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Chapter 3 
 

How to best quantify anthropogenic noise exposure? A case study comparing a manual analysis 

to the bioacoustics index NDSI score in the Tamshiyacu Tahuayo Community Regional 

Conservation Area  

3.0 Abstract  
As human expansion continues to occur at unprecedented rates there has been an increase in 

global environmental noise levels. These higher levels of man-made noise were previously 

thought to mainly be concentrated in urban settings, however, anthropogenic noise is now also 

becoming prevalent in rural and remote areas. This chapter provides the first comparison of a 

manual analysis versus the bioacoustics index, Normalised Difference Soundscape index (NDSI) 

score, at their ability to catalogue and measure anthropogenic noise disturbance. I catalogued the 

change in anthropogenic noise levels across the landscape, by comparing the levels of 

anthropogenic disturbance inside a reserve in Peru to that outside the reserve boundaries 

including a nearby community and ecotourism lodges. I compared the results of a manually 

catalogued acoustic analysis method with the NDSI score from the ‘soundecology’ R package in 

audio recordings obtained using an Audiomoth. I found that for a finer scale of anthropogenic 

noise differences the human conducted analysis was more accurate and appropriate for that 

setting. This was also the first study to alter the abiotic and biotic frequency boundaries for an 

NDSI index and I postulate that when the frequency boundaries are known it is the superior 

method of NDSI analysis as it provides a more nuanced look at the soundscape in an area. This 

chapter highlights the limitations and advantages of both measurement techniques. 

 
3.1 Introduction 
 
Anthropological pressures are triggering ecosystem changes on a global scale which have 

resulted in global wildlife population declines (Mitchell et al., 2020). The five main 

anthropogenic causes of anthropological pressures linked to biodiversity change are climate 

change, exploitation of natural resources, pollution, changes in habitat, and introduction of 

invasive species (Bowler et al., 2020). Due to this largescale and rapid change, biodiversity 

assessments have become an ever more urgent task (Pereira et al., 2013). With this need to 

monitor and quantify this change, conservationists have been searching for cost-effective, easy to 

use and scalable ways to monitor biodiversity (Anderson, 2018; Mitchell et al., 2020). It is also 
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equally important to monitor the pressures that are threatening biodiversity as they can act as the 

bridge between the socioeconomic driving forces behind the pressures and the biological impacts 

they cause (Spangenberg, 2007; Jones et al., 2013). 

 

In terrestrial habitats this disruption came from industrial pursuits and air, rail and road 

transportation (Barber et al., 2010). While in marine habitats an influx in shipping transportation, 

oil and gas exploitation and sonar operations contribute to changes in the soundscape 

(Hildebrand, 2009). This incursion on the natural soundscape by anthropogenic noise can cause 

physiological stress in animals (Francis and Barber, 2013), can mask acoustic signals (Radford et 

al., 2014), and even cause shifts in habitat use (Rako et al., 2012). These impacts are the reason 

why it is essential to study and monitor anthropogenic noises and their influences on ecosystems 

and wildlife in order to reach a better understanding of how we can mitigate the effects they are 

having or a larger biodiversity level (Stem et al., 2005; Spangenberg, 2007; Merchant et al., 

2015; Pieretti and Danovaro, 2020).  

 

Ecoacoustics, the study of environmental sound, has become a popular method for quantifying 

biodiversity as the common methodologies used in these studies are more cost-efficient and rapid 

than other more traditional surveys (Bradfer-Lawrence et al., 2020). The soundscape (the sounds 

present at a given place at a given time) is comprised of three elements: the geophony, sounds 

from natural processes (i.e. rain and wind); the anthrophony, sounds that are produced by 

humans and man-made machinery; and the biophony, sounds made by non-human animals 

(Pijanowski et al., 2011). The characteristics of the soundscape can reflect changes in landscapes 

which is why they are being used to assess disturbance impacts on wildlife (Pijanowski et al., 

2011). Open-source audio recorders that are cheap and can be deployed in the field for weeks on 

end are now widely available and an increasingly popular method of data collection (Bradfer-

Lawrence et al., 2019). These audio recordings can be described with acoustic indices which are 

automatically generated and used as effective measures of biodiversity. These acoustic indices 

describe the soundscape by using the amplitude and frequency of the audio in recording files. 

