed summary of the contributions

in Section 7.1, and finish with some open questions in Section 7.2.

7.1 Contributions

Chapter 3 introduced Algorithm Substitution Attacks. After discussing related lit-

erature, we provided formal definitions for subversion attacks against generic cryp-

tographic primitives consisting of a sender and receiver – including notions of un-

detectability and adversarial goals. Our syntax allows for both the sending and

receiving party to be subverted, in contrast to previous work in this area which con-

145



7.1 Contributions

sidered only subversion of the sender. As such, our definitions are a subtle extension

of prior work which allow for a class of attack that was previously missed. We discuss

a generic subversion method (rejection sampling) and show that our syntax applies

to the primitives considered in this work: symmetric encryption, MACs and PKE

schemes. By extending the definitions to capture a broader class of attack, we add

to the understanding of the adversarial model.

Chapter 4 served as an introduction demonstrating what is possible with ASAs

and illustrating the techniques and framework. We considered subversion of DPKE

schemes, a primitive that allows the sender of an encrypted plaintext message to

later claim that a different plaintext was sent. This chapter, beyond providing an

introduction to the power of ASAs, demonstrates that subversion attacks should be

considered part of the adversarial model for deniability and should be considered in

the design of deniable schemes. Our subversion attacks against deniable encryption

are generic, and beyond providing an introductory case study to the later attacks in

Chapter 5, are designed to serve as a proof of concept demonstrating the feasibility

of such an attack. The current absence of practical deniable encryption schemes

means that our attacks are theoretical at present. An interesting open problem is

to consider non-generic techniques to subvert deniable encryption.

Chapter 5 introduced our subversion attacks targeting the receiver. Our subversion

attack allows an adversary to learn the user’s secret key by observing their communi-

cation; once the adversary has learnt the key, the user’s cryptography is completely

undermined. We consider a passive adversary, following prior work which considers

a mass surveillance adversary to be engaged in eavesdropping on a huge scale, but

we also consider an active variant. The active variant allows an adversary to target

users far more effectively, which makes the attack attractive from the point of view

of an adversary. Our attacks work by altering the behaviour of the receiver’s algo-

rithm to leak information through (artificially induced) decryption error events – the

subverted algorithm either rejects (particular, “trigger”) valid ciphertexts or accepts

(particular, “trigger”) bogus ciphertexts. An adversary observing the receiver who

146



7.2 Further Work

is able to determine whether a ciphertext has been accepted or rejected learns some

information; this subliminal channel can be used to exfiltrate the user’s key. Our

attacks are highly practical and, as we discuss in Section 5.5 in particular, can be

mounted using a combination of logical and physical techniques.

Chapter 6 continued the theme of powerful adversaries undermining privacy of users.

Whereas earlier chapters focussed on powerful adversaries who are motivated to

carry out mass surveillance, this chapter considers the related aim of targeting users

attempting to bypass internet censorship. We consider the specific scenario of users

accessing the wider, free, internet via a proxy server. Our focus is a particular

class of attack that allows an adversary to test whether a ciphertext was encrypted

using any of a particular set of encryption keys using only one decryption query.

Such an attack, known as a partitioning oracle attack, allows for a more efficient

brute force search of the key space than querying one key per ciphertext, leading to

practical attacks against low entropy keys (e. g., those derived from passwords). Our

main contribution is to show that weak key forgeries against polynomial hash-based

AE schemes can be leveraged to launch partitioning oracle attacks. We discuss the

applications to proxy servers and other practical scenarios. Lastly, our attacks in

Chapter 5 relied on the assumption that an adversary has access to a decryption

oracle – that is, can observe whether a receiver’s algorithm implementation accepts

or rejects a ciphertext. In this chapter, we give an illustration of how decryption

oracles occur in practice, supporting the practicality of our attacks in Chapter 5.

7.2 Further Work

It is an open question to consider other primitives that may be vulnerable to receiver

subversion, following the notions introduced in Chapter 3 and Chapter 5.

An interesting open problem, following on from Chapter 4, is to consider subversion

attacks against deniable protocols, for example the Signal protocol [112] or deniable

key agreement. At present, subverting protocols has not received a great deal of

147



7.2 Further Work

attention other than recent work by Berndt et al. [28], who considered subverting

protocols including Signal with the aim of leaking a secret key. Another line of

enquiry is to consider subverting protocols in general: Is it sufficient to subvert the

implementation of constituent primitives, or is it necessary to subvert the implemen-

tation of the protocol as well? An example suggested by Chapter 6 is to consider

subverting an implementation to make a vulnerability exploitable.

In the discussion at Section 5.2.3, we give an ad hoc description of ways in which our

subversion attacks may be made more efficient in practice by leaking information

that allows an adversary to reconstruct secret keys. In general, this is an interesting

open question: in practice, what is the minimum amount of information required to

“break” security? And could this be minimised further using subversion?

148



Bibliography
[1] Mohamed Ahmed Abdelraheem et al. “Twisted Polynomials and Forgery At-

tacks on GCM”. In: Advances in Cryptology – EUROCRYPT 2015, Part I.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. Lecture Notes in
Computer Science. Springer, Heidelberg, Apr. 2015, pp. 762–786. doi: 10.
1007/978-3-662-46800-5_29 (cit. on p. 125).

[2] Shweta Agrawal, Shafi Goldwasser, and Saleet Mossel. “Deniable Fully Homo-
morphic Encryption from Learning with Errors”. In: Advances in Cryptology
– CRYPTO 2021, Part II. Ed. by Tal Malkin and Chris Peikert. Vol. 12826.
Lecture Notes in Computer Science. Virtual Event: Springer, Heidelberg,
Aug. 2021, pp. 641–670. doi: 10.1007/978-3-030-84245-1_22 (cit. on
p. 74).

[3] Ange Albertini et al. How to Abuse and Fix Authenticated Encryption With-
out Key Commitment. Cryptology ePrint Archive, Report 2020/1456. https:
//eprint.iacr.org/2020/1456. 2020 (cit. on pp. 116, 123, 124).

[4] Martin R. Albrecht and Kenneth G. Paterson. “Lucky Microseconds: A Tim-
ing Attack on Amazon’s s2n Implementation of TLS”. In: Advances in Cryp-
tology – EUROCRYPT 2016, Part I. Ed. by Marc Fischlin and Jean-Sébastien
Coron. Vol. 9665. Lecture Notes in Computer Science. Springer, Heidelberg,
May 2016, pp. 622–643. doi: 10.1007/978- 3- 662- 49890- 3_24 (cit. on
p. 128).

[5] Nadhem J. AlFardan and Kenneth G. Paterson. “Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols”. In: 2013 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2013, pp. 526–540. doi:
10.1109/SP.2013.42 (cit. on pp. 128, 134, 141).

[6] Nadhem J. AlFardan et al. “On the Security of RC4 in TLS”. In: USENIX
Security 2013: 22nd USENIX Security Symposium. Ed. by Samuel T. King.
USENIX Association, Aug. 2013, pp. 305–320 (cit. on pp. 134, 141).

[7] Anonymous et al. A Practical Guide to Defend Against the GFW’s Latest
Active Probing. https://gfw.report/blog/ss_advise/en/. Retrieved May
2021. 2021 (cit. on p. 137).

[8] Marcel Armour and Carlos Cid. “Partition Oracles from Weak Key Forg-
eries”. In: Cryptology and Network Security. Ed. by Mauro Conti, Marc
Stevens, and Stephan Krenn. Cham: Springer International Publishing, 2021,
pp. 42–62. isbn: 978-3-030-92548-2 (cit. on pp. 22, 118).

149

https://doi.org/10.1007/978-3-662-46800-5_29
https://doi.org/10.1007/978-3-662-46800-5_29
https://doi.org/10.1007/978-3-030-84245-1_22
https://eprint.iacr.org/2020/1456
https://eprint.iacr.org/2020/1456
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1109/SP.2013.42
https://gfw.report/blog/ss_advise/en/


BIBLIOGRAPHY

[9] Marcel Armour and Bertram Poettering. “Substitution Attacks against Mes-
sage Authentication”. In: IACR Transactions on Symmetric Cryptology 2019.3
(2019), pp. 152–168. issn: 2519-173X. doi: 10.13154/tosc.v2019.i3.152-
168 (cit. on p. 22).

[10] Marcel Armour and Bertram Poettering. “Subverting Decryption in AEAD”.
In: 17th IMA International Conference on Cryptography and Coding. Ed. by
Martin Albrecht. Vol. 11929. Lecture Notes in Computer Science. Springer,
Heidelberg, Dec. 2019, pp. 22–41. doi: 10.1007/978-3-030-35199-1_2
(cit. on pp. 22, 84).

[11] Marcel Armour and Elizabeth A. Quaglia. “Subverting Deniability”. In: Prov-
able and Practical Security. Ed. by Chunpeng Ge and Fuchun Guo. Cham:
Springer Nature Switzerland, 2022, pp. 52–59. isbn: 978-3-031-20917-8 (cit.
on pp. 22, 68).

