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Abstract: By a “covering” we mean a Gaussian mixture model fit to observed data.
Approximations of the Bayes factor can be availed of to judge model fit to the data within
a given Gaussian mixture model. Between families of Gaussian mixture models, we propose
the Rényi quadratic entropy as an excellent and tractable model comparison framework.
We exemplify this using the segmentation of an MRI image volume, based (1) on a direct
Gaussian mixture model applied to the marginal distribution function, and (2) Gaussian
model fit through k-means applied to the 4D multivalued image volume furnished by the
wavelet transform. Visual preference for one model over another is not immediate. The
Rényi quadratic entropy allows us to show clearly that one of these modelings is superior to
the other.
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1. Introduction

We begin with some terminology used. Segments are contiguous clusters. In an imaging context,
this means that clusters contain adjacent or contiguous pixels. For typical 2D (two-dimensional) images,
we may also consider the 1D (one-dimensional) marginal which provides an empirical estimate of the
pixel (probability) density function or PDF. For 3D (three-dimensional) images, we can consider 2D
marginals, based on the voxels that constitute the 3D image volume, or also a 1D overall marginal.
An image is representative of a signal. More loosely a signal is just data, mostly here with neccessary
sequence or adjacency relationships. Often we will use interchangeably the terms image, image volume
if relevant, signal and data.

The word “model” is used, in general, in many senses–statistical [1], mathematical, physical models;
mixture model; linear model; noise model; neural network model; sparse decomposition model; even,
in different senses, data model. In practice, firstly and foremostly for algorithmic tractability, models
of whatever persuasion tend to be homogeneous. In this article we wish to broaden the homogeneous
mixture model framework in order to accommodate heterogeneity at least as relates to resolution scale.
Our motivation is to have a rigorous model-based approach to data clustering or segmentation, that also
and in addition encompasses resolution scale.

Figure 1. Clusters of all morphologies are sought. Figure courtesy of George Djorgovski,
Caltech.
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In Figure 1 [2], the clustering task is portrayed in its full generality. One way to address it is to build
up parametrized clusters, for example using a Gaussian mixture model (GMM), so that the cluster “pods”
are approximated by the mixture made up of the cluster component “peas” (a viewpoint expressed by
A.E. Raftery, quoted in [3]).

A step beyond a pure “peas” in a “pod” approach to clustering is a hierarchical approach. Application
specialists often consider hierarchical algorithms as more versatile than their partitional counterparts
(for example, k-means or Gaussian mixture models) since the latter tend to work well only on data
sets having isotropic clusters [4]. So in [5], we segmented astronomical images of different observing
filters, that had first been matched such that they related to exactly the same fields of view and pixel
resolution. For the segmentation we used a Markov random field and Gaussian mixture model; followed
by a within-segment GMM clustering on the marginals. Further within-cluster marginal clustering could
be continued if desired. For model fit, we used approximations of the Bayes factor: the pseudo-likelihood
information criterion to start with, and for the marginal GMM work, a Bayesian information criterion.
This hierarchical- or tree-based approach is rigorous and we do not need to go beyond the Bayes factor
model evaluation framework. The choice of segmentation methods used was due to the desire to use
contiguity or adjacency information whenever possible, and when not possible to fall back on use of
the marginal. This mixture of segmentation models is a first example of what we want to appraise in
this work.

What now if we cannot (or cannot conveniently) match the images beforehand? In that case, segments
or clusters in one image will not necessarily correspond to corresponding pixels in another image. That
is a second example of where we want to evaluate different families of models.

A third example of what we want to cater for in this work is the use of wavelet transforms to
substitute for spatial modeling (e.g., Markov random field modeling). In this work one point of
departure is a Gaussian mixture model (GMM) with model selection using the Bayes information
criterion (BIC) approximation to the Bayes factor. We extend this to a new hierarchical context.
We use GMMs on resolution scales of a wavelet transform. The latter is used to provide resolution
scale. Between resolution scales we do not seek a strict subset or embedding relationship over fitted
Gaussians, but instead accept a lattice relation. We focus in particular on the global quality of fit of this
wavelet-transform based Gaussian modeling. We show that a suitable criterion of goodness of fit for
cross-model family evaluations is given by Rényi quadratic entropy.

1.1. Outline of the Article

In Section 2 we review briefly how modeling, with Gaussian mixture modeling in mind, is mapped
into information.