Soundscape approaches to conservation research are increasingly used in the context of 

landscape-scale problems and across a variety of habitat types, such as assessing species 
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diversity in tropical environments (Mammides et al., 2017) and marine ecosystems (Harris et al., 

2016).   

 

There are many indices that are available to statistically describe the distribution of acoustic 

information related to the biodiversity in a recording (Mitchell et al., 2020). Those most 

commonly used are those that measure the complexity and richness of ecological communities 

(Mitchell et al., 2020). Others measure specific features of soundscapes like anthropogenic 

disturbance (Kasten et al., 2012) or acoustic dissimilarity (Sueur et al., 2008). The indices could 

replace traditional field collection techniques used to assess disturbance impacts on wildlife, 

which are labour-intensive and not as effective when working with elusive species (Doser et al., 

2020). Zwart et al. (2014) compares traditional transect surveys with results obtained from 

bioacoustic recorders and found that recorders are better at detecting nightjars (Caprimulgus 

europaeus). Other studies have compared bioacoustic indices and other methods to identify 

whether they are suitable alternatives but less research has been conducted on the efficacy of 

bioacoustics indices to measure pressures on biodiversity (Pieretti and Danovaro, 2020).  

 

This study will take an in-depth look at one soundscape index and compare it to more laborious 

traditional methods for quantifying levels of anthropogenic noise in a habitat. I focus on the 

Normalised Difference in Soundscape Index (NDSI) score which computes a ratio between 

anthropogenic and biological noise by assuming the sounds found in the 1-2 kHz frequency band 

are solely anthropogenic sounds and the sounds found in the 2-11 kHz band are only biological 

sounds, the score is given on a scale of -1 to 1(Kasten et al., 2012). The NDSI is commonly used 

in combination with other acoustic indices when conducting rapid species richness and 

abundance assessments (Bradfer-Lawrence et al., 2020).  For example, Doser et al. (2020) used 

the NDSI score in conjunction with other common acoustic indices as a time and cost-efficient 

methodology for an assessment of disturbance impacts on biodiversity in a logged forest in 

northern Michigan. It is used in combination as most studies utilising bioacoustics indices use all 

the indices in order to have an encompassing idea of the soundscape in an area. In this chapter I 

choose to focus singularly on this index because I was solely interested in the amount of 

anthropogenic noise present in the soundscape and the NDSI index is the only bioacoustics index 

that focuses on quantifying anthropogenic noise. However, despite the widespread use of the 
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NDSI index, its comparison to the actual amount of anthropogenic noise present in a file has not 

been made. This is most likely because the NDSI index provides a ratio of the biological versus 

anthropogenic noise in a file rather than just purely the amount of anthropogenic noise present.  

Here I provide a comprehensive analysis of how effective the NDSI score is at quantifying levels 

of anthropogenic noise as compared to a traditional manual analysis, using soundscapes recorded 

in and around a protected area in Peru. This is the first direct comparison of its kind and allows 

for a direct assessment on the strengths and weaknesses of this index and in what scenarios it is 

best suited. My first aim is to compare the NDSI score with a traditional manual method for 

estimating the amount of anthropogenic noise in a soundscape. To test this, I quantified 

anthropogenic noise across multiple sites using the two methods at the same location and time of 

day, then tested whether the NDSI score could predict the number of minutes of anthropogenic 

noise present in a 30-minute sound file. I also compare the mean NDSI score per site to the total 

amount of anthropogenic noise that was catalogued there, to see if the NDSI score can detect 

overall presence of anthropogenic noise disturbance over time in an area. My second aim is to 

see what factors are associated with a higher presence of anthropogenic sounds. I hypothesise 

that location and time of day will impact the amount of anthropogenic sound, with the highest 

levels being found in the late morning (due to when people in the local community start their 

day) and outside of the reserve limits. Lastly, my third aim is to see what factors are driving 

changes to the NDSI score of a soundscape. I hypothesise that outside the reserve NDSI scores 

will be lower (indicating higher levels of anthrophony) and that there will be higher NDSI scores 

in the early morning and late afternoon to reflect bird choruses.  

