
TIDE: A novel approach to constructing
timed-release encryption

Angelique Faye Loe1, Liam Medley1, Christian O’Connell2, and
Elizabeth A. Quaglia1

1 Royal Holloway, University of London, United Kingdom
angelique.loe.2016@live.rhul.ac.uk

2 Independent

Abstract. In ESORICS 2021, Chvojka et al. introduced the idea of
taking a time-lock puzzle and using its solution to generate the keys of a
public key encryption (PKE) scheme [12]. They use this to define a timed-
release encryption (TRE) scheme, in which the secret key is encrypted ‘to
the future’ using a time-lock puzzle, whilst the public key is published.
This allows multiple parties to encrypt a message to the public key of the
PKE scheme. Then, once a solver has spent a prescribed length of time
evaluating the time-lock puzzle, they obtain the secret key and hence
can decrypt all of the messages.
In this work we introduce TIDE (TIme Delayed Encryption), a novel
approach to constructing timed-release encryption based upon the RSA
cryptosystem, where instead of directly encrypting the secret key to the
future, we utilise number-theoretic techniques to allow the solver to fac-
tor the RSA modulus, and hence derive the decryption key. We imple-
ment TIDE on a desktop PC and on Raspberry Pi devices validating
that TIDE is both efficient and practically implementable. We provide
evidence of practicality with an extensive implementation study detailing
the source code and practical performance of TIDE.

Keywords: auctions · time-lock puzzle · timed-release encryption · pub-
lic key cryptography.

1 Introduction

In 1996, Rivest et al. introduced the notion of sending a message ‘to the future’
using a time-lock puzzle [35]. This seminal paper is the basis of modern-day
delay-based cryptography. Delay-based cryptography is a prominent and wide-
ranging subject built around the notion of associating standard ‘wall-clock time’
with an iterated sequential computation. In modern times, delay-based cryp-
tography is used in the classical sense of encrypting a message to the future
using various primitives such as time-lock puzzles [18,29], timed-release encryp-
tion [11,12] and delay encryption [10]; as well as in alternative applications such
as providing a computational proof-of-age of a document, and building a public
randomness beacon [8, 32,38].

2 A. Loe et al.

In this paper, we introduce TIDE, a novel construction of timed-release en-
cryption. TIDE is particularly suited to the application of sealed-bid auctions,
providing a practical and efficient solution to Vickrey auctions, as we shall ex-
plore next.

1.1 Sealed-bid Auctions

Sealed-bid auctions allow bidders to secretly submit a bid for some goods without
learning the bids of any other party involved until the end of the auction. In a
sealed-bid second-price auction, known as a Vickrey auction, the highest bidder
wins the goods but pays the price of the second highest bid [1,6,37]. The challenge
of building a fair, efficient, and cryptographically secure Vickrey auction has been
of interest for decades [4,9,10,21,25]. A common approach to constructing sealed-
bid auctions is to implement a commit and reveal solution using an append-only
bulletin board, e.g., a blockchain [21]. Such solutions consist of two phases: a
bidding phase, where parties commit to a bid and post their commitment on the
bulletin board; and an opening phase where parties reveal their bids. However,
the main drawback of this approach is that parties are not obliged to open their
bids, which is particularly problematic in the example of Vickrey auctions as
it is necessary to learn the second highest bid as well as the first [1, 6]. For an
auction to be transparent and fair it is desirable that each party must open their
commitments to the bid once the bidding phase has ended.

By replacing the commitments with time-lock puzzles one can obtain an
elegant method of solving this problem [35]. Each party encrypts their bid as
the solution to a time-lock puzzle. Therefore, in the opening phase if a party
does not reveal their bid it can instead be opened by computing the solution to
the puzzle. However, this method does not scale well becaue it leads to many
different time-lock puzzles being solved, which is computationally expensive.
Recently there has been research into solving this problem more efficiently.

At CRYPTO 2019 [29], Malavolta et al. suggest that each party encrypts
their bid as a time-lock puzzle, as in the classical method suggested by Rivest
et al. Their insight is that the tallyer then uses techniques from homomorphic
encryption to evaluate a computation over the set of puzzles to determine the
winning bidder. This leads to only the relevant puzzle being solved rather than
the entire set of puzzles. Whilst this is a very elegant solution the application
relies on fully homomorphic TLP constructions and all current constructions of
homomorphic TLPs are based on indistinguishability obfuscation (IO) [10, 29].
IO aims to obfuscate programs to make them unintelligible whilst retaining
their original functionality [2]. However, IO is known to be impractical with no
construction efficiently implementable at the time of writing [24].

At EUROCRYPT 2021 Burdges et al. introduce Delay Encryption [10], a
primitive which offers an alternative approach to solving this problem, using
a delay-based analogue to identity-based encryption. Where time-lock puzzles
require each bidder to encrypt their bid against a unique time-lock puzzle, Delay
Encryption instead requires bidders to encrypt their bid to a public session ID.
This session ID acts as a bulletin board, meaning anyone who knows this session

TIDE: A novel approach to constructing timed-release encryption 3

ID can efficiently encrypt messages to it. All messages encrypted to the session
ID can be efficiently decrypted by any party who knows a secret session key.
The key feature of DE is a slow and sequential Extract algorithm, which outputs
a session key after a prescribed amount of time. This time delay defines the
bidding phase of the auction in which parties may encrypt bids to the session
ID. Once the session key has been extracted all bids can be decrypted, thus
replacing the opening phase described in the commit-and-reveal paradigm. This
works well in the context of auctions as in the opening phase. In DE rather
than solving multiple time-lock puzzle the Extract algorithm is run once which
outputs a session key.

This seems to be an ideal solution, however the construction of DE pre-
sented in [10] comes with two significant practical disadvantages: (i) The storage
requirements needed to compute the decryption key is huge - a delay of one hour
requires 12 TiB of storage; (ii) The time taken to run setup grows proportionally
to the delay, which is very expensive. These two factors make this construction
problematic from a practical standpoint.

The goal of the approaches outlined above is to utilise a time-delay to solve
the auction problem in a scalable manner. This improves upon the efficiency of
Rivest’s solution by ensuring that at most two sequential computation (namely
the puzzles containing the two highest bids in [29], and Extract in [10]) needs
to be run, rather than one for each bid. However, the approaches so far have
practical problems with the instantiation of their proposed candidate.

At ESORICS 2021 Chvojka et al. introduce the idea of taking a TLP and
using its solution in the key generation of a public key encryption (PKE) scheme
[12]. They use this to define a timed-release encryption (TRE) scheme where
multiple parties encrypt a message to the public key of the PKE scheme. Then
upon solving the puzzle they can reconstruct the secret key and decrypt all of
the messages. The authors explain how to achieve this generically using standard
TLP and PKE primitives, but no concrete instantiation is provided.

