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Abstract 22 

Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by 23 

degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause 24 
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SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. 25 

We have developed a novel, codon-optimised hSMN1 transgene and produced integration-26 

proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human 27 

synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the 28 

optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised 29 

hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. 30 

Integration-deficient lentiviral vectors also led to significant expression of the optimised 31 

transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led 32 

to activation of the DNA damage response, in particular elevating levels of phosphorylated 33 

ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed 34 

some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector 35 

encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant 36 

increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel 37 

codon-optimised hSMN1 transgene as a therapeutic strategy for SMA. 38 

 39 

Introduction  40 

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease chiefly 41 

characterised by degeneration of motor neurons from the ventral horn of the spinal cord. 42 

Survival motor neuron (SMN) 1 gene is the SMA-determining gene, being absent in 95% 43 

patients and mutated in the remaining 5% (1). SMN2 is a highly similar gene with only five 44 

nucleotide mismatches, which result in 90% truncated transcripts lacking exon 7 (SMNΔ7) (2, 45 

3), producing only low levels of SMN protein. SMN2 copy number is a strict determinant of 46 

disease severity, whereby patients with only two copies of the gene present with the severe type 47 

I form of SMA while patients with a greater number of SMN2 copies have less severe symptoms 48 

(4-6). Full-length SMN is a ubiquitous and essential cellular protein that has roles in RNA 49 
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metabolism, cytoskeletal maintenance, transcription, cell signaling and DNA repair (7). For 50 

many years, it was thought that motor neurons were the only affected cells, but recent evidence 51 

suggests a wide range of systemic pathologies are also caused by low levels of SMN protein. 52 

Therefore, an effective and successful therapy for SMA is likely to involve the consideration of 53 

SMA as a multi-system disorder (8, 9).  54 

 55 

In the past five years, three therapies for SMA patients have been approved by regulatory 56 

bodies: Spinraza, Zolgensma and Evrysdi, the first two of which are genetic therapies. Spinraza 57 

is an antisense oligonucleotide that increases the level of full-length SMN protein by binding and 58 

altering the splicing of SMN2 pre-mRNA (10), enhancing the inclusion of exon 7 (11). 59 

Zolgensma is an adeno-associated viral vector of serotype 9 (AAV9) vector containing the 60 

cDNA of the human SMN1 gene under the control of the cytomegalovirus enhancer/chicken-β-61 

actin-hybrid promoter (12). Evrysdi is a small molecule that modulates SMN2 RNA splicing by 62 

binding to two unique sites in SMN2 pre-mRNA: 5′ splice site of intron 7 and an exonic splicing 63 

enhancer 2 in exon 7, therefore promoting inclusion of exon 7 (13). Evrysdi is an oral medicine 64 

expected to be taken for the duration of the individual’s life (13), while Spinraza requires 65 

repeated delivery through intrathecal injections and Zolgensma is a one-off intravenous infusion. 66 

 67 

Gene therapy is a technology that allows the modification of gene expression with one possible 68 

strategy being the introduction of transgenes for therapeutic purposes. In this context, the 69 

efficient delivery of therapeutic genes, or other gene therapy agents, is a critical requirement for 70 

the development of an effective treatment. Vectors derived from lentiviruses have proven to be 71 

efficient gene delivery vehicles as they integrate into the host’s chromosomes and show 72 

continued expression for a long time (14). They also have a relatively large cloning capacity, 73 

which is sufficient for most clinical purposes (15, 16). Lentiviral vectors can transduce different 74 

types of cells, including quiescent cells, have low immunogenicity upon in vivo administration, 75 
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lead to stable gene expression and can be pseudotyped with alternative envelopes to alter 76 

vector tropism (17).  77 

 78 

Due to their unique advantages, lentiviral vectors are important gene delivery systems for 79 

research and clinical applications (16). Lentiviral vectors have been utilised to treat symptoms in 80 

several animal models, such as X-linked severe combined immunodeficiency (SCID-X1) (18), β-81 

thalassemia (19), Wiskott-Aldrich syndrome (20), metachromatic leukodystrophy (21), 82 

haemophilia (22), Fanconi anaemia (23) and liver disease (24), as well as being used in clinical 83 

applications (25-27). Although the integrative nature of lentiviral vectors provides long-term 84 

transgene expression, integration events carry the risk of insertional mutagenesis (28-30). 85 

Intensive study of the genome and analysis of integration strategies of lentiviral vectors has led 86 

to the development of a number of strategies to minimise these risks. These include the use of 87 

viral vectors with a safer integration pattern, the utilisation of self-inactivating vectors and the 88 

design of integration-deficient lentiviral vectors (IDLVs). IDLVs are non-integrative due to an 89 

engineered class I mutation in the viral integrase gene, most commonly involving an amino acid 90 

change at position D64 within the catalytic core domain (31). 91 

 92 

Here, we show the development of an integration-deficient lentiviral system expressing a novel, 93 

sequence (“codon”)-optimised cDNA transgene, Co-hSMN1, which leads to effective SMN 94 

production in primary cultures and rescue of nuclear gems, distinct and punctate nuclear bodies 95 

where the SMN protein localises in high concentrations. Rescue of SMN production was also 96 

seen in an SMA type I induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model. 97 

In vivo data showed that an AAV9 vector expressing this transgene could strongly restore SMN 98 

protein production in the Smn2B/- SMA mouse model (32). We also found that untreated SMA 99 

cells exhibit molecular signatures of DNA damage with prominent γH2AX foci and a trend for 100 

increased pATM expression. Notably, IDLV_Co-hSMN1 was able to reverse an initial spike in 101 
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pATM signaling, suggesting some protective effect. Together, these data point to novel benefits 102 

of gene therapy for SMA, and importantly, highlight an alternative transgene and delivery 103 

system. 104 

 105 

Materials and methods 106 

Optimisation of hSMN1 sequence 107 

The wild-type cDNA sequence of the human SMN1 transcript was codon-optimised using 108 

custom services provided by GeneArt/ThermoFisher Scientific to generate Co-hSMN1. The 109 

GeneArt algorithm identifies and optimises a variety of factors relevant to different stages of 110 

protein production, such as codon adaptation, mRNA stability, and various cis elements in 111 

transcription and translation to achieve the most efficient expression. This transgene was then 112 

cloned into lentiviral and AAV transfer plasmid using standard molecular biology procedures. 113 