[12] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. “Subversion-Resilient
Signature Schemes”. In: ACM CCS 2015: 22nd Conference on Computer and
Communications Security. Ed. by Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel. ACM Press, Oct. 2015, pp. 364–375. doi: 10.1145/2810103.
2813635 (cit. on p. 62).

[13] Nimrod Aviram et al. Practical (Post-Quantum) Key Combiners from One-
Wayness and Applications to TLS. Cryptology ePrint Archive, Report 2022/065.
https://eprint.iacr.org/2022/065. 2022 (cit. on p. 64).

[14] James Ball, Julian Borger, and Glenn Greenwald. “Revealed: How US and
UK Spy Agencies Defeat Internet Privacy and Security”. In: The Guardian
(2013). url: https://www.theguardian.com/world/2013/sep/05/nsa-
gchq-encryption-codes-security (visited on 09/05/2013) (cit. on p. 17).

[15] Elaine Barker. “Nist special publication 800-57 part 1, revision 5”. In: Rec-
ommendation for Key Management (2020). doi: 10.6028/NIST.SP.800-
57pt1r5 (cit. on p. 88).

[16] Balthazar Bauer, Pooya Farshim, and Sogol Mazaheri. “Combiners for Back-
doored Random Oracles”. In: Advances in Cryptology – CRYPTO 2018,
Part II. Ed. by Hovav Shacham and Alexandra Boldyreva. Vol. 10992. Lec-
ture Notes in Computer Science. Springer, Heidelberg, Aug. 2018, pp. 272–
302. doi: 10.1007/978-3-319-96881-0_10 (cit. on pp. 64, 109).

[17] Mihir Bellare. “New Proofs for NMAC and HMAC: Security without Collision-
Resistance”. In: Advances in Cryptology – CRYPTO 2006. Ed. by Cynthia
Dwork. Vol. 4117. Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2006, pp. 602–619. doi: 10.1007/11818175_36 (cit. on p. 71).

[18] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying Hash Functions
for Message Authentication”. In: Advances in Cryptology – CRYPTO’96. Ed.
by Neal Koblitz. Vol. 1109. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 1996, pp. 1–15. doi: 10.1007/3-540-68697-5_1 (cit. on
p. 123).

150

https://doi.org/10.13154/tosc.v2019.i3.152-168
https://doi.org/10.13154/tosc.v2019.i3.152-168
https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1145/2810103.2813635
https://doi.org/10.1145/2810103.2813635
https://eprint.iacr.org/2022/065
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/978-3-319-96881-0_10
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/3-540-68697-5_1


BIBLIOGRAPHY

[19] Mihir Bellare and Viet Tung Hoang. “Resisting Randomness Subversion: Fast
Deterministic and Hedged Public-Key Encryption in the Standard Model”.
In: Advances in Cryptology – EUROCRYPT 2015, Part II. Ed. by Elisabeth
Oswald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer Science.
Springer, Heidelberg, Apr. 2015, pp. 627–656. doi: 10.1007/978-3-662-
46803-6_21 (cit. on pp. 63, 80).

[20] Mihir Bellare, Joseph Jaeger, and Daniel Kane. “Mass-surveillance without
the State: Strongly Undetectable Algorithm-Substitution Attacks”. In: ACM
CCS 2015: 22nd Conference on Computer and Communications Security.
Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel. ACM Press, Oct.
2015, pp. 1431–1440. doi: 10.1145/2810103.2813681 (cit. on pp. 44, 51, 57,
60, 71, 85, 110).

[21] Mihir Bellare, Daniel Kane, and Phillip Rogaway. “Big-Key Symmetric En-
cryption: Resisting Key Exfiltration”. In: Advances in Cryptology – CRYPTO 2016,
Part I. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9814. Lecture
Notes in Computer Science. Springer, Heidelberg, Aug. 2016, pp. 373–402.
doi: 10.1007/978-3-662-53018-4_14 (cit. on pp. 63, 89).

[22] Mihir Bellare and Adriana Palacio. “Towards Plaintext-Aware Public-Key
Encryption without Random Oracles”. In: Advances in Cryptology – ASI-
ACRYPT 2004. Ed. by Pil Joong Lee. Vol. 3329. Lecture Notes in Computer
Science. Springer, Heidelberg, Dec. 2004, pp. 48–62. doi: 10.1007/978-3-
540-30539-2_4 (cit. on pp. 101, 169).

[23] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. “Security of Sym-
metric Encryption against Mass Surveillance”. In: Advances in Cryptology
– CRYPTO 2014, Part I. Ed. by Juan A. Garay and Rosario Gennaro.
Vol. 8616. Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
2014, pp. 1–19. doi: 10.1007/978-3-662-44371-2_1 (cit. on pp. 44, 45, 47,
57, 58, 60, 69, 71, 110).

[24] Mihir Bellare and Phillip Rogaway. “Optimal Asymmetric Encryption”. In:
Advances in Cryptology – EUROCRYPT’94. Ed. by Alfredo De Santis. Vol. 950.
Lecture Notes in Computer Science. Springer, Heidelberg, May 1995, pp. 92–
111. doi: 10.1007/BFb0053428 (cit. on pp. 168, 169).

[25] Steven M. Bellovin and Michael Merritt. “Encrypted Key Exchange: Password-
Based Protocols Secure against Dictionary Attacks”. In: 1992 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, May 1992,
pp. 72–84. doi: 10.1109/RISP.1992.213269 (cit. on p. 128).

[26] Pascal Bemmann, Rongmao Chen, and Tibor Jager. “Subversion-Resilient
Public Key Encryption with Practical Watchdogs”. In: PKC 2021: 24th In-
ternational Conference on Theory and Practice of Public Key Cryptography,
Part I. Ed. by Juan Garay. Vol. 12710. Lecture Notes in Computer Science.
Springer, Heidelberg, May 2021, pp. 627–658. doi: 10.1007/978-3-030-
75245-3_23 (cit. on pp. 64, 110).

151

https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1007/978-3-030-75245-3_23


BIBLIOGRAPHY

[27] Sebastian Berndt and Maciej Liskiewicz. “Algorithm Substitution Attacks
from a Steganographic Perspective”. In: ACM CCS 2017: 24th Conference on
Computer and Communications Security. Ed. by Bhavani M. Thuraisingham
et al. ACM Press, Oct. 2017, pp. 1649–1660. doi: 10.1145/3133956.3133981
(cit. on pp. 56, 62).

[28] Sebastian Berndt et al. ASAP: Algorithm Substitution Attacks on Crypto-
graphic Protocols. Cryptology ePrint Archive, Report 2020/1452. https :
//eprint.iacr.org/2020/1452. 2020 (cit. on pp. 62, 148).

[29] Daniel J Bernstein. “ChaCha, a variant of Salsa20”. In: Workshop record of
SASC. Vol. 8. 2008, pp. 3–5 (cit. on p. 121).

[30] Daniel J. Bernstein. “The Poly1305-AES Message-Authentication Code”. In:
Fast Software Encryption – FSE 2005. Ed. by Henri Gilbert and Helena
Handschuh. Vol. 3557. Lecture Notes in Computer Science. Springer, Hei-
delberg, Feb. 2005, pp. 32–49. doi: 10.1007/11502760_3 (cit. on pp. 119–
121).

[31] Jan Beznazwy and Amir Houmansadr. “How China Detects and Blocks Shad-
owsocks”. In: Proceedings of the ACM Internet Measurement Conference.
2020, pp. 111–124 (cit. on pp. 117, 127).

[32] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Practical (In-)Security
of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and Open-
VPN”. In: ACM CCS 2016: 23rd Conference on Computer and Communica-
tions Security. Ed. by Edgar R. Weippl et al. ACM Press, Oct. 2016, pp. 456–
467. doi: 10.1145/2976749.2978423 (cit. on pp. 134, 141).

[33] Swarup Bhunia et al. “Hardware Trojan Attacks: Threat Analysis and Coun-
termeasures”. In: Proceedings of the IEEE 102.8 (2014), pp. 1229–1247 (cit.
on pp. 52–54).

[34] James Birkett and Alexander W. Dent. “Relations Among Notions of Plain-
text Awareness”. In: PKC 2008: 11th International Workshop on Theory and
Practice in Public Key Cryptography. Ed. by Ronald Cramer. Vol. 4939. Lec-
ture Notes in Computer Science. Springer, Heidelberg, Mar. 2008, pp. 47–64.
doi: 10.1007/978-3-540-78440-1_4 (cit. on p. 169).

[35] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1”. In: Advances in Cryptology
– CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Aug. 1998, pp. 1–12. doi: 10.1007/
BFb0055716 (cit. on p. 128).

[36] Alexandra Boldyreva et al. “On Symmetric Encryption with Distinguishable
Decryption Failures”. In: Fast Software Encryption – FSE 2013. Ed. by Shiho
Moriai. Vol. 8424. Lecture Notes in Computer Science. Springer, Heidelberg,
Mar. 2014, pp. 367–390. doi: 10.1007/978-3-662-43933-3_19 (cit. on
p. 129).