In this work we present TIDE, a novel, efficient and easily implementable
approach to building a TRE scheme to solve the scalability problems in Vickrey
auctions. TIDE seamlessly integrates RSA encryption into a TLP using powerful
results from number theory. On top of being a concrete construction, TIDE
subtly differs in its approach to that in [12] in the way the secret key is derived.We
provide further insights on how TIDE works next.

1.2 Technical Overview

TIDE relies on the RSW time-lock assumption, which states that it is hard to
compute x2

t

mod N in fewer than t sequential steps [35], for an RSA modulus N .
This assumption was first introduced in 1996 by Rivest et al. [35], and has been
used to build a variety of cryptographic constructions [8, 18, 29, 32, 38]. TIDE
deviates from previous literature by using number theoretic techniques to utilise
the output x2

t

mod N in a novel way. Previous approaches used squaring solely
for its sequential properties, i.e., the final output is used only to guarantee a de-
lay. For example, in time-lock puzzles, the solution to the puzzle is precomputed

4 A. Loe et al.

using a trapdoor, in order to hide a message as the product of the solution and
the message [18, 29, 35]. This allows one to trivially obtain the message upon
computing the delay, and hence solving the puzzle.

In the context of verifiable delay functions, the RSW assumption is used to
prove that a certain amount of clock time has taken place. This is achieved by
the solver computing repeated squarings upon a randomly sampled element of
Z∗N , and computing a proof in order to mathematically prove to a verifier that
t squarings have taken place [8, 32,38].

In TIDE the output of the computation expands beyond guaranteeing a
delay. Namely TIDE provides exactly the information required to factor the
RSA modulus N . TIDE achieves this by incorporating a theorem of Fermat and
Rabin, which states that if x and x′ are known such that x2 ≡ x′2 mod N , where
x 6≡ ±x′ mod N , then the non-trivial factors of N can be recovered in polynomial
time [33]. By carefully setting up the system we provide the user with value x
and ensure that the output of the squaring reveals x′. Therefore knowledge of
x and x′ can be used to factor N in polynomial time. Then we combine this
with a standard RSA encryption scheme using N and a encryption exponent
as the public key. Once a solving party computes the delay they can derive the
secret key and hence can decrypt all messages. Therefore, our construction can
be seen as a natural integration of an RSW-based time-lock puzzle and the RSA
encryption scheme. We formalise this in terms of syntax and security definitions
in Section 4, where we follow the definition of TRE by Chvojka et al [12].

The key insight of TIDE is contained in the generation of the public key and
puzzle, as this allows us to use the relevant theorem of Rabin [33]. N is chosen
to be a particular class of RSA modulus known as a Blum integer N = pq,
which has the property that p ≡ q ≡ 3 mod 4 . The puzzle consists of three
different elements, P = (x, x0, x−t). First, the element x is efficiently sampled
such that JN (x) = −1, where JN (x) is the Jacobi symbol [26]. Next, the seed
x0 is calculated as x0 ≡ x2 mod N . Crucial to TIDE is the term x−t, where

x2
t

−t ≡ x0 mod N .
Now, any party wishing to solve the puzzle sequentially calculates the term

x−1 := x′ ≡ √x0 by repeated squaring. The term x′ has the property JN (x′) =
+1. This is crucial, as in Gen x was chosen such that JN (x) = −1. Therefore,
the solving party obtains the term x2 ≡ x′2 ≡ x0 mod N , where x 6= x′ mod N .
Thus, the party obtains all four square roots of x0. Therefore, Solve can recover
the non-trivial factors of N in polynomial time using the result from Rabin [33].
The simplicity of RSA encryption and decryption makes TIDE a conceptually
simple approach to sealed-bid auctions, whilst the underlying number theoretic
techniques allow the functionality to be very efficient and practical.

1.3 Related Work

Alternatives to Vickrey auctions The most common style of auction is
the sealed first-bid auction in which the highest bidder wins and pays the
amount they bid for the goods. From a cryptographic perspective this is more
straightforward to implement, making it easier to include additional properties

TIDE: A novel approach to constructing timed-release encryption 5

in such schemes. For example, research has been done into sealed first-bid auc-
tion schemes where the bids of losers remain hidden, by requiring bidders to run
a protocol computing the highest bid, and ensuring that only the highest bid is
opened [4, 36].

In a well-known paper ‘Secure Multiparty Computation Goes Live’ [7], tech-
niques from multi-party computation were used to implement a nation wide
double auction in Denmark. In a double auction, sellers indicate how much of
an item they are willing to sell at certain price points, whilst buyers indicate
how much of the same item they are willing to buy at each price point. Using
this information, the market clearing price, i.e., the price per unit of this item is
computed, allowing transactions to be be made at this price point.

Both of these examples rely on a very different framework to that of TIDE:
they requires multiple parties being online at the same time carrying out a
protocol. As such, whilst linked by the application of auctions, we view such
work as tangential. We now turn our attention to delay-based cryptography
which is more closely related to our work.

Encrypting a message to the future Time-lock puzzles (TLPs) were
first introduced in the seminal paper of Rivest et al. [35] as a way to encrypt
messages to the future. They suggested various applications for this, including
sealed-bid auctions and key escrow schemes. The method they use to build the
delay is sequentially squaring in a finite group of unknown order, which is known
as the RSW time-lock assumption. Recently, there have been some alternative
approaches to building TLPs. Rather than using repeated squaring new TLPs
include using witness encryption and bitcoin [27], randomised encodings [3], and
random isogeny walks over elliptic curves [17].

The RSW time-lock assumption has been used as the base of various con-
structions of verifiable delay functions (VDFs) [8, 32, 38]. In a VDF a solver
computes a delay similarly to a time-lock puzzle, but rather than decrypting a
message at the end, the solver instead proves that they have spent the prescribed
amount of time on the computation. This proof of elapsed time has primarily
found use in randomness beacons which are used in blockchain design [13].

In 2019 De Feo et al. introduced a VDF based upon isogeny walks [17], which
in 2021 they extended to a delay encryption (DE) scheme. DE is similar to a
time-lock puzzle, but rather than proving that time has elapsed, instead a session
key is derived. This can be seen as similar to the decryption key described in
the technical overview of TIDE, in Section 1.2. Indeed DE as a primitive is
very similar to the notion of timed-release encryption where we align our TIDE
construction. The key difference between the two primitives is that DE uses
notions from identity-based encryption and thus avoids using a trapdoor in the
setup phase.

Recall in Section 1.1 that timed-release encryption (TRE) is another delay-
based primitive, whose traditional definition combines public-key encryption
with a time-server [11, 30]. Messages can be encrypted to a public key and de-
cryption requires a trapdoor which is kept confidential by a time-server until at
an appointed time. In a recent paper by Chvojka et al [12] TRE was defined

6 A. Loe et al.

generically with a view to improving versatility and functionality. Whilst we
build a timed-release encryption scheme following the definitions of Chvojka et
al., our scheme does not require a time-server.