 114 

Fibroblast cell culture 115 

Low passage, primary human fibroblasts from wild-type (GM04603) and SMA type I (GM00232) 116 

donors were obtained from Coriell Institute for Medical Research and used to assess overall 117 

lentiviral transduction efficiency, γH2AX and caspase 3 foci, and ATM and pATM levels. Similar 118 

wild-type and SMA type I fibroblast cell lines were also obtained from E. Tizzano (33) and used 119 

to assess restoration of gems following transduction. All fibroblasts were cultured in 65% 120 

DMEM+Glutamax, 21% M199, 10% FBS, 10 ng/ml FGF2, 25 ng/ml EGF and 1 μg/ml 121 

gentamicin.  122 

 123 

Isolation and culture of E18 mouse cortical neurons  124 
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Preparation of primary cortical cultures from E18 mouse embryos followed the protocol 125 

described in Lu-Nguyen et al (34).  126 

 127 

Preparation of embryonic rat motor neuron primary cultures 128 

The isolation and culture of primary rat motor neurons was achieved by following the protocol 129 

previously described in Peluffo et al (35). 130 

 131 

iPSC culture and motor neuron differentiation  132 

Six iPSC lines were used in this project; three wild-type (4603, derived in house from GM04603 133 

fibroblasts (33); 19-9-7T, from WiCell and AD3-CL1, gifted by Majlinda Lako) and three SMA 134 

type I (SMA-19, gifted by Majlinda Lako; CS13iSMAI-nxx and CS32iSMAI-nxx, obtained from 135 

Cedars-Sinai). Undifferentiated iPSCs were seeded at a density of 20,000 cells/cm2 onto 136 

Matrigel-coated cultureware in mTeSRTM1 or mTeSRTM Plus media for general growth.  137 

 138 

iPSCs were grown until 90% confluent in 6 well plates then clump passaged with 0.5 mM EDTA 139 

to Matrigel-coated 10 cm dishes until 60-70% confluent. A protocol adapted from Maury et al 140 

(36) was used to differentiate iPSCs into MNs. Basal medium (1X DMEM/F12, 1X Neurobasal, 141 

1X B27, 1X N2, 1X antibiotic-antimycotic, 1X β-mercaptoethanol and 0.5 μM ascorbic acid) was 142 

used throughout the 28-day protocol. Basal medium was supplemented at specific stages with 143 

additional compounds: 3 μM Chir99021 (days 0-3), 1 μM Compound C (days 0-3), 1 μM retinoic 144 

acid (day 3+), 500 nM SAG (day 3+), 0.5 μg/ml laminin (day 16+), 10 ng/ml each of IGF1, 145 

CNTF, BDNF, GDNF (all day 16+) and 10 μM DAPT (days 16-23). Single cell passaging on 146 

days 9, 13 (1:3 split ratio) and 16 (at appropriate density for final assay) was performed using 147 

Accutase and cells were re-seeded onto Matrigel-coated cultureware in the presence of 10 μM 148 

ROCK inhibitor for 24 hours.  149 
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 150 

Viral vector production  151 

A 3rd generation, transient transfection system was used to generate self-inactivating HIV-1-152 

based lentiviral vectors by calcium phosphate co-transfection of HEK293T/17 cells with 153 

pMDLg/pRRE or pMDLg/pRRE_intD64V (for integrating and non-integrating vectors, 154 

respectively), pRSV_REV, pMD2_VSV-G and a transfer plasmid containing the promoter of 155 

interest and either hSMN1, Co-hSMN1 or eGFP at a 1:1:1:2 ratio, respectively. Supernatants 156 

were harvested at 48- and 72-hours post-transfection and lentiviral vectors were concentrated 157 

by ultracentrifugation. Vectors were titrated by qPCR and where possible, by flow cytometry 158 

(31).  159 

 160 

AAV_CAG_Co-hSMN1 and AAV_CAG_eGFP vectors were commercially produced by Atlantic 161 

Gene Therapies (France) and were titrated by qPCR against the inverted terminal repeats 162 

(ITRs).  163 

 164 

Viral transduction in cell culture 165 

For transduction of cell lines and primary fibroblasts, cells were seeded in appropriate media 24 166 

hours prior to transduction. Lentiviral vectors were diluted in fresh media at the desired qPCR 167 

MOI then added to cells in the minimum volume needed to cover cells. 1 hour after transduction, 168 

media was topped up to an appropriate volume. All cells were incubated for 72-hours before 169 

analysis. Fibroblasts were transduced in the presence of 2 μg/ml polybrene. iPSC-derived MNs 170 

were transduced at day 28 of differentiation to ensure maturity of cells. 171 

 172 
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Transduction of primary motor neurons was carried out 2 hours post-seeding, while for primary 173 

cortical neurons it was three weeks post-seeding. Lentiviral vectors were diluted in conditioned 174 

media at the desired qPCR MOI. Analyses were performed three days post-transduction. 175 

 176 

Viral transduction in vivo 177 

Single-stranded AAV9 vectors (AAV9_CAG_Co-hSMN1 & AAV9_CAG_eGFP) were 178 

administered intravenously through the facial vein to post-natal day (P) 0 Smn2B/- SMA mice at a 179 

dose of 8E10 vg/pup. Liver and spinal cord were harvested at P18 from untreated Smn2B/- mice 180 

(n=6), Smn2B/- mice treated with AAV9_CAG_eGFP (n=5) or AAV9_CAG_Co-hSMN1 (n=5) and 181 

age-matched wild-type controls (n=4). At P18 there are overt symptoms in untreated Smn2B/- 182 

mice.  183 

 184 

Experimental procedures were authorized and approved by the Keele University Animal Welfare 185 

Ethical Review Body (AWERB) and UK Home Office (Project Licence P99AB3B95) in 186 

accordance with the Animals (Scientific Procedures) Act 1986. 187 

 188 

RT-PCR 189 

An RT-PCR was performed using cDNA extracted from SMA iPSC MNs to identify the origins of 190 

SMN transcripts. The primers used to amplify a region between exons 6-8 of the SMN genes, 191 

plus β-actin and GAPDH as housekeeping genes were as follows: Exon6_F 192 

CTCCCATATGTCCAGATTCTCTTG, Exon8_R CTACAACACCCTTCTCACAG, β-actin_F 193 

TCACCCACACTGTGCCCATCTACGA, β-actin_R CAGCGGAACCGCTCATTGCCAATGG, 194 

189_mGapdhex4_Fw AAAGGGTCATCATCTCCGCC, 190_mGapdhex4-5_Rv 195 
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ACTGTGGTCATGAGCCCTTC. SMN RT-PCR amplicons were digested with DdeI to reveal FL-196 

