
iTiger: An Automatic Issue Title Generation Tool
Ting Zhang∗

tingzhang.2019@phdcs.smu.edu.sg
Singapore Management University

Singapore

Ivana Clairine Irsan∗
ivanairsan@smu.edu.sg

Singapore Management University
Singapore

Ferdian Thung
ferdianthung@smu.edu.sg

Singapore Management University
Singapore

DongGyun Han
DongGyun.Han@rhul.ac.uk
Royal Holloway, University of
London, United Kingdom

David Lo
davidlo@smu.edu.sg

Singapore Management University
Singapore

Lingxiao Jiang
lxjiang@smu.edu.sg

Singapore Management University
Singapore

ABSTRACT

In both commercial and open-source software, bug reports or issues
are used to track bugs or feature requests. However, the quality of
issues can differ a lot. Prior research has found that bug reports
with good quality tend to gain more attention than the ones with
poor quality. As an essential component of an issue, title quality
is an important aspect of issue quality. Moreover, issues are usu-
ally presented in a list view, where only the issue title and some
metadata are present. In this case, a concise and accurate title is
crucial for readers to grasp the general concept of the issue and
facilitate the issue triaging. Previous work formulated the issue title
generation task as a one-sentence summarization task. A sequence-
to-sequence model was employed to solve this task. However, it
requires a large amount of domain-specific training data to attain
good performance in issue title generation. Recently, pre-trained
models, which learned knowledge from large-scale general corpora,
have shown much success in software engineering tasks.

In this work, we make the first attempt to fine-tune BART, which
has been pre-trained using English corpora, to generate issue titles.
We implemented the fine-tuned BART as a web tool named iTiger,
which can suggest an issue title based on the issue description. iT-
iger is fine-tuned on 267,094 GitHub issues. We compared iTiger
with the state-of-the-art method, i.e., iTAPE, on 33,438 issues. The
automatic evaluation shows that iTiger outperforms iTAPE by
29.7%, 50.8%, and 34.1%, in terms of ROUGE-1, ROUGE-2, ROUGE-L
F1-scores. The manual evaluation also demonstrates the titles gener-
ated by BART are preferred by evaluators over the titles generated
by iTAPE in 72.7% of cases. Besides, the evaluators deem our tool
as useful and easy-to-use. They are also interested to use our tool
in the future.

Demo URL: https://tinyurl.com/itiger-tool
Source code and replication package URL: https://github.

com/soarsmu/iTiger
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1 INTRODUCTION

In software development and maintenance, bug reports or issues1
are heavily used by developers to report bugs or propose new
features. With the proliferation of open-source software and social
coding platforms, issue trackers are more accessible than ever. On
the one hand, given their varying experience levels, developers
write bug reports with various qualities. On the other hand, the
quality of bug reports can impact the bug triaging process. Prior
research [5] finds that well-written bug reports are more likely to
gain triager’s attention and influence the decision on whether the
bugs get fixed.

There is an emerging research interest in improving issue quality.
An issue usually includes a title and a description. The description
is optional and can contain extensive and rich information, such as
detailed steps to reproduce a bug. The title serves as the summary
of the description. Most prior works focus on improving the descrip-
tion of an issue and not its title [3]. For instance, Chaparro et al. [3]
consider that a good bug report description should clearly describe
the Observed Behavior (OB), the Steps to Reproduce (S2R), and the
Expected Behavior (EB). They propose an approach to improve bug
description quality by alerting reporters about missing EB and S2R
at reporting time. Compared to the attention given to the quality
of issue descriptions, the quality of issue titles has only recently
received research interests. Succinct and accurate issue titles can
help readers quickly grasp the issue content and potentially speed
up the bug triaging process, especially when issues are presented
in the form of a list. However, since developers may neglect to
compose a succinct and accurate issue title, there is a need for an
automatic issue title generation tool to help developers.

1Note in our work, we use the terms bug report and issue interchangeably.
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Chen et al. [4] are the first to work on the issue title genera-
tion task, which aims to help developers write issue titles. They
formulated the issue title generation task as a one-sentence summa-
rization task. They propose iTAPE [4], which is a specialized tool to
generate the issue title based on the issue description. iTAPE relies
on a sequence-to-sequence model [13] and is implemented with
the OpenNMT framework2. Unlike them, we leverage pre-trained
models (PTMs), which have brought considerable breakthroughs
in the field of artificial intelligence. PTMs are pre-trained in much
unlabeled data, and can be fine-tuned to solve downstream tasks.
Fine-tuning PTMs can usually achieve better performance than
learning models from scratch [14, 16]. To fill the gap of adopting
PTMs to solve the issue title generation task, in this work, we
leverage a type of PTMs, i.e., BART [7], which has demonstrated
promising performance in summarization and text generation tasks.
Specifically, we benefit from transfer learning, where the BART
model we used has been pre-trained in large English corpora. The
model is further fine-tuned using a GitHub issue title dataset col-
lected by Chen et al. [4], which consists of 333,563 issues.

