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Abstract

With the development of deep learning, lane detection models based on
deep convolutional neural networks have been widely used in autonomous
driving systems and advanced driver assistance systems. However, in
case of harsh and complex environment, the performances of detec-
tion models degrade greatly due to the difficulty of merging long-range
lane points with global context and exclusion of important higher-order
information. To address these issues, we propose a new learning model
to better capture lane features, called Deformable Transformer with
High-Order Deep Infomax model (DTHDI). Specifically, we propose a
deformable transformer neural network model based on segmentation
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techniques for high accuracy detection, in which local and global con-
textual information is seamlessly fused and more information about the
diversity of lane line shape features is retained, resulting in extraction of
rich lane features. Meanwhile, we introduce a mutual information max-
imization approach for mining higher-order correlations among global
shape, local shape, and lane position of lane lines to learn more dis-
criminative representations of lane lines. In addition, we employ a
row classification approach to further reduce the computational com-
plexity for robust lane line detection. Our model is evaluated on
two popular lane detection datasets. The empirical results show that
the proposed DTHDI model outperforms the state-of-the-art methods.

Keywords: lane detection; semantic segmentation; multi-scale; spatial
pyramid; Mutual Information

1 Introduction

In the field of computer vision, a lane detection task is a designation that the
location of the lane lines presents in an image. For autonomous driving systems
and advanced assisted driving systems, the algorithms of lane detection are
often used to locate lane lines and ensure stable vehicle movement within the
driving area. Therefore, the lane detection task is important for autonomous
driving and advanced assisted driving systems. In addition, to avoid various
emergencies on the driving road, autonomous driving systems and advanced
assisted driving systems require high demands on the real-time and accuracy
of lane line detection algorithms.

(a) (b)

(c) (d)

Fig. 1 Extreme circumstances
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Traditional lane detection methods [1–3] rely on a combination of highly
specialized feature selection and heuristics. When the road scene changes,
such methods are limited by simple and low-level features and mostly suffer
from poor robustness. Moreover, when encountering light changes, external
occlusion, or broken lane lines, the problem of false recognition or failure in
recognition easily occurs. As shown in Figure 1, large obstacles, extreme light-
ing conditions, aging roads, and other extreme environments, the lane lines
are blurring even non-existent, which limits the performance of lane detection.
With the widespread of artificial intelligence [4, 5], many pioneers have started
to explore deep learning techniques for lane detection. Many lane detection-
methods[6–8] utilized deep learning techniques and thus go beyond traditional
methods [9, 10]. These methods treat lane detection as a semantic segmen-
tation problem where the lane line is detected by pixel decoding based on
CNN neural networks. The above segmentation-based methods provide a fea-
sible solution to the lane line detection problem. They have been proven to
have higher detection accuracy and stronger anti-interference capability than
conventional methods.

The above research works have made some progress. Nevertheless, it still
has several issues as follows.

1. Bad and complex road scenes and other conditions, different lighting,
weather conditions, and occlusion phenomena caused by objects around the
road (e.g., pedestrians, vehicles) further require detection models with stronger
global context-awareness to improve detection accuracy. While the lane line
shape is long and thin, the CNN-based lane line detection model [11–13] is
limited by the fixed perceptual field in its network, which cannot combine the
local information (e.g., long-range points, etc.) in lane line detection with the
global context information caused by surrounding objects (e.g., pedestrians,
vehicles, etc.). On the other hand, in recent years, several researchers have
introduced attention mechanisms in lane detection models [11, 14, 15] to cap-
ture relevant remote information and contextual information. However, the use
of a fixed attention model in these models cannot adapt to the complex shape
features of lane lines, which leads to poor detection performance.

2. As shown in Figure 1, objects on the road and lane lines have differ-
ent semantics. In lane line detection, it is difficult to distinguish them in the
absence of high-level semantics and description of global contextual informa-
tion. Meanwhile, local information is important for lane detection due to the
thin and long shape of lane lines. Some research works model local geomet-
ric features of lanes and integrate them into global results [16], while others
favor the construction of a fully connected layer with global features to pre-
dict lanes [7]. These works are demonstrating the importance of local or global
information for lane detection. However, few works are exploiting both fea-
tures. On the other hand, since key submodules of autonomous driving systems
(e.g., human-vehicle detection) usually coexist with lane detection, which indi-
cates some implicit association among objects on the road (e.g., pedestrians,
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vehicles), surrounding buildings, and in the lane, i.e., there is some interrela-
tionship between local and global information [17, 18]. Therefore, it is essential
for in-depth research on how to model higher-order correlations between local
and global contextual information with joint use of local and global contextual
information for more powerful learning.