SMN1 (504bp), FL-SMN2 (382+122bp) and SMN2Δ7 (328+122bp) transcripts.  197 

 198 

Immunofluorescence  199 

Fibroblasts were fixed with 4% PFA before being concurrently permeabilised and blocked in 5% 200 

normal goat serum in PBS with 0.25% Triton X-100. Primary and secondary antibodies were 201 

incubated with samples overnight at 4°C or 1 hour at room temperature, respectively. iPSC MNs 202 

were seeded at a density of 25,000 cells on day 16 of differentiation onto 13 mm coverslips 203 

coated with 15 µg/ml poly-ornithine and Matrigel. 4% PFA and 5% normal goat serum in PBS 204 

with 0.25% Triton X-100 were used to fix, permeabilise and block coverslips before antibody 205 

incubation at room temperature for both primary (2 hours) and secondary (1 hour). All cells were 206 

counterstained with 1 μg/ml DAPI, mounted using FluoromountTM Aqueous mounting medium 207 

then imaged using a Zeiss Axio Observer D1 fluorescent microscope (Germany). 208 

 209 

Primary antibodies: anti-gemin2 (Abcam, ab6084, 2.5 μg/ml), anti-SMN (BD Biosciences, 210 

610646, 0.6 μg/ml), anti-OLIG2 (Santa Cruz, sc-515947, 2 μg/ml), anti-SMI-32 (Biolegend, 211 

801701, 10 μg/ml), anti-βIII-tubulin (Sigma, T2200, 10 μg/ml), anti-choline acetyltransferase 212 

(Abcam, ab181023, 5.4 μg/ml), anti-HB9 (DSHB, 81.5c10, 1:50). Secondary antibodies: goat 213 

anti-mouse IgG Alexa Fluor 488 (Invitrogen, A-11001, 2 μg/ml), goat anti-mouse IgG Alexa 214 

Fluor 555 (Invitrogen, A-21424, 2 μg/ml), goat anti-rabbit IgG Alexa Fluor 488 (Invitrogen, A-215 

11034, 2 μg/ml). 216 

 217 

Measurement of SMN intensity by immunofluorescence 218 
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Analyses of all samples was performed blind to vector type, gene of interest and MOI. 219 

Fluorescence pixel intensities (background corrected) were measured in a region of interest 220 

around the motor neuron cell body and are expressed as arbitrary units (a.u.) per μm2.  221 

 222 

Western blotting  223 

Cultured cells were lysed in RIPA buffer supplemented with Halt Protease Inhibitor Cocktail and 224 

Phosphatase Inhibitor Cocktail 3 and the concentration of resulting protein lysates was 225 

determined using the Bio-Rad DC protein assay according to manufacturer’s instructions. SMN 226 

western blots used 4-15% Tris-Glycine gels and PageRuler™ Plus Prestained Protein Ladder, 227 

whilst ATM and phosphorylated ATM western blots used NuPAGETM 3-8% Tris-Acetate gels 228 

and HiMarkTM Pre-stained protein standard. Western blots containing samples from iPSC MNs 229 

were subjected to total protein staining immediately after transfer using REVERT Total Protein 230 

Stain and Wash, as per manufacturer’s instructions. Nitrocellulose membranes were blocked in 231 

an appropriate buffer (Intercept® 1:1 PBS, 5% milk/PBS or 5% BSA/PBS) for 1 hour at room 232 

temperature. Primary and secondary antibodies were diluted in blocking buffer 0.1% Tween-20, 233 

with incubations overnight at 4°C or 1 hour at room temperature, respectively. Western blots 234 

were imaged using the Odyssey CLx (LI-COR Biosciences, US) in 700nm and 800nm channels. 235 

Quantification of protein signals was achieved using Image Studio Lite.  236 

 237 

Primary antibodies: anti-SMN (BD Biosciences, 610646, 0.05 μg/ml), anti-ATM (Abcam, 238 

ab32420, 0.12 μg/ml), anti-ATM phospho (Abcam, ab81292, 0.28 μg/ml), anti-alpha tubulin 239 

(Abcam, ab4074, 0.33 μg/ml). Secondary antibodies: IRDye 800CW goat anti-mouse IgG 240 

(LiCor, 926-32210, 0.5 μg/ml), goat anti-rabbit IgG Alexa Fluor 680 (Invitrogen, A-21076, 0.4 241 

μg/ml).  242 

 243 
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Western blots were carried out on liver and spinal cord tissues from Smn2B-/ mice, which were 244 

extracted as previously described (37) using 2X modified RIPA buffer (2% NP-40, 0.5% 245 

deoxycholic acid, 2 mM EDTA, 300 mM NaCl and 100 mM Tris-HCl (pH 7.4)). Firstly, the 246 

tissues were diced and added to the extraction buffer and homogenized with pellet pestles, 247 

then, after 5 minutes on ice, the tissues were sonicated at 5 microns for 10 s. This process was 248 

repeated a further 2 times. The tissue extracts were centrifugated at 13,000 RPM (MSE, 249 

Heathfield, UK; MSB010.CX2.5 Micro Centaur) for 5 minutes at 4°C and their protein 250 

concentrations calculated using a BCA protein assay (PierceTM, 23227). Following adjustment 251 

of protein levels, the tissue extracts were heated for 3 minutes at 95°C in 2X SDS sample buffer 252 

(4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.125 M Tris-HCl (pH 6.8) and bromophenol 253 

blue) then loaded onto 4-12% Bis-Tris polyacrylamide gels for SDS-PAGE. The gel was excised 254 

along the horizontal axis at a molecular weight greater than that expected for SMN (38 kDa) and 255 

the proteins in the lower half of the gel were transferred onto a nitrocellulose membrane 256 

overnight via western blot then blocked with 4% powdered milk in PBS. The membranes were 257 

probed for SMN with the mouse anti-SMN antibody (MANSMA12 2E6 (38)), at either 1:50 or 258 

1:100 for 2 hours and subsequently incubated with HRP-labelled rabbit anti-mouse Ig (DAKO, 259 

P0260) at 0.25 ng/ml for 1h. Both incubations were at room temperature and antibodies 260 

prepared in diluent (1% FBS, 1% horse serum (HS), 0.1% bovine serum albumin (BSA) in PBS 261 

with 0.05% Triton X-100). Following incubation with West Pico, SMN-positive bands were 262 

imaged with the Gel Image Documentation system (Bio-Rad). Total protein was assessed in the 263 

upper half of the gel via Coomassie blue staining, and these data were used as the internal 264 

loading control for each sample. ImageJ Fiji software (v1.51; (39)) was used to analyse both 265 

antibody reactive and Coomassie-stained gel bands. 266 

 267 

Statistical analyses  268 
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Data are presented as mean ± standard deviation. For all experiments where replicate data are 269 

presented, at least n = 3 biological replicates were used, unless otherwise stated in specific 270 

sections. A range of statistical tests were used, with the most appropriate test for each dataset 271 

being determined individually. Data were tested for a normal distribution wherever possible, and 272 

appropriate parametric and non-parametric tests were used accordingly.  273 

 274 

Results 275 

 276 

Lentiviral and AAV9 vectors used for over-expression of hSMN1 277 

To test whether production of SMN could be improved by codon-optimisation of hSMN1, we 278 

used a wild-type hSMN1 cDNA and engineered an optimised form using a customised 279 

commercial procedure. A comparison of wild-type and Co-hSMN1 cDNAs is shown in Fig. S1. 280 

