
1

Developments in security mechanism standards

Chris Mitchell
Information Security Group, Royal Holloway, University of London

1 Introduction

1.1 International standardisation

Over the last ten years, in parallel with the enormous growth in the use of cryptography,

major efforts have been devoted to assembling a set of internationally agreed standards for

cryptographic mechanisms. These standards have been prepared by ISO/IEC JTC1/SC27, a

committee devoted entirely to security standardisation. Of course, the standards produced by

SC27 are not the only cryptographic standards in existence. A number of important standards

have been produced by a variety of other bodies, including the following.

• From the early 1980s onwards, the US banking community has produced a range of US

(ANSI) standards covering the use of cryptography in retail and wholesale banking. The

standards have had a very strong influence on subsequent international banking standards

on cryptography and its use. In turn these banking standards have motivated some of the

general purpose standards developed by SC27.

• The Internet community has produced a number of RFCs covering a range of

cryptographic algorithms. These RFCs have been primarily aimed at providing

algorithms for use in specific secure Internet protocols (e.g. for secure email and secure

IP). Nevertheless, some of the schemes adopted as RFCs have become widely used in

many applications outside of the Internet sphere.

• A variety of national, regional and industry bodies have proposed standards for

cryptographic techniques. Examples include the pioneering US standards for the DES

block cipher, the DSA signature algorithm, and the SHA-1 hash algorithm, and the

2

European ETSI standards for cryptographic algorithms for use in mobile

telecommunications (some of which remain confidential).

1.2 Scope of this chapter

However, despite this wide range of standardisation activity, the ISO/IEC JTC1/SC27 work is

unique in being both truly international and also aimed at general applications. As such,

while we mention the relevant work of other standards bodies, the main focus of this chapter

is the work of ISO/IEC JTC1/SC27. The main purpose of this chapter is to bring the

international standards for cryptographic techniques to the widest possible audience.

Adoption of these standards, which have received detailed scrutiny from experts world-wide,

can only help to improve the quality of products incorporating security features.

Note that much of the work described in this chapter is based on recent research. For brevity,

references to research papers are not included here. For further information the interested

reader should consult the bibliographies in the quoted standards, or the excellent

encyclopaedic work (Menezes, van Oorschot and Vanstone, 1997).

1.3 Contents

The chapter will consider the full spectrum of international standardisation of cryptographic

techniques. Thus will i nvolve covering the following areas:

• Encryption algorithms,

• Modes of operation for block ciphers,

• Message Authentication Codes (MACs),

• Digital signatures and Hash-functions,

• Entity authentication,

• Non-repudiation, and

• Key management.

3

The main technical contents of the international standards covering these topics are outlined,

and some motivation for their contents, as well as indications on their application, will be

provided. This discussion of international standards for cryptographic techniques is prefaced

by a short introduction to the main standards-making bodies, and an overview of some of the

most significant parts of ISO/IEC 7498-2, the OSI Security Architecture. This latter standard

is strictly outside the scope of this chapter, but it is useful in that it provides a standardised

framework for the description of security services and mechanisms.

2 Standardisation bodies

2.1 Overview

The main international standards bodies relevant to information security are:

• International Organization for Standardization (ISO),

• International Electrotechnical Commission (IEC),

• International Telecommunications Union (ITU), the successor to CCITT and CCIR.

There is some collaboration between these bodies; for example, in the area of IT, ISO and

IEC have formed a Joint Technical Committee (JTC1). At the European level, the 3 standards

bodies roughly corresponding to ISO, IEC and ITU are respectively:

• Comité Européen de Normalisation (CEN),

• Comité Européen de Normalisation Eléctrotechnique (CENELEC),

• European Telecommunications Standards Institute (ETSI).

The National Standards bodies (members of ISO and IEC) also produce their own national

standards. In Europe, ECMA (the European Computer Manufacturers Association) have

produced standards for distributed system security. In North America, the IEEE (Institute of

Electrical and Electronics Engineers) and NIST (the National Institute for Standards and

Technology) produce IT security standards of international importance. IEEE work includes

4

LAN security and POSIX standards. NIST (the successor to NBS) produces standards for use

by Federal Government bodies. Also of global significance is the work of ANSI (the

American National Standards Institute), particularly for its banking security standards.

2.2 Internet standards

The Internet is the result of interconnecting a worldwide community of government,

academic and private computer networks. It started as a project sponsored by the U.S.

government, and it grew organically based largely on academic and research institutions. In

recent years the Internet has expanded to include many private organisations wishing to make

use of the communications facilities the Internet provides. The operation of the Internet relies

on interconnection standards, primarily those designed specifically for Internet operation.

The Internet is managed by the Internet Activities Board (IAB), which delegates the main

responsibility for the development and review of its standards to the Internet Engineering

Task Force (IETF). Final decisions on Internet standards are made by the IAB.

2.3 ISO standards

2.3.1 Overview

ISO, founded in 1946, is a worldwide federation of national standards bodies. A Member

Body of ISO is the national body ‘most representative of standardisation in that country’ (e.g.

BSI in the UK). ISO (and IEC) assigns responsibility for the development of standards in

particular areas to Technical Committees (TCs). A technical committee determines its own

programme of work, within the scope specified by its parent body (ISO or IEC). The main

TCs responsible for security relevant standards are:

• ISO/IEC JTC1: Information technology, and

• ISO TC68: Banking and related financial services.

TCs establish Sub-Committees (SCs) to cover different aspects of their work. SCs, in turn,

establish Working Groups (WGs), to deal with specific topics. While the structures of TCs,

5

SCs and WGs evolve over time, the evolution is not rapid, and these groups typically exist for

several years. An ISO standard moves through the following phases in its development:

• New Work Item (NWI) Proposal and TC Ballot,

• Appointment of editor,

• Series of Working Drafts (WDs),

• Committee Draft (CD), Final CD (FCD), and associated ballots,

• Draft International Standard (DIS), Final DIS (FDIS), and associated ballots,

• International Standard status,

• 5-yearly review.

Provisions are also made for standards to be revised earlier than the five-yearly review cycle

if defects are found. This operates via a ‘defect report’ system.

2.3.2 ISO security standards

As previously mentioned, the main ISO TCs responsible for security are ISO/IEC JTC1 and

ISO TC68. ISO TC68, responsible for banking standards, has produced a wide variety of

security standards (including ISO 8730, ISO 8731-1, and ISO 8731-2 specifying integrity

mechanisms, and ISO 8732, ISO 11166-1 and ISO 11166-2 specifying key management

methods).

The main security-relevant SCs within JTC1 (responsible for Information Technology) are as

follows:

• SC6: Telecommunications and information exchange between systems,

• SC17: Identification cards and related devices,

• SC18: Document processing and related communication,

• SC21: OSI, data management and Open Distributed Processing.

6

• SC27: IT Security Techniques.

The security techniques standards produced by SC27 is the main focus of this chapter. The

work of SC27 is divided into three working groups.

• WG1 is responsible for security management and liaison with other standards groups.

• WG2 is responsible for security mechanism standards.

• WG3 is concerned with computer security (evaluation criteria, etc.).

We are primarily concerned here with the work of WG2, although we do consider two

standards (ISO/IEC 9979 and ISO/IEC 11770-2) developed by WG1.

3 The OSI Security Architecture

We start our discussion of security standards by considering ISO 7498-2 (ISO, 1989) the OSI

security architecture developed by JTC1 SC21. ISO 7498-2 is intended to serve as a

security-specific addition to ISO 7498, the OSI reference model. In doing so it defines many

security-related terms and ideas which are of importance to a variety of application areas,

including many not covered by the OSI model. Of particular importance is the terminology it

introduces for the description of security services and mechanisms.

3.1 Security model

The underlying model, implicit to the discussion in ISO 7498-2, is that there is a generic

security life-cycle, containing the following steps:

• definition of a security policy, containing a rather abstract series of security requirements

for the system,

• a security requirements analysis, including a risk analysis, possibly using a tool such as

CRAMM, and an analysis of governmental, legal and standards requirements,

• definition of the security services necessary to meet the identified security requirements,

7

• system design and implementation, including selection of security mechanisms to provide

the chosen security services, and

• continuing security management.

In the context of this model, a security threat is something that poses a danger to a system’s

security. A security service is selected to meet an identified threat, and a security mechanism

is the means by which a service is provided. It is important to note the distinction between a

security service, i.e. what is provided for a system, and a security mechanism, i.e. the means

by which a service is provided. Hence confidentiality is a service, whereas encryption is a

mechanism which can be used to provide confidentiality. In fact encryption can be used to

provide other services, and data confidentiality can also be provided by means other than

encryption (e.g. by physical protection of data).

When designing a secure system, the scope of the system and the set of rules governing the

security behaviour of the system are of fundamental importance; these are the security domain

and the security policy respectively. A security policy is defined in ISO 7498-2 as ‘ the set of

criteria for the provision of security services’ . A security domain can be regarded as the

scope of a single security policy. It is possible to have nested or overlapping security

domains, and thus nested or overlapping scopes for security policies.

ISO 7498-2 gives the following statement as an example of a possible generic security policy

statement regarding authorisation:

Information may not be given to, accessed by, or permitted to be inferred by, nor may

any resource be used by, those not appropriately authorised.

An initial generic policy of this type can then be refined, in conjunction with the results of a

requirements analysis, into a detailed set of rules governing the operation and management of

the system. Note that this generic policy only deals with preventing unauthorised access, i.e.

it does not make any statement about guaranteeing access to legitimate users. Thus it does

not deal with Availability, and hence does not address denial of service threats.

8

ISO 7498-2 distinguishes between two types of security policy: identity-based and rule-

based, depending on how authorisation is granted. Identity-based policies authorise system

access on the basis of the identity of the client and the identity of the resource which the client

wishes to make use of. Rule-based policies rely on global rules imposed on all users, with

access decisions typically made using a comparison of the sensitivity of the resources with the

user attributes (e.g. the ‘clearance’ of the user).

3.2 Security services

ISO 7498-2 defines five main categories of security service:

• authentication, including entity authentication and origin authentication,

• access control,

• data confidentiality,

• data integrity,

• non-repudiation.

Parts 2-6 of the 7-part Security framework standard (ISO, 1996a) give a much more detailed

discussion of the general ways in which these services can be provided.

• Entity authentication provides corroboration to one entity that another entity is as

claimed. This service may be used at the establishment of (or during) a connection, to

confirm the identities of one or more of the connected entities. This service provides

confidence, at the time of usage only, that an entity is not attempting a masquerade or an

unauthorised replay of a previous connection.

Origin authentication provides corroboration to an entity that the source of received data

is as claimed. However, the service does not, in itself, provide protection against

duplication or modification of data units.

9

• The access control service provides protection against unauthorised use of resources.

This protection may be applied to various types of access to a resource, e.g. the use of a

communications resource, the reading, writing, or deletion of an information resource, the

execution of a processing resource.

• ISO 7498-2 defines four types of data confidentiality service; all these services provide

for the protection of data against unauthorised disclosure. The four types are Connection

confidentiality – which provides for the confidentiality of all user data transferred using a

connection, Connectionless confidentiality – which provides for the confidentiality of all

user data transferred in a single connectionless data unit, i.e. a packet, Selective field

confidentiality – which provides for the confidentiality of selected fields within user data

transferred in either a connection or a single connectionless data unit, and Traffic flow

confidentiality – which provides for the confidentiality of information which might be

derived from observation of traffic flows.

• ISO 7498-2 defines five types of data integrity service; all these services counter active

threats to the validity of transferred data. The five types are Connection integrity with

recovery – which provides for the integrity of all user data on a connection, and detects

any modification, insertion, deletion or replay of data within an entire data unit sequence,

with recovery attempted, Connection integrity without recovery – as previously but with

no recovery attempted, Selective field connection integrity – which provides for the

integrity of selected fields within the user data of a data unit transferred over a

connection, Connectionless integrity – which provides integrity assurance to the recipient

of a data unit, and Selective field connectionless integrity – which provides for the

integrity of selective fields within a single connectionless data unit.

• ISO 7498-2 defines two types of non-repudiation service: Non-repudiation with proof of

origin, where the recipient of data is provided with protection against any subsequent

attempt by the sender to falsely deny sending the data, and Non-repudiation with proof of

10

delivery, where the sender of data is protected against any subsequent attempt by the

recipient to falsely deny receiving the data.

3.3 Security mechanisms

Security mechanisms exist to provide and support security services. ISO 7498-2 divides

mechanisms into two types: Specific security mechanisms, i.e. those specific to providing

certain security services, and Pervasive security mechanisms, i.e. those not specific to the

provision of individual security services, including trusted functionality and event detection

(we do not discuss these further here).

Eight types of specific security mechanism are listed, namely Encipherment, Digital signature

mechanisms, Access control mechanisms, Data integrity mechanisms, which include MACs,

Authentication exchange mechanisms, Traffic padding mechanisms, Routing control

mechanisms, and Notarisation mechanisms. We now consider each of these eight classes in a

little more detail . This lays the ground work for the detailed consideration of standards for

various types of security mechanism.

• Encipherment mechanisms, commonly known as encryption or cipher algorithms, can

help provide confidentiali ty of either data or traffic flow information. They also provide

the basis for some authentication and key management techniques.

• A digital signature mechanism consists of two procedures: a signing procedure, and a

verifying procedure. Such mechanisms can be used to provide non-repudiation, origin

authentication and/or integrity services, as well as being an integral part of some

mechanisms to provide entity authentication. Signature mechanisms can be divided into

two types: Digital signatures ‘with message recovery’ , and Digital signatures ‘with

appendix’ . One-way hash functions are an essential part of the computation of digital

signatures ‘with appendix’ .

• Access control mechanisms can be thought of as a means for using information associated

with a client entity and a server entity to decide whether access to the server’s resource is

11

granted to the client. Examples of types of access control mechanisms include: access

control l ists, capabilities and security labels. A general framework for access control

mechanisms can be found in ISO/IEC 10181-3, the Access Control Framework (ISO,

1996a).

