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Abstract

A graph is an r-pseudoforest if every connected component of it
has a feedback edge set of size at most r. A graph is a d-quasi-forest
if every connected component of it has a feedback vertex set of size at
most d. The r-Pseudoforest Deletion problem (d-Quasi-Forest
Deletion problem) asks to delete a minimum number of vertices to
get an r-pseudoforest (a d-quasi-forest, respectively). The well-studied
feedback vertex set problem is the special case of r-Pseudoforest
Deletion (d-Quasi-Forest Deletion, respectively) in which r = 0
(d = 0, respectively).

We provide an improved FPT algorithm and a smaller kernel for
r-Pseudoforest Deletion when parameterized by the solution size
(when r is fixed). For d-Quasi-Forest Deletion, we show that it is
FPT as well when parameterized by d and the solution size.

1 Introduction

The Feedback Vertex Set problem is one of the 21 NP-hard problems
proved by Karp [19]. It asks to delete a minimum number of vertices from a
given graph to make it acyclic. The application of Feedback Vertex Set
ranges from artificial intelligence [1, 2], bio-computing [3, 15] to operating
systems [24] and so on.

∗The research of Bin Sheng was partially supported by the National Natural Science
Foundation of China (No. 61802178). A preliminary version of this paper was accepted
at the 16th Annual Conference on Theory and Applications of Models of Computation.
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The Feedback Vertex Set problem has attracted a lot of attention
from the parameterized complexity community. Both its undirected and
directed versions are fixed-parameter tractable when parameterized by the
solution size [6, 7, 8, 11]. For the undirected case, the state-of-the-art algo-
rithm runs in time O∗(3.460k) in the deterministic setting [18], and O∗(2.7k)
in the randomized setting [20]. Here, k is the solution size and the O∗ no-
tation hides polynomial factors in n, which is the number of vertices in the
graph.

Relaxing the acyclic requirement, researchers have defined several classes
of almost acyclic graphs. A graph F is an r-pseudoforest if every connected
component in F has a feedback edge set of size at most r. A pseudoforest
is a 1-pseudoforest. An almost r-forest is a graph that has a feedback edge
set of size at most r. Let F be a graph class, we use F Deletion to denote
the problem of deleting a minimum number of vertices from a given graph
to get a graph in F .

Philip et al. [22] introduced the problem of deleting vertices to get an
almost acyclic graph, generalizing the feedback vertex set problem. There
have been several results in this line of research. In [22], the authors gave
an O∗(ck)-time algorithm for r-Pseudoforest Deletion, in which c is a
constant that only depends on r. They also gave an O∗(7.56k)-time algo-
rithm for the problem of Pseudoforest Deletion. Bodlaender et al. [4]
designed an improved algorithm for Pseudoforest Deletion that runs in
time O∗(3k). Rai and Saurabh [23] gave an O∗(5.0024(k+r))-time algorithm
for Almost r-Forest Deletion. An improved algorithm for this problem
that runs in time O∗(5k4r) was obtained by Lin et al. [21].

A d-quasi-forest is a graph in which every connected component has a
feedback vertex set of size at most d. Hols and Kratsch [17] raised this notion
and showed that the Vertex Cover problem admits a polynomial kernel
when parameterized by distance to d-quasi-forest. However, how to compute
the distance of a graph to a d-quasi-forest was not discussed there.

In this paper, we first give an algorithm for r-Pseudoforest Deletion
parameterized1 by k (r is fixed) that runs in time O∗((1 + (2r+ 3)r+2)k+1).
This improves the general-r O∗(ck)-time algorithm of [22] as the constant c
(depending on r) of that algorithm is bounded as follows: c > 2240000s(r+2)2 ,
where s = r′26(r+2) for some positive integer r′ (this is discussed in detail at
the end of Section 3). We also improve the kernel size for r-Pseudoforest
Deletion from 976k(k+r)(3r+8)(r+2)26(r+2) to O(max{k2r2, kr3}) (this
is discussed in detail at the end of Section 4). We then give an FPT algorithm
for d-Quasi-Forest Deletion, parameterized by the solution size and d,
that runs in time O∗(2k7d63k

3d2

). To the best of our knowledge, this is the
first nontrivial FPT result for d-Quasi-Forest Deletion.

1We provide a brief introduction to parameterized algorithms and kernelization in the
next section.
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2 Notation and Terminology

Parameterized complexity. A parameterized problem is a subset L ⊆
Σ∗ ×N over a finite alphabet Σ. L is fixed-parameter tractable (FPT) if the
membership of an instance (x, k) in Σ∗×N can be decided in time f(k)|x|O(1),
where f is a computable function of the parameter k only. A kernelization
of a parameterized problem L is a polynomial-time algorithm that maps an
instance (x, k) to an instance (x′, k′), the kernel, such that (x, k) ∈ L if and
only if (x′, k′) ∈ L, k′ ≤ g(k), and |x′| ≤ g(k) for some function g of k only.
We call g(k) the size of the kernel. For further background and terminology
on parameterized complexity, we refer readers to monographs [10, 12, 13, 14].

Graph Theory. Here, we give a brief list of the graph theory concepts
used in this paper; for other notations and terminology, we refer readers to
[5].

All graphs considered in this paper are undirected. For a graph G =
(V,E), V is its vertex set and E is its edge set. A non-empty graph G is
connected if there is a path between every pair of vertices. Otherwise, we
call it disconnected.

The multiplicity of an edge is the number of its appearances in the multi-
graph. An edge uv is a loop if u = v, and we call it a loop at u. The number
of edges incident with a vertex v is called the degree of v, where loops are
counted twice. We use dG(u) to denote the degree of u in G. We use
δ(G) to denote the minimum degree of vertices in G. For any vertex subset
X ⊆ V (G), dX(u) is the number of edges between u and X. Bypassing a
vertex v of degree 2 means to delete v and add an edge between its two
neighbors u and w (even if there is already an edge between u and w or
u = w). Subdividing an edge xy replaces it with two edges xu and uy, where
u 6∈ V (G) is a new vertex.

For any vertex set X ⊆ V (G), we use G−X to denote the graph obtained
by deleting X and all edges incident with vertices in X from G. If X = {u},
then we abbreviate G−X as G−u. The neighborhood of u is N(u) = {v|uv ∈
E(G), v 6= u}, and the neighborhood of u in X is NX(u) = N(u) ∩X. For a
vertex set U ⊂ V (G), N(U) = (∪u∈UN(u)) \ U and NX(U) = N(U) ∩ X,
where X ⊆ V (G). For two vertex sets X,Y ⊆ V (G) with X ∩ Y = ∅,
E[X,Y ] = {uv|u ∈ X, v ∈ Y }. We will not always distinguish strictly
between a graph and its vertex or edge set. For example, we may speak of a
vertex v ∈ G rather than v ∈ V (G), an edge e ∈ G, and so on.

A forest is a graph in which there is no cycle, and a tree is a connected
forest. A vertex subset D ⊆ V (G) is a feedback vertex set of G, if G−D is
a forest. An edge subset B ⊆ E(G) is a feedback edge set of G, if G − B is
a forest. We use fvs(G) to denote the feedback vertex number of G, i.e., the
size of a smallest feedback vertex set of G.

A subgraph H of G is an induced subgraph of G if for every u, v ∈ V (G),
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edge uv ∈ E(H) if and only if uv ∈ E(G). We denote H by G[V (H)] if H
is an induced subgraph of G. For a vertex u and a vertex subset S ⊆ V (G),
we say u and S are adjacent if NS(u) 6= ∅. A v-flower in a graph G is a set C
of cycles, such that V (C1)∩V (C2) = {v} for any two cycles C1, C2 ∈ C. Let
R ⊆ V (G) be a set of vertices, then an R-path is a path of positive length
between two vertices in R such that all other vertices are not in R. For a
positive integer n, [n] = {1, 2, . . . , n− 1, n}.

3 Branching algorithm for r-Pseudoforest Dele-
tion

Definition 1. Given a graph G = (V,E), an r-pseudoforest deletion set
of G is a subset S ⊆ V (G) such that G− S is an r-pseudoforest.

Here is the formal definition of the parameterized r-Pseudoforest
Deletion problem.

r-Pseudoforest Deletion
Instance: Graph G, integers k and r.
Parameter: k and r.
Output: Decide if there exists an r-pseudoforest deletion set X of G
with |X| ≤ k?