1.4 Contributions

In our work we design a novel and theoretically efficient variant of a time-lock
puzzle by utilising RSA encryption and decryption to obtain a simple and effi-
cient construction. We provide a security and efficiency analysis of our construc-
tion, proving that TIDE is cryptographically secure under the TRE notions [12].
We analyse the theoretical and practical efficiency of our scheme, proving that
it has concrete theoretical advantages over the alternative proposals for Vickrey
auctions and demonstrate that it is significantly more practical than current
candidates. We present evidence of the practicality of our scheme by providing
an implementation study using Raspberry Pi devices and a desktop PC, show-
ing that TIDE can be run efficiently on consumer grade hardware. In particular,
we show that when using a 2048-bit modulus, TIDE takes approximately one
second to setup on a desktop PC and 30 seconds on a Raspberry Pi.

2 Preliminaries: Assumptions and Number Theory

In this section we review the time-lock assumption and number theory required
to construct TIDE. For well-known theorems we refer to the relevant sources and
we prove the other theorems in Section 4 and Appendix B of our full paper [28].

The RSW time-lock assumption [35] is core to a number of notable construc-
tions using a cryptographic delay in the latest literature [8, 16,18,29,32,38].

Definition 1. RSW time-lock assumption: Let N = pq where p and q are
distinct odd primes. Uniformly select x ∈ Z∗N , where Z∗N = {x |x ∈ (0, N) ∧
gcd(x,N) = 1}. Then set the seed term as x0 := x2 mod N . If a probabilistic
polynomial time (PPT) adversary A does not know the factorisation of N or

group order φ(N) then calculating xt ≡ x2
t

0 mod N is a non-parallelizable calcu-
lation that will require t sequential modular exponentiations calculated with the
Algorithm 2.1 Square and Multiply [35].

Secondly we note that the modulus used in our TIDE will be a Blum integer
[5]. A Blum integer N = pq, is the product of two Gaussian primes. A Gaussian
prime has the property p ≡ 3 mod 4.

Next, we provide the definition of quadratic residues.

Definition 2. Quadratic Residues in Z∗N are numbers r that satisfy congru-
ences of the form:

x2 ≡ r mod N (1)

If an integer x exists such that the preceding congruence is satisfied, we say that
r is a quadratic residue of N . If no such x exists we say that r is a quadratic
non-residue of N .

TIDE: A novel approach to constructing timed-release encryption 7

Algorithm 2.1: Square and Multiply [14]

input : (a, b,N), // a, b,N ∈ N, ab mod N
1 d := 1
2 B := bin(b) // b in binary

3 for j ∈ B do
4 d := d2 mod N
5 if j = 1 then
6 d := da mod N
7 end

8 end
output: d

The Jacobi symbol, denoted JN (r), is a function which defines the quadratic
character of r in Equation 1. The Jacobi Symbol can be calculated in polynomial
time using Euler’s Criterion.

Theorem 1. Euler’s Criterion can be used to calculate the Jacobi Symbol of the
number r in Equation 1 for a prime modulus p. If gcd(r, p) = 1, then:

Jp(r) = r
p−1
2 =

{
+1, ifr ∈ QRp
−1, ifr ∈ QNRp

(2)

Where r ∈ QRp indicates that r is a quadratic residue of p and r ∈ QNRp
indicates that r is a quadratic non-residue of p.

When the modulus is a prime number if the Jacobi symbol evaluates to +1
then r is always a quadratic residue and if the Jacobi symbol evaluates to −1
then r is always a quadratic non-residue. The Jacobi symbol is more complex
when the modulus is a composite number N = pq.

Corollary 1. (Of Theorem 1). Euler’s Criterion can be used to calculate the
Jacobi Symbol of the number r in Equation 1 for a composite modulus N if the
factorisation of N is known.

Algorithm 2.2 shows how to determine the quadratic character of r for com-
posite N using Theorem 1 and Corollary 1. When N is composite the quadratic
character of r can take three formats. If the Jacobi symbol evaluates to −1 then
r is always a quadratic non-residue, denoted QNR−1N . However, if the Jacobi
symbol evaluates to +1 then r can either be a quadratic residue, denoted QRN
or a quadratic non-residue denoted QNR+1

N .

Quadratic residues and quadratic non-residues for composite N have a dis-
tinct distribution in Z∗N .

8 A. Loe et al.

Algorithm 2.2: Calculating JN (r) for composite N .

input : (r, p, q)

1 Jp(r) := r
p−1
2 mod p

2 Jq(r) := r
q−1
2 mod q

3 if Jp(r) = 1 ∧ Jq(r) = 1 then
4 x := QRN
5 else if Jp(r) = −1 ∧ Jq(r) = −1 then
6 x := QNR+1

N

7 else
8 x := QNR−1

N

9 end
output: x

Theorem 2. The cardinality of QRN , QNR+1
N , and QNR−1N for composite

N = pq, where p and q are distinct primes is as follows:∣∣QRN ∣∣ =

∣∣Z∗N ∣∣
4

=
φ(N)

4
.∣∣QNR+1

N

∣∣ =

∣∣Z∗N ∣∣
4

=
φ(N)

4
.∣∣QNR−1N ∣∣ =

∣∣Z∗N ∣∣
2

=
φ(N)

2
.

(3)

Where,
∣∣Z∗N ∣∣ = φ(N) = (p− 1)(q − 1), and φ(N) is Euler’s totient function.

Next, we discuss how to calculate preceding terms of the seed term x0 ∈ QRN
in an RSW time-lock sequence. To calculate the subsequent term of x0 in the
sequence evaluate x1 ≡ x2

1

0 mod N by inputting (x0, 2
1, N) into Algorithm 2.1.

If the factorisation of N is known Theorem 1 can be used in conjunction with
the Chinese Remainder Theorem (CRT) to calculate the term x−1 in polynomial
time. The CRT can be found in our Auxiliary material.

Theorem 3. Let p be a Gaussian prime. For any r ∈ Z∗p, if Jp(r) = +1, then

finding α such that α ≡
√
r mod p can be found by calculating α ≡ r

p+1
4 mod p.

Example 1. Let N = 67 · 139 = pq = 9313. Given the seed x0 = 776 ∈ QRN ,
the square root of x0 mod N , denoted by x−1 =

√
x0, can be found as follows:

– calculate α ≡ x
p+1
4

0 ≡ x170 ≡ 21 mod p

– calculate β ≡ x
q+1
4

0 ≡ x350 ≡ 9 mod q
– calculate x−1 = αq(q−1 mod p) + βp(p−1 mod q) = 128862

Then α and β are calculated using Theorem 3 and x−1 is calculated using the
CRT. Note that (q−1 mod p) and (p−1 mod q) are calculated using Euclid’s Ex-
tended Algorithm. To verify correctness, note that 1288622 ≡ 776 ≡ x0 mod N .
We provide formal analysis of this in Section 4.