 

3.2 Methods  
 
3.2.1. Study site  

The research was conducted in Área de Conservación Regional Comunal Tamshiyacu Tahuayo 

reserve and sounding area, located in north-eastern Peru. The reserve was demarked a 

conservation protected area in 1991 (Newing and Bodmer, 2003), subsistence hunting is 

regulated and the hunting of primates is illegal (Hurtado-Gonzales and Bodmer, 2004). It is 

located in the Amazon flood basin and undergoes monomodal flooding. Only one tour operator 
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has built accommodation inside the reserve limits, Amazonia Expeditions. Their main lodge is 

based outside of the reserve limits and close to the El Chino community, this is where most of 

their clients stay. This is where the majority of anthropogenic noise in the area comes from as it 

is the main tourist hub as well as a habitation site. With a concentration of people comes an 

influx of anthropogenic noises such as motorboats (the only source of transport in the area), 

construction, and general sounds that come from human presence (such as people talking and 

music). Inside the reserve the tourist accommodation is much smaller so there is less 

anthropogenic noise generated than at the main lodge, there is still motor boat traffic as the river 

that goes through the reserve also serves as another connection point to the main Amazon river. 

It is also travelled by people who live in the surrounding communities (like El Chino) for the 

collection of wood and other resources in the reserve which is regulated as this is a communal 

protection zone.   

 

3.2.2 Experimental procedure  

One autonomous sound recorder (Audiomoth, Open Acoustics) was placed near the main feeding 

tree of 23 pygmy marmoset groups in the dry season. Thirteen of the groups were outside of the 

reserve and ten were inside the reserve (Figure 3.1). The Audiomoths were placed by pygmy 

marmoset groups to establish the levels of anthropogenic noise disturbance each group was 

exposed to; this information will then be used in Chapter 4 to see how the amount and type of 

anthropogenic noise impacts pygmy marmoset communication. The Audiomoths were 

programmed to record continuously for 24 hours over a 2-day period in August-September 2019. 

They were configured to record continuous 30-minute WAV files at a sampling rate of 48 (kHz) 

with a medium gain.  
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Figure 3.1 A map of the locations of the marmoset groups where the Audiomoths were placed in 

August-September 2019 with green diamonds denoting a group located inside the reserve and a 

purple diamond representing a group located outside of the reserve boundary. 

 

3.2.3 Data extraction  

3.2.3.1 Manual Analysis for Anthropogenic Noise  

Once the data was collected the WAV files were processed in Adobe Audition. Twelve hours 

(from 05:30 to 17:30) were analysed for anthropogenic noise for each day of recordings, so the 

total recording time analysed for each location was 24 hours. The thirty-minute WAV files were 

viewed in Audition, cataloguing any anthropogenic noise recorded (in number of seconds heard). 
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The anthropogenic noise was categorised as music, talking, motors, and tools and sounds 

included in these categories are shown in Table 3.1. When heavy rain was encountered in the 

recording the files were not included in the analysis (n = 105), as heavy rain can skew the results 

of bioacoustic indices (Sánchez-Giraldo et al., 2020). The files were then separated into different 

time of day categories with files recorded between 06:30-09:30 being classified as early 

morning; late morning as 09:30-12:30; early afternoon as 12:30-15:30; late afternoon as 15:30-

18:30. 

 

The experiment underwent and was approved by the Royal Holloway’s ethical review process as 

some of these marmoset groups are in the local community, El Chino, and therefore will pick up 

human conversations. Only the length of conversations was inputted into the dataset not the 

context of them and the recordings are kept on password-protected hard drives ensuring their 

privacy. Permission by the landowners was also sought before the audio recorders were placed 

near their homes. 