For a connected component C in a graph G, we define the excess of C,
as ex(C) = |E(C)| − |V (C)| + 1. Note that ex(C) ≥ 0 for every connected
component. Let C be the set of connected components in G. Following [22],
we define the excess of G, as ex(G) = maxC∈Cex(C), i.e., the greatest excess
among all connected components in G. Note that to compute the excess of a
connected graph G, we just need to compute the value of |V (G)| and |E(G)|,
which can be done in time Θ(m+ n).

The following lemma shows that excess is a good notion to characterize
r-pseudoforests.

Lemma 1. A graph G is an r-pseudoforest if and only if ex(G) ≤ r.

Proof. By definition, a connected graph F is an r-pseudoforest if and only
we can delete at most r edges from it to get a forest. If we can delete at
most r edges from F to get a forest, then we can delete at most r edges from
F to get a tree. Moreover, if T is a tree, then |E(T )| = |V (T )| − 1. Thus, a
connected graph F is an r-pseudoforest if and only if |E(F )| ≤ |V (F )|−1+r,
i.e. ex(F ) ≤ r.

If G is an r-pseudoforest, then each connected component in G can be
made into a forest by deleting at most r edges. Let C be the set of connected
components in G. Then each connected component in C ∈ C has excess at
most r. Therefore, ex(G) = maxC∈Cex(C) ≤ r.
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If ex(G) ≤ r, then every connected component C in G has excess at most
r, and so we can delete r edges from it to get a tree. Thus, if ex(G) ≤ r,
then G is an r-pseudoforest.

By Lemma 1, to decide whether a graph G is an r-pseudoforest, we just
need to compute the excess of G, which can be done in time Θ(m+ n).

For a vertex set S ⊆ V (G), let cc(S) = cc(G[S]) be the number of
connected components in G[S].

Lemma 2. [22] Let G′ be a subgraph of G. If G is an r-pseudoforest, then
so is G′.

Lemma 3. Let G be a graph that contains a vertex u with degree 2. Let G′

be the graph obtained from G by bypassing u. Then for any positive integer
r, G′ is an r-pseudoforest if and only if G is an r-pseudoforest.

Proof. Let C be the connected component in G that contains u, and C ′ be
the component we get from C by bypassing u. Then |V (C ′)| = |V (C)| − 1,
|E(C ′)| = |E(C)| − 1. Thus, ex(C ′) ≤ r if and only if ex(C) ≤ r. As G
and G′ only differ at C and C ′, G′ is an r-pseudoforest if and only if G is an
r-pseudoforest.

Lemma 4. Let G be a graph that contains a vertex u with d(u) ≤ 1. If G−u
is an r-pseudoforest, then G is also an r-pseudoforest.

Proof. If G− u is an r-pseudoforest, then ex(G− u) ≤ r by definition.
If d(u) = 0, then u is an isolated vertex in G, and ex(G[u]) < r. There-

fore, ex(G) = max{ex(G−u), ex(G[u])} ≤ r and G is also an r-pseudoforest.
If d(u) = 1, then u is a leaf in some connected component C of G.

Observe that ex(C) = ex(C − u). Moreover, ex(C − u) ≤ ex(G − u) ≤ r,
as C − u is a connected component in G − u. It follows that ex(G) =
max{ex(G− C), ex(C)} ≤ r, and so G is also an r-pseudoforest.

Now we solve r-Pseudoforest Deletion via the approach of itera-
tive compression. The iterative compression method is a recursive approach
typically for parameterized minimization problems. It exploits the instance
structure exposed by a solution that is slightly oversized. Firstly, obtain a
slightly oversized solution. Secondly, transform the problem into its disjoint
version by guessing the intersection of the optimal solution with the oversized
solution. Finally, solve the disjoint version of the problem, with additional
information introduced by the forbidden set. We refer readers to [10] for a
more thorough introduction to the iterative compression method.

As a standard step, we introduce the following disjoint version of r-
Pseudoforest Deletion.
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Disjoint r-Pseudoforest Deletion
Input: Graph G with an r-pseudoforest deletion set S, two integers
k and r.
Parameter: k.
Output: Decide if there is an r-pseudoforest deletion set X of G with
|X| ≤ k and X ∩ S = ∅?

We may assume that G[S] is an r-pseudoforest, as otherwise (G,S, k, r)
is a no-instance of Disjoint r-Pseudoforest Deletion. For any given
graph G, fix an arbitrary vertex ordering v1, v2, . . . , vn of G. We solve r-
Pseudoforest Deletion for the following series of graphs, G1, G2, . . . , Gn,
where Gi = G[{v1, v2, . . . , vi}]. Note that if Gi has no r-pseudoforest dele-
tion set of size at most k, then neither has Gi+1, according to Lemma 2. If X
is a solution to r-Pseudoforest Deletion of (Gi, k, r), then X ∪ {vi+1}
is solution to (Gi+1, k + 1, r). Thus, each time we solve the Disjoint r-
Pseudoforest Deletion problem for (Gi, S, k, r), we can conclude that
|S| ≤ k + 1.

To solve Disjoint r-Pseudoforest Deletion, we apply the following
reduction rules. A reduction rule is safe if the reduced instance is a yes-
instance if and only if the original instance is a yes-instance.

Reduction Rule 1: Let (G,S, k, r) be an instance of Disjoint r-
Pseudoforest Deletion. If there is a vertex v ∈ (V (G) \ S) such that
dG(v) = 1, then return (G− v, S, k, r).
Lemma 5. Reduction Rule 1 is safe.

Proof. We show (G,S, k, r) and (G − v, S, k, r) are equivalent instances of
Disjoint r-Pseudoforest Deletion.

First, suppose (G,S, k, r) is a yes-instance and X ⊆ (V (G) \ S) is a
solution. It follows that G − X is an r-pseudoforest. If v ∈ X, then (G −
v) − (X \ {v}) = G − X. Therefore, X \ {v} is an r-pseudoforest deletion
set of G− v. If v 6∈ X, then (G− v)−X is a subgraph of G−X, which is
an r-pseudoforest. Therefore, X is an r-pseudoforest deletion set of G − v.
In both cases, (G− v, S, k, r) is also a yes-instance.

Second, suppose (G− v, S, k, r) is a yes-instance and X ⊆ (V (G) \ (S ∪
{v})) is a solution. It follows that (G−v)−X is an r-pseudoforest. Let C be
the connected component in G−X that contains v. By the definition of X,
C−v is an r-pseudoforest, as it is a connected component in (G−v)−X. Since
dG(v) = 1, C is also an r-pseudoforest according to Lemma 4. Furthermore,
(G − v) −X and G −X only differ at the connected component C. Thus,
X ⊆ (V (G) \ S) is an r-pseudoforest deletion set of G. So (G,S, k, r) is also
a yes-instance.

Reduction Rule 2: If there is a vertex v ∈ (V (G)\S) such that G[S∪v]
is not an r-pseudoforest, then return (G− v, S, k − 1, r).
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Lemma 6. Reduction Rule 2 is safe.

Proof. Wemay assume thatG[S] is an r-pseudoforest, as otherwise (G,S, k, r)
is a no-instance of Disjoint r-Pseudoforest Deletion. If G[S ∪ v] is
not an r-pseudoforest, then every r-pseudoforest deletion set disjoint from
S contains v. Thus, (G,S, k, r) and (G − v, S, k − 1, r) are equivalent in-
stances.

Reduction Rule 3: If there is a vertex u ∈ (V (G) \ S), such that
dG(u) = 2 and it has at least one neighbor in V (G) \ S, then return
(G′, S, k, r), where G′ is obtained from G by bypassing u.

Lemma 7. Reduction Rule 3 is safe.

Proof. Note that the bypassing operation decreases both the number of edges
and the number of vertices by one.

First, suppose (G,S, k, r) is a yes-instance of Disjoint r-Pseudoforest
Deletion. Let X be a minimal r-pseudoforest deletion set of size at most
k, which is disjoint from S. Let u be the bypassed vertex of degree 2 and G′

be the graph obtained from G by bypassing u. Let x, y be the two neighbors
of u in G. As u has at least one neighbor in V (G) \ S, we may assume
x ∈ (V (G) \ S).

If u ∈ X, then (N(u) \ S) ∩X = ∅, as otherwise, X \ {u} is also an r-
pseudoforest deletion set, contradicting the fact thatX is a minimal solution.
Therefore, x 6∈ X and X ′ = (X \ {u}) ∪ {x} is an r-pseudoforest deletion
set of G′, with |X ′| ≤ |X| ≤ k. Thus, if (G,S, k, r) is a yes-instance, then
(G′, S, k, r) is also a yes-instance.

If u 6∈ X, then u is an isolated vertex or is in the connected component
containing x or y (or both x and y) in G−X. We get G′−X from G−X by
deleting u or bypassing it. Either way, G′−X is an r-pseudoforest according
to Lemma 2 and Lemma 3.