TIDE: A novel approach to constructing timed-release encryption 9

If r ∈ QRN then the CRT implies that there are four distinct solutions to
Equation 1.

Theorem 4. For all N = pq, where p and q are distinct odd primes, each
r ∈ QRN has four distinct solutions.

If N is a Blum integer, then the four square roots of each r ∈ QRN has
specific properties. That is, two of the square roots of r are quadratic non-
residues with Jacobi symbol −1, one square root is a quadratic non-residue with
Jacobi symbol +1, and one square root is a quadratic residue.

Theorem 5. Let N be a Blum integer. Then for all r ∈ QRN , if x2 ≡ x′
2 ≡

r mod N , where x 6= ±x′, then without loss of generality JN (±x) = −1, and
JN (±x′) = +1. That is ±x ∈ QNR−1N , x′ ∈ QRN and −x′ ∈ QNR+1

N . We
refer to x′ ∈ QRN as the principal square root of r mod N .

Finally, we discuss a method to factor a Blum integer N in polynomial time
if specific information is provided.

Fermat’s factorisation method is a technique to factor an odd composite
number N = pq in exponential time [15]. The method requires finding x and x′

such that x2 − x′2 = N is satisfied. Then the left-hand side can be expressed as
a difference of squares (x− x′)(x+ x′) = N .

Fermat’s method can be extended to finding x and x′ to satisfy the following
weaker congruence of squares condition x2 ≡ x′

2
mod N , where x 6≡ ±x′. This

congruence can be expressed as (x−x′)(x+x′) ≡ 0 mod N . Finding a congruence
of squares forms the basis for several sub-exponential sieving-based factorisation
algorithms [15]. However, if x and x′ in a congruence of squares are known, then
factoring N can be done in polynomial time.

Theorem 6. Let N be a Blum integer. If x and x′ are known such that x2 ≡
x′

2
mod N , where x 6≡ ±x′ mod N , then the non-trivial factors of N can be

recovered in polynomial time.

Proof. Proofs for Theorems 1, 2, 4, and Corollary 1 can be found in [26]. Proofs
for Theorems 3 and 6 can be found in Section 4. The proof for Theorem 5 can
be found in Appendix B of our full paper [28].

3 Our Construction

In this section we give the concrete details of our construction TIDE. Formally,
TIDE is a TRE scheme and we provide a formal exposition of its security prop-
erties in Section 4. In our TRE scheme C is the Challenger, S is the Solver, and
A is the Adversary. In the context of Vickery auctions, C can be though of as
the auctioneer and S can be thought of as a Bidder. As is customary, multiple
bidders are participate in an auction.

A TRE scheme consists of four algorithms: Gen, Solve, Encrypt, Decrypt. Gen
and Solve provide the time-lock element of the scheme: Gen generates a secret key,

10 A. Loe et al.

public key and a puzzle, Solve takes the puzzle and recovers the corresponding
secret key. Encrypt can be ran by multiple parties (bidders) simultaneously using
the public key. Solve can be run by any party i.e. any bidder or third party can
run this algorithm. Once Solve has terminated, the Solver can then use the
secret key to decrypt all of the bids encrypted with Encrypt by using the Decrypt
algorithm. We now outline the details of the four TIDE algorithms.

– (sk, pk, P, t) ← Gen(1κ, t) takes as input a security parameter 1κ and time
parameter t and ouputs a secret key sk, public key pk, puzzle P , and time
parameter. The secret key consists of the factors of sk := (p, q) and the
public key consists of an RSA modulus N and fixed encryption exponent
e := 216 + 1 = 65537. The puzzle is set to P := (x, x0, x−t), where x2 ≡
x0 mod N , JN (x) = −1, and where x2

t

−t ≡ x0 mod N .

– sk ← Solve(pk, P, t) takes as input the public key pk, puzzle P , and time
parameter t and outputs the secret key sk := (p, q), where N = pq.

– c ← Encrypt(pk,m) takes as input a public key pk := (N, e) and a message
m and outputs a ciphertext c.

– {m,⊥} ← Decrypt(sk, c) takes as input the secret key sk := (p, q) and a
ciphertext c as input and outputs a message m or error ⊥.

Algorithm 3.1: Gen run on security parameter 1κ and time parameter
t to create the secret key sk, public key pk and puzzle P .

input : 1κ, t
1 p, q := 1
2 while p = q do
3 p := prime(κ

2
)

4 q := prime(κ
2

)

5 end
6 N := pq
7 Jp(x),Jq(x) := 1
8 while ¬(Jp(x) = 1 ∧ Jq(x) 6= 1) ∧ ¬(Jp(x) 6= 1 ∧ Jq(x) = 1) do
9 x := U(2, N)

10 Jp(x) := x
p−1
2 mod p

11 Jq(x) := x
q−1
2 mod q

12 end
13 x0 := x2 mod N

14 αt := x
p+1
4

t
mod p−1

0 mod p

15 βt := x
q+1
4

t
mod q−1

0 mod q
16 x−t := αtq(q

−1 mod p) + βtp(p
−1 mod q) mod N

17 P := (x, x0, x−t)
output: (sk, pk, P, t)

TIDE: A novel approach to constructing timed-release encryption 11

1) C runs (sk, pk, P, t)←R Gen(1κ, t) to generate the secret key, public key, and
puzzle as seen on Algorithm 3.1 Gen. The function prime(j) on lines 3 and 4 is the
Miller-Rabin Monte Carlo algorithm [31] which generates j bit Gaussian primes.
That is, p ←R prime(j). This guarantees that N , which is calculated on line 6,
is a Blum integer. Gen then enters a while loop. The purpose of the while loop is
to find an x such that x ∈ QNR−1N . The logic statement on line 8 condenses the
conditional statements in lines 3, 5 and 7 of Algorithm 2.2 using De Morgan’s
laws [22]. Once a suitable x is found x0 is set to x2 mod N . Once x is sampled

and x0 is computed the term x−t is calculated, where x2
t

−t ≡ x0 mod N . To
calculate x−t in polynomial time, Euler’s Criterion, the Fermat-Euler Theorem
and the Chinese Remainder Theorem (CRT) must be applied.

Next, αt is calculated, where αt is the tth square root of x0 mod p. To com-
plete the calculation of the term x−t, the CRT is used on line 16, where the
terms (q−1 mod p) and (p−1 mod q) are calculated using Euclid’s Extended Al-
gorithm (EEA). Theorem 3 tells us that α ≡ √x0 ≡ xω0 mod p, where ω =
p+1
4 . Let αt be the tth square root of x0 mod p. For example, if t = 2, then

α2 ≡
√√

x0 ≡ (xω0)ω ≡ xω
2

0 . Therefore, αt ≡ xω
t

0 mod p. Note that the expo-

nent ωt, for large t will make calculating xω
t

0 mod p computationally infeasible.
Therefore, the Fermat-Euler Theorem is used so the exponent ωt can be reduced
mod(p− 1). Next, βt is calculated, where βt is the tth square root of x0 mod q.
βt is calculated in a similar fashion as αt, except ω is set to q+1

4 .
The puzzle P is set to the tuple (x, x0, x−t) and then C securely stores sk

and passes (pk, P, t) to S who must solve:

Given (pk := (N, e), P := (x, x0, x−t), t), find the factors of N .