• Two types of data integrity mechanism exist: those concerned with the integrity of a

single data unit, and those concerned with protecting the integrity of an entire sequence of

data units. The first type of mechanism, e.g. a MAC, can be used to help provide both

data origin authentication and data integrity (as well as being an integral part of some

authentication exchange and key management mechanisms). Mechanisms of the second

type, which must be used in conjunction with mechanisms of the first type, can be used to

provide full connection-oriented integrity services. These mechanisms include sequence

numbers and time stamps. These mechanisms are necessary since use of a MAC alone

will not enable a recipient of data to detect replays of single data units, and, more

generally, manipulation of a sequence of data units (including replay, selective deletion

and re-ordering).

• Authentication exchange mechanisms, otherwise known as authentication protocols, can

be used to provide entity authentication (as well as being the basis of some key

management mechanisms).

• The term traffic padding describes the addition of ‘ bogus’ data to conceal the volumes of

real data traffic. It can be used to help provide traffic flow confidentiali ty. This

mechanism can only be effective if the added padding is enciphered (or otherwise

provided with confidentiali ty).

• Routing control mechanisms can be used to prevent sensitive data using insecure

communications paths. For example, depending on the data’s sensitivity, routes can be

chosen to use only secure network components (sub-networks, relays or links). Data

carrying certain security labels may be forbidden to enter certain network components.

12

• The integrity, origin and/or destination of transferred data can be guaranteed by the use of

a notarisation mechanism. A third party notary, which must be trusted by the

communicating entities, wil l provide the guarantee (typically by applying a cryptographic

transformation to the transferred data).

4 Encryption algorithms

In the late 1970s the DES block cipher algorithm was adopted by the NBS as a U.S. Federal

Standard (FIPS, 1993); it was subsequently made into a U.S. Standard by ANSI (ANSI,

1981). Efforts to make DES an ISO standard nearly succeeded in the mid 1980s, but work

was stopped for poli tical reasons (work also stopped on efforts to standardise RSA). Instead,

all efforts to standardise encryption techniques were abandoned, and work focussed instead

on creating an international register of algorithms. The form of register entries is standardised

in ISO/IEC 9979 (ISO, 1999e) and the register itself is actually held by NCC, Manchester.

The register enables communicating entities to identify and negotiate an agreed algorithm.

The Registration Authority maintains the register and ensures that ‘ register entries conform to

the registration procedures’ in ISO/IEC 9979. It ‘does not evaluate or make any judgement of

quality’ of registered algorithms. A registered algorithm may be an algorithm for which a

complete description is contained in the register, an algorithm for which a complete

description is defined in an ISO document or in a standard maintained by an ISO member

body or by a liaison organisation, or an algorithm not completely described in the public

domain.

Submission of entries to the register may be originated by an ISO member body, e.g. BSI,

AFNOR, ANSI, DIN, etc., an ISO Technical Committee, or a liaison organisation. For each

registered algorithm the corresponding register entry must contain the following details.

a. Formal algorithm name.

b. Proprietary name(s) of algorithm.

13

c. Intended range of applications.

d. Cryptographic interface parameters.

e. Set of test values.

f. Organisation identity that requested registration.

g. Dates of registration and modifications.

h. Whether the algorithm is the subject of a national standard.

i. Patent licence restriction information.

It may also, optionally, contain the following information.

j. List of references to associated algorithms.

k. Algorithm description.

l. Modes of operation.

m. Other information.

5 Modes of operation for block ciphers

Modes of operation for the DES block cipher algorithm were standardised in the U.S. in 1980

(FIPS, 1980) and 1983 (ANSI, 1983). These modes of operation are recommended ways in

which to use DES to encipher strings of data bits.

Work initially started within ISO to provide corresponding international standards for DES

modes of operation. When the ISO work on DES ceased, the modes of operation work

continued, but now directed towards any block cipher algorithm, resulting in two standards:

ISO 8372 (ISO, 1987a) (modes of operation for a 64-bit block cipher algorithm) and ISO/IEC

10116 (ISO, 1997c) (modes of operation for an n-bit block cipher algorithm for any n).

All these standards (NBS, ANSI and ISO) contain four modes of operation:

• ECB (Electronic Code Book) Mode,

14

• CBC (Cipher Block Chaining) Mode,

• OFB (Output FeedBack) Mode, and

• CFB (Ciphertext FeedBack) Mode.

We now describe each of these modes in a little more detail . Note that we base all our

descriptions on the text in ISO/IEC 10116 (ISO, 1997c) since ISO 8372 is just a special case

of ISO/IEC 10116. Throughout we suppose e is the encryption operation for an n-bit block

cipher (where n is the number of bits in a plaintext and a ciphertext block) and d is the

decryption operation for the same block cipher. We write

C = eK(P)

where C is an n-bit ciphertext block, K is a secret key for the block cipher, and P is an n-bit

plaintext block. Similarly we write

P = dK(C),

and hence P = dK(eK(P)).

5.1 Electronic Code Book (ECB) Mode

The plaintext must be in the form of a sequence of blocks P1, P2, ... , Pq where Pi is an n-bit

block. The ciphertext is then defined to be the sequence of blocks C1, C2, ... , Cq where

Ci = eK(Pi)

for every i (1 ≤ i ≤ q). Decipherment is achieved as:

Pi = dK(Ci)

for every i (1 ≤ i ≤ q).

15

5.2 Cipher Block Chaining (CBC) Mode

As for ECB mode, the plaintext must be made into a series of n-bit blocks: P1, P2, ... , Pq. In

addition let SV be a ‘starting variable’ . Then compute the sequence of ciphertext blocks C1,

C2, ... , Cq, as follows:

C1 = eK(P1 ⊕ SV), and Ci = eK(Pi ⊕ Ci-1) (i>1)

where ⊕ denotes bit-wise exclusive-or of blocks. Decipherment operates as follows:

P1 = dK(C1) ⊕ SV and Pi = dK(Ci) ⊕ Ci-1 (i>1).

5.3 Ciphertext FeedBack (CFB) Mode

We start by describing CFB mode as it appeared in the first, 1991, edition of ISO/IEC 10116.

To use this mode it is first necessary to choose two parameters:

• k (1 ≤ k ≤ n), the size of the Feedback Variable,

• j (1 ≤ j ≤ k), the size of the Plaintext Variable.

Divide the plaintext into a series of j-bit blocks: P1, P2, ... , Pq. Let SV be an n-bit ‘ starting

variable’ . We will also use the following variables to denote ‘ intermediate results’ :

• X1, X2, ..., Xq, Y1, Y2, ..., Yq, each of n bits,

• E1, E2, ..., Eq, each of j bits,

• F1, F2, ..., Fq-1, each of k bits.

Given an m-bit block X = (x1, x2, ..., xm) and a k-bit block F = (f1, f2, ..., fk) (where k ≤ m), we

will use the notation Sk(X|F) to denote the m-bit block

(xk+1, xk+2, ..., xm, f1, f2, ..., fk).

The effect is to shift X left by k places, shifting in the k elements of F on the right.

Encipherment operates as follows. First let X1=SV. Then, for i = 1, 2, ..., q calculate:

Yi = eK(Xi)

16

Ei = Yi ~ j

Ci = Pi ⊕ Ei

Fi = Sj(I(k)|Ci)

Xi+1 = Sk(Xi|Fi)

where Yi ~ j denotes the left-most j bits of Yi, and I(k) denotes a block of k ones. Note that the

last two steps are not performed when i = q. Decipherment operates as follows. First let X1 =

SV. Then, for i = 1, 2, ..., q calculate:

Yi = eK(Xi)

Ei = Yi ~ j

Pi = Ci ⊕ Ei

Fi = Sj(I(k)|Ci)

Xi+1 = Sk(Xi|Fi)

As for encipherment, the last two steps are not performed when i = q.

5.4 Output FeedBack (OFB) Mode

To use this mode it is first necessary to choose j (1 ≤ j ≤ n), the size of the Plaintext Variable.

Divide the plaintext into a series of j-bit blocks: P1, P2, ..., Pq. Let SV be an n-bit ‘ starting

variable’ . We will also use the following variables to denote ‘ intermediate results’ :

• X1, X2, ..., Xq, Y1, Y2, ..., Yq, each of n bits,

• E1, E2, ..., Eq, each of j bits.

Encipherment operates as follows. First let X1 = SV. Then, for i = 1, 2, ..., q calculate:

Yi = eK(Xi)

Ei = Yi ~ j

17

Ci = Pi ⊕ Ei

Xi+1 = Yi

where Yi ~ j denotes the left-most j bits of Yi. Note that the last step is not performed when i =

q. Decipherment operates as follows. First let X1 = SV. Then, for i = 1, 2, ..., q calculate:

Yi = eK(Xi)

Ei = Yi ~ j

Pi = Ci ⊕ Ei

Xi+1 = Yi

As for encipherment, the last step is not performed when i = q.

5.5 Padding

All four modes of operation require the plaintext to be ‘padded’ to the right length. Annex A

to (ISO, 1997c) describes the following two methods for avoiding message extension for

CBC mode. First suppose that the ‘unpadded’ plaintext results in a final block Pq of j bits

(where j < n).

• Method 1 modifies the encipherment of the last ‘short’ block. The encipherment (and

decipherment) methods for this block are as follows:

Cq = Pq ⊕ (eK(Cq-1) ~ j)

Pq = Cq ⊕ (eK(Cq-1) ~ j).

• Method 2 (also known as Ciphertext Stealing) modifies the encipherment of the last block

as follows:

Cq = eK(Sj(Cq-1|Pq))

18

and the last two ciphertext blocks are then Cq-1 ~ j and Cq. It is necessary to decipher the

final block Cq before Cq-1. Deciphering Cq enables the recovery of the last n-j bits of Cq-1,

and then Cq-1 can be deciphered.

Method 1 is subject to a possible ‘chosen plaintext’ attack if the SV (starting variable) is not

secret or has been used more than once with the same key.

5.6 Generalised CFB Mode

In the 2nd edition of ISO/IEC 10116 (ISO, 1997c) a generalised version of the CFB mode has

been included. This method allows ‘pipelining’ to take place. In the original version of CFB

mode, the result of enciphering one block of plaintext is needed as input to the enciphering of

the next block, and thus it is impossible to ‘pipeline’ calculations, i.e. start enciphering one

block before the processing of the previous block is complete. To avoid this problem, in the

new version of CFB mode an r-bit feedback buffer (FB) is introduced, where 2n ≥ r ≥ n. An

r-bit SV is now needed, and after setting FB1 = SV, the encipherment process becomes:

Xi = FBi ~ n,

Yi = eK(Xi),

Ei = Yi ~ j,

Ci = Pi ⊕ Ei,

Fi = Sj(I(k)|Ci),

FBi+1 = Sk(FBi|Fi),

where FB1, FB2, ..., FBq are r-bit variables representing the successive contents of the

Feedback Buffer. Note also that (ISO, 1997c) recommends choosing j = k for CFB mode.

6 Message Authentication Codes (MACs)

The purpose of a Message Authentication Code (MAC), when applied to a message, is to

enable the recipient of that message to check both where it comes from and that it has not

19

been changed in transit. Standards for MACs date back to the early 1980s, when ANSI in the

U.S. published MAC standards exclusively for banking use (ANSI, 1986a) and (ANSI,

1986b). The corresponding international banking standard, released by ISO in 1987, is (ISO,

1987b). All these standards specify use of the DES block cipher algorithm in CBC mode to

produce what has become known as a CBC-MAC. Further international (banking only) MAC

standards are (ISO, 1986) which gives general requirements for such mechanisms, and (ISO,

1992), which standardises a completely different and now discredited mechanism, called the

Message Authenticator Algorithm (MAA).

Following on from this banking work, ISO produced a general purpose MAC standard,

ISO/IEC 9797, in 1989. This standard also uses a block cipher in CBC mode, i.e. it specifies

a CBC-MAC. Unfortunately, the 1989 version was ambiguously phrased in its description of

how padding operates, and a revised version (ISO, 1994a) was published in 1994.

In 1997, a major revision of the ISO/IEC MAC standard commenced. The existing 1994

standard is being replaced by ISO/IEC 9797-1 (ISO, 1999c) containing an enlarged set of

CBC-MAC mechanisms. A further part ISO/IEC 9797-2 (ISO, 1998a) is also under

development, which contains a series of hash-function based MAC mechanisms, including the

HMAC technique.

6.1 CBC-MACs

We start by considering the CBC-MACs defined in the (1994) second edition of ISO/IEC

9797, (ISO, 1994a). We then consider what is added in ISO/IEC 9797-1, and also briefly

consider the hash-function based mechanisms in ISO/IEC 9797-2.

ISO/IEC 9797 ‘specifies a method of using a key and an n-bit block cipher algorithm to

calculate an m-bit cryptographic check value that can be used as a data integrity mechanism’

to detect unauthorised changes to data. Note that m is user-selectable subject to the constraint

m ≤ n. Essentially the data is processed as follows.

• The data is padded to form a sequence of n-bit blocks.

20

• The data is enciphered using CBC mode with a secret key.

• The final ciphertext block becomes the MAC, after optional processing and optional

truncation (which will only be necessary if m < n).

More specifically, if the n-bit data blocks are denoted D1, D2, ..., Dq, then the MAC is

computed by first setting I1 = D1 and O1 = eK(I1), and then performing the following

calculations for i = 2, 3, ..., q:

I i = Di ⊕ Oi-1

Oi = eK(I i)

The output Oq from these calculations is then subjected to an ‘optional process’ and finally

truncated to m bits to produce the MAC.

6.2 Padding method s

ISO/IEC 9797 specifies two possible padding methods.

• Method 1: add as many zeros (possibly none) as are necessary to obtain a data string

whose length is an integer multiple of n (old method).

• Method 2: add a single one and then as many zeros as are necessary (this method may

involve creating an entire extra block).