 
Table 3.1 Categories of anthropogenic noise. 
Anthropogenic Noise category  Sounds included  

Music Any music played, both live or over speakers 

Talking Both by people living in Chino and tourists from 

the ecolodge 

High Motor Motor boats and generators 6 kHz and above 

Medium Motor Motor boats and generators between 1-5 kHz 

Low Motor Motor boats and generators from 0-1 kHz 

Tools Chainsaws, hammering, building, etc.  

 

3.2.3.2 NDSI Score 

The NDSI score ranges from 1 to -1, with 1 representing a biologically rich soundscape (low 

anthropogenic noise, high biological sounds) and -1 representing a human-dominated 

soundscape (high anthropogenic noise, low biological sounds). The R package ‘soundecology’ 

(Villanueva-Rivera et al., 2018) was used to quantify the NDSI score for the recordings used in 

the manual analysis described above. 
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The NDSI score is calculated as NDSI = β-αβ+ α  

𝛽 denotes the sum of the 1 kHz binned normalized Welch Power Spectral Density (PSD) 

(Welch, 1967) from 2–11 kHz and 𝛼 is the normalized PSD of the 1–2 kHz region (Kasten et al., 

2012). With 2-11 kHz denoting biological sounds and 1-2 kHz denoting abiotic (anthropogenic) 

sounds (Kasten et al., 2012).   

 

I decided to run the two NDSI analyses, one with unaltered and one with altered parameters as 

this data is going to be used to infer exposure to anthropogenic noise disturbance levels for 

different pygmy marmoset groups (Chapter 4). Therefore, I wanted to use the data I collected to 

inform a set of NDSI parameters. Which is why I expanded the abiotic boundary to reflect the 

frequencies I had found in my manual analysis and to expand the biotic boundary to encompass 

the frequencies of the pygmy marmoset calls. The altered parameter frequencies were set to be 

0.1 - 2.5 kHz to denote abiotic noise and 2.5 - 23.9 kHz to denote biological sounds.  

 

3.2.4 Statistical Analysis 

As the NDSI score is bound on a scale of 1 to -1, I scaled the data according to the following 

formula, (NDSI +1)/2, in order to be able to run statistical tests (as done in Fairbrass et al., 2017; 

Bradfer-Lawrence et al., 2020; Ross et al., 2021).  

The statistical program RStudio version 1.1.456 (R Core Team, 2020) was used to run a 

Spearman’s rank correlation analysis between the NDSI score calculated for a file versus the 

total time of anthropogenic noise catalogued in the file. As well as a simplified comparison 

between the average NDSI score per site and the total amount of anthropogenic noise catalogued 

at said site.  

 

I ran a generalized linear mixed effects model (GLMM) with a Poisson distribution, as the data 

was not normally distributed, using the glmmTMB package (Brooks et al., 2017), to distinguish 

if location (in/out of the reserve) and time of day (early and late morning and early and late 

afternoon) was a predictor for the number of total hours of anthropogenic noise documented 
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using manual analysis. This was then further broken down into a GLMM with a Poisson 

distribution, as the data was not normally distributed, for total motor sounds and zero inflated 

GLMMs from the glmmTMB package (Brooks et al., 2017) on the specific anthropogenic sound 

types (low, medium, high motor; tools; talking). The zero inflated GLMMs were used due to the 

high presence of zeros in these datasets and to fit the assumptions of the model. Music was 

excluded from the analysis as it contained too many zeros in the dataset for the model to run. I 

used Bonferroni corrections for the zero inflated GLMMs run on the specific sound types to 

adjust the alpha value for multiple testing, resulting in 0.05/6 = 0.0083 as the new significance 

threshold. 

 

A generalized linear mixed effects model with a beta error structure from the glmmADMB 

package (Fournier et al., 2012; Skaug et al., 2013) was used to discern if location (in/out of the 

reserve) and time of day (early and late morning and early and late afternoon) was a predictor for 

the NDSI score, this was run on both NDSI analyses (unaltered and alerted parameters). The beta 

error structure was used because the data was not normal and had been transformed.  