152

https://doi.org/10.1145/3133956.3133981
https://eprint.iacr.org/2020/1452
https://eprint.iacr.org/2020/1452
https://doi.org/10.1007/11502760_3
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1007/978-3-540-78440-1_4
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-662-43933-3_19


BIBLIOGRAPHY

[37] Angèle Bossuat et al. “Designing Reverse Firewalls for the Real World”. In:
ESORICS 2020: 25th European Symposium on Research in Computer Secu-
rity, Part I. Ed. by Liqun Chen et al. Vol. 12308. Lecture Notes in Computer
Science. Springer, Heidelberg, Sept. 2020, pp. 193–213. doi: 10.1007/978-
3-030-58951-6_10 (cit. on pp. 63, 110).

[38] Jan Camenisch, Manu Drijvers, and Anja Lehmann. “Anonymous Attesta-
tion with Subverted TPMs”. In: Advances in Cryptology – CRYPTO 2017,
Part III. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403. Lecture
Notes in Computer Science. Springer, Heidelberg, Aug. 2017, pp. 427–461.
doi: 10.1007/978-3-319-63697-9_15 (cit. on p. 62).

[39] Ran Canetti and Rosario Gennaro. “Incoercible Multiparty Computation
(extended abstract)”. In: 37th Annual Symposium on Foundations of Com-
puter Science. IEEE Computer Society Press, Oct. 1996, pp. 504–513. doi:
10.1109/SFCS.1996.548509 (cit. on p. 66).

[40] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. “Fully Deniable Interac-
tive Encryption”. In: Advances in Cryptology – CRYPTO 2020, Part I. Ed.
by Daniele Micciancio and Thomas Ristenpart. Vol. 12170. Lecture Notes
in Computer Science. Springer, Heidelberg, Aug. 2020, pp. 807–835. doi:
10.1007/978-3-030-56784-2_27 (cit. on p. 73).

[41] Ran Canetti et al. Deniable Encryption. Cryptology ePrint Archive, Report
1996/002. https://eprint.iacr.org/1996/002. 1996 (cit. on p. 76).

[42] Ran Canetti et al. “Deniable Encryption”. In: Advances in Cryptology –
CRYPTO’97. Ed. by Burton S. Kaliski Jr. Vol. 1294. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Aug. 1997, pp. 90–104. doi: 10.1007/
BFb0052229 (cit. on pp. 67, 73, 75, 76).

[43] Sofía Celi and Iraklis Symeonidis. “The Current State of Denial”. In: PETS.
HotPETS. 2020 (cit. on p. 81).

[44] Stephen Checkoway et al. “On the Practical Exploitability of Dual EC in
TLS Implementations”. In: USENIX Security 2014: 23rd USENIX Security
Symposium. Ed. by Kevin Fu and Jaeyeon Jung. USENIX Association, Aug.
2014, pp. 319–335 (cit. on p. 18).

[45] Rongmao Chen, Xinyi Huang, and Moti Yung. “Subvert KEM to Break DEM:
Practical Algorithm-Substitution Attacks on Public-Key Encryption”. In: Ad-
vances in Cryptology – ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and
Huaxiong Wang. Vol. 12492. Lecture Notes in Computer Science. Springer,
Heidelberg, Dec. 2020, pp. 98–128. doi: 10.1007/978-3-030-64834-3_4
(cit. on pp. 57, 62).

[46] Don Coppersmith. “Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known”. In: Advances in Cryptology – EURO-
CRYPT’96. Ed. by Ueli M. Maurer. Vol. 1070. Lecture Notes in Computer
Science. Springer, Heidelberg, May 1996, pp. 178–189. doi: 10.1007/3-540-
68339-9_16 (cit. on pp. 61, 88).

153

https://doi.org/10.1007/978-3-030-58951-6_10
https://doi.org/10.1007/978-3-030-58951-6_10
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1109/SFCS.1996.548509
https://doi.org/10.1007/978-3-030-56784-2_27
https://eprint.iacr.org/1996/002
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/978-3-030-64834-3_4
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16


BIBLIOGRAPHY

[47] Ronald Cramer and Victor Shoup. “A Practical Public Key Cryptosystem
Provably Secure Against Adaptive Chosen Ciphertext Attack”. In: Advances
in Cryptology – CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. Lecture
Notes in Computer Science. Springer, Heidelberg, Aug. 1998, pp. 13–25. doi:
10.1007/BFb0055717 (cit. on p. 169).

[48] Ronald Cramer and Victor Shoup. “Design and Analysis of Practical Public-
Key Encryption Schemes Secure against Adaptive Chosen Ciphertext At-
tack”. In: SIAM Journal on Computing 33.1 (2003), pp. 167–226 (cit. on
p. 168).

[49] Claude Crépeau and Alain Slakmon. “Simple Backdoors for RSA Key Gener-
ation”. In: Topics in Cryptology – CT-RSA 2003. Ed. by Marc Joye. Vol. 2612.
Lecture Notes in Computer Science. Springer, Heidelberg, Apr. 2003, pp. 403–
416. doi: 10.1007/3-540-36563-X_28 (cit. on p. 61).

[50] Angelo De Caro, Vincenzo Iovino, and Adam O’Neill. “Deniable Functional
Encryption”. In: PKC 2016: 19th International Conference on Theory and
Practice of Public Key Cryptography, Part I. Ed. by Chen-Mou Cheng et al.
Vol. 9614. Lecture Notes in Computer Science. Springer, Heidelberg, Mar.
2016, pp. 196–222. doi: 10.1007/978-3-662-49384-7_8 (cit. on p. 73).

[51] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. “A More
Cautious Approach to Security Against Mass Surveillance”. In: Fast Software
Encryption – FSE 2015. Ed. by Gregor Leander. Vol. 9054. Lecture Notes
in Computer Science. Springer, Heidelberg, Mar. 2015, pp. 579–598. doi:
10.1007/978-3-662-48116-5_28 (cit. on pp. 44, 45, 47, 60, 110).

[52] Jean Paul Degabriele et al. “Backdoors in Pseudorandom Number Gen-
erators: Possibility and Impossibility Results”. In: Advances in Cryptology
– CRYPTO 2016, Part I. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9814. Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
2016, pp. 403–432. doi: 10.1007/978-3-662-53018-4_15 (cit. on p. 62).

[53] Alexander W. Dent. “The Cramer-Shoup Encryption Scheme Is Plaintext
Aware in the Standard Model”. In: Advances in Cryptology – EUROCRYPT 2006.
Ed. by Serge Vaudenay. Vol. 4004. Lecture Notes in Computer Science. Springer,
Heidelberg, May 2006, pp. 289–307. doi: 10.1007/11761679_18 (cit. on
p. 169).

[54] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. “Message
Transmission with Reverse Firewalls—Secure Communication on Corrupted
Machines”. In: Advances in Cryptology – CRYPTO 2016, Part I. Ed. by
Matthew Robshaw and Jonathan Katz. Vol. 9814. Lecture Notes in Computer
Science. Springer, Heidelberg, Aug. 2016, pp. 341–372. doi: 10.1007/978-
3-662-53018-4_13 (cit. on p. 63).

[55] Yevgeniy Dodis et al. “A Formal Treatment of Backdoored Pseudorandom
Generators”. In: Advances in Cryptology – EUROCRYPT 2015, Part I. Ed.
by Elisabeth Oswald and Marc Fischlin. Vol. 9056. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Apr. 2015, pp. 101–126. doi: 10.1007/
978-3-662-46800-5_5 (cit. on p. 62).

154

https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-36563-X_28
https://doi.org/10.1007/978-3-662-49384-7_8
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/11761679_18
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-46800-5_5


BIBLIOGRAPHY

[56] Yevgeniy Dodis et al. “Fast Message Franking: From Invisible Salamanders
to Encryptment”. In: Advances in Cryptology – CRYPTO 2018, Part I. Ed.
by Hovav Shacham and Alexandra Boldyreva. Vol. 10991. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2018, pp. 155–186. doi: 10.
1007/978-3-319-96884-1_6 (cit. on pp. 116, 123).

[57] Yevgeniy Dodis et al. “Towards Defeating Backdoored Random Oracles: In-
differentiability with Bounded Adaptivity”. In: TCC 2020: 18th Theory of
Cryptography Conference, Part III. Ed. by Rafael Pass and Krzysztof Pietrzak.
Vol. 12552. Lecture Notes in Computer Science. Springer, Heidelberg, Nov.
2020, pp. 241–273. doi: 10.1007/978-3-030-64381-2_9 (cit. on pp. 64,
109).

[58] Thai Duong and Juliano Rizzo. Here Come the ⊕ Ninjas. Unpublished manuscript.
Retrieved May 2021. url: https://tlseminar.github.io/docs/beast.
pdf (cit. on pp. 134, 141).