In Section 3 we motivate Gaussian mixture modeling as a general clustering approach.
In Section 4 we introduce entropy and focus on the additivity property. This property is importatant

to us in the following context. Since hierarchical cluster modeling, not well addressed or supported by
Gaussian mixture modeling, is of practical importance we will seek to operationalize a wavelet transform
approach to segmentation. The use of entropy in this context is discussed in Section 5.

The fundamental role of Shannon entropy together with some other definitions of entropy in signal
and noise modeling is reviewed in Section 6. Signal and noise modeling are potentially usable for
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image segmentation.
For the role of entropy in image segmentation, section 2 presented the state of the art

relative to Gaussian mixture modeling; and Section 6 presented the state of the art relative to
(segmentation-relevant) filtering.

What if we have segmentations obtained through different modelings? Section 7 addresses this
through the use of Rényi quadratic entropy. Finally, Section 8 presents a case study.

2. Minimum Description Length and Bayes Information Criterion

For what we may term a homogenous modeling framework, the minimum description length, MDL,
associated with Shannon entropy [6], will serve us well. However as we will now describe it does not
cater for hierarchically embedded segments or clusters. An example of where hierarchical embedding,
or nested clusters, come into play can be found in [5].

Following Hansen and Yu [7], we consider a model class, Θ, and an instantiation of this involving
parameters θ to be estimated, yielding θ̂. We have θ ∈ Rk so the parameter space is k-dimensional. Our
observation vectors, of dimension m, and of cardinality n, are defined as: X = {xi|1 ≤ i ≤ n}. A
model, M , is defined as f(X|θ), θ ∈ Θ ⊂ Rk, X = {xi|1 ≤ i ≤ n}, xi ∈ Rm, X ⊂ Rm. The maximum
likelihood estimator (MLE) of θ is θ̂: θ̂ = argmaxθf(X|θ).

Using Shannon information, the description length of X based on a set of parameter values θ is:
− log f(X|θ). We need to transmit parameters also (as, for example, in vector quantization). So overall
code length is: − log f(X|θ) + L(θ). If the number of parameters is always the same, then L(θ) can
be constant. Minimizing − log f(X|θ) over θ is the same as maximizing f(X|θ), so if L(θ) is constant,
then MDL (minimum description length) is identical to maximum likelihood, ML.

The MDL information content of the ML, or equally Bayesian maximum a posteriori (MAP) estimate,
is the code length of − log f(X|θ̂) + L(θ̂). First, we need to encode the k coordinates of θ̂, where k is
the (Euclidean) dimension of the parameter space. Using the uniform encoder for each dimension, the
precision of coding is then 1/

√
n implying that the magnitude of the estimation error is 1/

√
n. So the

price to be paid for communicating θ̂ is k · (− log 1/
√
n) = k

2
log n nats [7]. Going beyond the uniform

coder is also possible with the same outcome.
In summary, MDL with simple suppositions here (in other circumstances we could require more than

two stages, and consider other coders) is the sum of code lengths for (i) encoding data using a given
model; and (ii) transmitting the choice of model. The outcome is minimal − log f(X|θ̂) + k

2
log n.

In the Bayesian approach we assign a prior to each model class, and then we use the overall posterior
to select the best model. Schwarz’s Bayesian Information Criterion (BIC), which approximates the Bayes
factor of posterior ratios, takes the form of the same penalized likelihood,− log f(X|θ̂) + k

2
log n, where

θ̂ = ML or MAP estimate of θ. See [8] for case studies using BIC.

3. Segmentation of Arbitrary Signal through a Gaussian Mixture Model

Notwithstanding the fact that often signal is not Gaussian, cf. the illustration of Figure 1, we can fit
observational data–density f with support in m-dimensional real space, Rm – by Gaussians. Consider
the case of heavy tailed distributions.
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Heavy tailed probability distributions, examples of which include long memory or 1/f processes
(appropriate for financial time series, telecommunications traffic flows, etc.) can be modeled as a
generalized Gaussian distribution (GGD, also known as power exponential, α-Gaussian distribution,
or generalized Laplacian distribution):

f(x) =
β

2αΓ(1/β)
exp−(| x | /α)β

where
– scale parameter, α, represents the standard deviation,
– the gamma function, Γ(a) =

∫∞
0
xa−1e−xdx, and

– shape parameter, β, is the rate of exponential decay, β > 0.
A value of β = 2 gives us a Gaussian distribution. A value of β = 1 gives a double exponential or

Laplace distribution. For 0 < β < 2, the distribution is heavy tailed. For β > 2, the distribution is
light tailed.