Algorithm 3.2: Solve runs on the public key, puzzle, and time param-
eter pk, P, t to recover the secret key sk.

input : pk := (N, e), P = (x, x0, x−t), t

1 x′ := x2
t−1

−t mod N
2 p′ := gcd(x− x′, N)

3 q′ := N
p′

4 sk := (p′, q′)
output: sk

2) S (or any party) runs sk ← Solve(pk, P, t) to solve the challenge, as seen
on Algorithm 3.2 Solve. First Solve calculates the term x′ in t−1 sequential steps
by evaluating x2

t−1

−t mod N . This is where the sequential calculation takes place
using Algorithm 2.1 with inputs (x−t, 2

t−1, N). The term x′ is guaranteed to be
in QRN by Definition 2. S now has x ∈ QNR−1N and x′ ∈ QRN . Therefore, x

must be distinct from x′, and we have x2 ≡ x′
2 ≡ x0 mod N . Finally, using the

result from Theorem 6, Solve calculates gcd(x−x′, N) to recover one factor p′ of

12 A. Loe et al.

N using Euclid’s Extended Algorithm. Next, N
gcd(x−x′,N) is calculated to recover

the other factor q′.

3) S runs c ← Encrypt(pk,m) as seen in Algorithm 3.3 Encrypt. Encrypt
inputs the public key pk := (N, e) and encrypts a message m using RSA-OEAP
encryption and outputs the ciphertext c. First Encrypt outputs the RSA-OAEP
parameters k0, k1, G,H, where k0 and k1 are constants used for padding and G
and H are hashing algorithms modelled as random oracles. Using RSA-OAEP,
parties can encrypt messages to this modulus and encryption exponent. This
means that messages can only be decrypted using the Decrypt algorithm only
after Solve has recovered the secret key sk. Note that the Solve and Encrypt
algorithms are not sequential. The Encrypt algorithm can be run by any Solver
(Bidder) using pk prior to the Solve algorithm recovering the sk.

Algorithm 3.3: Encrypt runs on a message public key pk and message
m, to produce ciphertext c.

input : pk := (N, e),m
1 k0, k1, G,H ← params(1κ) // OAEP parameters

2 m′ := m || 0k1 // Zero pad to n− k0 bits

3 r := rand(k0) // Generate a random k0 bit number

4 X := m′ ⊕Gn−k0(r) // Hash r to length n− k0
5 Y := r ⊕Hk0(X) // Hash X to length k0
6 m′′ := X || Y // Create message object

7 c := m′′
e

mod N // RSA encrypt

output: c

4) S runs {m,⊥} ← Decrypt(sk, c) as seen in Algorithm 3.4 Decrypt. Decrypt
inputs the secret key sk := (p, q) and decrypts ciphertext c using RSA-OEAP en-
cryption and recovers the message m or outputs an error ⊥. Decrypt also outputs
the same RSA-OAEP parameters k0, k1, G,H as Encrypt. Next, Decrypt recovers
the decryption exponent d on lines 2, 3, 4, where Euclids Extended Algorithm
is used. Finally, the RSA-OEAP decrypt algorithm removes the padding and
randomness added during the encryption to recover the message m.

Implementation and Performance Analysis. We implement TIDE on a
desktop PC and a cluster of raspberry Pis. We show how the timings of Algorithm
3.2 Solve grows linearly with the time parameter t, whilst the other algorithms
grow by O(1) in the time parameter. We provide timings with several RSA
moduli of practical relevance, and note in particular that with a modulus size of
2048, the average time to run Solve was one second on a desktop PC. The full
description of the implementation and our results can be found in Appendix A
of our full paper [28].

TIDE: A novel approach to constructing timed-release encryption 13

Algorithm 3.4: Decrypt runs on secret key sk and ciphertext c, to
produce message m.

input : sk := (p′, q′), c
1 k0, k1, G,H ← params(1κ) // OAEP parameters

2 N := p′q′

3 φ(N) := (p′ − 1)(q′ − 1)
4 d := e−1 mod φ(N) // recover d using EEA

5 m′′ := cd mod N

6 X :=
⌊
c′′ · 2−k0

⌋
// Extract X

7 Y := m′′ mod 2k0 // Extract Y
8 r := Y ⊕Hk0(X) // Recover r
9 m′ := X ⊕Gn−k0(r) // Recover padded message

10 m := m′ · 2−k1 // Remove padding

output: m

4 Security

We provide a security analysis of our construction. To this end, we recall the
formal definition of Timed-Release Encryption (TRE), following Chvojka et al.
[12]3, along with the definitions of correctness and security for a TRE scheme.

Definition 3. A timed-release encryption scheme with message space M is a
tuple of algorithms TRE = (Gen, Solve, Encrypt, Decrypt) defined as follows.

– (pk,sk, P, t) ← Gen (1κ, t) is a probabilistic algorithm which takes as input a
security parameter 1κ and a time hardness parameter t, and outputs a public
encryption parameter pk, a secret key sk, and a puzzle P. We require that
Gen runs in time poly ((log t) , κ).

– sk←Solve(pk, P, t) is a deterministic algorithm which takes as input a public
key pk, a puzzle P , and a time parameter t, and outputs a secret key sk. We
require that Solve runs in time at most t · poly(κ).

– c ← Encrypt (pk,m) is a probabilistic algorithm that takes as input public
encryption parameter pk and message m ∈M, and outputs a ciphertext c.

– m/ ⊥← Decrypt (sk, c) is a deterministic algorithm which takes as input a
secret key sk and a ciphertext c, and outputs m ∈M or ⊥.

Definition 4 (Correctness).

A TRE scheme is correct if for all κ ∈ N and hardness parameter t, it holds
that

Pr

[
m = m′ :

(pk,sk, P, t)← Gen (1κ, t) , sk← Solve (pk, P, t)
m′ ← Decrypt (sk,Encrypt (pk,m))

]
= 1

3 In [12] they offer a generalised version of this definition, to incorporate what they
define sequential timed-release encryption. This is beyond the scope of this work,
and we instead specify the “non-sequential” case.

