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Abstract

Quantum criticality plays an important role in many area of condensed matter physics. These

areas includes unconventional and high temperature superconductivity and heavy fermion

physics. The simplest example for quantum criticality is the ferromagnetic one. However

nature tends to avoid ferromagnetic quantum critical points. When suppressing ferromagnetic

second order phase transitions the transitions become either first order or modulated order

emerges. The system NbFe2 is a prime candidate of the latter. Additionally large single crys-

tals exist which have allowed neutron scattering to study the order and excitations across the

composition temperature phase diagrams. In this work the evolution of the NbFe2 system

with field has been explored. The Fe-rich samples studied contained a ferromagnetic (FM)

ground state and spin density wave (SDW) and paramagnetic phase at higher temperature.

Longitudinal fields H∥c and transverse fields H∥a have been applied.

With magnetic neutron diffraction in longitudinal fields the location of a tricritical point

(TCP) has directly been observed at Htr=53 mT and Ttr = 26.5 K. In magnetic neutron

diffraction in transverse field suppression of SDW order has been observed but it was not

possible to follow the unmasked FM-PM to low temperature. With inelastic neutron scattering

in longitudinal field the evolution of spin fluctuations across the TCP has been observed.

The TCP has been found to feature simultaneously enhanced and soft FM and SDW spin

fluctuations. With inelastic neutron scattering in transverse field the ferromagnetic low energy

excitations have been observed to show softening and an enhancement that indicate existence

of a field induced unmasked ferromagnetic quantum critical point.
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1
Introduction & Theoretical Concepts

This chapter is intended to give a brief introduction to the field of magnetic quantum phase

transitions and quantum criticality observed in various materials. A focus is on the physics

connected to nature’s tendency to avoid ferromagnetic quantum critical points the understand-

ing of which is a motivation of this thesis work. Furthermore, important theoretical concepts

used within this thesis are introduced.

1.1 Introduction

1.1.1 Emergent phases of electronic matter from magnetic quantum phase

transitions

The study of second order phase transition at non zero temperature has been a topic of vivid

interest in the condensed matter physics. Many key physical phenomena such as critical opales-

cence in CO2, loss of ferromagnetism in iron at the Curie temperature, a puzzle once, are now

significantly understood as phenomena of phase transitions in detail. Due to the increased

interest in the study of continuous phase transitions many interesting phenomena and materi-

als have been observed to date. Continuous phase transitions play a role outside the field of

condensed matter physics, too, such as string theory, transition to chaos in dynamical systems,

astrophysics [1] and even in biology [2]. The second order phase transition at finite tempera-

ture is referred as classical phase transitions where the thermal fluctuations are dominant in

controlling the phases of the system [3].

Research including the field of condensed matter physics has also focussed on a type of phase

transition that take place at zero temperature instead of at finite temperature called quantum
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phase transition whereby the transitions are driven by the quantum fluctuations demanded by

the Heisenberg uncertainty principle [4]. These fluctuations can influence a surprisingly large

area of the phase diagram. The quantum phase transition can be tuned using some non thermal

control parameter such as composition, magnetic field, pressure etc. The point in the phase

diagram at which the second order phase transition takes place at zero temperature is called

quantum critical point (QCP) [4]. There have been QCPs studied at the border of different

types of order including valence order, charge order, or nematic order. The most common types

of QCPs studied have been magnetic quantum critical points and within that group AF QCPs

in particular.

In several materials it was observed that suppressing antiferromagnetic order to zero tem-

perature an unconventional superconducting phase starts to emerge at QCP [5]. Although

magnetism had originally been is thought to be detrimental for superconductivity the obser-

vation of the superconducting phase at AFM-QCP hinted that the magnetic spin fluctuations

may play an important role for the emergence of superconductivity in contrary to the ordinary

superconductors. This unconventional superconductivity has been observed in several heavy

fermion metals when the AFM order is suppressed to zero. For example in the case of CeCu2Si2

heavy fermion metal the superconductivity was observed below T ≈ 0.6 K. The Figure.(1.1)

shows the the AFM order vanishes as a function of effective coupling constant (g) and around

AFM-QCP superconductivity emerges that even extends far into the paramagnetic regime [5].

Figure 1.1: Schematic temperature (T) - effective coupling constant (g) phase diagram. Yellow

area cover the AFM order and Red area cover the superconducting order. The picture is

from [5]

Similarly the unconventional superconductivity was observed in other heavy fermion metals
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as well for example CePd2Si2 and CeIn3 when the AF order suppressed to zero temperature

via pressure as a control parameter [6]. Also, in Fe-based superconductor BaFe2(As1−xPx)2

when tuning with composition As, the spin density wave (SDW) order is suppressed to zero

leading to unconventional superconductivity masking the SDW-QCP [7].

While there are numerous examples available to study the behaviour and the emergence

of novel phases when the material approach AFM-QCP, many studies suggest that the FM

quantum critical point can rarely be reached in real materials. Instead the system finds a variety

of escape routes to avoid the FM-QCP [8, 9]. For instance, the occurrence of a second order

phase transition at high temperature becomes the first order phase transition when approaching

QCP (Figure.(1.2)a), for example, in the phase diagrams observed in MnSi, ZrZn2 [10, 11]. In

this case a tricritical point is found at the end of a triple line where three-phase coexistence

terminates. A 3D phase diagram illustrating this situation is shown in Figure.(1.3). Three

first-order areas meet in a line of triple points. The areas are terminating in three second

order phase transition lines that meet at the tricritical point. In the given example the three

dimensions are temperature T, field H, and another control parameter t. Two of the second

order transition lines terminate at T=0 in quantum critical points (QCPs) at finite H [12].

In 2D, a tricritical point (TCP) manifests itself as the meeting point of a second order and

first order phase transition [13]. Tricritical points are special points in the phase diagrams

where the usual scaling laws hold with different set of critical exponents [11]. The existence of

TCP’s has been experimentally identified in the phase diagrams of several itinerant magnetic

systems, including ZrZn2 [14], UGe2 [15], URhGe [16], MnSi [10,17], CoS2 [18], LaCrGe3 [19],

SrRuO3 [20], etc. The notable example of MnSi is similar to an itinerant ferromagnet that

orders below TC=29.5K by showing helical magnetic structure with a long pitch of 175Å [10,21].

When tuning MnSi system using pressure the second-order phase transition become first order

while approaching the QCP at a critical pressure of Pc=14.6 kbar [10].
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Figure 1.2: The schematic illustrations of avoided FM-QCP by different means. shown are

the Temperature(T)- magnetic field(H)- tuning parameter (p) phase diagrams (a): The second

order FM-PM phase transition become first order at tricritical point (TCP). With an appli-

cation of external field, the phase diagram show wing like second order transition lines that

terminates at quantum critical end point (QCEP) in H-p plane symmetrically on either side.

(b) FM-QCP avoided by the emergence of superconducting order. (c) The FM-QCP in the

disordered system is avoided to become crossover to spin glass in the tail of the phase diagram.

(d) Emergence of modulated magnetic order at the QCP. The figure is take from [22]
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Figure 1.3: Schematic phase diagram of itinerant metallic magnetic system with tricritical point

with axes are temperature (T), control parameter (t) and magnetic field (H). The red solid lines

show the lines of second order transitions. The green lines and wings (”tricritical wings”) shows

the first order transitions. The magnetic phases of the transitions shown are paramagnetic

phases (PM), long-range magnetic order (LRO). The solid circles show the tricritical point

(TCP, purple) and qunatum critical points (QCP, red) [12].

The avoidance of FM-QCP due the emergence of superconducting order illustrated in Fig-

ure.(1.2b) seems to occur in systems like UGe2 [23] or in UCoGe [24] but closer inspection

reveals that again the FM QCP is avoided by the occurrence of a first order transition and

superconductivity appears on the ordered side of the first order transition.

The third scenario of avoidance (Figure.(1.2)c) is observed in highly disordered systems

where the system becomes freezing spin glass on approaching QCP resulting in a tail in the

phase diagram beyond the position where the QCP would have been expected [22].

Figure.(1.2d) illustrate a new scenario in which the FM-QCP is avoided by the emergence

of modulated magnetic order. The examples include, PrPtAl where the transition at the finite

temperature to induced modulated magnetic order is observed and it is believed to mask the

putative QCP [25]. In Sr3Ru2O7 compound the field tuned metamagnetic QCP is observed

to be masked by a novel form of low-temperature including SDW properties [26]. Finally, in

NbFe2, the subject of this thesis work the SDW order masks the FM-QCP when tuning the

system to zero temperature by using composition or pressure [27,28].

Many investigations suggest that the concept of the FM-QCP is a key ingredient in under-
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standing the new emergent phases of matter including magnetically mediated superconductiv-

ity [22]. Therefore pursuing the investigation of such systems should help to understand exotic

phenomena like the emergence of new phases of matter. The motivation of this thesis is to

learn about the origin of the physics of avoided FM QCPs. A first step can be to gain detailed

insight into the magnetic excitation spectra using neutron scattering. This has been possible

for the Nb1−yFe2+y system in zero field due to the availability of large single crystals and direct

information on the magnetically ordered states and excitations has been obtained. This work

explores magnetic field tuning of this system and its effect on order and excitations.

1.2 Synopsis

This thesis is organised as follows: In the remainder of this chapter we introduce theoretical

concepts that are important for this thesis. Chapter(2) is a review of the Nb1−yFe2+y com-

pound. we present properties such crystal structure, electronic, magnetic, thermal properties

of the system as well as the magnetic and composition - temperature phase diagrams of the

system. Chapter(3) provides a description of the experimental methods including aspects of

neutron scattering theory, instruments and the samples studied. The next three chapters con-

tains the results of our investigations of Fe-rich Nb1−yFe2+y samples with unpolarised neutron

scattering which are divided as follows: Chapter(4) presents the magnetic phase diagrams in

H∥c and H∥a using elastic neutron scattering. Chapter(5) longitudinal field evolution of the

magnetic excitations measured using inelastic scattering and Chapter(6) presents transverse

field evolution of magnetic excitation spectrum measured using inelastic scattering. Chapter

(7) summarises the main results and findings with an avenue for future investigation suggested.

1.3 Magnetic order

In solids different types of magnetic interactions that operate between magnetic dipole moments

are considered to be crucial to produce various orders or the arrangements of the magnetic

moments in the system. Two important aspects in the study of magnetic order concern are the

arrangements of the magnetic moments at the ground state and the process of ordering itself,

that is, the phase transitions and the critical behaviour near the transitions. Examples for the

magnetic grounds states include ferromagnetic, anti-ferromagnetic, ferrimagnetic, helical, spin

glass etc. In this section we will explore a few examples of these magnetic structures.
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1.3.1 Ferromagnetic order

The solids in the ferromagnetic (FM) states have a spontaneous magnetization even in the

absence of an external magnetic field. The arrangement of the magnetic moments in the system

is that they are all aligned along a single unique direction preferentially. The FM ordering is

illustrated in Figure.(1.4).

Figure 1.4: Schematic view of the Ferromagnetic order where the magnetic moments are all

pointing in a single unique direction. The picture is from [29].

This type of long range magnetic order in the systems is generally due to the exchange

interactions [30]. The Hamiltonian for a ferromagnet from the Heisenberg model is given as,

Ĥ = −
∑
ij

JijSi · Sj (1.1)

where Jij is an exchange constant between the ith and jth spins. The essential feature of this

equation is that when Jij is positive, the energy is minimised when the spins are parallel, which

is energetically favourable. When Jij is negative the neighbouring spins are anti-parallel.

The Hamiltonian for the ferromagnet in an applied field (B) is given by,

Ĥ = −
∑
ij

JijSi · Sj + gµB
∑
j

Sj ·B, (1.2)

where the first term in the Equation.(1.2) is the Heisenberg energy and the second term is

Zeeman energy. The Weiss model of ferromagnetism solves the Hamiltonian for the observation

of spontaneous magnetization in the ferromagnets. It proposes that the alignment of the

magnetic moments at the low temperature gives rise to the internal molecular field that causes

the alignment in the system in the first place. While the magnetic ordering at low temperature
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is self sustaining with increased temperature the thermal fluctuations begin to destroy the

ordering and at the critical temperature order is completely suppressed. The Curie-Weiss

magnetic susceptibility that describes systems of localised magnetic moments is given as,

χ =
M

B
=
CCurie

T
(1.3)

where CCurie is the curie constant, CCurie = naµ
2
Bµ

2
eff , the terms na is the number of magnetic

moments per unit volume, µB is the Bohr magnetron and µeff is the effective paramagnetic

moment at each lattice site of the system. The internal magnetic field that induces the long

range order is proportional to the magnetization, Bint = λM , where λ is a constant which

parametrizes the strength of the molecular field as a function of magnetization. For a fer-

romagnet λ > 0. The molecular field in the ferromagnets are often found to be extremely

large due the large Coulomb energy involved in the exchange interaction [30]. In such case the

magnetic susceptibility can now be expressed as,

χ =
M

B + λM
=
CCurie

T
(1.4)

or rearranged to,

χ =
CCurie/T

1− λCCurie/T
(1.5)

therefore the magnetic susceptibility is enhanced by a factor of 1/(1 − (λCCurie/T )). For T

< λCCurie the magnetic order begins to develop [30].

1.3.2 Antiferromagnetic order

If the exchange interaction in the Equation.(1.2) is negative, J < 0, the magnetic moments will

align anti-parallel to each other, where it is more favourable for the nearest neighbour mag-

netic moments. A schematic view of the antiferromagnetic (AFM) alignment of the magnetic

moments is shown in Figure.(1.5). The adjacent moments are oriented in such a way that one

moment points up and the other down. This kind of arrangement can be considered as two

inter-penetrating sublattices.
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Figure 1.5: Schematic view of the antiferromagnetic order where the ordering of the magnetic

moments can be viewed as two interpenetrating sublattices. The picture is from [31].

The Weiss model of an antiferromagnet solves the Hamiltonian (Equation.(1.2)) for this

type of magnetic ordering by considering the molecular field on each sublattice (both up and

down ) given by,

B+ = −|λ|M−

B− = −|λ|M+

(1.6)

where λ is molecular field constant which is negative now andM+ andM− is the magnetization

in each sublattice with same value but opposite direction. Therefore the net magnetization of

the AFM order is zero. To define a difference between the two magnetizations a quantity called

staggered magnetization is defined as a order parameter. This is then zero above the critical

temperature of the phase transition.

The magnetic susceptibility calculated from the Weiss model for the antiferromagnet is

given as

χ =
1

T − θ
, (1.7)

where θ is the Weiss temperature. If θ = 0 the antiferromagnetic order is destroyed and the

material become paramagnet. If θ > 0 we expect the material become ferromagnet and then

θ = TC . If θ < 0 the material become antiferromagnet therefore θ = −TN [30].
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1.3.3 Ferrimagnetic order

In the antiferromagnetic ordering it was assumed that the two sublattice magnetizations are

equivalent but opposite in its direction, therefore, the net magnetization is zero. In case of any

crystallographic reasons in the system that cause the magnetizations in the sublattices to be

unequal in its value then there will be a development of net magnetization. This phenomenon of

spontaneous magnetization is called ferrimagnetism and the order is called ferrimagnetic order.

Because of two different molecular fields at the sublattices, the spontaneous magnetization will

have quite different temperature dependence and in addition the net magnetization itself will

have complicated temperature dependence. For example if the magnetization at one sublattice

dominate at low temperature and other on the high temperature then the net magnetization

can be reduced to zero and change sign at a temperature known as compensation temperature.

The magnetization in the ferrimagntic order will not follow the Curie-Weiss law [30]. The

Schematic figure for the ferri magnetic order is displayed in Figure.(1.6).

Figure 1.6: Schematic view of the ferrimagnetic order where magnetic moments are unequal

and opposite directions. The picture is from [32].

1.3.4 Itinerant ferromagnetism and spin density wave order

In metals, it was observed that the spontaneous spin splitting of the bands, order the system

into a ferromagnetic state if the condition of Stoner criterion is met. The total energy change

due to the spin split in the system is given by

∆E =
1

2
g(EF )(δE)2(1− Ug(EF )) (1.8)

where ∆E is the total energy change of the system due to the spontaneous spin split, g(EF )

is density of state at the Fermi level, δE is the change in energy due to spin flip and U is the
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Coulomb potential [30]. The system will order ferromagnetically if ∆E < 0, which implies that

(Ug(EF )) ≥ 1. This condition is called Stoner criterion. For the ferromagnetic instability to

satisfy this condition requires that the Coulomb effects are strong and also that the density of

states at the Fermi energy is large. If the Stoner criterion is not met then the system will not

order into ferromagnetic spontaneously but the susceptibility may be altered which is calculated

to be,

χ =
χP

1− Ug(EF )
. (1.9)

where χP is the Pauli susceptibility. The calculated χ is larger than the χP expected without the

presence of Coulomb interactions by a factor of (1−Ug(EF ))
−1, known as Stoner enhancement

[30].

The q-dependent susceptibility of the metals without the presence of Coulomb interactions

can be written as,

χ0
q = χP f(q/2kf ), (1.10)

and is also enhanced by the Coulomb interactions,

χq =
χpf(q/2kF )

1− Ug(EF )f(q/2kF )
=

χ0
q

1− αχ0
q

, (1.11)

where α = U/µ0µ
2
B and f(q/2kF ) is Fermi function. At a value of q which is not equal to zero

the χ0
q is maximum. If we consider the interactions parametrised by α, the χq will diverge when

αχ0
q reaches unity at this value of q. This causes an oscillatory static magnetization to develop

spontaneously in the sample. The special cases q = 0 corresponds to ferromagnetic order and

|q| = π/a corresponds to an antiferromagnetic order. In general, in the metal one can expect

a spiral or spin density wave structures with wave vector q [30].

1.4 Phase transitions

In condensed matter, phase transitions are important physical processes that we encounter

in our everyday life. In the process of phase transition, the phases of the matters which are

characterised by distinct macroscopic properties change when controlled by certain parameters.
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For example ice melts to liquid water or a ferromagnet becomes paramagnet when temperature

is increased. The former case is an example for the structural phase transition where as the

latter one is an example for the magnetic phase transition. In the structural phase transition the

changes involved is in the crystal structure, on the other hand, in the magnetic phase transition

the magnetic structure of system changes with temperature. Similarly we can observe many

other phase transitions in nature which are involved in changing its phases from one to another

(e.g, Ferroelectric transitions, superconducting transitions etc.). These phase transitions can be

provoked by varying parameters such as temperature, pressure or magnetic field in the system.

Though microscopic details of the phase transition are very different, the methods applied

to study the phase transitions are universal in nature. Traditionally the phase transitions

were characterised based on the behaviour of the thermodynamic free energy as a function of

some thermodynamic variables [33]. Paul Ehrenfest classified the phase transitions based on

this scheme labelling the nature of the non-analytic behaviour at transition. When two phases

coexist at the point of transition they have a common temperature, magnetic field and pressure

therefore the Gibbs free energy (G) will be same for both phase at the point of transition.

Therefore we can say that the phase transition occur at the point where the G is same for

both phases which we can observe as a kink at the phase transition. Based on the nature

of the kink in G the phase transitions are classified into different order of transitions. If the

nth derivative of G with respect to some control parameter (eg. temperature) is discontinuous

then the phase transition is called nth order [34]. For example, in the case of ice melting, the

first derivative of the Gibbs free energy with respect to temperature is discontinuous where we

observe a change in entropy between two phases while for higher order derivatives the entropy

varies continuously, therefore the transition is first order. In the case of second order phase

transition, the second derivative of G with respect to T is discontinuous (e.g, Ferromagnetic

transition) [34].

Since Ehrenfest classification cannot explain the phase transition in the absence of thermal

fluctuations, a more general theory of phase transition was developed by L. D. Landau where

he consider a special quantity called order parameter which goes to zero. When there is a

symmetry broken on cooling through the critical point, the order parameter will be related to

that symmetry. Another important quantity which is central in developing the Landau theory

is Landau free energy, which is a constrained Helmholtz free energy for a quasi-equilibrium

state,
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F (B, T :M). (1.12)

The conventional Helmholtz free energy F (B, T ) is a mathematical function of temperature

T and magnetic field B, therefore the system will have the state of equilibrium with Helmholtz

free energy F (B, T ) when it is specified. Since the system that we have considered here on

the other hand have constraints to achieve its full equilibrium state due to the constraints of

magnetization to take certain value the equilibrium state of the system is achieved only if the

F (B, T :M) is minimised with respect to variations in M, i.e,

δF (B, T :M)

δM
= 0. (1.13)

This constrained free energy is called Landau free energy [34].

A ferromagnetic phase transition can be described in the following way. The Helmholtz free

energy is defined as,

F = E − TS, (1.14)

where E and S are the internal energy and entropy of the system. In order to obtain the

constrained free energy M is kept as an explicit variable. The internal energy and entropy

calculated using the Weiss model is,

E =
NkTc
2

m2, (1.15)

and

S = −Nk
∑
j

pjlnpj , (1.16)

where N is the number of spins, k is Boltzmann constant, m is the reduced magnetization

(m = M/M0), Tc is the critical temperature and pj probabilities of the single particle states

being occupied. The simplest case of electron with spin 1/2, the entropy can be expressed as,

S =
Nk

2

[
2ln2− (1 +m)ln(1 +m)− (1−m)ln(1−m)

]
. (1.17)
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Therefore the contained free energy F = E − TS, can be written as,

F = −Nk
2

{
Tcm

2 + T
[
2ln2− (1 +m)ln(1 +m)− (1−m)ln(1−m)

]}
. (1.18)

The above equation is plotted for temperature below, equal to and above the critical temper-

ature of the ferromagnetic phase transition in Figure.(1.7).

Landau free energy (F) 

0-1 1 m

Figure 1.7: Landau free energy for Weiss model ferromagnet. The picture is from [35].

The ordering of the ferromagnetic phase transition can be seen clearly below Tc where two

minima on either side of the origin in the Landau free energy are present. Above Tc we can

see only a single minimum at m = 0. At T = Tc symmetry changes precisely and the values at

which Landau free energy is zero can be seen for many m values around m = 0, meaning the

m make excursion around m = 0 at a negligible cost of free energy hence the large fluctuations

at the critical points [34].

1.5 Classical magnetic phase transitions

In section(1.4) phase transition in ferromagnetic systems was presented. In the framework of

Landau theory, It is assumed that all the spins in the system feel an identical average exchange

field produced by all other neighbouring spins, and it is proportional to the magnetization (M)
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of the system. Landau’s approach to studying the phase transition is called a mean-field theory,

and this approach is identical in itself to the Weiss model of ferromagnets [30]. The free energy

or otherwise called Landau’s free energy of the ferromagnets, therefore, can be expressed as a

function of the magnetization M in the power series as follows,

F (M) = F0 + a(T )M2 + bM4 (1.19)

where F0 and b are constants (we assume b > 0) and a(T ) is a temperature-dependent coef-

ficient. The terms with an odd power of M in the series are ignored as there is no energetic

difference between up or down spins. An appropriate phase transition in the system is observed

if we allow the coefficient a(T ) to change sign at the transition temperature Tc, therefore a(T )

can be written as,

a(T ) = a0(T − Tc) (1.20)

where a0 is a positive constant. The ground state of the system can be found by minimizing

Landau’s free energy as given in the following equation:

δF

δM
= 0 (1.21)

this condition implies that,

2M [a0(T − Tc) + 2bM2] = 0. (1.22)

If we solve the Equation(1.22), we get the conditions for M as given,

M = 0 or M = ±
[a0(Tc − T )

2b

]1/2
. (1.23)

The solutions indicate, the second condition is valid only for T < Tc whereas the first condition

applies for T < Tc and T > Tc. For the T < Tc case, the first condition produces only an

unstable equilibrium. Thus, magnetization for T ≥ Tc is zero and T < Tc is non-zero and

proportional to (Tc − T )1/2. Figure.(1.8) shows the schematic diagram of the magnetization

curve below and above Tc as a function of temperature.
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Figure 1.8: Magnetization as a function of temperature [30].

For the case close to transition temperature Tc, Mean field theory fails to describe the be-

haviour of the phase transition because of the assumption that all regions in the system are the

same by ignoring the correlations and fluctuations in the ordering parameter M . Correlations

are in general relevant up to a characteristic length scale called correlation length (ξ). When

T approaches Tc, ξ becomes infinite at the critical point [30].

In the mean-field theory, the behaviour of the magnetization below the transition is predi-

cated as (Tc−T )1/2, however, in real systems, it is observed that the magnetization close to the

transition does behaves as (Tc − T )β, but the exponent is not necessarily close to 1
2 . Therefore

the values for the exponents give crucial information about the nature of the phase transition.

Similar to the magnetization, it is observed experimentally that there are other physical prop-

erties involved to show a power law behaviour with other similar exponents near the transition

temperature Tc known as critical exponents. Table.(1.1) shows the physical properties involved

in showing critical behaviours and their associated critical exponents.

Table 1.1: Definition of critical exponents [30]

Exponent Physical property Expression

γ Magnetic Susceptibility (χ) χ ∼ (T − Tc)−γ T > Tc

β Magnetization (M) M ∼ (Tc − T )β T < Tc

δ Magnetization (M) M ∼ H1/δ T = Tc

ν Correlation length (ξ) ξ ∼ |T − Tc|−ν T = Tc

As explained earlier, the mean-field theory ignores the correlations and fluctuations in the
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vicinity of phase transitions, therefore, a correct description of the critical region with precise

critical exponents cannot be obtained. However, for the systems with a spatial dimensionality

(d) higher than a dimensionality called marginal spatial dimensionality (d∗) the mean-field

theory gives exact results for the observed critical behaviour. For d less than d∗, the mean-field

approaches are quantitatively wrong. For systems with d = d∗, there are only logarithmic

corrections to the results of mean-field theory. It turns out that the spatial dimensionality to

predict the critical exponents correctly to describe the nature of the phase transitions using

mean field theory is found to be 4 [34].