Heavy tailed noise can be modeled by a Gaussian mixture model with enough terms [9]. Similarly, in
speech and audio processing, low-probability and large-valued noise events can be modeled as Gaussian
components in the tail of the distribution. A fit of this fat tail distribution by a Gaussian mixture model
is commonly carried out [10]. As in Wang and Zhao [10], one can allow Gaussian component PDFs
to recombine to provide the clusters which are sought. These authors also found that using priors with
heavy tails, rather than using standard Gaussian priors, gave more robust results. But the benefit appears
to be very small.

Gaussian mixture modeling of heavy tailed noise distributions, e.g. genuine signal and flicker or pink
noise constituting a heavy tail in the density, is therefore feasible. A solution is provided by a weighted
sum of Gaussian densities often with decreasing weights corresponding to increasing variances. Mixing
proportions for small (tight) variance components are large (e.g., 0.15 to 0.3) whereas very large variance
components have small mixing proportions.

Figures 2 and 3 illustrate long-tailed behavior and show how marginal density Gaussian model fitting
works in practice. The ordinates give frequencies. See further discussion in [11, 12].

4. Additive Entropy

Background on entropy can be found e.g., in [13]. Following Hartley’s 1928 treatment of equiprobable
events, Shannon in 1948 developed his theory around expectation. In 1960 Rényi developed a recursive
rather than linear estimation. Various other forms of entropy are discussed in [14].

Consider density f with support in Rm. Then:

• Shannon entropy: HS = −
∫
f(x) log f(x)dx

• Rényi entropy: HRα = 1
1−α log

∫
f(x)αdx for α > 0, α 6= 1.

We have: limα−→1HRα = HS . So HR1 = HS . We also have: HRβ ≥ HS ≥ HRγ for 0 < β < 1 and
1 < γ (see e.g., [15], section 3.3). When α = 2, HR2 is quadratic entropy.



Entropy 2009, 11 518

Figure 2. Upper left: long-tailed histogram of marginal density of product of wavelet scales
4 and 5 of a 512 × 512 Lena image. Upper right, lower left, and lower right: histograms of
classes 1, 2 and 3. These panels exemplify a nested model.

Both Shannon and Rényi quadratic entropy are additive, a property which will be availed of by
us below for example when we we define entropy for a linear transform, i.e., an additive, invertible
decomposition.

To show this, let us consider a system decomposed into independent events, A, B.
So p(AB) (alternatively written: p(A&B) or p(A + B)) = p(A)p(B). Shannon information is then

IABS = − log p(AB) = − log p(A) − log p(B), so the information of independent events is additive.
Multiplying across by p(AB), and taking p(AB) = p(A) when considering only event A and similarly
for B, leads to additivity of Shannon entropy for independent events, HAB

S = HA
S +HB

S .
Similarly for Rényi quadratic entropy we use p(AB) = p(A)p(B) and we have:

− log p2(AB) = −2 log p(AB) = −2 log (p(A)p(B)) = −2 log p(A) − 2 log p(B) = − log p2(A) −
log p2(B).

5. The Entropy of a Wavelet Transformed Signal

The wavelet transform is a resolution-based decomposition–hence with an in-built spatial model: see
e.g., [16, 17].

A redundant wavelet transform is most appropriate, even if decimated alternatives can be considered
straightforwardly too. This is because segmentation, taking information into account at all available
resolution scales, simply needs all available information. A non-redundant (decimated, e.g., pyramidal)
wavelet transform is most appropriate for compression objectives, but it can destroy through aliasing
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potentially important faint features.

Figure 3. Overplotting of the histograms presented in Figure 2. This shows how the classes
reconstitute the original data. The histogram of the latter is the upper left one in Figure 2.

If f is the original signal, or images, then the following family of redundant wavelet transforms
includes various discrete transforms such as the isotropic, B3 spline, à trous transform, called the starlet
wavelet transform in [17].

f =
S∑
s=1

ws + wS+1 (1)

where: wS+1 is the smooth continuum, not therefore wavelet coefficients; ws are wavelet coefficients at
scale s. Dimensions of f, ws, wS+1 are all identical.