[59] Morris J Dworkin. SP 800-38D. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. Tech. rep. 2007 (cit.
on p. 126).

[60] Morris J. Dworkin. SP 800-38D: Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. US National Institute
of Standards and Technology. Gaithersburg, MD, United States, 2007. doi:
10.6028/NIST.SP.800-38D (cit. on pp. 90, 106).

[61] Jason Dymydiuk. “RUBICON and Revelation: the Curious Robustness of the
‘Secret’ CIA-BND Operation with Crypto AG”. In: Intelligence and National
Security 35.5 (2020), pp. 641–658. doi: 10.1080/02684527.2020.1774853.
eprint: https://doi.org/10.1080/02684527.2020.1774853. url: https:
//doi.org/10.1080/02684527.2020.1774853 (cit. on p. 18).

[62] Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert. “Pri-
vate Circuits III: Hardware Trojan-Resilience via Testing Amplification”. In:
ACM CCS 2016: 23rd Conference on Computer and Communications Secu-
rity. Ed. by Edgar R. Weippl et al. ACM Press, Oct. 2016, pp. 142–153. doi:
10.1145/2976749.2978419 (cit. on p. 110).

[63] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. “Security of Symmet-
ric Primitives under Incorrect Usage of Keys”. In: IACR Transactions on
Symmetric Cryptology 2017.1 (2017), pp. 449–473. issn: 2519-173X. doi:
10.13154/tosc.v2017.i1.449-473 (cit. on pp. 116, 123).

[64] David Fifield. Decryption Vulnerability in Shadowsocks Stream Ciphers. https:
//github.com/net4people/bbs/issues/24. Retrieved May 2021. (Visited
on 02/25/2020) (cit. on p. 140).

[65] Marc Fischlin, Christian Janson, and Sogol Mazaheri. “Backdoored Hash
Functions: Immunizing HMAC and HKDF”. In: CSF 2018: IEEE 31st Com-
puter Security Foundations Symposium. Ed. by Steve Chong and Stephanie
Delaune. IEEE Computer Society Press, 2018, pp. 105–118. doi: 10.1109/
CSF.2018.00015 (cit. on pp. 64, 109).

155

https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-030-64381-2_9
https://tlseminar.github.io/docs/beast.pdf
https://tlseminar.github.io/docs/beast.pdf
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.1080/02684527.2020.1774853
https://doi.org/10.1080/02684527.2020.1774853
https://doi.org/10.1080/02684527.2020.1774853
https://doi.org/10.1080/02684527.2020.1774853
https://doi.org/10.1145/2976749.2978419
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://github.com/net4people/bbs/issues/24
https://github.com/net4people/bbs/issues/24
https://doi.org/10.1109/CSF.2018.00015
https://doi.org/10.1109/CSF.2018.00015


BIBLIOGRAPHY

[66] Marc Fischlin and Sogol Mazaheri. “Notions of Deniable Message Authentica-
tion”. In: Proceedings of the 14th ACM Workshop on Privacy in the Electronic
Society. WPES ’15. Denver, Colorado, USA: Association for Computing Ma-
chinery, 2015, 55?64. isbn: 9781450338202. doi: 10.1145/2808138.2808143.
url: https://doi.org/10.1145/2808138.2808143 (cit. on p. 81).

[67] Marc Fischlin and Sogol Mazaheri. “Self-Guarding Cryptographic Protocols
against Algorithm Substitution Attacks”. In: CSF 2018: IEEE 31st Com-
puter Security Foundations Symposium. Ed. by Steve Chong and Stephanie
Delaune. IEEE Computer Society Press, 2018, pp. 76–90. doi: 10.1109/CSF.
2018.00013 (cit. on p. 63).

[68] Christina Garman et al. “Dancing on the Lip of the Volcano: Chosen Cipher-
text Attacks on Apple iMessage”. In: USENIX Security 2016: 25th USENIX
Security Symposium. Ed. by Thorsten Holz and Stefan Savage. USENIX As-
sociation, Aug. 2016, pp. 655–672 (cit. on p. 128).

[69] Federico Giacon, Felix Heuer, and Bertram Poettering. “KEM Combiners”.
In: PKC 2018: 21st International Conference on Theory and Practice of Pub-
lic Key Cryptography, Part I. Ed. by Michel Abdalla and Ricardo Dahab.
Vol. 10769. Lecture Notes in Computer Science. Springer, Heidelberg, Mar.
2018, pp. 190–218. doi: 10.1007/978-3-319-76578-5_7 (cit. on p. 63).

[70] Eu-Jin Goh et al. “The Design and Implementation of Protocol-Based Hid-
den Key Recovery”. In: ISC 2003: 6th International Conference on Informa-
tion Security. Ed. by Colin Boyd and Wenbo Mao. Vol. 2851. Lecture Notes
in Computer Science. Springer, Heidelberg, Oct. 2003, pp. 165–179 (cit. on
p. 62).

[71] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption and How to
Play Mental Poker Keeping Secret All Partial Information”. In: 14th Annual
ACM Symposium on Theory of Computing. ACM Press, May 1982, pp. 365–
377. doi: 10.1145/800070.802212 (cit. on p. 25).

[72] Dieter Gollmann. Computer Security (3. ed.) Wiley, 2011. isbn: 978-0-470-
74115-3. url: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
1118801326.html (cit. on pp. 52, 53, 71).

[73] Glen Greenwald et al. “Microsoft Handed the NSA Access to Encrypted Mes-
sages”. In: The Guardian (2013). url: https://www.theguardian.com/
world/2013/jul/11/microsoft-nsa-collaboration-user-data (visited
on 07/11/2013) (cit. on p. 17).

[74] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. “Message Franking via
Committing Authenticated Encryption”. In: Advances in Cryptology – CRYPTO 2017,
Part III. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403. Lecture
Notes in Computer Science. Springer, Heidelberg, Aug. 2017, pp. 66–97. doi:
10.1007/978-3-319-63697-9_3 (cit. on pp. 116, 123).

156

https://doi.org/10.1145/2808138.2808143
https://doi.org/10.1145/2808138.2808143
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1145/800070.802212
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://doi.org/10.1007/978-3-319-63697-9_3


BIBLIOGRAPHY

[75] Helena Handschuh and Bart Preneel. “Key-Recovery Attacks on Univer-
sal Hash Function Based MAC Algorithms”. In: Advances in Cryptology –
CRYPTO 2008. Ed. by David Wagner. Vol. 5157. Lecture Notes in Computer
Science. Springer, Heidelberg, Aug. 2008, pp. 144–161. doi: 10.1007/978-
3-540-85174-5_9 (cit. on pp. 117, 124).

[76] Philip Hodges and Douglas Stebila. “Algorithm Substitution Attacks: State
Reset Detection and Asymmetric Modifications”. In: IACR Transactions on
Symmetric Cryptology 2021.2 (2021), pp. 389–422. issn: 2519-173X. doi: 10.
46586/tosc.v2021.i2.389-422 (cit. on p. 63).

[77] Nick Hopkins. “UK Gathering Secret Intelligence via Covert NSA Opera-
tion”. In: The Guardian (2020). url: https://www.theguardian.com/
technology/2013/jun/07/uk-gathering-secret-intelligence-nsa-
prism (visited on 06/07/2013) (cit. on p. 17).

[78] Akiko Inoue et al. “Cryptanalysis of OCB2: Attacks on Authenticity and
Confidentiality”. In: Advances in Cryptology – CRYPTO 2019, Part I. Ed.
by Alexandra Boldyreva and Daniele Micciancio. Vol. 11692. Lecture Notes
in Computer Science. Springer, Heidelberg, Aug. 2019, pp. 3–31. doi: 10.
1007/978-3-030-26948-7_1 (cit. on p. 91).

[79] Amnesty International. “Forensic Methodology Report: How to Catch NSO
Group’s Pegasus”. In: (July 18, 2021). url: https://www.amnesty.org/en/
documents/doc10/4487/2021/en/ (cit. on p. 17).

[80] Richard Isaac. The Pleasures of Probability. Springer Science & Business Me-
dia, 2013 (cit. on p. 94).

[81] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. “OPAQUE: An Asym-
metric PAKE Protocol Secure Against Pre-computation Attacks”. In: Ad-
vances in Cryptology – EUROCRYPT 2018, Part III. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10822. Lecture Notes in Computer Science.
Springer, Heidelberg, Apr. 2018, pp. 456–486. doi: 10.1007/978-3-319-
78372-7_15 (cit. on p. 135).

[82] Antoine Joux. Authentication Failures in NIST Version of GCM. Tech. rep.
2006, p. 3 (cit. on p. 124).

[83] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
CRC press, 2020 (cit. on p. 25).

[84] Stephen Kent and Karen Seo. Security Architecture for the Internet Protocol.
RFC 4301. https://tools.ietf.org/html/rfc4301. RFC Editor, Dec.
2005, pp. 1–101 (cit. on p. 143).

