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Abstract

While there is a very long tradition of approximating a data array
by projecting row or column vectors into a lower dimensional subspace
the direct approximation of a data matrix through smoothing is less
common. Applications of data array smoothing include visualization;
filtering of less relevant, and thus harder to interpret, values; and as
a means towards compression. Wavelet smoothing or regression is a
term applied to data filtering in wavelet space, followed by data re-
construction. Due to boundaries, and invariance of rows and columns,
applying a wavelet transform to a data array is very problematic, un-
like applying a wavelet transform to a two-dimensional pixelated im-
age. We develop a new wavelet transform for application to data ar-
rays. This is based on prior hierarchical clustering, which takes internal
data structure and interrelationships into account. We motivate and
describe the integrated clustering and wavelet transform in this work,
and discuss its use for data array smoothing, and for approximating
a dendrogram by “collapsing” clusters. In a companion paper (Paper
II) we explore background theory and address the question as to how
this new post-processing analysis of hierarchical clustering is indeed a
wavelet transform.

Keywords: multivariate data analysis, hierarchical clustering, data sum-
marization, data approximation, compression, wavelet transform.

1 Introduction

In this paper, the new data analysis approach to be described can be under-
stood as a transform which maps a hierarchical clustering into a transformed
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set of data; and this transform is invertible, meaning that the original data
can be exactly reconstructed. Such transforms are very often used in data
analysis and signal processing because processing of the data may be fa-
cilitated by carrying out such processing in transform space, followed by
reconstruction of the data in some “good approximation” sense. We will
now take smoothing as a case in point of such processing.

Smoothing of data is important for exploratory visualization, for data
understanding and interpretation, and as an aid in model fitting (e.g., in time
series analysis or more generally in regression modeling). The wavelet trans-
form is often used for signal (and image) smoothing in view of its “energy
compaction” properties, i.e., large values tend to become larger, and small
values smaller, when the wavelet transform is applied. Thus a very effective
approach to signal smoothing is to selectively modify wavelet coefficients
(for example, put small wavelet coefficients to zero) before reconstructing
an approximate version of the data. See Härdle (2000), Starck and Murtagh
(2002).

The wavelet transform, developed for signal and image processing, has
been extended for use on relational data tables and multidimensional data
sets (Vitter and Wang, 1999; Joe, Whang and Kim, 2001) for data summa-
rization (micro-aggregation) with the goal of anonymization (or statistical
disclosure limitation) and macrodata generation; and data summarization
with the goal of computational efficiency, especially in query optimization.
A survey of data mining applications (including applications to image and
signal content-based information retrieval) can be found in Tao Li, Qi Li,
Shenghuo Zhu and Ogihara (2002). In the next section, we will briefly re-
view these applications, and we will point to the novelty of the work that
we present in this article.

A hierarchical representation is used by us, as a first phase of the pro-
cessing, (i) in order to cater for the lack of any inherent row/column order in
the given data table and to get around this obstacle to freely using a wavelet
transform; and (ii) to take into account structure and interrelationships in
the data. For the latter, a hierarchical clustering furnishes an embedded set
of clusters, and obviates any need for a priori fixing of number of clusters.

Once this is done, the hierarchy is wavelet transformed. The approach
is a natural and integral one.

A hierarchy may be constructed through use of any constructive, hierar-
chical clustering algorithm (Benzécri, 1979; Johnson, 1967; Murtagh, 1985).
In this work we will assume that some agglomerative criterion is satisfactory
from the perspective of the type of data, and the nature of the data analysis
or processing. In a wide range of practical scenarios, the minimum variance
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(or Ward) agglomerative criterion can be strongly recommended due to its
data summarizing properties (Murtagh, 1985).

The remainder of this article is organized as follows. In section 2 a short
review is presented of the inherent limitations to date of the use of wavelet
transforms of data tables, in the data mining context. Section 3 presents our
new wavelet transform which uses as input both the original data array, and
the hierarchical clustering of this data. This description of our new wavelet
transform is sufficiently detailed to allow it to be easily programmed. In
section 4, some practical examples are described for clarity of exposition of
the new wavelet transform.

Then in section 5 a range of assessments and evaluations are carried
out, to show how well the integrated hierarchical clustering and wavelet
transform can be applied in practice.

2 Previous Work on Wavelet Transforms of Data
Tables

In this section we will review recent work using wavelet transforms on data
tables, and show how our work represents a radically new approach to tack-
ling similar objectives.

Approximate query processing arises when data must be kept confiden-
tial so that only aggregate or macro-level data can be divulged. Approxi-
mate query processing also provides a solution to access of information from
massive data tables.