Second, assume (G′, S, k, r) is a yes-instance of Disjoint r-Pseudoforest
Deletion. Let X ′ be a minimal r-pseudoforest deletion set of size at most
k, which is disjoint from S. Observe that G′ − X is an r-pseudoforest. If
{x, y} ∩X ′ = ∅, then G−X ′ can be obtained from G′ −X ′ by subdividing
the edge xy and naming the new vertex u. According to Lemma 3, G−X ′
is an r-pseudoforest. If {x, y} ∩ X 6= ∅, then dG−X′(u) ≤ 1. According to
Lemma 4, G−X ′ is an r-pseudoforest. It follows that X ′ is also a solution
for (G,S, k, r) and so (G,S, k, r) is a yes-instance.

Reduction Rule 4: If k < 0, then return no.

Reduction Rules 1-4 can be applied in time Θ(m+n). Reduction Rule 1
just deletes all leaves iteratively. Reduction Rule 2 checks whether a graph is
an r-pseudoforest, which can be done in time Θ(m+n) according to Lemma
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1. Reduction Rule 3 can be applied in time Θ(m + n) as searching and
bypassing a vertex of degree 2 is a basic operation.

Given an instance (G,S, k, r) of Disjoint r-Pseudoforest Deletion,
apply Reduction Rules 1-4 whenever possible.

Now we show how to solve the problem when Reduction Rules 1-4 are not
applicable. Define measure φ(I) = k+ cc(S) +

∑
C∈C(G[S])(r− ex(C)). Note

that initially φ(I) ≤ k+ cc(S) + cc(S)r ≤ 2k+ (k+ 1)r+ 1 < (k+ 1)(r+ 2),
since |S| ≤ k + 1.

To get a depth bounded search tree, we prove that φ(I) decreases after
each application of the following branching rules.

BR-1. Branching on a vertex v /∈ S with dS(v) ≥ 2.
In one branch, we put v into the solution and call the algorithm on

(G − {v}, S, k − 1, r). Note that in this branch, cc(S) and ex(C) (for each
C ∈ C(G[S])) remain the same while k decreases by 1. Hence φ(I) drops by
1.

In the other branch, we put v into S and call the algorithm on (G,S ∪
{v}, k, r). Let S′ = S ∪ {v}. There are the following two possible cases
regarding the distribution of NS(v).

Case 1: NS(v) belongs to more than one connected component in G[S],
thus cc(S′) ≤ cc(S) − 1. Let C1, C2, . . . , Ct(t ≥ 2) be the set of connected
components in G[S] that are adjacent with v.

To compute the difference between excess sums in S and S′, denote

σS = Σi∈[t](r − ex(Ci))

= rt− Σi∈[t](ex(Ci))

= rt− Σi∈[t](|E(Ci)| − |V (Ci)|+ 1)

= rt− Σi∈[t]|E(Ci)|+ Σi∈[t]|V (Ci)| − t,

σS′ = r − ex(G[∪i∈[t]V (Ci) ∪ {v}])
= r − (|E(∪i∈[t]V (Ci) ∪ {v})| − |V (∪i∈[t]V (Ci) ∪ {v})|+ 1)

= r − (Σi∈[t]|E(Ci)|+ dS(v)− Σi∈[t]|V (Ci)|).

Since σS − σS′ = r(t− 1) + dS(v)− t ≥ r(t− 1) ≥ r, φ(I) drops by at least
1 + σS − σS′ ≥ 1 + r(t− 1) ≥ 1 + r.

Case 2: NS(v) belongs to one connected component in G[S], denoted
by C∗. Then cc(S′) = cc(S), and ex(G[V (C∗) ∪ {v}]) − ex(C∗) ≥ 1 as
dS(v) ≥ 2. Hence φ(I) decreases by at least 1.

Thus, in BR-1, the measure φ(I) drops by 1 in one case, and at least
1 + r or 1 in the other, while remaining non-negative. In the worst case, it
gives us a branching vector (1, 1).

Reduction Rule 1 deals with vertices of degree 1 in G. Reduction Rule 3
deals with vertices of degree 2 that have at least one neighbor in V (G) \ S.
BR-1 deals with vertices of degree 2 that have no neighbor in V (G)\S. Thus,
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after all possible applications of Reduction Rule 1, 3 and BR-1, vertices in
V (G) \ S have degree at least 3. Moreover, as dS(u) ≤ 1 holds for every
vertex u ∈ G− S, we have dG−S(u) ≥ 2, that is δ(G− S) ≥ 2. Thus, every
vertex u ∈ (V (G) \ S) is in some cycle of G− S.

If G is not an r-pseudoforest, there exists some edge between V (G) \ S
and S, since both G[S] and G − S are r-pseudoforest. After exhaustive
applications of BR-1, dS(v) ≤ 1 holds for every vertex v ∈ G − S. In the
following, we branch on vertices in a shortest path of G−S between vertices
in NG−S(S).

BR-2. Branching on a shortest path in G− S between vertices
in NG−S(S).

First, consider the case when there is a connected component C in G−S
such that there is only one edge uv between C and S, where v ∈ C and
u ∈ S. Note that if the solution should intersect V (C), then it suffices to
contain v. Thus, we branch on whether to put v into the solution. In one
branch, we put v into the solution, and decrease k by one. In the other
branch, we put C into S. Since every vertex in G−S is of degree at least 3,
and there is only one edge between C and S, C is not a tree in G − S. So
both r − ex(S) and φ(I) decreases by at least one.

Now assume every connected component inG−S has at least two edges to
S. Let P be a shortest path in G−S, such that only the two end-vertices of P
are adjacent with S. Note that we can find such a shortest path in polynomial
time. We prove that |V (P )| ≤ 2r + 2. As every connected component C
in G − S is an r-pseudoforest, |E(C)| − |V (C)| + 1 ≤ r. Every vertex in P
has degree at least 3 after exhaustive applications of Reduction Rules 1, 2,
3 and BR-1. And no internal vertex of P has an edge to S, according to
the choice of P . Let C0 be the connected component in G − S containing
P , we know that |E(C0)| ≥ 3/2|V (P )| − 2, and ex(C0) ≥ ex(G[V (P )]) ≥
3/2|V (P )| − 2− |V (P )|+ 1. Because ex(C0) ≤ r, we have |V (P )| ≤ 2r + 2.

Suppose V (P ) = {v1, v2 . . . , vt}. We branch on whether to delete any
vertex in V (P ). We consider t + 1 branches. In branch i(≤ t), we delete
vertex vi, and call the algorithm on (G−{vi}, S, k−1, r). Note that for every
branch i(≤ t) and connected component C ∈ C(G[S]), cc(S) and ex(C) do
not change, while k decreases by at least 1. Thus, φ(I) drops by at least 1.

In branch t + 1, we do not delete any vertex in V (P ), and call the
algorithm on (G,S ∪ V (P ), k, r). For the change of σ(S), we may regard
V (P ) as a single vertex, since only the two end-vertices of P are adjacent
with S. If edges between V (P ) and S are to the same connected component
C in G[S], then ex(C ∪ V (P )) = ex(C) + 1. Thus, in this branch, φ(I)
decreases by 1. Otherwise, the edges between V (P ) and S are to different
connected components in G[S]. In this case, cc(S) decreases by at least 1,
and similarly to Case 1, we can show that σS − σS′ ≥ r. So φ(I) drops by
at least 1 + r. This gives us a (t+ 1)-tuple branching vector (1, 1, . . . , 1) in
which t ≤ 2r + 2.

9



Algorithm 1: Branching Algorithm for Disjoint r-Pseudoforest
Deletion.
Input: An undirected graph G, an r-Pseudoforest deletion set S,

two integers k and r
1 Parameters: k.
Output: An r-pseudoforest deletion set X of G with |X| ≤ k and

X ∩ S = ∅. Or conclude that such a set does not exist.

2 Initially set X = ∅.
3 Step 1: Apply Reduction Rules 1-4.
4 Step 2: Apply BR-1. Branching on a vertex v 6∈ S such that

dS(v) ≥ 2. Either put v into X and decrease k by one or put v into
S.

5 Step 3: Apply BR-2. Branching on a shortest path P in G− S
between two vertices in NG−S(S).

6 If k ≥ 0 then return X. Otherwise, return NO.

According to the branching vectors in BR-1 and BR-2, and the facts that
φ(I) starts from a value smaller than (k + 1)(r + 2), drops by at least 1 in
each branch and remains non-negative, the algorithm runs in time O∗((2r+
3)(k+1)(r+2)).