To build a bridge between research and practice, we present
iTiger, a web-based tool to generate high-quality issue titles. To use
iTiger, developers simply need to install a Userscript manager, i.e.,
Tampermonkey [1], that is available in most popular web browsers,
such as Chrome, Safari, and Firefox. After that, developers can
install the script we provided. iTiger is specially designed for the
scenario when developers are creating a new issue: they can focus
on drafting a detailed description, and iTiger can automatically
generate a succinct and accurate summary of the description. The
script of iTiger is published on GitHub.3

2 APPROACH

We demonstrate the overall workflow of iTiger in Figure 1. First,
when issue reporters create a new issue, they need to fill in the
description field of the issue (as shown in Figure 2). Second, upon
finishing writing the issue description, they can click the Get Title
Suggestion button (as the red box shown in Figure 2). iTiger then
sends a request to the backend to generate the title. After getting
the title, iTiger will auto-fill the title field of the issue. Third, issue
reporters can further modify and polish the issue title if they choose
to do so. Fourth, after they are satisfied with the issue title, they
can proceed to open this new issue.

The underlying model of iTiger is BART, a standard sequence-
to-sequence (Seq2Seq) Transformer architecture that has been pre-
trained by first corrupting a text with noising functions, and then
learning to reconstruct the original text [7]. Several noising func-
tions are applied by BART, such as token masking, token deletion,
and sentence permutation (sentences are shuffled in random order).
In the original paper, an evaluation on two news summarization
datasets indicates that BART outperforms all existing works. BART
is pre-trained in the same corpora as RoBERTa, which includes over
160GB of uncompressed English text [10]. In this work, we adopt
the base version of BART 4 with 6 layers in the encoder and decoder.
BART was fine-tuned as a standard Seq2Seq model from the source

2https://github.com/OpenNMT/OpenNMT-py
3https://github.com/soarsmu/iTiger
4https://huggingface.co/facebook/bart-base

sequence to the target sequence. Specifically, in our task, the source
sequence is the issue description, and the target sequence is the
issue title. We fine-tune BART by feeding it with the pairs of issue
descriptions and titles. In the inference stage, the input is the issue
description and BART can generate the issue title as the output. We
leave all the hyper-parameters values to their defaults. The detailed
hyper-parameter settings are available in our replication package.
We trained BART on the issue description and title pairs extracted
from GitHub. The details about the data we used can be found in
Section 4. Once the model is fine-tuned, we can utilize the model
to generate the suggested title based on the issue description.

3 IMPLEMENTATION DETAILS

We have implemented iTiger as a Userscript which can be run in
popular web browsers. We believe, by seamlessly integrating iTiger
with GitHub web UI (as opposed to making iTiger a standalone
application), context switches between a standalone application
and a browser are eliminated and therefore it saves developers time.
To generate issue titles more accurately, we first fine-tune the pre-
trained BART on a domain-specific issue dataset. We fine-tuned
BART with 3 NVIDIA Tesla V100 GPUs. Using fine-tuned BART
model [7], iTigerwill generate a title suggestion based on the issue
description. Instead of directly submitting a new issue with the
generated title, iTiger only fill the title field so the reporter has the
freedom to modify the title if deemed necessary.

iTiger’s architecture consists of two components: frontend User-
script and backend. Frontend Userscript constructs the user inter-
face. The backend provides a RESTful API for easy integration, such
that a single deployment can serve multiple clients.

Frontend Userscript: The Userscript constructs iTiger’s user
interface and integrates it with the backend service. The Userscript
adds a Get Title Suggestion button on the new issue page of
GitHub. When the button is clicked, the Userscript sends an HTTP
request to the backend service and fills the title field with the
suggested title from the backend service.

Backend: iTiger’s backend provides a RESTful API to serve
the clients. It is developed using Python 3, utilizing the FastAPI
framework. By leveraging server-client architecture, one backend
service could serve multiple clients, and the clients do not need to
store the model in their machines. iTiger’s backend server passes
the description to iTiger’s title generator model every time there
is an incoming request.

Deployment: iTiger’s backend service is made available in our
replication package. It can be deployed in any machine via docker
containerization by following the step-by-step guide provided in
our replication package. Note that one backend service can serve
multiple clients. To be able to use iTiger, the client’s side (i.e.,
issue reporter) needs to install Tampermonkey extension in their
browser and import our Userscript on it. It will add a Get Title
Suggestion button. When this button is clicked, it will send a
request and fill the title field on GitHub’s new issue page.