(a) (b)

(c) (d)

Fig. 2 Harsh and complex lane line scenarios

Inspired by recent advances in transformer encoder-decoder architectures
for various vision tasks[11, 15, 19], we propose a novel end-to-end lane detection
model called Deformable Transformer with High-Order Deep Infomax model
DTHDI to tackle the above problems.

Specifically, First of all, we obtain an accurate lane line representation by
designing a pyramid transformer model with multi-stage extraction of rich
features of lane lines and outputting a multi-scale feature map. Then, we
propose a row-wise deformable transformer module based on a two-branch
strategy to extract lane line features. In the segmentation branch, we propose a
deformable transformer encoder-decoder structure. The global information of
the multi-scale features is encoded in the proposed encoder-decoder structure,
and the adaptive fusion of the multi-scale features with the global information
is achieved based on the deformable transformer. Subsequently, these out-
put features are up-sampled layer by layer to recover to the original image
size thereby achieving segmentation. Moreover, in the classification branch,
the accuracy of the detection model is further improved by introducing an
enhanced row classification technique without affecting the real-time efficiency.
In addition, inspired by the idea of self-supervised learning, we design a lane
feature enhancement aggregator. This aggregator achieves multi-granularity
high-order mutual information maximization of global shape, local shape, and
lane position based on the mutual information maximization theory, which
mines the correlation between local and global information and improves the
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detection model’s ability to capture features. With the proposed DTHDI, our
model outperforms the state-of-the-art methods on benchmark datasets. With
the proposed DTHDI, our algorithm outperforms the state-of-the-art methods
on the benchmark dataset.

The contributions of this work are summarized as follows:
1) We propose a fast and accurate transformer-based lane detection model

to achieve high accuracy in lane detection while ensuring runtime efficiency.
It captures the shape features of lanes well and effectively incorporates more
global contextual information. High real-time efficiency is maintained using
a line-by-line classification technique proposed in this paper with guaranteed
high accuracy.

2) We develop an efficient lane feature enhancement aggregator, which
extracts as many local lane features as possible with strong discriminative
power by maximizing the higher-order mutual information among the global
shape, local shape, and lane line position of the lane lines.

3) The DTHDI model achieves state-of-the-art performance for the Tusim-
ple and CULane datasets and outstanding performance gains under blurred
scenes.

The rest of the paper is organized as follows. In Section 2, an overview
of existing studies on lane detection is discussed. In Section 3, the proposed
DTHDI model will be presented in detail. Section 4 presents, the experimental
studies, and result analysis to indicate the efficiency of the proposed model.
Finally, we summarize the finding of this research and identify future work in
Section 5.

2 Related Work

In this section, we briefly review three lines of research that related to our
work: Lane Detection, Transformer, and Mutual Information.

2.1 Lane Detection

Early lane detection algorithms used traditional methods [20–22], including
key steps such as image preprocessing and feature extraction. Such algorithms
require manual adjustment of the operator and its related parameters accord-
ing to the characteristics of different scenes, with a high workload and poor
robustness. Currently, deep learning-based methods have become the current
mainstream due to their remarkable performance, but there are still many
challenges.

Earlier deep learning-based methods detected lane lines mainly by seg-
mentation [6, 23]. In the segmentation-based methods[24–27] lane lines were
obtained by classifying each pixel as a lane or background and then fitting them
pixel by pixel. Since the segmentation-based approach performs well in terms
of detection accuracy, it has been adopted by many existing studies. A spe-
cial slice-by-slice convolution approach was recommended in SCNN[6],which
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generalized the traditional depth-by-layer convolution to slice-by-slice convo-
lution in the feature map. CurveLane-NAS[28],on the other hand, aimed to
capture lane-sensitive structures for both long- and close-range curve infor-
mation by a search framework. EDA-FSS[25]consumed feature size selection
to extract detailed features. Meanwhile, a series of dilation convolutions with
decreasing dilation rates were used to obtain fine-grained spatial information
for multi-lane segmentation. ESA[29] aimed to distill important global spatial
information by predicting the occlusion position in an image.

However, these segmentation-based methods are a bottleneck in terms of
processing time. In order to further improve the recognition for semantic
segmentation of images as well as the computational speed. Several studies
[7, 30, 31] converted lane detection into a row classification problem by dividing
the image into a defined number of rows and cells per row and predicting which
cell contains the lane with the highest probability. E2E-LMD [31] converted
the output of a segmented backbone network into a row-by-row representation,
thus achieving a reduced amount of computer. UFast [7] used a row-by-row
classification-based network under global and structural information to solve
the problem of no-lane lines in lane detection. These methods are efficient and
fast, but lose accuracy to some extent. The method proposed in this paper
strikes a balance between efficiency and accuracy and ensures a high detection
accuracy with a small computational effort.