 

3.3 Results  
 
A total of 999 files were analysed, 413 from 10 locations inside the reserve and 586 from 13 

outside the reserve boundary. At the 10 locations inside the reserve 13 hours of anthropogenic 

noise was catalogued over 24 hours, versus 157 hours at the 13 locations outside the reserve 

(Figure 3.2). The location (CV2, Figure 3.1) with the highest total anthropogenic noise 

catalogued, 31 hours, was in a local community. The location (RC3, Figure 3.1) with the lowest 

total anthropogenic noise catalogued, 4 minutes, was in the reserve boundary, far from the main 

river on a trail to an oxbow lake. The most common anthropogenic sound encountered was low 

motor which across all locations was recorded for 85 hours and the least heard sound was high 

motor which was only present for 4 hours (Figure 3.2).  
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Figure 3.2 A visual breakdown of the number of hours of each sound type was catalogued during 

the aural analysis at the 10 locations inside and 13 locations outside of the reserve boundary 

limits, N=999 audio files. 

 
 
3.3.1 Is it worth customising the biotic and abiotic frequency thresholds? 
 
The NDSI score was significantly different between the not changed and changed parameter 

analysis, with the non-changed scores skewing more towards 1 indicating more biological sound 

present than anthropogenic noise (Wilcoxon test, V= 473634, p<0.001, N=999 audio files). 

However, there is a positive correlation between the changed parameter NDSI score and the not 

changed parameter NDSI score (Spearman’s rank correlation, S= 24580228, rho= 0.852, 

p<0.001, N=999 audio files).  

  

3.3.2 Are the NSDI score and aural analysis comparable? 
 
There was a negative correlation between the altered parameter NDSI score and the number of 

minutes of anthropogenic noise present in a file (Spearman’s rank correlation, S= 207874131, 
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rho= -0.211, p<0.001, N=999 audio files). A negative correlation was also found between the 

unaltered NDSI parameters score and the number of minutes of anthropogenic noise present in a 

file (Spearman’s rank correlation, S= 184831737, rho= -0.112, p<0.001, N=999 audio files). 

With files that had a higher NDSI score having a low total number of hours exposed. However, 

there was no correlation between the average NDSI score for a site and the total number of hours 

of anthropogenic noise catalogued at the site across both analyses (Spearman’s rank correlation; 

Figure 3.3a Altered NDSI parameters, Figure 3.3b Unaltered NDSI parameters).  

 
 

Figure 3.3a) Correlation of the average NDSI score at a site and the total hours of anthropogenic 

noise catalogues for the altered parameters. b) Correlation of the average NDSI score at a site 

and the total hours of anthropogenic noise catalogues for the unaltered parameters. 

3.3.3 What factors drive a higher presence of certain anthropogenic sounds? 

Anthropogenic noise was more prevalent outside of the reserve boundary (GLMM, estimate= 

2.245, z= 5.698, p<0.001, N=184 totals for times of day; Figure 3.2) and significantly less inside 

the reserve as compared to outside in the late morning (GLMM, estimate= 0.157, z= 5.401, 

p<0.001, N=184 totals for times of day; Figure 3.4), early afternoon (GLMM, estimate= 1.795, 

z= 6.000, p<0.001, N=184 totals for times of day; Figure 3.4) and the late afternoon (GLMM, 
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estimate= -0.091, z= -2.941, p<0.01, N=184 totals for times of day; Figure 3.4). The models R2 

was 0.979 conditional and 0.582 marginal.  

Figure 3.4 A breakdown of the amount of total anthropogenic noise heard in and out of the 

reserve across the four times of day (early morning: 06:30-09:30; late morning: 09:30-12:30; 

early afternoon: 12:30-15:30; late afternoon: 15:30-18:30) in hours, N=999 audio files.  

A further breakdown of this by sound found that the presence of motor sounds was higher 

outside of the reserve (GLMM, estimate= 2.03, z= 5.210, p<0.001, N=184 totals for times of day 

;Figure 3.5) and across all times of day outside of the reserve  (GLMM; early morning, estimate= 

0.332, z= 73.780, p<0.001; late morning, estimate= 0.120, z=25.410, p<0.001; early afternoon, 

estimate= 5.743, z= 19.630, p<0.001; late afternoon, estimate=  -0.1.63, z= -32.150, p<0.001; R2 

was 1.0 conditional and 0.551 marginal, N=184 totals for times of day; Figure 3.6). However 

low motor was the only subset of motor sound type to be significantly more present in recordings 

outside of the reserve (zero-inflated GLMM, estimate= -2.232e+00, z= -2.859, p=0.004, N=184 
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totals for times of day; Figure 3.5), the models R2 was 0.872 conditional and 0.537 marginal. 