Nothing prevents us having a redundant Haar or, mutatis mutandis, redundant biorthogonal 9/7
wavelet transform (used in the JPEG-2000 compression standard). As mentined above, our choice of
starlet transform is due to no damage being done, through decimation, to faint features in the image. As
a matched filter the starlet wavelet function is appropriate for many types of biological, astronomical and
other images [17].

Define the entropy, H , of the wavelet transformed signal as the sum of the entropiesHs at the wavelet
resolution levels, s:

H =
S∑
s=1

Hs (2)

Shannon and quadratic Rényi entropies are additive, as noted in section 4. For additivity,
independence of the summed components is required. A redundant transform does not guarantee
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independence of resolution scales, s = 1, 2, . . . , S. However in practice we usually have approximate
independence. Our argument in favor of bypassing indepence of resolution scales is based on the
practical and interpretation-related benefits of doing so.

Next we will review the Shannon entropy used in this context. Then we will introduce a new
application of the Rényi quadratic entropy, again in this wavelet transform context.

6. Entropy Based on a Wavelet Transform and a Noise Model

Image filtering allows, as a special case, thresholding and reading off segmented regions. Such
approaches have been used for very fast – indeed one could say with justice, turbo-charged–clustering.
See [18, 19].

Noise models are particularly important in the physical sciences (cf. CCD, charge-coupled device,
detectors) and the following approach was developed in [20]. Observed data f in the physical sciences
are generally corrupted by noise, which is often additive and which follows in many cases a Gaussian
distribution, a Poisson distribution, or a combination of both. Other noise models may also be considered.
Using Bayes’ theorem to evaluate the probability distribution of the realization of the original signal g,
knowing the data f , we have:

p(g|f) =
p(f |g).p(g)

p(f)
(3)

p(f |g) is the conditional probability distribution of getting the data f given an original signal g, i.e.,
it represents the distribution of the noise. It is given, in the case of uncorrelated Gaussian noise with
variance σ2, by:

p(f |g) = exp

(
−
∑
pixels

(f − g)2

2σ2

)
(4)

The denominator in Equation (3) is independent of g and is considered as a constant (stationary noise).
p(g) is the a priori distribution of the solution g. In the absence of any information on the solution g
except its positivity, a possible course of action is to derive the probability of g from its entropy, which
is defined from information theory.

If we know the entropy H of the solution (we describe below different ways to calculate it), we derive
its probability by:

p(g) = exp(−αH(g)) (5)

Given the data, the most probable image is obtained by maximizing p(g|f). This leads to algorithms
for noise filtering and to deconvolution [16].

We need a probability density p(g) of the data. The Shannon entropy, HS [21], is the summing of the
following for each pixel,

HS(g) = −
Nb∑
k=1

pk log pk (6)



Entropy 2009, 11 521

where X = {g1, ..gn} is an image containing integer values, Nb is the number of possible values of a
given pixel gk (256 for an 8-bit image), and the pk values are derived from the histogram of g as pk = mk

n
,

where mk is the number of occurrences in the histogram’s kth bin.
The trouble with this approach is that, because the number of occurrences is finite, the estimate pk

will be in error by an amount proportional tom
− 1

2
k [22]. The error becomes significant whenmk is small.

Furthermore this kind of entropy definition is not easy to use for signal restoration, because its gradient
is not easy to compute. For these reasons, other entropy functions are generally used, including:

• Burg [23]:

HB(g) = −
n∑
k=1

ln(gk) (7)

• Frieden [24]:

HF (g) = −
n∑
k=1

gk ln(gk) (8)

• Gull and Skilling [25]:

HG(g) =
n∑
k=1

gk −Mk − gk ln

(
gk
Mk

)
(9)

where M is a given model, usually taken as a flat image

In all definitions n is the number of pixels, and k represents an index pixel. For the three entropies
above, unlike Shannon’s entropy, a signal has maximum information value when it is flat. The sign has
been inverted (see Equation (5)), to arrange for the best solution to be the smoothest.