One approach to approximate database querying through aggregates is
sampling. However a join operation applied to two uniform random samples
results in a non-uniform result, which furthermore is sparse (Chakrabarti,
Garofalakis, Rastogi and Shim, 2001). A second approach is to keep his-
tograms on the coordinates. For a multidimensional feature space, one is
faced with a “curse of dimensionality” as the dimensionality grows. A third
approach is wavelet-based, and is of interest to us in this article.

A form of progressive access to the data is sought, such that aggregated
data can be obtained first, followed by greater refinement of the data. The
Haar wavelet transform is a favored transform for such purposes, given that
reconstructed data at a given resolution level is simply a recursively defined
mean of data values. Vitter and Wang (1999) consider the combinatorial
aspects of data access using a Haar wavelet transform, and based on a multi-
way data hypercube. Such data, containing scores or frequencies, is often
found in the commercial data mining context of OLAP, On-Line Analytical
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Processing.
As pointed out in Chakrabarti et al. (2001), one can treat multidimen-

sional feature hypercubes as a type of high dimensional image, taking the
given order of feature dimensions as fixed. As an alternative a uniform “shift
and distribute” randomization can be used (Chakrabarti et al., 2001).

There are problems, however, in directly applying a wavelet transform
to a data table. Essentially, a relational table (to use database terminology;
or matrix) is treated in the same way as a 2-dimensional pixelated image,
although the former case is invariant under row and column permutation,
whereas the latter case is not (Murtagh, Starck and Berry, 2000). Therefore
there are immediate problems related to non-uniqueness, and data order
dependence.

What if, however, one organizes the data such that adjacency has a mean-
ing? This implies that similarly-valued objects, and/or similarly-valued fea-
tures, are close together. This is what we do, using any hierarchical cluster-
ing algorithm (e.g., the Ward or minimum variance one). Examples, to be
discussed below, of hierarchical clustering results can be seen in Figures 1
and 2.

Without loss of generality, as seen in these figures, we assume that a
hierarchy is a binary, rooted tree; and equivalently that the series of ag-
glomerations involve precisely two clusters (possibly singleton clusters) at
each of the n − 1 agglomerations where there are n observations. These n
observations are usually represented by n row vectors in our data table.

A significant advantage in regard to hierarchical clustering is that parti-
tions of the data can be read off at a succession of levels, and this obviates
the need for fixing the number of clusters in advance. All possible clustering
outcomes are considered. (Remark: of course, relative to any one of the
commonly used cluster homogeneity criteria, each partition is guaranteed to
be sub-optimal at best.)

3 Bases of the Hierarchic Haar Wavelet Transform

Linkages between the classical wavelet transform, as used in signal process-
ing, and multivariate data analysis, were investigated in Murtagh (1998).
The wavelet transform to be described now is fundamentally new, and works
on a hierarchy.

The Haar wavelet transform can be simply described in terms of the
following algorithm: recursively carry out averaging and differencing of ad-
jacent pairs of data values (pixels, voxels, time steps, etc.) at a sequence
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of geometrically (factor 2) increasing resolution levels. Our innovation is to
apply the Haar wavelet transform to a binary rooted tree (viz., the clus-
tering hierarchy) in terms of the following algorithm: recursively carry out
pairwise averaging and differencing at the sequence of levels in the tree.

Consider any hierarchical clustering, H, represented as a binary rooted
tree. For each cluster q′′ with offspring nodes q and q′, we define s(q′′)

through application of the low-pass filter
(

1
2
1
2

)
which can be implemented

as a scalar product:

s(q′′) =
1
2

(
s(q) + s(q′)

)
=

(
0.5
0.5

)t (
s(q)
s(q′)

)
(1)

The application of the low-pass filter is carried out in order of increasing
node number (i.e., from the smallest non-terminal node, through to the root
node). For a terminal node, s(i) is just the given vector, and this aspect is
addressed further below, in subsection 3.1.

Next for each cluster q′′ with offspring nodes q and q′, we define detail

coefficients d(q′′) through application of the band-pass filter
(

1
2

−1
2

)
:

d(q′′) =
1
2
(s(q)− s(q′)) =

(
0.5

−0.5

)t (
s(q)
s(q′)

)
(2)

Again, increasing order of node number is used for application of this
filter.

The scheme followed is illustrated in Figure 2, which shows the hierarchy
(constructed by the median agglomerative method, although this plays no
role here), using for display convenience just the first 8 observation vectors
in Fisher’s iris data (Fisher, 1936).

We call our algorithm a Haar wavelet transform because, traditionally,
this wavelet transform is defined by a similar set of averages and differ-
ences. A more detailed study of why it can with justice be called a wavelet
transform can be found in the companion paper, Paper II.

3.1 Two Cases Corresponding to Two Types of Input Data

We now return to the issue of how we start this scheme, i.e. how we define
s(i), or the “smooth” of a terminal node, representing a singleton cluster.