It is important to note that the padding does not need to be transmitted/stored with the

integrity-protected data string. If the length of the data is not reliably known by the verifier

then Method 2 should be used, since it allows the detection of malicious addition/deletion of

trailing zeros (unlike Method 1, which is retained for backwards compatibility with (ANSI,

1986a) and (ANSI, 1986b).

21

6.3 An attack on CBC-MACs

Suppose a CBC-MAC is computed with no optional process and no truncation. Then, given

two messages with valid MACs (computed using the same secret key K), we can compute a

third ‘composite’ bogus message with a valid MAC without knowing the key.

To see how this works we illustrate the attack in the case where MACs are known for two

single block messages. Suppose MAC1 = eK(D1), and MAC2 = eK(D2). Then MAC2 is a valid

MAC on the two block message with first block D1 and second block: D2 ⊕ MAC1. To

avoid such attacks, known sometimes as ‘cut and paste’ attacks, we either need to use one of

the optional processes, or use padding method 3 from (ISO, 1999c). Note that even if two

MACs are never computed with the same key, this attack still applies, since we can take

D1=D2.

6.4 Optional processes

ISO/IEC 9797 specifies two optional processes which can be applied to the final block Oq

obtained from the CBC encipherment of the padded data string.

The two optional processes are as follows (where Oq is the n-bit output from the CBC process

and K is the key used with the CBC encipherment).

• Optional process 1: choose a key K1 and compute:

Oq'' = eK(dK1(Oq)).

• Optional process 2: choose a key K1 (which may be derived from K) and compute:

Oq' = eK1(Oq).

Following the optional process, the resulting n-bit block can be truncated to m bits (if m < n).

Note that one of the main reasons for using an optional process is to avoid ‘cut and paste’

attacks of the type just described.

22

6.5 New CBC-MAC method s

The motivation for the new CBC-MAC methods in ISO/IEC 9797-1 is provided by some new

attacks on CBC-MACs, described in detail in Annex A of (ISO, 1999c). The enhancements

include the following.

• A new (3rd) padding method has been introduced.

• A new algorithm has been introduced with special processing for the first block (as well

as the last block). This makes exhaustive key search more difficult.

• Two new ‘parallel’ variants have been introduced.

The new ‘Padding Method 3’ operates as follows.

• The data string D shall be right-padded with as few (possibly zero) 0 bits as are necessary

to obtain a data string whose length is a multiple of n bits.

• The resulting string shall be left-padded with a single n-bit block L, consisting of the

binary representation of the length in bits of the unpadded data string D (left-padded as

necessary with zeros).

In summary, the six MAC algorithms in the new version of ISO/IEC 9797-1 are as follows.

Note that the first three algorithms were in the 1994 version of the standard.

• MAC Algorithm 1 is simply CBC-MAC with no optional process.

• MAC Algorithm 2 is CBC-MAC with optional process equal to an additional encryption

of the last block.

• MAC Algorithm 3 is CBC-MAC with optional process equal to an extra decryption and

encryption. This means that, effectively, the last block is ‘ triple encrypted’ .

• MAC Algorithm 4. In this algorithm the first and last blocks are both ‘double encrypted’ .

• MAC Algorithm 5 is equal to two parallel instances of MAC algorithm 1 (with different

keys). The two outputs are ex-ored together to give the MAC.

23

• MAC Algorithm 6 is equal to two parallel instances of MAC algorithm 4 (with different

keys). The two outputs are ex-ored together to give the MAC.

6.6 MACs from hash-functions

ISO/IEC 9797-2 (ISO, 1998a) contains a total of three different methods for deriving a MAC

function from a hash-function. In each case it recommends use of one of the three hash-

functions from ISO/IEC 10118-3 (1998c), described below. Thus ISO/IEC 9797-2 defines a

total of nine different MAC functions.

Superficiall y it is possible to derive a MAC from a hash-function by simply concatenating a

secret key with the data to be MACed, and then applying the hash. That is we could put

MAC = h(K||D)

where h is a hash-function, K is a secret key, and D is the data to be MACed.

This is insecure because of the iterative nature of popular hash-functions. To see why this is

the case, we first need to consider what it means for a hash-function to be iterative.

Essentially it means that the hash-function is constructed from use of a special type of

function called a round-function. To compute a hash-code, the data is first divided into

blocks. The round-function is then applied repeatedly, and at each application it combines a

data block with the previous output of the round-function. The first input to the round-

function is a fixed IV, and the last output is the hash-code. This means that, if h is the hash-

function, then knowledge of h(X) for secret X, enables h(X||Y) to be computed for any chosen

Y. This is because the hash-code is simply the output of the last iteration of the hash-function.

Thus, if the MAC is computed as suggested above, then given a MAC on data string D, a

valid MAC can be computed on a data string D||D', where D' is chosen by the attacker.

The three methods described in ISO/IEC 9797-2 are as follows.

• MDx-MAC is the first scheme in ISO/IEC 9797-2. It involves modifying the hash-

function in a small way. It only works with the three hash-functions from ISO/IEC

24

10118-3, all of which involve iterative use of a round-function (as described previously,

the data string to be hashed is divided into blocks, and the round-function combines a

block with the previous round-function output). The round-function of the underlying

hash-function is first modified in a key-dependent way. An ‘ intermediate value’ is then

obtained by concatenating some key-derived information with the data string to be

MACed, and then applying the (modified) hash-function. This intermediate value is then

input to the round-function one more time, with the other input being further key-

dependent information. The output is the MAC value.

• HMAC, as defined in Internet RFC 2104 (RFC, 1997), is the second scheme included in

ISO/IEC 9797-2. The basic idea of the HMAC scheme is to compute

MAC = h(K || h(K′ || m))

where h is a hash-function and K ≠ K′. More specifically K and K′ are two variants of a

single secret key (and steps are taken to ensure that K and K′ are distinct).

• The third scheme in ISO/IEC 9797-2 is a modified version of MDx-MAC applying only

to short messages (at most 256 bits). It has been optimised to minimise the amount of

computation required.

7 Digital signatures

A digital signature mechanism is a function which, when applied to a message, produces a

result which enables the recipient to verify the origin and integrity of a message. Moreover, it

has the property that only the originator of the message can produce a valid signature (i.e.

being able to verify the correctness of a signature generated by entity A, does not provide the

means to compute A’ s signature on another message). Digital signatures can be used to

provide non-repudiation of origin for a message, i.e. the recipient of a message with entity A’ s

signature on it has evidence that A did originate the message, which even A cannot repudiate.

This emulates the properties we expect of a conventional signature.

25

A digital signature mechanism requires every user to have a pair of keys, a private key for

signing messages (which must be kept secret) and a public key for verifying signatures (which

is widely distributed).

Signature mechanisms can be divided into two types:

• Digital signatures with message recovery, i.e. where all or part of the message can be

recovered from the signature itself, and mechanisms of which type are standardised in the

multi -part standard ISO/IEC 9796, and

• Digital signatures with appendix, i.e. where the entire message needs to be sent or stored

with the signature, as covered by the multi -part international standard ISO/IEC 14888.

7.1 Signatures with message recovery

Signatures with message recovery operate in the following general way:

1. the message to be signed is lengthened by the addition of ‘ redundancy’ according to an

agreed formula, and

2. the lengthened message is then subjected to the signing process.

The verification process reveals the lengthened message, from which the original message can

be recovered. Hence, with such a signature scheme, the message is contained in the signature,

and thus the message does not need to be sent or stored independently of the signature itself.

Because of this property, signatures of this type can only be applied to short messages.

ISO/IEC 9796 currently has three parts:

• ISO/IEC 9796 (ISO, 1991), currently being transformed into ISO/IEC 9796-1. The

signature scheme is based on a generalised version of RSA.

• ISO/IEC 9796-2 (ISO, 1997a). This scheme uses the same signature transformation as

(ISO, 1991). However the method for adding redundancy is completely different, being

26

based on use of a hash-function. It also provides for partial message recovery, and hence

this scheme can be used to sign arbitrarily long messages.

• ISO/IEC FCD 9796-3 (ISO, 1999b). This scheme uses the same redundancy method as

(ISO, 1997a), i.e. it allows for partial message recovery, will work with arbitraril y long

messages, and is based on a hash-function. However the signature function is different,

being based on discrete logarithms rather than being RSA-like.

7.2 ISO/IEC 9796 scheme

7.2.1 Overview

The ISO/IEC 9796 standard for a ‘signature with recovery’ mechanism operates in the

following general way.

Messages to be signed are subject to a sequence of f ive processes (note that use of the scheme

requires choice of a parameter ks):

1. Padding. This ensures the padded message contains a whole number of 8-bit bytes.

2. Extension. This ensures the extended message contains the ‘correct’ number of bytes.

3. Redundancy adding. This doubles the length of the extended message by interleaving it

with special ‘ redundancy’ bytes.

4. Truncation and forcing. This involves discarding a few of the most significant bits (if

necessary) of the redundancy-added message to get a string of ks-1 bits, then prefixing the

result with a single 1 (to get a string of ks bits), and finally changing the least significant

byte according to a specified formula. The purpose of this, seemingly rather bizarre,

operation on the least significant byte is to prevent certain types of cryptographic attack.

5. Signature production. The truncated and forced message is input to a mathematical

signature algorithm which operates on strings of ks bits (e.g. the modified RSA signature

scheme described in Annex A of the standard), to obtain the signature on the message.

27

Although the signature production function is not specified in ISO/IEC 9796, the other four

processes (which are specified) have been designed specifically for use with the signature

production function given in Annex A of the standard, and are probably inappropriate for any

other signature production function. The signature production function is in Annex A and not

in the body of the standard for political and not technical reasons.

Note that Annex A of ISO/IEC 9796 is informative and not normative (i.e. the RSA-type

scheme is not officially part of the standard), although this situation has been changed in

ISO/IEC 9796-1, where Annex A has been made normative.

7.2.2 The five signature generation processes

We now examine each of the five processes in a little more detail . We assume that the

signature production function operates on strings of ks bits and produces signatures also

containing ks bits. Because of the various processes applied to the message before it is input

to the signature production function, and because of the mathematical properties of the

signature production function in Annex A of ISO/IEC 9796-1, this means that messages to be

signed must contain a little less than ks/2 bits.

1. The bit string to be signed is first padded with between 0 and 7 zeros at the ‘most

significant end’ , to get a whole number (denoted z) of bytes. The Index r, is defined to be

the number of added zeros plus one (i.e. r will satisfy 1 ≤ r ≤ 8). The output of the

padding process is denoted MP (for Padded Message). The following must hold for the

signature computation to be possible:

16z ≤ ks+3.

2. Define t to be the smallest integer such that 16t ≥ ks-1 (and hence a string of 2t bytes will

contain between ks-1 and ks+14 bits). The Extended Message, ME, is now obtained by

repeating the z bytes of MP as many times as are necessary to get a string with exactly t

bytes in it.

28

3. The third step involves producing a Redundancy-added Message MR, which will contain

precisely 2t bytes. It is obtained by interleaving the t bytes of ME (in odd positions) with

t bytes of redundancy (in even positions). Hence, if m1, m2, ..., mt are the bytes of ME,

then Byte 2i-1 of MR = mi, and Byte 2i of MR = S(mi), for every i (1 ≤ i ≤ t), where S is a

function specified in ISO/IEC 9796. More precisely, ISO/IEC 9796 specifies a

permutation Π which acts on 4-bit ‘nibbles’ , and if m = µ2 || µ1 is a byte, where || denotes

concatenation, then

S(m) = Π(µ2) || Π(µ1).

Finally, byte number 2z of MR (denoted mr2z) is modified by mr2z = r ⊕ mr2z where ⊕

denotes bit-wise exclusive-or and r is the index (defined in the padding step).

4. As a result of the fourth step a string IR is produced, which will contain exactly ks bits,

from MR. This is done by setting the most significant bit to a one, and then setting the

other ks-1 bits to the least significant ks-1 bits of MR (which contains between ks-1 and

ks+14 bits), i.e. between 0 and 14 bits are discarded. Finally the least significant byte is

replaced using the following method. If µ2||µ1 is the least significant byte of MR (where

µ1 and µ2 are 4-bit ‘nibbles’), then the least significant byte of IR is set to µ1||6.

5. The signature Σ is obtained as a string of ks bits by applying the signature function to IR

under the control of the secret signature key. Hence

Σ = Sign(IR)

where ‘Sign’ is the signature function. As already stated, the function ‘Sign’ will take as

input a string of ks bits and give as output another string of ks bits. The details of this

function are not specified in the main body of ISO/IEC 9796, but Annex A gives exact

details of a function for which the whole process has been designed. This function is

based on modular exponentiation.

29

7.2.3 Key generation

To perform the signature function specified in Annex A of (ISO, 1991) it is first necessary for

the signer to generate a key pair. To do this the signer must first choose:

• a verification exponent v>1,

• two primes p and q, where,

− if v is odd, then p-1 and q-1 shall be coprime to v (where two integers are coprime if

they have highest common factor 1), and

− if v is even then (p-1)/2 and (q-1)/2 shall be coprime to v, and p shall not be congruent

to q modulo 8.

The signer’s public modulus is then n = pq. The length of the modulus is denoted by k, and

the choice of k also fixes ks so that k = ks+1. Finally the signer’s secret signature exponent,

denoted s, is then set equal to the least positive integer such that

• sv ≡ 1 (mod lcm(p-1,q-1)) if v is odd,

• sv ≡ 1 (mod lcm(p-1,q-1)/2) if v is even.

This is equivalent to ‘standard’ RSA if the exponent v is odd.

7.2.4 The ISO/IEC 9796 Signature Function

The signature function contains two steps. The first converts the ‘ Intermediate Integer’ IR to

a ‘Representative Element’ RR. The second computes the signature Σ from RR.

