
i

ii

Chapter 1

FORENSIC TRACKING AND MOBILITY
PREDICTION IN VEHICULAR NETWORKS

Saif Al-Kuwari and Stephen D. Wolthusen

Abstract Most contemporary tracking applications consider an online approach
where the target is being tracked in real time. In criminal investiga-
tions, however, it is common that only offline tracking is possible, where
tracking takes place after the fact; that is, given an incomplete trace of
a suspect, the task is to reconstruct the missing parts and obtain the full
trace. With the recent proliferation of modern transportation systems,
target entities are likely to interact with different transportation means.
Thus, in this paper, we first introduce a class of mobility models that
has been especially tailored for forensic analysis then propose several
instances emulating different transportation means. We then use these
models to build a full-fledged offline multi-modal forensic tracking sys-
tem that reconstructs an incomplete trace of a particular target. We
provide theoretical evaluation of the reconstruction algorithm and show
that it is both complete and optimal.

Keywords: Multimodal, trace reconstruction, mobility models, forensic tracking

1. Introduction

Traditional digital forensics was exclusively concerned with extracting
evidence and traces from electronic devices that may have been associ-
ated with or used in a criminal activity. In most criminal cases, however,
it would also be desirable to find additional information about particular
suspects, such as their physical activities (not just the digital ones). In
particular, investigating the location of suspects before, during and after
a crime, may contribute significant evidence, especially if it was possible
to prove that a suspect was in a particular location at a particular time
that he previously denies. This kind of investigations is called foren-
sic tracking [3], where tracking is conducting for forensic purposes. In
most criminal cases, forensic tracking investigation is carried out in an

2

offline manner, where a location trace of a suspect is obtained and then
probabilistically treated to reconstruct any missing parts; a prime ex-
ample of such scenario is when a target is randomly captured by several
CCTV cameras scattered over a particular area.Related work discussed
how to carry out such offline forensic investigation in a vehicular setting
[2]. In this paper, we extend this further and consider a multi-modal
environment. In particular, we adopt a recently proposed generic trace
reconstruction framework [3] and extend it to build a complete multi-
modal-based forensic tracking system. We assume that we have access
to location information of a target showing when and where he was ob-
served. This will create a scattered points over an area, we then need to
connect these points to be able to find out what routes the target could
have taken. These periods of missing data (between the points in which
the target was observed) are called gaps, which if we reconstruct prop-
erly, we can obtain the target’s full trace. Since we generally need to
evaluate all possible routes through these gaps in a multi-modal scenario,
we will need to consider pedestrian routes, public routes, or a combina-
tion of both. Briefly, our trace reconstruction algorithm proceeds in two
main phases (1) scene representation and (2) trace reconstruction. In
the rest of the paper we describe these phases, but due to space restric-
tion we had to omit some details; these can be found in the full version
of the paper [1].

2. Scene Representation

In order to systematically reconstruct the target’s trace, a graphical
representation of the crime scene and the surrounding area has to be first
generated, this process proceeds in 5 steps as follows (to simplify the
notation, we will often drop unnecessary labels and tags while referring
to some edges and vertices in the map):

Step 1: Map Preparation.. In this initial step, a schematic map
GM (based on an actual geographical area M) of the reconstruction
scene (the area over which the target trace needs to be reconstructed)
is obtained. We do not impose any restrictions on the size of GM other
than requiring it to at least cover (1) all the points at which the target
was observed (the available traces of the target), and (2) the crime lo-
cation(s). Formally, let GM = (VGM , EGM) be the scene graph, where
VGM and EGM are the sets of vertices and edges of GM , then we assume
that {XGM

s ∪ CGM } ∈ VGM , such that:

Al-Kuwari & Wolthusen 3

1 XGM
s = {xκp1 , . . . , x

κq
n } is the set of all locations where the target

s was observed at, where κp < κq are the first and last time,
respectively, s was observed in GM ,

2 CGM = {cκk1 , . . . , cκlm} is the set of several crime locations commit-
ted between times k and l. However, to simplify the discussion,
we will describe the reconstruction algorithm considering a single
crime, but this is obviously applicable to multiple crimes.