[85] Neal Koblitz and Alfred Menezes. Critical Perspectives on Provable Security:
Fifteen Years of “Another Look” Papers. Cryptology ePrint Archive, Report
2019/1336. https://eprint.iacr.org/2019/1336. 2019 (cit. on p. 26).

[86] Hugo Krawczyk. “Cryptographic Extraction and Key Derivation: The HKDF
Scheme”. In: Advances in Cryptology – CRYPTO 2010. Ed. by Tal Rabin.
Vol. 6223. Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
2010, pp. 631–648. doi: 10.1007/978-3-642-14623-7_34 (cit. on p. 137).

157

https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.46586/tosc.v2021.i2.389-422
https://doi.org/10.46586/tosc.v2021.i2.389-422
https://www.theguardian.com/technology/2013/jun/07/uk-gathering-secret-intelligence-nsa-prism
https://www.theguardian.com/technology/2013/jun/07/uk-gathering-secret-intelligence-nsa-prism
https://www.theguardian.com/technology/2013/jun/07/uk-gathering-secret-intelligence-nsa-prism
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-030-26948-7_1
https://www.amnesty.org/en/documents/doc10/4487/2021/en/
https://www.amnesty.org/en/documents/doc10/4487/2021/en/
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://tools.ietf.org/html/rfc4301
https://eprint.iacr.org/2019/1336
https://doi.org/10.1007/978-3-642-14623-7_34


BIBLIOGRAPHY

[87] Hugo Krawczyk. The Opaque Asymmetric PAKE Protocol (Draft). Tech. rep.
https : / / datatracker . ietf . org / doc / html / draft - krawczyk - cfrg -
opaque-02. 2018 (cit. on p. 123).

[88] Ted Krovetz and Phillip Rogaway. The OCB Authenticated-Encryption Algo-
rithm. https://tools.ietf.org/html/rfc7253. 2014 (cit. on p. 90).

[89] Julia Len, Paul Grubbs, and Thomas Ristenpart. “Partitioning Oracle At-
tacks”. In: USENIX Security 2021: 30th USENIX Security Symposium. Ed.
by Michael Bailey and Rachel Greenstadt. USENIX Association, Aug. 2021,
pp. 195–212 (cit. on pp. 4, 116, 118, 123, 125–129, 136–138).

[90] Hui Ma et al. “Concessive Online/Offline Attribute Based Encryption with
Cryptographic Reverse Firewalls - Secure and Efficient Fine-Grained Access
Control on Corrupted Machines”. In: ESORICS 2018: 23rd European Sym-
posium on Research in Computer Security, Part II. Ed. by Javier López,
Jianying Zhou, and Miguel Soriano. Vol. 11099. Lecture Notes in Computer
Science. Springer, Heidelberg, Sept. 2018, pp. 507–526. doi: 10.1007/978-
3-319-98989-1_25 (cit. on p. 63).

[91] David McGrew and John Viega. The Galois/Counter Mode of Operation
(GCM). Tech. rep. http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/gcm/gcm-revised-spec.pdf. 2004, pp. 0278–
0070 (cit. on pp. 119, 120).

[92] Greg Miller. “The Intelligence Coup of the Century”. In: Washington Post 11
(2020). url: https://www.washingtonpost.com/graphics/2020/world/
national - security / cia - crypto - encryption - machines - espionage/
(visited on 02/11/2020) (cit. on p. 18).

[93] Ilya Mironov and Noah Stephens-Davidowitz. “Cryptographic Reverse Fire-
walls”. In: Advances in Cryptology – EUROCRYPT 2015, Part II. Ed. by
Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer
Science. Springer, Heidelberg, Apr. 2015, pp. 657–686. doi: 10.1007/978-
3-662-46803-6_22 (cit. on p. 63).

[94] Juan Manuel González Nieto et al. “Publicly Verifiable Ciphertexts”. In: J.
Comput. Secur. 21.5 (2013), pp. 749–778. doi: 10.3233/JCS-130473. url:
https://doi.org/10.3233/JCS-130473 (cit. on p. 101).

[95] Adam O’Neill, Chris Peikert, and Brent Waters. “Bi-Deniable Public-Key
Encryption”. In: Advances in Cryptology – CRYPTO 2011. Ed. by Phillip
Rogaway. Vol. 6841. Lecture Notes in Computer Science. Springer, Heidel-
berg, Aug. 2011, pp. 525–542. doi: 10.1007/978-3-642-22792-9_30 (cit. on
p. 73).

[96] Bijeeta Pal et al. “Beyond Credential Stuffing: Password Similarity Models
Using Neural Networks”. In: 2019 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2019, pp. 417–434. doi: 10.1109/SP.
2019.00056 (cit. on p. 127).

[97] Zhiniang Peng. Redirect Attack on Shadowsocks Stream Ciphers. https://
github.com/edwardz246003/shadowsocks. Retrieved May 2020. (Visited
on 02/12/2020) (cit. on p. 140).

158

https://datatracker.ietf.org/doc/html/draft-krawczyk-cfrg-opaque-02
https://datatracker.ietf.org/doc/html/draft-krawczyk-cfrg-opaque-02
https://tools.ietf.org/html/rfc7253
https://doi.org/10.1007/978-3-319-98989-1_25
https://doi.org/10.1007/978-3-319-98989-1_25
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.3233/JCS-130473
https://doi.org/10.3233/JCS-130473
https://doi.org/10.1007/978-3-642-22792-9_30
https://doi.org/10.1109/SP.2019.00056
https://doi.org/10.1109/SP.2019.00056
https://github.com/edwardz246003/shadowsocks
https://github.com/edwardz246003/shadowsocks


BIBLIOGRAPHY

[98] Bertram Poettering and Paul Rösler. “Combiners for AEAD”. In: IACR
Transactions on Symmetric Cryptology 2020.1 (2020), pp. 121–143. issn:
2519-173X. doi: 10.13154/tosc.v2020.i1.121-143 (cit. on p. 63).

[99] Gordon Procter. A Security Analysis of the Composition of ChaCha20 and
Poly1305. Cryptology ePrint Archive, Report 2014/613. https://eprint.
iacr.org/2014/613. 2014 (cit. on p. 120).

[100] Gordon Procter and Carlos Cid. “On Weak Keys and Forgery Attacks Against
Polynomial-Based MAC Schemes”. In: Fast Software Encryption – FSE 2013.
Ed. by Shiho Moriai. Vol. 8424. Lecture Notes in Computer Science. Springer,
Heidelberg, Mar. 2014, pp. 287–304. doi: 10.1007/978-3-662-43933-3_15
(cit. on pp. 117, 124, 125, 127, 135).

[101] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems”. In: Commu-
nications of the Association for Computing Machinery 21.2 (1978), pp. 120–
126 (cit. on p. 169).

[102] Phillip Rogaway. “Authenticated-Encryption With Associated-Data”. In: ACM
CCS 2002: 9th Conference on Computer and Communications Security. Ed.
by Vijayalakshmi Atluri. ACM Press, Nov. 2002, pp. 98–107. doi: 10.1145/
586110.586125 (cit. on pp. 34, 91, 111).

[103] Alexander Russell et al. “Cliptography: Clipping the Power of Kleptographic
Attacks”. In: Advances in Cryptology – ASIACRYPT 2016, Part II. Ed. by
Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10032. Lecture Notes in Computer
Science. Springer, Heidelberg, Dec. 2016, pp. 34–64. doi: 10.1007/978-3-
662-53890-6_2 (cit. on p. 63).

[104] Alexander Russell et al. “Correcting Subverted Random Oracles”. In: Ad-
vances in Cryptology – CRYPTO 2018, Part II. Ed. by Hovav Shacham
and Alexandra Boldyreva. Vol. 10992. Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 2018, pp. 241–271. doi: 10.1007/978-3-319-
96881-0_9 (cit. on p. 63).

[105] Alexander Russell et al. Destroying Steganography via Amalgamation: Klepto-
graphically CPA Secure Public Key Encryption. Cryptology ePrint Archive,
Report 2016/530. https : / / eprint . iacr . org / 2016 / 530. 2016 (cit. on
p. 63).

[106] Alexander Russell et al. “Generic Semantic Security against a Kleptographic
Adversary”. In: ACM CCS 2017: 24th Conference on Computer and Com-
munications Security. Ed. by Bhavani M. Thuraisingham et al. ACM Press,
Oct. 2017, pp. 907–922. doi: 10.1145/3133956.3133993 (cit. on p. 63).

[107] Markku-Juhani Olavi Saarinen. “Cycling Attacks on GCM, GHASH and
Other Polynomial MACs and Hashes”. In: Fast Software Encryption – FSE 2012.
Ed. by Anne Canteaut. Vol. 7549. Lecture Notes in Computer Science. Springer,
Heidelberg, Mar. 2012, pp. 216–225. doi: 10.1007/978-3-642-34047-5_13
(cit. on pp. 117, 124, 125).