The following lemma states that a fast parameterized algorithm for the
disjoint version problem gives a fast algorithm for the original problem.

Lemma 8. [10] If Disjoint r-Pseudoforest Deletion can be solved
in time f(k)nO(1), then r-pseudoforest Deletion can be solved in time∑i=k

i=0

(
k+1
i

)
f(k − i)nO(1).

So we get an algorithm for r-Pseudoforest Deletion that runs in
time

∑i=k
i=0

(
k+1
i

)
(2r + 3)(k−i+1)(r+2) ≤ (1 + (2r + 3)r+2)k+1.

Theorem 1. There exists an algorithm for r-Pseudoforest Deletion
with running time O∗((1 + (2r + 3)r+2)k+1).

Proof. We first show that Algorithm 1 solves Disjoint r-Pseudoforest
Deletion. After exhaustive applications of Reduction Rule 1, every vertex
in G − S has degree at least 2. After exhaustive applications of Reduction
Rule 3, every vertex in G − S with degree 2 has two neighbors in S. BR-1
deals with vertices in G−S that has at least two neighbors in S. BR-2 deals
with component in G − S in which every vertex has at most one neighbor
in S. Thus, BR-1 and BR-2 are exhaustive. After applications of Reduction
Rule 3 and BR-1, every vertex in G− S has degree at least 3.

For each branching in BR-1 and BR-2, the measure φ(I) decreases by
at least one. BR-1 has a branching vector (1, 1). And BR-2 has a branch-
ing (1, . . . , 1), which is a (2r + 3)-tuple. Thus, Algorithm 1 runs in time
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O∗((2r + 3)(r+2)(k+1)). Using Algorithm 1 as a subroutine, we can solve r-
Pseudoforest Deletion in time (1+(2r+3)r+2)k+1, according to Lemma
8.

Note that Theorem 1 improves over the result in [22].

Theorem 2. (Linear Time Protrusion Replacement Theorem, [22]). Let
Π be a problem that has a protrusion replacer which replaces p protrusions
of size at least p′ for some fixed p. Let s and β be constants such that
s ≥ p′2p and p ≥ 3(β + 1). Given an instance (G, k) as input, there is an
algorithm that runs in time O(m + n) and produces an equivalent instance
(G′, k′) with |V (G′)| ≤ |V (G)| and k′ ≤ k. If additionally G has an (α, β)-
protrusion decomposition such that α ≤ n/244s , then we have that |V (G′)| ≤
(1− δ)|V (G)| for some constant δ > 0.

The algorithm for r-Pseudoforest Deletion given in [22] makes use
of Theorem 2 and runs in time O∗(ckr ), where cr is a constant that depends on
r only. However, it requires that cdr > 2 where 2d < ρ, ρ ≤ 1

12000s(r+2)2
and

s = p′26(r+2) for some positive integer p′. It follows that cr > 2240000s(r+2)2 =
2240000(r+2)2p′26(r+2) .

4 Kernelization of r-Pseudoforest Deletion

In this section, we give an improved kernel for r-Pseudoforest Deletion.
We will use Reduction Rules A, B, C and D. The proofs for Reduction Rules
A and B are similar to those of Reduction Rules 1 and 3, and they are
simpler.

Reduction Rule A: Let (G, k, r) be an instance of r-Pseudoforest
Deletion. If there is a vertex v ∈ V (G) such that dG(v) = 1, then return
(G− v, k, r).

Lemma 9. Reduction Rule A is safe.

Proof. We show that (G, k, r) and (G − v, k, r) are equivalent instances of
r-Pseudoforest Deletion.

On the one hand, suppose (G, k, r) is a yes-instance and X ⊆ V (G) is
a solution. If v ∈ X, then (G − v) − (X \ {v}) = G − X. Thus, X \ {v}
is a solution to (G − v, k, r). Otherwise, (G − v) − X is a subgraph of
G−X, which is an r-pseudoforest. According to Lemma 2, (G− v)−X is
an r-pseudoforest. In both the cases, (G− v, k, r) is also a yes-instance.

On the other hand, suppose (G − v, k, r) is a yes-instance and X ⊆
(V (G) \ {v}) is a solution. Let C be the connected component in G − X
containing v. By the definition ofX, C−v is an r-pseudoforest in (G−v)−X.
Since dG(v) = 1, C is also an r-pseudoforest in G−X according to Lemma
4. Furthermore, (G− v)−X and G−X only differ at C. Thus, X ⊆ V (G)
is an r-pseudoforest deletion set of G. So (G, k, r) is also a yes-instance.
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Reduction Rule B: Let (G, k, r) be an instance of r-Pseudoforest
Deletion. If there is a vertex u ∈ V (G) such that dG(u) = 2, then bypass
it.

Lemma 10. Reduction Rule B is safe.

Proof. Note that bypassing u decreases both the edge number and vertex
number by one.

On the one hand, suppose (G, k, r) is a yes-instance of r-Pseudoforest
Deletion, and X is a minimal r-pseudoforest deletion set of size at most
k. Let u be the bypassed vertex of degree 2 and G′ be the graph obtained
from G by bypassing u. Let x, y be the two neighbors of u in G.

If u ∈ X, then by the minimality of X, at least one neighbor of u is not
in X. Without loss of generality, we may assume that x 6∈ X, then X ′ =
(X \ {u}) ∪ {x} is an r-pseudoforest deletion set of G′ with |X ′| ≤ |X| ≤ k.
Thus, if (G, k, r) is a yes-instance, then (G′, k, r) is also a yes-instance.

If u 6∈ X, then u is an isolated vertex or is in the connected component
containing x or y (or both x and y) in G−X. We get G′ −X from G−X
by deleting u or bypassing it. According to Lemma 2 and Lemma 3, G′−X
is an r-pseudoforest.

On the other hand, suppose (G′, k, r) is a yes-instance of r-Pseudoforest
Deletion, and X ′ is a minimal r-pseudoforest deletion set of size at most
k. If {x, y} ∩ X ′ = ∅, then G − X ′ can be obtained from G′ − X ′ by sub-
dividing xy and naming the new vertex u. If at least one of x and y is
in X ′, then u has degree 0 or 1 in G − X ′. In both cases, G − X ′ is also
an r-pseudoforest. It follows that X ′ is also a solution for (G, k, r) and so
(G, k, r) is a yes-instance.

Reduction Rule C: Let (G, k, r) be an instance of r-Pseudoforest
Deletion. If there is a connected component in G that is an r-pseudoforest,
then delete the component from G.

Lemma 11. Reduction Rule C is safe.

Proof. Let C be a connected component in G that is an r-pseudoforest.
There is no need to delete any vertex from C to get an r-pseudoforest.

After Reduction Rule C, every connected component in G is not an r-
pseudoforest.

Reduction Rule D: If there are more than k connected components in
G, then return no.

Lemma 12. Reduction Rule D is safe.

Proof. Let X∗ be a minimum r-pseudoforest deletion set of G. Since Reduc-
tion Rule C is not applicable, for every connected component C in G, we have
V (C) ∩X∗ 6= ∅. It follows that |X∗| > k and (G, k, r) is a no-instance.
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Lemma 13. After exhaustive applications of Reduction Rules A, B and C,
we get an instance with minimum degree at least 3.

Proof. Reduction Rule A deals with vertices of degree 1 and Reduction Rule
B deals with vertices of degree 2. Isolated vertices are dealt with Reduction
Rule C. Thus, if Reduction Rules A, B and C are not applicable, the reduced
instance has minimum degree at least 3.

Lemma 14. Let G be a graph such that δ(G) ≥ 3 and ∆(G) ≤ d. If G
has an r-pseudoforest deletion set of size at most k, then it contains at most
(2dr − d+ 1)k vertices and at most 3kdr − kd edges.

Proof. LetX be an r-pseudoforest deletion set of G of size at most k. Denote
F = G − X. After exhaustive applications of Reduction Rule C, there is
no connected component in G that is an r-pseudoforest. Therefore, every
connected component C in F is created due to the deletion of X, and so
E(V (C), X) 6= ∅. Let c be the number of connected components in F .
We have c ≤ kd, since deleting any vertex of degree t produces at most t
connected components. Because F is an r-pseudoforest, for each connected
component Ci with i ∈ [c], we have |E(Ci)| ≤ |V (Ci)| − 1 + r. Thus,
|E(F )| = Σi∈[c]|E(Ci)| ≤ Σi∈[c](|V (Ci)| − 1 + r) = |V (F )| + c(r − 1). By
counting the number of edges incident with V (F ), we have

3|V (F )| ≤ 2(|E(F )|) + |E(X,V (F ))| ≤ 2(|V (F )|+ c(r − 1)) + kd.