Step 2: Route Marking.. In this step, relevant public trans-
port networks (e.g. buses, trains) B1, B1, . . . , Bn ∈ B are marked on
GM . A transport network Bj ∈ B consists of a set of routes Bj =

{RBj

1 , R
Bj

2 , . . . , R
Bj
r }, which constitute most of the vertices and edges in

GM . Since we are only marking public transport routes, vertices in a
route Ri correspond to either a stop (e.g. bus/train station), denoted S-
vertex, or a road turn, denoted U -vertex. Similarly, edges can either be
routed (part of a route), denoted B-edge, or unrouted, denoted W -edge
(the latter mostly added in Step 4). Let eρ be an edge of type ρ, then:

ρ =

{
B if e ∈

⋃
Bj∈B

⋃|Bj |
i=1 R

Bj

i

W if e ∈ EGM \
⋃
Bj∈B

⋃|Bj |
i=1 R

Bj

i .

where the notation |x| means the number of elements in the set x (the
length of x), assuming that x does not have repeated elements (i.e.
correspond to loop-free routes). A route Ri is, therefore, defined by the
set of vertices it consists of, VRi = {v1, v2, . . . , vk}, and the edges linking
these vertices ERi = {e1, e2, . . . , ek−1}. Once all routes are marked, we
plot the available traces of the target, XM

s = {x1, x2, . . . , xn}, which
specify the times and locations where the target has been observed in
GM (these will later form the gaps in which we need to reconstruct). All
xi’s are either located on top of vertices or over edges (corresponding to
locations on road or at intersection), that is x1, x2, . . . , xn ∈ VGM ∪EGM .
However, elements in XM

s should naturally be represented as vertices,
thus if any xi is located on ei ∈ EGM , ei is split at the location of xi
such that ei = e1

i + e2
i . Then, xi is added to VGM (as U -vertex) and ei is

replaced by e1
i , e

2
i in EGM , while updating the V Ri and ERi of any route

Ri passing through ei. Next, CGM = {c1, c2, . . . , cm}, the locations of the
crimes, are marked on GM , but this time c1, c2, . . . , cm may not be on top
of a vertex or an edge, in which case a W -edge is created between ci and
the closest vi ∈ VGM . Notice that it is acceptable for ci to be on top of an
edge ei ∈ EGM because CGM will not be involved in the reconstruction
process. Finally, the directions of all edges ei ∈ EGM are specified. The

4

directions of eBi (B-edges) can easily be determined by referring to their
corresponding routes, while eWi (W -edges) are undirected.

Generally, a single edge ei or vertex vi cannot have two different
types at the same time. If a particular vertex vi is part of n routes
Ri, Rj , . . . , Rn, then it is S-vertex as long as vi is an S-vertex in at least
one of Ri, Rj , . . . , Rn, otherwise it is U -vertex. In the contrary, edges are
not allowed to be part of more than one route because different routes
may assign different weights to their edges (see section 1.3 for how and
when these weights are assigned). Thus, if there is more than one route
traversing an edge, we create as many edges as there are routes. Let
ei : vp → vq be an edge between vertices vp and vq, and suppose there
are n routes passing through ei, then we relabel ei to ei,1 and create n−1
extra edges and label them ei,2, . . . , ei,n. Thus, GM is mixed multi-graph;
that is, a graph allowing multiple directed edges to have the same head
and tail vertices, and contains both directed and undirected edges.

Step 3: Vertex/Edge Labelling.. All vertices and edges (except
W -edges) are assigned unique labels to specify the routes they are part

of. The notation of a vertex v`ii with label `i = Rkj , . . . , R
n
m indicates

that the i-th vertex in VGM is simultaneously the k-th, . . . , n-th vertex
of routes Rj , . . . , Rm, respectively. Since all vertices are part of routes,
a label ` should contain information about at least one route. Edges are

characterised by the vertices they link, thus the notation e`ii : v
`p
p → v

`q
q

means that the i-th edge in EGM has head and tail at vp, vq ∈ VGM ,
where p, q ∈ {1, 2, . . . , |VGM |}. The head vp and tail vq should belong to
at least one common route and are ordered in succession according to
the direction of the edge. If there is more than one route passing by ei,
extra parallel edges are created and labeled (Step 2).