The critical behaviour for a classical phase transition is if the marginal dimensionality d∗ is

greater than 4, then the solutions are identical to that predicted by mean field theory. In the

framework of mean-field theory for the classical second-order phase transitions, the exponents

of the corresponding physical quantities with reduced temperature t =
∣∣T−Tc

Tc

∣∣ are:
α = 0, β = 1/2, γ = 1, δ = 1, ν = 1/2, η = 0 [36]. (1.24)

The critical exponents for the many physical properties of the systems with dimensionality

below four can be calculated by considering a small representative set of an appropriate sta-

tistical model disregarding the microscopic details but shared by dissimilar systems as long as

the hypothesis of universality is accepted. It is observed that the critical exponents are surpris-

ingly independent of the type of phase transitions, whether the transitions are ferromagnetic-

paramagnetic, superconducting-nonsuperconducting, liquid-gas or any other. Therefore, irre-

spective of the type of phase transitions, the critical exponents for continuous phase transition

depend only on the dimensionality of the system (d), the dimensionality or the symmetry of the

order parameter (D) and whether the interactions are short or long-range. Hence, to study the

critical behaviour of the systems it is only important to look at particular universality classes

to select the ideal statistical model in each class for extracting the critical exponents of the

physical properties [30,34].

1.5.1 Using neutron scattering to observe critical exponents

The critical exponents experimentally can be found using the respective measurement tech-

niques of the physical properties to describe the system. In Section (3.2) a rather detailed

description of neutron scattering will be provided. It will be explained that M enters the elas-

tic neutron scattering cross section and the imaginary part of the dynamical susceptibility χ”
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enters the inelastic neutron scattering cross section (see formulas (3.49) to (3.52)). Therefore,

a temperature scan of elastic magnetic neutron scattering allows to determine the critical ex-

ponent β of the order parameter. In Section.(1.7) we will see that for overdamped excitations

χ” contains the static susceptibility χq. Therefore, inelastic neutron scattering at different

temperatures allows to obtain the critical exponent γ.

From measurements of χq one also can obtain the critical exponent ν of the correlation

length. This connection arises [37] because χq is the Fourier transform of the correlation

function g(r):

χq =
∑
r

g(r)exp(iq.r). (1.25)

Therefore, the half width of the q = 0 peak of χq is the inverse half width of g(r) which is

the correlation length ξ. Therefore, by measuring the neutron scattering cross-section as a

function of temperature and wave vector, we can extract the critical exponents of M , χ and ξ

as indicated in Figure.(1.9) with t being the reduced temperature t =
∣∣T−Tc

Tc

∣∣.
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Figure 1.9: Temperature dependence of the physical quantities, wave vector dependent sus-

ceptibility, χq (violet); magnetization, M (red) determined directly via scattering experiment.

The half width of the χq along q axis (green curve) is the inverse correlation range [37].

1.6 Quantum phase transitions and criticality

In conventional phase transitions the temperature is the control parameter and the critical

point can be traversed upon varying the temperature. By contrast, the phase transition which

occurs at absolute zero temperature is called the quantum phase transitions (QPT) where the

quantum mechanical effects of the system at this temperature are more dominant and leads

to the quantum fluctuations demanded by Heisenberg’s uncertainty principle. The quantum

phase transitions can be achieved by using non-thermal control parameters such as pressure,

composition, electric field or magnetic field. The point at which the second-order phase tran-
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sition takes place at absolute zero temperature is called a quantum critical point (QCP). The

generic phase diagram of the second-order quantum phase transition is shown in Figure(1.10)

Figure 1.10: The generic phase diagram of the tuned second order quantum phase transition.

The picture is from [38]

The second-order quantum phase transition can be approached generally in two ways using

non-thermal control parameters r, r → rc at T = 0 or T → 0 at r = rc. The critical exponents

at the vicinity of phase transition can be now expressed using the reduced control parameters

t =
∣∣ r−rc

rc

∣∣. It is predicted that the quantum phase transition in dimension d is related to a

classical phase transition in space dimension (d + z) where z = 1 for most transitions, and

hence it is concluded that the critical behaviours are similar. Therefore, since the mean-field

approximation is independent of the system’s dimensionality, the critical exponents of the

physical quantities in the mean-field approaches tend to show the same values at both classical

and quantum critical points (see Equation.(1.24) for exponent values), however, the critical

amplitudes are different [34,36,37].

While the mean-field approximation predicts the same exponents for both classical and

quantum phase transitions, and a qualitative behaviour near critical temperature, the exper-

imental values obtained for magnetic systems were found to differ from the theoretical values

due to the mean field assumption of neglecting the fluctuations in the vicinity of the criti-

cal point [34]. It is obvious that nearing the critical point huge fluctuations play a role in

determining the phase change of the system. In the next section, we present a theory that

considers the spin fluctuation in the magnetic metals that can be used to extract the critical

exponents by measuring the neutron scattering cross section which gives directly the dynamical

susceptibility.
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1.7 Spin fluctuation theory

The low-energy excitation spectra near a magnetic QCP can be described by the spin fluctuation

theory [39].

The aim of the spin fluctuation theory presented here is to obtain a plausible dynamical

equation for the non-local magnetic susceptibility as a model of the interaction field between

the spins of the electrons. The main assumption of the model is that the moments of the

electron (µ) is coupled to an exchange field by a potential −µ · hm, where hm = λm is the

exchange field and λ is a phenomenological exchange field parameter. The model is developed

by considering a homogeneous cubic lattice system that is isotropic and without any symmetry-

breaking transitions.

The model uses the space and time dependence of the average magnetization M(r, t) in the

presence of external magnetic field Hext(r, t).

To find the scalar dynamical field, we start with the case of static scalar magnetic field

(Hext(r, t) = H) which stabilises a uniform and static magnetizationM given by some relation,

H = H(M). Since the system is isotropic, then the function M must be odd therefore the

static field H can be expressed as Taylor expansion of the order parameter M

H = a0M + b0M
3 (1.26)

where a0 is the inverse of the Pauli susceptibility and b0 is the anharmonicity parameter.

Equation.(1.26) gives the magnetization induced just by the externally applied field without

any consideration for the feedback from the exchange field λM . If we now include the exchange

field in the Equation.(1.26) it becomes

H = aM + bM3 (1.27)

where a = a0 − λ is the inverse of the enhanced susceptibility χ if a > 0 and b is b0 if the

exchange field is linear in M . Since the case that we have considered is non-linear, we can

assume b = 0. With this initial condition for the case of spatially varying but still static field

H which stabilises the M , H can be expressed as given by Ginzburg-Landau equation,
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H = H[M ] = aM − c∇2M (1.28)

where M =M(r) is a space dependent magnetization and H[M] now represents the functional

of M and c is a new parameter that measure the resistance of the system against the spatial

modulation of M .

Therefore the effective field that represents the deviation of the system from its equilibrium

can be written as,

Heff = H −H[M ] (1.29)

where H is the applied field and H[M] is equal to Equation.(1.28), and becomes zero when the

system is in equilibrium.

The time evolution of the magnetization is introduced to the model through a linear restoring

term where Heff small :

Ṁ = γ ⋆ Heff (1.30)

where Ṁ indicates the time derivative of M , γ a relaxation function, ⋆ represents the spatial

convolution.

A Fourier transform of this model [39] leads to the dynamical susceptibility χ(q, E) as defined

in the following set of equations:

H(q, ω) = χ−1(q, ω)M(q, ω) (1.31)

where,

χ−1(q, ω) = χ−1
q

(
1− i

ω

Γq

)
(1.32)

χ−1(q) = χ−1 + cq2 (1.33)

Γq = γqχ
−1
q (1.34)
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where χ−1(q, ω) is the general susceptibility, χ−1(q) is the susceptibility at ω = 0 and χ is

the susceptibility at both q and ω is zero and γq is the relaxation function. If there is no

dependency between exchange field and the Ṁ , then the relaxation function is given by

γq = γqn (1.35)

where γ is a constant and n=1 for small q values.

If we consider the system is a homogeneous, non-interacting Fermi system, the movement

of the electrons in the system is free and ballistic. If we consider the mean free path of the

electron in the ballistic trajectory is of the order of magnetic ordering wavelength λe we will

get,

γq ∝ τ−1, (1.36)

where τ is the time taken for the electron to cover the magnetic wavelength λ = 2π/q obtained

with the help of the Fermi velocity and given by

τ =
2π

vF q
, (1.37)

therefore we get

γq ∝
vF q

2π
(1.38)

and

Γ ∝ q (n = 1) (1.39)

away from the QCP. The Equation.(1.39) represents the Landau damping in the case of ferro

and paramagnetic systems. This linear behaviour of the Fermi liquid breaks down however

when critical point is approached where the fluctuation associated with that tend to freeze.

At the critical point, the wavelength of the magnetic excitations become much bigger than the

mean free path of the electron and slow down and Γq ∝ q2 (n=2).

If we consider next the generalised susceptibility of the excitations that represent the energy

dependent response of each magnetic mode, it can be written as
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χq,ω =
[
χ−1

(
1− i

ω

Γq

)−1]
(1.40)

=
Γqχq

Γq − iω
(1.41)

=
Γ2
qχq

Γ2
q + ω2

+ i
Γqχqω

Γq
2 + ω2

(1.42)

From Equation.(1.42) we can recognise that the imaginary part that is measured in neutron

scattering has the form of an overdamped harmonic oscillator model [40]. Thus, near the

ferromagnetic quantum critical point in the paramagnetic phase we expect this behaviour.

The critical exponent predicted by the spin fluctuation theory at the FM−QCP (3D FM) for

the magnetic susceptibility and correlation length are χq ∝ T−4/3 [39, 40] and ξ ∝ T−2/3 [41]

respectively.
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2
Overview of the Nb1−yFe2+y system

The Nb1−yFe2+y system, a transition metal itinerant d-electron ferromagnet with complex

C14 Lave phase crystal structure [27], displays a rich magnetic phase diagram over a small

doping range. The system with a scenario of masked Ferromagnetic Quantum Critical Point

(FM-QCP) by the emergence of modulated magnetic order makes it an ideal case for studying

theoretically predicted FM-QCP in clean itinerant intermetallic compounds. This chapter

presents an overview of the properties of the Nb1−yFe2+y system investigated previously from

various studies and measurements.

2.1 Structural properties

The stoichiometric NbFe2 system crystallizes in a hexagonal C14 lave phase (MgZn2 hexagonal

structure) structure with space group P63/mmc [27] displayed in Figure.(2.1a).

The unit cell of the structure consists of 4 formula units (see Figure.(2.1a)) with lattice

parameters of a=b= 4.8401(2) Å and c=7.8963(6) Å [27], in crystallographic terms, NbFe2

≡ Nb4Fe
(2a)
2 Fe

(6h)
6 . The Fe atoms in the crystal form layers of kagome network at 6h sites

perpendicular to c axis of the crystal which are separated by Fe atoms at 2a sites centred on

the line between alternative kagome triangles [42]. The Nb atoms occupy the interstices of

this Fe structures at 4f site, slightly out of plane with respect to Fe atom at 2a sites (see

Figure.(2.1b)). The WyKoff positions for the Nb, Fe(2a) and Fe(6h) atoms without inversion

are 4f(1/3, 2/3, x), 2a(0, 0, 0) and 6h(y, 2y, 3/4), respectively. From the extended view of the

crystal structure shown in Figure.(2.1b) we can see that the Fe(2a) atoms only coordinated with

every second upper (red) and lower (green) kagome triangles formed by Fe(6h) atoms, therefore,

the bonding between the Fe(2a) and Fe(6h) atoms in the pairs are not be the same [42]. The
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interatomic bond distances calculated by Tompsett et al., is given in Table.(2.1). In the table,

we can observe that the interatomic distances among Fe sites (from Fe(2a) and Fe(6h) sites) are

similar. Therefore, the dopant site preferred is likely to be determined by the bonding network

of the Fe-cage formed by the Fe(2a) and Fe(6h) atoms upon Nb doping rather than the volume

availability at the site [42].

(a)

(b)

Figure 2.1: The crystal structure of the NbFe2 system. (a) Laves unit cell. The atoms in the

colors blue, red and green, and gray represented are Fe(2a), Fe(6h) and Nb respectively. The red

and green triangles indicate the upper and lower kagome layers formed by Fe(6h) atoms. (b)

The view of the extended crystal structure along the principle axis c of the hexagonal structure.

The upper and lower kagome layers (Fe(6h)) shown respectively in red and green coordinated

with Fe(2a) atoms and Nb atoms. The images are from Ref. [42].
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Table 2.1: The shortest interatomic bond distance between two given sites for the stoichiometric

NbFe2 system obtained by Tompsett et al., [42].

Sites Distance Å

Fe(2a)-Fe(6h) 2.42

Fe(6h)-Fe(6h) 2.37

Fe(2a)-Fe(2a) 3.95

Nb-Fe(2a) 2.84

Nb-Fe(6h) 2.81

Nb-Nb 2.89

From the analysis of Density Functional Theory (DFT) calculations using Generalized-

Gradient Approximation (GGA)-Perdew-Burke-Ernzerhof (PBE) exchange correlation function

in the framework of stoner theory, it was shown that the bonding structure of the Fe cages

produces inequivalent character in the kagome triangles at Fe(6h) layers which is instrumental

in producing complex evolution of the temperature-compositions magnetic phase diagram upon

doping [42].

2.2 Electronic and magnetic properties

To understand the electronic and magnetic properties of the NbFe2 system the electronic struc-

ture and density of sates (DOS) calculations have been made by several groups [42–47]. The

general features of all of their calculations qualitatively agree that the electronic properties are

governed by partially filled 3d and 4d band crossing of Fe and Nb atoms respectively at the

Fermi surface [47]. The DFT calculations using Generalized-Gradient Approximation (GGA)-

Perdew-Burke-Ernzerhof (PBE) exchange correlation function in the framework of stoner the-

ory have shown that the structure of the partial density of states calculated for Fe(6h) d and

Fe(2a) d states are found to be similar and dominating at the Fermi level, in contrast, the

d orbitals of the Nb atoms contributes far less to the over all structure of the DOS [42, 46].

The dominant contribution of the Fe d states of the Fe cage bonding structure to the DOS

at the Fermi level found to be crucial to the evolution of the magnetic phase diagram upon

doping [42].

The previous theoretical calculations to study the magnetic ground state of the stoichio-
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metric NbFe2 have yielded contrasting results, where it was thought to be a paramagnet [43]

or antiferromagnet [45]. However, those studies also found that the antiferromagnetic state to

be energetically close to two other types of ferromagnetic states [47]. The electronic structure

calculations performed by Subedi et al. within the local spin-density approximation (LSDA)

using the general potential linearized augmented plane-wave (LAPW) method has shown that

the moments are highly dependent on ordering, therefore, the nature of the magnetism is itiner-

ant [47]. Figure.(2.2) shows the various spin configurations calculated for finding energetically

favourable magnetic ground state of the NbFe2 using LSDA by Subedi et al. The calculations

are made by considering only the collinear magnetic ordering cases. The cartoons in the Fig-

ure.(2.2) depict only the spins of the Fe atoms as it was observed that the induced moments

of the Nb atoms are small compared to the moments of the Fe atoms.

The ground state energy per unit cell illustrated in the Figure.(2.2) is shown relative to

the non spin polarised case (Figure.(2.2a)). Among various magnetic ordering pattern it was

observed that the ferrimagntic ordering (Figure.(2.2c)) has the lowest energy with largest mo-

ment on Fe(2a) site and it is believed to represent the ground state of the stoichiometric NbFe2,

however, the antiferromagnetic ordering (Figure.(2.2d)) is also almost degenerate with ferri-

magntic ordering suggesting competing magnetic interactions in the system [47]. The other

cartoons of the spin configurations (Figure.(2.2b,2.2e, 2.2f) suggest that they are energetically

unfavourable when compared to the energy of the non spin polarised case (Figure.(2.2a)) [47].

28



Figure 2.2: The potential magnetic ordering configurations of Fe atoms in the NbFe2 system

along the crystal axis c. The arrows on the Fe atoms indicate the induced moments. (a) Non

spin polarised case. (b-f) Various potential configurations of spins. The spin configuration (c)

is believed to represent the ground state of the NbFe2 system obtained from the solution of the

first principle calculations [47].

The earlier investigations on the Nb1−yFe2+y system have shown to reveal a rich magnetic

phase diagram across a narrow doping range of compositions. The evolution of the magnetic

ground states with doping for the Nb1−yFe2+y system were established using Nuclear Magnetic

Resonance (NMR) and magnetisation measurements. The phase diagrams have shown that

with doped excess Fe or Nb atoms found to exhibit ferromagnetic ordering [48]. Although the

recent LSDA calculations to find the magnetic ground state of the stoichiometric NbFe2 point

towards the ferrimagnetic ordering and also a possible degenerate antiferromagnetic state [47]

as discussed previously, the earlier investigation was found to be a weak antiferromagnet with

Neel temperature (TN ) ≈ 10 K [48]. The antiferromagnetic ordering of the stoichiometric
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NbFe2 was confirmed from the Nb NMR measurements using a spin echo method by Yamada

et al. below TN ≈ 10 K. Figure.(2.3) shows NMR spectra measured at temperature T = 4.2

K with two fixed frequencies of 3 and 10 MHz on the series of Nb1−yFe2+y samples. The figure

shows that the features of the NMR spin echo intensity with field for the composition y ≤

-0.004 are similar for both the frequencies where as for the compositions y > -0.004, the line

shape is quite different and the line width is broad for both frequencies measured. The NMR

spectra at 3 MHZ for composition y = +0.002 shows an additional peak in the higher field side

in addition to the peak at the position of zero knight shift which indicates the appearance of

ferromagnetic clusters in the antiferromagnetic matrix which would be formed with an excess

Fe atom occupying at the Nb site [48].

Figure 2.3: 93Nb NMR spin echo spectra measured on a series of Nb1−yFe2+y with magnetic

field by Yamada et al. at frequencies : (a) 3 MHz and (b) 10 MHz. The pictures are taken in

Ref. [48]. The field of zero Knight shifts (K = 0) are indicated by arrows.

The past experiments to confirm the magnetic phases of the Nb1−yFe2+y system explored in

the polycrystals by NMR and magnetic measurements while agreeing broadly the established

composition-temperature phase diagrams but they differ in their classifications of the slightly
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Nb rich regions of the phase diagram. The NMR studies by Yamada et al., describes the region

around y ≈ -0.01, down to 2K as paramagnetic [48] where as the DC magnetisation measure-

ments using vibrating sample magnetometer by Crook et al. suggests the composition exhibit

a mixed phases of ferromagnetic and antiferromagnetic [49]. The composition temperature

phase diagram obtained by Yamada et al. and Crook et al. are shown in Figure.(2.4a) and

Figure.(2.4b) respectively.

(a)

(b)

Figure 2.4: The expected composition-temperature phase diagram of Nb1−yFe2+y system ob-

tained from the experiments of NMR and magnetisation. (a) Established from the NMR works

by Yamada et al. [48] and Shiga et al. [50]. The picture is taken from Ref. [48]. (b) The

phase diagram established using the DC magnetisation measurements by Crook et al., [49].

The picture is from Ref. [49].

To confirm the true magnetic phase of the Nb1−yFe2+y system at around y ≈ −0.01 region

and to re-examine the magnetic phase diagram of the system, recently, a systematic study of

magnetism were carried out on a freshly prepared high quality samples by Moroni-Klementowicz

et al. The Arrot plots obtained for various compositions y from their work provide an additional

evidences for the respective magnetic phases observed for the similar compositions previously

by Yamada et al. shown in Figure.(2.5). The plots show for different range of temperatures the

curves appear differently above and below of the bulk antiferromagnetic transition temperature,

TN , (where the curve almost linear shown in the figure red) for the composition with a bend

towards left and right, respectively. The extrapolated value of M2 to H/M = 0 for the
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samples y = −0.012,−0.006 and 0 all show negative indicating no spontaneous magnetization.

For sample y = +0.007 the extrapolated value of M2 to H/M = 0 show positive for the

temperatures below 10 K indicating the existence of spontaneous magnetization. The curves

for the sample y = −0.012 display no sign of any change to the appearance in the temperature

range measured suggests the compound is paramagnet within that range [27]. Based on the

earlier results and the recent neutron scattering measurements it was found that the type of

the antiferromagnetic phase of the samples in the range between −0.008 ≤ y < +0.02 is a spin

density wave (SDW) ordering with an helical arrangement of the Fe spins [27,28,48,49].

Figure 2.5: Arrot plots for Nb1−yFe2+y samples range from slightly Fe rich to slightly Nb

rich compositions measured at different temperatures by Moroni-Klementowicz et al. The red

curves indicate the Neel temperature (TN ) measurements at which the change of slope happens

to the lines of extrapolation of the M2 vs H/M linear dependence. The curves T < TN and T

> TN indicate the curves with bend towards right and left respectively. The picture is taken

from Ref. [27].
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The zero field AC magnetic susceptibility measurements with temperature performed by

Friedemann et al. quite recently for the selected compositions of Fe rich, Nb rich compounds

and stoichiometric NbFe2 provide further evidence for the different magnetic phases observed

in the series of Nb1−yFe2+y samples. Figure.(2.6) shows the anomalies in the temperature

-dependent AC magnetic susceptibility (χ′(T )) as a signatures of both FM and SDW phase

transitions.

For the Fe-rich sample (y = 0.015) the signatures of FM and SDW phase transitions are

seen at TC ≈ 24 K and TN ≈ 32 K, respectively [51]. It can be seen that for the Fe-rich sample

the anomaly observed at TC during warming and cooling measurements a clear hysteresis,

indicating the transition SDW-FM is first order which is also confirmed from the resistivity

measurements [51]. The transition PM-SDW on lowering the temperature of the system is

found to be second order where only a much weaker anomaly was observed in the derivative

of the resistivity (dρ/dT ) [51]. The Nb rich and stoichiometric NbFe2 samples display only a

single transitions at TN ≈ 3 K and TN ≈ 12 K respectively with the characteristics of SDW

order.

The phase boundaries for different magnetic phases with doping concentration y were

identified carefully from the thermal, transport and magnetization measurements by Moroni-

Klementowicz et al. The refined version of the composition-temperature magnetic phase dia-

gram of Nb1−yFe2+y series of samples obtained is shown in Figure.(2.7).

33



0.0

T (K)

χ’
(S

I)

Figure 2.6: The temperature dependence of the AC magnetic susceptibility χ′(T ) measured for

the Fe rich, stoichiometric and Nb rich samples of the Nb1−yFe2+y system. The red and blue

arrow indicates the measurements performed in the warming and cooling respectively. The

picture is taken from Ref. [51].

Figure 2.7: The refined composition - temperature phase diagram of Nb1−yFe2+y system

established using the transport and thermodynamic measurements by Moroni-Klementowicz

et.al., [27]. The blue solid spheres indicate the Curie temperature (TC) and the red circles are

Neel temperature (TN ). The picture is taken from Ref. [27].

The composition-temperature phase diagram measured in zero field with doping Fe and Nb
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atoms exhibit different magnetic phases such as ferromagnetic (FM), SDW and paramagnetic

(PM) (see Figure.(2.7)). For the doping concentrations y > −0.02 (Nb rich side of the phase

diagram) the samples show only the FM phase where as for the Fe rich side of the phase diagram

(y ≥ +0.007) both SDW and FM phases are observed with transition from PM-SDW and SDW-

FM on lowering the temperature. In the phase diagram for the composition y ≈ +0.02 show

a Lifshitz point and above that the compounds show only PM-FM phase transition. Near

the stoichiometric composition range (−0.008 < y < 0.007) the samples show only the SDW

phase below TN . For the composition range −0.02 < y < −0.008, the compounds exhibit only

paramagnetic phase. From the M −H isotherm measurements for the excess Fe and Nb rich

samples, it was found that the observed ferromagnetic phases are different in nature [27].

The characteristics of SDW and the FM phases are further investigated in the recent ex-

periments of neutron scattering [28] and spin-dependent compton scattering [52], respectively.

The outcome of the neutron diffraction measurements confirms that the existence of antifer-

romagnetic order in the stoichiometric NbFe2 system is indeed a long-wavelength modulated

magnetic (SDW) order observed on the boarder of ferromagnetic order at the low temperatures

with small ordered moment µs < 0.1 µB. The evolution of the SDW order with temperature

and composition measured with neutron diffraction by Niklowitz et al. observed that the or-

dering wave vector of the SDW state is found to be qSDW = (0 0 ℓSDW ) which was confirmed

in all the measured samples [28]. From the distribution of allowed and forbidden satellite Bragg

peaks of the SDW order the magnetic structure was found to be linearly polarized with moment

orientation along the c axis rather than the spiral order. From the AC susceptibility and torque

magnetometry measurements it was determined that the c axis to be the magnetic easy axis

of the system independent of the chemical composition [28,53]. Figure.(2.8) shows the allowed

and forbidden Bragg peaks of the SDW state in the (h 0 ℓ) plane of the reciprocal lattice [28].
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Figure 2.8: The Bragg’s reflections observed for the SDW order in the (h 0 ℓ) r.l.u. reciprocal

lattice plane. The blue dots represents the SDW peak observed and the dark pink cross

represents where the peaks are forbidden

The temperature dependence of the neutron diffraction results for the Fe-rich side of the

NbFe2 phase diagram is shown in Figure.(2.9). The magnetic neutron scattering measured for

the FM order at the weak nuclear Bragg position (1 0 2) r.l.u. is shown in Figure.(2.9a). The

FM intensities of the samples measured are normalised by the intensities at TC and the FM

ordered moments obtained from the FM intensities are discussed in Ref. [28]. The figure shows

the FM order can be observed for the Fe rich samples y = +0.015 and y = +0.020 respectively

below TC ≈ 24.5 K and TC ≈ 34 K. For slightly Fe-rich sample, y = +0.003, no FM ordering

has been observed even the temperature below 5 K [28].