14 A. Loe et al.

Definition 5 (Security). A timed-release encryption scheme is secure with gap
0 < ε < 1 if for all polynomials n in κ there exists a polynomial t̃(·) such that for
all polynomials t fulfilling that t(·) ≥ t̃(·), and every polynomial-size adversary
A = {(A1,κ,A2,κ)}κ∈N there exists a negligible function negl(·) such that for all
κ ∈ N it holds

AdvTRE
A =

∣∣∣∣∣∣∣∣Pr


pk, P ← Gen (1κ, t)
(m0,m1, st)← A1,κ(pk, P)

b = b′ : b
s← {0, 1}; c← Encrypt (pk,mb)

b′ ← A2,κ(c, st)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(κ)

It is required that |m0| = |m1| and that the adversary Aκ = (A1,κ,A2,κ) consists
of two circuits with total depth at most tε(κ) (i. e., the total depth is the sum of
the depth of A1,κ and A2,,κ).

In what follows, we will refer to algorithms ‘taking t time to compute’, and
‘bounding computation time by t’. In both cases, we are referring to evaluating
a polynomial sized arithmetic circuit of depth at most t.

In order to prove the security of TIDE, we must first define a new hard-
ness assumption. Informally, this states that the terms x, x0 and x−t provide a
negligible advantage to factoring a Blum integer N , or distinguishing between
ciphertexts encrypted to a Blum integer N , when the computational time is
bounded by t.

Definition 6 (BBS Shortcut Assumption).
Let the RSA Assumption be that for any N ← RGen (1κ) and e = 65537, it is

hard for any probabilistic polynomial-time algorithm to find the e-th root modulo
N of a random y ←R Z∗N [34].

The BBS Shortcut Assumption states that given (N ′, e) and terms (x, x0, x−t),
where N ′ ← RGen (1κ) is a randomly sampled Blum integer, e = 65537, x is a
randomly sampled integer such that x ∈ QNR−1N , x0 := x2 mod N , and x−t is
the term t + 1 steps before x0 in a BBS CSPRNG sequence, it is no easier to
find the e-th root of a random y′ ←R Z∗N ′ than to find the e-th root modulo N
of a random y ←R Z∗N in a standard RSA instance, without first factoring N ′.

We now analyse this security assumption, in order to relate it to the RSA
assumption that RSA with OAEP relies on [20].

Recall P = (x, x0, x−t) consists of a randomly sampled integer x, and two
terms x0, x−t which by construction are part of the BBS-CSPRNG sequence,
and hence are pseudorandom. As we will see in Lemma 1, the relation between
these integers exactly relates to the evaluation of the BBS-CSPRNG sequence,
which allows N ′ to be factored, and cannot be evaluated in time less than t, for
some t ∈ N. The crux of the assumption is that x−t is only related to the terms
x and x0 by the repeated squaring property, which allows the Blum integer N ′

to be factored. By the RSW time-lock assumption, we know that this will take
t time to evaluate, and hence we assume that P = (x, x0, x−t) are only useful
when factoring N ′.

TIDE: A novel approach to constructing timed-release encryption 15

Theorem 7. TIDE is correct.

Proof. First, consider the following statement:

For any message m ∈ {0, 1}∗, Decrypt
(
Encrypt

(
N,m

)
, (p, q)

)
outputs m,

where Encrypt and Decrypt are described in Algorithms 3.3 Encrypt and Al-
gorithm 3.4 Decrypt respectively.

This corresponds to the statement that the RSA cryptosystem with OAEP
is correct, which is known to be true [20].

Now suppose Algorithm 3.1 Gen has been run, such that the following pa-
rameters have been generated: a public key N , puzzle P = (x, x0, x−t) and time
parameter t, and a secret key sk = (p, q). What remains is to prove that Solve
outputs sk = (p, q). This proof will require a sequence of arguments based on
the Theorems outlined in Section 2.

First we must prove that Algorithm 3.1 Gen correctly selects the term x such
that x ∈ QNR−1N .

Corollary 2. (Of Theorem 2). The while loop on lines 8-12 of Algorithm 3.1
Gen selects x ∈ QNR−1N with overwhelming probability.

Proof. The while loop on lines 8-12 of Algorithm 3.1 Gen selects a quadratic
non-residue with Jacobi Symbol equal to −1 by running a series of Bernoulli
trials with probability P

(
x = QNR−1N

)
= 1

2 . This forms a geometric distribution

G ∼ Geo(1
2). Therefore, we can expect to find x ∈ QNR−1N in E{G} = 2 trials.

Second we prove that Algorithm 3.1 Gen correctly calculates the term x−t,
which is the tth principal square root of x0. This proof begins by proving Theorem
3, and subsequently uses the Chinese Remainder Theorem for the final proof.

Proof. (Theorem 3). Let α = r
p+1
4 mod p. Then α2 ≡ (r

p+1
4)2 ≡ r

2p+2
4 ≡

r
p+1
2 mod p. Next, let p+1

2 = 1 + p−1
2 . Therefore, by Euler’s Criterion (Theo-

rem 1) α2 ≡ r1r
p−1
2 ≡ r mod p. We refer to α as the principal square root of

r mod p.

Theorem 8. The Algorithm 3.1 Gen correctly calculates the tth principal square
root x−t of the seed x0.

Proof. Let ω = p+1
4 . If Algorithm 3.1 Gen provides the seed term x0 ∈ QRN ,

then, by Theorem 3, the tth principal square root of x0 mod p is αt := xω
t

0 mod p

and the tth principal square root of x0 mod q is βt := xω
t

0 mod q. Then, the
Chinese Remainder Theorem is used to calculate:
x−t := [αtq(q

−1 mod p) + βtp(p
−1 mod q)] mod N .

Third we must prove that the Algorithm 3.2 Solve correctly calculates the
term x′ ∈ QRN using Algorithm 2.1.

Theorem 9. Algorithm 2.1 Square and Multiply correctly calculates the term
xi, where xi ≡ x2

i

0 mod N .

16 A. Loe et al.

Proof. The input to calculate the term xi in Algorithm 2.1 Square and Multiply
is (x0, 2

i, N), where x0 ∈ QRN is the seed term, and N = pq, where p and q
are distinct odd primes. By Definition 2, selecting x0 ∈ QRN can be done by
uniformly selecting x ∈ Z∗N and setting x0 ≡ x2 mod N . Consider the base case
when i := 1. The algorithm proceeds as follows: d is set to 1 and the exponent
b := 21 is set to the binary string B = 10. Next, the algorithm enters the for
loop on the first iteration. On the first iteration j is the first digit of B, which
is 1. Next d := 1 is squared to output 1. Then the first conditional if statement
is met as j = 1, therefore d := 1 · x0 = x0 mod N , and the first iteration of
the loop is done. On the second iteration j is the second digit of B, which is
0. Next, as d was set to x0 on the first iteration d is now set to x20 mod N on
the second iteration. The first conditional if statement is not met, and the loop
terminates as the final digit of B was processed. The algorithm then returns
d := x1 ≡ x20 ≡ x2

1

0 mod N , as required. Therefore, the base case is true.
By the inductive hypothesis we claim that for any i := k, the loop invariant

of Algorithm 2.1 returns the term x2
k

0 mod N after k iterations. Therefore after

k iterations, where b was set to 2k+1, Algorithm 2.1 will have d := x2
k

0 mod N ,
and j will be the final digit of B := 10 . . . 0. For any k, the variable B will be a
binary string starting with the digit 1 followed by a trail of k digits equal to 0.
This means after the first iteration of the for loop all remaining j ∈ B will be
0. Thus, at the k+ 1 iteration of the for loop d will be set to x2k mod N , and by

definition x2k ≡ xk+1 ≡ x2
k+1

0 mod N . Finally, Algorithm 2.1 will terminate at
the k + 1 iteration as the final digit of B was processed, and the algorithm will

return d := x2
k+1

0 mod N .