Step 4: End Vertices.. Once all vertices and edges are labelled, a
special set ρGM is created containing all end vertices, these are the first
and last vertices of every route Ri ∈ Bj (the head and tail of Ri). To sim-
plify the discussion, we will consider routes of a single transport network
Bj , but this can easily be extended to multiple networks Bm, . . . , Bn ∈ B.
Vertices belonging to ρGM are found by first writing down the adjacency
matrices AR1 , AR2 , . . . , ARn of all the routes R1, R2, . . . , Rn ∈ Bj , where
|Bj | = n (Bj contains n routes). A particular vertex in Ri belongs to

ρGM if its corresponding row in ARi sums up to 1. We denote by A
Ry

i,j

the element of the i-th row and j-th column of ARi , if we need to refer
for a whole row, we use the notation ARz

i,∗ , and similarly denote a whole

Al-Kuwari & Wolthusen 5

column by ARz
∗,j (i.e. ARz = ARz

∗,∗). Thus, formally:

ρGM =
⋃
Bj∈B

ρGM
Bj

=
⋃
Bj∈B

⋃
Ri∈Bj

vk :
∑
k∈Ri

ARi
k,∗ = 1


Proposition 1. A vertex vj ∈ Vi in the adjacency matrix ARi of a
finite loop-free route (i.e. simple path) Ri = (Vi, Ei), where Vi and Ei
are the sets of vertices and edges forming Ri, is an end vertex if its
corresponding row ARi

j,∗ in ARi, sums up to 1.

Proof. Let the route Ri be represented by the ordered sequence of ver-
tices v1, v2, . . . , vn, where v1 and vn are the first and last vertices of Ri,
these are called the end vertices. Clearly, v1 and vn will each be adjacent
to a single vertex belonging to Ri, namely v2 and vn−1, respectively. All
other vertices, v2, . . . , vn−1 are adjacent to two vertices belonging to Ri;
that is vi is adjacent with vi−1 and vi+1, for i ∈ {2, . . . , n−1}. Therefore,

ARi
1,∗ = ARi

n,∗ = 1, while ARi
i,∗ = 2 for i ∈ {2, 3, . . . , n− 1}.

Since routes in GM are directed, ρGM
Bj

= −→ρ GM ∪←−ρ GM , where −→ρ GM

and←−ρ GM are the sets of head and tail end vertices of the routes in GM .

Step 5: Additional edges.. In this final step we create additional
W -edges between several vertices. A new W -edge is created between
any two S-vertices if: (1) they belong to different routes, and (2) the
distance between them is ≤ Wmax (a particular threshold). Formally,
the set η of the new W -edges is:

η =
{
eW,`kk = vS,`mm ↔ vS,`nn : `m 6= `n ∧ d(vS,`mm , vS,`nn) ≤Wmax

}
where d(x, y) is the distance between x and y. Note that we here dis-
regard the effect of the infrastructure on the W -edges, that is, we as-
sume that there is no major obstacles between the S-edges that prevent
W -edges from being created. However, integrating infrastructure in-
formation is easy since most modern maps contain such information,
then we can find d(x, y) by rerouting around the infrastructure and
test whether it is ≤ Wmax. Finally, we can now formally define the
graph GM = (VGM , EGM) in terms of its edges and vertices, where

EGM = EGM
R ∪ EGM

W and VGM = XGM
s ∪ CGM ∪ V GM

S ∪ V GM
U .

3. Mobility Modelling

Mobility models were traditionally mainly used in computer simula-
tion, where running an experiment (e.g. evaluating a protocol) on real

6

systems is both costly and inconvenient. Basically, mobility models gen-
erate artificial mobility traces that ideally resemble mobility patterns
of real entities. These traces, nevertheless, cannot be directly used to
reconstruct real traces that have been already made by real-life enti-
ties. This is mainly because real mobility patterns are based on human
judgements, which are usually very stochastic in nature. However, we
show that even though mobility traces generated by these models are
sufficiently artificial, we can still use them effectively to assist our recon-
struction process.