To compute RR from IR:

• if v is odd: RR = IR,

• if v is even and (IR|n) = +1: RR = IR, and

• if v is even and (IR|n) = -1: RR = IR/2,

30

where (a|n) denotes the Jacobi symbol, and in this case (a|n) = (a(p-1)/2 mod p).(a(q-1)/2 mod q)

where n = pq.

To compute Σ from RR, compute: RRs mod n, Σ = min(RRs mod n, n-(RRs mod n)).

7.2.5 Signature verification

Signatures to be verified are subject to a sequence of three processes:

1. Signature opening. This is essentially the inverse to the signature function (step 5 of the

signature production process).

2. Message recovery. This step yields the original message.

3. Redundancy checking. This final step is present to complete the checks that the

signature is correct.

At each of these three steps it is possible that the signature may be rejected as invalid if

certain checks fail (in which case there is no point in performing any further processing). The

signature opening function is not specified in ISO/IEC 9796, although the other two processes

are. Annex A to (ISO, 1991) does contain a precise specification of a signature opening

function to go with the signature production function also specified there.

7.2.6 The three signature verification processes

We now examine each of the three processes in a little more detail.

1. The Signature opening step involves transforming the signature to be verified Σ into a

string IR', the recovered intermediate integer. Hence

IR' = Verif (Σ).

The signature Σ is rejected if IR' is not a string of ks bits with most significant bit one and

least significant nibble equal to 6. (If all is correct, then IR' should be equal to the string

IR produced as a result of the fourth step of the signature generation procedure.)

31

2. The Message recovery step involves producing a 2t-byte string MR' (the recovered

message with redundancy) from IR'. Firstly the least significant ks-1 bits of MR' are set to

equal the corresponding bits of IR', with the most significant 16t-ks+1 bits of MR' being

set to zeros. The least significant byte of MR' is now replaced using the following

method. If µ4||µ3||µ1||6 are the four least significant nibbles of IR' then the least significant

byte of MR' is made equal to

Π-1(µ4)||µ1.

If all i s correct, then MR' should be equal to the string MR produced as a result of the

fourth step of the signature generation procedure, with the possible exception of the most

significant 16t-ks+1 bits, which in MR' are set to all zeros. A series of t checks are now

performed to see which of the even bytes ‘match’ the odd bytes, i.e. if we label the bytes

of MR': m2t, m2t-1, ..., m1, a check is performed for successive values of i (i = 1, 2, ..., t) to

see whether or not m2i ⊕ S(m2i-1) = 0. If this equation holds for every i (1 ≤ i ≤ t) then the

signature is rejected.

Let z be the smallest positive integer for which m2z ⊕ S(m2z-1) ≠ 0. Set r equal to the least

significant nibble of m2z ⊕ S(m2z-1). The signature is rejected if 1 ≤ r ≤ 8 does not hold.

The Recovered padded message MP' is then put equal to the z least significant bytes in

odd positions in MR'; MP' should now be equal to the padded message MP, produced as a

result of the first step of the signature procedure. Finally the message is recovered from

MP' by deleting the most significant r-1 bits (the signature is rejected if these deleted bits

are not all zeros).

3. As a final step in verifying the signature, the recovered padded message MP' is subjected

to the second and third steps of the signature generation process (Extension and

Redundancy). The least significant ks-1 bits of the result are compared with the least

significant ks-1 bits of MR' (generated during the previous step). If they disagree then the

signature is rejected.

32

7.2.7 Concluding remarks

The scheme described in ISO/IEC 9796 can be adapted to produce digital signatures ‘with

appendix’ for messages of arbitrary length. This can be achieved by using a One-way

Collision-free Hash-function, h.

• The one-way property means that, given an arbitrary output string y, it is computationally

infeasible to find a binary string x such that h(x) = y (although many such strings x will

typically exist).

• The collision-free property means that it is computationally infeasible to find two binary

strings x and x' (x ≠ x') such that h(x) = h(x'), although many such pairs will exist.

A message of arbitrary length, m say, is signed by first computing h(m) and then inputting

h(m) to the five-part ISO/IEC 9796 signature process.

7.3 ISO/IEC 9796-2

ISO/IEC 9796-2 was published in 1997 (ISO, 1997a). This mechanism has two main

properties:

• The system allows for ‘partial message recovery’ f or messages of arbitrary length. I.e., if

the message is suff iciently short then all the message can be recovered from the signature,

whereas if the message is too long to ‘ fit’ then part of the message can be recovered from

the signature and the rest will need to be conveyed to the verifier by some other means.

• The redundancy scheme of ISO/IEC 9796 is a li ttle ‘heavy’ in that it requires half of the

available space in the signature block to be used for redundancy. Thus, if the signature

function is 768-bit RSA, then, with the scheme in (ISO, 1991), only 384 bits are available

for conveying data bits. With the scheme specified in ISO/IEC 9796-2, around 600 bits

out of the 768 could be available for data; such a gain could be critically important in

certain practical applications.

The basic idea of the scheme is as follows.

33

1. The entire message m to be signed is input to a hash-function h to obtain a hash-code H,

i.e. H = h(m).

2. If the message is too long to be totally included in the signature then some portion of the

message is selected to be ‘ recoverable’ fr om the signature.

3. A flag bit (called a ‘more-data’ bit) is added to the recoverable portion of the message to

indicate whether it is all or part of the message.

4. The recoverable portion of the message, the flag and the hash-value, together with other

‘f ormatting’ bits including an optional hash-function identifier, are concatenated and

input to the signature function to derive the signature Σ.

Like ISO/IEC 9796, no signature function is specified in the body of 9796-2; instead exactly

the same RSA-based function is included in an informative (non-normative) annex.

7.4 ISO/IEC 9796-3

The ISO/IEC 9796-3 signature function is based on discrete logarithms (the scheme is known

as Nyberg-Rueppel, after the inventors). There are two basic versions of the scheme specified

in the standard: one based on the group of integers modulo a prime p, and the other based on

working within an elliptic curve group. Both versions make use of the same basic idea, so we

describe the first version only.

The following domain parameters must be agreed by any community of users of the scheme:

• two large prime numbers p and q, where q is a factor of p-1,

• an element g of multipli cative order q modulo p, i.e. a number g satisfying gq ≡ 1 (mod p)

and g ≠ 1.

Then a user’s private signature key is a number x, where 1 < x < q. The corresponding public

verification key is: y = gx mod p.

34

To use the scheme a signer needs a method for generating secret random numbers k (1 < k <

q), one per signature; these numbers must be different and unpredictable for each signature.

To generate a signature it is necessary to first compute the integer Π , where Π = gk mod p,

and second compute the integer R, where R = Π + D mod q, and where D is the concatenation

of the recoverable part of the message and a hash-code (computed on the entire message) – as

in ISO/IEC 9796-2. Finally compute the integer S as S = k - xR mod q. The signature is then

the pair (R, S).

To verify a signature first compute the integer Π', where: Π' = gSyR mod p, second compute

the value D', where: D' = R - Π' mod q, and third reconstruct the message from the

recoverable part (embedded within D') and the non-recoverable part (which must be sent with

the signature). The reconstructed message is then used to recompute the hash-code. Finally it

is necessary to compare the recomputed hash-code with the value embedded in D'.

7.5 ISO/IEC 14888 – signatures ‘with appendix’

7.5.1 Introduction

ISO/IEC 14888 is a multi-part standard containing a variety of ‘ digital signature with

appendix’ mechanisms. The three parts are as follows:

• ISO/IEC 14888-1: 1998: General, (ISO, 1998f),

• ISO/IEC DIS 14888-2: Identity-based mechanisms, including the Guillou-Quisquater

scheme, (ISO, 1998g),

• ISO/IEC 14888-3: 1998: Certificate-based mechanisms, including NIST’s Digital

Signature Algorithm (DSA) – a version of the El Gamal signature algorithm, (ISO,

1998h).

Since this standard covers a large variety of mechanisms, we wil l not discuss all parts in

detail . All ‘ signature with appendix’ schemes operate roughly in the following way:

35

1. the message to be signed is input to a collision-free one-way hash-function,

2. the output of the hash-function (the hash-code) is subjected to the signing process, and

3. the signed hash-code constitutes the signature (appendix).

The verification process needs to take as input both the signature and the message, i.e. the

message cannot be recovered from the signature.

ISO/IEC 14888-1 provides a general model for all the signature schemes specified in ISO/IEC

14888 parts 2 and 3. This general model covers both deterministic and randomised

signatures. In a deterministic signature scheme, the signature of a fixed string will always be

the same. In a randomised signature scheme, a random number is used as part of signing

process. This means that, if the same data string is signed twice, different signatures will

result. In such schemes it is always important to ensure that the randomised number is

different every time, and that guessing the random number is not possible.

7.5.2 Identity-based mechanisms

ISO/IEC 14888-2 (ISO, 1998g) specifies identity-based signature techniques (with appendix).

In identity-based schemes, each entity’s public signature verification key is derived from that

entity’s identity. Thus there is no need for public key certificates. To make such a scheme

work a Trusted Third Party (TTP) is needed to generate private keys (users cannot generate

their own). Hence in such a scheme the TTP has access to all private keys. This means that

such schemes are not suitable in all applications. However, such schemes may be suitable for

certain closed domains (e.g. within a large company) where there is a ‘natural’ TTP.

ISO/IEC 14888-2 contains three different signature schemes, all of which are of the

randomised type. All three schemes are, in fact, different variants of the Guillou-Quisquater

signature scheme. We only describe the first (‘basic’) variant here. The scheme is essentially

a variant of RSA, closely analogous to the scheme used in ISO/IEC 9796-1 and 9796-2. The

TTP chooses (and makes public):

36

• the domain verification exponent v, and

• the domain modulus n = pq, where p and q are large primes (which the TTP does not

make public), and p-1 and q-1 are both coprime to v.

The TTP calculates (and keeps secret) the key generation exponent d, where d is the

multiplicative inverse of v (mod (p-1)(q-1)). Hence we have that udv mod n = u for all non-

zero u. This is just like the key generation process for RSA.

To participate in this scheme, each entity must have unique ‘ identification data’ I (a string of

bits). To generate the key pair for a user with identification data I, the TTP computes the

user’s public verification key y as y = f(I) where f is the redundancy-adding function specified

in ISO/IEC 9796-1. The private signature key for this user is then x = y-d mod n.

To generate a signature, the signer first generates the randomiser k, and then computes Π = kv

mod n (where v and n are the domain parameters). The signer next computes R = h(Π || M),

where M is the message to be signed, and h is an agreed collision-resistant hash-function.

Finally the signer computes S = k.xR mod n, (where R is converted from a bit string to an

integer), and the signature is the pair (R, S).

To verify a signature, the verifier first computes Π' = yR.Sv mod n. The verifier next computes

R' = h(Π' || M), where M is message. Finally the verifier compares R and R'. If they agree

then the signature is accepted (otherwise it is rejected).

7.5.3 Certificate-based mechanisms

ISO/IEC 14888-3 (ISO, 1998h) describes two general models for signatures with appendix,

one discrete logarithm based, and the other factorisation based. A number of examples of

each type of scheme are specified in the standard:

• Discrete logarithm based schemes: DSA, Pointcheval-Vaudenay (a DSA variant),

ECDSA (Elliptic Curve DSA).

• Factorisation based schemes: ISO/IEC 9796 with hash, and ESIGN.

37

The most important of these is probably DSA, and we now describe this scheme.

7.5.4 The Digital Signature Algorithm

The Digital Signature Algorithm (DSA) is a version of the ElGamal signature algorithm,

which depends for its security on the discrete logarithm problem (just like the Diffie-Hellman

key exchange mechanism). DSA was adopted as a U.S. Federal Standard in 1993, in the

Digital Signature Standard (DSS) (FIPS, 1994). The FIPS standard specifies which hash-

function should be used with the DSA algorithm, namely the Secure Hash Algorithm (SHA-

1), which is itself specified in a separate U.S. Federal Standard (FIPS, 1995).

The generation of a key pair for the Digital Signature Algorithm is a two-stage process. The

first stage corresponds to the selection of a triple of underlying parameters (P, Q, G) which

may be common to a group of users. It involves the following steps.

• A parameter l is selected which determines the size of the modulus; l is chosen subject to

the constraint that 0 ≤ l ≤ 8. This determines the value of the ‘modulus length parameter’

L, where L = 512 + 64l.

• A prime P is selected, where 2L-1 < P < 2L, i.e. P has L bits in its binary representation.

The prime P is chosen in such a way that P-1 possesses a prime factor Q, where 2159 < Q

< 2160, i.e. Q has 160 bits in its binary representation. An algorithm for generating P and

Q is specified in FIPS 186.

• Choose a number G (1 < G < P-1) of multiplicative order Q (when working modulo P).

To do this choose a random T (1 < T < P-1) and check that T(P-1)/Q ≠ 1. If this check

fails then choose another T, and repeat as necessary. Finally put G = T(P-1)/Q.

The triple (P, Q, G) is made public, and could be common for a group of users. The second

stage involves selecting the private/public key pair.

• The private signature key X is randomly chosen, where 0 < X < Q.

• The public verification key Y is calculated using Y = GX mod P.

38

The signature for the message M is calculated using the following steps.

• M is subjected to the specified hash-function (SHA-1) which we denote by h, i.e. h(M) is

computed. For the purposes of this signature scheme h(M) needs to be treated as an

integer; a rule for converting the bit string h(M) into an integer is given in FIPS 186.

• A random value K is selected, where 0 < K < Q. A different and unpredictable value of K

must be chosen for every signature computed (note that DSA is a randomised signature

scheme).

• A value R is computed, where R = (GK mod P) mod Q.

• A value S is computed where S = (K-1(h(M) + XR)) mod Q. Note that K-1 is the inverse of

K modulo Q. The signature on the message M is the pair (R, S), which contains only 320

bits (since R and S are both 160 bits long).

The verification process takes as input the message M, and the signature pair (R, S). The

following steps are performed.

• The verifier first checks that 0 < R < Q and 0 < S < Q; if not then the signature is rejected.