Figure.(2.9b) shows the temperature dependence of the SDW ordered moment µs for the

Fe-rich samples obtained from the integrated intensities of SDW peak temperature evolution

measured at Q = (1 0 1+ℓSDW ) r.l.u. as described in Ref. [28]. It can be seen that the ordered

moment of the SDW peak rise continuously with temperature below TN for all three samples,

suggesting the PM-SDW transition is second-order. For samples Fe-rich (y = +0.015 and

+0.02) the peak of the SDW ordered moment coincides with onset Curie temperature TC and

there is a temperature range below TC both orders SDW and FM appear to coexist. This

coexistence was attributed to a distribution of transition temperature within the sample [28].

Figure.(2.9c) shows the temperature dependence of the SDW ordering wave vector qSDW =

(0 0 ℓSDW ). It was observed that the ℓSDW shows a significant dependence on temperature

and composition. At the transition of SDW-FM order the ℓSDW (T) stays finite so there is
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a discontinuous change in the magnitude of the wave vectors from finite qSDW to zero qFM .

Also, from the figure we can see that for warming and cooling measurements of ℓSDW displays

a significant thermal hysteresis. These observations suggest that the SDW-FM is a first order

transition [28].

Figure 2.9: The temperature dependence of the neutron diffraction results obtained for

Nb1−yFe2+y by Niklowitz et al. (a) Normalised FM intensities measured at the weak nu-

clear Bragg position (1 0 2) r.l.u. and FM ordered moments µFM . (b) SDW ordered moment,

µs. (c) SDW ordering wave vector values of qSDW . The markers downward triangles and

upward triangles indicate the measurement sequences going down and up, respectively. The

samples measured are y = +0.003 (black, gray), y = +0.015 (dark blue, light blue) and y

= +0.02 (red, orange). The each samples are measured in different experiment beam times

indicated by empty and filled markers. The lines are guide to the eye. The picture is taken

from Ref. [28].
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The FM phase was investigated by Haynes et al. for the Fe-rich sample (y = +0.015) to

resolve for the true magnetic ground state adopted by the Nb1−yFe2+y system. From their work

it was demonstrated that the magnetic structure of the Fe-rich samples are Ferrimagnetic using

spin-dependent Compton scattering in conjunction with ab initio electronic structure calcula-

tions [52]. Earlier the magnetic ground state of the stoichiometric NbF2 was also theoretically

predicted to be a ferrimagnetic ordering, also a possible competing degenerate AFM ordering

by Subedi et al. discussed previously (see Figure.(2.2)). The results of Haynes et al. shows the

magnetic structure is ferrimagnetic in which the two inequivalent Fe sites order antiparrallel to

one another as observed similarly by Subedi et al. but slightly with different magnitudes [52].

2.3 Non fermi liquid behaviour of Nb1−yFe2+y system

From the previous section we saw that the Lave phase Nb1−yFe2+y system exhibit a variety of

magnetic phases within a narrow doping range such as FM and long-wavelength SDW orders

in zero magnetic field and at ambient pressure (see Figure.(2.7)). The stoichiometric NbFe2

sample shows a SDW order below TN ≈ 10 K, on the other hand the sample with composition

y = −0.012 shows paramagnetic ordering. It was found that on reducing the Fe content (for

small negative y), the SDW state can be suppressed completely and leading to the magnetic

quantum critical point (QCP), by extrapolation the possible doping concentration to approach

the QCP was found to be around y ≈ −0.015 by Moroni-Klementowicz et al. [27]. The earlier

measurements of resistivity and specific heat capacity on temperature around the vicinity of

the QCP in slightly Nb rich single crystal y = −0.01, performed by Brando et al. have observed

that close to QCP both the resistivity and the heat capacity exhibit anomalous temperature

dependences consistent with logarithmic Fermi-liquid breakdown [54]. Therefore, the system

Nb1−yFe2+y provides a rare opportunity to realize the FM-QCP in the d metal system.

Figure.(2.10) shows the resistivity versus temperature measured for the nearly critical single

crystal (y = −0.01). It was observed that the resistivity ρ(T ) follows the T 3/2 power law down

to T < 0.1 K indicating unconventional Fermi-liquid behaviour. The ρ(T ) behaviour was also

observed qualitatively in a number of other samples of similar compositions by Brando et al.,

however, the values of the exponent varies between 3/2 and 5/3 suggest the precise form of

the ρ(T ) may depend on the sample orientation and stoichiometry [54]. The measurements of

the Sommerfield coefficient versus temperature, measured by Brando et al. is shown in Figure.

(2.11). The figure shows that the Sommerfield coefficient displays a distinct logarithmic T
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dependence where it gets increased to high values on cooling to 0.1 K than the already increased

value of the electronic contribution to C/T observed at 4 K [54].

Figure 2.10: The temperature dependence of the resistivity measured for the single crystal

Nb1.01Fe1.99. The insets, upper: power law for wide range of temperature and bottom: precision

of exponent estimate. The red lines indicate the linear fit function. The picture is taken from

Ref. [54].

Figure 2.11: The temperature dependence of the Sommerfeld coefficient measured for the single

crystal Nb1.01Fe1.99. The red line indicate the linear fit function. The picture is taken from

Ref. [54].

The observed anomalous temperature dependences of the resistivity and the heat capacity

of nearly critical single crystal indicates that the Nb1−yFe2+y system is a clear example of a
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logarithmic breakdown of the Fermi liquid state, however, it cannot be decided unambiguously

that whether observed low temperature behaviour is because of the FM or SDW spin fluctu-

ations, though the C/T behaviour is consistent with the predictions for a 3D FM-QCP, the

nature of the fluctuations still requires clarification [54]. Therefore, the Nb1−yFe2+y system

provide a unique opportunity for various studies of band magnet quantum criticality at am-

bient pressure. The location of the expected quantum critical point (QCP) masked by the

emergence of the SDW order in the zero field composition-temperature phase diagram is shown

in Figure.(2.12).

Figure 2.12: The refined composition - temperature phase diagram of Nb1−yFe2+y system

established using the transport and thermodynamic measurements by Moroni-Klementowicz

et.al., [27]. The blue solid spheres indicate the Curie temperature (TC) and the red circles are

Neel temperature (TN ). The picture is taken from Ref. [27].
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3
Experimental Techniques

From the review of the properties of Nb1−yFe2+y system we explored the unconventional

Fermi-liquid behaviour, suggesting the possible existence of the ferromagnetic (FM) quantum

critical point (QCP) covered up by the emergent spin density wave (SDW) order. We use

this unique opportunity provided by the system to investigate the band magnet quantum

criticality at ambient pressure. Since significant studies have been done previously on the

system by tuning composition [55], our aim is to investigate the system using other non thermal

tuning parameter, for example magnetic field to establish the temperature-magnetic field phase

diagram on a specific compositions and to study the associated various special points in the

phase diagram (e.g, Tricritical points (TCPs), FM-QCPs etc.)

We present in this chapter a detailed description of the experimental methods, instruments

and the sample with specific compositions used for investigating the magnetic phase diagram

and excitations at different magnetic fields and temperatures. The instruments and the prin-

ciple that we used through out our studies for this purpose are neutron based. The outline

of the chapter is as follows, first we introduce the samples used for the experiments, second

we will look at the theory of unpolarised neutron scattering. Eventually the overview of the

instruments used.

3.1 Single crystal growth of Fe-rich NbFe2

The single crystals Nb1−yFe2+y that we used for performing the neutron scattering experi-

ments to investigate the magnetic phase diagrams for specific compositions are grown and

characterised by Dr. William Duncan, in collaboration with Andreas Neubauer and Wolgang
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Münzer. The high quality inter-metallic single crystals are grown using the ultra high vacuum

(UHV) optical floating zone (OFZ) furnace, at E21 institute of the Technical University of

Munich. The polycrystals of the samples are first prepared at Royal Holloway, University of

London, UK using a radio frequency induction furnace to make seed and feed rods prior to the

single crystal growths. The growth rods are prepared using the 99.99% puratronic Fe and Nb

powders which were degassed in UHV down to 10−8 mbar before making the rods. The single

crystals are then grown by rotating the seed and feed rods using a magnetic mechanism and

at the end of the growth a large section of the single crystals with specific compositions are

obtained (y = 0.015 and 0.020) with a mosaicity between 0.3o and 0.4o.

The composition-temperature phase diagram was established by growing single crystals

with varying concentrations and characterising them extensively. [56]. Figure.(3.1) shows the

location of the sample that we used for the neutron scattering experiments for different beam

times in the phase diagram established by Moroni-Klementowicz et al. The single crystals are

shown in Figure.(3.2).

QCP

Figure 3.1: The refined composition - temperature phase diagram of Nb1−yFe2+y system

established using the transport and thermodynamic measurements by Moroni-Klementowicz

et.al., [27]. The blue solid spheres indicate the Curie temperature (TC) and the red circles

are Neel temperature (TN ). The yellow and brown lines indicates the position of the Fe rich

samples with y=0.015 and 0.020 respectively that has been measured. The figure has been

adapted from Ref. [27].
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(a) (b)

Figure 3.2: Samples for performing neutron scattering experiments (a) Fe-rich Nb1−yFe2+y

single crystal (y=0.015), used for the beamtime at MIRA-2 (FRM2, Garhing in Germay). The

Al wires are used for tying the sample with the holder rigidly to avoid any misalignments of

the orientation while performing magnetic field measurements. (b) Fe-rich Nb1−yFe2+y single

crystal(y=0.020), used for the beamtimes at 4F2 (LLB, Saclay in France), LET (ISIS, Didcot

in UK). The cadmium sheet covers at the bottom of the Al holder is to reduce the background

noise contribution and the Al wire is for tying the sample with the holder.

3.1.1 Quality of the samples

We studied two large single crystals approximately 6 mm wide and between 15 mm long with

compositions y = 0.015 and 0.020, designated as OFZ27.3 (3 is the section of the growth it

has been cut out from) and OFZ28.3.2.4 (OFZ28 is the name of the growth and 3.2.4 indicates

the section of the growth it has been cut out from) respectively [28, 55, 57]. Based on AC

susceptibility and magnetisation measurements on fragments of the single crystals, transition

temperatures were found for the sample OFZ27.3 and OFZ28.3.2.4 at TN = 31 K and TC

= 23 K [28], and TN = 33 K and TC = 37 K [52] respectively. The quality of the single

crystals has also been determined using the resistivity measurement on a small piece from

the same growth with a small cross section, revealing the residual resistivity ρ0 of 16.9 µΩcm

and 17.5 µΩcm for the sections of samples OFZ27.3 and OFZ28.3.2.4 respectively. A bulk

characterization of Neutron Depolarization measurements were used that revealed the level of

magnetic homogeneity in the single crystal growths: for sample y = 0.015, the onset of FM has
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been found to occur between T=24 K and T=26 K and homogeneous FM is observed below

T=19 K [57]. For sample y = 0.020, the onset of FM has been found to occur between T=34

K and T=38.3 K and homogeneous FM is observed below T=30 K [57].

The compositions of the single crystals are then determined utilizing the composition

phase diagram established by Moroni-Klementowicz et al. through a comprehensive analy-

sis of the composition using wavelength and energy dispersive x-ray spectroscopy (WDXS) on

the Nb1−yFe2+y system [27, 58]. Polycrystalline samples were used for determining the final

compositions and it was observed that the final compositions are slightly richer in Nb content

than the nominal compositions. Figure.(3.3) shows the average volume per atom of the C14

structure versus the nominal (solid line) and WDXS (dashed line) Nb content.

Figure 3.3: Unit-cell volume of the hexagonal C14 Laves phase Nb1−yFe2+y system calculated

from the unit cell parameters versus the nominal and WDXS composition. dashed line indicates

the dependence of the average atomic volume on the composition determined by WDXS to

extract the compostions of samples with small values of y. The limits of the homogeneity

region are 27.4 and 36.3 at. % Nb. The figure is taken from Ref.( [27]).

The measurements of WDXS on the samples have shown a linear dependence of the atomic

volume on composition in the range 28 and 34 atomic percentage of Nb according to Vegard’s

volume. By fitting the data using a least square fit function in the linear range, a relation is

obtained between Vegard’s volume and the sample’s Nb content, as given in Equation.(3.1),

Vatom = 12.0103 + 0.04024x(at.%NbWDXS). (3.1)

The Equation.(3.1) was used to deduce the compositions of samples with varying y by

measuring the lattice parameters. The accuracy in the WDXS experiments was found to be of
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the order of 0.1% limiting the accuracy on y to ∼ 0.003. A small systemic error of about 0.2

at. % was also observed in the measurements, however, the error would only shift the absolute

values without changing the shape of the phase diagram.

3.1.2 Magnetic phase transitions

The existence of the modulated magnetic order (SDW) and the ferromagnetic order (FM) on

our crystals have been studied using neutron diffraction [28]. The evolution of the magnetic

phases with temperature have been probed on the single crystal y = 0.015 and 0.020 [28].

Figure.(3.4) show the T dependence of the normalized FM intensities, and FM and SDW

ordered moments.

Figure 3.4: T dependence of the normalized FM intensities and FM-ordered moments, SDW-

ordered moments obtained through neutron diffraction measurement for samples y = +0.003

(black, gray), +0.015 (dark blue and light blue), +0.020 (red and orange). The upward triangles

and downward triangles represent the measurement sequences going down or up in T [28].

From the measurements of the FM signals and the peaks of the SDW signals, the onset

temperatures for FM have been found to be at TC = 24.5 K and TC = 34 K for the compositions

y = 0.015 and 0.020 respectively. The temperature dependence of the SDW ordered moment
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for sample y=0.015 has shown that below TN= 32.3 K, the SDW order starts to appear and

is fully suppressed below T=18.5 K, whereas, for sample y=0.020, the SDW phase start to

appear below TN = 38.3 K and is fully suppressed below T = 30.5 K. The intensities of the

SDW phase have been observed as a continuous rise below the onset transition temperature

TN not inconsistent with a second-order PM-SDW transition [28].

Previous measurements of, e.g., χ and ρ have provided evidence that the PM-SDW tran-

sition is second order, while the SDW - FM transition is first order [51]. A discontinuous

onset of the magnetisation and discontinuous suppression of the SDW ordered moment would

therefore be expected at TC . However, Figure.(3.4) shows a steep but gradual increase of the

magnetisation, which is accompanied by a simultaneous steep but gradual suppression of the

SDW ordered moment.

This overlap can be attributed to a distribution of the transition temperatures within the

sample. The overlap region of the SDW and FM order can be calculated from the onset TN

and TC measured from the neutron scattering, giving 6 K and 3.5 K for the sample y =

0.015 and 0.020 respectively. The variations in the transition temperature are corresponding

to variations in the compositions [28]. In the sample y = 0.015, a temperature variation

of TC by ± 3.0 K corresponds to the variation in the composition y = ± 0.0016, and that

leads to the variation in TN by ± 2.2 K. This causes the transition temperatures measured

using neutron scattering to be 3.0 K (2.2 K) lower than the onset temperatures for TC(TN ).

Similarly, for sample y = 0.020, a temperature variation of TC by ± 1.8 K corresponds to the

variation in the composition y = ± 0.0009, and that leads to the variation in the bulk transition

temperatures are observed to decrease 1.8 K (1.2 K) below the onset temperatures for TC(TN ).

The homogeneity of the FM order below T = 19 K and 30 K for y = 0.015 and 0.020, where

neutron measurements show complete suppression of the SDW order respectively are confirmed

using neutron depolarization measurements, suggesting no coexistence of the SDW order below

those temperatures ranges [57]. The bulk transition temperature TN=30.1 K and TC=21.5 K

for sample y=0.015, and TN=37.1 K and TC=32.2 K for sample y=0.020, which is in good

agreement with the bulk magnetic response traced on these samples.

3.2 Neutron scattering theory

The neutron scattering experiment is a very versatile and powerful experimental method to

probe the dynamics and structure of the condensed matter on the atomic and nanometer scale.
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The basic properties of the neutron makes their scattering a powerful tool for investigating the

important features of the matter. It is generally in the neutron scattering community agreed

that the four key characteristics of the thermal neutrons find extremely useful over the other

means of experimental techniques to investigate hard, soft, or biological materials.

The value of the mass of the neutron (mn = 1.67493 × 10−27 Kg ) rather close to the

proton results in the de Broglie wavelength (around 1.8 Å) of the thermal neutrons being

comparable to the inter-atomic distances and an energy (20 meV) similar to the elementary

excitations of the condensed matter system can thus provide information on the structural and

dynamical details of the system simultaneously [59]. Secondly, because of the fact that the

neutrons are electrically neutral particles they are capable of penetrate deep inside the target

even very close to the nuclei where they don’t need to overcome any Coulomb barrier [60].

Since the neutrons interact with nuclei via strong nuclear forces, the scattering by thermal

neutrons can be used for investigating the different isotopes and lightweight elements. The

scattering cross section varies in a hugely erratic manner between elements and even between

isotopes of the same element the neutron scattering can be used in soft matter and life sciences

because of the ability to differentiate even between hydrogen (1H) and deuterium (2D) where

in the case of X-rays they are virtually transparent to these light weight hydrogen. Since the

neutrons can penetrate easily inside the materials, it can be used to probe even the bulky

materials with various sorts of environment, for example magnets, furnaces, pressure cells,

Cryostats, etc. Thirdly, the weak interaction between the neutrons and solids is very useful

to investigate the bulk of the sample not just only its surface. Since the higher order effects

are generally very small in their interactions they are either ignored or corrected. Therefore,

the neutron scattering data can be used for quantitative comparisons to theoretical models.

Fourthly, the neutron’s magnetic moment (magnetic gyromagnetic ratio, γ = −1.91304, the

nuclear magnetron, µN = 5.05078× 10−27 J/T and the spin value s = 1/2) find its usefulness

in probing the magnetic materials and in resolving their magnetic structures. The way neutron

interacts with the unpaired electrons in the magnetic atoms, the information regarding the

arrangements of the electron spins and the density of distribution of the unpaired electrons can

be investigated by scattering the neutrons elastically with the system. On the other hand, the

inelastic neutron scattering can be used to probe the magnetic excitations in the system because

of the fact that the excitation energies are comparable to the neutron energy, permitting a study

of the time dependent spin correlation using this method.

To investigate the various magnetic orders and the possible magnetic quantum criticality
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of our sample we used neutron scattering methods of elastic and inelastic using unpolarised

(where the spin orientations are not aligned in any specific directions) neutron beams. The

common principle of neutron scattering relies mainly on perturbing the system weakly in such

a way that it does not alter the intrinsic properties of the system. In our case the system is our

sample, the perturbation is the neutron incident on the system which carries the spin. In the

following, we will see the important equations of the neutron scattering for unpolarised beams

which helps to probe finally the magnetism in the system.

3.2.1 Neutron scattering cross-section

Because the neutrons are quantum particles they exhibit particle-wave duality property [61]

during the scattering experiments. When they are created and detected before and after the

scattering via nuclear process they behave predominately as particles, respectively. On the

other hand, they behave as interfering waves when they are scattered. The wave like nature of

the neutron moving with constant velocity v can be ascribed as de Broglie wavelength, given

by

λ =
2πh̄

mv
, (3.2)

where m is the mass of the neutron (1.67493× 10−27 Kg) and h̄ is the Planck’s constant. The

wave nature of the neutron is referred in terms of wave number,

k =
2π

λ
, (3.3)

or as wave vector in the same direction as the velocity v:

k =
mv

h̄
. (3.4)

The kinetic energy of the neutron as non-relativistic particle and its momentum are linked by

E =
h̄2k2

2m
, (3.5)

when neutrons are at the room temperature the energy E ≈ kbT and corresponding wavelength

λ ≈ 2 Å, which is of the order of inter-atomic distances in the condensed matter [59].
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The neutron scattering events are governed the laws of momentum and energy conservation.

The energy and momentum of the neutrons during the scattering events will either absorbed

into or gained from the scattering system with initial state Ei =
h̄2k2i
2m and h̄ki, before and with

final state Ef =
h̄2k2f
2m and h̄kf , after respectively. The energy (h̄ω) and momentum (h̄k) gained

or lost by the scattering system is give by,

h̄ω = Ei − Ef , (3.6)

h̄k = h̄ki − h̄kf . (3.7)

The scattering of the neutron beams with materials are described by introducing the central

concepts of cross sections. First we consider a beam of neutron flux φ(ki) where neutron

particles all have momentum ki given by,

φ(ki) =
number of neutron particles impining on a surface per second

surface area perpendicular to the neutron beam direction
, (3.8)

we define the neutron scattering cross section denoted by σ, the system’s ability to scatter

neutrons as:

σ =
1

φ(ki)
· number of neutron particles per second, (3.9)

which has the unit of area. The quantity φ(ki)σ is the scattering rate of neutrons by the system

in all directions with final energy. The scattering intensity divided by the neutron flux makes

σ intrinsic to the system and independent of the neutron flux at the particular experimental

set-up.

In Figure.(3.5), the scattering cross-section, σ correspond to the surface of the entire sphere

surrounded by the sample (in diagram only 1/4th of the sphere is shown) where the neutron

crossings are counted. In neutron scattering, the angular dependence is most important aspect

to investigate the structure and dynamical properties of the system. The dependence of the

angle and the neutron scattered in one direction delimited by the particular solid angle dΩ and

crossing the infinitesimal surface dA is described by the quantity called differential scattering

cross-section, dσ/dΩ (see Figure.(3.5)) and the scattering rate is ϕ(ki)(dσ/dΩ)dΩ [62]. The
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relation to total number of scattered neutrons per solid angle over all of the 4π solid angle to

the differential equation is given by,

Figure 3.5: An illustration of the neutron scattering cross-section geometry. The incoming

neutron ki incident at the centre of the sample with scattering angle 2θ and azimuthal angle

ϕ. The final wave vector kf of the neutron scattered into the solid angle element of dΩ (or

detector area dA). The picture is taken from [63].

σ =

∫
all direction

dσ

dΩ
dΩ. (3.10)

As we have seen above that during some neutron scattering process, the neutron exchange

energy and momentum to the system which is governed by the energy conservation laws. This

type of scattering is called inelastic scattering. For describing the inelastic neutron scattering,

the energy dependence of the scattered neutrons must be considered. The quantity which

describe this is called partial differential cross section, defined as the scattering of the neutrons

by the system only in the the restricted direction dΩ and the with final energy Ef ≤ E ≤

Ef + dEf given as d2σ/dΩdEf and then the scattering rate is ϕ(ki)d
2σ/dΩdEf , where ϕ(ki) is

the neutron flux [62]. The relation to differential equation from the partial differential equation

can be reached on integrating over the all final energies Ef , given by

dσ

dΩ
=

∫
all energies

dσ2

dΩdEf
dEf . (3.11)

The incoming(or initial) neutrons can be represented as a (complex) plane waves [62]. The

wave function ψi(z) of the incident beam if propagates along z with origin at the scattering
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centre, then

ψi(z) = eikiz. (3.12)

Due to the spherical symmetry, the wave function of a scattered neutron by a single nucleus at

distance r can be represented, as follows [62]

ψf (z) = − b
r
eikiz, (3.13)

where b is the scattering length, which depends on the nucleus spin state and isotope [62].

If we now consider the scattering process by many centres composed by the targeted system,

the number of transitions per unit time and per solid angle dΩ per dEf (the partial differential

equation), the state of the system from λi to λf and the state of the neutron changes from

ki to kf can be represented using Fermi’s golden rule, by re-defining the incoming plane wave

ψ(ki) = eiki·r, the partial differential cross-section for the many scattering centres can be

written as [62],

dσ2

dΩdEf

∣∣∣∣
λi→λf

=
kf
ki

( m

2πh̄2

)2∣∣〈kfλf ∣∣V ∣∣kiλi〉∣∣2δ(Eλi
− Eλf

+ Ei − Ef ), (3.14)

where Ei and Ef are the initial and final energies of the neutron respectively, and Eλi
and Eλf

respectively are the initial and final energies of the scattering system. In mathematical terms

the energy distribution of the scattered neutrons is a δ-function [62].

If the potential of the neutron due to the lth nucleus is Vl(r− rl) then the potential for the

whole scattering system is,

V =
∑
l

Vl(r − rl). (3.15)

Now, in order to consider for all possible scattering process, we average over the possible

initial states λi and sum over the compatible final states λf to obtain the partial differential

equation for the whole scattering system [62], given by

dσ2

dΩdEf

∣∣∣∣
λi→λf

=
kf
ki

( m

2πh̄2

)2 ∑
λi,λf

pλi

∣∣∣∑
l

∣∣〈λf ∣∣eik·rl∣∣λi〉∣∣∣2δ(Eλi
− Eλf

+ Ei − Ef ), (3.16)
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where the statistical weight pλi
for the state |λi⟩ is given by the Boltzmann distribution [62]:

pλi
=

1

Z
exp

(−Eλi

kB

)
, (3.17)

Z is the partition function inserted in the equation to ensure that
∑

λ pλ = 1, given by

Z =
∑
λi

exp
(−Eλi

kB

)
. (3.18)

Because of the random distribution of several different scattering lengths in the scattering

system due to the presence of many different atoms, isotopes and with different spins where

they generally composed, the partial differential cross section can be written as two terms :

dσ2

dωdΩ
=

dσ2

dωdΩ

∣∣∣∣
coh

+
dσ2

dωdΩ

∣∣∣∣
incoh

(3.19)

where the cooperative effects (e.g., Bragg scattering, magnons, etc.) between the atoms and

spins in the scattering system obtained from the term dσ2/dωdΩ
∣∣
coh

and the dynamics of the

system (e.g., motion or diffusion of the individual scattering centre, etc.) can be obtained from

dσ2/dωdΩ
∣∣
incoh

term [64].

The scattering length b of the nucleus varies from one to another due to the nuclear spin

or presence of isotopes or both. If we consider bn as the scattering length of one particular

isotope-spin combination which appears in the system with frequency cn then the average of

the scattering length for the system can be written as,

b̄ =
∑
n

cnbn, (3.20)

this is now the average of the scattering length for the whole scattering system for all spin-

isotope combination weighted by the frequency [62]. Therefore the average coherent cross-

section can be given as,

σcoh = 4πb̄2. (3.21)

Similarly the total scattering cross-section can be written as [64],
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σ =
∑
l

cl4πb
2
l

= 4πb̄2.