Both cDNAs were cloned into several lentiviral plasmid backbones under the control of CMV, 281 

hSYN and hPGK promoters and in all cases, followed by a mutated form of the WPRE 282 

sequence (to prevent putative expression of woodchuck hepatitis virus X protein; Fig. 1A-C). 283 

These transfer plasmids were used to produce integrating and integration-deficient lentiviral 284 

vectors. Finally, the Co-hSMN1 transgene was also cloned into an AAV plasmid backbone 285 

under the control of the CAG promoter, followed by a mutated WPRE element (Fig. 1E). This 286 

plasmid, as well as a control AAV_CAG_eGFP plasmid (Fig. 1F), was used to produce single-287 

stranded AAV9 vectors for in vivo use. 288 

 289 

Over-expression of codon-optimised hSMN1 in primary neuronal cultures   290 

Mouse cortical neuron cultures and rat motor neuron cultures were characterised as shown in 291 

Fig. S2, demonstrating the expected morphology and the presence of relevant markers. 292 
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Integration-proficient (IPLV) and integration-deficient (IDLV) lentiviral vectors driven by the CMV 293 

or hSYN promoters, encoding either wild-type hSMN1 or the novel codon-optimised Co-hSMN1 294 

transgene were used to transduce the cultures (Fig. 2). Dose-dependent increases in mean 295 

SMN fluorescence intensity were seen by western blot in cortical neurons and 296 

immunofluorescence in motor neurons (Fig. 2B,D and Tables S1,2). IPLV delivery led to higher 297 

expression levels than with IDLVs, but SMN protein levels from the latter were also considerably 298 

elevated. In terms of the promoter, CMV resulted in higher SMN levels regardless of vector 299 

integration proficiency. The codon-optimised transgene led to significant increases in SMN 300 

production in all cases, highlighting the improvements that this technology can afford for 301 

transgenic gene expression. 302 

 303 

Characterisation of Co-hSMN1 IDLVs in human iPSC-derived MNs 304 

Three different wild-type and three SMA type I iPSC clones were differentiated into MNs with 305 

high efficiency, exhibiting a characteristic neural network and individual cellular morphology 306 

(Fig. 3A) with >90% OLIG2 positive MN progenitors at day 16 and 77.3% SMI-32-, 61.4% HB9- 307 

and 90.1% ChAT-positive MNs at maturity (Fig. S3). A lack of full-length SMN1 transcripts (Fig. 308 

S4) and an 18-fold reduction in SMN protein (Fig. S4) were evident in SMA type I MNs 309 

compared to wild-type cells (P<0.0001).  310 

 311 

Transduction of SMA type I iPSC-derived MNs with IDLV_Co-hSMN1 driven by CMV, hSYN or 312 

PGK promoters led to an increase in SMN protein levels, detected by both immunofluorescence 313 

(Fig. 3B) and western blot (Fig. 3C,D). Quantitation of western blot data showed that SMN 314 

protein was increased in all transduced samples compared to untransduced counterparts (Fig. 315 

3D). IDLVs expressing Co-hSMN1 under the transcriptional control of either CMV or hPGK 316 

promoters were able to significantly increase SMN protein production in all iPSC MN lines (Fig. 317 
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3D), whereas IDLV_hSYN_Co-hSMN1 only led to a significant increase in CS13iSMAI-nxx. 318 

Maximal SMN protein levels were observed with IDLVs expressing Co-hSMN1 under the 319 

transcriptional control of CMV (line SMA-19: 79.8-fold, P<0.0001; CS13iSMAI-nxx: 14.5-fold, 320 

P<0.0001; CS32iSMAI-nxx: 42.8-fold, P<0.0001). When levels were compared to those in wild-321 

type iPSC MNs, supraphysiological SMN protein was evident in SMA-19 and CS32iSMAI-nxx 322 

lines, but not in CS13iSMAI-nxx. 323 

 324 

Transduction and rescue of human SMA type I fibroblasts by lentiviral vectors encoding Co-325 

hSMN1 326 

Cultured human wild-type or type I SMA fibroblasts were transduced with IDLVs encoding wild-327 

type or Co-hSMN1 under CMV, hSYN or hPGK promoters. A clear increase in cytoplasmic SMN 328 

was seen by immunofluorescence in both wild-type and SMA type I fibroblasts following IDLV 329 

transduction (Fig. 4A) and a statistically significant increase was confirmed by western blot (Fig. 330 

4B,C). Analysis of total SMN levels in transduced fibroblasts (Fig. 4C) corroborated the pattern 331 

of expression seen in SMA type I iPSC-MNs (Fig. 3D), where CMV-driven vectors were able to 332 

increase SMN expression to the highest extent, followed by hPGK and then hSYN-driven 333 

vectors.  334 

 335 

SMA type I fibroblasts were transduced with IPLVs and IDLVs to determine the effectiveness of 336 

each vector to restore SMN-expressing nuclear gems, which are largely absent in SMA type I 337 

samples. All vectors were able to restore the presence of gems in transduced cells (Fig. 5A and 338 

Table S3) in an MOI-dependent manner (Fig. 5B). At the highest MOI tested (MOI 100), no 339 

visible changes in cell morphology were seen, suggesting absence of vector-mediated toxicity. 340 

IPLV transduction led to a 1.6-fold greater number of gems than in IDLV-transduced cells 341 

(P=0.0015), regardless of promoter or transgene (Fig. 5B). Moreover, Co-hSMN1 led to the 342 
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restoration of a significantly higher number of gems than wild-type hSMN1 (1.7-fold, P=0.0005). 343 

With regards to choosing the optimal promoter, CMV-driven vectors were able to increase gem 344 

number by 1.8-fold compared to hSYN-driven vectors (P= 0.0003). In some cases, a higher 345 

number of gems was seen in transduced SMA type I fibroblasts than in healthy cells.  346 

 347 

Analysis of downstream DNA damage markers following in vitro IDLV transduction 348 