We consider two cases:

1. s(i) is a vector in Rm, and the ith row of a data table.
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2. s(i) is an n-dimensional indicator vector. So the third, in sequence, out
of a population of n = 8 observations has indicator vector {00100000}.
We can of course take a data table of all indicator vectors: it is clear
that the data table is symmetric, and is none other than the identity
matrix.

The first of these two cases implies that the hierarchy, H, represents
a hierarchically-structured set of relationships, in the form of a taxonomy.
From the point of view of practical application, this case is the more impor-
tant one.

The second of these two cases may be of help in more directly represent-
ing an embedded set of sets.

Our hierarchical Haar wavelet transform can easily handle either case,
depending on the input data table used.

3.2 The Inverse Transform

Constructing the hierarchical Haar wavelet transformed data is referred to
as the forward transform. Reconstructing the input data is referred to as
the inverse transform.

The inverse transform allows exact reconstruction of the input data. We
begin with sn−1. If this root node has subnodes q and q′, we use d(q) and
d(q′) to form s(q) and s(q′).

We continue, step by step, until we have reconstructed all vectors asso-
ciated with terminal nodes.

4 Hierarchical Haar Wavelet Transform: Two Case
Studies

In a practical way, using small data sets, we will describe our new hierarchical
Haar wavelet transform in this section.

In the second input data case of subsection 3.1, consider the indicator
vector of cluster q and of observation x. Thus in Figure 1, x1 = {100000000},
and q1 = {11000000}. The indicator vectors will be taken below as column
vectors. This form of coding was used by Nabben and Varga (1994).

Now we use equations 1 and 2.

4.1 Case Study 1

In Figure 1, we have:
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1

Figure 1: Labeled, ranked dendrogram on 8 terminal nodes. Branches la-
beled 0 and 1.
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s(q1) = 1
2(x1 + x2) = (1

2
1
2 0 0 0 0 0 0)

Also: s(q1) = 1
2q1

s(q2) = 1
2(s(q1) + x3) = (1

4
1
4

1
2 0 0 0 0 0)

Also: s(q2) = 1
2(1

2q1 + x3) = 1
4q1 + 1

2x3

s(q3) = 1
2(x4 + x5) = (0 0 0 1

2
1
2 0 0 0)

Also: s(q3) = 1
2q3

s(q4) = 1
2(s(q3) + x6) = (0 0 0 1

4
1
4

1
2 0 0)

s(q5) = 1
2(s(q2) + s(q4)) = (1

8
1
8

1
4

1
8

1
8

1
4 0 0)

s(q6) = 1
2(x7 + x8) = (0 0 0 0 0 0 1

2
1
2)

s(q7) = 1
2(q5 + q6) = ( 1

16
1
16

1
8

1
16

1
16

1
8

1
4

1
4)

Next we turn attention to the detail coefficients.

d(q1) = 1
2(x1 − x2) = (1

2 − 1
2 0 0 0 0 0 0)

Alternatively, for q′′ = q∪q′, the detail coefficients are defined as: d(q′′) =
s(q′′)− s(q′) = −(s(q′′)− s(q)).

Thus d(q1) = s(q1) − x2 = (1
2

1
2 0 0 0 0 0 0) − (0 1 0 0 0 0 0 0) =

(1
2 − 1

2 0 0 0 0 0 0)

For any d(qj) we have:
∑

k d(qj)k = 0, i.e. the detail coefficient vectors
are each of zero mean.

Let us redo in vector and matrix terms this description of the hierarchical
Haar wavelet transform algorithm.

We take our initial or input data as follows.

x1

x2

x3

x4

x5

x6

x7

x8


=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(3)

The hierarchical Haar wavelet transform of this input data is then as
follows.
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

d(q1)
d(q2)
d(q3)
d(q4)
d(q5)
d(q6)
d(q7)
s7


=



1
2 −1

2 0 0 0 0 0 0
1
4

1
4 −1

2 0 0 0 0 0
0 0 0 1

2 −1
2 0 0 0

0 0 0 1
4

1
4 −1

2 0 0
1
8

1
8

1
4 −1

8 −1
8 −1

4 0 0
0 0 0 0 0 0 1

2 −1
2

1
16

1
16

1
8

1
16

1
16

1
8 −1

4 −1
4

1
16

1
16

1
8

1
16

1
16

1
8

1
4

1
4


(4)

As already noted in this subsection, the succession of n − 1 wavelet
coefficient vectors are of zero mean. Therefore, due to the input data used
(relation (3)), each row of the right hand matrix in equation 4 is of zero
mean.

Note that this transform is a function of the hierarchy, H. Here we are
using the hierarchy of Figure 1. H is needed to define the structure of the
right hand matrix in equation 4.

4.2 Case Study 2

In Tables 1 and 2 we directly transform a small data set consisting of the
first 8 observations in Fisher’s iris data.