2.2 Transformer

The Transformer structure was first designed by Vaswani et al. [32] in 2017
and has subsequently been widely used in different fields. The transformer
shows amazing potential for processing vision tasks that require capturing
global relationships. (e.g., image classification [33]). In contrast to the simple
application of the Transformer in image classification tasks, Wang et al.[34]
introduced the Pyramid Vision Transformer structure, which aims to train
densely distributed regions of image features for outputting high-resolution
features. LSTR [35] applies the Transformer to the lane detection task, where
it expands the extracted features into a one-dimensional vector that is sub-
sequently used as input to the Transformer Encoder. In[35], an end-to-end
approach using the Transformer allows learning direct parameters to describe
the shape model. Lee et al. [11] improve the final lane detection performance
by enhancing the attention to partial lane lines with a self-attentive mod-
ule. Liu et al. [15], on the other hand, propose a variant of the transformer
model that can use a self-attention mechanism to capture the slender struc-
ture and the global context. All the above transformer-based approaches have
achieved good performance in the lane line. However, the commonly adopted
fixed attention routines models are unable to adaptively fit complex lane line
features, especially when the lanes change.
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2.3 Mutual Information in Supervised Learning

Self-supervised learning is one of the key directions of recent research in
the CV field. As one of the theoretical foundations for self-supervised learn-
ing, the Informax principle proposes that the Informax principle proposes
that maximizing the mutual information of input and output can be used
to learn better generative models. Hjelm et al. [36] demonstrated that inte-
grating knowledge about the input location into the target can greatly affect
the applicability of the representation to downstream tasks, thus proposing
the Deep Infomax model. Chen et al. [37] propose a new sampling algorithm
based on the Deep Infomax estimation and maximization algorithm in the
field of person re-localization research. Ji et al. [36] argue that unsupervised
clustering and segmentation are done by maximizing the transformation or
spatial proximity of image associations between mutual information. Mukher-
jee et al. [38] designed a conditional mutual information neural estimator for
classifiers. Bachman et al. [39] developed a self-supervised representation learn-
ing method based on the maximization idea of mutual information between
features extracted from multiple views of a shared context.

3 Method

In this section, the structure of the proposed model is described in detail.
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Fig. 3 The overall framework of the model.

DTHDI is a single-stage anchor-based model for lane detection. An
overview of our method is shown in Fig.3. First, to obtain a robust feature
representation, we use the pyramid transformer encoder to extract features
from the input image, which outputs a multi-scale feature map based on a
feature pyramid to obtain a richer representation. Then, the multi-scale fea-
ture map is fed into two separate branches, the segmentation branch, and the
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classification branch. In the segmentation branch, we segment the input image
using the end-to-end structure of the Deformable Transformer, which merges
the multi-scale rich global contextual features and outputs the predicted lane
masks. In the classification branch, the obtained multiscale features are fully
connected for classification based on an improved line-by-line classification
scheme to obtain the probability distribution of line anchors, which satisfies
the lane detection real-time requirement. Subsequently, we perform multi-
granularity high-order mutual information optimization on the features of the
two branches to maximize the global, local, and lane location mutual infor-
mation, thus characterizing the lanes more accurately. Finally, the lane line
detection results are obtained by training the fusion loss of the two branches
as well as the higher-order information maximization loss.

3.1 Pyramid Transformer Encoder
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Fig. 4 The center suppressed cropping Module

In the module, we design a pyramid transformer encoder model to advance
accurate features. First of all, we adopt Resnet as the basis for feature extrac-
tion based on the Encoder structure, then hybridize the FPN to acquire
multi-scale features. Transformer Encoder is added to the last layer of Resnet
to extract richer multi-scale features from complex scene images. The structure
of the pyramid transformer encoder is shown in Fig.4 below.

The image features are obtained by applying the multi-layer convolution of
the Resnet for the input image size I ∈ RC×H×W . The feature map xl of the

final layer is subjected to several up-sampling procedures to yield
{
X l

}L

i−1
for
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the different dimensional features
{
xl
}L

i−1
acquired by convolution. Finally, it

is linked one by one to the feature maps created using Resnet convolution.
Meanwhile, the feature matrix of the last layer of Resnet is expanded into a
one-dimensional feature vector, and then the position encoding Eq is added as
the Transformer Encoder’s input X l:

Xi =
{
xl
}
+ Eq (1)

X l is entered into Encoder:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2)

where Q = Linear
(
X l

)
= X lWQ,K = Linear

(
X l

)
= X lWk, V = Linear(

X l
)
= X lWV . The final output is a multi-scale feature map

{
X l

}L

i−1
, and

X l ∈ RC×H×W .