Tools were also significantly more present in recordings out of the reserve boundary (zero-

inflated GLMM, estimate=2.691, z=-3.437, p<0.001, N=184 totals for times of day; Figure 3.5), 

the models R2 was 0.805 conditional and 0.437 marginal. However, there was no link between 

time of day or location for the likelihood of encountering talking, medium motor or high motor 

(Table 3.2; Figure 3.6).  

 

Figure 3.5 A breakdown of the amount of total anthropogenic noise heard in and outside of the 

reserve boundary by sound type in hours. 
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Figure 3.6 A breakdown of the amount of total anthropogenic noise heard across the four times 

of day (early morning: 06:30-09:30; late morning: 09:30-12:30; early afternoon: 12:30-15:30; 

late afternoon: 15:30-18:30) by sound type in hours. 
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Table 3.2 The results of the zero-inflated model GLMMs (not including the conditional model) 

from the full sound breakdown that showed that location and time of day did not influence the 

amount of the medium motor, high motor or talking present. The significance threshold for these 

results is p<0.0083. The anthropogenic noise in the files in the time of day breakdown were 

collated to create one total per each time of day per group resulting in, N=184 totals for times of 

day. 

Sound Intercept Estimate Standard 
Error 

Z value P value Conditional 
R2 

Marginal 
R2 

Medium 
Motor 

Location  
(Reserve Out) 

-1.263 1.219 -1.036 0.300 0.737 0.133 

 
Time of Day  
(Early Morning) 

-0.240 0.719 -0.334 0.739 0.737 0.133 

 
Time of Day  
(Late Afternoon) 

0.780 0.732 1.065 0.287 0.737 0.133 

 
Time of Day  
(Late Morning) 

0.238 0.719 0.332 0.740 0.737 0.133 

High 
Motor 

Location 
(Reserve Out) 

-1.751 1.949 -0.898 0.369 0.874 0.008 

 
Time of Day  
(Early Morning) 

1.345 1.221 1.102 0.271 0.874 0.008 

 
Time of Day  
(Late Afternoon) 

0.636 1.138 0.558 0.577 0.874 0.008 

 
Time of Day  
(Late Morning) 

-2.713 1.460 -1.859 0.063 0.874 0.008 

Talking 
Location 
(Reserve Out) 

-2.450 1.137 -2.156 0.031 0.843 0.002 

 
Time of Day  
(Early Morning) 

1.237 0.824 1.501 0.133 0.843 0.002 

 
Time of Day  
(Late Afternoon) 

0.640 0.802 0.798 0.425 0.843 0.002 

 
Time of Day  
(Late Morning) 

-0.001 0.807 -0.001 0.999 0.843 0.002 
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3.3.4 What factors drive changes to the NDSI score of a soundscape? 

NDSI scores from the altered parameters did not differ inside or outside the reserve depending 

on location (Figure 3.7) but they did by time of day (Figure 3.8). With recordings having an 

NDSI score closer to 1 when they were produced in the early morning (GLMM, estimate= 

0.3110 z= 4.10, p<0.001, R2 was -0.900 conditional and -0.077 marginal, N=999 files) and the 

late afternoon (GLMM, estimate= 0.3490, z= 4.47, p<0.001, R2 was -0.900 conditional and -

0.077 marginal, N=999 files).  