• The verifier next computes:

W = S-1 mod Q,

U1 = h(M)W mod Q,

U2 = RW mod Q, and

V = (GU1YU2 mod P) mod Q.

If V = R then the signature is verified; if not then the signature is rejected. Note that signing

the message M using DSA involves calculating the two values:

R = (GK mod P) mod Q, and

S = (K-1(h(M) + XR)) mod Q,

39

where K is a random value. Given that K is message-independent, it can be selected in

advance. Moreover, R is a function only of K, i.e. it is message-independent, and thus R can

also be pre-computed, as can K-1 and XR. Thus signing can be made very fast, at least in

situations where pre-computations can be performed. All that is required to compute a

signature is to hash the message (i.e. compute h(M)), add h(M) to XR (mod Q), and multiply

the result of the previous step by K-1 (mod Q).

However, verification includes calculating two exponentiations mod P, where both exponents

will be 160 bits long. This is a non-trivial calculation. This is reverse of situation for RSA,

where use of low exponent for public key can make verification very simple.

8 Hash-functions

8.1 Introdu ction

One-way hash functions form an integral part of any digital signature with appendix.

However, ISO/IEC 14888 not specify any particular hash function – the choice is left to the

user. A separate multi-part standard, ISO/IEC 10118, specifying one-way hash functions has

been developed. Such cryptographic hash functions also have uses for file protection and data

integrity purposes.

• ISO/IEC 10118-1, General (ISO, 1994c) provides general definitions and background for

the other parts of the standard.

• ISO/IEC 10118-2, Hash-functions using an n-bit block cipher algorithm (ISO, 1994d)

describes two methods for deriving a hash function from an n-bit block cipher.

• ISO/IEC 10118-3, Dedicated hash-functions (ISO, 1998c) describes three hash-functions

designed specifically for the purpose (namely SHA-1, RIPEMD-128 and RIPEMD-160).

• ISO/IEC 10118-4, Hash-functions using modular arithmetic (ISO, 1998d) describes two

hash-functions (MASH-1 and 2) using modular exponentiation to construct a hash-value.

40

All the hash-functions specified in ISO/IEC 10118 parts 2, 3 and 4 conform to the same

general model (a simpli fied version of which is given in ISO/IEC 10118-3). The model

requires choice of two parameters m (the ‘block length’) and s (the length of the ‘ iteration

value’ , which determines the maximum possible length for the derived hash-code), the choice

of an s-bit Initialising Value (IV), the choice of the length for the hash-code LH (where LH ≤

s), and the use of a round-function φ which takes as input two strings (of lengths m and s bits),

and gives as output an s-bit string. Hence if X is an m-bit string and Y is an s-bit string then

φ(X,Y) is an s-bit string.

The model involves four steps in the processing of a data string D.

1. Padding. D is padded to ensure that its length is a multiple of m bits.

2. Splitting. The padded version of D is split into m-bit blocks D1, D2, ..., Dq.

3. Iteration. The s-bit blocks H1, H2, ..., Hq are calculated iteratively in the following way:

Hi = φ (Di, Hi-1)

where H0 = IV.

4. Truncation. The hash-code H is derived by taking LH of the s bits from Hq.

8.2 Block c ipher based hash-functions

ISO/IEC 10118-2 contains two methods for deriving a hash-function from an n-bit block

cipher. Method 1 produces hash-codes of length LH bits, where LH ≤ n. Method 2 produces

hash-codes of length LH bits, where LH ≤ 2n. The padding techniques for these two methods

are not specified in ISO/IEC 10118-2, although examples are given in an annex to the

standard.

8.2.1 Method 1 (single length hash-codes)

For Method 1, the block length (m) is equal to n, the plaintext/ciphertext length for the block

cipher. Hence the data string to be hashed is padded and split into a sequence of n-bit blocks

41

D1, D2, ..., Dq.

The parameter s is also set to n, the block cipher plaintext/ciphertext length. If encipherment

of block M using key K is denoted eK(M), then the round-function φ is defined so that

φ(X,Y) = eu(Y)(X) ⊕ X

where u is a function which maps n-bit blocks into blocks suitable for use as keys in the

chosen block cipher. Hence Hi = φ(Di, Hi-1) = eU(Di) ⊕ Di where U = u(Hi-1). The truncation

function involves taking the left-most LH bits of Hq.

8.2.2 Method 2 (double length hash-codes)

To define the round-function for ISO/IEC 10118-2 Method 2, we first need to define three

special functions.

• I, which takes as input a 2n-bit block and gives as output a 2n-bit block. Suppose n is

even and X = X1 || X2 || X3 || X4 is a 2n-bit block, where Xi (i = 1, 2, 3, 4) are n/2 bit sub-

blocks. Then I(X) = X1 || X4 || X3 || X2, i.e. sub-blocks X2 and X4 are interchanged.

• L, which takes as input a 2n-bit block and gives as output an n-bit block containing the n

left-most bits of the input.

• R, which takes as input a 2n-bit block and gives as output an n-bit block containing the n

right-most bits of the input.

For Method 2 we have m = n (as for Method 1), and hence the data string to be hashed is

padded and split into a sequence of n-bit blocks D1, D2, ..., Dq. We set s to 2n, i.e. twice the

block cipher plaintext/ciphertext length. The round-function φ is now defined so that

φ(X,Y) = I(eu(L(Y))(X) ⊕ X || eu'(R(Y))(X) ⊕ X)

where u and u' are functions which map n-bit blocks into blocks suitable for use as keys in the

chosen block cipher. Hence

Hi = φ(Di, Hi-1) = I(eu(L(i))(Di) ⊕ Di || eu'(R(i))(Di) ⊕ Di).

42

where L(i) = L(Hi-1) and R(i) = R(Hi-1).

In Annex A to ISO/IEC 10118-2, choices for the Initialising Value (IV) and transformation u

are suggested which are appropriate for method 1 when the block cipher in use is DES. In the

same annex, choices for the Initiali sing Value (IV) and transformations u, u' are suggested

which are appropriate for method 2 when the block cipher in use is DES. Worked examples

of these choices are given in a further annex.

8.3 Dedicated hash-functions

ISO/IEC 10118-3 (Dedicated hash functions) contains three functions specifically designed

for use as hash-functions. In all cases the Initialising Values are specified in the standard, as

are the padding methods. Two of the hash-functions, Dedicated Hash-functions 1 and 2, are

identical to RIPEMD-128 and RIPEMD-160 respectively, European algorithms developed as

part of the EC-funded RIPE project. In the first case the round-function has m = 512 and s =

128, i.e. it can generate hash-codes of up to 128 bits in length, and in the second case the

round-function has m = 512 and s = 160, i.e. it can generate hash-codes of length up to 160

bits. The third function, Dedicated Hash-function 3, is NIST’s Secure Hash Algorithm (SHA-

1), already a U.S. Federal Standard (FIPS, 1995). In this case, li ke RIPEMD-160, the round-

function has m = 512 and s = 160, i.e. it can generate hash-codes of up to 160 bits in length.

8.4 Modu lar arithmetic based hash-functions

ISO/IEC 10118-4 (Modular arithmetic based hash-functions) contains a pair of hash-

functions, MASH-1 and MASH-2, based on modular exponentiation. They are improved

variants of the function given in the original 1988 version of X.509 (CCITT, 1988) which was

found to be prone to attack and hence it has been removed from later versions of the standard.

The initialising values and padding methods for these functions are specified in the standard.

The values of m and s wil l depend on the modulus for the arithmetic operations. The round-

43

functions for both versions of MASH are based on exponentiation using a fixed exponent; this

fixed exponent is 2 for MASH-1 and 257 for MASH-2.

9 Entity authentication

9.1 Introdu ction

Authentication forms the basis of the provision of other security services in the majority of

network security systems. The OSI Security Architecture (ISO 7498-2) distinguishes

between data origin authentication (i.e. verifying the origin of received data - a

connectionless operation), and (peer) entity authentication (i.e. verifying the identity of one

entity by another - a connection-oriented operation).

We are primarily concerned here with the second of these two services, namely entity

authentication. Entity authentication is typically achieved using an authentication exchange

mechanism. Such a mechanism consists of an exchange of messages between a pair of

entities, and is usually called an authentication protocol. In OSI-speak, the term ‘protocol’

should strictly be reserved for the specification of the data structures and rules governing

communication between a pair of peer entities, and this is why ISO 7498-2 speaks of

authentication exchange mechanisms. However, here we abuse the OSI notation slightly and

follow generally accepted practice and call them authentication protocols.

ISO/IEC JTC1/SC27 has produced a multi -part standard, ISO/IEC 9798, specifying a general-

purpose set of authentication protocols. The five parts published so far are as follows.

• ISO/IEC 9798-1 – General model, (ISO, 1997b).

• ISO/IEC 9798-2 – Protocols based on symmetric encipherment, (ISO, 1994b).

• ISO/IEC 9798-3 – Protocols based on digital signatures, (ISO, 1998b).

• ISO/IEC 9798-4 – Protocols based on data integrity mechanisms, (ISO, 1995).

• ISO/IEC 9798-5 – Zero knowledge protocols, (ISO, 1999d).

44

The protocols specified in these standards have been specified for use in a variety of

application domains. As such they have been designed to be as ‘robust’ as possible, i.e. they

have been designed to resist all known attacks (as long as they are used in the way specified).

ISO 7498-2 defines entity authentication as ‘ the corroboration that an entity is the one

claimed’ . We also need to distinguish between protocols providing unilateral authentication

and mutual authentication. Unilateral authentication is ‘entity authentication which provides

one entity with assurance of the other’s identity but not vice versa’ and Mutual authentication

is ‘entity authentication which provides both entities with assurance of each other’s identity’ .

Entity authentication can only be achieved for a single instant in time.

Typically, a mutual authentication protocol is used at the start of a connection between

communicating entities. If security (e.g. confidentiality, integrity) is required for information

subsequently exchanged during the life of the connection, then other cryptographic

mechanisms will need to be used, e.g. encipherment or the use of Message Authentication

Codes (MACs), to protect that data. The keys needed for these cryptographic operations can

be agreed and/or exchanged as part of the authentication protocol, and so one application of

entity authentication is ‘authenticated session key establishment’ . Other applications exists

which are not directly related to session key exchange, including secure clock

synchronisation, secure RPC (remote procedure call), and secure transactions.

9.2 Mechanisms und erlying authentication protocols

Authentication protocols require the use of a combination of either shared secrets (keys or

passwords) or signature/verification key pairs, and accompanying cryptographic mechanisms.

These are used to ensure that the recipient of a protocol message knows where it has come

from (origin checking), that it has not been interfered with (integrity checking). Note that

cryptographic mechanisms (by themselves) cannot provide freshness checking, i.e. the

verification that a protocol message is not simply a replay of a previously transmitted (valid)

45

protocol message, protected using a currently valid key. We consider the provision of

freshness verification later.

A variety of different types of cryptographic mechanism can be used to provide integrity and

origin checking for individual protocol messages. We consider three main possibilities:

encipherment, integrity mechanism (MAC), and digital signature. The use of MACs and

digital signatures and MACs for integrity protection of messages is standard practice;

however the use of encipherment for this purpose is much less straightforward, and hence we

discuss this a little more before proceeding.

To protect a message in a protocol, the sender enciphers it with a secret key shared with the

recipient. The recipient can then verify the origin of the message using the following process.

The recipient first deciphers the message and checks that it ‘makes sense’ ; if this is the case

then the recipient reasons that it must therefore have been enciphered using the correct secret

key, and since only the genuine sender knows this key, it must therefore have been sent by the

claimed originator. This reasoning makes a number of assumptions about the nature of the

encipherment algorithm and the capabilities of the recipient. First and foremost, if this

process is to be performed automatically by a computer (as we would expect), then we need

to define what ‘makes sense’ means for a computer, especially as the contents of the message

might include random session keys and random ‘challenges’ .

We are also assuming that an interceptor cannot manipulate an enciphered message (without

knowledge of the key used to encipher it) in such a way that it still ‘makes sense’ after

decipherment. This constrains the type of encipherment algorithm that is suitable for use in

this application; for example, stream ciphers are usually unsuitable for use as part of an

authentication protocol. The usual solution to this problem is the addition of deliberate

‘redundancy’ (according to some agreed formula) to the message prior to encipherment. The

presence of this redundancy can then be automatically checked by the recipient of the

message (after decipherment). One common method of adding redundancy to a message is to

calculate a Manipulation Detection Code (MDC), a sort of checksum dependent on the entire

46

message, and append it to the message prior to encipherment. The MDC calculation function

will t ypically be a public function.

9.3 Class ifying authentication protocols

One way of classifying authentication protocols is by the type of cryptographic mechanism

they use. This is the approach followed by ISO/IEC 9798. However, it is also possible to

classify authentication protocols by the ‘ freshness checking’ mechanism they use. As we

have already briefly noted, providing origin and integrity checking for protocol messages is

not all that is required. We also need a means of checking the ‘ freshness’ of protocol

messages to protect against replays of messages from previous valid exchanges. There are

two main methods of providing freshness checking:

• the use of time-stamps (either clock-based or ‘ logical’ time-stamps),

• the use of nonces or challenges.

9.3.1 Timestamp-based protocols

Clearly the inclusion of a date/time stamp in a message enables the recipient of a message to

check it for freshness, as long as the time-stamp is protected by cryptographic means.

However, in order for this to operate successfully all entities must be equipped with securely

synchronised clocks. It is non-trivial to provide such clocks, since the clock drift of a typical

work-station can be 1-2 seconds/day.

Every entity receiving protocol messages will need to define a time acceptance ‘window’

either side of their current clock value. A received message will then be accepted as ‘ fresh’ if

and only if it falls within this window. This acceptance window is needed for two main

reasons:

• clocks vary continuously, and hence no two clocks will be precisely synchronised, except

perhaps at some instant in time, and

47

• messages take time to propagate from one machine to another, and this time will vary

unpredictably.