3.2 Deformable Transformer

This section inputs the multi-scale feature from Section 3.1 into the segmen-
tation branch, uses the Deformable Transformer to extract the contextual
information, and produces the lane mask. Deformable Transformer converts
the original input structure in Transformer into the input for multi-scale fea-
tures to preserve the original information of multi-scale features. Deformable
Transformer, on the other hand, only concentrates on a limited number of key
sample points surrounding the current query, and by assigning a small num-
ber of fixed keys to each query, it avoids the long training time problem that
exists in classical Transformer.

Specifically, a Deformable Transformer is made up of two components:
Deformable Transformer Encoder and Decoder.

Deformable Transformer Encoder. Both the input and output of the
encoder are multi-scale feature maps with the same resolution. The classical
Transformer Encoder structure is shown in Fig.4. To join the location encod-
ing as Encoder input, multi-scale features th are first joined by upsampling
fusion and then expanded into feature vectors. The multi-head attention mod-
ule adaptively acquires the key content based on modifying the key-query pair
weights are given a set of key elements and a query element, where both key
elements and query elements are pixels in the multi-scale feature map. It has
the following formula:

MultiHeadAttn (Tq, X) =

M∑
m=1

Wm

[ ∑
k∈Ωk

Amqk ·W ′
mXk

]
(3)

where Tq is the target feature of the query; X is the input feature vector; m
and M are the attention head index and the total number, respectively; Ωk
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refers to the Key element; and Wm and W ′
m are the learnable weights; and

q and k are the indexes of the Query element and the Key element, respec-

tively. The attention weights Amgk ∝ exp

{
TT
q UT

mVmXk√
C/M

}
are normalized to∑

k∈Ωk
Amqk = 1, where C is the feature dimension and, Um and Vm are the

learnable weights. The Deformable Transformer Encoder eliminates the fusion
coupling procedure. It transforms the previously described multi-head atten-
tion into multi-scale deformable attention that adjusts to multi-scale feature
input, improving the original information reading of various scale maps. At the
same time, it differs from the multi-head attention in Equation (3). Each pixel
point is treated as a target feature, which is compared to other pixel points
(sample points) in the image. Only a tiny percentage of critical characteris-
tics (reference points) around the target features are focused by multi-scale
deformable attention. The following is the updated multi-scale deformable
attention formula.

MSDeformAttn
(
Tq, p̂q,

{
X l

}L

l−1

)
=

M∑
m=1

Wm

[
L∑

l=1

K∑
k=1

Amlqk ·W ′
mxl (ϕl (p̂q) + ∆pmlqk)

]
(4)

where
{
X l

}L

l=1
denotes the multi-scale feature map of the input and X l ∈

RC×H×W . p̂q are the normalized coordinates of the reference points of each
query element, where p̂q ∈ [0, 1]2 , m denotes the number of attention heads,
l denotes the input feature layer, and k denotes the sample points. And Anigh

denote the sample offset and attention weight for the k th sample point in the
l th feature layer and the m th attention head, respectively.

For each query pixel, the reference point is itself. A scale-level embedding,
indicated as el , is added to the deformable attention in addition to the loca-
tion embedding. Unlike the location embedding, which is placed according to
the different scale sizes of the feature maps, the numerous scale-level embed-
dings {el}Ll=1 are randomly initialized and participate in network training as
parameters to achieve optimality in the network training.

Decoder. By combining the multi-scale feature maps extracted based on
progressive upsampling with the encoder component, we obtain the final
feature representation and output the lane line example maps.

We investigate the lane mask output by the decoder to be close to the
ground-truth masks of binary lane mask, assuming that the lane segmentation
branch is denoted as Pp = Φp(πp) , with πp as the parameter. Then its loss
function is:

Lseg = CE(Pp, Gp) (5)

where Pp = Φp(πp) is the output of the split branch and Gp is the ground-truth
masks of binary lane mask.

10            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
Springer Nature 2021 LATEX template

Article Title 11

3.3 Row-wise Classification

In this section, we propose a line-by-line classification technique to further
reduce the computational effort of our method while detecting lane lines. As
shown in Fig.5. the area of the image containing the lanes is divided into
a predetermined number of row anchors (h) . Each row anchor is divided
into a predefined number of grid cells (w). The number of lanes C is also
predetermined. The grid of h ∗ w is used to denote the lane location for each
lane. Therefore, we classify each divided grid for the input image attributes and
then output the probability distribution of the presence of lanes in the grid.
It is worth noting that after each row anchor in the row-by-row classification
method proposed in this paper, a grid is added to display the existence of
vehicle lines in the row anchor. Thus, the total classification computation is
h ∗ (w + 1) . We take multi-scale feature maps X l as input to categorize each
grid, and the following equation is exploited to detect lane lines row by row:

Pi,j.: = f ij
(
X1

)
, s.t. i ∈ [1, C], j ∈ [1, h] (6)

where C is the number of lanes. h is the pre-defined row anchor; and, f ij

denotes the classifier that selects the lane position on the i th lane and j th
row anchor. In this paper, full connectivity is utilized as the classifier. Pi,j: is
a (w + 1)-dimensional vector representing the selection of the th lane, as well
as the anchor on the th row. The lane points are extracted by selecting the
grid cell for each line with the highest probability of the presence of lanes in
each row of anchors. The loss function is as follows:

Lck =

c∑
i=1

h∑
j=1

LCE (Pi,j:, Ti,j:) (7)

where LCE is the cross-entropy loss and Ti,j: is the ground truth after one-hot
encoding.

3.4 High-order Deep Infomax

Lane line detection requires strong perception to locate lane locations, however,
local features cannot effectively perceive the global structure of the image. To
enhance the lane line information on the roadway, we maximize the global and
local features of the lane lines while adding the location encoding, which thus
deeply exploits the higher-order mutual information to mine the correlation
between global, local, and lane locations for the purpose. In addition, the
location encoding consists of randomly generated marker information for the
features during feature extraction.

Inspired by the literature [40, 41], we extend its idea to three variables. For
the number of variables N ≥ 3, given a set of random variables, X1, · · · , XN

11            
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Fig. 5 Schematic diagram of dividing the grid in row classification

the higher order mutual information is defined as follows:

I (X1, · · · , XN ) =

N∑
n=1

(−1)n+1
∑

i,<··· ,dn

H (Xii, · · · , Xin) (8)

where H (Xii, · · · , Xin) is the cross-entropy of Xii, · · · , Xin . The three ran-
dom variables of local features L, global features G, and position encoding P
are described in this study. Their higher order mutual information equations
are as follows:

I(L; G; P ) = H(L) +H(G)−H(L,G)

+H(L) +H(P )−H(L,P )

−H(L)−H(G,P ) +H(L,G, P )

= I(L,G) + I(L,P )− I(L,G, P )

(9)

Where I(L; G; P ) denotes the mutual information between L with the
joint distribution of G and P . Specifically, I(L,G) denotes the correlation
between global and local information, I(L,P ) denotes the correlation between
local information and location coding, and then I(L,G, P ) denotes the cor-
relation between the three random variables of global, local, and location
coding. Maximize the mutual information between the three with the following
equation:

maxI(L; G; P )

= max(I(L,G) + I(L,P )− I(L,G, P ))

= max(I(L,G)) +max(I(L,P ))−min(I(L,G, P ))

= max(I(L,G)) +max(I(L,P )) +max(I(L,G, P ))

(10)
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In this paper, different coefficients are used for different mutual informa-
tion. The final objective function is.

Lmutual = λgI(L,G) + λpI(L,P ) + λaI(L,G, P ) (11)

where λg , λp and λa are variable parameters.
The maximization of global and local mutual information can be achieved

by maximizing the following objective function.

La = E [logDl(L,G)] + E
[
log

(
1−Dl(L̃, G)

)]
(12)

where L and L̃ denote the positive samples with local information and the
negative samples with local information transformed. In this paper, we utilize
the features after random permutation as negative samples. Similarly, for the
three variables proposed in this paper, we construct negative samples of the
location information to capture the correlation between the three, by consid-
ering that the information between global and local, and global and location
has been calculated previously. The objective function equation is as follows:

La = E [logDa(L,G, P )] + E
[
log

(
1−Da(L,G, P̃ )

)]
(13)

where Da denotes the discriminator of mutual information among the three.
Therefore, The final maximization equation thus becomes the following:

Lmutal = λ′
gLl + λ′

pLp + λ′
aLa (14)

where λ′
g , λ′

p and λ′
a are variable parameters.

For discriminators Dl and Dp , we use a convolutional layer. Moreover, for
discriminator C , we use a nonlinear function. The equation of the nonlinear
function is as follows:

ZP = σ (WpP ) (15)

ZG = σ (WLG) (16)

Z = σ (WZ [ZP ; ZG]) (17)

Da = σ
(
LTMaZ

)
(18)

where Wp , WL, Wz and Ma are parameters, σ is the sigmoid activation
function, and [; ] is the connection operation.