It follows that |V (F )| ≤ 2c(r−1)+kd. So |V (G)| ≤ |X|+|V (F )| ≤ 2c(r−1)+
k(d+1) ≤ (2dr−d+1)k. And |E(G)| ≤ |E(F )|+|E(X,V (F ))|+|E(G[X])| ≤
|V (F )|+ c(r − 1) + kd < 3c(r − 1) + 2kd = 3kdr − kd.

We need to make use of the following result.

Theorem 3 ([22]). Given an instance (G, k) of r-Pseudoforest Dele-
tion, in polynomial time, we can get an equivalent instance (G′, k′) such
that k′ ≤ k, |V (G′)| ≤ |V (G)| and ∆(G′) ≤ (k + r)(3r + 8).

Theorem 4. The r-Pseudoforest Deletion problem admits a kernel
with O(max{k2r2, kr3}) vertices and O(max{k2r2, kr3}) edges.

Proof. By Theorem 3, r-Pseudoforest Deletion admits a kernel with
maximum degree at most d = (k + r)(3r + 8). Thus, by Lemma 14, we
can get a kernel for r-Pseudoforest Deletion which contains at most
(2r − 1)kd + k = O(max{k2r2, kr3}) vertices, and at most (3r − 1)kd =
(3r − 1)k(k + r)(3r + 8) = O(max{k2r2, kr3}) edges.

The algorithm in [22] also gave a kernel with at most O(ck2) vertices, but
there is no explicit expression of c. The kernelization algorithm in [22] uses
Theorem 2 and a (4kd(r+2), 2(r+2))-protrusion decomposition. According
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to Theorem 2, the size of the kernel obtained in [22] is upper bounded by
n ≤ 244sα, where α = 4kd(r + 2), d ≤ (k + r)(3r + 8), s ≥ p′2p, p′ is a
positive integer, and p ≥ 3(β + 1) ≥ 6(r + 2). Thus, the constant c in [22]
depends on r exponentially.

5 d-Quasi-Forest Deletion

Recall that for a positive integer d, a d-quasi-forest is a graph in which every
connected component has a feedback vertex set of size at most d. It is easy
to observe that a subgraph of a d-quasi-forest is also a d-quasi-forest.

Definition 2. Given a graph G = (V,E), a subset X ⊆ V (G) is a d-quasi-
forest deletion set of G if G−X is a d-quasi-forest.

Let us define the parameterized d-Quasi-Forest Deletion we will
study.

d-Quasi-forest Deletion
Instance: An undirected graph G, positive integers d and k.
Parameter: d and k.
Output: Decide if there is a d-quasi-forest deletion set X ⊆ V (G) of
size at most k.

Here we recall the definition of tree decomposition of a graph.

Definition 3. Given an undirected graph G = (V,E), a tree decomposition
of G is a pair (T , β), where T is a tree and β : V (T )→ 2V such that

1.
⋃

x∈V (T ) β(x) = V ;

2. for each edge uv ∈ E, there exists a node x ∈ V (T ) such that u, v ∈
β(x);

3. for each v ∈ V , the set β−1(v) of nodes induces a connected subgraph
in T .

The width of (T , β) is maxx∈V (T )(|β(x)| − 1). The treewidth of G (denoted
by tw(G)) is the minimum width of all tree decompositions of G. For each
vertex v ∈ T , β(v) is called a bag.

Let us recall two well-known facts about treewidth.

Lemma 15 (Folklore). The treewidth of a forest is 1.

Lemma 16 (Folklore). Let G′ = G−S for some S ⊆ V (G). Then tw(G) ≤
tw(G′) + |S|.
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The Monadic Second-Order Logic (MSO2) is a fragment of second-order
logic where the second order quantification is limited to quantification over
sets. It contains logical operations ∨,∧,→,↔,¬, and variables for vertices,
edges, set of vertices and set of edges. Binary relations like u ∈ X, e ∈ E,
inc(u, e), adj(u, v) are also included inMSO2. We refer readers to [10, 12, 13]
for a more comprehensive introduction of MSO2.

The following is a famous theorem that establishes parameterized tractabil-
ity of evaluating MSO2 formulas over graphs with bounded treewidth.

Theorem 5. (Courcelle [9]) Given a graph G and a formula ϕ in MSO2

describing a property P, it takes time f(tw(G), |ϕ|)nO(1) to decide whether
G has property P.

We show that d-Quasi-Forest Deletion is FPT by Theorem 5. Firstly,
we bound the treewidth of the input graph with d and k.

Lemma 17. If (G, k) is a yes-instance of d-Quasi-Forest Deletion, then
tw(G) ≤ k + d+ 1.

Proof. Let (G, k) be a yes-instance of d-Quasi-Forest Deletion, then
there is a vertex set X ⊆ V (G), such that each connected component in
G−X has a feedback vertex set of size at most d. Thus, tw(G−X) ≤ d+ 1,
according to Lemma 15 and Lemma 16. As |X| ≤ k and tw(G−X) ≤ d+ 1,
we have tw(G) ≤ k + d+ 1, according to Lemma 16.

Secondly, we will prove the following:

Lemma 18. The property of admitting a d-quasi-forest deletion set of size
at most k is expressible in MSO2.

Proof. The property of admitting a d-quasi-forest deletion set of size at most
k can be expressed as follows:

∃v1, . . . , vk ∈ V (G)∀X ⊆ V (G) \ {v1, . . . , vk}(Conn(X)→ (FV S(X) ≤ d)),

where the property Conn(X) means that G[X] is a connected subgraph of G
and FV S(X) ≤ d means that fvs(G[X]) ≤ d. The reason that we can require
that G[X] is a connected subgraph of G and not just a connected component
of G is that replacing “connected subgraph” with “connected component” will
not change the implication Conn(X)→ (FV S(X) ≤ d) as if fvs(H) ≤ d for
a graph H then fvs(H ′) ≤ d for any subgraph H ′ of H. Note that anMSO2-
formula is given in [10, Section 7.4.1] for the property Conn(X).We will omit
some simple details such as how one can express ∀X ⊆ (V (G)\{v1, . . . , vk})
in MSO2. Thus, it remains to prove that FV S(X) ≤ d is expressible in
MSO2.

Note that [10, Section 7.4.1] provides anMSO2-formula for the property
that the degree of a vertex v in a spanning edge set C of G is 2 (denoted by
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Deg2(v, C)). We will also need a simple property inc(v, C) that a vertex v
is incident to an edge of C, where C is an edge set of G. It can be expressed
as follows: ∃e ∈ C(inc(v, e)). Now FV S(X) ≤ d can be expressed in MSO2

as follows:

∃y1, . . . , yd ∈ X¬(∃C ⊆ E(G)(∀v ∈ X\{y1, . . . , yd}(inc(v, C)→ Deg2(v, C)))).

Combining Lemmas 17 and 18 and Theorem 5, we have the following
result.

Theorem 6. d-Quasi-Forest Deletion is FPT parameterized by k and
d.

Unfortunately, the complexity of the algorithm obtained by Theorem 6
may be a power tower exponential. Aiming at fully exploiting the prob-
lem structure and designing a faster algorithm, we solve d-Quasi-Forest
Deletion by the iterative compression approach.

Now we are going to use the method of iterative compression, which
starts by replacing the original problem with its compression version.

d-Quasi-Forest Deletion Compression
Instance: An undirected graph G, an integer k, and a d-quasi-forest
deletion set Z ⊆ V (G) with |Z| ≤ k + 1.
Parameter: d and k.
Output: Decide if there is a d-quasi-forest deletion set X ⊆ V (G)
with |X| ≤ k.

By guessing the intersection of Z and X, we reduce d-Quasi-Forest
Deletion Compression into its disjoint version defined as follows.

Disjoint d-Quasi-Forest Deletion
Instance: An undirected graph G, an integer k and a d-quasi-forest
deletion set Z ⊆ V (G).
Parameter: d and k.
Output: Decide if there is a d-quasi-forest deletion set X ⊆ V (G)
with |X| ≤ k and X ∩ Z = ∅.

Initially we have |Z| = z0 ≤ k + 1. In the process of solving Disjoint
d-Quasi-Forest Deletion, we will put vertices into Z and give the new
upper bound on |Z|. By the algorithm in [18], we can decide whether a
given graph is a d-quasi-forest in time O∗(3.460d) and compute a minimum
feedback vertex set of it.

A connected component that is not a tree is called a non-tree component.
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Lemma 19. Let (G,Z, k) be a yes-instance of Disjoint d-Quasi-Forest
Deletion. For every vertex u ∈ Z, G− Z contains at most k + d non-tree
components that are adjacent with u.