159

https://doi.org/10.13154/tosc.v2020.i1.121-143
https://eprint.iacr.org/2014/613
https://eprint.iacr.org/2014/613
https://doi.org/10.1007/978-3-662-43933-3_15
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-319-96881-0_9
https://eprint.iacr.org/2016/530
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-642-34047-5_13


BIBLIOGRAPHY

[108] Amit Sahai and Brent Waters. “How to use indistinguishability obfuscation:
deniable encryption, and more”. In: 46th Annual ACM Symposium on Theory
of Computing. Ed. by David B. Shmoys. ACM Press, May 2014, pp. 475–484.
doi: 10.1145/2591796.2591825 (cit. on p. 73).

[109] Shadowsocks - A Fast Tunnel Proxy That Helps You Bypass Firewalls. https:
//shadowsocks.org. Retrieved May 2021. (cit. on pp. 116, 136).

[110] Claude E. Shannon. “Communication theory of secrecy systems”. In: Bell
Systems Technical Journal 28.4 (1949), pp. 656–715 (cit. on p. 25).

[111] Gustavus J. Simmons. “The Prisoners’ Problem and the Subliminal Channel”.
In: Advances in Cryptology – CRYPTO’83. Ed. by David Chaum. Plenum
Press, New York, USA, 1983, pp. 51–67 (cit. on p. 58).

[112] Nihal Vatandas et al. “On the Cryptographic Deniability of the Signal Pro-
tocol”. In: ACNS 20: 18th International Conference on Applied Cryptography
and Network Security, Part II. Ed. by Mauro Conti et al. Vol. 12147. Lecture
Notes in Computer Science. Springer, Heidelberg, Oct. 2020, pp. 188–209.
doi: 10.1007/978-3-030-57878-7_10 (cit. on p. 147).

[113] Serge Vaudenay. “Security Flaws Induced by CBC Padding - Applications to
SSL, IPSEC, WTLS...” In: Advances in Cryptology – EUROCRYPT 2002.
Ed. by Lars R. Knudsen. Vol. 2332. Lecture Notes in Computer Science.
Springer, Heidelberg, Apr. 2002, pp. 534–546. doi: 10.1007/3-540-46035-
7_35 (cit. on p. 128).

[114] Yi Wang et al. “Secure Anonymous Communication on Corrupted Machines
with Reverse Firewalls”. In: IEEE Transactions on Dependable and Secure
Computing (2021), pp. 1–1. doi: 10 . 1109 / TDSC . 2021 . 3107463 (cit. on
p. 63).

[115] Philipp Winter and Stefan Lindskog. “How the Great Firewall of China is
Blocking Tor”. In: 2nd USENIX Workshop on Free and Open Communi-
cations on the Internet, FOCI ’12, Bellevue, WA, USA, August 6, 2012.
Ed. by Roger Dingledine and Joss Wright. USENIX Association, 2012. url:
https : / / www . usenix . org / conference / foci12 / workshop - program /
presentation/winter (cit. on pp. 117, 127).

[116] Joanne Woodage. “Provable Security in the Real World: New Attacks and
Analyses”. English. PhD thesis. Royal Holloway, University of London, 2019
(cit. on p. 26).

[117] Joanne Woodage and Dan Shumow. “An Analysis of NIST SP 800-90A”.
In: Advances in Cryptology – EUROCRYPT 2019, Part II. Ed. by Yuval
Ishai and Vincent Rijmen. Vol. 11477. Lecture Notes in Computer Science.
Springer, Heidelberg, May 2019, pp. 151–180. doi: 10.1007/978-3-030-
17656-3_6 (cit. on p. 18).

[118] Zhichao Yang et al. “On the Security of LWE Cryptosystem against Sub-
version Attacks”. In: The Computer Journal 63.4 (Sept. 2019), pp. 495–507.
issn: 0010-4620. doi: 10.1093/comjnl/bxz084. eprint: https://academic.
oup.com/comjnl/article-pdf/63/4/495/33153492/bxz084.pdf. url:
https://doi.org/10.1093/comjnl/bxz084 (cit. on p. 80).

160

https://doi.org/10.1145/2591796.2591825
https://shadowsocks.org
https://shadowsocks.org
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1109/TDSC.2021.3107463
https://www.usenix.org/conference/foci12/workshop-program/presentation/winter
https://www.usenix.org/conference/foci12/workshop-program/presentation/winter
https://doi.org/10.1007/978-3-030-17656-3_6
https://doi.org/10.1007/978-3-030-17656-3_6
https://doi.org/10.1093/comjnl/bxz084
https://academic.oup.com/comjnl/article-pdf/63/4/495/33153492/bxz084.pdf
https://academic.oup.com/comjnl/article-pdf/63/4/495/33153492/bxz084.pdf
https://doi.org/10.1093/comjnl/bxz084


BIBLIOGRAPHY

[119] Adam Young and Moti Yung. “Kleptography: Using Cryptography Against
Cryptography”. In: Advances in Cryptology – EUROCRYPT’97. Ed. by Wal-
ter Fumy. Vol. 1233. Lecture Notes in Computer Science. Springer, Heidel-
berg, May 1997, pp. 62–74. doi: 10.1007/3-540-69053-0_6 (cit. on pp. 17,
58).

[120] Adam Young and Moti Yung. “The Dark Side of “Black-Box” Cryptography,
or: Should We Trust Capstone?” In: Advances in Cryptology – CRYPTO’96.
Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 1996, pp. 89–103. doi: 10.1007/3-540-68697-5_8 (cit. on
pp. 17, 58, 61, 88).

[121] Bo Zhu. AES-GCM-Python. https : / / github . com / bozhu / AES - GCM -
Python/blob/master/aes_gcm.py. 2013 (cit. on p. 106).

161

https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/3-540-68697-5_8
https://github.com/bozhu/AES-GCM-Python/blob/master/aes_gcm.py
https://github.com/bozhu/AES-GCM-Python/blob/master/aes_gcm.py


Appendix A

Appendix

A.1 Trapdoor Permutations

A.1.1 One-Way Permutation

A triple Π = (Gen, Samp, f) of probabilistic polynomial-time algorithms is a family

of permutations if the following hold:

1. The parameter-generation algorithm Gen, on input 1n, outputs parameters I

with |I| ≥ n. Each value of I defines a set DI that constitutes the domain and

range of a permutation (i.e., bijection) fI : DI → DI .

2. The sampling algorithm Samp, on input I, outputs a uniformly distributed

element of DI .

3. The deterministic evaluation algorithm f , on input I and x ∈ DI , outputs an

element y ∈ DI . We write this as y := fI(x).

Given a family of functions Π, consider the following experiment for any algorithm

A and parameter n: The inverting experiment INVERTA,Π(n):

1. Gen(1n) is run to obtain I, and then Samp(I) is run to choose a uniform

x ∈ DI . Finally, y := fI(x) is computed.

2. A is given I and y as input, and outputs x′.

3. The output of the experiment is 1 if and only if fI(x′) = y.

The family of permutations Π = (Gen, Samp, f) is one-way if for all probabilistic

162



A.1 Trapdoor Permutations

polynomial-time algorithms A there exists a negligible function negl such that

Pr [INVERTA,Π(n) = 1] ≤ negl(n).

A.1.2 Trapdoor Permutation

A tuple of polynomial-time algorithms (Gen, Samp, f, Inv) is a family of trapdoor

permutations (or a trapdoor permutation) if:

• The probabilistic parameter-generation algorithm Gen, on input 1n, outputs

(I, td) with |I| ≥ n. Each value of I defines a set DI that constitutes the

domain and range of a permutation (i.e., bijection) fI : DI → DI .

• Let Gen1 denote the algorithm that results by running Gen and outputting

only I. Then (Gen1, Samp, f) is a family of one-way permutations.

• Let (I, td) be an output of Gen(1n). The deterministic inverting algorithm Inv,

on input td and y ∈ DI , outputs x ∈ DI . We denote this by x := invtd(y). It is

required that with all but negligible probability over (I, td) output by Gen(1n)

and uniform choice of x ∈ DI , we have

invtd(fI(x)) = x.