Finally, Theorem 6 is proven to show that Algorithm 3.2 Solve calculates
gcd(x′ − x,N) to recover a non-trivial factor of N [33].

Proof. (Theorem 6.) As x and x′ are distinct we have x2 ≡ x′
2

mod N . This

implies that pq | x2 − x′2. As p and q are both prime this indicates that p | (x−
x′)(x+ x′) and q | (x− x′)(x+ x′). Also, because p is prime it must be the case
that p | (x − x′) or p | (x + x′). Similarly, it must be the case that q | (x − x′)
or q | (x + x′). Without loss of generality, assume that p | (x − x′) is true and
that q | (x − x′) is true. This implies that pq | (x − x′), which indicates that
x ≡ x′ mod N . This is a contradiction because x and x′ are distinct. Then it
must be the case that p | (x − x′) and q - (x − x′). Therefore, one of the
factors of N can be recovered by calculating p′ := gcd(x− x′, N) using Euclid’s
Extended Algorithm, and the other factor of N can be recovered by calculating
q′ := N

gcd(x−x′,N) = N
p′ .

We now prove that Solve outputs sk = (p, q), and hence Theorem 7: the
correctness of TIDE.

Proof. (Theorem 7) For any pk, sk, and puzzle generated by Gen, we show that
sk can be recovered by Solve. More precisely, let N = pq, P := (x, x0, x−t), t be
output by Gen, before being input into Algorithm 3.2 Solve. Algorithm 3.2 Solve

TIDE: A novel approach to constructing timed-release encryption 17

will calculate the term x′ by entering the following parameters (x−t, 2
t−1, N) into

Algorithm 2.1, which will output x′ := x2
t−1

−t mod N . The term x′ is guaranteed
to be correct by Theorem 9 and is guaranteed to be in QRN by Definition 2, and
hence we have that x ∈ QNR−1N and x′ ∈ QRN . This guarantees that x must
be distinct from x′. Therefore, by Theorem 6, calculating p′ = gcd(x − x′, N)
will recover one factor of N using Euclid’s Extended Algorithm, and the other
factor can be recovered by calculating q′ = N

gcd(x−x′,N) .

Theorem 10. TIDE is a secure TRE scheme under the RSW, RSA and BBS-
shortcut assumptions.

To prove TIDE secure, we show that two messages encrypted using public key
(N, e) are indistinguishable under a chosen plaintext attack, where the adversary
is bounded by t computation time. We first note that the underlying encryption
scheme is RSA with OAEP padding, which is IND-CPA secure [20]. In our proof
we provide a reduction from the TRE security of TIDE to IND-CPA security
of RSA with OAEP. Explicitly, this requires proving that giving an adversary
the additional parameters of P and t, and bounding their computation time by
t offers a negligible advantage over the standard RSA-OAEP game.

We first prove the following statement.

Lemma 1. Given any (N,P, t) output by Algorithm 3.1 Gen, the RSA modulus
N cannot be factored in time less than t, with more than negligible probability.

Proof. Let N be a random Blum integer and P be a puzzle output by Algorithm
3.1 Gen. Note from Algorithm 3.1 that P = (x, x0, x−t), where x ∈ QNR−1N ,
x0 ≡ x2 mod N , and x−t is the tth square root of x0. To factor N in time less
than t, a pair of integers (p∗, q∗) must be computed, such that p∗ 6= 1, q∗ 6= 1,
and p∗q∗ = N , in less than t sequential steps.

We split the proof into two parts: i) Attempts to compute an x′, where
x′ ≡ √x0 mod N and x′ ∈ QRN , in less than t sequential steps, and ii) Attempts
to recover the non-trivial factors of N using a method that does not use x′.

We start by proving part (i): that computing x′ in time less than t reduces to
the RSW time-lock assumption. Specifically, if Solve is honestly run, then x′ :=
x2

t−1

0 mod N is calculated using Algorithm 2.1 with the input (x−t, 2
t−1, N). By

the RSW time-lock assumption calculating x′ using Algorithm 2.1 requires t− 1
sequential steps. Once x′ is calculated, Algorithm 3.2 Solve recovers the factors
of N by calculating p′ := gcd(x− x′, N) and q′ = N

p′ .

Next, suppose there exists a PPT algorithm E<t to evaluate x′ in less than
t − 1 sequential steps. Finding such an x′ using E<t reduces to the RSW time-
lock assumption and we obtain a contradiction. Therefore, it is not possible
to recover p∗ := gcd(x − x′, N) without sequentially evaluating x′ with non-
negligible probability.

Next, we prove part (ii): that factoring N faster than sequential squaring
reduces to an open problem. First note that N is a Blum integer, which is an
RSA modulus that is the product of Gaussian primes. Therefore, we assume N
cannot be factored by any PPT algorithm with more than negligible probability.

18 A. Loe et al.

Next, giving A either (N, x, x0, t) or (N, x−t, t) also reduces to a standard
factoring assumption, as seen in Section 4 of Rabin [33]. What remains is to show
that giving an adversary all of the puzzle P does not allow them to factorise
N . To see this, note that x0 can be trivially obtained from x, and that by
construction x−t and x0 are terms in a BBS CSPRNG sequence [5]. Knowledge
of these terms does not allow factorisation of N faster than sequential squaring

unless x2
λ(λ(N))

−t mod N is calculated efficiently. This is an open problem given by
Theorem 9 of Blum et al. [5, 19,23].

Therefore, the only way a PPT algorithm could factorise N given (pk, P, t)
with non-negligible probability is to sequentially evaluate x′ and subsequently
recover the factors by calculating p′ := gcd(x− x′, N) and q′ = N

p′ .

We now use this result to obtain a reduction from the TRE security of TIDE
to the standard RSA IND-CPA security.

Proof (sketch). (Theorem 10) We start by assuming that there exists an adver-
sary A = (A1,κ,A2,κ) who can gain a non-negligible advantage in the AdvTRE

A
game defined in Definition 5.