Proof. Suppose there are more than k + d non-tree components in G − Z,
that are adjacent with u ∈ Z. Note that each non-tree component contains
at least one cycle. For any vertex set X ⊆ (V (G) \ Z), such that |X| ≤ k,
let Cu

X be the connected component in G − X that contains u. Then Cu
X

is not a d-quasi-forest, since it contains at least d+ 1 vertex-disjoint cycles.
Thus, (G,Z, k) is a no-instance. Hence, for each vertex u ∈ Z, the number of
non-tree components in G−Z that are adjacent with u is at most k+d.

Let (G,Z, k) be an instance of Disjoint d-Quasi-Forest Deletion.
Since Z is a d-quasi-forest deletion set of G, every connected component
in G − Z has a feedback vertex set of size at most d. For each connected
component in G − Z, we branch on a smallest feedback vertex set D of it.
That is, for every vertex in D, either put it into X (and decrease k by one)
or put it into Z. After all the branching, we get new instances in which
every connected component in G− Z is a tree. Moreover, the size of Z now
is upper bounded by z1 = z0 + z0(k+ d)d = (k+ 1)(kd+ d2 + 1) = O(k2d2).
Indeed, initially |Z| = z0 ≤ k + 1. By Lemma 19, every vertex in the initial
Z has neighbors in at most k+d non-tree components. It follows that G−Z
contains at most (k+1)(k+d) non-tree components, each containing at most
d vertices that might be added into Z.

Now we solve Disjoint d-Quasi-forest Deletion in which
every connected component in G− Z is a tree, and |Z| ≤ z1.

Definition 4. Two trees T1, T2 in G−Z have the same neighborhood type
if NZ(T1) = NZ(T2) and for every vertex u ∈ NZ(T1), |E(u, T1)| = 1 if and
only if |E(u, T2)| = 1.

Reduction Rule I: If there are more than k+ d+ 2 trees in G−Z that
have the same neighborhood type, then delete all but k+d+2 of these trees.

Lemma 20. Reduction Rule I is safe.

Proof. Let (G,Z, k) be an instance of Disjoint d-Quasi-Forest Dele-
tion. Suppose there are t trees with the same neighborhood type, denoted
by T1, T2, . . . , Tt, where t ≥ k+ d+ 3. Let N = ∩i∈[t]NZ(V (Ti)) be the com-
mon neighborhood of T1, T2, . . . , Tt in Z. By deleting Tk+d+3, Tk+d+4, . . . , Tt,
we get a new instance (G′, Z, k).

To prove the safeness of Reduction Rule I, we show that (G,Z, k) is a
yes-instance if and only if (G′, Z, k) a yes-instance.

On the one hand, if (G,Z, k) is a yes-instance then (G′, Z, k) a yes-
instance, as G′ is a subgraph of G.
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On the other hand, suppose (G′, Z, k) is a yes-instance. Then there is a
vertex set X ⊆ (V (G′)\Z) such that |X| ≤ k and each connected component
in G′ − X has a feedback vertex set of size at most d. Note that at least
d + 2 trees in {T1, T2, . . . , Tk+d+2} are disjoint from X and each of these
trees connects every pair of vertices in N . Thus, G′ − X contains at least
d + 2 vertex-disjoint paths between every pair of vertices in N . Let CN be
the connected component that contains N in G′−X. As deleting d vertices
destroy at most d such paths, every feedback vertex set of CN with size at
most d contains at least |N | − 1 vertex of N .

Let D be a feedback vertex set of CN with size at most d. We know
that if N \ D 6= ∅, then |N \ D| = 1. Recall that T1, T2, . . . , Tt are of
the same neighborhood type. In particular, |E(u, V (Ti))| = 1 if and only
if |E(u, V (Tj))| = 1, for every vertex u ∈ N , i ∈ [k + d + 2] and j ∈
{k+ d+ 3, k+ d+ 4, . . . , t}. Thus, for every vertex u ∈ N , if u forms a cycle
with Tj , then it forms a cycle with Ti, for every i ∈ [k+ d+ 2] and j ∈ {k+
d+ 3, k+ d+ 4, . . . , t}. Therefore, if N \D 6= ∅, then Tk+d+3, Tk+d+4, . . . , Tt
do not form any cycle with the only vertex in N \D. And so D is a feedback
vertex set of G[V (CN ) ∪ (∪j∈{k+d+3,k+d+4,...,t}V (Tj))] no matter N\D is
empty or not. It follows that G−X is a d-quasi-forest, and (G,Z, k) is also
a yes-instance.

5.1 Forced Vertices

Definition 5. Let (G,Z, k) be a yes-instance of Disjoint d-Quasi-Forest
Deletion. A vertex u ∈ Z is forced, if for every vertex set X ⊆ (V (G)\Z),
with |X| ≤ k, u is in every feedback vertex set of size at most d of the
connected component containing u in G−X.

The intuition of raising the notion of “forced vertex” is as follows. Every
connected component in G− Z is a tree. If all the neighbors of a tree T in
Z are forces vertices, then the size of T does not affect the feedback vertex
number of the component containing T . The notion of a forced vertex thus
helps us to bound the size of each tree in G − Z, as we just need to keep
enough neighbors of forced vertices in G− Z such that they are still forced
vertices.

Lemma 21. Let v be a vertex in Z. If there is a v-flower with at least
k + d+ 1 cycles in G− (Z \ {v}), then v is a forced vertex.

Proof. For any vertex set X ⊆ (V (G) \Z), with |X| ≤ k, there is a v-flower
with at least d+1 cycles in G− ((Z ∪X)\{v}). Thus, v is in every feedback
vertex set of size at most d of the component containing v in G −X. And
so v is a forced vertex.
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The following theorem provides a way to check whether a vertex in Z is a
forced vertex with no false positive error. That is, if the following procedure
claims that a vertex is a forced vertex, then it is a forced vertex. However,
it is possible that the procedure does not find all forced vertices.

Theorem 7. (Gallai [16]) Given a simple graph G, a vertex set R ⊆ V (G),
and an integer s, in polynomial time one can either

1. find a family of s+ 1 pairwise vertex-disjoint R-paths, or

2. conclude that no such family exists and, find a set B of at most 2s
vertices, such that in G − B no connected component contains more
than one vertex of R.

Suppose we want to decide whether a vertex u ∈ Z is a forced vertex. Set
s = k + d, and R = N(u) \ Z. Recall that an R-path is a path between two
vertices in R that is disjoint from R internally. Thus, every R-path forms a
cycle with u. We use Theorem 7 to check whether G−Z contains k+ d+ 1
pairwise vertex-disjoint R-paths. If yes, then these pairwise vertex-disjoint
paths together with u form a u-flower with k + d + 1 cycles. Thus, u is a
forced vertex, according to Lemma 21.

The following simple lemma is useful in our arguments below.

Lemma 22. Let T be a tree and U ⊂ V (T ). Then every tree in T − U
contains at most one neighbor of every vertex in U .

Proof. If there is a tree in T − U that contains more than one neighbor of
some vertex u ∈ U , then T contains a cycle, which is not possible.

For each vertex u ∈ Z, we decide whether it is a forced vertex via The-
orem 7. According to the result, we get a partition of Z = N1 ∪N2, where
N1 contains all the forced vertices found by Theorem 7 and N2 = Z \N1.

The following lemma helps us to bound the size of each tree in G− Z.

Lemma 23. Let (G,Z, k) be an instance of Disjoint d-Quasi-Forest
Deletion such that every component in G−Z is a tree, and |Z| ≤ z1. Then
it can be reduced to at most 4z1(k+d) instances (G′, Z ′, k′) such that G′ − Z ′
contains at most (k+d+2)2z1(2(k+d)+1) trees, each of which contains at most
one neighbor of every non-forced vertex in Z ′.

Proof. By Theorem 7, for each vertex u ∈ N2, we can find a set Bu ⊆
(V (G) \ Z) with |Bu| ≤ 2(k + d), such that each tree in (G − Z) − Bu

contains at most one neighbor of u. For each vertex v ∈ Bu, branch on
putting it into X or into Z. After doing this for all vertices in Bu, every
tree T in G − Z contains at most one neighbor of u. Moreover, every tree
T in G − Z contains at most one neighbor of every vertex in Bu according
to Lemma 22. It follows that vertices in Bu will not become forced vertices
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when put into Z. Update the partition Z = N1 ∪N2 by checking if there is
any vertex in N1 becomes a non-forced vertex after the branching for Bu for
every u ∈ N2. Denote B = ∪u∈N2Bu.