Mobility models are usually developed in a microscopic level, mod-
elling the mobility of each object in relation to its surrounding environ-
ment and neighbouring objects, and thus generating realistically-looking
traces. Most models, therefore, carefully parameterise the velocity (or
rather the acceleration) and direction of the objects and repeatedly ad-
just them throughout the simulation. However, in our case, we only
need to use the mobility models to estimate the time a target entity
may have spent while moving from one point to another, completely dis-
regarding the microscopic details; we call this class of mobility models
delay mobility models. In addition, since we are considering a multi-
modal scenario (an entity occasionally changing transportation mode),
we not only need to model each class of mobility, but also need to model
how to glue different models together for a smooth transition. We now
introduce several mobility delay models, and then proceed to model the
transition between them.

3.1 Pedestrian Mobility Delay Model

Popular pedestrian mobility models, such as the social force model [7],
cannot be directly used in our scenario because it requires detailed mi-
croscopic information which we cannot assume to possess, it also delves
into details of the inter-pedestrians behaviour, which is not important
in our case. We, therefore, introduce a mobility delay model, which we
call PMDM, to calculate the time an entity x (pedestrian) would take to
move from point a to point b (since we are here only concerned about the
time). The mobility of the entity is mainly influenced by the static and
moving obstacle objects which force the entity to perform a suitable ma-
noeuver in order to avoid them. We represent each obstacle object (that
the entity has to avoid) as a circle with known centre and radius. When
manoeuvering an obstacle, the extra distance the entity has to travel is
approximately the length of the arc formed by the chord cutting through
the obstacle’s circle based on the entity’s direction. The time the entity

Al-Kuwari & Wolthusen 7

spends from point a to point b is then calculated as follows:

tsa,b =
da,b +

∑
i∈S ri cos−1

(
2r2i−c2

4ri

)
+ ω

vs − ε
+
∑
j∈M

g((rs + rj)− dx,j) (1)

where S andM are the spaces of the static and moving objects, respec-
tively (i.e. the number of such objects in the scenario), ri is the radius of
the circle surrounding an object (representing its range), c is the length
of the chord cutting through the object’s circle (can be obtained via se-
cant line geometry and the direction −→es of the target), rs is the radius of
the circle surrounding the target s who moves with a speed up to vs, ds,j
is the distance between the centre of s and the centre of j, ω is a slight
delay due to random factors imposed on the entity, such as crossing a
road, ε is a random negative value (modelling the deceleration behaviour
the entity is forced to undertake around obstacles), and g() is a function
defined as follows:

g((rs + rj)− ds,j) =

{
1 if rs + rj ≥ ds,j ,
0 otherwise.

which models the entity’s pause time should it come across a moving
object (waiting for it to move away). At first glance, equation 1 may
seem to include microscopic details since it models interactions between
objects, but we note that we can model these details without necessar-
ily simulating the scenario in a microscopic level and only by assuming
knowledge of the movement directions of the entity. The manoeuver
behaviour of the entity around static objects (e.g. buildings) can then
be easily modelled by referring to the scene map GM , while the num-
ber of interactions between an entity and the moving objects (i.e. other
pedestrians) can be estimated subjectively based on the popularity of
the area and the time.

3.2 Transport Mobility Delay Models

Another class of common mobility models describes the mobility of ve-
hicular entities, modelling public transport means, such as buses, trains,
tramps, underground tubes etc. (we here do not consider private vehicles
because they are irrelevant to our scenario, but they can be considered
a special type of the TTMDM model below). In this class, the mobility
of objects is more structured and less stochastic than those in the pedes-
trian models because they are usually constrained by fixed infrastructure
(e.g. roadways, train tracks etc.). However, based on the infrastructure,
we can easily make a distinction between two naturally different types of

8

vehicular mobility patterns, we call the first type traffic-based transport
and the second non-traffic-based transport. Traffic-based Transport Mo-
bility Delay Model (TTMDM) is concerned with objects whose mobility
is governed by uncertain parameters that, in some cases, could affect
the mobility behaviour significantly; this model describes the mobility
of objects like buses, coaches and similar road-based public transports
whose mobility pattern highly depends on the conditions of the road traf-
fic, which cannot be precisely modelled in most cases. Non-traffic-based
Transport Mobility Delay Model (NTMDM), on the other hand, is easier
to develop because random delay factors (such as those in TTMDM) are
of no or negligible effect on the entities’ mobility behaviour. NTMDM
is used to model the mobility of infrastructure-based public transports
such as trains and underground tubes, where, apart from rare occasional
signal and other minor failures, have deterministic mobility patterns.