The use of an acceptance window is itself a possible security weakness, since it allows for

undetectable replays of messages for a period of time up to the length of the window. To

avert this threat requires each entity to store a ‘ log’ of all recently received messages,

specifically all messages received within the last t seconds, where t is the length of the

acceptance window. Any newly received message is then compared with all the entries in the

log, and if it is the same as any of them then it is rejected as a replay.

Another problem associated with the use of time-stamps is the question of how synchronised

clocks should be provided. One solution is to use an authentication protocol not based on

time-stamps (e.g. nonce-based) at regular intervals to distribute a master clock value which is

then used to update each entity’s individual clock. Another solution is for all entities to have

reliable access to an accurate time source (e.g. a national radio broadcast time such as the

Rugby time signal).

One alternative to the use of clocks is for every pair of communicating entities to store a pair

of sequence numbers, which are used only in communications between that pair. For

example, for communications between A and B, A must maintain two counters: NAB and NBA

(B will also need to maintain two counters for A). Every time A sends B a message, the value

of NAB is included in the message, and at the same time NAB is incremented by A. Every time

A receives a message from B, then the sequence number put into the message by B (N say) is

compared with NBA (as stored by A), and:

• if N > NBA then the message is accepted as fresh, and NBA is reset to equal N,

• if N ≤ NBA then the message is rejected as an ‘old’ message.

These sequence numbers take the role of what are known as logical time-stamps, a well-

known concept in the theory of Distributed Systems, following (Lamport, 1978).

48

9.3.2 Nonce-based protocols

Nonce-based (or challenge-response) protocols use a quite different mechanism to provide

freshness checking. One party, A say, sends the other party, B say, a nonce (Number used

ONCE) as a challenge. B then includes this nonce in the response to A. Because the nonce

has never been used before, at least within the lifetime of the current key, A can verify the

‘f reshness’ of B’ s response (given that message integrity is provided by some cryptographic

mechanism). Note that it is always up to A, the nonce provider, to ensure that the choice of

nonce is appropriate, i.e. that it has not been used before.

The main property required of a nonce is the ‘one-time’ property. Thus, if that is all that is

ever required, A could ensure it by keeping a single counter and whenever a nonce is required,

for use with any other party, the current counter value is used (and the counter is

incremented). However, in order to prevent a special type of attack, many protocols also need

nonces to be unpredictable to any third party. Hence nonces are typically chosen at random

from a set sufficiently large to mean that the probabili ty of the same nonce being used twice is

effectively zero.

9.4 Example protocols

We now consider a variety of examples of authentication protocols taken from parts 2, 3 and

4 of ISO/IEC 9798. We give examples based on both types of freshness mechanism.

9.4.1 A unilateral authentication protocol using timestamps and encipherment

The first example can be found in clause 5.1.1 of ISO/IEC 9798-2. It is based on the use of

time-stamps (for freshness) and encipherment (for origin and integrity checking). It provides

unilateral authentication (B can check A’ s identity, but not vice versa). In the message

description (here and subsequently) we use the following notation:

• x || y denotes the concatenation of data items x and y,

49

• Text1 and Text2 are data strings, whose use will depend on the application of the

protocol,

• KAB denotes a secret key shared by A and B,

• eKAB denotes encryption using the shared secret key KAB, and

• TA denotes a time-stamp (or sequence number) generated by A.

The mechanism has one message pass, as follows:

A → B: Text2 || eKAB(TA || B || Text1)

When B receives the message from A, B deciphers the enciphered string, and checks that the

deciphered message ‘makes sense’ (has the appropriate redundancy), that the time-stamp is

within its current window (and, using its ‘ log’ , that a similar message has not recently been

received), and that B’ s name is correctly included. If all three checks are correct, then B

accepts A as valid. Use of the data strings ‘Text1’ and ‘Text2’ will depend on the application

domain (‘Text1’ might, for example, be used for session key transfer). Either or both of these

strings may be omitted.

9.4.2 A unilateral authentication protocol using nonces and MACs

This example can be found in clause 5.1.2 of ISO/IEC 9798-4. It is based on the use of

nonces (for freshness) and a data integrity mechanism (for origin and integrity checking). It

provides unilateral authentication (B can check A’ s identity, but not vice versa). In the

message descriptions we use the following notation (in addition to that defined for the first

example):

• Text1, Text2 and Text3 are data strings, whose use will depend on the application of the

protocol,

• fKAB denotes a cryptographic check value (the output of a data integrity mechanism)

computed using the shared secret key KAB,

50

• RB denotes a random nonce generated by B.

The mechanism has two message passes, as follows:

B → A: RB || Text1

A → B: Text3 || fKAB(RB || B || Text2)

When B sends the first message, B stores the nonce RB. When B receives the second message,

B first assembles the string RB||B||Text2, then computes fKAB(RB||B||Text2) using the shared

secret KAB, and finally checks that the newly computed value agrees with the one in the

message. If the check is correct, then B accepts A as valid. Note that, in order for B to

perform the desired check, B must have the means to obtain the data string ‘Text2’ . One

possibility is that Text3 contains a copy of Text2, perhaps in an enciphered form.

9.4.3 A mutual authentication protocol using nonces and encipherment

This example can be found in clause 5.2.2 of ISO/IEC 9798-2. It is based on the use of

nonces (for freshness) and encipherment (for origin and integrity checking). It provides

mutual authentication (B can check A’ s identity and vice versa). In the message descriptions

we use the following notation (in addition to that defined for previous examples):

• Text1-Text5 are data strings, whose use will depend on the application of the protocol,

• RA and RB denote random nonces generated by A and B respectively.

The mechanism has three message passes, as follows:

B → A: RB || Text1

A → B: Text3 || eKAB(RA || RB || B || Text2)

B → A: Text5 || eKAB(RB || RA || Text4)

When B sends the first message, B stores the nonce RB. When A sends the second message, A

stores the nonces RA and RB. When B receives the third message, B deciphers the enciphered

string and checks that the deciphered message ‘makes sense’ (has the appropriate

51

redundancy), that the nonce it includes is the one B sent in the first message, and that B’ s

name is correctly included. If all checks are correct, then B accepts A as valid, and sends the

third message. When A receives the third message, A deciphers the enciphered string and

checks that the deciphered message ‘makes sense’ (has the appropriate redundancy), and that

the nonces it includes are the expected ones. If both checks are correct, then A accepts B as

valid.

9.4.4 A mutual authentication protocol using timestamps and MACs

This example can be found in clause 5.2.1 of ISO/IEC 9798-4. It is based on the use of time-

stamps (for freshness) and an integrity mechanism (for origin and integrity checking). It

provides mutual authentication (B can check A’ s identity and vice versa). In the message

descriptions we use the following notation (in addition to that defined for previous examples):

• Text1-Text4 are data strings, whose use will depend on the application,

• TA and TB denote time-stamps (or sequence numbers) generated by A and B respectively.

The mechanism has two message passes, as follows:

A → B: TA || Text2 || fKAB(TA || B || Text1)

B → A: TB || Text4 || fKAB(TB || A || Text3)

When B receives the first message, B first assembles the string TA||B||Text1 and then computes

fKAB(TA||B||Text1), using the shared secret KAB. B checks that the time-stamp TA is within its

current window (and, using its ‘ log’ , that a similar message has not recently been received),

and that the newly computed check value agrees with the one in the message. If the checks

are correct, then B accepts A as valid and sends the second message. When A receives it, A

first assembles the string TB||A||Text3 and then computes fKAB(TB||A||Text3), using the shared

secret KAB. A checks that the time-stamp TB is within its current window (and, using its ‘ log’ ,

that a similar message has not recently been received), and that the newly computed check

value agrees with the one in the message. If the checks are correct, then A accepts B as valid.

52

Note that, in order for A and B to perform their checks, A and B must have the means to

obtain the data strings Text3 and Text1 respectively. One possibility is that Text4 (Text2)

contains a copy of Text3 (Text1), perhaps in enciphered form.

9.4.5 A mutual authentication protocol using timestamps and signatures

This example can be found in clause 5.2.1 of ISO/IEC 9798-3. It is based on the use of time-

stamps (for freshness) and digital signature (for origin and integrity checking). It provides

mutual authentication (B can check A’ s identity and vice versa). In the message descriptions

we use the following notation (in addition to that defined for previous examples):

• SA and SB are the private signature keys of A and B respectively.

• sSA denotes the signature function computed using private key SA.

The mechanism has two message passes, as follows:

A → B: TA || B || Text2 || sSA(TA || B || Text1)

B → A: TB || A || Text4 || sSB(TB || A || Text3)

When B receives the first message, B first checks that the time-stamp TA is within its current

window (and, using its ‘ log’ , that a similar message has not recently been received). B then

assembles the string TA||B||Text1 and checks that the signature is a valid signature on this

string, using a copy of A’s public verification key. If the checks are correct, then B accepts A

as valid and sends the second message. When A receives it, A first checks that TB is within its

current window (and, using its ‘ log’ , that a similar message has not recently been received),

and then assembles the string TB||A||Text3 and checks that the signature is a valid signature on

this string. If the checks are correct, then A accepts B as valid.

Note that, in order for A and B to perform their checks, A and B must have the means to

obtain the data strings Text3 and Text1 respectively. One possibility is that Text4 (Text2)

contains a copy of Text3 (Text1), perhaps in enciphered form.

53

9.4.6 A mutual authentication protocol using nonces and signatures

This example can be found in clause 5.2.2 of ISO/IEC 9798-3. It is based on the use of

nonces (for freshness) and digital signature (for origin and integrity checking). It provides

mutual authentication (B can check A’ s identity and vice versa). We use identical notation to

the previous examples. The mechanism has three message passes, as follows:

B → A: RB || Text1

A → B: RA || RB || B ||Text3 || sSA(RA || RB || B || Text2)

B → A: RB || RA || A ||Text5 || sSB(RB || RA || A || Text4)

When B sends the first message, B stores the nonce RB. When A sends the second message, A

stores the nonces RA and RB. When B receives the second message, B first assembles the

string RA||RB||B||Text2, and then checks that the signature is a valid signature on this string

(using a copy of A’s public verification key). If the check is correct, then B accepts A as valid

and sends the third message. When A receives it, A assembles the string RB||RA||A||Text4 and

checks that the signature is a valid signature on this string. If the check is correct, then A

accepts B as valid.

Note that, in order for A and B to perform their checks, A and B must have the means to

obtain the data strings Text4 and Text2 respectively. One possibility is that Text5 (Text3)

contains a copy of Text4 (Text2), perhaps in enciphered form.

9.5 Comparing different approaches

We now briefly consider the relative merits of time-stamps and nonces for freshness

checking. Time-stamps have the following advantages with respect to nonces:

• time-stamp based protocols typically contain less messages then nonce-based protocols

(typically one less),

• time-stamp based protocols fit well to the client-server model of computing (e.g. RPC).

54

The main disadvantages of time-stamp based protocols are as follows:

• there is a need to maintain either synchronised clocks (and a log of recently received

messages) or sequence number pairs (if logical time-stamps are used),

• problems arise in securely linking the messages of the protocol together.

The need for this latter property depends on the application of the authentication protocol. If

the protocol is used for time synchronisation, or database query protection, then linking of a

‘request’ message to a ‘ response’ message is needed (to prevent a malicious interceptor

‘shuffling’ responses to requests issued within a short time of one another). To address this

problem, time-stamp protocols can use a ‘ transaction ID’ to securely link a request to a reply.

Note that, because of the many problems that have been encountered with authentication

protocols in the past, a variety of various ‘ logics of authentication’ have been proposed. The

purposes of these logics is to provide a framework to reason formally about the ‘soundness’

(or otherwise) of candidate protocols. The most celebrated example is the BAN Logic (names

after its inventors: Burrows, Abadi and Needham). The BAN logic actually makes it possible

to reason about one particular application of authentication, namely key distribution.

9.6 Keying requirements for authentication protocols

As we have already noted, almost all authentication protocols use either shared secret keys, or

public/private key pairs (for digital signatures). More specifically, protocols based on

symmetric cryptography (either ‘symmetric’ encipherment or data integrity mechanism) make

use of a shared secret between A and B. Digital signature based protocols need A and B to

have a trusted copy of each other’s verification key.

We start by considering the keying requirements for symmetric (secret key) cryptography

based protocols, i.e. where A and B need to share a secret key. Of course, if A and B already

share a secret key, then there is no problem. We therefore suppose that A and B want to

engage in an authentication protocol but they do not yet share a secret key. To provide the

required shared secret key we assume that there is a trusted third party (TTP) with whom both

55

A and B share a secret. The (on-line) TTP co-operates to enable A and B to authenticate one

another. This process requires more elaborate protocols. Two examples of such protocols

can be found in ISO/IEC 9798-2 (ISO, 1994b) although we do not explore them further here.

Further examples are provided in ISO/IEC 11770-2 (ISO, 1996c).

When using public key cryptographic techniques such as digital signatures, there is a need for

a means to distribute trusted copies of user public keys instead of shared secrets. Public

verification keys can be certified by applying the digital signature of a Trusted Third Party

(TTP). The result (i.e. a public key, an entity name, an expiry date, and the signature of a

TTP on these three items) is called a public key certificate. In order to obtain a verified copy

of a user’s public key, one first obtains a copy of their public key certificate. To verify a

certificate signed by a TTP requires a trusted copy of TTP’s public verification key (this

could typically be obtained by a user at the time the user’s own certificate is generated).

If two entities have certificates signed by different TTPs, then a cross-certificate is needed

(i.e. one a copy of one TTP’s public verification key signed by the other TTP). This leads to

the notion of certification paths, i.e. sequences of cross-certificates with the subject of one

certificate being the signer of the next certificate in the sequence.