(3.22)

Therefore the total scattering cross-section for the incoherent part can be obtained as σincoh =

σ − σcoh, given by

σincoh = 4π(b̄2l − b̄2)

= 4πb2incoh

bincoh =

√
b̄2l − b̄2.

(3.23)

Nuclear scattering :

The partial differential cross-section for the nuclear scattering, the potential in the system can

be treated as delta function [64]. The Fourier transform of the potential between the lth nucleus

in the scattering system with scattering length bl, given by

Vl(k) =
2πh̄2

m
bl. (3.24)

Scattering in Bravais crystal : The coherent scattering in Bravais crystal, i.e, a crystal

with one atom per unit cell, for the pairs of the scattering centres l and l
′
in the crystal can

be written as,

dσ2

dωdΩ

∣∣∣∣
coh

= N
σcoh
4π

kf
ki
S(k, ω), (3.25)

with

S(k, ω) =
1

2πh̄N

∑
l,l′

∫ ∞

−∞
dt
〈
e−ik·r

l
′ (0)eik·rl(t)

〉
e−iωt, (3.26)

where S(k, ω) is known as coherent scattering function [62].

Similarly, the incoherent nuclear scattering for the independent scattering centres, l in the

Bravais lattice can be written as,
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dσ2

dωdΩ

∣∣∣∣
incoh

= N
σincoh
4π

kf
ki
S(k, ω), (3.27)

with

S(k, ω) =
1

2πh̄N

∑
l

∫ ∞

−∞
dt
〈
e−ik·rl(0)eik·rl(t)

〉
e−iωt, (3.28)

where S(k, ω) is known as incoherent scattering function [62].

Principle of detailed balance : During the scattering process, the probability of a

neutron to lose or gain energy (h̄ω) or the system to transits from its initial to final state in

either direction are the same. The equal probability for this transitions is give by principle of

detailed balance function,

S(k, ω) = exp
( h̄ω
kbT

)
S(−k,−ω) (3.29)

The above equation conveys that it is more probable for a system to be in its lowest energy

than the excited state initially. Hence the function S(k, ω) is shown to increased by a factor of

exp(h̄ω/kbT ) [62].

Scattering in non-Bravais crystal : We now consider the case for non-Bravais crystal,

i.e, a crystal with more than one atom per unit cell. The crystal composed of N unit cells of

volume v0. In the lth unit cell, the position of the scattering centre is defined as, [62],

rld = l + d+ uld, (3.30)

where l+d is the position of the scattering centre at equilibrium and u is the displacement out

of equilibrium. The coherent scattering in the non-Bravais crystal can be elastic when there

is no transfer of energy between neutron and the system (Ei = Ef ) or inelastic if there is an

exchange of energy between them. The coherent differential cross section for the elastic case is

given by [62,64],

dσ

Ω

∣∣∣∣el
coh

= N
(2π)2

v0

∑
G

δ(k −G)
∣∣FN (G)

∣∣2, (3.31)

with nuclear unit cell structure factor,
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FN (G) =
∑
d

b̄de
iG·dee−Wd (3.32)

and

Wd =
1

2

〈[
k.u(t)

]2〉
(3.33)

where exp(−Wd) is known as Debye-Waller factor that accounts for any fluctuations in the

equilibrium position of the atom [62]. The incoherent nuclear scattering in the non-Bravais

lattice for the elastic case is given by [64],

dσ

dΩ

∣∣∣∣el
incoh

= N
N

4π

∑
d

σincoh,dexp(−2Wd) (3.34)

Magnetic scattering :

During the magnetic scattering process, the magnetic dipole moment of the neutron µn interacts

with the magnetic fields produced by the unpaired electrons with combination of the magnetic

moments due to its spin µe and the orbital degrees of freedom [62].

The dipole moment of the neutron and electron are given by,

µn = −γµNσ (3.35)

µe = −2µBs, (3.36)

where µN and µB are the nuclear and Bohr magnetron, σ and s are the Pauli spin operator

and spin angular momentum operators of the neutron and electron respectively. The γ is the

gyromagnetic ratio of the neutron, γ = 1.913. The µN and µB are given by,

µN =
eh̄

2mp
(3.37)

µB =
eh̄

2me
, (3.38)
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where e is the charge of the proton, mp and me are the masses of the proton and electron

respectively.

The total magnetic magnetic field produced by the unpaired electron can written as,

B = BS +BL, (3.39)

where BS is the magnetic field generated by the electron with momentum p at point R due to

its magnetic dipole moment, given by

BS =
µ0
4π

µe × R̂

R2
. (3.40)

where R̂ is a unit vector in the direction of the R. The magnetic field due to the momentum

of the electron is given by,

BL =
µ0
4π
I
dl × R̂

R2
. (3.41)

where Idl is the current element of the moving electron. The total magnetic field due to an

electron of momentum p therefore is [62],

B = BS +BL =
µ0
4π

{
curl

(µe × R̂

R2

)
− 2muB

h̄

p× R̂

R2

}
. (3.42)

If we consider the jth electron in the system, the potential Vm,j of a neutron in the magnetic

field generated by the electron is [62] given by,

Vm,j = −µn ·Bj = −µ0
4π
γµN2µBσj ·

{
∇×

(sj × R̂

R2

)
+

1

h̄

pj × R̂

R2

}
. (3.43)

The total interaction with all the unpaired electrons in the system by neutron therefore given

by [62],

Vm =
∑
j

Vm,j . (3.44)

In order to obtain the partial differential cross-section for the magnetic scattering we also

need to consider the spin state of the neutrons. If σi and σf are the initial and final state of

the neutron in the scattering process, then the final equation is given by,
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dσ2

dΩdEf

∣∣∣∣
σiλi→σfλf

= (γr0)
2kf
ki

∣∣〈σfλf ∣∣σ ·Q⊥
∣∣σiλi〉∣∣2δ(Eλi

− Eλf
+ h̄ω), (3.45)

with [62]

r0 =
µ0
4π

e2

me
(3.46)

where r0 is the classical electron radius

Q⊥ =
∑
j

eik · rj
{
k̂ × (sj × k̂) +

i

h̄k
(pj × k̂)

}
= k̂ × (Q× k̂)

k = kf − ki(scattering vector).

(3.47)

where Q is Fourier transform of the total magnetization operator M(r) and Q⊥ is the vector

projection of the Q on to the plane perpendicular to k [62]

Q(k) = − 1

2µB

∫
M(r)eik·rdr = − 1

2µB
M(k), (3.48)

The contribution of the spin and orbital degrees of freedom of the unpaired electrons to the

magnetic scattering can be obtained from the equation.(3.48), where it shows the neutrons

are scattered by the magnetic fields generated by the unpaired electrons that is normal to the

scattering wave vector k in the system.

The Final master equation for the magnetic neutron scattering resulting from the static

magnetic moments (elastic scattering) and the fluctuating part (inelastic scattering) of the

system is given in Equation.(3.49) [65].

dσ2

dΩdEf
=

( γr0
2µB

)2kf
ki

∑
αβ

(δαβ−k̂αk̂β)
((

2µB
)2〈

Qα(k)
〉〈
Qβ(−k)

〉
δ(h̄ω)+

(
nb(h̄ω)+1

)χ”
αβ(k, ω)

π

)
,

(3.49)

with

Sαβ
el =

(
2µB

)2〈
Qα(k)

〉〈
Qβ(−k)

〉
δ(h̄ω), (3.50)
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the elastic part of the Equation.(3.49). And,

Sαβ
inel =

(
nb(h̄ω) + 1

)χ”
αβ(k, ω)

π
, (3.51)

is the inelastic part of the Equation.(3.49). The part,
(
nb(h̄ω) + 1

)
, describes the principle of

detailed balance and χ”
αβ(k, ω)/π is the imaginary part of the dynamical magnetic susceptibility

[65] which can be calculated using the spin fluctuation theory discussed in chapter 1. The

Equation.(3.49) implicitly consists of the Fourier transform of the density ρ(r) called magnetic

form factor to account for the distribution of the unpaired electron density on an atom, given

by

Fd(k) =

∫
ρ(r)eik·rdr. (3.52)

3.3 Neutron scattering instrumentation

The neutron scattering experiments are extensively used to carry out many different researches

that deal with the study of condensed matter, life sciences and so forth. To suit the specific

needs of the research the instruments are built in many different designs. Based on the method

of production of the neutron beams at the sources, they are mainly classified into two, namely

the reactor and spallation neutron sources. In a standard reactor source, the neutron beams

are produced in a constant rate hence they are called continuous or steady state neutron

sources. Typical examples of the continuous reactors include LLB (saclay) and ILL (Grenoble)

in France, FRM2 (Garching) in Germany or High-Flux Isotope Reactor (HFIR) (ORNL, Oak

Ridge Tennessee) in USA. In the case of spallation, the neutron beams are created by hitting

a metal targets like uranium, lead, tungsten [66] with a high-energy protons produced by

accelerator for a very short time (≈ 1µs) with frequency 10 Hz-50 Hz. The neutrons from the

metal targets are spalled by using the pulsed beams of accelerated proton so that the neutron

beams generated at sources are named pulsed sources. The examples for the pulsed sources

include ISIS (Didcot) in UK, SNS in the USA or J-SNS in Japan. The produced neutrons

from both the sources come with different energy range which are not always suitable for the

scattering experiments, therefore the neutron beams are thermalised to harvest the effective

useful energy range for various set of experiments. The useful energy range of the thermal

neutrons typically are 50-100 meV [64]. The cold neutrons on the other hand, produced at
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the sources using a cryogenic moderator roughly have the energy range of 0.1-10 meV which is

very useful for performing the low energy experiments [64]. When the energy needed for the

experiments are greater than 100 meV, the hot neutrons are used instead by moderating the

neutron beams with graphite at 2400 K like at ILL in Grenoble [64]. The extracted neutron

beams (cold, thermal, hot) from the sources are then efficiently transported to the spectrometers

for performing various type of experiments.

For our case, the experiments are performed using unpolarised cold neutrons for the elastic

and inelastic scattering with triple axis spectrometer (TAS) of the continuous sources (LLB

(Saclay) and FRM2 (Garching)) and a multi-choppers spectrometer (MCS) of the pulsed source

(ISIS (Ditcot)). In the remainder of this section we will have an overview of the instruments

for TAS ( 4F2, MIRA-2) and MCS (LET) used for different measurements.

3.3.1 Triple axis spectrometer (TAS)

The triple axis spectrometer invented by Bertram Brockhouse at the NRX nuclear experimental

reactor in Canada in 1956 is widely used to study the thermal or magnetic excitations in

the condensed matter systems. The name TAS refers to the axes of three main components

i.e, the monochromator, the sample table and the analyser where the components are used

respectively for selecting the incoming neutron energy, to select the q position in the reciprocal

lattice of the sample and to select the energy transfer between the neutron and the sample.

The monochromator and the analyser typically consists of a materials like copper, beryllium,

pyrolytic graphite or germanium crystals. In order to shape the neutron beam before arriving

to the monochromator, the white beams are adjusted using several other components of the

instrument such as collimators: to remove the components of the beam that are not parallel

to the beam axis, beam shutters: which can be used to access the instrument and slits: for

adjusting the size of the beam, acting as a diaphragm.
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Figure 3.6: A schematic diagram of TAS. Picture is taken from [67]

A schematic diagram of a standard TAS with single monochromator crystal is shown in

Figure.(3.6). A initial wave vector (ki) is selected from a white beam of the neutrons by

allowing to scatter through an angle 2θM at the monochromator. The selected neutron beam

is then made to scatter though an angle Φ in the sample producing scattered neutrons with a

broad range of energies and associated final wave vectors. A particular kf is selected at the

analyser by scattering the white beam at a selected Bragg angle 2θA to record at the detector.

The θM and θA are changed to suit the need of the measurement for selecting particular energy

of the wave vector. With many different combinations of ki and kf , the TAS can be used to

perform a complete scan of the momentum and energy in the physically accessible range of the

reciprocal space of the system.

There are two types of scan modes normally used to investigate the excitations:(1) Constant-

Q and (2) Constant-E method. The Constant-Q method commonly used to probe the phonons

(quantized lattice vibrations) and magnons (quantized spin waves) whereas the constant energy

transfer h̄ω is used for probing the excitations (particles with low lying excited states, For

example, quasi particles and collective excitations). The both methods satisfy the laws of

conservation of scattering vector (Q) and energy (h̄ω) between the sample and the neutron,

given by

h̄Q = h̄(kf − ki)

h̄ω =
h̄2k2i
2mn

−
h̄2k2f
2mn

(3.53)
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3.3.1.1 4F2 - LLB

In a standared TAS with single monochromator to probe the system, the entire spectrometer

has to move in order to select for each different desired incident neutron energy. Due to the

requirement for a substantial flooring arrangement for the instrument to move, the options for

selecting any range of ki to scan the sample is limited. 4F2 TAS (Saclay) instrument located at

the cold neutron source at Laboratoire Lèon Brillouin (LLB) in France overcome this issue with

its double monochromator arrangement. The monochromators are arranged inside the shielding

where one monochromator is flat and the second one is curved and vertically focused on the

sample [64]. Although the 4F2 has the advantage of reduced background and fixed position

of the sample table it has the disadvantage of reduction in the intensity due to additional

reflections and the increased neutron flight path [64].

Figure.(3.7) shows the instrument set-up for the 4F2 at LLB. The double monochro-

mator crystals are made by pyrolytic graphite providing the wavelengths between 6 and 2

Å(1.05 < ki < 2.7 Å−1). This spectrometer is well suited for measuring various excitations

with low energy transfers (h̄ω < 4 meV). The ki dependence of the energy resolution is shown

in Figure(3.8). To measure the sample at different values and directions of the magnetic field,

different magnets are available to use. For measuring sample in horizontal direction up to 0.7

to 1.4 T electromagnets are used. For vertical fields up to 0.14 T the Helmoltz coils and for

up to 1.4 T electromagnet is used. To measure samples at temperatures ranging from 300 K

to 1.5 K 4He cryostat is used. For filtering out the higher order neutrons from the incoming

beam cooled Be or a graphite filters are used. The scattered neutrons are detected using 3He

detectors [68].
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Figure 3.7: Schematic representation of TAS of the 4F2 instrument at the LLB (Saclay) in

France. The picture is taken from [68].

The incoming neutron flux (ki) measured by the monitor is also sensitive to unfiltered

higher harmonic neutrons by the monochromator, the monitor counts were therefore corrected

for higher order neutrons. The experimentally determined ki dependent correction factor [69]

shown in Figure.(3.9) is therefore applied to the monitor neutron counts. The data of the

ki dependent correction factor is fitted using the polynomial given in Equation.(3.54), the

coefficient an’s and a constant determined were given in Table.(3.1).

C(ki) =
9∑

n=1

anki + constant (3.54)
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Figure 3.8: The incident wave vector ki dependence of energy resolution of 4F2, Collima-

tions respectively are : in-pile/M1-M2/M2-sample/sample-analyzer/analyzer-counter. Picture

is taken from [68].

Figure 3.9: 4F2 monitor higher harmonic correction function [69].
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Table 3.1: The fit values for coefficients of the ki dependent monitor correction factor function

(Equation.(3.54)).

Coefficients fit values

a1 -8.013220

a2 21.028071

a3 -27.291570

a4 21.969787

a5 -11.712000

a6 4.154766

a7 -0.943714

a8 0.124103

a9 -0.007177

constant 1.192220

The neutron scattering data that we collected using 4F2 are by varying ki in our experiments

at LLB. Therefore the monitor count values are corrected using the experimentally determined

ki dependent correction factor [69].

3.3.1.2 MIRA-2 - FRM2

MIRA is multipurpose instrument used for measuring various low energy excitations with

excellent resolution in momentum transfer and reduced background noise operating at FRM2

(Garching) in Germany [70]. MIRA has two beam ports MIRA-I and MIRA-2 that use cold

neutrons from the reactor to perform experiments. To investigate our sample we used MIRA-2

beamport in TAS mode shown in Figure.(3.10).

The range of the wavelengths that can be extracted from the two beam ports is 3.5 Å≤ λ ≤

20 Å. From an array of seven horizontally focusing HOPG monochromators the MIRA-2 can

offer shorter wavelengths for probing the systems. The higher order neutrons are filtered out

using a cooled Be-filters. For measuring the samples in the certain environments MIRA-2 is

fully compatible to various environments available at FRM-2 such as dry cryostats, furnaces and

magnets. Low temperature measurements for temperatures ranging from room temperature

down to 3 K can be achieved using a cryogenic free closed-cycle cryostat. To study the sample

in the modest magnetic field, a water cooled electromagnet which can rotate independently

64



delivering the field from -0.3 T to 0.3 T can be used. For fields up to 7.5 T, cryo-magnet of the

FRM II is used. In addition, Helmholtz coil set ups capable of producing fields up to 2.2 and

0.3 T are also available. In the TAS mode MIRA-2 can offer resolution δQ = 0.014 Åat Q=2

Å−1 and an incident energy 4 meV [70].

(a) (b)

Figure 3.10: A schematic and instrument set-up of MIRA2 at FMR2 (Garhing) in Germany.

(a) Schematic view showing MIRA 2 in TAS mode. M, C and S are monochromator, collimator

and sample respectively. (b) MIRA 2 instrument with a sketch of the beam path (offset for

clarity): are incoming neutron beam (ki), the out-going beam (kf ), the monochromator take-off

angle (2θm), the scattering angle (θs) and the direction of the momentum transfer Q [70] . The

picture is taken from [70].

3.3.2 Multi-choppers spectrometer (MCS)

The multi-chopper spectrometer (MCS) is a direct geometry neutron scattering instrument

used extensively for surveying the excitations with various energies simultaneously using a

monochromatic pulse of neutrons with different Ei’s in the extended region of (Q, ω) space using

time-of-flight (TOF) technique. The TOF technique is a method that generally determines the

kinetic energies of the neutrons from the time that they take to travel from one point to another

if the distances are known. The monochromatization of the neutron pulses are achieved with a

crystal followed by a cascade of disk choppers that take care of the desired velocities required

for the need of the experiment for scattering it on the sample. The significant advantage of the

MCS over the TAS is that its ability to scan the sample in a wide regions of phase space where

multiple detectors are used to collect the scattered neutron with different energies. However,
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the the ability to measure wide regions of the reciprocal space comes with a disadvantage of

significant reduction in the intensity on the sample due to the pulsed nature of the neutrons.

This has been remedied with a new breed of direct geometry spectrometer LET located at

ISIS(Ditcot), UK [71].

3.3.2.1 LET - ISIS

LET is a cold neutron multi-chopper direct geometry spectrometer installed on a target station

2 (TS2) with target metal Tungsten located at ISIS (Ditcot), UK and operated by STFC. From

the frequency 50 Hz of the synchrotron, the TS2 take one pulse in five from the existing machine

with a duty cycle of 10 Hz. It is a versatile spectrometer to investigate the excitations with

the energy resolution over a wide range from 8µeV to 80 meV [71]. To measure the samples

at different temperatures a 4He cryostat with a rotation stage is used that offers temperature

ranges from 1.8 to 300 K.

Figure.(3.11a) illustrates the schematic diagram of the LET spectrometer. The LET spec-

trometer positioned at the port of W6 in the TS2 with a flight path between moderator and

sample of 25 m. The neutron pulses are transported to the sample with a straight super-mirror

guide. To shape the pulses arriving from the moderator a total of five disk choppers are used

before scattering it on the sample for the purpose of shaping (chopper 1), to correct for the

frame overlap (chopper 2), pulse removal (chopper 3), containment removal (chopper 4) and

for selecting the desired resolution (chopper 5) of the neutron pulse with a characteristic width.

The samples are kept for the measurement 25 m away from the moderator inside a tank

of volume 100 m3 with no windows between sample and detectors which is 3.5 m away. To

achieve the high intensity neutron pulse a solid methane material is used as the moderators.

The chopper disks are made out of carbon fibre composite material with coatings of 10B for

absorbing unwanted neutrons [71]. The role of the choppers are illustrated in the Figure.(3.11b)

for the case of three measured incident neutron energies, Ei = 5 meV, 1.5 meV and 0.7 meV.

The blue lines represent the trajectories of the neutrons after the scattering event through

the multiple choppers. The split in the trajectories after the sample indicate the neutrons

arrived at the detectors with different energies with a gain or loss of energy transfers from the

sample. The red lines in the Figure.(3.11a) represent the 3He position sensitive detectors (PSD)

composed of 4 m long 384 vertical tubes with diameter 1 inch at 10 atm pressure, arranged

in a half circle fashion by covering the sample at its centre. The tubes are kept straight by

small aluminium straps at the 1/3 and 2/3 positions. When a neutron hits the detector array,
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(a) (b)

Figure 3.11: (a): Global illustration of the LET instrument set-up. (b): (Top) Integrated flux

measured as a function of time from detectors for a vanadium sample. (Bottom) Trajectory of

the neutron pulses from moderator to detector indicating the role of five choppers represented

in blue line [71]. The picture is taken from [71].

it counts the number of neutrons using the nuclear reaction that takes place between neutron

and the 3He, given by

3
2He+

1
0 n→3

1 T +1
1 p, (3.55)

where 3He is the helium isotope, 10n is a neutron, 31T is a tritium and 1
1p is a proton. The counts

of the neutrons are made by measuring the current that generated in the Pt wire at the centre

of the tube where the proton hits.

The measured scattering data S (Q, ω) at the detector is a function of momentum and

frequency measured in four dimensional manifold in the reciprocal space (three reciprocal space

directions and energy) of the sample [73]. For a fixed Ei and the sample orientation the

coordinate frame for a Q position that was chosen in the sample is Qα = Qα (θ, ϕ, tdet,Ψ)

where θ and ϕ are the spherical polar coordinates which defines the direction of the final

wave vector kf , tdet is the time of arrival to the detectors which in turn has the one to one

correspondence with the energy transfers, Ψ is the rotation of the sample about an axis by

some angle to scan the reciprocal space and the subscript α = 1-4. Since the four variables in

the four dimensional volume are independent of each other, the excitations can be visualized
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along any chosen direction. Since the data after the acquisition are automatically corrected and

normalised by the instrument software called Horace, no other manual corrections are needed

to perform except for the background correction [73].

3.4 Analysis software

To fit and analyse the data collected at various neutron scattering experiments, we used Python

codes written by Dr James Poulten and improved and adapted further by Dr Marijn Lucas and

myself. We mainly used curve fitting optimization that uses the non-linear least squares to fit

model functions to data. In addition to Python programming, to make different phase diagrams

and plots of the neutron scattering data I have also used Matlab programming language. To

visualize and analyse the large datasets measured with LET instrument we used Horace software

which is a set of programs that can be used to build, visualize and analyse the large datasets

from time-of-flight neutron inelastic scattering spectrometers [73].
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4
Magnetic phase diagrams of Fe-rich NbFe2 system

In Chapter(2), the composition-temperature phase diagram of Nb1−yFe2+y in zero field was

reviewed. Fe-rich samples show a FM ground state. Approaching the FM quantum phase tran-

sition near the stoichiometric composition a SDW phase emerges that masks the FM quantum

critical point. This chapter contains the results of elastic neutron scattering measurements of

Nb1−yFe2+y in a magnetic field.

4.1 Introduction

Due to the anisotropic nature of Nb1−yFe2+y system the application of a magnetic field in

different directions leads to different phase diagrams. Two cases have been explored: the field

has been applied along the magnetic easy axis (H∥c) and perpendicular to it (H∥a). For H∥c the

presence of a field-induced tricritical point (TCP) has previously been indicated [51]. A main

motivation to explore the H∥a case has been to test whether the transverse field can suppress the

easy c-axis FM state and lead to a field-induced FM QCP. This chapter is organised as follows:

the remainder of this section will contain background information on Nb1−yFe2+y system in a

longitudinal field H∥c (Subsection.(4.1.1)) and in a transverse field H∥a (Subsection.(4.1.2)).

Data fitting of elastic neutron scattering for both field directions is described in Section.(4.2).

The elastic neutron scattering measurements are discussed in Section.(4.3) for the H∥c case

and in Section.(4.4) for the H∥a case.

4.1.1 Longitudinal field H∥c

Recently, the studies of the Nb1−yFe2+y system by Friedemann et.al. [51] in the longitudinal

field H∥c have shown the indications of TCP, a point where the three-phase coexistence ends
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and χq is expected to become critical at QFM and QSDW [51]. The existence of the TCPs

at finite field and temperature was observed from the measurements of AC susceptibility for

a series of Nb1−yFe2+y samples. A scalar two-order parameter Landau model for a system

with second order SDW transition and first order FM transition reproduces the TCP in the

H∥c-T phase diagram. Also, it describes the location of avoided FM-QCP accurately inside the

emergent SDW dome, and the existence of quantum tri-critical point (QTCP) at a finite field.

At the TCP, the critical fluctuations are associated with both SDW and FM phases, therefore it

is argued that the seemingly contradictory temperature dependence of the heat and resistivity

near the SDW QCP is due to the contributions of the SDW and FM fluctuations to the

excitation spectrum associated with the QTCP. The theory in terms of scalar order parameters

(the scalar description of the order parameter in an easy-axis system like NbFe2 is adequate

only as long as the fields point in the easy axis (H∥c)) is formulated by expanding the Landau

free energy in terms of the two-order parameters, given as,

F

µ0
=
a

2
M2 +

b

4
M4 +

α

2
P 2 +

β

4
P 4 +

η

2
P 2M2 −HM (4.1)

where M denotes the uniform magnetization, which couples linearly to the applied magnetic

field whereas P denotes a general further order parameter which does not couple directly to

the field but has a biquadratic coupling to the uniform magnetization [51]. Here, the order

parameter P is associated with the SDW phase.