We use Lemma 1 and Definition 6 to show that if the adversary wins the
game by factoring N we obtain a contradiction based on the RSW assumption,
and if they win the game without factoring N , we obtain a contradiction based
on the RSA and BBS-shortcut assumptions.

Recall from Lemma 1 that if the adversaryA factors a Blum integer N output
by Algorithm 3.1 in time less than t with more than negligible probability, then
the RSW time-lock assumption is broken, and hence we have a contradiction.

Now, recall that RSA with OAEP padding is IND-CPA-secure under the RSA
assumption [20]. Suppose A gained a non-negligible advantage in the TRE secu-
rity game without factoring. As the underlying encryption scheme is IND-CPA
secure, to distinguish between the messages m and m′ with any advantage would
require decrypting one of the messages, and hence taking an e-th root modulo
N . By the BBS shortcut assumption presented in Definition 6, any adversary
who gains an advantage in the TRE security game could also gain the same
non-negligible advantage in the standard IND-CPA game for RSA-OAEP, and
hence break the RSA assumption. This gives us another contradiction. Therefore
TIDE is secure under the RSW, RSA and BBS-shortcut assumptions.

5 Conclusion

In this work we introduced TIDE, a new TRE construction which seamlessly in-
tegrates the RSA cryptosystem into a time-lock puzzle using powerful number-
theoretic concepts. TIDE challenges a solver to factor a special class of RSA
modulus, known as a Blum integer. Parties may encrypt to this RSA modulus,
and any solver who factors the modulus may easily decrypt all encrypted mes-
sages. We demonstrated that this property makes TIDE well-suited to sealed-bid
auctions: We compared TIDE to the most recent constructions for sealed-bid
auctions, showing that TIDE has advantages both in terms of practicality and

TIDE: A novel approach to constructing timed-release encryption 19

efficiency. We proved security of TIDE in the TRE framework introduced by
Chvojka et al, and we implemented TIDE on both a Raspberry Pi and on a
desktop PC, showing that it is indeed a practical construction.

References

1. L. Ausubel. A generalized vickrey auction. Econo0 metrica, 1999.
2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and

K. Yang. On the (im) possibility of obfuscating programs. In Annual international
cryptology conference. Springer, 2001.

3. N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters.
Time-lock puzzles from randomized encodings. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, 2016.

4. E. Blass and F. Kerschbaum. Borealis: Building block for sealed bid auctions on
blockchains. In Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security, 2020.

5. L. Blum, M. Blum, and M. Shub. A Simple Unpredictable Pseudo-Random number
Generator. In Journal on Computing, 1986.

6. A. Blume and P. Heidhues. All equilibria of the vickrey auction. Journal of
economic Theory, 2004.

7. P. Bogetoft, D. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard,
J. Nielsen, J. Nielsen, K. Nielsen, J. Pagter, et al. Secure multiparty computa-
tion goes live. In International Conference on Financial Cryptography and Data
Security. Springer, 2009.

8. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable Delay Functions. In
Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, 2018.

9. F. Brandt. Auctions. In Handbook of Financial Cryptography and Security. Chap-
man and Hall/CRC, 2010.

10. J. Burdges and J. DeFeo. Delay Encryption. In 40th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. EUROCRYPT
2021, 2021.

11. J. Cathalo, B. Libert, and J. Quisquater. Efficient and non-interactive timed-
release encryption. In International Conference on Information and Communica-
tions Security. Springer, 2005.

12. P. Chvojka, T. Jager, D. Slamanig, and C. Striecks. Versatile and sustainable
timed-release encryption and sequential time-lock puzzles. In European Symposium
on Research in Computer Security. Springer, 2021.

13. B. Cohen and K. Pietrzak. The chia network blockchain, 2019.
14. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT

Press, 2009.
15. R. Crandall and C. Pomerance. Prime numbers: A Computational Perspective.

Springer-Verlag, 2005.
16. N. Ephraim, C. Freitag, I. Komardogski, and R. Pass. Continuous Verifiable Delay

Functions. In Advances in Cryptology - EUROCRYPT 2020 - 39th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
2020.

17. L. De Feo, S. Masson, C. Petit, and A. Sanso. Verifiable Delay Functions from
Supersingular Isogenies and Pairings. In Advances in Cryptology – ASIACRYPT
2019 – 25th Annual Conference, 2019.

20 A. Loe et al.

18. C. Freitag, I. Komargodski, R. Pass, and N. Sirkin. Non-malleable time-lock puzzles
and applications. In Theory of Cryptography Conference. Springer, 2021.

19. J. Friedlander, C. Pomerance, and I. Shparlinski. Period of the power generator
and small values of Carmichael’s function. In American Mathematical Society.
Mathematics of Computation 70, 2000.

20. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. Rsa-oaep is secure under the
rsa assumption. In Annual International Cryptology Conference. Springer, 2001.

21. H. Galal and A. Youssef. Verifiable sealed-bid auction on the ethereum
blockchain. In International Conference on Financial Cryptography and Data Se-
curity. Springer, 2018.

22. R.L. Goodstein. Boolean Algebra. Dover Publications, 2007.
23. F. Griffin and I. Shparlinski. On the linear complexity profile of the power gener-

ator. In IEEE Transactions on Information Theory, 2000.
24. A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded

assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, 2021.

25. A. Juels and M. Szydlo. A two-server, sealed-bid auction protocol. In International
conference on financial cryptography. Springer, 2002.

26. J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014.

27. J. Liu, F. Garcia, and M. Ryan. Time-release protocol from bitcoin and witness
encryption for sat. Korean Circulation Journal, 2015.

28. Angelique Faye Loe, Liam Medley, Christian O’Connell, and Elizabeth A Quaglia.
Tide: A novel approach to constructing timed-release encryption. Cryptology ePrint
Archive, 2021.

29. G. Malavolta and S. Thyagarajan. Homomorphic time-lock puzzles and applica-
tions. In Annual International Cryptology Conference. Springer, 2019.

30. W. Mao. Timed-release cryptography. In International Workshop on Selected
Areas in Cryptography. Springer, 2001.

31. G. Miller. Riemann’s Hypothesis and Tests for Primality. In Journal of Computer
and System Sciences, 13(3), 1976.

32. K. Pietrzak. Simple verifiable delay functions. In 10th Innovations in Theoretical
Computer Science Conference, ITCS 201, 2019.

33. M. Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. In MIT/LCS/TR-212, MIT Laboratory for Computer Science, 1979.

34. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 1983.

35. R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and timed-release crypto.
In MIT/LCS/TR-684, MIT Laboratory for Computer Science, 1996.

36. K. Sako. An auction protocol which hides bids of losers. In International Workshop
on Public Key Cryptography. Springer, 2000.

37. W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The
Journal of finance, 1961.

38. B. Wesolowski. Efficient Verifiable Delay Functions. In Advances in Cryptology –
EUROCRYPT 2019, 2019.