3.5 Loss function

Our overall loss of the model may be separated into three categories based
on the information above: segmentation loss, classification loss, and higher
order mutual information maximization loss. As a result, the total mode’s loss
function is as follows:

Ltotal = αLseg + βLcls + λgLl + λpLp + λaLa (19)
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The segmentation and classification losses are denoted by Lseg and Lcls ,
respectively. The global and local, local and line location, and mutual infor-
mation maximization loss among the three are denoted by Ll , Lp and La ,
respectively.

In this research, the segmentation branch and higher-order mutual informa-
tion maximization are only involved in the training stage to increase real-time
performance during model inference. As a result, even though the divided half
of the model in this research contains more parameters, it does not affect on
the entire model.

The parameters of the model are optimized by minimizing the error
between the model prediction and the ground truth. Since the output of the
network is a binary value (1 for foreground and 0 for background), the loss
employs the Softmax Cross-Entropy Loss loss function, abbreviated as:

L = − 1

MN

∑
M

∑
N

GMN log

(
eYMN∑
eYMN

)
(20)

where GMN is ground truth; YMN is the output; M and N are the output size,
which is the same as the input image size and will vary with the input size.

Batch normalization is applied in the encoder and decoder for each convo-
lutional layer to speed up model training. The activation function is Rectified
Linear Units (ReLU). The model is trained and tested via PyTorch. The SGD
network performs the training for the input training samples to maximize the
updating of the network parameters.

4 Experiment

4.1 Experimental setting

4.1.1 Datasets

We evaluate the proposed model on two publicly accessible datasets, i.e.
CULane[6] and TuSimple[42]. Culane is a frequently used large lane detection
dataset that retrieved 133235 frames from over 55 hours of video. Normal,
Crowded, Dazzle, Shadow, No line, Arrow, Curve, Cross, and Night are among
the nine various settings available for model training. Complex scenarios
including Crowded, Shadow, and Curve give the foundation for customizing the
model to various training conditions. Another extensively utilized dataset for
autonomous driving scenarios is TuSimple. The TuSimple dataset, released by
autonomous driving company Tucson, is the first dataset to provide a bench-
mark for lane line detection. It consists of 3626 training images and 2782 test
images for straight, curved, well-lit, damaged, disturbed, and shadow-obscured
roads, including road images taken at different times of the day.

Details of these two datasets are shown in Table 1. In addition, in order
to further verify the performance of the DTHDI model, we also use real scene
data sets to evaluate the effectiveness of the proposed method. The dataset
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Table 1 Details of TuSimple and Culane datasets

Dataset Train Val Test Road type
Culane 88.9K 9.7K 34.7K Urban&Highway
Tusimple 3.3K 0.4K 2.8K Highway

used is the urban road scene collected in Changchun of China. This data set
has 1500 images taken during the vehicle traveling. The image test effect is
shown in Figure 6.

Fig. 6 Detection results of the DTHDI model on real datasets.

4.1.2 Evaluation metrics

The official assessment measures for the two datasets differ, with Accuracy
and F1 being used in each case. The major assessment statistic for the TuSim-
ple dataset is Accuracy. According to[43], the main evaluation statistics of the
TuSimple dataset are accuracy. The Tusimple disclosed the following accu-
racy formula when specifying the dataset. Therefore, we still choose to use
this precision formula when using the Tusimple dataset, to achieve more reli-
able results compared with other methods under the same standard. For the
TuSimple dataset, there are three official indicators: false-positive rate (FPR),
false-negative rate (FNR), and accuracy. The following is the formula for
calculating it:

accuracy =

∑
clip Cclip∑
clip Sclip

(21)

where Cclip is the number of correctly predicted lane points, and Sclip is the
total number of ground truth in each segment. Lane with accuracy greater than
85% is considered as a true-positive otherwise false positive or false negative.
Besides, the F1 score is also reported.

Each lane is evaluated as a 30-pixel wide line in the CULane assessment
measure. It is computed the intersection over union (IoU) between the ground
truth and the anticipated outcomes. True positives are defined as forecasts
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with an IoU greater than 0.5. With the following equation, the F1 readings
can be used as assessment indicators:

Fl −measure =
2× Precision×Recall

Precision+Recall
(22)

Precision + Recall where Precision = TP
TP+FP ; Recall = TP

TP+FN ; TP is a
true positive; FP is a false positive and FN is a false negative.

4.1.3 Implementation details

For model training, both input images are transformed to an image size of
800*280, and the conversion is repeated at the image output to return to the
original size. This work designs the Adam optimizer with step learning rate
decay and an initial learning rate of 1e-4 in the optimization process. The
experiments are trained on CULane and TuSimple with 50 and 100 epochs,
respectively. The batch size is 16. The CULane and TuSimple datasets have
200 and 100 grid divisions, respectively. The global and local, local and position
encoding, and the initialization weight parameters among the three are 1, 1
and 0.001. The number of lane lines of the model is set to 4. All experiments
are run on a PC with an Nvidia Tesla V100 graphics card.