NDSI scores from the unaltered parameters dataset also did not differ inside or outside the 

reserve however the scores did differ across time of day (Anova, chi2= 48.222, p<0.001, N=999 

files; Figure 3.8). With recordings produced in the early morning (GLMM, estimate= 0.2598, z= 

3.39, p<0.001, R2 was -0.563 conditional and -0.069 marginal, N=999 files) and the late 

afternoon (GLMM, estimate= 0.4554, z= 5.67, p<0.001, R2 was -0.563 conditional and -0.069 

marginal, N=999 files) once again having an NDSI score closer to 1.  
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Figure 3.7 The mean untransformed NDSI score for each location, in and out of the reserve 

boundary, across all the recordings and for both the unaltered and altered NDSI parameter 

analyses, N= 46 mean NDSI scores.  
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Figure 3.8 The mean untransformed NDSI score for each location for the four different times of 

day and for both the unaltered and altered NDSI parameter analyses, N= 184 files.  

3.4 Discussion 

I predicted that there would be a correlation between the amount of anthropogenic noise found 

during the manual analysis and the NDSI score computed, i.e. that files with lower NDSI scores 

would have a higher total amount of anthropogenic noise present, and this was found. However, I 

conclude that the NDSI score of a file cannot be used to indicate the amount of anthropogenic 

noise present at a site in general, as the NDSI score did not reflect the total amount of 

anthropogenic noise catalogued when correlated with the mean NDSI score for the site. Although 

these two measurements (manual analysis and NDSI score) could never be a true one to one 

replacement for one another as the NDSI score is a reflection on the ratio between the biotic and 
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abiotic sounds in a file. A reason for this could be that different anthropogenic noises exert 

different bias on this acoustic index as found by Fairbrass et al. (2017), who found that human 

speech caused lower than expected NDSI values. Devos (2016) found that the NDSI score 

cannot reliably detect when biotic and abiotic sounds occur simultaneously. The NDSI values for 

a singing blackbird in conjunction with a house sparrow are similar to that of solely the 

blackbird, in contrast to the NDSI score of the blackbird and a train which gives a high negative 

value, indicating that in this case the anthropogenic noise is the dominant sound present in the 

soundscape (Devos, 2016). So, this could also be a factor in the differing NDSI scores across a 

landscape.  

I predicted both measures would show higher anthropogenic noise outside the reserve, so more 

total minutes and lower NDSI scores. This was expected as two major sources of anthropogenic 

noise (the main lodge and El Chino) are outside the reserve limits. There was more 

anthropogenic noise, especially motor boats, outside of the reserve in the morning, perhaps as 

this is when people are starting their working day and using their motor boats to travel to work. 

Low motor sound was significantly more present outside of the reserve, it was the most prevalent 

motor type and there is a higher density of boats near places of habitation explaining its high 

presence. Interestingly, I did not find the same pattern for the NDSI scores, as there was no 

significant difference between inside and outside the reserve in both NDSI analyses. Which was 

noteworthy as I had excepted the ratio to measure a higher biotic noise and lower anthropogenic 

noise in the reserve limits, leading to lower NDSI scores. I found the early morning to have a 

higher presence of anthropogenic noise but these recordings had higher NDSI scores for both 

analyses and in the late afternoon which also had higher NDSI scores for both analyses. This 

could occur because even through there is higher anthropogenic noise at these times there could 

also be more biotic sounds due to dawn and dusk choruses, pushing the ratio to show higher 

biological noise causing the NDSI score to be closer to 1. NDSI scores have shown temporal 

variation, with Devos (2016) finding spikes in biophonic noise activity at sunrise and sunset. I 

did not expect to find that both NDSI analyses found the same trends, as while there was a 

correlation between the two scores, the file’s NDSI score was significantly different after the 

parameters were altered. This could be that while the scores differed significantly that the scores 
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still reflected this temporal shift in when animal noises are more prevalent than anthropogenic 

ones, which would explain why the scores were still correlated.  