Note that in Table 2 it is entirely appropriate that at more smooth levels
(i.e., as we proceed through levels d1, d2, . . ., d6, d7) the values become more
“fractionated” (i.e., there are more values after the decimal point).

The minimum variance agglomeration criterion, with Euclidean distance,
is used to induce the hierarchy on the given data. Each detail signal is of
dimension m = 4 where m is the dimensionality of the given data. The
smooth signal is of dimensionality m also. The number of detail or wavelet
signal levels is given by the number of levels in the labeled, ranked hierarchy,
i.e. n− 1.
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Sepal.L Sepal.W Petal.L Petal.W
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5.0 3.4 1.5 0.2

Table 1: First 8 observations of Fisher’s iris data. L and W refer to length
and width.

s7 d7 d6 d5 d4 d3 d2 d1
Sepal.L 5.146875 0.253125 0.13125 0.1375 −0.025 0.05 −0.025 0.05

Sepal.W 3.603125 0.296875 0.16875 −0.1375 0.125 0.05 −0.075 −0.05
Petal.L 1.562500 0.137500 0.02500 0.0000 0.000 −0.10 0.050 0.00

Petal.W 0.306250 0.093750 −0.01250 −0.0250 0.050 0.00 0.000 0.00

Table 2: The hierarchical Haar wavelet transform resulting from use of the
first 8 observations of Fisher’s iris data shown in Table 1. Wavelet coefficient
levels are denoted d1 through d7, and the continuum or smooth component
is denoted s7.
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x1 x3 x4 x6x8x2 x5x7

0
1

s7

s6

s5

s4
s3

s2
s1

-d7

-d6
-d5

-d4
-d3-d2

-d1

+d7

+d6

+d5

+d4 +d3
+d2 +d1

Figure 2: Dendrogram on 8 terminal nodes constructed from first 8 values
of Fisher iris data. (Median agglomerative method used in this case.) Detail
or wavelet coefficients are denoted by d, and data smooths are denoted by
s.
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5 Examples and Assessments of Hierarchical Wavelet
Filtering

5.1 The Smoothing Algorithm

We use the following generic data analysis processing path, which is appli-
cable to any input tabular data array of numerical values. We assume only
that there are no missing values in the data array.

1. Given a dissimilarity, induce a hierarchy on the set of observations.
(We generally use the Euclidean distance, and the minimum variance
agglomerative hierarchical clustering criterion, in view of the synop-
tic properties (Murtagh, 1985). Additionally the vectors used in the
clustering can be weighted: we use identical weights in this work.)

2. Carry out a Haar wavelet transform on this hierarchy. This gives
a tree-based compaction of energy (Starck and Murtagh, 2002: large
values tend to become larger, and small values tend to become smaller)
in our data. Filter the wavelet coefficients (i.e., carry out wavelet
regression or smoothing, here using hard thresholding by setting small
wavelet coefficients to zero).

3. Determine the inverse of the wavelet transform, in order to reconstruct
an approximation to the original multidimensional data values.

5.2 The Fisher Iris Data

In this first filtering study we use Fisher’s iris data (Fisher, 1936), an array
of dimensions 150 × 4, in view of its well known characteristics. If xij is a
typical data value, then the energy of this data is 1/(nm)

∑
ij x2

ij = 15.8988.
If we set wavelet coefficients to zero based on a hard threshold, then a very
large number of coefficients may be set to zero with minor implications
for approximation of the input data by the filtered output. Table 3 shows
this. The minimum variance hierarchical clustering method was used as
the first phase of the processing, followed by the second, wavelet transform,
phase. Then followed wavelet coefficient truncation, and reconstruction or
the inverse transform. We see that a mean square error between input and
output of value 0.1040 is the relatively good approximation quality, when
nearly 98% of wavelet coefficients are zero-valued.

To further illustrate what is happening in this approximation by the
wavelet filtered data, Table 4 shows the last 10 iris observations, as given
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Filt. threshold % coeffs. set to zero mean square error
0 16.95 0

0.1 70.13 0.0098
0.2 91.95 0.0487
0.3 97.15 0.0837
0.4 97.82 0.1040

Table 3: Hierarchical Haar smoothing results for Fisher’s 150× 4 iris data.

for input, and as filtered. The numerical precisions shown are as generated
in the reconstruction, which explains why we show some values to 4 decimal
places, and some to 6.

To show that wavelet filtering is effective, we will next compare wavelet
filtering with direct filtering of the given data. By “directly filtered” we
mean that we processed the original data without recourse to a hierarchical
clustering. This “straw man” processing is intended as a simple, default
baseline with which we can compare our results.