The molecular links between SMN and DNA damage- and apoptosis-related proteins (40-43) 349 

are not completely clear but learning how SMN interacts with these pathways may be important 350 

in understanding why SMA MNs degenerate and how this could be modulated by treatment with 351 

an SMN-encoding vector. It is also important to understand the consequences of SMN 352 

restoration to wild-type or supraphysiological levels, and what effect this might have on cells that 353 

have always been severely deficient in SMN. 354 

 355 

γH2AX foci are hallmarks of DNA damage (44, 45) and immunofluorescent detection of these in 356 

untreated wild-type and SMA type I fibroblasts revealed distinct foci in nuclei of both genotypes, 357 

but these were seen more frequently in SMA type I cells (Fig. 6A). Both the number of foci per 358 

cell and the percentage of cells exhibiting any number of foci were significantly higher in SMA 359 

type I samples (Fig. 6B,C; P=0.0057 and P=0.0069, respectively). Upon transduction of SMA 360 

type I fibroblasts with IDLV_CMV_Co-hSMN1 (the IDLV vector shown to be most potent in 361 

previous experiments), signs of DNA damage were increased further as the number of γH2AX 362 

foci, and γH2AX foci-positive cells increased significantly, compared to mock-treated SMA type I 363 

cells (Fig. 6B,C; P=0.0134 and P=0.0068, respectively). At this stage, it is unclear whether this 364 

increase was due to the act of lentiviral transduction, or due to a sudden increase in SMN levels 365 

in cells that had always been deficient. Of note, no increase in levels of cleaved caspase 3, a 366 
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marker of DNA damage and apoptosis (46), was observed in IDLV_Co-hSMN1-transduced 367 

SMA type I fibroblasts (Fig. S5). 368 

 369 

ATM, specifically its phosphorylated form, acts as a chief mobiliser of cellular DNA damage and 370 

apoptotic pathways that may be active in SMA cells (47). Levels of total ATM were found to be 371 

equal in both wild-type and SMA type I fibroblasts according to quantitated western blots (Fig. 372 

7A; P=0.6662 and Fig. S6), with the phosphorylated form only showing a trend for increased 373 

signal in the mutant cells (Fig. 7B; P>0.05). Phosphorylated ATM could be significantly 374 

increased by treatment of the cells with 200 µM hydrogen peroxide for 2 hours (Fig. 7B; wild-375 

type vs SMA+H2O2 P<0.01, SMA vs SMA+H2O2 P<0.05). Following transduction of SMA type I 376 

fibroblasts with either IDLV_CMV_eGFP or IDLV_CMV_Co-hSMN1, phosphorylated ATM was 377 

assessed. At 3 days post-transduction, pATM was significantly increased in IDLV_CMV_eGFP 378 

treated cells, but not in IDLV_CMV_Co-hSMN1 (Fig. 7C; P=0.0160 and P=0.4983, respectively). 379 

pATM remained relatively high in IDLV_CMV_eGFP treated cells at 7 days post-transduction 380 

(Fig. 7C; P=0.0002), whereas in IDLV_CMV_Co-hSMN1-transduced cells dropped below that of 381 

mock samples (Fig. 7C; P=0.0256). ATM and pATM levels were also measured in SMA type I 382 

iPSC-derived MNs, mock-transduced or treated with IDLV_CMV_Co-hSMN1. No effect of 383 

transduction on total ATM was observed, but a significant increase in pATM was seen in two out 384 

of three SMA type I iPSC-MN lines at 3 days post-transduction (Fig. 7D,E; SMA-19 P<0.0001, 385 

CS13iSMAI-nxx P=0.0003, CS32iSMAI-nxx P=0.0160).  386 

 387 

Together, these data show that at least two markers of DNA damage are increased in the short-388 

term window following lentiviral transduction of SMA cells. As pATM levels then normalised 389 

again, and were even reduced to below those of untreated cells, we suggest that this short-term 390 

increase in DNA damage markers is due to the act of transduction, rather than our Co-hSMN1 391 
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transgene. Although γH2AX foci were not measured at later time points, we suspect this 392 

outcome measure would follow the same pattern.  393 

 394 

In vivo expression from AAV_CAG_Co-hSMN1 in the Smn2B/- mouse model of SMA 395 

To test the expression of Co-hSMN1 in vivo, we chose the Smn2B/- mouse model of SMA, where 396 

over-expression of the transgene would be easily detected above low background levels of the 397 

protein. An AAV9 vector driven by the CAG promoter and including a mutated WPRE element 398 

was produced, and an AAV9_CAG_eGFP vector used as a control. These vectors were 399 

delivered to neonatal mice and SMN expression assessed in liver and spinal cord samples 400 

harvested at the symptomatic time-point of P18. 401 

 402 

Livers of untreated and AAV9_CAG_eGFP-treated Smn2B/- mice showed significantly less SMN 403 

than wild-type controls (Fig. 8A,B; P=0.0377 and P=0.0118, respectively), whereas those 404 

treated with AAV9_CAG_Co-hSMN1 exhibited 1.7-fold of wild-type levels (Fig. 8A,B; SMN vs 405 

wild-type P=0.0725, SMN vs Smn2B/- P=0.0005). Data from spinal cord samples showed 406 

similarly low levels of SMN in Smn2B/- mice, and more variability in AAV9_CAG_Co-hSMN1 407 

treated mice, but a 2.6-fold increase above wild-type SMN levels was still seen (Fig. 8C,D; SMN 408 

vs wild-type P=0.5260, SMN vs Smn2B/- P=0.0162).  409 

 410 

Discussion  411 

Gene therapy allows the modification of gene expression for therapeutic purposes, whereby 412 

gene addition involves the introduction of a functional transgene into the appropriate cells of the 413 

host. Therefore, the efficient delivery of therapeutic genes and appropriate gene expression 414 

systems are critical requirements for the development of an effective treatment (48). Benefits of 415 
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an optimised system include significant reduction of vector dose needed to maintain transgene 416 

expression and lead to sufficient levels of protein production. Therefore, this study aimed to 417 

optimise a novel expression cassette for SMA, assessing integrative ability, promoters and 418 

transgene sequences for their effect on vector expression.  419 

 420 

Our in vitro SMN restoration data provides similar results to those reported for existing lentiviral 421 

(49) and adenoviral (50) transduction as well as plasmid lipofection (51) and gene targeting 422 