After doing the above procedure for every vertex inN2, every tree inG−Z
contains at most one neighbor of every vertex in N2∪B. As |Bu| ≤ 2(k+d),
we have |B| ≤ 2z1(k + d). Thus, the above procedure produces at most
2|B| ≤ 4z1(k+d) instances (G′, Z ′, k′) in time O(4z1(k+d)).

For each tree T in G − Z, NZ(T ) ⊆ (N1 ∪ N2 ∪ B). Thus, there are
at most 2|N1∪N2∪B| different neighborhood types. After applying Reduction
Rule I, there are at most k + d+ 2 trees for each neighborhood type. Thus,
the number of trees in G − Z is at most (k + d + 2)2|N1∪N2∪B| = (k + d +
2)2z1(2(k+d)+1).

Now we just need to bound the size of every tree in G−Z. Note
that all neighbors of these trees in Z belong to Z = N1 ∪N2 ∪B.

Construct an auxiliary graph H with V (H) = {v′|v ∈ N1} in the fol-
lowing way. We call u and u′ the partner of each other. Let Cu′ be the
connected component in the current H that contains u′. Note that the con-
nected components of H will be updated until no more edge is added into
H. For any vertex u′ ∈ V (H), denote V (Cu) = {v|v′ ∈ V (Cu′)}. For two
vertices u′, v′ ∈ V (H), add an edge u′v′ into H if G − (Z \ {u, v}) con-
tains at least k + 1 vertex-disjoint paths between V (Cu) and V (Cv). Keep
adding edges into H until there is no vertex pair u′, v′ satisfying this condi-
tion. The construction of H can be done in polynomial time, as computing
the maximum number of vertex-disjoint paths between two vertex sets in
an undirected graph can be done by computing the maximum flow between
them. Let p be the number of connected components in the final H. We
have p ≤ |N1| ≤ z1.

Note that G−Z contains at most k vertex-disjoint paths between vertices
in V (Cu) and V (Cv), for any two different connected components Cu′ and
Cv′ of H. According to Menger’s Theorem, there is a set W with at most
k
(
p
2

)
vertices, such that for every tree T in (G − Z) −W , the partners of

vertices in NZ(T ) belong to at most one connected component of H. Now
we just need to bound the size of each such tree.

For each vertex in W , branch on putting it into X or into Z. There are
at most 2|W | such guesses. After the branching, NZ(V (G−Z)) ⊆ (W ∪N1∪
N2 ∪ B). Moreover, each tree in G − Z contains at most one neighbor of
every vertex in W that is put into Z, according to Lemma 22.

For every vertex u ∈ N1 and every integer i ∈ [k+ 1], add vertices u′i, u
′′
i

and edges u′iu
′′
i , uu

′
i, uu

′′
i into Z. These edges together with u form a u-flower

with k + 1 cycles. This operation adds 2(k + 1)|N1| vertices into Z. After
adding these vertices, every forced vertex will not become non-forced due to
the applications of Reduction Rules II and III. This is crucial for the safeness
of Reduction Rule IV and V.
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In the construction of H, vertices u′, v′ belong to the same connected
component of H, if G − Z at least k + 1 vertex-disjoint paths between u
and v. It follows that u and v belong to the same connected component of
G − X, for any X ⊆ (V (G) \ Z). However, the applications of Reduction
Rules IV and V, which delete vertices from G−Z, might affect this property.
For the safeness of Reduction Rule IV and V, add edge uv into G for any
two vertices u, v ∈ N1, if u′ and v′ belong to the same connected component
of H.

For every tree T in G− Z, we partition its vertex set into four pairwise
disjoint subsets V1, V2, V3 and V4:
V1 = {u ∈ V (T )|NZ(u) = ∅},
V2 = {u ∈ V (T )|NZ(u) \N1 6= ∅},
V3 = {u ∈ (V (T )\V2)|u has two neighbors v, w, such that v′ and w′ are in two
different connected components of H},
V4 = V (T ) \ (V1 ∪ V2 ∪ V3).

Every vertex in V1 has no edge to Z; every vertex in V2 has an edge to
Z \N1; every vertex in V3 has an edge to partners of vertices in more than
one connected components of H; every vertex in V4 has an edge to partners
of vertices in exactly one connected component of H. After the reduction
rules described in the next section, we bound the size of the four subsets.

5.2 Some More Reduction Rules

The proofs of safeness for the following two reduction rules are omitted here,
as they are similar with those of Lemmas 9 and 10.

Reduction Rule II: If there is a vertex u ∈ V1 that has degree one,
then delete u and return a new instance (G− u, k, Z).

Lemma 24. Reduction Rule II is safe.

Reduction Rule III: If there is a vertex v ∈ V1 such that dG(v) = 2,
then bypass it.

Lemma 25. Reduction Rule III is safe.

After exhaustive applications of Reduction Rules II and III, every vertex
in V1 has degree at least 3.

Reduction Rule IV: If there is a vertex v ∈ V4 such that dG−Z(v) = 1,
then delete v.

Lemma 26. Reduction Rule IV is safe.

Proof. Let T ∗ be the tree in G − Z that contains v. Let u be the neighbor
of v in G − Z. Let G′ be the graph obtained by deleting v. As v ∈ V4,
we may suppose the partners of vertices in NZ(v) belong to Ci, for some
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i ∈ [p]. We prove that (G, k, Z) is a yes-instance if and only if (G′, k, Z) is a
yes-instance.

On the one hand, suppose X is a solution to (G, k, Z) for Disjoint
d-Quasi-Forest Deletion. Then G−X is a d-quasi-forest.

If X ∩ {u, v} = ∅, then G′ −X can be obtained from G−X by deleting
v. As G−X is a d-quasi-forest, G′−X is also a d-quasi-forest. So (G′, k, Z)
is a yes-instance.

If v ∈ X, then (X \ {v}) ∪ {u} is also a d-quasi-forest deletion set of G.
Otherwise, there is a connected component C in G− ((X \ {v})∪{u}), such
that fvs(C) > d. Note that C contains v, and fvs(C − v) ≤ d. Because all
vertices in NZ(v) are forced vertices, NZ(v) belong to every feedback vertex
set (of C−v) of size at most d. It follows that dC−D(v) = 0, for any feedback
vertex set D of C − v. Therefore, D is also a feedback vertex set of C, and
so fvs(C) ≤ d, a contradiction. Thus, if X ∩ {u, v} 6= ∅, we may assume
v 6∈ X and u ∈ X. In this case, G′ −X is a subgraph of G−X, thus is also
a d-quasi-forest. Therefore, (G′, k, Z) is a yes-instance.

On the other hand, let X be a solution to (G′, k, Z) for Disjoint d-
Quasi-Forest Deletion. According to the definition of H, there are at
least k + 1 vertex-disjoint paths between partners of any two vertices in
Ci. Thus, deleting X cannot separate the partners of any two vertices in
V (Ci). Therefore, there is a connected component in G − X that contains
all vertices V (Ci). Denote this connected component by C. It follows that
NZ(v) ⊆ V (C). To prove X is also a solution to (G, k, Z) for Disjoint
d-Quasi-Forest Deletion, it suffices to show that fvs(C) ≤ d.

Let D be a feedback vertex set of the component in G′−X that contains
NZ(v), such that |D| ≤ d. As v ∈ V4, all vertices in NZ(v) are forced
vertices and so NZ(v) ⊆ D. If u ∈ X, then d(G−X)−D(v) = 0. If u 6∈ X,
then d(G−X)−D(v) = 1. In both cases, C −D is a forest and so fvs(C) ≤ d.
It follows that G−X is a d-quasi-forest, and (G, k, Z) is a yes-instance.

Reduction Rule V: If there is a vertex v ∈ V4 such that dG−Z(v) = 2,
then delete v and add an edge between its two neighbors in G− Z.

Lemma 27. Reduction Rule V is safe.

Proof. Let T ∗ be the tree in G − Z that contains v. Let u,w be the two
neighbor of v in G − Z. Let G′ be the graph obtained by deleting v and
adding an edge between u and w. Suppose the partners of vertices in NZ(v)
belong to Ci, for some i ∈ [p]. We prove that (G, k, Z) is a yes-instance if
and only if (G′, k, Z) is a yes-instance.

On the one hand, suppose X is a solution to (G, k, Z) for Disjoint
d-Quasi-Forest Deletion. Then G−X is a d-quasi-forest.