Taking the original Fisher data, we find the median value to be 3.2.
Putting values less than this median value to 0, we find the MSE to be
2.154567, i.e., implying a far less satisfactory fit to the data. (Thresholding
by using < versus ≤ median had no effect.)

5.3 Uniform Realization of Same Dimensions as Fisher Data

We next generated an array of dimensions 150× 4 of uniformly distributed
random values on [0, 7.9], where 7.9 was the maximum value in the Fisher iris
data. The energy of this data set was 21.2097. Results of filtering are shown
in Table 5. The minimum variance hierarchical clustering method was used.
Again good approximation properties are seen, even if the compression is
not as impressive as for the Fisher data.

Uniformly distributed data coordinate values are a taxing case, since
such data are very unlike data with clear cluster structures (as is the case
for the Fisher iris data).

5.4 Inherent Clustering Structure in a Data Array

When a data set is inherently clustered (and possibly inherently hierar-
chically clustered) then the energy compaction properties of the wavelet
transformed data ought to be correspondingly stronger. We will show this
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Sepal.L Sepal.W Petal.L Petal.W

140 6.9 3.1 5.4 2.1
141 6.7 3.1 5.6 2.4
142 6.9 3.1 5.1 2.3
143 5.8 2.7 5.1 1.9
144 6.8 3.2 5.9 2.3
145 6.7 3.3 5.7 2.5
146 6.7 3.0 5.2 2.3
147 6.3 2.5 5.0 1.9
148 6.5 3.0 5.2 2.0
149 6.2 3.4 5.4 2.3
150 5.9 3.0 5.1 1.8

140 6.739063 3.119824 5.4125 2.239258
141 6.782813 3.307324 5.7250 2.564258
142 6.839063 3.119824 5.1125 2.239258
143 5.737500 2.808496 5.0000 2.039258
144 6.782813 3.307324 5.8250 2.314258
145 6.782813 3.307324 5.7250 2.564258
146 6.639063 3.119824 5.1125 2.239258
147 6.196875 2.480371 5.0000 1.964258
148 6.364063 3.019824 5.2625 2.089258
149 6.320313 3.307324 5.4750 2.439258
150 5.937500 3.008496 5.1375 1.864258

Table 4: Last 10 values of input data, and of the approximation to these
based on the hierarchical Haar wavelet transform filtering with a hard
threshold of 0.1, implying 70.13% of the wavelet coefficients equaling 0.

Filt. threshold % coeffs. set to zero mean square error
0 0 0

0.1 14.77 0.0022
0.2 31.54 0.0249
0.3 42.79 0.0622
0.4 53.52 0.1261

Table 5: Hierarchical Haar filtering results for uniformly distributed 150×4
data.
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through the processing of data sets containing cluster structure relative to
the processing of data sets containing uniformly distributed values (and
hence providing a baseline for no cluster structure).

Firstly we verified that data set size is relatively unimportant in terms
of wavelet-based smoothing. We took artificially generated, uniformly dis-
tributed in [0, 1], random data matrices of dimensions: 500× 40, 1000× 40,
1500 × 40, and 2000 × 40. For each we applied a fixed threshold of 0.1 to
the wavelet coefficients, setting values less than or equal to this threshold
to 0, and retaining wavelet coefficient values above this threshold, before
reconstructing the data. Then we checked mean square error between re-
constructed data and the original data. For the four different data matrix
dimensions, we found: 0.463, 0.461, 0.465, 0.466.

From the clustering point of view, the foregoing data matrices are simply
clouds of 500, 1000, 1500 and 2000 points in 40-dimensional real space, or
R40. To check if space dimensionality could matter we checked the mean
square error for a data matrix of uniformly distributed values with dimen-
sions 2000 × 400, with the additional necessary adjustment for the total
number of data values (viz., 800,000 for the matrix of dimensions 2000×400,
as opposed to 80,000 data values for the matrix of dimensions 2000 × 40).
With this relative adjustment, the mean square error was found to be 0.458.
(Compare this to the mean square error of 0.466 for the 2000×40 data array,
discussed in the previous paragraph.)

We conclude that neither embedding spatial dimensionality, i.e., number
of columns in the data matrix, nor also data set size as given by the number
of rows, are inherent determinants of the smoothing properties of our new
method.

So what is important? Clearly if the hierarchical clustering is pulling
large clusters together, and facilitating the “energy compaction” properties
of the wavelet transform, then what is important is clustering structure in
our data.

We generated structure by placing Gaussians centered at the following
row, column locations in a 1200×400 data array: 300,100; 800,300; 1000,200;
500,150; 900,150. These bivariate Gaussians were of total 10 units in each
case. A full width at half maximum (equal to 2.35482 times the standard
deviation of a Gaussian), was used in each case, respectively: 20, 50, 10, 100,
125. We will call this the data array containing structure. Figure 3 shows a
schematic view of it. This data array was motivated by an analogous image;
but, unlike in the image case, our approach to processing a data array has
absolutely no boundary effects or considerations.