9.7 Applications

One very important application of authentication protocols is during connection

establishment. An authentication protocol can be used to set up session key(s) to protect data

which is transferred during the lifetime of the connection. Keys can be transferred by

inclusion in the data string elements of protocol messages. Parts 2 and 3 of the key

management standard, ISO/IEC 11770 (ISO, 1996c) and (ISO, 1999f) contain examples of

how this can be achieved.

56

10 Non-repudiation

10.1 Introdu ction

A multi -part standard (ISO/IEC 13888) on mechanisms for the provision of non-repudiation

services has recently been completed. This overlaps to some extent with the work on digital

signatures, since digital signatures can be used to provide non-repudiation services.

The non-repudiation standards seek a rather wider scope, with ISO/IEC 13888-1 (ISO, 1997d)

giving a general model for the provision of non-repudiation, including a discussion of the role

of the trusted third party. ISO/IEC 13888-2 (ISO, 1998e) discusses the provision of non-

repudiation services using symmetric cryptographic techniques. Such schemes require the

on-line involvement of a trusted third party or Notary. ISO/IEC 13888-3 (ISO, 1997e)

covering asymmetric cryptography, is concerned with how digital signature techniques can be

used to provide these types of service.

10.2 ISO/IEC 13888-1

ISO/IEC 13888-1 (ISO, 1997d) provides a high-level discussion of the ways in which non-

repudiation services can be provided. Amongst other topics, the roles of TTPs and the use of

tokens are discussed. A total of eight non-repudiation services are defined; amongst them are

the following four services which are li kely to be the most important.

• Non-repudiation of origin, protects against the message originator falsely denying having

sent the message.

• Non-repudiation of submission, protects against a message delivery authority falsely

denying acceptance of the message from the originator.

• Non-repudiation of transport, protects against a message delivery authority falsely

denying delivery of the message to the recipient.

57

• Non-repudiation of delivery, protects against the message recipient falsely denying

receipt of the message.

Each of these services is provided by giving evidence to the party being given protection. For

the above four services, evidence is provided to the message recipient for service 1, and to the

message originator for services 2, 3 and 4.

10.3 ISO/IEC 13888-2

ISO/IEC 13888-2 (ISO, 1998e) describes a set of mechanisms for providing a variety of non-

repudiation services using a combination of symmetric cryptography and a Trusted Third

Party. Possible non-repudiation services covered by these mechanisms include:

• non-repudiation of origin - a service which protects against an originator’s false denial of

being the originator of the message, and

• non-repudiation of delivery - a service which protects against a recipient’s false denial of

having received the message.

We describe one TTP-based mechanism for providing non-repudiation of origin.

Suppose entity A is to send a message m to entity B, and suppose also that A and B both trust a

Trusted Third Party TTP. Suppose also that A has identity IDA, and B has identity IDB. We

also suppose that fk(D) is a MAC computed on data D using the key k, A and TTP share a

secret key a, B and TTP share a secret key b, the TTP possesses a secret key x, h is a hash-

function, and z denotes a string of data items including IDA, IDB, IDTTP, a timestamp, and

h(m).

The mechanism has five message passes, as follows:

1. A → TTP: z || fa(z)

2. TTP → A: z || fx(z) || fa(z || fx(z))

3. A → B: m || z || fx(z)

58

4. B → TTP: z || fx(z) || fb(z || fx(z))

5. TTP → B: PON || z || fx(z) || fb(PON || z || fx(z))

where PON is one bit (Positive or Negative) indicating whether or not the non-repudiation

information is valid.

After receiving the final message, B retains the string z || fx(z) as evidence that A really did

send message m to B. This evidence can be verified by the TTP at any later stage, using the

TTPs’ secret key x (and the TTP does not need to retain a record of the transaction).

10.4 ISO/IEC 13888-3

ISO/IEC 13888-3 (ISO, 1997e) describes how to construct and use digitall y signed tokens to

provide various non-repudiation services. For example, a non-repudiation of delivery token is

defined as the recipient’s signature on a data string containing the following data items:

IDoriginator, IDrecipient, a timestamp, and a hash of the message.

To provide the non-repudiation of delivery service, the message recipient will be required to

provide a non-repudiation of delivery token upon request by the message originator.

An informative annex to ISO/IEC 13888-3 describes the use of a TTP to provide a time-

stamping service. Such a service involves a TTP adding a timestamp and its signature to data

provided by a requester. This data could be a previously signed non-repudiation token. The

use of such a time-stamping service is vital i f signatures, and hence non-repudiation tokens,

are to have long term validity. The addition of a Trusted Third Party timestamp protects

against subsequent revocation and/or expiry of the private key used to sign the non-

repudiation token.

59

11 Key management

11.1 Introdu ction

We now consider the multi -part ISO/IEC standard concerned with key management, namely

ISO/IEC 11770. We divide our discussion into three parts, corresponding to the three parts of

ISO/IEC 11770:

• Part 1 - Key management framework (ISO, 1996b) under which heading we consider

basic definitions and concepts,

• Part 2 - Mechanisms using symmetric techniques (ISO, 1996c) i.e. mechanisms for

distributing keys using symmetric cryptographic techniques,

• Part 3 - Mechanisms using symmetric techniques (ISO, 1999f) i.e. mechanisms for

distributing keys (for both symmetric and asymmetric algorithms) using asymmetric

cryptography.

The earliest key management standards work was started in the early 1980s by the ANSI

banking standards community. It has resulted in a series of important banking key

management standards (e.g. X9.17-1985, X9.24, X9.28, X9.30 and X9.31). This work was

then taken up by ISO TC68, the banking standards committee for ISO, and has resulted in a

series of parallel ISO standards, e.g. ISO 8732 for wholesale key management (based on

X9.17), ISO 11568 for retail key management, ISO 11649 (based on X9.28), and ISO 11166

(a multi -part standard covering key management using asymmetric algorithms completed in

1994, and related to X9.30 and X9.31). More recently SC27 has developed a generic key

management multi -part standard: ISO/IEC 11770.

The ISO/IEC JTC1/SC27 work has primarily focussed on key establishment mechanisms,

although 11770-1 is the Key Management Framework, containing general advice and good

practice on key management, and which is distantly related to ISO/IEC 10181, the multi -part

security frameworks standard (ISO, 1996a). ISO/IEC 11770-2 contains key distribution

60

mechanisms based on the use of symmetric (conventional) cryptography, and ISO/IEC

11770-3 contains key distribution/agreement mechanisms based on asymmetric cryptography.

11.2 Key management f ramework

ISO/IEC 11770-1 (ISO, 1996b) covers the following main topics.

• A list of definitions relevant to key management.

• Methods for key protection and a definition of the key ‘ lifecycle’ .

• Key management ‘concepts’ , covering: key generation, registration, certification,

distribution, installation, storage, derivation, archiving, revocation, de-registration, and

destruction.

• Models for key distribution.

• A series of appendices covering: Threats to key management, Key Management

Information Objects (an ASN.1 definition for a data structure containing key(s) and

associated information), Types of keys, and Certificate li fecycle management.

Some of the most important ISO/IEC 11770 definitions (mostly but not exclusively contained

in Part 1) are as follows.

• certification authority (CA) – a centre trusted to create and assign public key certificates.

Optionally, the CA may create and assign keys to the entities.

• implicit key authentication to A – the assurance for one entity A that only another

identified entity can possibly be in possession of the correct key.

• key – a sequence of symbols that controls the operation of a cryptographic transformation.

• key agreement – the process of establishing a shared secret key between entities in such a

way that neither of them can predetermine the value of that key. [This means that neither

entity has key control.]

61

• key confirmation – the assurance for one entity that another identified entity is in

possession of the correct key.

• key control – the ability to choose the key, or the parameters used in the key computation.

• key distribution centre (KDC) – an entity trusted to generate or acquire, and distribute

keys to entities that share a key with the KDC.

• key establishment – the process of making available a shared secret key to one or more

entities. Key establishment includes key agreement and key transport.

• key translation centre (KTC) – an entity trusted to translate keys between entities that

each share a key with the KTC.

• key transport – the process of transferring a key from one entity to another entity, suitably

protected.

• private key – that key of an entity’s asymmetric key pair which should only be used by

that entity. [A private key should not normally be disclosed.]

• public key – that key of an entity’s asymmetric key pair which can be made public.

• secret key – a key used with symmetric cryptographic techniques and usable only by a set

of specified entities.

Keys are typically organised in key hierarchies. Keys in one level of the hierarchy may only

be used to protect keys in the next level down in the hierarchy. Only keys in the lowest level

of the hierarchy are used directly to provide data security services. This hierarchical approach

allows the use of each key to be limited, thus limiting exposure and making attacks more

difficult. For example, the compromise of a single session key (i.e. a key at the lowest level

of the hierarchy) only compromises the information protected by that key. The key at the top

level of the hierarchy is referred to as the master key. Disclosure of a master key will

potentially enable the possessor to discover or manipulate all other keys protected by it (i.e.

62

all keys in that particular hierarchy). It is therefore desirable to minimise access to this key,

perhaps by arranging that no single user has access to its value.

11.3 Certificate management

Annex D of ISO/IEC 11770-2 (ISO, 1996c) contains a detailed discussion of certificate

lifecycle management. This discussion covers the role of the Certification Authority (CA),

the ‘certification process’ (covering the relationships between the main entities involved in

the generation and management of certificates), distribution and use of certificates,

certification paths, and certificate revocation.

A public key certificate is a list of data items associated with a particular user, including the

public key(s) of that user, all signed by a Certification Authority. Every user will subscribe to

a particular CA, and possess a (trusted) copy of the verification key for that CA; they are thus

able to verify certificates generated by that CA. Information in a certificate will typically

include:

• the name of the user,

• an expiry date (or, more generally, a period of validity),

• a serial number,

• one or more public key(s) belonging to the user,

• the algorithm identifier(s) for the public key(s),

• information regarding the security policy under which this certificate has been created.

Various standards exist for the structure of a certificate. Most important is ITU-T

recommendation X.509 (ITU, 1997) and the corresponding ISO/IEC standard: ISO/IEC 9594-

8 (ISO, 1999a). Recent revisions to these standards (which enable policy information to be

included in these ‘standard’ certificates), have resulted in the ‘Version 3’ X.509 certificate

format.

63

The CA is trusted by its subscribers for the purposes of certificate generation. The CA is

responsible for identifying the entities whose public key information is to be incorporated into

a certificate, ensuring the quality of the CA’s own key pair used for generating certificates,

and securing the certificate generation process and the private key used in the certificate

generation process.

One issue of major importance not addressed in ISO/IEC 11770-1 concerns the situation

where a user generates his/her own asymmetric key pair, and then requests the CA to generate

a certificate for his/her public key. It is generally considered good practice for the CA to ask

the user to provide assurance that the user possesses the private key corresponding to the

public key offered for signature (e.g. in the case of a signature key by signing a date-stamped

statement to this effect, which the CA can then verify using the offered public key). Such a

procedure can avoid one user claiming to possess another user’s key pair, with undesirable

consequences in certain situations.

Certificates may be revoked before their scheduled date of expiry by the issuing CA. Possible

reasons include: key compromise, request for cancellation by an entity, termination of the

entity, etc. Thus there needs to be a means to inform all relevant users that an apparently

valid certificate is no longer valid. This is typically done by means of a Certificate

Revocation List (CRL). A CRL is a time-stamped li st of serial numbers or other certificate

identifiers for those certificates which have been revoked by a particular CA. The CRL is

signed by the relevant CA. Updates should be issued at regular intervals, even if the list has

not changed (thus enabling users possessing a CRL to check that it is the current one). Means

need to be provided for the effective and timely distribution of CRLs.

11.4 Key establishment using symmetric techniques

ISO/IEC 11770-2 (ISO, 1996c) defines key establishment mechanisms using symmetric

cryptographic techniques (mainly using symmetric encipherment but also using cryptographic

64

check functions). The text is primarily, but not exclusively, based on using authentication

protocols from ISO/IEC 9798-2 (ISO, 1994b) for key distribution.

ISO/IEC 11770-2 includes 13 ‘key establishment mechanisms’ f or:

• session key distribution between a pair of entities with a pre-established shared ‘master

key’ ,

• key distribution between a pair of parties employing a trusted third party acting as a Key

Distribution Centre, and

• key distribution between a pair of parties employing a trusted third party acting as a Key

Translation Centre.

We consider four representative examples. In these examples we use the following notation.

• A and B are the two entities wishing to establish a new secret key.

• eK(X) denotes encipherment of data block X using secret key K (note that the

encipherment technique is not specified). Note that the encipherment technique is

assumed to provide data integrity and origin authentication. Hence it is implicit that an

MDC or MAC wil l be computed on the data and appended to the data prior to encryption.

• X || Y denotes the concatenation of data items X and Y, in the order specified.

11.4.1 Authenticated key establishment using timestamps and encipherment

For this mechanism to be usable, entities A and B must already share a secret key KAB. A and

B must also maintain synchronised clocks or sequence numbers. This mechanism is based on

the one-pass (unilateral) authentication mechanism given in ISO/IEC 9798-2, Clause 5.1.1. It

provides unilateral authentication of A to B, and implicit key authentication to A. A chooses

the key and therefore has key control.

The mechanism has one message pass:

A → B: eKAB(T/N || B || F || Text1)

65

T/N denotes either a timestamp T or a sequence number N, B denotes the distinguishing name

of B, and F contains keying material. On receipt of the message, B deciphers the enciphered

part, and then checks for the presence of its identifier and the correctness of the

timestamp/sequence number. The key established between A and B is contained in F.

11.4.2 Authenticated key establishment using nonces and encipherment

Mechanism 6 (a nonce-based key distribution mechanism) is derived from the 3-pass

authentication protocol in Clause 5.2.2 of ISO/IEC 9798-2. To use this mechanism, A and B

must share a secret key KAB. It provides mutual authentication between A and B. In the

most general version of its use, no individual entity has key control.