TTMDM. Most realistic traffic-based mobility models [6] adjust
the velocity of objects in such a way to avoid collisions. However, this
level of microscopic modelling is not required in our scenario because we
are only concerned about the time it took those objects to move from
one point to another, not the actual movements they made. Thus, we
consider modelling the factors that will affect this time figure, which can
be estimated as follows:

ta,b =
da,b
v̄a,b

+
[
Dtraffic
a,b +

∑
Dinterest
a,b +

∑
Dabnormal
a,b

]
(2)

where v̄a,b is the maximum allowable speed of the roadway between
points a and b, Dtraffic

a,b is the expected traffic delay of the roadway be-
tween points a and b and can be estimated by the geographical and
physical characteristics of the area as well as the current time of the
day, Dinterest

a,b are delays incurred by point of interests (POI) located be-

tween a and b, and finally Dabnormal
a,b represents abnormal events that

reportedly occurred in the road segment between a and b, such as ac-
cidents, breakdowns etc., both Dinterest

a,b and Dabnormal
a,b can be obtained

offline either from public resources (e.g. maps) or from the police.

NTMDM. Modelling non-traffic-based transport is clearly more
straightforward because the uncertainty of the stochastic delays the
traffic-based transports suffer from is largely eliminated (or mitigated)
here. This class describes the mobility of vehicular entities with fixed
infrastructure, such as trains, underground tubes etc. In this case, we
can calculate the time an object takes from point a to point b using the

classical distance equation: ta,b =
da,b
va,b

+
∑
Dabnormal
a,b , where va,b is the

Al-Kuwari & Wolthusen 9

fixed speed of the object on its journey from a to b spanning a distance
da,b (which can be obtained offline).

3.3 Multimodal Mobility Delay Model

Conventionally, when modelling the mobility of a particular object, we
implicitly assume that the object’s behaviour will be consistent through-
out the simulation. However, in our scenario we cannot rule out the pos-
sibility that the target could have used multiple different transportation
modes, each with different mobility characteristics. Thus far, we in-
troduce three mobility delay models (PMDM, TTMDM and NTMDM)
and now we model the transition between them by constructing a Multi-
modal Mobility Model (MMM) to assure a continuous flow of the target.
Essentially, MMM will only model the transition behaviour between two
different models (or two different carriers of the same model) because
once the transition is completed, the relevant mobility model is called
to simulate the mobility of the next part of the journey until another
transition is required. When the transition happens between two car-
riers of the same mobility model (e.g. changing bus), the transition is
said to be homogenous, otherwise if the transition happens between two
carriers of different mobility models (e.g. transition from bus to train),
the transition is said to be heterogeneous.

In a vehicular setting, we are actually interested in tracking the in-
dividual who is being transported by a carrier vehicle, not the vehicle
itself, thus it is the entity who makes the transition which we need to
model. Clearly, in PMDM both the entity and the carrier are a single
component. When an entity shifts from any model to PMDM, the tran-
sition is smooth and incurs no delay (i.e. an individual does not have
to wait before commencing a walk behaviour). For any other situation,
however, transition modelling is required to calculate the time an entity
will need to wait before shifting to the next model (or carrier). The
main idea is to observe the timetables of the carriers at the transition
location and calculate the transient wait time.

For level-1 transition, the entity is shifting from PMDM to either
TTMDM or NTMDM, in both cases, the entity will most likely experi-
ence a slight transient delay due to the time difference of when it arrives
at location x and when the next carrier belonging to the intended model
stops at it. In this case, as soon as the entity arrives in x, it checks the
intended carrier’s timetable for the next departure time at its current
location based on the current time and calculate the time difference. We
will discuss this process in details when we describe level-2 transition,
which can be thought of as a generalisation of level-1 transition.