4.2 Overall Performance Comparison

we utilize Resnet18 and Resnet34 as the base networks for the feature extrac-
tion section to illustrate the efficiency of the DTHDI. The authors’ source
code and models with default configurations are directly available in this work
to maintain the fairness of the comparative tests. The authors’ significance
detection results are directly obtained using various data sets. TuSimple: We

Table 2 Comparison with other methods on TuSimple dataset

Method Accuracy FPS FP FN
Res18-Seg 92.69 39.52 0.0948 0.0822
Res34-Seg 92.84 19.80 0.0918 0.0796
SCNN 96.53 7.49 0.0617 0.0180

FastDraw 95.20 90 0.0760 0.0450
SAD 96.64 294.11 0.0602 0.0205
Resa 96.82 36 0.0363 0.0248

Res18-UFast 95.87 312.5 0.1905 0.0391
Res34-UFast 96.06 169.49 0.1906 0.0392
Res18-Ours 96.08 322 0.0589 0.0599
Res34-Ours 96.77 165 0.0297 0.0385

compare our method based on the TuSimple dataset to eight state-of-the-art
lane detection methods that have become popular in recent years, including
Res18-Seg [19], Res34-Seg [19], SCNN [6], FastDraw [44], SAD [45], Resa[8],
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Table 3 Comparison with other methods on TuSimple dataset

Category Seg SCNN FastDraw SAD Res18-UFast Res34-UFast SwiftLane RESA-34 Res18-DTHDI Res34-DTHDI

Normal 87.4 90.6 85.9 90.1 87.7 90.7 90.46 91.9 90.6 92
Crowded 64.1 69.7 63.6 68.8 66 70.2 71.07 72.4 68.9 73.3
Night 60.6 66.1 57.8 66 62.1 66.7 68.77 69.9 65.6 70.1
No-line 38.1 43.4 40.6 41.6 40.2 44.4 46.17 47.7 42.3 48.1
Shadow 60.7 66.9 59.9 65.9 62.8 69.3 73.69 72 65.4 75.2
Arrow 79 84.1 79.4 84 81 85.7 85 88.1 85.2 88

Dazzlelight 54.1 58.5 57 60.2 58.4 59.5 62.51 66.5 59.9 63.4
Curve 59.8 64.4 65.2 65.7 57.9 69.5 64.92 68.6 61.2 69.8

Crossroad 2505 1990 7013 1998 1743 2037 1096 1896 1678 2003
Total 66.7 71.6 - 70.8 68.4 72.3 74.03 74.2 70.9 74.5

FPS - 7.49 90.3 74.62 322.58 175.43 411 36 301 157
GELOPS - 328.4 - - 16.56 16.56 - - 17.92 17.92

Res18-UFast [30], and Res34-UFast [30]. We use ResNet-18/34 as the back-
bone and they are labeled as RES-18/34. The results are shown in Table 2.
RES34-Ours achieves an accuracy of 96.77, which is only slightly lower than
Resa, thus ranking 2nd. We also analyze the FP and FN of each method.
Lower FP and FN mean fewer false predictions, and our method ranks first
in the FP metric. This is due to the fact that the TuSimple dataset is a high-
way dataset with more homogenous scenes, in which the lane lines have more
regular forms. It shows the efficiency of Deformable Transformer in this paper
compared with the above methods. Moreover, this paper draws on the idea of
mutual information maximization for the related purpose of further aggrega-
tion based on various features. In addition, our method has faster FPS than
almost all results on TuSimple dataset, which illustrates the excellence of the
row-based classification strategy proposed in this paper, enabling our method
to achieve real-time efficiency and guarantee high efficiency while ensuring high
accuracy. Meanwhile, we take the idea of mutual information maximization to
achieve further aggregation based on various relevant features. In addition, our
method has faster FPS than all baselines on TuSimple dataset, which illus-
trates the excellence of the row-based classification strategy proposed in this
paper, enabling our method to attain real-time efficiency and guarantee high
efficiency while ensuring high accuracy.