A.1.3 Hardcore Predicate

Let Π = (Gen, f, Inv) be a family of trapdoor permutations, and let hc be a deter-

ministic polynomial-time algorithm that, on input I and x ∈ DI , outputs a single

bit hcI(x). We say that hc is a hard-core predicate of Π if for every probabilistic

polynomial-time algorithm A there is a negligible function negl such that

Pr [A(I, fI(x)) = hcI(x)] ≤ 1 + negl(n)

163



A.2 Key and Data Encapsulation Mechanisms

Game IND-CCAb(A)
00 C ← ∅
01 (pk, sk)← KEM.gen
02 b′ ← AEncap,Decap(pk)
03 stop with b′

Oracle Encap
04 (k0, c)← KEM.enc(pk)
05 k1 ←$ K
06 C ∪← {c}
07 return (kb, c)

Oracle Decap(c)
08 require c /∈ C
09 k ← KEM.dec(sk, c)
10 return k

Game subIND-CCAb(A)
00 C ← ∅
01 igen, iS, iR ←$ Igen × IS × IR
02 (pk, sk)← KEM.genigen

03 b′ ← AEncap,Decap(pk)
04 stop with b′

Oracle Encap
05 (k0, c)← KEM.enciS(pk)
06 k1 ←$ K
07 C ∪← {c}
08 return (kb, c)

Oracle Decap(c)
09 require c /∈ C
10 k ← KEM.deciR(sk, c)
11 return k

Figure A.1: Games modelling indistinguishability under chosen-ciphertext attacks
(IND-CCA), and subverted indistinguishability under chosen-ciphertext attacks
(subIND-CCA) for a key encapsulation mechanism KEM.

where the probability is taken over the experiment in which Gen(1n) is run to gen-

erate (I, td) and then x is chosen uniformly from DI . The asymmetry provided by

trapdoor permutations implies that anyone who knows the trapdoor td associated

with I can recover x from fI(x) and thus compute hcI(x) from fI(x). But given

only I, it is infeasible to compute hcI(x) from fI(x) for a uniform x.

A.2 Key and Data Encapsulation Mechanisms

A.2.1 Key Encapsulation Mechanisms

For completeness, we give the corresponding definitions of subversion attacks against

key encapsulation mechanisms, together with notions of undetectability and key

recovery.

A.2.1.1 KEM Definition

A KEM scheme KEM = (KEM.gen, KEM.enc, KEM.dec) for a finite session key

space K is a triple of algorithms together with a key space KS ×KR and ciphertext

164



A.2 Key and Data Encapsulation Mechanisms

space C. The key generation algorithm KEM.gen returns a pair (pk, sk) ∈ KS × KR

consisting of a public key and a secret key. The encapsulation algorithm KEM.enc

takes a public key pk to produce a session key k ∈ K and a ciphertext c ∈ C. Finally,

the decapsulation algorithm KEM.dec takes a secret key sk and a ciphertext c ∈ C,

and outputs either a session key K ∈ K or the special symbol ⊥ /∈ K to indicate

rejection. The correctness requirement is that for all (pk, sk) ∈ KS × KR we have

Pr [KEM.dec(sk, c) ̸= k] ≤ δ for (k, c)← KEM.enc(pk).

A.2.1.2 IND-CCA

For a key encapsulation mechanism, we formalise the indistinguishability under

chosen-ciphertext attack via the game IND-CCA in Figure A.1 (left). For any ad-

versary A we define the advantage

Advind-cca
KEM (A) :=

∣∣∣Pr
[
IND-CCA0(A)

]
− Pr

[
IND-CCA1(A)

]∣∣∣
and say that scheme KEM is indistinguishable against chosen-ciphertext attacks if

Advind-cca
KEM (A) is negligibly small for all realistic A.

A.2.1.3 Subverting KEM

We note that KEM schemes satisfy the generic syntax introduced above in Sec-

tion 3.2, with key generation algorithm Π.gen = KEM.gen, sender algorithm Π.S =

KEM.enc, receiver algorithm Π.R = KEM.dec. We may thus apply the generic no-

tions of subversion introduced in Section 3.2.1, and observe that the passive attack

in Section 5.3.2 applies. If the KEM scheme is in addition ciphertext sparse, ac-

cording to the notion in Section 5.3.3.1, then the attacks in Section 5.3.3 will also

apply. Figure A.1 (right) shows the game modelling subverted indistinguishability

under chosen-ciphertext attacks.

165



A.2 Key and Data Encapsulation Mechanisms

A.2.2 Data Encapsulation

A DEM scheme DEM = (DEM.gen, DEM.enc, DEM.dec) is a triple of algorithms

together with associated key space K, message spaceM and ciphertext space C. The

key generation algorithm DEM.gen returns key k ∈ K. The encapsulation algorithm

DEM.enc takes key k ∈ K and a message m ∈ M, and outputs a ciphertext c ∈ C.

The decapsulation algorithm DEM.dec takes a key k ∈ K and a ciphertext c ∈ C,

and outputs either a message m ∈ M or the special symbol ⊥ /∈ M to indicate

rejection. The correctness requirement is that for all keys k ∈ K, m ∈ M it holds

that Pr [DEM.dec(k, c) ̸= m] ≤ δ for c← DEM.enc(k, m).

A.2.2.1 IND-CCA

We formalise the indistinguishability under one-time chosen-ciphertext attack of a

data encapsulation mechanism via the game IND-CCA in Figure A.2 (left). Note

how Line 04 and Line 08 ensure that the adversary’s first query is an encryption

query, and that all further queries are decryption queries. (This precisely matches

the typical situation as it emerges in a KEM/DEM hybrid.) For any adversary A

we define the advantage

Advind-cca
DEM (A) :=

∣∣∣Pr
[
IND-CCA0(A)

]
− Pr

[
IND-CCA1(A)

]∣∣∣
and say that scheme DEM is indistinguishable against chosen-ciphertext attacks if

Advind-cca
A is negligibly small for all realistic A.

A.2.2.2 Subversion of DEM

We note that Data Encapsulation Mechanism schemes satisfy the generic syntax

introduced above in Section 3.2, with key generation algorithm Π.gen = DEM.gen,

sender algorithm Π.S = DEM.enc, receiver algorithm Π.R = DEM.dec. We may thus

apply the generic notions of subversion introduced in Section 3.2.1, and observe

that the passive attack in Section 5.3.2 applies. If the DEM scheme is in addition

166



A.2 Key and Data Encapsulation Mechanisms

Game IND-CCAb(A)
00 C ← ∅
01 k ←$ DEM.gen
02 b′ ← AEnc,Dec

03 stop with b′

Oracle Enc(m0, m1)
04 require C = ∅
05 c← DEM.enc(k, mb)
06 C ∪← {c}
07 return c

Oracle Dec(c)
08 require C ̸= ∅
09 require c /∈ C
10 m← DEM.dec(k, c)
11 return m

Game subIND-CCAb(A)
00 C ← ∅
01 igen, iS, iR ←$ Igen × IS × IR
02 k ←$ DEM.genigen

03 b′ ← AEnc,Dec

04 stop with b′

Oracle Enc(m0, m1)
05 require C = ∅
06 c← DEM.enciS(k, mb)
07 C ∪← {c}
08 return c

Oracle Dec(c)
09 require C ̸= ∅
10 require c /∈ C
11 m← DEM.deciR(k, c)
12 return m

Figure A.2: Games modelling indistinguishability under one-time chosen-ciphertext
attacks (IND-CCA), and subverted indistinguishability under one-time chosen-
ciphertext attacks (subIND-CCA) for a data encapsulation mechanism DEM.

ciphertext sparse, according to the notion in Section 5.3.3.1, then the attacks in

Section 5.3.3 will also apply. Figure A.2 (right) shows the game modelling subverted

indistinguishability under chosen-ciphertext attacks.

Discussion. Typically, a DEM is used together with a KEM in a so-called hybrid

encryption scheme that uses the KEM to share (symmetric) session keys with which

plaintext messages are encrypted under the DEM. In such a setting, subverting the

KEM is sufficient to undermine the security of messages sent via the hybrid scheme.

Following the discussion at Section 5.2.2, it is conceivable to subvert a KEM and

DEM in tandem so that the KEM’s secret key is leaked by the both together. This

could allow the subversion to effectively be distributed between the two primitives,

aiding undetectability in practice.

167



A.3 Example Ciphertext Sparse PKE Schemes

A.3 Example Ciphertext Sparse PKE Schemes

We describe two widespread PKE schemes that satisfy the notion of ciphertext

sparseness described in Section 5.3.3.1.

OAEP. Optimal Asymmetric Encryption Padding (OAEP) was introduced by Bel-

lare and Rogaway [24] and is a widely deployed and standardised PKE scheme. The

encryption algorithm of OAEP works on message space M = {0, 1}ℓ with fixed

message length ℓ. Let k0 and k1 be integers, and G : {0, 1}k0 → {0, 1}ℓ+k1 and

H : {0, 1}ℓ+k1 → {0, 1}k0 be two hash functions. Messages are padded before be-

ing encrypted using the trapdoor permutation (typically RSA): To pad a message

m ∈ M, set m′ ← m ∥ 0k1 and choose r ←$ {0, 1}k0 . Then set s ← m′ ⊕ G(r),

t ← r ⊕ H(s) and m̂ ← s ∥ t. To decrypt a ciphertext, first decrypt (i.e.apply

the trapdoor inverse) before unpadding the resulting padded message m̂: Parse m̂

as s ∥ t with s ∈ {0, 1}ℓ+k1 and t ∈ {0, 1}k0 . Now compute r ← t ⊕ H(s) and

m′ ← s⊕G(r). If m′ ̸= m ∥ 0k1 for some m then reject, otherwise return m.