10

Recall that in our scene graph GM we represent roadways by edges
EGM and intersections by vertices VGM . The transition can only happen
in an intersection, so let vi ∈ VGM be a transition vertex which n carriers
from either TTMDM or NTMDM stop at, let these carriers be denoted
by R1, R2, . . . , Rn (this information is included in the label of vi, see
section 1.2). The first step is to obtain the timetables of these n carriers
TR1 , TR2 , . . . , TRn , and covert them into matrices MR1 ,MR2 , . . . ,MRn ,
where the rows representing stops and the columns representing jour-
neys. Note that the dimensions of the matrices depend on the timetables
and may be different for different carriers. Next, we extract the rows cor-
responding to vi from MR1 ,MR2 , . . . ,MRn and create a 3D matrix Mvi

by superposing these rows. The dimensions of this new 3D matrix Mvi

will be 1×L×n, such that L = max{w(MR1), w(MR2), . . . , w(MRn)},
where w(M) is the width (number of columns) of matrix M . In other
words, L is the number of journeys that are being made by carrier Ri
that makes the highest number of journeys, where i ∈ {1, 2, . . . , n}. Ob-
viously, if R1, R2, . . . , Rn do not all make the same number of journeys,
Mvi will contain some undefined values. We assume access to a global
clock which upon calling the procedure cT ime(), it returns the current
time. Once Mvi is created, c = cT ime() is obtained to build a 1 × n
matrix M̂vi = [m1,1,m1,2, . . . ,m1,n] such that:

m1,j =


|c−m1,j,z|+ ε if z ≥ c ≥ z + 1,

ε if c = z or c = z + 1,

∞ otherwise.

where ε is a random delay representing the various factors that may hold
the carriers off (such as traffic), plus the wait time at each stop. The

matrix M̂vi will now indicate how long an entity at the current location
x has to wait to pick any carrier R1, R2, . . . , Rn passing by x (regardless
of whether R1, R2, . . . , Rn belong to the same or different model); the
matrix will list all the carriers stopping at vi along with the delay figures
for each.

4. Trace Reconstruction

Classical missing data algorithms, such as EM [4] and data augmen-
tation [8], cannot be directly used to reconstruct traces because these
algorithms mainly make statistical inferences based on incomplete data,
but will not reconstruct it, as required in our case. Additionally, we can-
not assume that we have a sufficiently large number of available traces
to be able to use these algorithms. Iterative sampling algorithms, such
as Markov Chain Monte Carlo (MCMC) [5], when adapted for a missing

Al-Kuwari & Wolthusen 11

data setting, cannot be used here too for the same reasons. Instead,
we take a different algorithmic approach to fill the gaps formed by the
missing traces. We develop an efficient reconstruction algorithm that,
using mobility delay models, selects the route(s) that the target most
likely has taken through a gap given the time it spent traversing it. In
the worst case scenario, the algorithm would at least eliminate several
routes that the target couldn’t possibly have taken, which may still make
important evidence.

4.1 Trace Reconstruction

The reconstruction algorithm AR first considers each gap individually,
reconstructs it, repeats for all gaps, and then connects the reconstructed
gaps to obtain the full trace of a target s. Abstractly, AR consists of
two fundamental building blocks, (1) a multi-graph traversing algorithm
called Weight-Bound-Search (WBS), and (2) several mobility models.
Once AR is executed, it proceeds by running WBS over a gap, WBS, in
turn, repeatedly calls the mobility models (possibly via AR) and returns
a route (or routes) connecting the gap; AP then reconstructs the other
gaps in a similar fashion. The WBS algorithm is based on a branch-
and-bound approach to optimise the reconstruction process, and uses a
crawler for traversing the gaps to find plausible routes. For a gap Gp :
vm → vn between vertices vm and vn, where m,n ∈ {1, 2, . . . , |VGM |},
a crawler CGp is generated at vm and broadcasted toward vn. The
crawler CGp maintains two data structures: (1) a LIFO list of vertices
and edges traversed so far χCGp , and (2) a delay variable τCGp . The
χCGp is dynamically updated whenever CGp traverses a vertex or edge to
keep track of all the vertices and edges the crawler CGp has visited. The
delay variable τCGp is initially set to 0 and is too dynamically updated
whenever CGp traverses an edge or an S-vertex (but not U -vertex–see
below). When CGp is first initiated at vm, it checks vm’s label `m =
{Ryx, . . . , Rlk} which contains information about the routes that vm is

part of and consequently finds its ˆ̀
m next-hop neighbouring vertices,

where

ˆ̀
m =

{
|`m| if vm 6∈ ←−ρ G,
|`m| − k if vm ∈ ←−ρ G.