As a benchmark, a second data array of the same dimensions 1200×400
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Threshold With structure Random
0.05 1.28 1.35
0.10 4.56 4.61
0.15 8.95 8.99
0.20 13.73 13.76
0.25 18.49 18.52
0.30 23.03 23.07
0.40 30.27 30.31
0.50 33.24 33.29

Table 6: Mean square errors for the noisy data array with structure, As,
in column 2, and the noisy random data array, Ar, in column 3. The fixed
thresholds applied are in column 1. We see that the fit of filtered to input
data is always best (i.e., lowest mean square error) for the structured data,
column 2.

was used, containing uniformly distributed values in [0,1]. We will call this
the random data array, Ar.

The random data array was added (element-wise) to the data array con-
taining structure (so as to avoid lots of zero data values), yielding the noisy
structured data array, As. The maximum value in the data array containing
structure, As, now became 1.02, while the maximum value in the random
data array, Ar, was 1. The total of all values in the data array containing
structure, As, was 240553.3. The total of all values in the random data ar-
ray, Ar, was 240504.3. Note how alike the “With structure” and “Random”
data sets were; and consequently how close the results can be expected to
be.

Fixed thresholds were applied in wavelet space and the data recon-
structed. Table 6 shows the mean square error between input data and
reconstructed data. What is noticeable about the better results seen here
for column 2, As, compared to column 3, Ar, is that the values are some-
what bigger for As but nonetheless the fit to the input of wavelet filtered
and reconstructed output is better for all threshold values.

5.5 An Example from Clustering of Texts

In a range of text data mining case studies (Murtagh, 2005) 910 short texts
were used, consisting of chapters from three Jane Austen books (61 chapters
from Pride and Prejudice, 24 chapters from Persuasion, 50 chapters from
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Figure 3: Visualization of the artificial structure defined from 5 different
Gaussian distributions, before noise was added. Data array dimensions:
1200× 400.
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Sense and Sensibility, and 131 subchapters from Sense and Sensibility), 209
Grimm Brothers’ fairy tales, 50 aviation accident reports from the National
Transport Safety Board, and 385 dream reports from the online DreamBank
repository. These 910 texts were characterized by the most frequent 500
words appearing in the entire collection. Further details can be found in
Murtagh (2005). A correspondence analysis was carried out, and the first
two factors – see Figure 4 – were used to characterize the easily distinguished
texts. The cloud of points to the lower right (denoted “a”) are the technical
aviation accident reports. The well demarcated, lower part of the upper
left clusters comprises all of the Jane Austen material (denoted “1”, “2”,
“3” and “4”). The clump in the middle of the upper left (denoted “g”) are
the Grimm Brothers’ fairy tales. The upper clump (denoted “d”) are the
various dream reports.

We used the two coordinate, principal factor, representation, as shown
in Figure 4, to characterize the 910 texts, As. As a baseline we generated
uniformly distributed random two-dimensional coordinates, Ar, with the
same minimum and maximum values as in the case of As.

Applying a filtering threshold of 0.5 to the wavelet coefficients gave a
mean square error between As and reconstructed As of 0.467. Applying the
same threshold led to the error between Ar and the reconstructed Ar as the
somewhat worse value of 0.535.

Again data with cluster structure is better wavelet-smoothed compared
to data with no cluster structure.

While all examples shown here underscore the superiority of the com-
bined clustering and wavelet transform approach described, we will now
mention some limitations. Firstly, a baseline of random data giving a bet-
ter fit to the input can be found if the random realization is based on the
empirical distribution function of the given data. Hence our approach is
not to be considered as a means of testing clustering structure, nor even of
departure from randomness. Secondly, as exemplified by the case studies
involving Figures 3 and 4, the cluster structure has to be quite pronounced.
Again, we note that our combined clustering/wavelet approach makes use
of clear structure in the data, and is not to be considered as providing a
means for testing clustering structure.

5.6 Approximating a Hierarchy by Collapsing Clusters

A binary rooted tree, H, on n observations has precisely n− 1 levels; or H
contains precisely n − 1 subsets of the set of n observations. The interpre-
tation of a hierarchical clustering often is carried out by cutting the tree to
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Figure 4: Positions of 910 texts, crossed by their 500 most common words,
shown in the correspondence analysis principal factor plane.

19



yield any one of the n−1 possible partitions. Our hierarchical Haar wavelet
transform affords us a neat way to approximate H using a smaller number
of possible partitions.