4 EVALUATION

4.1 Evaluation Setup

Dataset: We adopt the publicly available issue title generation
dataset provided by Chen et al. [4]. This dataset contains 333,563

https://github.com/OpenNMT/OpenNMT-py
https://github.com/soarsmu/iTiger
https://huggingface.co/facebook/bart-base
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Fill in the description of a
new issue

Click the Get Title
Suggestion Button
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Generated Title

FastAPISubmit the new issue
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Optional: modify the issue
title
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(run by Tampermonkey) 

3

BART

iTiger's Backend

Figure 1: The scenario of using iTiger

Figure 2: The title field is filled in by iTiger

issues collected from the Top-200 most-starred repositories on
GitHub. These issues have high-quality titles. Three heuristic rules
were adopted to select the issues: (1) issues whose titles have less
than 5 words, or more than 15 words; (2) issues whose titles have
more than 70% words missing in the description; (3) issues whose
titles have a sub-sequence can exactly match a particular part of
the issue description, and this sub-sequence is over 70% of the title
length are filtered out. More information about the dataset can be
found in the previous work [4]. The training, validation, and test
data were split by a ratio of 8:1:1.

Automatic Evaluation:We apply ROUGE metric [8] to evalu-
ate the accuracy of generated issue titles. Specifically, we report
ROUGE-N (N=1,2) and ROUGE-L, which have been widely used
in prior summarization papers [4, 11]. The recall, precision, and
F1-score for ROUGE-N are calculated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙𝑟𝑜𝑢𝑔𝑒−𝑛 =
𝑐𝑜𝑢𝑛𝑡 (𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑_𝑁_𝑔𝑟𝑎𝑚𝑠)

𝑐𝑜𝑢𝑛𝑡 (𝑁_𝑔𝑟𝑎𝑚𝑠 ∈ ref _summary)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟𝑜𝑢𝑔𝑒−𝑛 =
𝑐𝑜𝑢𝑛𝑡 (𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑_𝑁_𝑔𝑟𝑎𝑚𝑠)

𝑐𝑜𝑢𝑛𝑡 (𝑁_𝑔𝑟𝑎𝑚𝑠 ∈ gen_summary)

𝐹1𝑟𝑜𝑢𝑔𝑒−𝑛 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙𝑟𝑜𝑢𝑔𝑒−𝑛 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟𝑜𝑢𝑔𝑒−𝑛
𝑅𝑒𝑐𝑎𝑙𝑙𝑟𝑜𝑢𝑔𝑒−𝑛 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟𝑜𝑢𝑔𝑒−𝑛

In the above equations, reference summary (ref _summary) refers
to the original issue title, while generated summary (gen_summary)
refers to the title generated by models. ROUGE-1 and ROUGE-2 dif-
fer inwhetherwe count uni-gram or bi-grams. overlapped_N_grams
indicates the N-grams exist in both the reference summary and
the generated summary. Thus, using the above equations, Recall
measures the percentage of the N-grams in the reference summary
that has been covered by the generated summary, while Precision
measures the percentage of N-grams in the generated summary
that really exist in the reference summary. F1-score considers both
Precision and Recall. Thus, in our work, we treat F1-score as the
evaluation metric. Slightly different from ROUGE-N, ROUGE-L F1-
score is based on Longest Common Subsequence (LCS). It compares
the similarity between two given texts in automatic summarization
evaluation. We report ROUGE-N (N=1,2), and ROUGE-L F1-score in
our work and refer to them as ROUGE-1, ROUGE-2, and ROUGE-L.
To understand whether iTiger can generate better titles than the
state-of-the-art approach iTAPE can do, we report the results of
the automatic evaluation on iTiger and iTAPE.

Manual Evaluation: Since the goal of iTiger is to help practical
use, we conducted two types of manual evaluation: one focuses on
comparing the accuracy between the title generated by BART and
iTAPE, while the other focuses on the usability of the tool.
Accuracy: We randomly sampled 30 issues from the test set. We
invited 5 evaluators: 3 Ph.D. students in Computer Science and
2 Research Engineers in Software Engineering. They have a pro-
gramming experience of more than 5 years and have been using
GitHub for more than two years. We provided 30 issue descriptions
with two generated titles (one was generated by iTiger, and the
other was generated by iTAPE). We also randomize the order of the
titles produced by the two tools presented to the evaluators. The
evaluators do not know the authorship of the two titles.
Usability: We asked the same 5 evaluators to install and use iTiger
directly on GitHub. We asked them to provide three scores, each
score ranging from 1 to 5 (strongly disagree, disagree, slightly agree,
agree, and strongly agree). The three scores evaluate three aspects:
iTiger is easy-to-use, iTiger is useful, and they would like to use
iTiger in the future.
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Table 1: Results on automatic evaluation

Approach ROUGE-1 ROUGE-2 ROUGE-L

iTAPE 31.36 13.12 27.79
iTiger 40.67 20.6 37.26

Table 2: Results on manual evaluation

Approach #Preferred

iTAPE 41
iTiger 109

4.2 Result

Automatic Evaluation: Table 1 shows the ROUGE-1, ROUGE-2, and
ROUGE-L F1-scores produced by the two models, including iTiger
and iTAPE. Since we used the exact splits as iTAPE, we directly
cite the results of iTAPE from its paper. We observe that iTiger
outperforms iTAPE by 29.7%, 50.7%, and 34.1%, in terms of ROUGE-1
F1 score, ROUGE-2 F1 score, and ROUGE-L F1 score, respectively.