and k is the number of times vm appears in←−ρ G (the number of routes in
which vm is a tail-end vertex; such routes terminate at vm and thus do
not have next-hop). However, since we are considering a multi-graph,
it is possible that some of these routes are passing by the same next-
hop neighbour (creating parallel edges between two vertices), so the ˆ̀

m

list may actually contain repeated vertices. If this is the case, we need

12

to consider each outgoing edge (even if all edges are parallel) separately
because it may have different weight depending on which route it belongs
to. Thus, once all next-hop neighbours are found, CGp selects one of
them, say vu, finds the edges (routes) between vm and vu, that is {ei|ei :
vm → vu}, and selects one ei. Once an ei is selected, CGp tags it as
”visited”, updates χCGp and traverses it. It is important that CGp tags
any edge it traverses as ”visited” so it does not revisit it again and enters
in an infinite loop. Furthermore, if CGp arrives at a vertex vk and found
that there is only one unvisited edge ei, it tags ei as ”visited”, traverses
it and then tags vk as ”exhausted” so it skips vk if vk ever happened to
be a neighbour to some vertex CGp traverses in the future. Based on the
type of the edges connecting vm with its next-hop neighbouring vertices,
CGp calls the appropriate mobility model (either PMDM, TTMDM or
NTMDM) to calculate the delay of that edge, and updates its τCGp as
follows τCGp = τCGp + tvx,vy , where tvx,vy is the delay returned for the
edge ei : vx → vy by the relevant mobility model (this applies to both
R- and W -edges). Similarly, once CGp reaches an S-vertex vy, it again
updates τCGp but this time by calling MMM, such that τCGp = τCGp +tvy
where tvy is the delay assigned to vy by MMM. However, since there is
no transition between mobility models in U -vertices, MMM is not called
when reaching a U -vertex. The crawler traverses the various routes by
repeatedly backing-up whenever it finds a plausible or implausible route.
The back-up procedure proceeds as follows: once a crawler finds an
(im)plausible route, it checks its χCGp and traverses backward through
the edge in χCGp [1] toward the vertex χCGp [2], where χ[n] is the n-th
element of the list χ. It then deletes these two elements from χCGp , and
repeats the whole traversal process again (searching for neighbouring
vertices etc.) but this time it does not traverse the edge it just came
from because it is now tagged as ”visited” (or generally any edge tagged
as ”visited”). The crawler CGp backs-up if: (1) τCGp + ε > tvn,vm , or
(2) traversed a vertex/edge that already exists in its χCGp , or (3) vn
(the other end of the gap) is reached, where ε is a random value, or (4)
it reaches a vertex vj such that vj is a tail-end vertex in all its routes
(i.e. vj is childless). In (1), the crawler baks-up once its τCGp reaches a
value greater than tvn,vm (the time difference between when the target
was observed at vm and later at vn—the two ends of a gap Gp), and ε
is a small constant. This means that the target would take much longer
than tvm,vn if it had traversed that route. In (2), we only accept loop-
free routes because this is what a rationale target will opt to do (and
also to prevent infinite loops), so if CGp reaches a vertex vi such that
vi ∈ χCGp , then it backs-up. In (3), once CGp reaches vn, it checks its
τCGp , if τCGp + ε ≤ tvm,vn − ε, it backs-up (in other words, if a crawler

Al-Kuwari & Wolthusen 13

returned a time much shorter than tvm,vn , it is probably not the route
the target has taken). Otherwise, if tvm,vn − ε ≤ τCGp ≤ tvm,vn + ε, it
backs-up, returns the route in χCGp as a possible route the target may
have taken, as well as returning the corresponding τCGp . Finally, in (4)
CGp also backs-up when it reaches a childless vertex vj ; additionally,
it tags vj as ”exhausted”. The WBS algorithm terminates when its
crawler terminates and that happens when the crawler reaches a vertex
in which all neighbouring (next-hop) vertices are tagged as ”exhausted”,
this means that they have been already extensively traversed (i.e. all
their outgoing edges are tagged as ”visited”).