(52). Limited use of lentiviral vectors for in vivo treatment of SMA has been reported, with the 423 

early exception of Azzouz and colleagues (53). Here, we show evidence that a lentiviral 424 

expression system can efficiently restore SMN protein levels, especially when expressing our 425 

optimised transgene, Co-hSMN1. The four seminal papers that first demonstrated that viral 426 

vector-mediated expression of SMN1 in vivo on the day of birth provides amelioration of SMA 427 

phenotype, all used AAV vectors (54-57). Whilst these provided invaluable data and later led to 428 

the approval of Zolgensma as a licensed SMA therapy, it is also clear that no curative treatment 429 

is yet available for SMA. Our goal has been to develop a novel expression cassette, 430 

implemented in lentiviral vectors for cell culture testing and localised delivery in vivo, and in AAV 431 

vectors for widespread in vivo distribution. 432 

 433 

Our optimisation has revealed that both IPLV and IDLV configurations encoding SMN1 variants 434 

are efficient at transducing various in vitro models. Generally, IPLVs resulted in higher 435 

expression levels compared to their IDLV counterparts, although significant expression could 436 

still be obtained with the latter. The expression levels mediated by the IDLVs may actually be 437 

more adequate, as it has come to light that supraphysiological levels of SMN may be toxic (58), 438 

and IDLVs are a safer option without the potential risk of insertional mutagenesis from IPLVs. 439 

Transgenic expression levels of SMN1 can also be controlled through the choice of promoter. 440 

Our in vitro experiments revealed that the ubiquitous CMV promoter directed the most robust 441 
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transgene expression from lentiviral vectors. The strong and constitutive nature of this promoter 442 

lends itself to the systemic nature of SMA, as CMV can mediate gene expression in a 443 

remarkably broad range of cells. Intermediate transgenic expression levels were achieved with 444 

the ubiquitous hPGK promoter, while the neuron-specific hSYN promoter appeared the weakest 445 

of the three, despite the use of relevant neuronal systems as well as human fibroblasts. 446 

 447 

Codon-optimisation of the hSMN1 cDNA had a significant positive impact on the efficiency of 448 

the transgenic expression in all the cell culture systems evaluated. Implementation of the 449 

optimised transgene in an AAV9 vector for in vivo delivery in Smn2B/- mice demonstrated robust 450 

expression in liver and spinal cord, at somewhat variable levels that on average were not 451 

significantly different from wild-type. Whilst the scope of the in vivo work presented here was 452 

limited to demonstrating effective transgenic expression, our cell culture experiments have 453 

shown dose-dependent expression from lentiviral vectors, which presumably could be replicated 454 

in vivo to titrate expression levels to an optimum. This is important, given the potential toxicity of 455 

SMN over-production (58). 456 

 457 

The goal of maximizing correction of the SMA phenotype through the concurrent actions of 458 

several therapeutic compounds, or delivery routes, is gaining traction within the SMA field (59). 459 

Combinatorial delivery of a systemic AAV9 and a locally injected AAV or lentiviral vector to 460 

reinforce strong expression at specific locations might be a future avenue of investigation. A 461 

second possible strategy in which to use either AAV or lentiviral vectors expressing SMN would 462 

be in utero delivery. This has been attempted recently for SMA using AAV9 vectors and 463 

intracerebroventricular injections in mice fetuses. The results have shown encouraging rescue 464 

of the SMA phenotype but also significantly enhanced abortion rates of SMA mice compared to 465 

heterozygous or wild-type counterparts, pointing to potentially increased sensitivity to the 466 

procedure in SMA animals (60). Fetal delivery of IDLVs injected intraspinally has led to 467 
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widespread expression of eGFP at all levels of the spinal cord in mice, underscoring the 468 

potential promise of this delivery system (61). 469 

 470 

Several groups have found proteins associated with DNA damage and apoptosis to be 471 

dysregulated in SMA systems, including cleaved caspase 3 (41, 62), pATM , DNA-PKcs (43), 472 

senataxin (43), CHK2, pBRCA1, p53 (63) and γH2AX (63, 64). Signals indicative of genomic 473 

instability caused by DNA double strand breaks are transduced by ATM and downstream 474 

proteins including H2AX, leading to DNA repair by proteins such as BRCA1; or if damage is too 475 

severe, apoptosis. Evidence of SMN restoration being able to revert some molecular signatures 476 

of the DNA damage response has been reported in the literature (40-43). In contrast, we found 477 

here that lentiviral transduction caused an increase in pATM levels, in the percentage of SMA 478 

fibroblasts that exhibited γH2AX foci as well as in the number of foci per cell, indicative of 479 

activation of the DNA damage response pathway. However, we did observe that the Co-hSMN1 480 

transgene had a protective effect in fibroblasts compared to eGFP-expressing vector regarding 481 

the induction of pATM.  482 

 483 

A possible explanation for increase in γH2AX foci and pATM following IDLV transduction could 484 

be short-term initiation of host anti-viral responses which then activate the DNA damage 485 

response pathway. Lentiviral vector transduction is likely to trigger host anti-viral responses 486 

causing an increase in Toll-like receptor- (65) and type I interferon-signaling (66). Endocytosis 487 

of vectors, presence of the RNA:DNA hybrids following reverse transcription acting as a 488 

pathogen-associated molecular pattern, or plasmid contamination in laboratory-grade vector 489 

preparations could all alert the cell to presence of the viral vector (65). Finally, third generation 490 

lentiviral vectors lack pathogenic proteins such as Vpr, whose role normally is to counteract host 491 

anti-viral factors (65). Interferon-γ treatment has been shown to activate ATM (67), a process 492 
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that involves autophosphorylation thus leading to increased pATM, like that seen here in SMA 493 

type I cells. Unrepaired DNA lesions, such as those evidenced by the increased γH2AX foci in 494 

SMA fibroblasts seen here, prime the type I interferon system leading to enhanced anti-viral 495 

responses upon encounter with viral particles (67, 68), potentially explaining why lentiviral 496 

vector transduction increased levels of γH2AX  protein further. Following on from our work, 497 

further investigations are needed into both the benefits and potential detriments of viral 498 

transduction, specifically with regard to DNA damage and apoptotic protein expression changes 499 

following in vivo administration.  500 

 501 

The outlook of therapy for SMA is continuing to look positive with three therapies licensed for 502 

clinical use, as well as an increasing number of other therapeutic strategies in the pipeline. 503 

Here, we have presented promising steps towards the development of a new strategy focused 504 

on delivery of a codon-optimised transgene, Co-hSMN1. Lentiviral-mediated expression of Co-505 

hSMN1 is able to rescue SMN expression in multiple in vitro cell systems and AAV9 delivery 506 

leads to strong expression in the Smn2B/- mouse model of SMA. Future experimentation should 507 

continue to explore long-term benefits of this therapeutic strategy on survival and motor 508 

performance of SMA mice, whilst also delving into any unexpected genotoxic consequences of 509 

viral transduction.  510 
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Figure legends 730 