Consider the detail vector at any given level: cf. the examples exemplified
in relation 4 or Table 2. Any such detail vector is associated with (i) a node
of the binary tree; (ii) the level or height index of that node; and (iii)
a cluster, or subset of the observation set. In the data approximation or
filtering, so far, we have set coordinate values of the each detail vector to
zero. Now, with the goal of “collapsing” clusters, i.e. removing clusters that
are not unduly valuable for interpretation, we will impose a hard threshold
on each detail vector. Although other rules could be considered, we will
assess here the use of the following threshold:
If the norm of the detail vector is less than a user-specified threshold, then
set all values of the detail vector to zero.

Other rules could be chosen, in particular rules related directly to the
agglomerative clustering criterion used. Our norm-based rule is not directly
related to the agglomerative criterion for the following reasons: (i) we seek a
generic interpretative aid, rather than an optimal but criterion-specific rule;
(ii) an optimal, criterion-specific rule would in any case be best addressed by
studying the overall optimality measure rather than availing of the stepwise
suboptimal hierarchical clustering; and (iii) from naturally occurring hierar-
chies, as occur in very high dimensional spaces, the issue of an agglomerative
criterion is not important.

Following use of the norm-based cluster collapsing rule, the representa-
tion of the reconstructed hierarchy is straightforward: the hierarchy’s level
index is adjusted so that the previous level index additionally takes the place
of the given level index. The following example will exemplify this.

We took Aristotle’s Categories (see Murtagh, 2005) containing 14,483
individual words. We broke up the text into 24 files, in order to study the
sequential properties of the argument developed in this short philosophical
work. In these 24 files, there were 1269 unique words. We selected 66 nouns
of particular interest. With frequencies of occurrence in parentheses we had
(sample only): man (104), contrary (72), same (71), subject (60), substance
(58), species (54), knowledge (50), qualities (47), etc. A correspondence
analysis was carried out on the 66 × 24 table of frequencies with the aim
of taking the set of 66 nouns endowed with the χ2 metric (i.e., a weighted
Euclidean distance between profiles into a factor space endowed with the
(unweighted) Euclidean metric. A hierarchical clustering (minimum vari-
ance method) was carried out on the factor coordinates of the 66 nouns.

The norms of detail vectors had minimum, median and maximum values
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as follows: 0.0866, 0.5408 and 3.042, and these influenced the choice of
threshold. Applying thresholds of 0, 1.3, 1.9 and 2.3 gave rise to the following
numbers of “collapsed” clusters (with in brackets the mean squared error
between approximated data and original input data): 0 (0.0), 43 (0.1558), 58
(0.1878), and 62 (0.2099). Figure 5 shows the corresponding reconstructed
and approximated hierarchies.

In the case of the threshold 1.9 (lower left in Figure 5) we have noted that
58 clusters were collapsed, leaving just 8 partitions. As stated the objective
here is precisely to approximate the dendrogram output data structure in
order to facilitate further study and interpretation of these partitions.

5.7 Traditional versus Hierarchical Haar Wavelet Transforms

Consider a set of 8 input data objects, each of which is scalar:
(64, 48, 16, 32, 56, 56, 48, 24). A traditional Haar wavelet transform of this
data can be quickly done, and gives: (43,−3, 16, 10, 8,−8, 0, 12). Here, the
first value is the final smooth, and the remaining values are the wavelet
coefficients read off by a traversal from final smooth towards the input data
values. Showing the output in the same way, the hierarchical Haar wavelet
transform of the same data gives: (40, 14, 6,−6,−4, 4, 0, 0).

A little reflection shows that the greater number of zeros in the hierarchi-
cal Haar wavelet transform is no accident. In fact, with the following condi-
tions: 10 different digits in the input data; processing of an n-length string of
digits; use of an unweighted average agglomerative criterion; n−10 = 2k for
some integer k; then the number of zero wavelet coefficients will be n− 10.
This remarkable result points to the powerful data compression potential
of the hierarchical Haar wavelet transform. We must note though that this
rests on the dendrogram, and the computational requirements of the latter
are not in any way bypassed.

5.8 Computational Complexity Properties

The computational complexity of our algorithms are as follows. The hierar-
chical clustering is O(n2), coded in C (and earlier in Fortran and Java). All
other programs, as follows, were coded initially in R and then, for efficiency,
in C++. The forward hierarchical Haar wavelet transform is O(n). The fil-
tering is O(n). Finally, the inverse wavelet transform is O(n2). All programs
are run from an R harness. On Macintosh G4 or G5 machines, all phases
of the processing took 4–5 minutes for the 12000 × 400 array. The data
sets used in subsection 5.4 were generated using the MR Multiresolution
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right show increasing approximations to the original hierarchy based on the
“cluster collapsing” approach described.
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Analysis software (described in Starck and Murtagh, 2002).
A pipeline of C and R code used in this work (which can be used with,

for example, the Fisher iris data) is available at the following address:
http://astro.u-strasbg.fr/∼fmurtagh/mda-sw