When the magnetic field is zero, the minima of the global free energy will correspond to

either paramagnetic state M = P = 0 or one of the possible states M = 0, P ̸= 0, M ̸= 0,

P = 0, orM ̸= 0, P ̸= 0 depending on the parameters {a, b, α, β, η}. From the extensive studies

of the polycrystalline and single crystal samples of NbFe2, in zero field, it has been observed

that the mixed phase M ̸= 0, P ̸= 0 does not occur and cooling the system first the SDW

order emerges and then it is replaced by uniform magnetization. This behaviour constrains the

temperature coefficient α(T ) to go through zero at a higher temperature than a(T ). For finite

fields, the expected schematic H∥c-T phase diagram based on Landau’s two-order parameter

theory depending on the sample composition is shown in Figure.(4.1). The Figure.(4.1) shows

the accessible parts of the phase diagrams: in a slightly Nb-rich sample only the top part of the

SDW phase is observed. For stoichiometry NbFe2 sample, the TCP is exposed with a cut-off

just below the tri-critical temperature (T∗). In the Fe-rich sample, all aspects of the phase

diagrams are observed.
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Figure 4.1: Schematic phase diagram based on the Landau’s two order parameter model as ap-

plied to Nb1−yFe2+y. Solid blue and red lines indicate the first order transition phase boundary

of the SDW and FM phases. Red dashed lines indicate the second order SDW phase boundary

between SDW and PM phases at high temperatures. The orange circles indicate the tricritical

points. Gray horizontal lines are the zero temperature assigned to different samples of the

compositions Nb1−yFe2+y. The image is taken from Ref [51].

The magnetic phase diagram established for the Nb0.985Fe2.015 single crystal sample in-

cluding the TCP is shown in Figure.(4.2). The temperatures of the anomalies at TN and TC

signalling the second order SDW-PM and first order FM-SDW transition, respectively, ap-

proaching towards each other with field (see Figure.(4.2)) and merge at Htr ≃ 60 mT and Ttr

≃ 28 K.

The SDW-PM transition remains second order up to Htr, therefore, critical fluctuations at

QSDW are expected along the whole phase transition line up to Htr. The FM-SDW first order

but ends in critical point at Htr (therefore, critical fluctuations at QFM are expected at Htr

only) and this is indicated by the strong enhancement of the susceptibility (χ′(H,T )) observed

at the merger of two signatures at Htr ≃ 60 mT and Ttr ≃ 28 K. For fields above Htr only a

weak maxima reminiscent of crossovers are observed in the susceptibility.

By extrapolating the line of TCPs to zero temperature and at finite field the existence of

quantum tricritical point (QTCP) at which both the uniform and finite wave vector diverge

in the Nb1−yFe1+y system has been established. The global H∥c-y-T generic phase diagram

obtained from the results of the experimental analysis and the use of two-order parameter

Landau theory is shown in the Figure.(4.3).
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Figure 4.2: H∥c - T phase diagram for Nb0.985Fe2.015 single crystal. Colour represents the

real part of the AC magnetic susceptibility χ′(H,T ) as a function of field and temperature.

Markers indicate the second-order transition at TN (white squares), the bulk Curie temperature

at TC (solid black triangle) and the first order bulk Curie temperature TC at zero field (white

circle) [51].

Figure 4.3: The global phase diagram of Nb1−yFe2+y system with axes spanned in the space

are over all composition (y), magnetic field (µH) and temperature(T). The highlighted are the

position of the FM-QCP (blue ball) and QTCPs (orange ball). the underlying ferromagnetic

transition temperatures are obtained from the Arrott plots analysis a(T0)=0 of the system.

The SDW and FM phase boundaries are obtained from the magnetization and susceptibility

measurements [51].
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4.1.2 Transverse field H∥a

While the FM-QCP is masked by SDW order at zero fields the application of a transverse

field (H∥a, i.e., perpendicular to the magnetic easy axis) creates the possibility to reach a

ferromagnetic quantum phase transition (FM QPT), or even an FM QCP depending on the

nature of the transition after the point where the merger of second-order SDW and first order

FM phase boundaries takes place (dashed blue line in Figure.(4.4)). For H∥a, Landau’s two-

order parameter model would have to be formulated using the vector order parameters because

of the more complicated coupling terms to the applied field in contrary to the H∥c phase

diagram. Such a model has not yet been developed for NbFe2.

SDW

FM

PM

H‖a (T)

T(
K

)

40

20

0
QCP

1st order line

Figure 4.4: Speculative schematic H∥a-T phase diagram for Nb1−yFe2+y system in transverse

field for the case where the FM transition turns second order at high field.

Nevertheless, one can anticipate that the application of the magnetic field destabilizes not

only the SDW order but the application of the field perpendicular to the magnetic easy axis

(i.e., the c axis) should also suppress the FM order, so, both magnetic phases are expected to

be suppressed by a H∥a field. There are three main scenarios for the change from the FM state

with moments along c to the field-polarised state with moments along a: 1. the first order

transition terminates in a TCP similar to the H∥c case and a crossover via increased canting

of the moments is found that is suppressed to lower temperatures with increased field; 2. the

first-order FM transition continues to higher fields and is suppressed at a QPT; 3. the FM
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transition turns second-order and is suppressed at an unmasked FM QCP.

4.2 Data fitting

In neutron diffraction the SDW phase appears in the data as satellite peaks of the nuclear

and FM peak positions, QSDW = (QFM ±ℓSDW ). Independent of the field direction the SDW

satellite peaks have first been normalized and then fitted with a standard Gaussian distribution

plus a constant background function. The data fit function is given in Equation.(4.2).

f(x) = Ae
−(

(x−b)2

2σ2
x

)
+ cst (4.2)

where A is the amplitude, b is the peak position (indicates the position of ℓSDW ), σx is standard

deviation and cst is the constant background. The onset transition temperatures of the SDW

order at different fields are determined from the temperature dependence of the satellite peak

properties peak intensity (I), Full Width at Half Maxima (FWHM) and the peak position

(ℓSDW ). The FWHM is calculated using Equation.(4.3) and the peak intensity is calculated

using the Equation.(4.4).

FWHM = 2
√

2ln2σx ≈ 2.355σx (4.3)

I(B, T ) = FWHM ∗A (4.4)

The onset temperature (TC) of FM order is deduced from the temperature dependence

of the FM peak (QFM ) intensity by applying the phenomenological fit function based on the

Landau’s mean field approach (see Section.(1.5)) as given in Equation (4.5)

f(T ) = a ∗ T + b ∗

{
(1− T

TC
) +

∣∣∣(1− T
TC

)
∣∣∣

2

}0.5

+ cst (4.5)

where a, b, Tc, and the constant background cst are fit parameters [30,34].
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4.3 Phase diagram for H∥c

In this section we establish the H∥c-T phase diagram using neutron diffraction measurements

by analysing the temperature dependence of the SDW peaks and FM peak (QFM ) intensities

at different fields (H∥c). The neutron diffraction measurements have been performed on a high

quality Nb0.985Fe2.015 single crystal using triple axis spectrometer MIRA-II at FRM 2.

4.3.1 Data acquisition and correction

The elastic neutron scattering has been performed on a single crystal Nb0.985Fe2.015 with the

support of the beam scientist Dr Markos Skoulatos, MIRA-2 instrument, FRM-2. The sample

has been oriented with a∗ and c∗ axes in the horizontal scattering plane. The higher order

neutrons from the incoming neutron flux (2ki, 3ki) were eliminated by using a Be-filters. The

vertical and horizontal alignments of monocromator and analyser were kept focused and flat

respectively. The uniform magnetic field H∥c was produced using a 2.2 T Helmholtz coil set-

up. The SDW order has been observed via intensity scans across the satellite peak at (1 0

-2+ℓSDW ) position. FM order has been studied via temperature scans at the Bragg reflection

at (1 0 2) where it was observed the nuclear Bragg peak background is comparatively weak.

Table.4.1 summarizes the instrument settings.

Table 4.1: MIRA-II experimental Settings for the neutron diffraction.

MIRA-II

Scattering Plane (1 0 -2) - for SDW, (1 0 2) - for FM

Monochromator horizontal Flat

Monochromator vertical Focused

Analyser horizontal Flat

Analyser vertical Focused

ki = kf 1.55 Å−1

Collimation No

High order filter Beryllium

Scattering mode Elastic
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Previous studies of the temperature dependence of the SDW satellite peaks have revealed

that there is no significant thermal hysteresis with regards to the values of TN and TC , but

that there is thermal hysteresis with regards to the precise SDW ordering wave vectors. [28,55].

Therefore, for the purpose of establishing the H∥c-T phase diagram we used decreasing steps

of 1 K in temperature only between intensity scans across the SDW peaks. To determine TC

up-sweeps in temperature were used.

4.3.2 Neutron diffraction analysis and results

Only a set of representative scans of the neutron diffraction data are presented in this sec-

tion. Before data fitting we first normalized the data to a monitor value of ≈ 38000 counts

corresponding to an exposure time of approximately 5 minutes.

The zero-field temperature dependence of the SDW peak evolution measured in the tem-

perature range between 34 K and 17 K around the Q position (1 0 -2+ℓSDW ) is shown in

Figures.(4.5a & 4.5b). The SDW peaks are fitted using Equation.(4.2). We can see from the

figures that as the temperature is lowered a peak signalling the onset of the SDW order begins

to emerge at temperature TN ≈ 32 K. The amplitude of the peak reaches maximum at T ≈

24 K and then the peak is getting suppressed completely again below the temperature T ≈

18 K. The suppression of the peak is expected given the ordering of ferromagnetism below

temperature TC ≈ 18 K as observed similarly in the previous measurements [28].

The SDW peak intensity normalised to the value at 24 K displayed in Figure.(4.5c). The

normalised intensities shows rise and fall in its value with temperature. The FWHM of the

SDW peak shown in Figure.(4.5d) calculated via Equation.(4.3) stays fairly constant but gets

slightly broadening at low temperature. The peak position ℓSDW of the SDW order shown in

Figure.(4.5e) is fairly constant between 32 K and 18 K but slightly moving towards the nearest

nuclear ℓFM value of -2 below 26 K.
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(a) (b)

(c) (d) (e)

Figure 4.5: Top: (a)&(b) The temperature dependence of the SDW peak in zero magnetic field

at (1 0 -2+ℓSDW ) between the temperature range 34K and 17K. The solid lines are Gaussian

fits ( Eq.4.2). Bottom: The SDW peak properties at different temperatures: (c) SDW intensity,

(d) FWHM (calculated using Equation.(4.3)), (e) ℓSDW value.

Equivalent measurements of the SDW peak at H=30 mT between 34 K and 17 K are shown

in Figures.(4.6a & 4.6b). At this field the peak begins to emerge at TN ≈ 31 K. The amplitude

of the peak reaches maximum at T ≈ 28 K and then the peak is getting suppressed completely

at T ≈ 21 K indicating the ordering of ferromagnetism. Figure.(4.6c) shows the temperature

evolution of the peak intensity normalised to the maximum value at 28 K and 30 mT with

temperature. The FWHM of the SDW peak stays fairly constant but gets slightly broadened

at low temperature (Figure.(4.6d)). The peak position ℓSDW of the SDW order shown in

Figure.(4.6e) is fairly constant between 31 K and 21 K but slightly moving away from the

nearest ℓFM value of -2 below 26 K.
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(a) (b)

(c) (d) (e)

Figure 4.6: Top: (a)&(b): The temperature dependence of the SDW peak at (1 0 -2+ℓSDW ) at

H=30mT between 34K and 17K. The solid lines are Gaussian fits ( Eq.4.2). Bottom: The SDW

peak properties at different temperatures: (c) Normalised intensity, (d) FWHM (calculated

using Equation.(4.3)), (e) ℓSDW value.

Figure.(4.7a) shows data obtained at H = 55 mT between 29 K and 23 K. At this increased

field value we can see the SDW peak observed at field zero is almost suppressed except for the

hint of a peak appearing at T ≈ 26 K. The absence of peak of the SDW peak except around

26 K indicates the almost complete suppression of SDW order at 55 mT. ferromagnetism is

expected to form below 26 K. Figure.(4.7b) shows the normalised SDW peak intensity which

is reaching a maximum at 26 K and 55 mT with temperature. The FWHM of the SDW signal

has a minimum at 26 K (see Figure.(4.7c)). The peak position ℓSDW of the SDW peak shown

in Figure.(4.7d) is found to shift away from the value observed at fields below 55 mT except

at T ≈ 26 K.
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(a)

(b) (c) (d)

Figure 4.7: Top: (a): The temperature evolution of the SDW peak (1 0 -2+ℓSDW ) at H=55mT

between 34K and 17K. The solid lines are Gaussian fits ( Eq.4.2). Bottom: The SDW peak

properties at different temperatures: (b) Normalised intensity, (c) FWHM (calculated using

Equation.(4.3)), (d) ℓSDW value.

Table.(4.2) shows TN and TC obtained from the analysis of the temperature evolution of

the SDW peak by considering its onset and complete suppression of its peak intensity in the

whole crystal respectively at different magnetic fields as described above.
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Table 4.2: Field dependence of the transition temperature TC of the full suppression of SDW

order and formation of the FM order in the whole crystal and TN of the onset of SDW order.

The errors are roughly ±1K

Magnetic field (mT) TC (K) TN (K)

0 18 32

10 18 32

20 19 32

30 20 31

40 21 30

50 23 28

55 26 26

In the following, we provide the analysis of elastic scattering from the FM order to obtain

the onset ferromagnetic transition temperature (TC) at the weak nuclear Bragg reflection QFM

= (1 0 2). Measurement have been done in the field range 0 - 80 mT. A selection of temperature

scans of the peak intensity is shown in Figure(4.8). The FM intensities are normalised to their

maximum (i.e, low temperature) values. The onset TC ’s are extracted by fitting Equation(4.5)

Figure 4.8: The selected temperature dependence of FM nuclear intensity (QFM = (102) r.l.u.)

measured at different magnetic fields. The TC onsets are obtained by fitting Eq.4.5.
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The sharp feature of the ferromagnetic signal observed at zero field is smoothed out with

field. Above this field the onset of FM shows a similar feature. The Curie temperature TC

extracted from the fits using Equation(4.5) is increasing with field. The TC extracted from the

fits are given in Table.(4.3)

Table 4.3: The onset Curie temperature TC at different magnetic fields extracted from the fits

using Equation.(4.5) to the temperature dependence of the peak intensities at (1 0 2).

H (mT) 0 10 20 30 40

TC (K) 24.72(0.03) 25.43(0.10) 26.21(0.10) 26.73(0.12) 27.73(0.13)

H (mT) 50 55 60 70 80

TC (K) 27.55(0.15) 26.63(0.15) 28.24(0.13) 28.17(0.20) 29.44(0.29)

4.3.3 Discussion

The resulting H∥c-T phase diagram for Nb0.985Fe2.015 obtained from the presented single-crystal

neutron diffraction measurements is displayed in Figure.(4.9).

The phase diagram shows that with increasing field the second order (TN ) and first order

(TC) transitions shift to lower and higher temperature respectively, and merge eventually at

a critical field of Htr ≃ 53 mT and critical temperature Ttr ≃ 26.5 K. This point could be

interpreted as the TCP proposed by Friedemann et al. based on AC susceptibility measure-

ments [51]. The resulting phase diagram of that work (Figure(4.2)) has been confirmed in this

elastic neutron scattering study by direct observation of FM and SDW order in Nb0.985Fe2.015.

The observed location of the TCP agrees well with the results by Friedemann et al. Htr ≃ 60

mT and Ttr ≃ 28 K for the same composition established from the AC magnetic susceptibility

χ′ (H,T ) measurements.
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Figure 4.9: H∥c-T phase diagram of Nb0.985Fe2.015 obtained from elastic neutron scattering.

The colour scale represents the neutron intensities of the SDW peaks. Squares indicate the

onset TN (white) and full suppression TC (red) of SDW order defined as the initial appearance

and full suppression of SDW peaks at (1 0 -2+ℓSDW ) as well as the onset of FM order TC

(orange) defined as the appearance of an FM signal at (1 0 2). The purple circle represents the

smeared out TCP (Htr ≃ 53 mT, Ttr ≃ 26.5 K). Dashed lines are the guide to the eye.

The onset Curie temperature (TC) obtained from the temperature scans of the FM signal

suggest that the SDW peak intensity coincides with the FM onset transition temperature

TC , below which there is a temperature range in which both SDW and FM order appear to

coexist. This overlap can be attributed to the distribution of transition temperatures within

the sample which was observed similarly in the previous neutron diffraction measurements at

zero field (see Section.(3.1.2)) [28]. The distribution of transition temperatures follows from

the combined effect of small sample inhomogeneity and a strong sensitivity of the transition

temperatures on the precise Nb content. A consequence is that the TCP location is somewhat

smeared out.

To discuss in more detail whether a TCP has been observed we recall the expectations for the

field evolution of the phase transitions from the two-order parameter Landau model (Section

(4.1.1)): the SDW transition is expected to remain second order and the FM transition is

initially first order but terminates in a critical point at the suspected TCP and changes into

a crossover at higher field. In this study the onset TC increases with magnetic field and even

beyond the TCP. The change of the TC signature at (1 0 2) from a fairly sharp kink below
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Htr to a broader feature at and above Htr could be caused by the change of the order of phase

transition from first order below Htr to second order at Htr and possible change to a crossover

above Htr. A proof of this is difficult, however, due to the small inhomogeneity that is present

in the large neutron sample but the findings are not inconsistent with the presence of a TCP.

Equally the continuous onset of the SDW order at finite field as shown in Figure.(4.6c) suggests

that the SDW transition continues to be second order in field. The presence of small sample

inhomogeneity prevents strong conclusions, but the reported observations are not inconsistent

with the presence of a TCP.

The result can be compared with a similar H∥c-T phase diagram obtained for the more

Fe-rich Nb0.981Fe2.019
1 sample [74]. The phase diagram is shown in Figure.(4.10). The phase

diagram obtained from the SDW peak intensity in elastic neutron scattering measurements is

qualitatively similar to the results presented here. The effect of increased Fe content is merely

an increase in the transition temperatures including the temperature of the the tricritical point

Ttr ≃ 33 K. Furthermore, the critical field is reduced to Htr ≃ 20 mT.

In
te

n
si

ty
 (

N
o
rm

a
li

ze
d

) 

B(T)

T
(K

)

Figure 4.10: H∥c-T phase diagram of Nb0.981Fe2.019
1 single crystal obtained from elastic neutron

scattering at the SDW peak position (1 0 -2-ℓSDW ) [74]. Colour scale represents the neutron

intensities of the SDW peaks each normalised to peak at H=0 T and T=33 K. The solid black

line serves the guide to the eye to indicate the SDW phase boundary.

The phase diagram clearly shows the existence of the SDW phase between the region ≈ 30 K

and 36 K, darker regions represents the strong ordering of the SDW signal. With introduction

1The same sample of our measurement with y later was confirmed to be 0.020
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of the external magnetic field the SDW phase is suppressed completely for the field ≈ 20 mT

at 33 K, beyond this field and temperature the SDW phase become undetectable and away

from 33 K the critical field decreases rapidly. A rough phase boundary enclosing the existence

of the SDW phase in the small parameter space between the temperature 30 K and 36 K and

the field below ≃ 20 mT suggests that the existence of possible TCP point in this composition

may be found at H ≃ 20 mT and at T ≃ 33 K.

Figure.(4.11) shows the composition dependence of the suspected TCP temperature and

field obtained in this work and previous neutron and AC magnetic susceptibility studies [51,

74]. The combined results show a common trend for the composition dependence of the TCP

location that leads to a QTCP at y ≃ -0.003 at Htr ≃ 500mT [51].

(a) (b)

Figure 4.11: Composition dependence of (a) temperature and (b) field for Nb1−yFe2+y series of

samples obtained from ours, Paulten and Friedemann et.al., [51,74]. The dashed black line are

guide to the eye. Glowing purple spheres indicate the QTCP obtained from the extrapolation

of TCPs by Friedemann et.al.

4.4 Phase diagram for H∥a

This section presents the H∥a-T phase diagram using neutron diffraction measurements by

applying the field perpendicular to magnetic easy c axis. We have tested whether the transverse

field can suppress the easy c-axis FM state and lead to a field-induced FM QCP. Similar to

the previous Section.(4.3) we have investigated the SDW peak evolution and the temperature

dependence of the FM signal at different fields. The neutron diffraction measurements have
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been performed on high quality Nb0.981F2.020 single crystal using triple axis spectrometer 4F2

at LLB with the support of the beam scientist Dr Jean-Michel Mignot.

4.4.1 Data acquisition and correction

The single crystal with composition Nb1.981Fe2.020 has been oriented with a* and c* axes in the

horizontal scattering plane. Table.4.4 summarize the instrument settings used. To eliminate

the higher order neutrons Be-filters have been used. The vertical and horizontal alignments

of the monocromator and analyser have been focused and flat respectively. The uniform field

H∥a was produced using a 6 T cryomagnet.

4F2

Scattering Plane a*-c*

Monochromator horizontal Flat

Monochromator vertical Focused

Analyser horizontal Flat

Analyser vertical Focused

ki = kf 1.3 Å−1

Collimation No

High order filter Beryllium

Scattering mode Elastic

Table 4.4: 4F2 experimental Settings for the neutron diffraction.

At different fields SDW order has been observed via ℓ scans across the satellite position (-1

0 -2+ℓSDW ) at different temperatures. FM order has been measured via temperature scans at

the weak nuclear peak position (-1 0 -2).

Due to the temperature-hysteresis of the SDW ordering wave-vector position [28, 55], we

measured the evolution of the SDW peak with decreasing (1K) steps in temperature only. To

determine TC up-sweeps in T were used.
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4.4.2 Neutron diffraction results and analysis

The collected data for the SDW peak evolution have first been monitor corrected to filter out

the higher harmonic neutrons from the incoming neutron flux (ki). The monitor correction are

applied to the data using the experimentally determined ki dependent correction factor (see

Chapter(3)).

Before presenting the results in a transverse field we look at the zero-field results. Fig-

ure.(4.12) shows the temperature evolution of the SDW peak between 40 K and 30 K. On

lowering the temperature a magnetic Bragg peak starts to emerge at QSDW = (-1 0 -2+ℓSDW )

at temperature TN ≈ 38 K. The peak is reaching a maximum at T ≈ 35 K and then the

amplitude is reduced on further decreasing the temperature. The SDW peak gets completely

suppressed below temperature T ≈ 32 K. The suppression of the peak is expected given the

ordering of ferromagnetism below temperature T ≈ 32 K, observed similarly in the previous

neutron diffraction measurements [28]. The SDW peak properties are extracted by using a

fit function as given in Equation.(4.2). Figure.(4.12b) shows the temperature evolution of

the intensity normalised to the peak at 35 K. The FWHM of the SDW peak calculated via

Equation.(4.3) stays fairly constant but gets slightly broadened at low temperature shown in

Figure.(4.12c). The peak position ℓSDW of the SDW ordering shown in Figure.(4.12d) is slightly

moving towards the nearest ℓFM value of -2 r.l.u. with decreasing temperature.
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(a)

(b) (c) (d)

Figure 4.12: Top: (a) The temperature dependence of the SDW peak in zero magnetic field

at (-1 0 -2+ℓSDW ) between 40 K and 30 K. The solid lines are Gaussian fits( Equation.(4.2))

Bottom: The SDW peak properties at different temperatures; (b) Normalised intensity, (c)

FWHM (calculated using Equation.(4.3)), (d) ℓ position.

In Figure.(4.13) we show the temperature evolution of the SDW peak measured at 0.5 T

between 39 K and 30 K. A peak appears at T ≈ 35 K. The peak reaches maximum in its

intensity at T ≈ 33 K and then is fully suppressed. The SDW peak properties extracted by

fitting are shown in Figure.(4.13b) shows the temperature evolution of the intensity normalised

to the maximum value at 35 K, Figure.(4.13c) shows the FWHM of the SDW peak calculated

via Equation.(4.3) which stays fairly constant but gets slightly broadened at the edges of the

measured temperature range. The peak position ℓSDW of the SDW ordering displayed in

Figure.(4.13d), shows that the obtained values are fairly constant in the temperature range

that shows significant integrated SDW peak intensity.
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(a)

(b) (c) (d)

Figure 4.13: Top: (a) The temperature dependence of the SDW peak with magnetic field 0.5

T at (-1 0 -2+ℓSDW ) between 39 K and 30 K. The solid lines are Gaussian fits (Equation.4.2).

Bottom: The SDW peak properties at different temperatures; (b) Normalised intensity, (c)

FWHM (calculated using Equation.(4.3)), (d) ℓ position.

Figure.(4.14) shows the measurements at H = 1 T range between 41 K and 29 K. We can see

that at this field SDW peak is almost suppressed at field 1 T except for the very small peak at

T≈ 32 K. As we did not observe the emergence of any peak signalling the onset of SDW order

above the field 1 T. H = 1 T represents the transverse critical field for the suppression of SDW

order. Figure.(4.14b) shows the normalised SDW peak intensity does not reveal the presence

of an SDW peak. The FWHM of the SDW peaks are broadened except at temperature 32 K,

see Figure.(4.14c). The ℓSDW values shown in Figure.(4.14d) are observed to shift away from

the value observed at fields below 1 T except at T≈32 K.
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(a)

(b) (c) (d)

Figure 4.14: Top: (a) Temperature dependence of the SDW peak at 1 T at (-1 0 -2+ℓSDW )

between 39 K and 30 K. The solid lines are Gaussian fits ( Equation.(4.2)) Bottom: The SDW

peak properties at different temperatures; (c) Normalised intensity, (d) FWHM (calculated

using Equation.(4.3)), (e) ℓ position.

Table.(4.5) shows the temperatures TN of the onset of SDW order and TC of the full

suppression of SDW order and formation of FM order in the whole crystal as obtained from

the properties of the temperature evolution of the SDW peak at different magnetic fields (H∥a).
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Table 4.5: H∥a dependence of the transition temperatures TC of the full suppression of SDW

order and formation of FM order in the whole crystal and TN of the onset of SDW order.