 731 

Figure 1: Maps displaying features of the transfer plasmids encoding Co-hSMN1 or 732 

control eGFP. 733 

The constructs used in transfer plasmids to produce (A-D) lentiviral or (E,F) adeno-associated 734 

viral (AAV) vectors are shown. Each plasmid encodes the Co-hSMN1 or eGFP transgene 735 

flanked upstream by a promoter (CMV, hSYN, hPGK or chicken beta-actin CMV hybrid (CAG)) 736 

and downstream by woodchuck hepatitis post-transcriptional regulatory element (WPRE; 737 
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mutated in constructs A-C and E), a post-transcriptional element that improves transgene 738 

expression (except in the case of AAV_CAG_eGFP (F)).  739 

 740 

Figure 2: Lentiviral vector-mediated hSMN1 and Co-hSMN1 expression in mouse primary 741 

cortical neurons and rat primary motor neurons.  742 

3-week old mouse primary cortical cultures and isolated motor neuron cultures from E15 rat 743 

embryos were transduced with IPLVs and IDLVs encoding CMV_hSMN1,  CMV_Co-hSMN1, 744 

hSYN_hSMN1 or hSYN_Co-hSMN1 cassettes, with cells collected at 72h post-transduction. (A) 745 

qPCR MOI 30 and 100 were used to transduce mouse cortical neuronal cultures, which were 746 

analysed by western blot and SMN protein levels were quantified in (B). Representative western 747 

blots are shown and statistical comparisons can be found in Table S1. (C) Motor neurons were 748 

transduced at qPCR MOI 30, 60 or 100. Immunofluorescence images show examples of 749 

transduced cells at MOI 60, 72h post-transduction. Scale bars = 20 μm. (D) Quantification of 750 

SMN immunofluorescence in cell bodies of transduced or control E14 rat primary motor 751 

neurons. Statistical comparisons can be found in Table S2. Error bars represent standard 752 

deviation. N=3 biological replicates were collected in each case. 753 

 754 

Figure 3: Assessment of SMN protein levels in iPSC motor neurons. (A) Representative 755 

images of mature, SMA type I iPSC-derived motor neurons at both high and low seeding 756 

density. Scale bar = 100 μm (high density, top image) and 50 μm (low density, bottom image). 757 

(B) Immunofluorescence images of control and IDLV_CMV_Co-hSMN1-transduced SMA type I 758 

iPSC motor neurons. Scale bar = 20 μm (top image) and 50 μm (bottom image). (C) 759 

Representative western blots showing total protein (red) and SMN (green) in triplicate samples 760 

from three independent SMA type I iPSC MN lines mock-transduced or transduced with IDLVs 761 

expressing Co-hSMN1 under transcriptional control of CMV, hSYN or hPGK promoters. (D) 762 

Quantification of western blots. Error bars represent standard deviation. No significant 763 
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difference was seen between the three untransduced wild type lines, or between the three SMA 764 

type I lines. Significance represented by stars on transduced samples indicates a comparison to 765 

the control SMN levels in that particular line. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. 766 

N=3 biological replicates were collected for each line, as well as three independent lines for 767 

each genotype used.  768 

 769 

Figure 4: SMN levels in primary SMA type I patient fibroblasts following IDLV 770 

transduction.  771 

(A) Representative immunofluorescent images of wild-type and SMA type I fibroblasts after 772 

IDLV_CMV_Co-hSMN1 transduction at qPCR MOI 75 and 100, plus control. Scale bars = 50 773 

μm in all images. (B) Western blots from cells harvested 72h post-transduction with IDLVs at 774 

MOI 75 and 100. (C) Quantification of western blots. Error bars represent standard deviation. * 775 

P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. N=3 biological replicates were collected in each 776 

case.  777 

 778 

Figure 5: Restoration of gems in SMA type I fibroblasts transduced with lentiviral vectors 779 

encoding hSMN1 or Co-hSMN1.  780 

Cultured human SMA type I fibroblasts were transduced with IPLVs or IDLVs encoding 781 

CMV_hSMN1,  CMV_Co-hSMN1, hSYN_hSMN1 or hSYN_Co-hSMN1 cassettes at qPCR MOI 782 

30, 60 or 100. The number of gems present in 100 nuclei was quantified 72h post-transduction. 783 

(A) Representative images of gems in control human fibroblasts, non-transduced and SMA type 784 

I cells transduced at MOI 100. Statistical comparisons can be found in Table S3. Scale bars = 5 785 

μm. (B) Quantification of (A). Error bars represent standard deviation. N=3 biological replicates 786 

were collected in each case.  787 

 788 
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Figure 6: The effect of IDLV_CMV_Co-hSMN1 transduction on γH2AX foci in SMA type I 789 

fibroblasts. 790 

(A) SMA type I fibroblasts were immunostained for γH2AX 72h post-transduction with 791 

IDLV_CMV_Co-hSMN1 at MOI 75. Scale bars = 20 μm in images of wild-type and SMA type I 792 

cells, and 50 μm in transduced cells. A view of cells of interest (white dotted line) at increased 793 

magnification (lower panel) shows nuclear foci more clearly. (B) The number of foci per cell and 794 

(C) percentage of foci-positive cells were quantified. Error bars represent standard deviation. * 795 

P<0.05, ** P<0.01. N=3 biological replicates were collected in each case with each technical 796 

replicate quantifying at least n=25 cells. 797 

 798 

Figure 7: ATM and pATM in wild-type and SMA type I fibroblasts and SMA type I iPSC-799 

derived motor neurons. 800 

Quantification of western blots using protein lysates from wild-type, SMA type I fibroblasts and 801 

SMA type I fibroblasts treated with 200 µM hydrogen peroxide (H2O2) for 2 hours prior to lysis 802 

assessing (A) ATM and (B) pATM levels. (C) Transduction of SMA type I fibroblasts with either 803 

IDLV_CMV_eGFP or IDLV_CMV_Co-hSMN1 (both MOI 75) for either 3 or 7 days before 804 

harvest and pATM western blot. (D,E) Quantification of ATM and pATM western blots from three 805 

independent lines of SMA type I iPSC-derived motor neurons transduced at maturity with 806 

IDLV_CMV_Co-hSMN1 (MOI 75) and harvested 3 days post-transduction. Error bars represent 807 

standard deviation. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. N=3 biological replicates 808 

were collected in each case. See Supplementary Figure 4 for representative western blot 809 

images.  810 

 811 

Figure 8: Analysis of SMN levels following in vivo neonatal administration of AAV9 812 

vectors expressing Co-hSMN1.  813 
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Smn2B/- neonatal (P0) mice were administered AAV9_CAG_eGFP or AAV9_CAG_Co-hSMN1 814 

and their livers (A,B) and spinal cords (C,D) harvested at the symptomatic time-point of P18 for 815 

protein analysis. SMN protein levels were normalised to those in wild-type samples in all cases. 816 

Error bars represent standard deviation. * P<0.05, ** P<0.01. Wild-type n=4, untreated Smn2B/- 817 

n=3, Smn2B/- + AAV9_CAG_eGFP n=5, Smn2B/- + AAV9_CAG_Co-hSMN1 n=5 biological 818 

replicates.  819 

 820 
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Supplementary Figure 1: Pairwise alignment of wild-type and Co-hSMN1 cDNA 

sequences. 