For a randomly chosen element c in the ciphertext space C, the redundancy in-

troduced by padding will ensure that decrypting c results in a valid message with

probability 2−k1 . This is because choosing c←$ C is equivalent to choosing a random

m′ ←$ {0, 1}ℓ+k1 , assuming that the trapdoor permutation and hash functions all

behave like random functions. Equivalently, the scheme is ciphertext 2−k1-sparse,

according to the definition in Section 5.3.3.1.

Cramer-Shoup. The Cramer-Shoup PKE scheme was introduced in [48]. The

encryption scheme CS = (CS.gen, CS.enc, CS.dec) is defined in relation to a set of

public parameters consisting of finite group G with |G| = q and a pair of genera-

tors g, ĝ for G, together with a hash key hk for a family of keyed collision resistant

universal hash functions Hhk : G3 → Zq. The family of keyed hash functions is

such that given a randomly chosen tuple of group elements and randomly chosen

hash function key, it is computationally infeasible to find a different tuple of group

elements that hashes to the same value using the given hash key. We give details of

168



A.4 Plaintext Awareness

Proc CS.gen(G, g, ĝ, hk)
00 x1, x2, y1, y2, z1, z2 ←$ Zq

01 a← gx1 ĝx2 , b← gy1 ĝy2 , d← gz1 ĝz2

02 pk ← (a, b, d)
03 sk ← (x1, x2, y1, y2, z1, z2)
04 output (sk, pk)

Proc CS.enc(pk, m)
05 u←$ Zq, w ← gu, ŵ ← ĝu

06 e← du ·m
07 ρ← Hhk(a, â, e)
08 v ← aubuρ

09 output c = (a, â, e, v)

Proc CS.dec(sk, c)
10 parse c as (a, â, e, v)
11 ρ← Hhk(a, â, e)
12 if v ̸= ax1+y1ρ · âx2+y2ρ

13 return ⊥
14 else:
15 m← c · (az1 âz2)−1

16 return m

Figure A.3: Cramer-Shoup PKE scheme CS = (CS.gen, CS.enc, CS.dec).

Cramer-Shoup in Figure A.3.

For a randomly chosen element c = (a, â, e, v) in the ciphertext space G4, the re-

dundancy introduced by the hash function will ensure that decrypting c results in

a valid message with probability q−1. To see this, consider fixed a, â, e: this gives a

fixed value of ax1+y1ρ · âx2+y2ρ ∈ G and thus Pr
[
v = ax1+y1ρ · âx2+y2ρ

]
= q−1.

A.4 Plaintext Awareness

We here give the definition of plaintext awareness, a property of PKE schemes

that implies ciphertext sparseness (see Section 5.3.3.1). Plaintext awareness essen-

tially means that an adversary is unable to create ciphertexts without knowing the

underlying plaintext message. This means that ciphertexts which have not been

generated from underlying plaintext messages should be rejected, implying that ci-

phertexts chosen uniformly at random from the ciphertext space are unlikely to be

valid. Both the Cramer-Shoup cryptosystem [47, 53] and RSA+OAEP [101, 24],

outlined in Section 5.3.3.1, satisfy plaintext awareness.

The formal definitions of plaintext awareness in the standard model were proposed

by Bellare and Palacio [22], and were slightly extended by Dent and Birkett [53, 34].

A scheme is plaintext aware if for all ciphertext creators (attackers) A, there exists a

169



A.4 Plaintext Awareness

plaintext extractor K which takes as input the random coins of A and can answer the

decryption queries of A in a manner that A cannot distinguish from a real decryption

oracle. In order to model the attacker’s ability to obtain ciphertexts for which it

does not know the underlying plaintext, the ciphertext creator is equipped with an

oracle that will return the encryption of a randomly chosen message m ←$ MS,

where MS is an arbitrary (stateful) message sampling algorithm that takes as input

α allowing an adversary (ciphertext creator) to specify a distribution on messages.

In Figure A.4, we write ⋄ for the initial state of MS. After interacting with either

the real decryption algorithm or the knowledge extractor simulating decryption, the

ciphertext creator outputs a ciphertext c. A distinguisher D is now tasked with

guessing which case we are in. Note that the knowledge extractor K does not have

access to the distinguisher’s randomness.

We formalise plaintext awareness of a public-key encryption scheme via the game PA

in Figure A.4. For any distinguisher D we define the advantage

Advpa
K,MS,A(D) :=

∣∣∣Pr
[
PA0

K,MS,A(D)
]
− Pr

[
PA1

K,MS,A(D)
]∣∣∣ .

We say that a scheme is plaintext aware if for all realistic ciphertext creators A,

there exists a knowledge extractor K such that for all message samplers MS and

distinguishers D, the advantage Advpa
K,MS,A(D) is negligibly small.

We note that a PKE scheme that satisfies plaintext awareness and indistinguishabil-

ity against chosen-ciphertext attacks (Section 2.3.6) is necessarily ciphertext sparse.

To see this, suppose that the PKE scheme is not ciphertext sparse. For a randomly

chosen ciphertext c←$ C, the real game PA0
K,MS,A(D) will output a valid message m.

However, in the random game PA1
K,MS,A(D) the knowledge extractor will not be able

to output m without contradicting the plaintext awareness and CCA security of the

scheme. We thus conclude that the scheme is ciphertext sparse.

170



A.4 Plaintext Awareness

Game PAb
K,MS,A(D)

00 C ← ∅
01 σ ← ⋄
02 (pk, sk)← PKE.gen
03 AEnc,Dec(pk)
04 b′ ← D
05 stop with b′

Oracle Enc(α)
06 (σ, m, β)←$ MS(σ, α)
07 c← PKE.enc(pk, m); C ∪← {c}
08 return c

Oracle Dec(c)
09 require c /∈ C
10 if b = 0:
11 return PKE.dec(sk, c)
12 else:
13 return K(pk, c, R[A], C)

Figure A.4: Game modelling plaintext awareness (PA), for a public-key encryption
scheme PKE. Note that we retain β (modelling side-channel information) in the syn-
tax of message sampler MS for consistency, but the adversary is not given output β.

171


	Introduction
	Motivation
	Thesis Structure and Contributions
	Associated Publications

	Preliminaries
	Notation
	Provable Security
	Provable Security Framework
	Computational Security

	Standard Primitives
	Pseudo-Random Functions and Permutations
	Hash Function
	Symmetric Encryption
	Message Authentication Schemes
	AEAD Schemes
	Public-Key Encryption Schemes
	IND-CCA


	Algorithm Substitution Attacks
	Introduction
	Structure of the Chapter

	Notions of Subversion Attacks
	Undetectable Subversion
	Subversion Leading to Subliminal Information Exfiltration
	Generic Method: Rejection Sampling
	Cryptographic vs. Non-Cryptographic Subversion

	Subverting Primitives
	Applying our Syntax
	Discussion

	Related Work
	Symmetric Encryption
	Public-Key Encryption
	Further Work
	Defending Against Subversion Attacks


	Subverting Deniability
	Introduction
	Structure of the Chapter

	Case Study: Subverting Deniable Symmetric Encryption
	Subverting Deniability of Symmetric Encryption
	Discussion

	Deniable Public-Key Encryption
	Definition of Deniable PKE Schemes
	Parity Scheme of Canetti, Dwork, Naor, Ostrovsky

	Subverting deniable PKE
	Subverting Deniable PKE
	Subverting CDNO Parity Scheme
	Subversion Resilient Deniable PKE Schemes
	Conclusion


	Concrete Subversion Attacks via Acceptance vs. Rejection 
	Introduction
	Structure of the Chapter

	Adversarial Goals
	Subversion Leading to Key Recovery
	Hybrid Subversion
	Breaking Security without Extracting the Full Key

	Concrete Subversion Attacks via Acceptance vs. Rejection
	Combinatorics: Coupon Collection
	Passive Attack
	Active Attack

	Implementation
	Mitigating Subversion
	Conclusion
	AEAD
	MACs
	PKE


	Partitioning Oracles
	Introduction
	Structure of the Chapter

	Background: Polynomial Hashing
	MACs from Polynomial Hashing
	AEAD
	AES-GCM
	Key Commitment
	Weak Key Forgeries

	Partitioning Oracle Attacks
	Formal Definition of a Partitioning Oracle
	Multi-Key Contingent Forgeries

	Partitioning Oracle Attacks from Weak Key Forgeries
	Targeted Key Contingent Forgery Testing l keys
	Targeted Key Contingent Forgery Passing Format Checks

	Partitioning Oracle Attacks against Shadowsocks
	Our Attack: Partitioning Oracles from Weak Key Forgeries
	Other Proxy Servers (VPNs)

	Conclusions

	Conclusion
	Contributions
	Further Work

	Bibliography
	Appendix
	Trapdoor Permutations
	One-Way Permutation
	Trapdoor Permutation
	Hardcore Predicate

	Key and Data Encapsulation Mechanisms
	Key Encapsulation Mechanisms
	Data Encapsulation

	Example Ciphertext Sparse PKE Schemes
	Plaintext Awareness