Proposition 2. Given a finite search graph, the Weight-Bound-Search
(WBS) algorithm will eventually terminate, with or without returning
valid routes.

Proof. Since the WBS is a weight-based algorithm, it is guaranteed to
stop traversing a particular route Ri whenever its weight counter τCGp

expires (i.e. τCGp ≥ tvm,vn + ε, where tvm,vn is the delay through gap
Gp : vm → vn, and ε is a small constant). Thus the only way for the
algorithm to run indefinitely is when it gets into an infinite loop and
traverses the same route over and over again. However, a route Ri
cannot be traversed more than once because the algorithm tags every
visited edge and would not traverse any tagged edge, so as long as there
is finite number of edges in a graph, the algorithm will terminate.

In addition, the WBS algorithm will also terminate when traversing
an infinitely deep graph because it traverses the graph down to the point
when its weight counter τCGp expires. However, the WBS algorithm may
fail to terminate when it runs over an infinitely wide graph (the node
of the current level has infinitely many children) if none of the child
of the current level has weight higher than τCGp . This, nevertheless,
contributes to the completeness of the WBS algorithm.

Proposition 3. Given a finite search graph, the Weight-Bound-Search
(WBS) algorithm is complete. If there exist one or more solutions, WBS
will return them all.

Proof. For a gap Gp : vm → vn, a valid solution means that there is
a route Ri : vm → vn with a weight τ such that tvm,vn − ε ≤ τ ≤
tvm,vn + ε. The crawler CGp will traverse all valid and invalid routes and
will terminates when there are no more edges to traverse. Therefore, if
there is such solution route Ri, the crawler CGp will find it.

Once the crawler terminates, and there are more than one route re-
turned, the algorithm selects the best-fit route, such that |χ

C
Gp
f

| =

14

min{|χ
C

Gp
1

|, |χ
C

Gp
2

|, . . . , |χ
C

Gp
n
|}. That is, the route with less hops will

be selected because this is what a rationale target would probably do
(choose a route that does not have many stops). Additionally, by ob-
serving the labels of the edges and vertices of the returned routes, a
preferred route can be selected that minimises the number of transitions
between different mobility models and/or curriers of the same model.

5. Conclusion

In this paper, we propose a multi-modal trace reconstruction algo-
rithm that, given information about a partial list of a target’s locations,
it is able to reconstruct the full trace. For further evaluation of the
algorithm, the reader is referred to the full version of the paper [1].

References

[1] S. Al-Kuwari, S. D. Wolthusen, Probabilistic Vehicular Trace Re-
construction Based on RF-Visiual Data Fusion, Proceedings of the
8th IFIP WG 11.9 International Conference on Digital Forensics,
2010. (full version)

[2] S. Al-Kuwari, S. D. Wolthusen, Probabilistic Vehicular Trace Re-
construction Based on RF-Visiual Data Fusion, Proceedings of CMS
’10, vol. 6109, pp. 16–27, 2010.

[3] S. Al-Kuwari, S. D. Wolthusen, Fuzzy Trace Validation: Toward an
Offline Forensic Tracking Framework, Proceedings of SADFE ’11,
2010. (to appear)

[4] A. Dempster, N. Laird and D. Rubin, Maximum Likelihood from
Incomplete Data via the EM Algorithm, Journal of the Royal Sta-
tistical Society, vol. 39, pp. 1–38, 1977.

[5] W.R. Gilks, S. Richardson and D. Spiegelhalter, Markov Chain
Monte Carlo in Practice, Chapman & Hall/CRC Interdisciplinary
Statistics, 1995.

[6] J. Harri, F. Filali and C. Bonnet, Mobility Models for Vehicular
Ad Hoc Networks: a Survey and Taxonomy, IEEE Communications
Surveys and Tutorials, vol. 11, pp. 19–41, 2009.

[7] D. Helbing and P. Molnar, Social Force Model for Pedestrian Dy-
namics, Physical Review E, vol. 51, pp. 4282–4286, 1995.

[8] M. Tanner and W. H. Wong, The Calculation of Posterior Distribu-
tions by Data Augmentation, Journal of the American Statistical
Association, vol. 82, pp. 528–540, 1987.