Magnetic field (T) TC (K) TN (K)

0 32 38

0.5 31 35

1 32 32

In the following, we will present the analysis of magnetic neutron scattering from the FM

order to obtain the onset ferromagnetic transition temperature (TC) at the Bragg reflection

QFM = (-1 0 -2). Measurements have been done in the field range 0 - 2.5 T. A selection of

temperature scans of the peak intensity is shown in Figure.(4.15). The intensities are normalised

to the maximum value (15 K intensity of the 0T data set). The onset TC ’s are extracted by

fitting Equation.(4.5).

Figure 4.15: A selection of temperature scans at QFM = (-1 0 -2) measured at different magnetic

fields. The TC onsets are obtained by fitting with Equation.(4.5.)

Figure.(4.15) shows that for zero magnetic field the ferromagnetic transition is observed at

TC ≈ 38 K as obtained similarly in various previous measurements on the same composition,

demonstrating the good reproducibility of the data [28, 55, 74]. On increasing the magnetic

field, the sharp feature of the ferromagnetic signal is broadened. The Curie temperatures TC
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extracted from the fits using Equation.(4.5) are given in Table.(4.6).

Table 4.6: The onset Curie temperature TC at different magnetic fields extracted from the fits

using Equation.(4.5) to the temperature dependence of the peak intensities of ferromagnetic

signals.

H (T) 0 0.5 1 1.5 2 2.5

TC (K) 34.61(0.08) 32.24(0.08) 35.53(0.12) 32.66(0.152) 34.49(0.32) 33.02(0.14)

4.4.3 Discussion

The resulting H∥a-T phase diagram from neutron diffraction measurement on Nb0.980Fe2.020

single crystal is displayed in Figure.(4.16). It can be seen that the onset second order transi-

tion temperature TN decreases and the first order bulk FM transition temperature TC slowly

increasing with increasing magnetic field and eventually both phase transitions approaching

each other close to 1 T.

The onset ferromagnetic transition temperature TC obtained from the fits of the FM inten-

sity (QFM = (-1 0 -2) r.l.u.) at different magnetic fields show that the TC ’s are fairly constant

within the range of the magnetic fields we measured. From our measurements we didn’t see any

decreasing trend of the TC as speculated in Subsection(4.1.2) beyond the 1T, with field applied

transverse to the magnetic easy axis c. The difference in TC obtained from the SDW and FM

signals suggests that there is a temperature range in which both SDW and FM orders coexist.

This overlap can be attributed to the distribution of transition temperatures within the sample

which is also observed similarly in the previous neutron diffraction measurements [28].

From the raw data in Figure.(4.15) one can see that the feature defining TC is broadening

and getting less pronounced with increasing field. This makes it difficult to follow the FM signal

beyond 1 T. This observation could be caused by the change of the FM transition to a crossover

at higher fields. As the field is perpendicular to the FM ordered moment, it is expected that the

crossover region will be suppressed to lower temperatures with further increased field and that

a critical field can be reached for the location of the crossover low temperatures. Therefore, the

neutron data suggests that there is no field-induced QPT or unmasked FM QCP in NbFe2 as

otherwise a well-defined FM onset signal should have been observed down to low temperature.

Whether the SDW is suppressed in a TCP as in the H∥c case will depend on where the first-

order FM transition terminates in field and whether the SDW transition stays second order,
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which cannot be conclusively determined with the data set presented here.
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Figure 4.16: H∥a-T phase diagram of Nb0.980Fe2.020 obtained from elastic neutron scattering.

The colour scale represents the neutron intensities of the SDW peaks. Squares indicate the

onset (white) and full suppression (red) of SDW order defined as the initial appearance and

full suppression of SDW peaks at (-1 0 -2+ℓSDW ) as well as the onset of FM order (orange)

defined as the onset of an FM signal at (-1 0 -2) at different fields. Lines are guides to the eye.
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5
Longitudinal field evolution of magnetic excitation spectrum in

Fe-rich NbFe2

In the previous chapter we used magnetic neutron diffraction to explore the magnetic phase

diagram of the Nb1−yFe2+y system with magnetic field applied in different directions. Two

cases has been studied: the field applied along the magnetic easy axis (H∥c) and perpendicular

to it (H∥a). In the H∥c magnetic phase diagram we determined the location of Tri-Critical

Point (TCP) in an Fe-rich sample. In this chapter, we investigate how the magnetic excitation

spectrum evolves when approaching the field tuned TCP in the phase diagram. We perform

inelastic neutron scattering experiments to investigate this evolution.

5.1 Introduction

As we have established the location of the TCP in the previous Chapter(4), in this chapter, we

report the evolution of the low-energy excitation spectra in the TCP-containing H ∥ c−T phase

space measured using triple axis spectrometer MIRA-2 at FRM 2 with the support of the beam

scientist Dr Markos Skoulatos on high quality single crystal with composition Nb0.985Fe2.015.

Low energy magnetic excitations have been collected in the reciprocal space between (0 0 2)

and (0 0 2.4) which also includes QSDW . The chapter is organised as follows: First, we de-

scribe the data acquisition of the unpolarised inelastic neutron scattering experiment measured

in Section(5.2). Then we outline the data correction in Section.(5.3) and data analysis in Sec-

tion.(5.4). Finally we will present the results and discussion in Section.(5.5) and Section.(5.6)

respectively.
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5.2 Data acquisition

In this section we present the data acquisition of inelastic neutron scattering experiment. We

performed the inelastic neutron scattering in the constant-Q method where the energy scans

are carried out by tuning the kf and keeping ki = 1.55 Å−1 fixed. Table.(5.1) summarize

the instrument settings used for measuring the unpolarised inelastic neutron scattering. The

same high quality single crystal with composition Nb0.985Fe2.015 used for establishing the TCP

previously in Chapter(4) was used to collect the low energy magnetic excitations. To produce

the uniform field of H∥c a 0.3 T Helmholtz coil set-up was used. The higher order neutrons from

the incoming neutron flux (ki) are eliminated using a Be-filters. The vertical and horizontal

alignments of the monocromator and analyser are kept focused and flat respectively.

(53 mT, 27 K)
(0 T, 30 K)

(100 mT, 31 K)

(200 mT, 37 K)

(53 mT, 3 K)
(200 mT, 3 K)

(75 mT, 29 K)

(25 mT, 30 K)
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Figure 5.1: H∥c-T phase diagram of Nb1−yFe2+y obtained from elastic neutron scattering. The

Colour scale represents the neutron intensities of the SDW peaks. Squares indicate the onset

TN (white) and and full suppression TC (red) of SDW order defined as the initial appearance

and full suppression of SDW peaks at (1 0 -2+ℓSDW ) as well as the onset of FM order TC

(orange) defined as the appearance of an FM signal at (1 0 2). Purple circle represents the

broadened TCP (Htr ≃ 53 mT, Ttr ≃ 26.5 K). Dashed lines are the guide to the eye. Black

stars indicate the locations in H ∥ c− T phase space where measurements have been between

the Q positions (0 0 2) and (0 0 2.4) and the dots indicate locations where measurements have

only been done at QFM and/or QSDW .
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Table 5.1: MIRA-II experimental Settings for the unpolarised inelastic neutron scattering.

MIRA-II

Scattering Plan (h 0 ℓ)

Monochromator horizontal Flat

Monochromator vertical Focused

Analyser horizontal Flat

Analyser vertical Focused

ki 1.55 Å−1

Collimation No

High order filter Beryllium

Figure.(5.1) shows H ∥ c − T phase diagram obtained from the temperature dependence

of the SDW satellite peak and the FM peak (QFM ) intensity with different fields (H∥c) as

explained in the previous chapter (see Section(4.4)). The (H∥c, T) positions where we have

collected inelastic neutron scattering data are also shown in the figure. We have ensured to

measure in the region of the TCP (broadened by a small amount of sample inhomogeneity),

which is centred at Htr ≃ 53 mT and Ttr ≃ 26.5 K.

5.3 Data correction

5.3.1 Higher-order monitor correction and normalisation

The inelastic neutron scattering data depending on the intensity of the signal was collected

with different measurement times during the energy scans. The counting of the signals were

longer at energies where the signals were weaker. The collected data have been then normalized

to a unique monitor count value Nvalue ≃ 5000 counts before applying data fitting equating

roughly to 5 min exposure time. The higher order monitor correction has not been done due

to use of constant ki and consequence that correction would only be a common scaling factor

to all data of this measurement.
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5.3.2 Energy shift correction

The elastic line in the MIRA-2 data is often seen to be shifted from its nominal zero energy

position by an amount of the order of up to Es ≈ 0.05 meV. We compensated for Es by applying

corresponding corrections before fitting the data.

Figure 5.2: Representative illustration of the energy shift correction for the Q position (0 0

-1.8) measured at H=0 T and T=6 K during LLB-I at 4F2. The data shows the energy scan

with uncorrected (blue) and corrected (violet) energy shift. The inset shows the magnified

view of the elastic line with uncorrected Gaussian fit centred at Es (blue dased line) and

energy shift corrected at 0 meV (violet dashed line). The solid lines represents the Gaussian

fits (Equation.(5.1))

Figure.(5.2) illustrates the energy shift in the measured data collected during MIRA-2 for

the representative Q position (0 0 2.1) at H = 0 T and T = 30 K. The figure consists of energy

scan with uncorrected (blue) and corrected (violet) scattering data. We obtained the energy

shift (Es) by fitting three parameter Gaussian function given in Equation.(5.1),

Gaussian function:

f(x) 7−→ Aexp
(
− (x− b)2

2σ2

)
+Cst, (5.1)

where A is the amplitude of the Gaussian peak, b is the centre of the peak, σ is the peak width
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and Cst is a constant. The data was then corrected by adding the offset energy (Es) to the

energy transfer.

5.3.3 Background subtraction

In the following, we present the details of subtraction of background contribution to the inelastic

signal measured from the sample to improve the quality of the signal. We collected background

data at Qb = (0.85 0 1.4) position in zero magnetic field at temperature 3 K and 30 K, far away

from the region around QFM = (0 0 2) with its significant low energy excitations to investigate

the temperature dependence.

After applying the monitor correction and the normalisation to the data as explained in the

subsection(5.3.1) we fitted the data with a three parameter Gaussian function and a constant

as given in Equation.(5.2).

f(x) 7−→ Aexp
(
− (x− b)2

2σ2

)
+ cst (5.2)

where A is the amplitude of the Gaussian peak, b is the peak centre, σ is the peak width and cst

is a constant term. The peak centre b is a fit parameter, as no correction for Es has previously

been done for the background data. Figure.(5.3) shows the background signal measured at H

= 0 T at temperature T = 3 K and 30 K. By fitting the Equation.(5.2) we determined the

energy at which the elastic line scattering is insignificant (where the Gaussian peak amplitude

is less than 1%) as ±0.2 meV (indicated by the green dashed lines in the Figures (5.3a and

5.3b)). Figure.(5.3c) shows the temperature dependence of the constant background obtained

by fitting the Equation.(5.2). From the data fit we found that the constant background has

no significant dependence with the temperature therefore we used the average value of the

temperature independent constant background of 5.9 ± 0.9 counts/5mins to subtract it from

the normalised data. The parameters obtained by fitting the Equation.(5.2) to the background

signals are given in Table.(5.2.) The values obtained for the amplitude of the background

signal is found to have temperature dependence where it decreases with temperature as shown

in Figure.(5.4). The rest of the Gaussian fit parameters are independent of the temperature

hence we used the average of the fit parameters to subtract the background contribution.

f(x) 7−→ m ∗ x+ c (5.3)
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where f(x) is the linear function with slope m and constant c. The values of the fit parame-

ters obtained from the fit for m and c are -4.8 counts/K and 766 counts/5mins respectively.

Table.(5.3) shows the extrapolated values for the signal amplitude at different temperatures to

subtract the background signal contribution to the inelastic neutron scattering data.

(a) (b)

(c)

Figure 5.3: Background measurement of inelastic neutron scattering data measured at Qb =

(0.85 0 1.4) at (a) : H = 0 T, T = 3 K and (b): H = 0 T, T = 30 K. The red solid line indicates

the Gaussian fit function with a constant (Equation.(5.2)), the green dashed lines represent the

point above which the elastic line contribution is insignificant ( ±0.2 meV). (c): The data of

the constant background where the elastic line contribution is insignificant. The blue dashed

line indicates the average constant background value (5.9±0.9).
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To include the temperature dependence of the background in the inelastic neutron scattering

data we extrapolated temperature evolution of the amplitude of the background signal using

the fit parameters extracted from the linear fit function (Equation.(5.3))

Table 5.2: The fit parameters of the background measured at H = 0T at temperatures T =

3K and 30K. The background signal is fitted using Equation.5.2.

Fit parameters T =3 K T=30 K

Amplitude (A) 752 ± 29 624 ± 49

Standard deviation (σ) 0.106 ± 0.003 0.111 ± 0.005

Constant (c) 5.9 ± 0.5 5.9 ± 0.6

Figure 5.4: The temperature dependence of the amplitude of background signal measured at

(0.85 0 1.4) at the field H=0T. The red line indicates linear fit to obtain the temperature

dependence.

5.4 Data Fitting and Analysis

In this section, we will explain how we fitted MIRA-2 data after the necessary corrections

applied to the raw scattering data as explained in the previous sections. To extract the physical

parameters, we fitted the whole signal including the elastic line for all measured Q positions

except for the Bragg position QFM = (0 0 2). In this case the fits would be dominated by the

large intensities of the elastic line and lead to large errors in the fit parameters describing the

magnetic excitations. In such a case, we only included the tail of the elastic line up to 1% of
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Table 5.3: The extrapolated amplitude of the background signal for different temperatures.

The values are calculated using Equation.5.3.

Temperature (K) Peak amplitude (Counts)

3 752

27 639

29 629

30 623

31 620

37 591

its maximum value in the fitted data.

5.4.1 Fit functions

To investigate the evolution of the magnetic excitations, the corrected data measured at differ-

ent magnetic fields and temperatures were fitted using a damped harmonic oscillator model for

the imaginary part of the dynamical susceptibility. This has been motivated by the prediction

of over-damped harmonic oscillator behaviour in spin-fluctuation theory (see Chapter(1)) [39].

We used three-parameters damped harmonic oscillator function (DHO) or two-parameters over-

damped harmonic oscillator function (ODHO) to fit the inelastic data [39,55,74].

The DHO function:

fDHO(E ) =
Eχ0DE

2
0

(E2 − E2
0)

2 + E2D2
, (5.4)

where E is the neutron energy loss (in meV), χ0 is the static susceptibility or resonance am-

plitude (in counts), D is the damping factor (in meV), E0 is the resonance energy (in meV).

Additionally, one can define Γ := E2
0/D which can be interpreted as the quasielastic linewidth

in the overdamped regime (see below).

Many E scans have been fitted well using the DHO function due to the presence of a distinct

inelastic peak away from the elastic signal. However, there are scans where it is difficult to

identify a distinct inelastic peak. These scans occur when the magnetic excitations are either

very soft or overall rather weak. We used the ODHO function in those situations to fit the

data instead, given in Equation.(5.5).
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fODHO(E ) =
Eχ0Γ

E2 + Γ2
, (5.5)

where Γ is the line width (in meV) [39].

5.4.2 Detailed balance

To account for detailed balance (see Chapter(3)) this has also been included via the factor in

Equation.(5.6) [62].

fdb(E ,T ) =
1

|1− exp( −E
kBT

)|
(5.6)

5.4.3 Representative examples of the fits

Figure.(5.5) shows the representative examples of the plots fitted with DHO functions to the

data measured at MIRA-2 for QFM = (0 0 2) position measured at H = 53 mT, T = 3 K

(Figure.(5.5a)) and H = 0 T, T = 30 K (Figure.(5.5b)). In the damped regime (H = 53 mT, T

= 3 K), the magnetic excitations form a distinct peak away from the elastic line approximately

at 0.5 meV (see Figure.(5.5a)), in the overdamped regime the signal becomes quasi elastic

where the features of the magnetic excitations are hard to distinguish from the elastic line (see

Figure.5.5b)). Fits at the ferromagnetic ordering wave vector QFM = (0 0 2) are obtained by

excluding the counts above 1% of the maximum elastic line intensity. Due to the instrument’s

finite resolution ellipsoids the detected signals are often composed of two Gaussian peaks at the

elastic line for the Q positions measured at MIRA-2. In those cases, to fit the whole signal we

used two Gaussian functions to fit the elastic line along with the functions of detailed balance

and DHO or ODHO for the inelastic part of the signal.

Figure.(5.6) shows the representative examples of two Gaussian peaks observed at the elastic

line for selected Q positions scanned at the elastic line for the Q position (0 0 2.05). The fit

function used for fitting the whole signal with two Gaussian peaks is given in Equation.(5.7).

ffit(E ) = fDHO/ODHO(E )Db(E ) +A1exp
(
− (E− b1)

2

2σ21

)
+A2exp

(
− (E− b2)

2

2σ22

)
(5.7)
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where A1 and A2 are the amplitudes of the Gaussian peak 1 and 2, σ1 and σ1 are the peak

widths and b1 and b2 are the Gaussian peak centres.

(a) (b)

Figure 5.5: Representative plots of the data fitted with DHO function at different regime. (a)

Data measured at H = 53 mT, T = 3K (b) Data measured at H = 0 T, T = 30 K. The solid

line (red) is the DHO fit function. The vertical green dashed lines delimit the energy range

including the maximum of the elastic line that was excluded from the whole signal fit.

Figure 5.6: Representative plot of two Gaussian functions fitted to elastic line of the Q position

(0 0 2.05) measured atH = 0 T, T = 30 K. The solid yellow line represents the whole fit function

including the elastic and inelastic line using Equation.(5.7) (fDHO is used for fitting the inelastic

part). The green and red shaded area and the dashed lines represent de-convoluted Gaussian

functions composed of the elastic line data.
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5.5 Results

In this section, we report the results obtained across key areas of the H∥c-T phase diagram

(see Figure.(5.1)). The focus has been on the evolution of the low energy magnetic excitations.

Figure.(5.7) shows the plots for different ℓ positions measured across QFM at various (H, T)

points in the phase diagram, they are as follows, Figure.(5.7a) very close to SDW-PM transition,

Figure.(5.7b) at the TCP (H = 53 mT and T = 27 K), and Figure.(5.7c) and Figure.(5.7d) are

measured at FM-PM transitions. All the excitation spectra measured at various points in the

phase diagram across QFM are dominated by quasielastic scattering. The observations close to

the SDW-PM transition are similar to earlier studies of Nb1−yFe2+y [55,74]. In the points (H,

T) above the TCP, there is a FM-PM crossover while the SDW phase is completely suppressed

at field H = 53 mT and temperature T = 26.5 K as it was shown in Chapter(4).

The plots in the Figure.(5.7) shows the whole signal fitted with DHO model using the

Equation.(5.7) except the QFM = (0 0 2) position where we only included the tail of the elastic

line (up to 1% of the maximum elastic line amplitude). For the Q position (0 0 2.3) far away

from QFM , the intensity of the elastic line shows a substantial drop.

The fit parameters extracted by fitting the DHO model (Equation.(5.7)) to the magnetic

excitations of the Q positions (0 0 ℓ) are shown in Figure.(5.8) and Figure.(5.9). Figure.(5.8)

shows the ℓ dependence of the fit parameters χ0 and Γ, and Figure.(5.9) shows the ℓ dependence

of the fit parameters D and E0.

For H= 0 T and T = 30 K (Figure.(5.8a)), the χ0 has a maximum at ℓ = 2.15 r.l.u. and

Γ has a minimum at the same position of Γ ≈ 0.115 ± 0.011 meV. The obtained value for Γ

is found to be close to the resolution of the instrument. Due to the closeness of the reported

Γ value to the instrumental resolution the value can only be interpreted as an upper bound of

the true value of Γ. The ℓ dependence of the fit parameters at TCP (H=53mT, T=27K, see

Figure.(5.8b)) shows that χ0 has a maximum and Γ has a minimum (Γ ≈ 0.140± 0.009 meV,

value close to the instrumental resolution, due to the closeness of the reported Γ value to the

instrumental resolution the value can only be interpreted as an upper bound of the true value

of Γ) at ℓ = 2.15 r.l.u., similar to the result at H = 0 T at the SDW-PM phase transition.

However, here, at the TCP, there is an additional local maximum in the ℓ dependence of χ0

at ℓFM = 2. Also, Γ increases much less towards ℓFM than in the case of H = 0 T at the

SDW-PM transition. For the measurements at FM-PM phase transitions above the TCP, the
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ℓ dependence of the χ0 and Γ behaviour is qualitatively similar to the findings at the TCP

for H=100 mT, T=31 K (Figure.(5.8c)), and the H=0 T result for the H=200mT, T=37 K

(Figure.(5.8d), showing a maximum for χ0 and Γ a minimum with value Γ ≈ 0.152 ± 0.026

meV, also the value is found to be close to the instrument resolution and due to the closeness

of the reported Γ value to the instrumental resolution the value can only be interpreted as an

upper bound of the true value of Γ.

The ℓ dependence of the fit parameters D and E0 (Figure.(5.9)) shows that for all the

measurements, D increases while E0 stays fairly constant up to ℓ = 2.15 r.l.u, before increasing

as well.

(a) (b)

(c) (d)

Figure 5.7: Representative plots of the magnetic excitations measured across QFM in the ℓ

direction (a) H = 0 T, T = 30 K , (b) H = 53 mT, T = 27 K , (c) H = 100 mT, T = 31 K

and (d) H = 200 mT, T = 37 K. The magnetic excitations are background corrected and fitted

(solid lines) with DHO function.
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(a) (b)

(c) (d)

Figure 5.8: ℓ dependence of the fit parameters resonance amplitude (χ0) and Gamma (Γ)

extracted by fitting DHO function to the magnetic excitations measured across QFM = (0 0 2)

at (a) H = 0 T, T = 30 K , (b) H = 53 mT, T = 27 K, (c) H = 100 mT, T = 31 K and (d) H

= 200 mT, T = 37 K. Lines are guides to the eye. Purple dashed line represents the MIRA-II

instrument resolution (0.064 meV).
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(a) (b)

(c) (d)

Figure 5.9: ℓ dependence of the fit parameters damping factor (D) and resonance energy (E0)

extracted by fitting DHO function to the magnetic excitations measured across QFM = (0 0

2) at (a) H = 0 T, T = 30 K , (b) H = 53 mT, T = 27 K, (c) H = 100 mT, T = 31 K and (d)

H = 200 mT, T = 37 K. Lines are guides to the eye. Purple horizontal dashed line represents

the instrument resolution (0.064 meV) of MIRA-II.

5.5.1 l dependence of the magnetic excitations at low temperature and at

critical field (Htr = 53 mT)

The low energy magnetic excitations at Htr but at low temperature well below the TCP are

shown in the Figure.(5.10). The magnetic excitations have been fitted with DHO model using

the Equation.(5.7). A distinct inelastic peak for the magnetic excitations can be observed for

the QFM position (red curve) at ≈ 0.5 meV, while on moving away from the QFM position the

peak becomes less pronounced.
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The ℓ dependence of the fit parameters extracted are shown in the Figure.(5.11). The reso-

nance amplitude (χ0) and Γ are is shown Figure.(5.11a). χ0 has a maximum and Γ a minimum

at ℓ = 2.15 r.l.u. However, additionally, χ0 has a local maximum at ℓ = 2. The ℓ dependence

of the fit parameter resonance energy and damping parameter is shown in Figure.(5.11b). The

damping factor slowly increases with increases in the ℓ where as the resonance energy appears

to show a shallow minimum at ℓ = 2.15 r.l.u.

Figure 5.10: Representative plots of the magnetic excitations measured across QFM in the ℓ

direction at field H = 53 mT, T = 3 K. The magnetic excitations are background corrected

and fitted (solid lines) with DHO function.

107



(a) (b)

Figure 5.11: ℓ dependence of the fit parameters extracted by fitting DHO function to the

magnetic excitations measured across QFM = (0 0 2) at H = 53 mT, T = 3 K. (a) Resonance

amplitude (χ0) (normalised with the value measured at QFM = (0 0 2) r.l.u) and Gamma

(Γ). (b) Damping factor (D) and resonance energy (E0). Lines are guides to the eye. Purple

horizontal dashed line represents the instrument resolution (0.064 meV) of MIRA-II.

5.6 Discussion

In the Section(5.5) we presented the evolution of low energy magnetic excitations measured at

various points in the H∥c-T phase diagram (see Figure.(5.1)) and their analysis with the DHO

model.

Earlier inelastic neutron scattering experiments on Fe-rich Nb1−yFe2+y within the ferro-

magnetic regime at zero field showed that the magnetic excitation spectra are dominated by

weakly damped excitations with an excitation energy of ≈ 0.5 meV. Surprisingly, an unusual

dispersion has been observed at low temperatures deep in the ferromagnetic phase: both Γ and

E0 show minima away from QFM at ℓ ≈ 2.15 - 2.2 and maxima in χ0 are located in this area.

This suggests that SDW fluctuations play an important role even away from the SDW phase.

In the measurements presented here at Htr = 53 mT at 3 K this trend seems to be continued:

χ0 and Γ continue to show a maximum and minimum, respectively, away from QFM at ℓ =

2.15 r.l.u, so the SDW spin fluctuations that dominate at zero field in the FM phase survive

the small applied field.

The measurements presented here near the SDW-PM transition atH = 0 T are in reasonable
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agreement with previous results. χ0 shows a clear maximum at ℓ = 2.15 r.l.u. and Γ values

between ℓ = 2 r.l.u. and ℓ = 2.2 r.l.u. are small. One small difference is that Γ actually has a

minimum at ℓ = 2.15 r.l.u., which was not clearly observed in previous studies. We note that

the result presented here is qualitatively expected at a second-order SDW-PM transition. The

results near at the TCP shown here are similar. The main change to the H = 0 T case is the

addition of a local maximum in χ0 at QFM and the simultaneous suppression of Γ there. The

expected behaviour at the TCP are a diverging χ0 and Γ = 0 at both QFM and QSDW , so

two types of critical fluctuations. The difference between this expectation and the observations

could be due to instrumental resolution as well as slight sample inhomogeneity that leads to a

smearing out of the TCP.