Now consider the entropy of a signal as the sum of the information at each scale of its wavelet
transform, and the information of a wavelet coefficient is related to the probability of it being due to
noise. Let us look at how this definition holds up in practice. Denoting h the information relative to a
single wavelet coefficient, we define:

H(X) =
l∑

j=1

nj∑
k=1

h(wj,k) (10)

with the information of a wavelet coefficient, h(wj,k) = − ln p(wj,k), (Burg’s definition rather than
Shannon’s). l is the number of scales, and nj is the number of samples in wavelet band (scale) j. For
Gaussian noise, and recalling that wavelet coefficients at a given resolution scale are of zero mean,
we get

h(wj,k) =
w2
j,k

2σ2
j

+ constant (11)

where σj is the noise at scale j. When we use the information in a functional to be minimized (for
filtering, deconvolution, thresholding, etc.), the constant term has no effect and we can omit it. We see
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that the information is proportional to the energy of the wavelet coefficients. The larger the value of a
normalized wavelet coefficient, then the lower will be its probability of being noise, and the higher will
be the information furnished by this wavelet coefficient.

In summary,

• Entropy is closely related to energy, and as shown can be reduced to it, in the Gaussian context.

• Using probability of wavelet coefficients is a very good way of addressing noise, but less good for
non-trivial signal.

• Entropy has been extended to take account of resolution scale.

In this section we have been concerned with the following view of the data: f = g + α + ε where
observed data f is comprised of original data g, plus (possibly) background α (flat signal, or stationary
noise component), plus noise ε. The problem of discovering signal from noisy, observed data is important
and highly relevant in practice but it has taken us some way from our goal of cluster or segmentation
modeling of f – which could well have been cleaned and hence approximate well g prior to our analysis.

An additional reason for discussing the work reported on in this section is the common processing
platform provided by entropy.

Often the entropy provides the optimization criterion used (see [13, 16, 26], and many other works
besides). In keeping with entropy as having a key role in a common processing platform we instead
want to use entropy for cross-model selection. Note that it complements other criteria used, e.g., ML,
least squares, etc. We turn now towards a new way to define entropy for application across families of
GMM analysis, wavelet transform based approaches, and other approaches besides, all with the aim of
furnishing alternative segmentations.

7. Model-Based Rényi Quadratic Entropy

Consider a mixture model:

f(x) =
k∑
i=1

αifi(x) with
k∑
i=1

αi = 1 (12)

Here f could correspond to one level of a mutiple resolution transformed signal. The number of mixture
components is k.

Now take fi as Gaussian:

fi(x) = fi(x|µ, V ) =
(

(2π)−
m
2 |Vi|−

1
2

)
exp

(
−1

2
(x− µi)V −1

i (x− µi)t
)

(13)

where x, µi ∈ Rm, Vi ∈ Rm×m.
Take

Vi = σ2
i I (14)

(I = identity) for simplicity of the basic components used in the model.
A (i) parsimonious (ii) covering of these basic components can use a BIC approximation to the Bayes

factor (see section 2) for selection of model, k.
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Each of the functions fi comprising the new basis for the observed density f can be termed a radial
basis [27]. A radial basis network, in this context, is an iterative EM-like fit optimization algorithm.
An alternative view of parsimony is the view of a sparse basis, and model fitting is sparsification. This
theme of sparse or compressed sampling is pursued in some depth in [17].

We have: ∫ ∞
−∞

αifi(x|µi, Vi) . αjfj(x|µj, Vj) dx (15)

= αiαjfij(µi − µj, Vi + Vj) (16)

See [13] or [26]. Consider the case – apropriate for us – of only distinct clusters so that summing over
i, j we get: ∑

i

∑
j

(1− δij)αiαjfij(µi − µj, Vi + Vj) (17)

Hence
HR2 = − log

∫ ∞
−∞

f(x)2 dx (18)

can be written as:
− log

∫ ∞
−∞

αifi(x|µi, Vi) . αjfj(x|µj, Vj) dx (19)

= − log
∑
i

∑
j

(1− δij)αiαjfij(µi − µj, Vi + Vj) (20)

= − log
∑
i

∑
j

(1− δij)fij(µi − µj, 2σ2I) (21)

from restriction (14) and also restricting the weights, αi, αj = 1, ∀i 6= j. The term we have obtained
expresses interactions beween pairs. Function fij is a Gaussian. There are evident links here with Parzen
kernels [28, 29] and clustering through mode detection (see e.g., [30, 31] and references therein).

For segmentation we will simplify further Equation (20) to take into account just the equiweighted
segments reduced to their mean (cf. [28]).