Culane: We selected eight state-of-the-art lane detection methods for com-
parison with our approach to the Culane dataset. They are Seg [19], SCNN
[6], FastDraw [45], SAD [8], Res18-UFast [30], Res34-UFast [30], SwiftLane
[31], and Resa [44]. As shown in Table 3, our method achieves 301 FPS, which
still guarantees an excellent balance between high efficiency and high real-time
performance. DTHDI performs better in Culane compared to the TuSimple
dataset and outperforms all baselines. The reason for this is that the Culane
dataset is larger and contains more images of different scenes, which can pro-
vide better conditions for model training. The fact that the Culane dataset
contains more scenes while DTHDI is constructed to accommodate diverse
scene detection makes it more successful on fuzzy feature scenes. In particular,
the experimental results on Normal, Night, Wireless, and Shadow scenarios
all illustrate the necessity of adding a Deformable Transformer for solving the
sparse feature problem in fuzzy scenarios, and the importance of aggregating
different features based on the idea of maximizing mutual information.
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(b)

Fig. 7 Comparison of different transformers based on Tusimple (a) and Culane (b)
datasets, respectively

4.3 Ablation Analysis

4.3.1 Comparative Analysis of Transformer Structures

In this section, we investigate the effect of transformers and different trans-
former variants. None denotes no transformer structure, Transformer denotes
regular transformer structure, and Dtransformer denotes deformable trans-
former structure. Figure 6 depicts the results of the experiment. First, DTHDI
outperforms the baseline model on both datasets. This is because the Trans-
former structure of feature processing focuses more on location information,
while the Deformable Transformer structure is used to obtain location infor-
mation between lane line pixels. Furthermore, the Dtransformer still performs
best when using the Culane dataset. This is because the deformable Trans-
former structure incorporates the idea of adaptivity, thus adaptively learning
more multi-scale feature information in complex environments.
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Fig. 8 Comparison of different mutual information based on Tusimple (a) and Culane (b)
datasets, respectively

4.3.2 Comparative analysis of mutual information

In this section, we investigate the effect of mutual information. None rep-
resents that no mutual information is added. L-G represents that local and
global mutual information is added to the model. L-P represents that mutual
information between local and positional codes is added to the model. L-G-
P represents that higher-order mutual information between local, global, and
positional codes is added to the model. We summarize the performance of each
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module in Table 4. First, the incorporation of mutual information improves
the model’s resilience and accuracy for lane line detection. Second, in terms
of mutual information between variables, the correlation between global and
local variables significantly improves the model’s performance.

(a) (b)

Fig. 9 Detection results of the DTHDI model on conventional roads.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Detection results of the DTHDI model on conventional roads.

4.4 Visualization of test results

We first make a visualization of the different scenarios as follows. From Fig.8, it
can be seen that the proposed DTHDI model detects regular and complete lane
lines on conventional roads, which demonstrates the ability of the Deformable
Transformer to extract global information of lane lines. Fig.9 illustrates that
the model also gets good results for curves, and shows strong adaptability for
different angles of curves. It is verified that the proposed higher-order mutual
information maximization for the bent part of the local information and the
global information is well intermingled. From the detection results of Fig.10,
it can be concluded that when the lane lines are obscured by vehicles on the
road, the proposed model can still detect the lane lines on the road surface
completely and has a good prediction for the shape of the lane lines. In Fig.11,
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it can be seen that the model can detect the shape of the lane lines on the road
surface even when the off light extremely affects the detection of the lines.

At present, the public dataset of lane lines is limited to extreme cases
such as low illumination, blocked lanes, and shadow lanes. The public datasets
we use, Tusimple and Culane, contain some extreme images. The lane line
detection effect is shown in Figure 13. However, on the real dataset we tested,
the Changchun, China street dataset, the percentage of extreme scene images
exceeded 70%, as shown in Figure 14. The extreme scenes mainly include
congestion, shadow occlusion, lane line blurring, and backlighting. Under the
dataset with high extreme scene density, our proposed DTHDI model still
showed good detection performance, as shown in Fig.14. In our experiment,
different datasets are compared with other methods under a unified standard,
which ensures the credibility of the data and the authenticity and effectiveness
of the experiment.

(a) (b) (c)

Fig. 11 Detection results of the DTHDI model when it is obscured.

Fig. 12 Detection results of the DTHDI model under extreme lighting.

5 Conclusion

In this paper, we propose a novel end-to-end lane detection method, named
DTHDI. Firstly, we utilize the encoder-decoder structure and design a defor-
mation transformer to extract multi-scale features with contextual information
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Fig. 13 Public dataset detection image in real world.

Fig. 14 Real dataset detection image in Changchun of China.

for effectively capturing long-distance visual cues when lane features in blurred
scenes are sparse. Secondly, to enhance the discriminability of features, we
maximized the higher-order mutual information among the global shape, local
shape, and lane line position of the lane lines. In addition, to detect accu-
rately while ensuring real-time efficiency, we build an end-to-end row-wise
classification to generate anchor lines over the image with a strong shape
prior to deducing lane lines. In this way, DTHDI greatly improves the upper
bound of accuracy without speed delay. We also evaluate the generation of
our method in various scenarios, the excellent performance demonstrates the
powerful detection capability of DTHDI.
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