This is the first in depth performance review for the NDSI score versus a manual analysis. While 

other studies have focused on using the NDSI score in situ (Fuller et al., 2015) or how one can 

use it to measure disturbance (Devos, 2016) no one has then compared these scores to the actual 

amounts of anthropogenic noise present in the soundscape in the file analysed. The results 

indicate that the NDSI score cannot be used as a replacement for manual analysis if the aim is to 

quantify the amount of anthropogenic noise present in an audio file. Although in most of the 

literature the use of the NDSI score is to correlate with species richness in areas (Fuller et al., 

2015; Mitchell et al., 2020) and to see temporal behavioural patterns (Devos, 2016; Ritts et al., 

2016). It has also been used to gather information on landscape attributes as the score has been 

found to be related to different site traits (biocondition score, extent of transport systems, patch 

size, conservation area) (Fuller et al., 2015). The use of the NDSI to detect temporal differences 

was supported in this study, so I believe it is useful for providing insight into the trends of levels 

of abiotic versus biotic sound throughout the day in a specific location. This fits with how the 

majority of the current literature is using the NDSI score as it relates to species richness and 

abundance and using the score as more of a reflection of shifts in activity patterns for both 

animals and people (Ritts et al., 2016).  

I found that while altering the parameters for the frequency thresholds did impact the NDSI score 

it did not influence the patterns of how the score fluctuated. Therefore, I conclude that altering 

the parameters is best if one knows the anthropogenic noise limits in an area and the frequency 

of a study species vocalisation, as it allows for a more targeted analysis for the study question. I 

could not find another instance in the literature where the NDSI score had been altered from the 

standard set frequency bands. Leaving the parameters unaltered can be a limitation as its 

excluding frequency bands (infrasonic and ultrasonic) from the analysis which is then omitting a 

portion of biophony and anthrophony, so one must consider this when interpreting the results if 

leaving the parameters unaltered (Ritts et al., 2016). This is supported by Ross et al. (2021) who 

used the standard parameters and tested the performance of acoustic indices in three sonic 

conditions (wind or rain, human-related noise, and insect stridulation). They found that the NDSI 

score performed reasonably well and was insensitive to all three sonic conditions, showing that 
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the parameters perform well in a variety of different sonic conditions, so altering the parameters 

should not affect this aspect of the score.  

There were limitations to this study as the Audiomoths were placed near pygmy marmoset 

groups and were not randomly placed across the study site. Having a more systematic grid 

placement system could have helped discern locational differences between the reserve and the 

surrounding areas. As most of these sites were close to the main river system which sees a higher 

density of anthropogenic noise (motor traffic) which could be skewing results and not allowing 

for a more discernible difference in the breakdown of anthropogenic noise and NDSI score to be 

seen.   
It is also pertinent to use recommendations for how to design your soundscape study like those 

set out by Bradfer-Lawrence et al. (2019) and Mitchell et al. (2020) to make sure one is 

gathering the correct data needed to address the research question. While these studies focus on 

bioacoustics on the whole and how the data can be used to extrapolate information on 

biodiversity it is also important to be monitoring the pressures that are driving changes in 

biodiversity. Future avenues for streamlining this analysis would be to develop machine learning 

algorithms. Through the expected increased use of machine learning algorithms, the analysis of 

large-scale acoustic data with a focus on anthropogenic noise disturbance will become more 

widespread in the literature. This will mean that the ramifications of noise disturbance will be 

better understood and clear, targeted conservation efforts can be made to mitigate them. Acoustic 

detection algorithms have been used to collect evidence of poaching in a nature reserve in Belize 

by detecting gunshots in audio files (Prince et al., 2019). Studies like Prince et al. (2019) show 

that the implementation of acoustic detection algorithms can further extend the use of low-cost 

open source methodologies to create new and more time efficient avenues for conservation 

researchers on a large-scale.   

Bioacoustic indices are revolutionising how we assess an environment however it is important to 

understand the limitations of these indices and in what cases they are the most appropriate. This 

study supports the use of the NDSI score to predict temporal changes in the levels of 

anthrophony and biophony in a soundscape and concludes that it should not be used to provide 

an accurate look at the actual amount of anthropogenic noise present. However, the manual 
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process needed to get a comprehensive breakdown of the level of anthropogenic noise 

disturbance in a site is still a laborious and time-consuming process (Pimm et al., 2015). Through 

advances in machine learning algorithms, methods for automated acoustic analysis of 

anthropogenic disturbances will hopefully become the standard and rapid method utilised for 

monitoring and informing the effects of anthropogenic disturbances on wildlife and ecosystems.  
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