In line with how we defined mutiple resolution entropy in Section 6, we can also define the Rényi
quadratic information of wavelet transformed data as follows:

HR2 =
S∑
s=1

Hs
R2 (22)

8. Case Study

8.1. Data Analysis System

In this work, we have used MRI (magnetic resonance imaging) and PET (positron emission
tomography) image data volumes, and (in a separate study) a data volume of galaxy positions derived
from 3D cosmology data. A 3D starlet or B3 spline à trous wavelet transform is used with these 3D
data volumes. Figures 4 and 5 illustrate the system that we built. For 3D data volumes, we support
the following formats: FITS, ANALYZE (.img, .hdr), coordinate data (x, y, z), and DICOM; together
with AVI video format. For segmentation, we cater for marginal Gaussian mixture modeling, of a 3D
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image volume. For multivalued 3D image volumes (hence 4D hypervolumes) we used Gaussian mixture
modeling restricted to identity variances, and zero covariances, i.e. k-means. Based on a marginal
Gaussian mixture model, BIC is used. Rényi quadratic entropy is also supported. A wide range of options
are available for presentation and display (traversing frames, saving to video, vantage point XY or YZ
or XZ, zooming up to 800%, histogram equalization by frame or image volume). The software, MR3D
version 2, is available for download at www.multiresolution.tv. The wavelet functionality requires a
license to be activated, and currently the code has been written for PCs running Microsoft Windows
only.

Figure 4. Frame number 15 from an MRI brain image.

8.2. Segmentation Algorithms Used

Consider T1, an aggregated representative brain, derived from MRI data. It is of dimensions
91 × 109 × 91. See Figure 4. In the work described here as image format for the 3D or 4D image
volumes we used the FITS, Flexible Image Transport System, format.

The first model-based segmentation was carried out as follows.

• We use “Marginal Range” in the “Segmentation” pull-down menu to decide, from the plot
produced, that the BIC criterion suggests that a 6 cluster solution is best.

• Then we use “Marginal” with 6 clusters requested, again in the “Segmentation” pull-down menu.
Save the output as: T1 segm marg6.fits.
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Figure 5. Segmented frame number 15 from an MRI brain image.

Next an alternative model-based segmentation is carried out in wavelet space.

• Investigate segmentation in wavelet space. First carry out a wavelet transform. The B3 spline à
trous wavelet transform is used with 4 levels (i.e. 3 wavelet resolution scales). The output produced
is in files: T1 1.fits, T1 2.fits, T1 3.fits, T1 4.fits.

• Use the wavelet resolution scales as input to “K-Means”, in the “Segmentation” pull-down
menu. Specify 6 clusters. We used 6 clusters because of the evidence suggested by BIC in the
former modeling, and hence for comparability between the two modelings. Save the output as:
T1 segm kmean6.fits.

8.3. Evaluation of Two Segmentations

We have two segmentations. The first is a segmentation found from the voxel’s marginal distribution
function. The second outcome is a segmentation found from the multivalued 3D (hence 4D)
wavelet transform.

Now we will assess T1 segm marg6 versus T1 segm kmean6. If we use BIC, using the T1 image and
first one and then the second of these segmented images, we find essentially the same BIC value. (The
BIC values of the two segmentations differ in about the 12th decimal place.) Note though that the model
used by BIC is the same as that used for the marginal segmentation; but it is not the same as that used
for k-means. Therefore it is not fair to use BIC to assess across models, as opposed to its use within a
family of the same model.
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Using Rényi quadratic entropy, in the “Segmentation” pull-down menu, we find 4.4671 for the
marginal result, and 1.7559 for the k-means result.

Given that parsimony is associated with small entropy here, this result points to the benefits of
segmentation in the wavelet domain, i.e. the second of our two modeling outcomes.

9. Conclusions

We have shown that Rényi quadratic entropy provides an effective way to compare model families. It
bypasses the limits of intra-family comparison, such as is offered by BIC.

We have offered some preliminary experimental evidence too that direct unsupervised classification
in wavelet transform space can be more effective than model-based clustering of derived data. Intended
by the latter (“derived data”) are marginal distributions.

Our innovative results are very efficient from computational and storage viewpoints. The wavelet
transform for a fixed number of resolution scales is computationally linear in the cardinality of the input
voxel set. The pairwise interaction terms feeding the Rényi quadratic entropy are also efficient. For both
of these aspects of our work, iterative or other optimization is not called for.
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