For the SDW-PM phase transition earlier neutron scattering measurements at H=0 T [55,74]

found the following characteristics: a trend for a χ0 maximum at ℓ ≈ 2.15 - 2.2 as well as broad

minimum of Γ reaching from ℓ ≈ 1.8 to 2.2 r.l.u. with values of Γ < 0.5 meV.

The magnetic field evolution of the Γ and static susceptibility of QFM and QSDW obtained

from the quasi elastic scattering measured at SDW-PM transition, TCP, and FM-PM crossover

are displayed in Figure.(5.12). Here, QSDW is defined as ℓ = 2.15 r.l.u. We note that the

observed ℓSDW for this sample is ≈ 0.1 r.l.u. However, it is plausible to assume that the

location of extrema in χ0 and Γ point to the intrinsic SDW ordering wave vector component

and that the observed smaller ℓSDW values reflect the additional influence of FM interactions.

From the Figure.(5.12a), it can be seen that χ0 for QSDW stays fairly constant with maxi-

mum value which is greater than the χ0 obtained for QFM until the TCP (Htr=53 mT, T=26.5

K) and then decreases in higher fields. χ0 for QFM on the other hand show maximum around

the TCP.

The evolution of the Γ with magnetic field displayed in Figure.(5.12b) shows that for QFM

it exhibits a minimum near TCP. Surprisingly, the field evolution of Γ for QSDW on the other

hand is fairly constant with value ≈ 0.13 ± 0.01 meV close to the instrument resolution (Due

to the closeness of the reported Γ value to the instrumental resolution the value can only be

interpreted as an upper bound of the true value of Γ). Although the static susceptibility point

towards that the fluctuations are likely critical for both wave vectors at TCP, but the evolution

of the Γ beyond TCP observed suggests the transitions may be a crossover with field.

Let’s consider which evolution of χ0 and Γ would be expected (taking into account the

finite instrumental resolution). Along the SDW-PM transition line χ0 at QSDW should be
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constant and larger than χ0 at QFM . The latter should catch up at the TCP. Along the

FM-PM crossover region both should fall towards higher fields but χ0 at QSDW more so than

at QFM . Γ at QSDW should be zero within the instrumental resolution along the SDW-PM

transition and up to the TCP and should then rise along the FM-PM crossover. Γ at QFM

should be finite at the SDW-PM transition and fall to zero within the instrumental resolution

at the TCP. It should then rise again along the FM-PM crossover but slower than Gamma at

QSDW .

(a) (b)

Figure 5.12: The magnetic field dependence of fit parameters (a) Resonance amplitude (χ0)

and (b) Gamma (Γ) obtained by fitting the DHO model for the low energy magnetic excitations

of the Nb0.985Fe2.015 system measured at the positions QFM and QSDW . The solid and dashed

lines are guides to the eye. Purple horizontal dashed line represents the instrument resolution

(0.064 meV) of MIRA-II.

Comparing this to the observations shown in Figure.(5.12) shows that there is broad qual-

itative agreement except for the the SDW spin fluctuations along the FM-PM crossover that

stay more enhanced and softer than expected. This is not understood but mirrors the obser-

vation deep in the FM state that the system’s proximity to SDW order is noticeable far away

in the phase diagram from this ordered state.
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6
Transverse field evolution of magnetic excitation spectrum in

Fe-rich NbFe2

In Chapter(5) we investigated the evolution of the magnetic excitation spectrum during longitu-

dinal magnetic field tuning. From previous neutron scattering studies, the y and T dependence

of magnetic excitation spectrum reflects the system’s proximity to the ferromagnetic (FM) and

spin density wave (SDW) phases [28]. In Chapter(4) we observed that in the magnetic phase

diagram for H∥a the ferro magnetic signals beyond 1 T is difficult to follow which might sug-

gest that the phase transition PM-FM turns into a cross over. In this chapter we investigate

the evolution of the magnetic excitation spectrum during and beyond suppression of the SDW

order by transverse magnetic field tuning.

6.1 Introduction

We measured the transverse field evolution of magnetic excitations using the unpolarised inelas-

tic neutron scattering method in Nb0.981Fe2.020 sample with cold neutron multi disk-chopper

spectrometer (MCS)- LET (ISIS, UK) and triple axis spectrometer (TAS) - 4F2 (LLB, France).

The experiments are performed with the support of the beam scientist Dr Robert Bewley and

Dr David Voneshen at ISIS, UK for the LET project and Dr Jean-Michel Mignot at LLB,

France for the 4F2 projects. With LET the data are measured with three different Ei’s in an

extended region of (Q, ω) space simultaneously for different magnetic fields. At 4F2 we col-

lected additional data in a selected (Q, ω) range during two beamtimes ”LLB-I” and ”LLB-II”.

The remainder of the this chapter is organised as follows: first we present the data acquisition

and correction of the data measured at both LET and 4F2 in Sections.(6.2 and 6.3). The fitting

and analysis is presented in Section.(6.4). The analysed results are presented in Section.(6.5).
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Finally we discuss our results in Section.(6.6).

6.2 Data acquisition

In this section we present the details on the data acquisition practised during the experiment.

We start with the LET followed by the 4F2 instrument. To measure the magnetic excitations

with LET, the Ei’s we used are: Ei=1.94 meV, Ei = 3.16 meV, Ei = 6.03 meV. Figure.(6.1)

shows the resolution and the range of energy transfers we could cover for the Ei’s. It can be seen

that the higher the energy resolution the smaller is the energy window. A good compromise

between the accessible E range and the resolution was found for Ei = 3.16 meV space and

therefore we focus here on the Ei = 3.16 meV data. To investigate the field evolution of

magnetic excitation spectrum we collected data at H = 0 T, 2.75 T, 3.5 T and 4.25 T at

temperature T = 2 K. To study the temperature dependence of the magnetic excitations at

3.5 T we measured data additionally at H = 3.5 T and T = 37.4 K.

Figure 6.1: LET resolution and the range of the energy transfers for different Ei’s used during

the experiment provided by the instrument software. The legend indicates the information on

the flux of the incoming neutron beam for the Ei’s used.

To visualize and analyse the selected portion of the scattering data in (Q, ω) space lower

dimensional cuts are used. At 4F2, measurements were made using vertically and horizontally

focused monochromator and analyser in constant Q mode. The final wave vector kf
1 was fixed

at the value of 1.3 Å−1. The scattering data were collected at different magnetic fields between

1The final neutron energy (Ef ) equivalent of kf = 1.3 Å−1 is 3.50 meV.
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the range H = 0 T and 5 T at temperature T = 4 K and 1.6 K for the LLB-I and LLB-II

respectively.

6.3 Data Correction

6.3.1 LET

6.3.1.1 Background Analysis

In this section we will outline the processing of the raw scattering data collected with LET. The

background scattering data has been collected with a measurement of the empty sample holder

at H = 0 T and T = 150 K and otherwise identical conditions as for the sample measurements,

to subtract it from the raw scattering data.

Figure.(6.2) shows the 2D cuts created from S(Q, ω) of the background scattering measured

with Ei = 3.16 meV. The bin widths used for 1D and 2D cuts of the (Q, ω) space are given in

Table.(6.1). To get an overview of the elastic and inelastic background data, energy integra-

tion over the ranges [-0.2,0.2] meV (Figure.(6.2a)) and [0.2,4] meV (Figure.(6.2b)) was done,

respectively.

Table 6.1: Bin widths for the low dimensional cuts from S(Q,ω) scattering data.

Bin width 2D 1D cut

ℓ 0.03 r.l.u 0.09 r.l.u

h 0.01 r.l.u 0.03 r.l.u

η 0.2 r.l.u 0.2 r.l.u

dE 0.3 meV 0.09 meV

Figure.(6.2c) shows the background signal in a section of the ℓ − E plane where important

sample signals have been observed, too (see below). From Figure.(6.2c) we identified two

strong intensities along the ℓ direction ranges from (0 0 -2.3) to (0 0 -2.1) and (0 0 -2.05) to

(0 0 -1.7) at energies close to 0.5 meV and 2.5 meV respectively. We analysed the spurions

carefully to subtract them from the raw sample signal at the respective ℓ positions.
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In the following we describe the analysis of the background signals by fitting of 1D cuts

showing the E dependence at fixed Q positions. The 1D data cuts are obtained by using

the cut parameters given in Table.(6.1). The background signal in E scans at fixed Q is

well described by the fit function given in Equation.(6.1) that contains three Gaussians and a

constant contribution.

fit function:

f(x) 7−→ A1exp
(
− (x− a)2

2σ21

)
+A2exp

(
− (x− b)2

2σ22

)
+A3exp

(
− (x− c)2

2σ23

)
+ cst, (6.1)

where A1, A2, are the amplitudes of the Gaussians that describe the elastic line, A3 is the

amplitude of the Gaussian that describes the spurious signal. a, b and c are the centres of the

peaks and σ1, σ2, σ3 are the peak widths. cst is the constant function.

114



(a) (b)

(c)

Figure 6.2: LET background scattering measured without sample. (a) & (b) : 2D plots in h−ℓ

plane (k = 0) data with signal integrated (a) over [-0.2, 0.2] and (b) over [0.2, 4] meV. (c) :

Background scattering in the ℓ−E plane (h = k = 0), the red dashed ellipses encircle spurious

signals. The colour scale represents the intensities of the scattered neutrons.

Figure.(6.3a) shows fits to the E dependence of the background signal in the range from (0

0 -2.05) to (0 0 -1.7) The peak centre of the suprion is fixed at 2.5 meV, the limit of the data

collection range. The fit parameters are shown in the Figure.(6.3b).
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(a)

(b)

Figure 6.3: (a) : The analysis of spurious background signal at 2.5 meV. The solid lines

represents Gaussian fits. The inset shows the magnified view of the spurion. (b) : ℓ dependence

of the Gaussian fit parameters.

Figure.(6.4a) shows fits to the E dependence of the background signal in the range from (0

0 -2.1) and (0 0 -2.3). The peak properties of the signal fitted are shown in the Figure.(6.4b).
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(a)

(b)

Figure 6.4: (a) : The analysis of spurious background signal near 0.5 meV. The solid lines

represents Gaussian fits. The inset shows the magnified view of the spurion. (b) : ℓ dependence

of the Gaussian fit parameters.

To eliminate the contributions of 2.5 meV and 0.5 meV spurion from the raw scattering

data, we have subtracted the background given by the fit function (Equation.(6.1) with the

obtained fit parameters.
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6.3.2 4F2

To identify and analyse the magnetic excitations from the scattering data measured with 4F2

instrument, the implementation of corrections and normalisation of the raw data has to be

done manually. We will explain in this section how we process the measured data.

6.3.2.1 Monitor correction

The monitor correction are applied to the data using the experimentally determined ki depen-

dent correction factor (see Chapter(3))

6.3.2.2 Data normalisation

Data was normalised with respect to a corrected monitor count of 5000, which corresponded

to a counting time of approximately 5 minutes.

6.3.2.3 Energy shift correction

The elastic line in the 4F2 data is often seen to be shifted from its nominal zero energy position

by an amount of the order of up to Es ≈ 0.02 meV, as observed similarly in in MIRA-2. We

compensated for Es by applying corresponding corrections before fitting the data as explained

in Subsection(5.3.2). Appendix.(B.7) contains the representative plot of energy shift correction.

6.4 Data fitting and analysis

In this section, we will explain how we fitted LET and LLB data after the necessary corrections

were applied to the raw scattering data as explained in the previous sections. To extract the

physical parameters, we fitted the whole signal including the elastic line for all measured Q

positions except for the Bragg position QFM = (0 0 -2) and the Q positions in the vicinity of

QFM (i.e, Q positions (0 0 -2.05) and (0 0 -1.95) or equivalent, in the case of LET measurements

only). In this case the fits would be dominated by the large intensities of the elastic line and

lead to large errors in the fit parameters describing the magnetic excitations. In such a case,

we only included the tail of the elastic line up to 10% of its maximum value in the fitted data.
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6.4.1 Fit functions

We used three-parameters damped harmonic oscillator function (DHO) and two-parameters

over-damped harmonic oscillator function (ODHO) to fit the data as explained in Subsec-

tion.(5.4.1). For the fields below H = 3.5 T, we generally used DHO function to fit the data

due to the presence of a distinct inelastic peak away from the elastic signal. For fields at H

= 3.5 T and above, we used ODHO function to fit the data using Equation.(5.5) where the

magnetic excitations are either very soft or overall rather weak. To analyse the data measured

at high temperature (T = 37.4 K) with LET instrument at field H = 3.5 T, we used DHO

function because of the the presence of an inelastic peak away from the elastic signal due to

the thermal activation.

6.4.2 Detailed balance

To account for detailed balance (see Chapter(3)) this has also been included via the factor in

Equation.(6.2).

fdb(E ,T ) =
1

|1− exp( −E
kBT

)|
(6.2)

6.4.3 Representative examples of the fits

Figure.(6.5) shows the representative examples of the plots fitted with DHO or ODHO functions

to the data measured at LET and LLB-I with a constant. The examples show the data fitted

with DHO function measured at LET at H = 0 T, T = 2 K (Figure.(6.5a)) and ODHO function

fitted to the data measured at 4F2 at H =3.5 T, T = 4 K (Figure.(6.5b)) for QFM = (0 0 -2).
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(a) (b)

Figure 6.5: Representative plots of fitted example data sets measured at LET and 4F2. (a)

Data measured at LET at H = 0 T, T = 2 K fitted with DHO function with a constant. (b)

Data measured at 4F2 at H = 3.5T, T = 4K fitted with ODHO function with a constant.

The solid lines (blue and red) are the fit functions. The vertical green dashed lines delimit

the energy range including the maximum of the elastic line that was excluded from the whole

signal fit.

In the damped regime, the magnetic excitations form a distinct peak away from the elastic

line (Figure.(6.5a)), in the overdamped regime the signal becomes quasi elastic where the

features of the magnetic excitations are hard to distinguish from the elastic line (Figure.(6.5b)).

Fits at or near the ferromagnetic ordering wave vector (QFM = (0 0 -2) and (0 0 -1.95)

or equivalent) are obtained by excluding the counts above 10% of the maximum elastic line

intensity. Due to the instrument’s finite resolution ellipsoids the detected signals are often

composed of two Gaussian peaks at the elastic line for the Q positions measured at LET (for

all Q positions) and 4F2 (for only certain Q positions). In those cases, to fit the whole signal we

used two Gaussian functions to fit the elastic line along with the functions of detailed balance,

DHO or ODHO for the inelastic part of the signal and a constant term.

Figure.(6.6) shows representative examples of two Gaussian peaks observed at the elastic

line for selected Q positions scanned at 4F2 and LET fitted using Equation.(5.7) with a constant

term. The constant term is added in all the fits for the data measured at various beam-time

to account for the background scattering in the data.
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(a) (b)

Figure 6.6: Representative plots of two Gaussian functions fitted to the elastic lines measured at

LET and 4F2. (a) Data measured at LET at H = 0 T, T = 2 K (b) Data measured at LLB-I at

H = 0.5 T, T = 4 K. The solid yellow line represents the elastic line data fitted using the whole

fit function using Equation.(5.7) with a constant, (fDHO was used to fit the inelastic part). The

green and red shaded area and the dashed lines represent Gaussian functions composed of the

elastic line data.

6.5 Results

In this section we investigate transverse field (H∥a) evolution of the low-energy magnetic ex-

citations as measured on LET at ISIS and on 4F2 at LLB. We will focus in particular on the

question where with respect to QFM and QSDW the excitations become soft.

Figure.(6.7) displays the measurements of the low energy magnetic excitations in the recip-

rocal space measured at different magnetic fields and the base temperature Tb = 2 K with LET

using Ei = 3.16 meV. The bin widths used to create those plots are given in Table.(6.1). To get

an overview of the inelastic signals, we integrated the energy over the range [0.2, 4] meV. From

the figures we can clearly see the magnetic excitations range from (0 0 -2.35) to (0 0 -1.65) (en-

circled in the red dashed lines) in the integrated low-energy range. Our investigation is divided

into three parts, Firstly, we explore the evolution of magnetic excitations at ferromagnetic Q

position (QFM = (0 0 -2)) r.l.u. to locate the critical field (Hc). In the second part, we present

the ℓ and h dependence of the magnetic excitations measured at different magnetic fields. In

the third part, we explore the temperature dependence of the magnetic excitation spectra at

121



the critical field (Hc).

(a) (b)

(c) (d)

+

Figure 6.7: Transverse field dependence of low energy inelastic scattering at 2 K. Plots show

integrated signals in the range [0.2, 4] meV, excluding the elastic line. (a) H = 0 T, T = 2

K (b) H = 2.75 T, T = 2 K (c) H = 3.5 T, T = 2 K (d) H = 4.25 T, T = 2 K. The high

intensity in the red ellipse shows the visibility of the magnetic excitations in the ℓ direction.

The red dot inside the ellipse indicates the QFM = (0 0 -2). The colour scale represents the

neutron intensities. The circular features represents the powder lines

6.5.1 Magnetic field evolution of low energy excitations at QFM

The overview of the inelastic data in Figure.(6.7) shows that a large number of magnons are

found in the reciprocal-space region around (0 0 -2) position. Here we investigate the transverse
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magnetic field evolution of the low energy magnons particularly at the ferromagnetic position

QFM for identifying, in particular any critical field where the magnetic excitations become soft

or enhanced.

(a) (b)

(c)

Figure 6.8: (a) : Representative plots of magnetic excitations measured at QFM = (0 0 -2)

or equivalent ((0 0 2) measured with 4F2) at different magnetic fields and base temperatures

during beamtimes (a) LLB-I, (b) LLB-2 and (c) LET. Fits to the data are indicated by solid

lines.

Figure.(6.8) shows representative data measured at the QFM position. We fitted the data

obtained below the magnetic field 3.5 T using DHO function and for the data measured at 3.5

T and above, we used ODHO function. In the FM state, at field H = 0 T, the low energy
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magnetic excitations have a distinct peak away from the elastic line which can be described

with a resonance energy parameter. As the magnetic field is increased the latter gets softer and

the signal becomes quasi-elastic at the field H = 3.5 T and for higher fields the signals become

weaker. Figure.(6.8b) shows the magnetic excitations were measured for more magnetic fields

at the field around H=3.5 T during the LLB-II beamtime.

The fitted parameters describing the field evolution of the magnetic excitations measured in

different instruments at QFM position are shown in Figure.(6.9). It shows the field dependence

of the line width (Γ) and the resonance amplitude (χ0) of the excitations. The χ0 values have

been normalised to the H = 0 T values at each beamtime.

Figure 6.9: Field evolution of fit parameters extracted by fitting DHO and ODHO functions to

the magnetic excitations observed at QFM = (0 0 -2) or equivalent position measured during

different beamtimes and at different instruments. The empty and full marker shows resonance

amplitude (χ0) (normalised with the value measured at field H = 0 T) and line width (Γ)

respectively. The blue shaded area represents a field region around Hc = 3.6 T where the

magnetic excitations become critical. The black solid and dashed curves are guides to the eye.

Crimson and lime horizontal dashed lines indicate the instrument resolutions of 4F2 (0.066

meV) and LET (0.108 meV) instruments respectively.

In the FM state, with increasing magnetic field Γ is gradually decreasing and reaching to a

minimum value Γ ≈ 0.142 ± 0.024 meV close to the instrument resolution around a critical

filed of Hc ≈ 3.6 T. Due to the closeness of the reported Γ value to the instrumental resolution
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the value can only be interpreted as an upper bound of the true value of Γ. For higher fields,

the values recover. At the same time, the resonance amplitude (χ0) is gradually increasing with

increasing field and reach a maximum. Above H=4T, values decrease as the magnetic signals

become weaker.

6.5.2 l dependence of magnetic excitations

From the previous section, we identified the field Hc around which the magnetic excitations

measured at QFM position are getting soft. In this section, we look at the ℓ dependence of the

low energy magnetic excitations measured at different magnetic fields.

Figure(6.10) displays 2D plots showing the ℓ dependence of the low energy magnetic excita-

tions measured with LET at the base temperature Tb =2 K using Ei = 3.16 meV. The bright

yellow stripe around zero energy transfer represents the elastic line.
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+(a) (b)

(c) (d)

Figure 6.10: The ℓ dependence around QFM = (0 0 -2) of the magnetic excitations measured

with LET at different magnetic fields at 2 K(a) H=0T (b) H=2.75T (c) H=3.5T (d) H=4.25T.

The red solid line indicates the guide to the eye for the dispersion of the magnetic excitations

along ℓ direction. The red disk and crosses (each with a dashed line on top) indicate respectively

QFM and QSDW positions. The colour scale represents the neutron intensities.

At field H = 0 T and Tb = 2 K the sample lies deep in the FM state and we expect the excitation

energy to be lowest for the QFM = (0 0 -2) r.l.u. position (marked red circle). However, from

Figure.(6.10 a) we can see that the minima of the dispersion are found on either side of the

QFM position instead. Also, we observe that in the FM state an energy gap of approx. 0.2

meV is present. Above the energy transfer 0.2 meV, a well-defined dispersion curve is observed

with features as explained. Figure.(6.11) shows the 1D plots of the QFM position where a well

defined peak for the magnetic excitations are observed above the energy gap approx. 0.2 meV

for magnetic fields H = 0 T and H = 2.75 T, and they are absent for the fields H = 3.5 T and H

= 4.25 T. These features in the dispersion of the magnetic excitations are as observed similarly

in the previous neutron scattering studies done by Poulten and Lucas with LET [55,74].
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(a) (b)

(c) (d)

Figure 6.11: (a) : Representative plots of magnetic excitations measured at QFM = (0 0 -2)

with LET at different magnetic fields and base temperature 2K. (a) H = 0 T , (b) H = 2.75

T, (c) H = 3.5 T and (d) H = 4.25 T. The solid line is guide to the eye. The green vertical

dashed line indicates the energy gap Eg ≈ 0.2 meV.

With increasing field, H = 2.75 T, T =2 K (Figure.(6.10b)), we see that the positions of the

minima are moving towards the QFM and also the maximum of the excitation energy at QFM

position is decreased with applied field (ses Figure.(6.11b)). However, the energy gap ≈ 0.2

meV is still present. For the fields H = 3.5 T and H = 4.25 T the shape of the dispersion

curves are changed (see Figures.(6.10c & d)). The minima are now at QFM and the energy

gap observed at fields H = 0 T and H = 2.75 T is now closed at the fields H = 3.5 T and 4.25

T close to the resolution of LET (ses Figure.(6.11c&d)).

In the following, we will look at the field regimes H < Hc, H = Hc and H > Hc. Figure.(6.12)

lists the fields and the instruments used to measure the ℓ dependence in different regimes in a

schematic table. Figure.(6.12b) displays the representative plot obtained at H = 0T, T = 2 K

to indicate the different ℓ positions.
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(a)

(b)

Figure 6.12: (a) Schematic table listing for different field regimes the measurement fields and

beamtimes. (b) Representative plot (measured at H=0T, T=2K) showing the integrated inelas-

tic scattering in the range [0.2, 4] meV from measurements at LET. The colour scale represents

neutron intensity. The red dots denote the q positions for which the energy dependence of the

scattering has been analysed.

6.5.2.1 H < Hc :

In this subsection, we look at the ℓ dependence of the magnetic excitations in the region H <

Hc. We measured neutron scattering data in this region at the fields H = 0 T, 0.5 T, 2 T and

2.75 T at the base temperature Tb < 7 K during beamtimes LET and LLB-I.
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(a) (b)

(c) (d)

Figure 6.13: Representative plots of the magnetic excitations measured across QFM in the ℓ

direction at different magnetic fields. (a) H=0T, T=2K - LET (b) H=0.5 T, T=4 K - LLB-1

(c) H=2 T, T=4 K - LLB-I (d) H=2.75T, T=2K - LET. The magnetic excitations are fitted

(solid lines) with DHO function.

Figure.(6.13) shows representative plots of the ℓ dependence of magnetic excitations mea-

sured at different magnetic fields. The magnetic excitations below the critical field (H < Hc),

where the sample is in the FM state have a distinct peak outside the elastic line which can

be described with a resonance energy parameter. The data measured at different fields were

fitted with DHO function with a constant. From Figure.(6.13) we could make the following

qualitative observations within the H<Hc regime: the excitation spectra tend to show distinct

peaks, away from QFM the resonance energies tend to increase and the amplitudes to decrease,

and with increased field the resonance energies tend to decrease. Appendix.(B.2) contains

additional information on the data set in the H<Hc regime including fit details.
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The fitted parameters describing the evolution of the ℓ dependence of the magnetic excita-

tions with field are shown in Figure.(6.14) and Figure.(6.15).

(a) (b)

Figure 6.14: Field evolution of fit parameters extracted by fitting DHO function to the magnetic

excitations measured across QFM = (0 0 -2) r.l.u along ℓ direction in different instruments. (a)

Damping factor (D). (b) Excitation energy (E0). The empty and full marker indicates data

measured at LLB-I and LET respectively. The solid lines indicate the guide to the eye capturing

the general trend of the fit parameters along ℓ direction. Crimson and lime horizontal dashed

lines indicate the instrument resolutions of 4F2 (0.066 meV) and LET (0.108 meV) instruments

respectively.

Figure.(6.14) shows the ℓ dependence of the damping factor (D) and resonance energy (E0).

The main observation is that for both parameters the values are lowest around QFM . In a ℓ

window of almost 0.4 r.l.u. there is little change. Field induced changes are also only subtle for

H<Hc. Figure.(6.15a) shows the ℓ dependence of the resonance amplitude (χ0). The resonance

amplitude is normalised with values at QFM = (0 0 -2) for all the fields. For field H = 0 T, the

χ0 value has a maximum away from QFM position. The maximum is becoming less pronounced

on increasing field. The ℓ dependence on Γ is shown in Figure.(6.15b). At H=0 T, Γ reaches a

minimum of about 0.52±0.28 meV away from QFM . The main effect of increasing field is the

suppression of the local maxima around QFM . The larger error bars in the values of Γ for the

far away Q positions are due to the magnetic excitations becoming weaker.
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(a) (b)

Figure 6.15: ℓ dependence across QFM= (0 0 -2) of (a) resonance amplitude and (b) Γ at

H<Hc. Values of χ0 have been normalised to the values measured at QFM . The solid lines

indicate the guide to the eye. Crimson and lime horizontal dashed lines indicate the instrument

resolutions of 4F2 (0.066 meV) and LET (0.108 meV) instruments respectively.