6 Conclusion

It is interesting to compare some global properties of our approach relative
to the Fourier transform approach applied to decision trees in Kargupta and
Park (2004). The Fourier transform lends itself well to a frequency spectrum
analysis of binary decision vectors, and the latter can be of importance for
supervised classification. On the other hand, our work has made use of bi-
nary trees but in the framework of unsupervised classification. The wavelet
transform shares with the Fourier transform the property that frequency
spectral information is determined from the data; and the wavelet trans-
form additionally determines spatial or resolution scale information from
the data. We have found the wavelet transform, as described in this article,
to be appropriate for the type of input data that we have considered. In
general terms, both we in this article, and Kargupta and Park (2004), have
as objectives the filtering and compression of data.

We have described a novel hierarchical wavelet transform, developed to
allow wavelet filtering of data tables. It relies on an available hierarchic clus-
tering of the data table, and for that we have generally (but not exclusively)
used Ward’s minimum variance agglomerative hierarchical clustering in this
work.

We have described this new method through a number of small examples.
We then used the well known Fisher iris data to show how wavelet filtering
performs in practice. Furthermore we took a range of randomly (uniformly)
generated data tables, to investigate the filtering and the scaling properties.

We used two cases studies involving synthetic data with cluster structure,
and data on 910 short texts, to show that the cluster structure is beneficial
for this approach to data smoothing.

Finally we again underline the innovation in this approach: for handling
data arrays, it is not acceptable to employ approaches developed for very
different types of data (e.g., 2-dimensional images, time series, etc.).

A further motivation for the development of wavelet transforms based
on hierarchical data structures is to cater for “naturally” (in some sense)
hierarchically structured data. Recent work has shown that very high di-
mensional, spatially sparse, data can be considered as naturally hierarchi-
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cally structured. Examples of such high-dimensional data include speech
analysis, genomics and proteomics, and other fields (Rammal, Toulouse and
Virasoro, 1986; Murtagh, 2004). This points to very exciting possibilities in
data mining of very high dimensional data sets.
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[4] Härdle, W. (2000). Wavelets, Approximation, and Statistical Applica-
tions, Berlin: Springer.

[5] Joe, M.J., Whang, K.-Y. and Kim, S.-W. (2001). “Wavelet
Transformation-Based Management of Integrated Summary Data for
Distributed Query Processing”, Data and Knowledge Engineering, 39,
293–312.

[6] Johnson, S.C. (1967). “Hierarchical Clustering Schemes”, Psychome-
trika, 32, 241–254.

[7] Kargupta, H. and Park, B.-H. (2004). “A Fourier Spectrum-Based Ap-
proach to Represent Decision Trees for Mining Data Streams in Mobile
Environments”, IEEE Transactions on Knowledge and Data Engineer-
ing, 16, 216–229.

[8] Murtagh, F. (1985). Multidimensional Clustering Algorithms,
Würzburg: Physica-Verlag.

[9] Murtagh, F. (1998). “Wedding the Wavelet Transform and Multivariate
Data Analysis”, Journal of Classification, 15, 161–183.

24



[10] Murtagh, F., Starck, J.-L. and Berry, M. (2000). “Overcoming the
Curse of Dimensionality in Clustering by Means of the Wavelet Trans-
form”, The Computer Journal, 43, 107–120.

[11] Murtagh, F. (2004). “On Ultrametricity, Data Coding, and Computa-
tion”, Journal of Classification, 21, 167–184.

[12] Murtagh, F. (2005). Correspondence Analysis and Data Coding with
Java and R, Chapman and Hall.

[13] Nabben R. and Varga, R.S. (1994). “A Linear Algebra Proof that the
Inverse of a Strictly Ultrametric Matrix is a Strictly Diagonal Dominant
Stieltjes Matrix”, SIAM Journal on Matrix Analysis and Applications,
15, 107–113.

[14] Paper II (2005). “The Haar Wavelet Transform of a Dendrogram – II”,
companion paper.

[15] Rammal, R., Toulouse, G. and Virasoro, M.A. (1986). “Ultrametricity
for Physicists”, Reviews of Modern Physics, 58, 765–788.

[16] Starck J.-L. and Murtagh, F. (2002). Astronomical Image and Data
Analysis, Heidelberg: Springer. Chapter 9: “Multiple Resolution in
Data Storage and Retrieval”.

[17] Tao Li, Qi Li, Shenghuo Zhu, and Mitsunori Ogihara (2002). “A Survey
on Wavelet Applications in Data Mining”, SIGKDD Explorations, 4,
49–68.

[18] Vitter, J.S. and Wang, M. (1999). “Approximate Computation of Mul-
tidimensional Aggregates of Sparse Data using Wavelets”, in Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data, 193–204.

25