The sequences of the wild-type SMN1 cDNA (top) and the Co-hSMN1 cDNA (bottom) open 

reading frames were aligned, and nucleotide differences highlighted with asterisks. 

 

Supplementary Figure 2: Characterisation of cortical and motor neurons in culture.  

(A) 6 day-old mouse cortical neuron cultures were fixed and stained with neuron marker (NeuN). 

Nuclei were stained blue with DAPI. (B) 72-hours post-seeding, rat motor neurons were fixed 

and immunostained for a common motor neuronal marker (ChAT) to confirm motor neuron 

identity. Scale bars = 100 μm.  

 

Supplementary Figure 3: Characterisation of iPSC-derived motor neurons.  

Representative images of motor neuron cells at different stages of the differentiation protocol. 

(A) OLIG2-positive (green) motor neuron progenitors at day 16 of differentiation. (B-D) Mature 

motor neurons express (B) SMI-32 (red) and βIII-tubulin (green), (C) HB9 (red) and (D) ChAT 

(green). All counterstained with DAPI (blue).  

 

Supplementary Figure 4: Determining SMN transcript origin and SMN protein levels in 

iPSC-derived MNs. 

An RT-PCR was performed using primers to amplify a region between exons 6-8 of the SMN 

genes in iPSC-derived MNs. -RT = minus reverse transcriptase control reaction. (A) Full length 

SMN (FL-SMN) products (504bp) and SMNΔ7 transcripts (450bp) are shown. (B) Two control 

gene products (GAPDH: 184bp and β-actin: 295bp) were also amplified. The same lane order is 

present in all gels. (C) The two bands seen at 504 and 450bp in (A) were excised separately 

and purified. PCR amplicons were digested with DdeI for 2 hours before running digested 

products on a second gel to reveal diagnostic DdeI restriction site present only in SMN2 
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transcripts. Cleavage products: FL-SMN2 (504bp) = 382 and 122bp, SMN2Δ7 (450bp) = 328 

and 122bp. (D,E) SMA type I MNs show 18-fold (P<0.0001) less SMN protein than wild type 

MNs at day 31 of differentiation. N=3 biological replicates were collected for each line. 

 

Supplementary Figure 5: Representative western blot images of ATM and pATM levels in 

SMA type I fibroblasts (top and middle panels) and iPSC-derived motor neurons (bottom 

panel).  

Quantification can be found in Figure 7.  

 

Supplementary Figure 6: Immunofluorescence staining pattern of cleaved caspase 3 and 

γH2AX in wild-type, SMA type I fibroblasts and SMA type I fibroblasts transduced with 

IDLV_CMV_Co-hSMN1. 

Fibroblasts were immunostained against cleaved caspase 3 before the staining pattern was 

quantified. (A) A scoring system was designed to delineate levels of expression: 0 = no signal, 1 

= less than 5 foci, 2 = more than 5 foci, 3 = light, diffuse staining, 4 = strong, diffuse staining 

throughout whole nucleus, or very strong expression in a concentrated area. Examples of nuclei 

representative of scores 1-4 are shown. (B) Values for each cleaved caspase 3 score as a 

percentage of total cells in each replicate were calculated and an unpaired, one-tailed t-test 

between wild-type and SMA (average 19 and 37 cells per replicate, respectively), at each score 

was conducted (0: P=0.0006, 1: P=0.0472, 2: P=0.0451, 3: P=0.4565, 4: P=0.1613). (C) The 

percentage of total SMA type I cells exhibiting each score was calculated, but large variation is 

seen in both mock and transduced samples. At least 30 cells per replicate were scored for each 

condition (total n=107 mock transduced cells, n=115 transduced cells). Significance was 

assessed at each score by unpaired, two-tailed t-tests (0: P=0.1751, 1: P=0.8194, 2: P=0.9031, 

3: P=0.5228, 4: P=0.8709).  
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Supplementary Table 1: Comparison of SMN protein production from all vectors in 

primary mouse cortical neurons.  

One-way ANOVA and Bonferroni’s post-hoc test were used to determine significant differences 

in western data from transduced mouse cortical neurons (shown in Figure 2A-B). The data 

compare types of vectors, transgenes and promoters on protein production. Additionally, data 

were analysed to determine whether there was a dose-dependent increase within each group. 

Values represent mean ± SEM. * P<0.05, ** P<0.01, *** P<0.001. N=3 biological replicates were 

collected in each case.  

 

Supplementary Table 2: Comparison of SMN protein production from all vectors in 

primary rat motor neurons.  

One-way ANOVA and Bonferroni’s post-hoc test were used to determine significant differences 

in immunofluorescence data from transduced primary rat motor neurons (shown in Figure 2C-

D). Data compare types of vectors, transgenes and promoters on protein production. 

Additionally, data were analysed to determine whether there was a dose-dependent increase 

within each group. Values represent mean ± SEM. * P<0.05, ** P<0.01, *** P<0.001. N=3 

biological replicates were collected in each case.  

 

Supplementary Table 3: Comparison of gem restoration by all vectors in SMA type I 

fibroblasts.  

One-way ANOVA and Bonferroni’s post-hoc test was used to determine significant differences 

in type I SMA fibroblast populations (shown in Figure 5). The analysed data show the effect of 

different parameters such as lentiviral vector configuration, transgene and promoter, on gem 

restoration. In addition, data were analysed to determine whether there were dose-dependent 
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increases within each promoter group. Values represent mean ± SEM. * P<0.05, ** P<0.01, *** 

P<0.001. N=3 biological replicates were collected in each case.  
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Transgene Promoter Vector
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Supplementary Table S2

Transgene Promoter Vector

Transgene hSMN1 Co-hSMN1

Promoter CMV hSYN CMV hSYN
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Supplementary Table S3

Transgene Promoter Vector

Transgene hSMN1 Co-hSMN1

Promoter CMV hSYN CMV hSYN

Vector IPLV IDLV IPLV IDLV IPLV IDLV IPLV IDLV
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