6.5.2.2 H = Hc :

Here we look at the magnetic excitations in the region where H ≈ Hc = 3.6 T. Figure.(6.16)

shows representative plots of the magnetic excitations measured with LET (Figure.(6.16a)) and

during LLB-II (Figure.(6.16b)). Appendix.(B.3) contains details of fitting for data obtained in

the critical-field regime.

From Figure.(6.16), reveals substantial quasielastic scattering in the region near QFM . The

weight of the signal is shifted to higher energies and appears to be reduced overall for Q positions

further moved from QFM . The fit parameters describing the ℓ dependence of the magnetic

excitations at H ≈ Hc are shown in Figure.(6.17. Figure.(6.17a) shows the ℓ dependence of

the resonance amplitude and has a maximum near QFM . Figure.(6.17b), shows that Γ, on the

other hand, has a minimum near QFM with Γ ≈ 0.349 ± 0.048 (measured with LET at Hc

= 3.5 T) and 0.142 ± 0.024 meV (measured with LLB-II at Hc = 3.6 T) respectively. Due

to the closeness of the reported Γ value to the instrumental resolution the value can only be

interpreted as an upper bound of the true value of Γ, of the two result the latter carries more

weight as it is supported by measurements with better statistics.
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(a) (b)

Figure 6.16: Representative plots of the magnetic excitations measured near Hc across QFM in

the ℓ direction with LET and during LLB-II. (a) H=3.5T, T=2K - LET (b) H=3.6 T, T=1.7

K - LLB-II. The solid lines are fits using the over damped harmonic oscillator model. LET

data fit quality has been affected by reduced statistics.

(a) (b)

Figure 6.17: ℓ dependence across QFM = (0 0 -2) of (a) resonance amplitude χ0 and (b) Γ

at H approx Hc. Values of χ0 have been normalised to the values at QFM . χ0 shows a clear

maximum and Γ a clear minimum near QFM . Solid lines are guides to the eye. Crimson and

lime horizontal dashed lines indicate the instrument resolutions of 4F2 (0.066 meV) and LET

(0.108 meV) instruments respectively.
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6.5.2.3 H > Hc :

Now we look at the evolution of magnetic excitations above the critical field. To look at the

ℓ dependence of the magnetic excitations, we measured data at field H = 4.25T with LET

and they are fitted using the ODHO model. Figure.(6.18) shows representative plots of the

magnetic excitations measured across QFM in the ℓ directions. We can see from the figure

that the excitations appear quasi-elastic and become weaker when moving away from QFM .

Appendix.(B.4) contains details of fitting for data obtained above the critical-field.

Figure 6.18: Representative plots of the magnetic excitations measured across QFM in the ℓ

direction at H =4.25 T > Hc The magnetic excitations are fitted (solid lines) using ODHO

function.

Figure.(6.19) displays the ℓ dependence of the resonance amplitude (χ0) and line width (Γ)

obtained by fitting the ODHO model. The resonance amplitude is normalised with value at

QFM = (0 0 -2). The results are qualitatively similar to the findings near Hc in that χ0 has a

maximum and the line width Γ has a minimum near QFM . Γ is slightly larger at H > Hc with

the value at QFM of Γ ≈ 0.467 ± 0.057 meV (above the limit of the energy resolution of the

instrument).
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Figure 6.19: ℓ dependence across QFM= (0 0 -2) of the resonance amplitude χ0 and linewidth

Γ at H = 4.25 T > Hc. χ0 shows a clear maximum and Gamma a clear minimum near QFM .

Lines are guides to the eye. Lime horizontal dashed line indicates the instrument resolution of

LET (0.108 meV) instrument.

6.5.3 h dependence of magnetic excitations at the critical field (Hc)

To investigate the dispersion of the magnetic excitations in the h direction at the critical field

we collected data across QFM = (0 0 2) r.l.u. at Hc = 3.6 T, T = 1.7 K. Figure.(6.20) shows

representative scans of the magnetic excitations. It appears that with increasing h value the

spectral weight is reduced and shifted to higher energies.
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Figure 6.20: Representative plots of the magnetic excitations measured across QFM in the h

direction. The magnetic excitations are fitted (solid lines) using ODHO model.

Appendix.(B.5) contains details of fitting for the h dependent data set obtained at the critical-

field.

The h dependence of the fit parameters, resonance amplitude (χ0) and line width (Γ)

extracted from the fits are displayed in Figure.(6.21). The resonance amplitude is normalised

with value at QFM = ( 0 0 2) r.l.u. The χ0 shows a maximum at QFM position and on moving

away, the values are decreasing rapidly compared to the ℓ dependence at H=Hc. The Γ shows

a minimum at QFM and increases with increasing h magnitude.
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Figure 6.21: h dependence of the resonance amplitude (χ0), normalised with the value measured

at QFM = (0 0 2) r.l.u and line width (Γ) extracted by fitting ODHO model to the magnetic

excitations measured across QFM = (0 0 2) r.l.u at H = 3.6 T, T = 1.7 K. The lines are guides

to the eye. Crimson horizontal dashed line indicates the instrument resolution of 4F2 (0.066

meV) instrument.

6.5.4 Temperature dependence of magnetic excitations at the critical field

(Hc) region

In this section, we will investigate the temperature dependence of the magnetic excitations

measured in the critical field region. First, we look at the temperature dependence of the

magnetic excitations at the QFM position measured at Hc=3.6 T and then we observe the

dispersion along ℓ direction measured at Hc=3.5 T.

Figure.(6.22) shows the temperature dependence at the QFM position at Hc fitted with the

over damped harmonic oscillator model for T=1.6 K and damped harmonic oscillator model for

T = 15 and 32.5 K. The figure demonstrates the thermal activation of the magnetic excitations.

Figure.(6.23) displays the temperature dependence of the fit parameters, resonance amplitude

(χ0) normalised with the value obtained at T=1.6 K and line width (Γ). With the increase in

the temperature, the χ0 values are gradually decreasing whereas Γ is slowly increasing.
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Figure 6.22: Temperature dependence of the magnetic excitations at QFM at Hc = 3.6 T. The

magnetic excitations are fitted (solid lines) with damped (T = 32.5 and 15 K ) and over-damped

(T = 1.6 K) harmonic oscillator models.

Figure 6.23: Temperature dependence of the fit parameters; resonance amplitude (χ0) nor-

malised with the value measured at T = 1.6 K and line width (Γ), extracted by fitting the

magnetic excitations with the DHO and ODHO model at QFM = (0 0 2) at H = 3.6 T. Lines

are guides to the eye. Crimson horizontal dashed line indicates the instrument resolution of

4F2 (0.066 meV) instrument.
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6.5.4.1 l dependence of the critical field magnetic excitations at high temperature

To look at the magnetic excitations at high temperature regime we measured data at H=3.5

T, T=37.4 K. Figure.(6.24) displays an overview of the location of the magnetic excitations in

the reciprocal space. To get an overview of the inelastic signals we integrated the energy over

the range [0.2, 4] meV (Figure.(6.24a)). If we compare this with magnetic excitation measured

at T=2 K (see Figure.(6.7d)), we can see a significant enhancement in the intensity due to

thermal activation. The ℓ dependence of the magnetic excitation is shown in Figure.(6.24b)

and exhibits the shape similar to low-temperature measurement at T= 2 K but with increased

neutron counts. Appendix.(B.6) contains fitting details of this data set.

Figure.(6.25) shows representative scans of the magnetic excitations measured across QFM

in the ℓ direction. As we can see that the magnetic excitations measured across QFM position

have a pronounced intensity peak for QFM whereas moving away from that the signal intensities

are reduced and the spectral weight shifts to higher energy. The ℓ dependence of the fit

parameters of the damped harmonic oscillator model for the magnetic excitations is displayed

in Figure.(6.26).

(a) (b)

Figure 6.24: Overview of the magnetic excitations measured at H=3.5T,T=37.4K (a) : Ex-

citations in h - ℓ plane (h 0 ℓ) in integration range [0.2, 4] meV. The red ellipse shows the

region with substantial amount low-energy excitations. The red dot indicates the QFM =(0 0

-2) position. (b) : The ℓ and energy dependence of the magnetic excitations. The solid line is

a guide to the eye. The colour scales represent the neutron intensities.
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Figure 6.25: Representative plots of the magnetic excitations measured across QFM in the ℓ

direction with LET at H=3.5 T, T=37.4 K. The magnetic excitations are fitted (solid lines)

with DHO function.

The resonance amplitude (χ0) and line width (Γ) are shown in Figure.(6.26a). The χ0 shows

a maximum at the QFM position and Γ, on the other hand, has minimum near QFM with Γ ≈

0.464 ± 0.091 meV similar to the low T case where Gamma showed a stronger ℓ dependence

(see Figure.6.17). The fit parameters, damping factor (D) and resonance energy (E0) are shown

in Figure. (6.26b). Both parameters have a minimum near QFM and are weakly changing in

this area and increasing further away from QFM .
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(a) (b)

Figure 6.26: ℓ dependence of the fit parameters of the magnetic excitations measured across

QFM = (0 0 -2) at H = 3.5 T, T = 37.4 K . (a) Resonance amplitude (χ0)(normalised with the

value measured at QFM = (0 0 -2)) and Γ. (b) Damping factor (D) and resonance energy (E0).

Lines are guides to the eye. Lime horizontal dashed line indicates the instrument resolution of

LET (0.108 meV) instrument.

6.6 Discussion

The low energy magnetic excitations are well fitted with DHO and ODHO models below the

critical field Hc and Hc at high temperature, and at Hc and fields above respectively, at QFM

and at (0 0 ℓ) positions across QFM . In the FM state, the low energy magnetic excitations of

QFM have shown that with increasing magnetic field the resonance energy (E0) and Γ are both

gradually decreasing and reaching a minimum, Γ ≈ 0.142 ± 0.024 meV close to the instrumental

resolution and due to the closeness of the reported Γ value to the instrumental resolution the

value can only be interpreted as an upper bound of the true value of Γ. and the damping factor

(D) and resonance amplitude (χ0) are gradually increasing and reach a maximum around the

critical field of Hc ≈ 3.6 T (see Figure.(6.17)). The observed result of minimum in the value

for Γ close to the energy resolution suggests a possible existence of quantum critical point

(QCP) but at the same time only a weak enhancement of χ0 suggests the transition could

be a crossover. These observations from the results suggest both options are possible for the

existence of putative FM-QCP with field tuning as our data does not give a concrete evidence

for the final answer. The weak enhancement indicative of the crossover behaviour at the critical

field could be the instrument resolution or the sample inhomogeneity that lead to a smearing

out the of critical field.
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For the ℓ dependence of the magnetic excitations at low temperature in zero field we ex-

pected that the Γ and χ0 to be minimum and maximum respectively, at QFM however, we

can see that the minima and maxima of the excitations are found on either side of the QFM

position respectively instead. The Γ reaches a minimum of about 0.52 ± 0.28 meV away from

QFM . A local maximum on the other hand for Γ observed at QFM in the FM regime ≈ 1.213

± 0.193 meV. The main effect of increasing field was the suppression of local maximum. For

field at H = Hc, the local maximum of the Γ for QFM was almost reduced to zero close to the

instrument resolution. In FM regime, there was a finite energy gap observed for the magnetic

excitations in the ℓ window of almost 0.4 r.l.u approximately 0.2 meV, the effect of increasing

field was found to be however subtle. At H = Hc, the finite energy gap observed was closed,

whereas, for H > Hc though the energy gap is closed but finite Γ was observed. The χ0 and Γ

for QFM at H > Hc found to show maximum and minimum respectively with no energy gap.

Previously it was observed by Poulten et.al and Lucas et.al that in the FM regime at zero

field, the influence of SDW interactions lead to minimum and maximum at QSDW for Γ and χ0

respectively where the modified spin fluctuation model (FM+SDW) by considering such effect

were able to explain the behaviour of the spin fluctuations [55,74]. These features are observed

similarly in our work as well for the zero field measurements of the magnetic excitations which

survives to at least H = 2 T. The excitation spectrum for the field at Hc and above has been

observed that the features are similar to the conventional type of excitations predicted by the

spin fluctuation theory (see Chapter(2)) for ferromagnetic critical transitions.

The magnetic excitations measured for the h dependence shows that low energy excitations

are predominately located in the vicinity of the ℓ axis even at the Hc. The temperature depen-

dence of the low energy excitations shows thermal activation of spin fluctuations. Presence of

large number of low-energy spin fluctuations is expected to lead to non-Fermi liquid (nFL) be-

haviour in resistivity, magnetic susceptibility, and specific heat capacity, etc at Hc that should

show up in unusual exponents in the temperature dependence of these quantities. This might

indicate a transverse-field induced unmasking of the FM QCP.
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7
Summary

The system NbFe2 has been investigated as a prime candidate of a system with ferromagnetic

quantum criticality (FM-QCP) masked by spin density wave order. Before this work magnetic

order and excitations of large single crystals had already been studied by neutron scattering

across the composition temperature phase diagrams. In this work the evolution with field of the

NbFe2 system has been explored. The Fe-rich samples studied contained a ferromagnetic (FM)

ground state and spin density wave (SDW) and paramagnetic phase at higher temperature.

Longitudinal fields H∥c and transverse fields H∥a have been applied.

With magnetic neutron diffraction in longitudinal fields for Nb0.985Fe2.015 the extent of the

spin density wave in to the H∥c-T phase diagram has been mapped by measuring the SDW

peak at (1 0 -2+ℓSDW ) additionally the field evolution of onset of ferromagnetism has been

measured at the weak nuclear position at (1 0 2). The resulting magnetic phase diagram reveals

the location of tricritical point (TCP) at Htr=53 mT and Ttr = 26.5 K.

In magnetic neutron diffraction Nb0.980Fe2.020 in transverse field the same reciprocal space

positions have been used to map out the H∥a-T phase diagram. The suppression of SDW

order has been observed at critical field of 1 T. The FM-PM transition can be followed up to

about 2.5 T until where it remains constant at about 34 K. So it was not possible to follow the

expected suppression of the unmasked FM-PM to low temperature in this measurement.

With inelastic neutron scattering in longitudinal field the evolution of spin fluctuations

across the QCP has been observed in Nb0.985Fe2.015. At low temperature in the ferromagnetic

phase an unusual dispersion with the minimum in the dispersion near the SDW wave vector has

been observed at Htr=53 mT. The TCP has been found to feature simultaneously enhanced and

soft FM and SDW spin fluctuations. Along the SDW-PM transition line and at the TCP the

spin fluctuation spectra show fairly conventional features. However the SDW spin fluctuation
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stay more soft and enhanced at higher fields than expected.

With inelastic neutron scattering in Nb0.980Fe2.020 system in transverse field the ferromag-

netic low energy excitations at (0 0 2) have been observed to show softening and an enhancement

at low temperature that indicate existence of a field induced unmasked ferromagnetic quantum

critical point at a H=3.6 T. How ever the possibility of quantum crossover cannot be excluded.

In the future, polarised neutron diffraction measurements that have partially been done

during this thesis project by me using POLI instrument at FRM-2 reactor, Germany could

reveal details of the SDW and FM phases and finally settle whether NbFe2 could be a ferri-

magnet and presented a rare case of ferrimagnetic quantum criticality. Also, the growth of more

Fe rich crystals for neutron scattering would allow projects of measuring the low-energy mag-

netic excitations in the vicinity of the Lifshitz point in the zero field composition-temperature

phase diagram. Measurements of stoichiometric crystals suitable for neutron scattering could

allow to explore the low-energy magnetic excitations in the vicinity of the suspected Quantum

Tricritical Point [51].
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A
Longitudinal field evolution of magnetic excitation spectrum in

Fe-rich NbFe2 - additional data

A.1 H=0T, T=30K

Table A.1: The Fitting details of the magnetic signals measured at H=0T, T=30K.

H=0 T, T= 30 K

(0 0 ℓ) FitFunction No. Gaussian Peak Constant

2 DHO 1 NO

2.05 DHO 2 NO

2.1 DHO 1 NO

2.15 DHO 1 NO

2.2 DHO 1 NO

2.25 DHO 1 NO

2.3 DHO 1 NO

2.4 DHO 2 NO
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A.2 H=53 mT, T=27 K

Table A.2: The Fitting details of the magnetic signals measured at H=53 mT, T=27 K.

H=53 mT, T= 27 K

(0 0 ℓ) FitFunction No. Gaussian Peak Constant

2 DHO 1 NO

2.05 DHO 2 NO

2.1 DHO 1 NO

2.15 DHO 1 NO

2.2 DHO 1 NO

2.25 DHO 1 NO

2.3 DHO 1 NO

2.4 ODHO 2 NO

A.3 H=100 mT, T=31 K

Table A.3: The Fitting details of the magnetic signals measured at H=100 mT, T=31 K.

H=100 mT, T= 31 K

(0 0 ℓ) FitFunction No. Gaussian Peak Constant

2 DHO 1 NO

2.05 DHO 2 NO

2.1 DHO 1 NO

2.15 DHO 1 NO

2.2 DHO 1 NO

2.25 DHO 1 NO

2.3 DHO 1 NO

2.4 ODHO 1 NO
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A.4 H=200 mT, T=37 K

Table A.4: The Fitting details of the magnetic signals measured at H=200 mT, T=37 K.

H=200 mT, T= 37 K

(0 0 ℓ) FitFunction No. Gaussian Peak Constant

2 DHO 1 NO

2.05 DHO 2 NO

2.1 DHO 1 NO

2.15 DHO 1 NO

2.2 DHO 1 NO

2.25 DHO 1 NO

2.3 DHO 1 NO

2.4 ODHO 2 NO

A.5 H=53 mT, T=3 K

Table A.5: The Fitting details of the magnetic signals measured at H=53 mT, T=3 K.

H=200 mT, T= 37 K

(0 0 ℓ) FitFunction No. Gaussian Peak Constant

2 DHO 1 NO

2.05 DHO 2 NO

2.1 DHO 1 NO

2.15 DHO 1 NO

2.2 DHO 1 NO

2.25 DHO 1 NO

2.3 DHO 1 NO

2.4 ODHO 1 NO
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A.6 Additional measurements

Table A.6: The Fitting details of the magnetic signals measured at (H=25 mT, T=30 K),

(H=75 mT, T=29 K) and (H=200 mT, T=3 K)

H=25mT, T= 30 K

(0 0 ℓ) FitFunction No. Gaussian Peak Constant

2 DHO 1 NO

2.05 DHO 2 NO

H=75mT, T= 29 K

(0 0 ℓ) FitFunction No. Gaussian Peak Constant

2 DHO 1 NO

2.05 DHO 2 NO

H=200mT, T= 3 K

(0 0 ℓ) FitFunction No. Gaussian Peak Constant

2 DHO 1 NO
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B
Transverse field evolution of magnetic excitation spectrum in

Fe-rich NbFe2 - additional data

B.1 Fit details of low energy excitations at QFM at different

fields

Table B.1: The Fitting details of the magnetic signals measured at QFM with different magnetic

fields.

LET

Magnetic Field (H) FitFunction No. Gaussian Peak Constant

0 DHO 1 Yes

2.75 DHO 1 Yes

3.5 ODHO 1 Yes

4.25 ODHO 1 Yes

LLB-I

Magnetic Field (H) FitFunction No. Gaussian Peak Constant

0.5 DHO 1 Yes

2 DHO 1 Yes

3.5 ODHO 1 Yes

5 ODHO 1 Yes
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LLB-II

Magnetic Field (H) FitFunction No. Gaussian Peak Constant

0 DHO 1 Yes

2.5 DHO 1 Yes

2.75 DHO 1 Yes

3 DHO 1 Yes

3.25 DHO 1 Yes

3.5 ODHO 1 Yes

3.6 ODHO 1 Yes

3.75 ODHO 1 Yes

4 ODHO 1 Yes

4.25 ODHO 1 Yes

4.5 ODHO 1 Yes

B.2 H < Hc

Figure B.1: Representative plots of the magnetic excitations measured across QFM in the ℓ

direction at magnetic field H=0T, T=6 K with LLB-I . The magnetic excitations are fitted

(solid lines) with a damped harmonic oscillator model.
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Table B.2: The Fitting details of the magnetic signals measured at different magnetic fields

with LET.

LET

H=0T, T= 2K H=2.75T, T= 2K

(0 0 ℓ)
FitFunction

No. Gaussian

Peak
Constant FitFunction

No. Gaussian

Peak
Constant

-2.30 DHO 2 Yes DHO 2 Yes

-2.25 DHO 2 Yes DHO 2 Yes

-2.20 DHO 2 Yes DHO 2 Yes

-2.15 DHO 2 Yes DHO 2 Yes

-2.10 DHO 2 Yes DHO 2 Yes

-2.05 DHO 1 Yes DHO 1 Yes

-2.00 DHO 1 Yes DHO 1 Yes

-1.95 DHO 1 Yes DHO 1 Yes

-1.90 DHO 2 Yes DHO 2 Yes

-1.85 DHO 2 Yes DHO 2 Yes

-1.80 DHO 2 Yes DHO 2 Yes

-1.75 DHO 2 Yes DHO 2 Yes

-1.70 DHO 2 Yes DHO 2 Yes
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Table B.3: The Fitting details of the magnetic signals measured at different magnetic fields

with LLB-I.

LLB-I , 4F2

Magnetic Field (0 0 ℓ) FitFunction
No. Gaussian

Peak
Constant

-2.00 DHO 1 Yes

-1.90 DHO 2 Yes

-1.80 DHO 1 Yes

-1.70 DHO 1 Yes
H=0T, T= 6K

-1.70 DHO 1 Yes

-2.00 DHO 1 Yes

-1.95 DHO 2 Yes

-1.90 DHO 2 Yes

-1.80 DHO 1 Yes

-1.70 DHO 1 Yes

H=0.5T, T= 4K

-1.70 DHO 1 Yes

-2.00 DHO 1 Yes

-1.95 DHO 2 Yes

-1.90 DHO 2 Yes

-1.80 DHO 2 Yes

-1.70 DHO 1 Yes

H=2T, T= 4K

-1.70 DHO 1 Yes
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B.3 H = Hc

Table B.4: The Fitting details of the magnetic signals measured in the critical regime with

LET and LLB-II.

Magnetic Field and Instrument (0 0 ℓ)
FitFunction

No. Gaussian

Peak
Constant

-2.30 2

-2.25 2

-2.20 2

-2.15 2

-2.10 2

-2.05 1

-2.00 1

-1.95 1

-1.90 2

-1.85 2

-1.80 2

-1.75 2

H=3.5T, T= 2K

LET

-1.70

ODHO

2

Yes

2.05 2

2.00 1

1.95 2

1.90 2

1.85 1

1.80 1

1.75 1

1.70 1

H=3.6T, T= 1.7K

LLB-II, 4F2

1.65

ODHO

1

Yes
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B.4 H > Hc

Table B.5: The Fitting details of the magnetic signals measured above the critical regime with

LET .

H=4.25T, T= 2K - LET

( 0 0 ℓ)
FitFunction No. Gaussian Peak Constant

-2.30 2

-2.25 2

-2.20 2

-2.15 2

-2.10 2

-2.05 1

-2.00 1

-1.95 1

-1.90 2

-1.85 2

-1.80 2

-1.75 2

-1.70

ODHO

1

Yes
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B.5 h dependence of magnetic excitations at the critical field

(Hc) region

Table B.6: The Fitting details of the magnetic signals measured in h direction across QFM in

the critical regime with LLB-II.

LLB-II, 4F2

H=3.6T, T= 1.7K

(h 0 2)
FitFunction No. Gaussian Peak Constant

0.05 1

0.035 1

0.02 2

0 1

-0.02 3

-0.05

ODHO

2

Yes
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B.6 Temperature dependence of magnetic excitations at the

critical field (Hc) region

Table B.7: The Fitting details of the magnetic signals measured at high temperature in the

critical regime with LET.

H=3.5T, T= 37.5K -LET

(0 0 ℓ)
FitFunction No. Gaussian Peak Constant

-2.30 DHO 2 Yes

-2.25 DHO 2 Yes

-2.20 DHO 2 Yes

-2.15 DHO 2 Yes

-2.10 DHO 2 Yes

-2.05 DHO 1 Yes

-2.00 DHO 1 Yes

-1.95 DHO 1 Yes

-1.90 DHO 2 Yes

-1.85 DHO 2 Yes

-1.80 DHO 2 Yes

-1.75 DHO 2 Yes

-1.70 DHO 1 Yes
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B.7 Energy shift correction

Figure B.2: Representative illustration of the energy shift correction for the Q position (0 0

-1.8) measured at H=0 T and T=6 K during LLB-I at 4F2. The data shows the energy scan

with uncorrected (blue) and corrected (violet) energy shift. The inset shows the magnified

view of the elastic line with uncorrected Gaussian fit centred at Es (blue dased line) and

energy shift corrected at 0 meV (violet dashed line). The solid lines represents the Gaussian

fits (Equation.(B.1))

Figure.(B.2) illustrates the energy shift in the measured data collected during LLB-I at 4F2

for the representative Q position (0 0 -1.8) at H = 0 T and T = 6 K. The Figure consists

of energy scan with uncorrected (blue) and corrected (violet) scattering data. We obtained

the energy shift (Es) by fitting three parameter Gaussian function with a constant given in

Equation.(B.1),

Gaussian function:

f(x) 7−→ Aexp
(
− (x− b)2

2σ2

)
+Cst (B.1)

where A is the amplitude of the Gaussian peak, b is the centre of the peak, σ is the peak width

and Cst is a constant. The data was then corrected by adding the offset energy (Es) to the

energy transfer.
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