The mechanism has three message passes:

B → A: RB

A → B: eKAB (RA || RB || B || FA || Text1)

B → A: eKAB (RB || RA || FB || Text2)

RA and RB are (unpredictable) nonces. FA and FB contain keying material. A and B calculate

their new shared key as a function of the keying material FA and FB. The standard permits

either FA or FB to be null; however if both FA and FB are used, then the properties required for

the function used to combine them mean that neither entity has key control.

11.4.3 TTP-aided authenticated key establishment using nonces

Mechanism 9 (a nonce-based key distribution mechanism) is based on the 5-pass

authentication protocol in clause 6.2 of ISO/IEC 9798-2. Note that, in this protocol, T is a

third party (a KDC) trusted by both A and B. Moreover T shares the secret keys KAT and

KBT with A and B respectively. The mechanism provides mutual authentication between A

and B. The KDC has key control.

The mechanism has five message passes:

66

B → A: RB

A → T: RA || RB || B

T → A: eKAT (RA || F || B || Text1) || eKBT (RB || F || A || Text2)

A → B: eKBT (RB || F || A || Text2) || eK(R′A || RB || Text3)

B → A: eK(RB || R′A || Text4)

K is the new shared key generated by T, and it is contained in the keying material field F. RA,

RB and R′A are nonces.

11.4.4 TTP-aided authenticated key establishment using timestamps

Mechanism 12 (a timestamp-based key distribution mechanism) is based on, but is not fully

compatible with, the 4-pass authentication protocol in clause 6.1 of ISO/IEC 9798-2. Note

that, in this protocol, T is a third party (a KTC) trusted by both A and B. Moreover T shares

the secret keys KAT and KBT with A and B respectively. T, A and B must also maintain

synchronised clocks or sequence numbers. The mechanism provides mutual authentication

between A and B. Entity A has key control.

The mechanism has four message passes:

A → T: eKAT (TVPA || B || F || Text1)

T → A: eKAT (TVPA || B || Text2) || eKBT (TT/NT || F || A || Text3)

A → B: eKBT (TT/NT || F || A || Text3) || eK(TA/NA || B || Text4)

B → A: eK(TB/NB || A || Text5)

TVPA is a time variant parameter (random number, timestamp or sequence number) chosen by

A and used by A to match the response from T with the request to T (it is not checked by T).

TX/NX denotes either a timestamp TX or a sequence number NX generated by entity X. K is the

new shared key generated by A, and it is contained in the keying material field F.

67

11.5 Key establishment using asymmetric techniques

ISO/IEC 11770-3 (ISO, 1999f) defines key establishment mechanisms based on asymmetric

cryptographic techniques. It provides mechanisms using asymmetric techniques to agree a

shared secret key between two entities (seven key agreement mechanisms), transport a secret

key from one entity to another (six key transport mechanisms), and make an entity's public

key available to other entities in a verifiable way (three public key transport mechanisms).

The first two types of mechanism include uses of some of the protocols defined in ISO/IEC

9798-3 (ISO, 1998b) but also include a variety of other asymmetric techniques (e.g. Diffie-

Hellman key exchange). The third type of mechanism includes the use of certificates.

The seven key agreement mechanisms specified in ISO/IEC 11770-3 all make use of a

‘mathematical context’ , which essentially means the pre-agreement by the relevant parties (A

and B) of a readily computed function F with certain very special properties. More

specifically:

F: H × G → G,

where G and H are sets. F satisfies:

• F(h, F(h′, g)) = F(h′, F(h, g)) for every h, h′ ∈ H and every g ∈ G, and

• Given F(h, g), F(h′, g) and g it is computationally infeasible to find F(h, F(h′, g)).

Amongst other things this implies that F(·,g) is one-way, for every g.

A and B must share a common element g ∈ G (which may be public).

One example of a candidate for F provided in ISO/IEC 11770-3 is the discrete logarithm

mechanism which underlies Diffie-Hellman key exchange, namely: G = Zp (the integers

modulo p for some prime p), H = { 1, 2, ... , p-2 } , g is a primitive element from Zp, and F(h,

g) = gh mod p. Note that,, on this case, the prime number p needs to be chosen with care.

68

11.5.1 Key agreement with mutual implicit key authentication

This example is specified in ISO/IEC 11770-3 as ‘Key agreement mechanism 5’ . If entities A

and B wish to use this mechanism to establish a new shared secret key, then:

• entity A must have a private key hA ∈ H known only to A and a public key pA = F(hA, g)

known to B,

• entity B must have a private key hB ∈ H known only to B and a public key pB = F(hB, g)

known to A.

This mechanism provides mutual implicit key authentication, but does not, however, allow A

and B to choose the value or form of KAB in advance, i.e. neither A nor B has key control.

Hence this mechanism is inappropriate for systems where the key needs to have a special

form - in such a case a key transport mechanism needs to be used. Prior to starting the

mechanism, A chooses a random (secret) rA ∈ H, and B chooses a random (secret) rB ∈ H.

The protocol is simply:

A → B: F(rA, g) || Text1

B → A: F(rB, g) || Text2

After receipt of the first message, B computes the shared secret key as

KAB = w(F(hB, F(rA, g)), F(rB, pA)),

and after receipt of the second message A computes the shared secret key as

KAB = w(F(rA, pB), F(hA, F(rB, g))),

where w denotes an (unspecified) commonly agreed one-way function.

11.5.2 Key transport with mutual authentication

Transport Mechanism 5 (a nonce-based key transport mechanism) is based on the 3-pass

authentication protocol in clause 5.2.2 of ISO/IEC 9798-3. Note that, in this protocol:

69

• A, B have signing/verification transform pairs (SA,VA) and (SB,VB) respectively. Both

parties must have access to each other’s public verification transformation.

• A, B have encrypt/decrypt transform pairs (EA,DA) and (EB,DB) respectively. Both parties

must have access to each other’s public encipherment transformation.

The mechanism provides mutual authentication and optional key confirmation to B. Two

keys are established (one transported in each direction).

The mechanism has three message passes:

A → B: rA || Text1

B → A: SB(rB || rA || A || EA(B || KB || Text2) || Text3) || Text4

A → B: SA(rA || rB || B || EB(A || KA || Text5) || Text6) || Text7

rA, rB denote nonces. The keys KA and KB are established between A and B. For key

confirmation to B, user A can include a check-value computed on KB in Text6. Mutual key

control can be achieved by combining the two keys KA and KB using a one-way function,

yielding a key agreement mechanism.

12 Other standards

A multi -part standard specifying security mechanisms based on ell iptic curves, ISO/IEC

15946, is at an early stage of development.

• Part 1 contains mathematical background on elliptic curves.

• Part 2 covers elliptic curve signatures.

• Part 3 covers elliptic curve key establishment techniques.

A further new area for standardisation currently being investigated within SC27/WG2

concerns methods for key generation. Whilst this is potentially an extremely important area,

no substantive document exists as yet.

70

References

ANSI. (1981). ANSI X3.92. American National Standard – Data Encryption Algorithm.

American National Standards Institute.

ANSI. (1983). ANSI X3.106, American National Standard for Information Systems – Data

Encryption Algorithm – Modes of Operation. American National Standards Institute.

ANSI. (1986a). ANSI X9.9 (revised), American National Standard – Financial institution

message authentication (wholesale). American Bankers Association.

ANSI. (1986b). ANSI X9.19, American National Standard – Financial institution retail

message authentication. American Bankers Association.

CCITT. (1988). X.509, The Directory – Authentication Framework. CCITT.

FIPS. (1980). FIPS 81, DES Modes of Operation. National Bureau of Standards.

FIPS. (1993). FIPS 46, Data Encryption Standard. National Bureau of Standards, (FIPS 46-

2: 2nd revision).

FIPS. (1994). FIPS 186, Digital signature standard. National Institute of Standards and

Technology.

FIPS. (1995). FIPS 180-1, Secure hash standard. National Institute of Standards and

Technology, 1st revision.

ISO. (1986). ISO 8730, Banking – Requirements for message authentication (wholesale).

International Organization for Standardization.

ISO. (1987a). ISO 8372, Information processing – Modes of operation for a 64-bit block

cipher algorithm. International Organization for Standardization.

ISO. (1987b). ISO 8731-1, Banking – Approved algorithms for message authentication –

Part 1: DEA. International Organization for Standardization.

71

ISO. (1989). ISO 7498-2, Information processing systems – Open Systems Interconnection

– Basic reference model – Part 2: Security architecture. International Organization

for Standardization.

ISO. (1991). ISO/IEC 9796, Information technology – Security techniques – Digital

signature scheme giving message recovery. International Organization for

Standardization.

ISO. (1992). ISO 8731-2, Banking – Approved algorithms for message authentication – Part

2: Message authenticator algorithm. International Organization for Standardization,

2nd edition.

ISO. (1994a). ISO/IEC 9797, Information technology – Security techniques – Data integrity

mechanism using a cryptographic check function employing a block cipher algorithm.

International Organization for Standardization, 2nd edition.

ISO. (1994b). ISO/IEC 9798-2, Information technology - Security techniques - Entity

authentication - Part 2: Mechanisms using symmetric encipherment algorithms.

International Organization for Standardization.

ISO. (1994c). ISO/IEC 10118-1, Information technology – Security techniques – Hash-

functions – Part 1: General. International Organization for Standardization.

ISO. (1994d). ISO/IEC 10118-2, Information technology – Security techniques – Hash-

functions – Part 2: Hash-functions using an n-bit block cipher algorithm.

International Organization for Standardization.

ISO. (1995). ISO/IEC 9798-4, Information technology - Security techniques - Entity

authentication - Part 4: Mechanisms using a cryptographic check function.

International Organization for Standardization.

ISO. (1996a). ISO/IEC 10181 Parts 2 to 6, Information technology – Open Systems

Interconnection – Security frameworks for open systems. International Organization

for Standardization.

72

ISO. (1996b). ISO/IEC 11770-1, Information technology - Security techniques - Key

management - Part 1: Framework. International Organization for Standardization.

ISO. (1996c). ISO/IEC 11770-2, Information technology - Security techniques - Key

management - Part 2: Mechanisms using symmetric techniques. International

Organization for Standardization.

ISO. (1997a). ISO/IEC 9796-2, Information technology – Security techniques – Digital

signature schemes giving message recovery – Part 2: mechanisms using a hash-

function. International Organization for Standardization.

ISO. (1997b). ISO/IEC 9798-1, Information technology - Security techniques - Entity

authentication - Part 1: General. International Organization for Standardization, 2nd

edition.

ISO. (1997c). ISO/IEC 10116, Information technology – Security techniques – Modes of

operation for an n-bit block cipher. International Organization for Standardization,

2nd edition.

ISO. (1997d). ISO/IEC 13888-1, Information technology – Security techniques – Non-

repudiation – Part 1: General. International Organization for Standardization.

ISO. (1997e). ISO/IEC 13888-3, Information technology – Security techniques – Non-

repudiation – Part 3: Mechanisms using asymmetric techniques. International

Organization for Standardization.

ISO. (1998a). ISO/IEC CD 9797-2, Information technology – Security techniques –

Message Authentication Codes (MACs) – Part 2: Mechanisms using a hash-function.

International Organization for Standardization.

ISO. (1998b). ISO/IEC 9798-3, Information technology - Security techniques - Entity

authentication mechanisms - Part 3: Mechanisms using digital signature techniques.

International Organization for Standardization, 2nd edition.

73

ISO. (1998c). ISO/IEC 10118-3, Information technology – Security techniques – Hash-

functions – Part 3: Dedicated hash-functions. International Organization for

Standardization.

ISO. (1998d). ISO/IEC 10118-4, Information technology – Security techniques – Hash-

functions – Part 4: Hash-functions using modular arithmetic. International

Organization for Standardization.

ISO. (1998e). ISO/IEC 13888-2, Information technology – Security techniques – Non-

repudiation – Part 2: Mechanisms using symmetric techniques. International

Organization for Standardization.

ISO. (1998f). ISO/IEC 14888-1, Information technology – Security techniques – Digital

signatures with appendix – Part 1: General. International Organization for

Standardization.

ISO. (1998g). ISO/IEC FDIS 14888-2, Information technology – Security techniques –

Digital signatures with appendix – Part 2: Identity-based mechanisms. International

Organization for Standardization.

ISO. (1998h). ISO/IEC 14888-3, Information technology – Security techniques – Digital

signatures with appendix – Part 3: Certificate-based mechanisms. International

Organization for Standardization.

ISO. (1999a). ISO/IEC DIS 9594-8, Information technology – Open Systems

Interconnection – The Directory – Part 8: Authentication framework. International

Organization for Standardization.

ISO. (1999b). ISO/IEC FCD 9796-3, Information technology – Security techniques – Digital

signature schemes giving message recovery – Part 3: Discrete logarithm based

mechanisms. International Organization for Standardization.

74

ISO. (1999c). ISO/IEC FDIS 9797-1, Information technology – Security techniques –

Message Authentication Codes (MACs) – Part 1: Mechanisms using a block cipher.

International Organization for Standardization.

ISO. (1999d). ISO/IEC 9798-5, Information technology - Security techniques - Entity

authentication - Part 5: mechanisms using zero knowledge techniques. International

Organization for Standardization.

ISO. (1999e). ISO/IEC 9979, Information technology – Security techniques – Procedures

for the registration of cryptographic algorithms. International Organization for

Standardization, 2nd edition.

ISO. (1999f). ISO/IEC 11770-3, Information technology - Security techniques - Key

management - Part 3: Mechanisms using asymmetric techniques. International

Organization for Standardization.

ITU. (1997). X.509, Information technology – Open Systems Interconnection – The

Directory – Authentication Framework. ITU-T, 3rd edition.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21:558–565.

Menezes, A.J., van Oorschot, P.C., and Vanstone, S.A. (1997). Handbook of Applied

Cryptography. CRC Press.

RFC. (1997). RFC 2104, HMAC: Keyed hashing for message authentication. Internet

Request for Comments 2104, H. Krawczyk, M. Bellare and R. Canetti.