Manual Evaluation: Table 2 shows the number of titles generated
by the two tools that are preferred by evaluators. The titles gener-
ated by iTiger are preferred by evaluators on about 72.7% cases. In
terms of usability, the evaluators consider iTiger to be easy-to-use
(5 out of 5) and useful (3.8 out of 5) and are willing to use iTiger in
the future (4.6 out of 5).

4.3 Threats to Validity

Following prior works on summarization studies [11, 15], we adopt
both automatic evaluation (i.e., ROUGE metrics) and manual evalu-
ation. Like other manual evaluations, our experimental results may
be biased. To minimize the potential biases, we invited 5 evaluators
from our research group. They have a programming experience of
more than 5 years and have been using GitHub for more than two
years. The authorships of the issue titles were hidden when they
conducted the evaluation.

5 RELATEDWORK

Issue Quality Understanding and Improvement. Existing re-
search suggests that high-quality issues tend to get more attention
than those with poor-quality, and easier-to-read bug reports have
shorter lifetimes [2]. Bettenburg et al. [2] conduct a survey among
developers to investigate the quality of bug reports from develop-
ers’ perspective. They consider several fine-grained information in
the issue description, such as code samples and stack traces. Their
findings include but not limited to the fact that bug reports contain-
ing stack traces get fixed sooner and easy-to-read reports are fixed
faster. Guo et al. [5] also confirm the finding that high-quality bug
reports are more likely to gain the triager’s attention, especially if
they contain clear steps for reproducing the bug.

Although our task focuses only on a part of issues, i.e., gener-
ating issue title generation, our final goal is to help improve issue
quality. Our strategy is to suggest a high-quality issue title instead
of detecting existing bad ones. Our work complements the existing
works that aim to improve bug report quality.

Software Artifact Generation. Our work on issue title genera-
tion belongs to a broader research topic of software artifact gen-
eration. There have been several tools proposed to automatically
generate different software artifacts, such as bug reports [9, 12],
pull request titles [15], and pull request descriptions [11].

Bug report summarization has attracted research interests for
more than one decade [12]. Although it shares similarities with our
task, there are some important differences. An obvious difference
is the length of the target sequence: bug report summaries usually
contain several sentences, whereas an issue title is a single-sentence
summary. Recently, Liu et al. [9] propose an unsupervised approach
that first converts sentences to vectors and then leverages an auto-
encoder network to extract semantic features. They also utilize
interactive discussions, i.e., comments of a bug report, to measure
whether a sentence is approved or disapproved.

Furthermore, we recently worked on the task of pull request title
generation [15]. We evaluate several state-of-the-art summarization
approaches in the dataset we built. Both the automatic and manual
evaluation results indicate that the fine-tuned BART-base model
achieved the best performance in the pull request title generation
task. We also provided an associated tool named AutoPRTitle [6],
which aims to automatically generate pull request titles. Inspired
by our earlier work [15], we apply pre-trained BART to the issue
title generation task. iTiger differs from AutoPRTitle in several
aspects: (1) the data source: Pull request title generation requires
more data sources, including a pull request description, commit
messages, and the associated issue titles. In comparison, issue title
generation only requires an issue description. (2) the tool usage: We
implement these two tools considering the different usages between
them. Since issue generation only requires an issue description, we
implemented iTiger as a Userscript that embeds a user interface
directly on the GitHub’s issue creation page to reduce the context-
switching between applications. On the other hand, pull request
title generation require more data sources. Hence, we implemented
AutoPRTitle as a stand-alone web application to better capture
these different sources of information.

6 CONCLUSION AND FUTUREWORK

In this paper, we present iTiger, which generates the issue title
based on the issue description. iTiger allows developers to modify
the generated titles. iTiger utilizes the state-of-the-art summariza-
tion model, i.e., BART. In automatic evaluation, iTiger outperforms
the prior specialized issue title generation model, i.e., iTAPE. In
manual evaluation, the evaluators indicate that they prefer the titles
generated by BART over the ones generated by iTAPE in 73.1% of
cases. They agree that iTiger is easy to use and useful, and they
are also willing to use our tool in their daily work. In the future,
we would like to train iTiger on larger and more data to improve
the quality of generated issue titles.
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