If X ∩ {u, v, w} = ∅, then G′ − X can be obtained from G − X by
deleting v and adding an edge between u and w. Let C be the connected
component in G −X that contains {u, v, w}. Then NZ(v) ⊆ V (C). Let C ′
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be the connected component obtained from C by deleting v and add an edge
between u and w. To prove G′ − X is also a d-quasi-forest, it suffices to
prove fvs(C ′) ≤ d. Let D be a feedback vertex set of C, such that |D| ≤ d.
Then NZ(v) ⊆ D, because all vertices in NZ(v) are forced vertices. Then
dC−D(v) ≤ 2. If dC−D(v) = 2, then C ′ − D can be obtained from C − D
by bypassing v. If dC−D(v) ≤ 1, C ′ − D can be obtained from C − D by
deleting v. In both cases, C ′−D is a forest, as C −D is a forest. Therefore,
fvs(C ′) ≤ d and so (G′, k, Z) is a yes-instance.

If v ∈ X, then (X \ {v}) ∪ {u} is also a d-quasi-forest deletion set of G.
Otherwise, there is a connected component C in G− (X \ {v} ∪ {u}), such
that fvs(C) > d. Note that C contains v, and fvs(C − v) ≤ d. Because all
vertices in NZ(v) are forced vertices, NZ(v) belong to every feedback vertex
set (of C−v) of size at most d. It follows that dC−D(v) ≤ 1, for any feedback
vertex set D of C − v. Therefore, D is also a feedback vertex set of C, and
so fvs(C) ≤ d, a contradiction. Thus, if X ∩ {u, v, w} 6= ∅, we may assume
v 6∈ X. In this case, G′ −X is a subgraph of G −X that can be obtained
from G−X by deleting v, thus is also a d-quasi-forest. Therefore, (G′, k, Z)
is a yes-instance.

On the other hand, let X be a solution to (G′, k, Z) for Disjoint d-
Quasi-Forest Deletion. Because deleting X can not separate the part-
ners of any two vertices in V (Ci), there is a connected component in G−X
that contains the partners of vertices in V (Ci). Denote this connected com-
ponent by C. It follows that NZ(v) ⊆ V (C). To prove X is also a solution
to (G, k, Z) for Disjoint d-Quasi-Forest Deletion, it suffices to show
that fvs(C) ≤ d.

Let D be a feedback vertex set of the component in G′−X that contains
NZ(v), such that |D| ≤ d. As v ∈ V4, all vertices in NZ(v) are forced
vertices and so NZ(v) ⊆ D. If |X ∩ {u,w}| = 0, then d(G−X)−D(v) = 2.
If |X ∩ {u,w}| = 1, then d(G−X)−D(v) = 1. If |X ∩ {u,w}| = 2, then
d(G−X)−D(v) = 0.

Thus, in all three cases, C −D is a forest and so fvs(C) ≤ d. It follows
that G−X is a d-quasi-forest, and (G, k, Z) is a yes-instance.

After exhaustive applications of Reduction Rule IV and V, every vertex
u ∈ V4 has degree at least 3 in G− Z.

Lemma 28. Let F be a forest. Denote V≥3 = {u|u ∈ V (F ), dF (u) ≥ 3} and
V=i = {u|u ∈ V (F ), dF (u) = i} for positive integer i. Then |V≥3| ≤ |V=1|.

Proof. As F is a forest, we have 2|E(F )| =
∑

u∈V (F ) dF (u) ≥ |V=1|+2|V=2|+
3|V≥3| and |E(F )| ≤ |V (F )| − 1 = |V=1| + |V=2| + |V≥3| − 1. Therefore,
|V=1| ≥ |V≥3|+ 2.

Lemma 29. After exhaustive application of Reduction Rules II, III, IV and
V, |V (T )| ≤ 3kz21/2 for every tree T in G− Z.
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Proof. Firstly, Z \N1 = W ∪N2 ∪B, and T contains at most one neighbor
of every vertex in W ∪N2 ∪ B. According to the definition of the partition
of V (T ), V2(T ) = N(W ∪ N2 ∪ B). Thus, |V3(T )| ≤ |W ∪ N2 ∪ B| ≤
k
(
p
2

)
+ 2(k + d)z1 ≤ kz21 .

Secondly, for any vertex u′ ∈ V (H), denote V (Cu) = {v|v′ ∈ V (Cu′)}.
Then for any two different connected components of Cu′ and Cv′ of H, G−Z
contains at most k common neighbors of V (Cu) and V (Cv). Thus, |V2(T )| ≤
k
(
p
2

)
≤ kz21/2.

Thirdly, after exhaustive application of Reduction Rule II, III, IV and
V, every vertex in V2(T ) ∪ V4(T ) has degree at least 3 in G− Z. Therefore
V=1(T ) ⊆ V2(T )∪V3(T ). According to Lemma 28, we have |V1(T )∪V4(T )| ≤
|V≥3| ≤ |V=1| ≤ |V2(T )|+ |V3(T )| ≤ 3kz21/2.

Definition 6. A tree in G−Z is a bad tree if it has at least d+ 2 neighbors
in Z. Otherwise, it is a good tree.

Lemma 30. Let (G, k, Z) be a yes-instance of Disjoint d-Quasi-Forest
Deletion, such that NZ(T ) ⊆ Z0 holds for every bad tree T in G − Z,
for some vertex set Z0. Then G − Z contains at most (k + d + 1)

(|Z0|
d+2

)
vertex-disjoint bad trees.

Proof. Suppose on the contrary, there are more than (k + d + 1)
(|Z0|
d+2

)
bad

trees in G − Z. Then there exists a set N ′ ⊆ Z0 and a set T ′ of trees in
G− Z, with |N ′| = d+ 2 and |T ′| ≥ k + d+ 2, such that every tree in T ′ is
adjacent with every vertex in N ′, according to the pigeonhole principle. For
any vertex set X ⊆ (V (G) \ Z), with |X| ≤ k, there are at least d + 2 bad
trees in T ′ that are disjoint from X. Then there is a component, denoted by
C, in G−X that contains these d+2 bad trees. For any vertex set D ⊆ V (C)
with |D| ≤ d, we have |N ′ \D| ≥ 2. Moreover, there are at least 2 trees in
T ′ that are disjoint from D. Let T1 and T2 be two such trees. Let u and v
be two vertices in N ′ \D. Observe that G[V (T1) ∪ V (T2) ∪ {u, v}] contains
a cycle in C − D. Thus, D is not a feedback vertex set of C. Therefore,
fvs(C) > d, and X is not a solution to (G, k, Z). It follows that (G, k, Z) is a
no-instance of Disjoint d-Quasi-Forest Deletion, a contradiction.

5.3 Bounding and Solving the Reduced Instances

Lemma 31. Let (G, k, Z) be a yes-instance of Disjoint d-Quasi-Forest
Deletion, such that NZ(T ) ⊆ Z1 holds for every good tree T in G − Z,
for some vertex set Z1 ⊆ Z. Then after exhaustive applications of Reduction
Rule I, G− Z contains at most (k + d+ 2)3|Z1| good trees.

Proof. By Definition 4, for each M ⊆ Z1, there are 2|M | different neighbor-
hood types with neighborhood M . Since every good tree in G − Z has at
most d+ 1 neighbors in Z1, there are at most

∑
1≤i≤d+1

(|Z1|
i

)
2i ≤ 3|Z1| dif-

ferent neighborhood types for any good tree. After exhaustive applications
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of Reduction Rule I, G − Z contains at most k + d + 2 good trees of each
neighborhood type.

It takes polynomial time to decide the neighborhood type of each tree in
G−Z, thus Reduction Rule I can be applied in polynomial time. According
to Lemma 31, after exhaustive applications of Reduction Rule I, G − Z
contains at most (k + d+ 2)3z1 good trees, as |Z0| ≤ z1.

According to Lemma 29, in the reduced instance, every tree of G − Z
contains at most O(kz21) vertices. Moreover, NZ(G−Z) ⊆ (W∪N1∪N2∪B).
According to Lemma 30, there are at most (k + d + 1)

(|W∪N1∪N2∪B|
d+2

)
=

O((k + d + 1)
(
k3d2

d+2

)
) bad trees in G − Z. After applications of Reduction

Rule I, there are at most (k + d+ 2)3|W∪N1∪N2∪B| = (k + d+ 2)3k
3d2 good

trees in G−Z, according to Lemma 31. Thus, we arrive at instances in which
G−Z contains at most (k+d+1)

(
k3d2

d+2

)
+(k+d+2)3k

3d2 = O((k+d+2)3k
3d2)

trees, each contains at most O(kz21) vertices.

Now we need to solve instances in which G− Z contains at most
O(kz21(k + d)23k

3d2) vertices. And so we can solve the reduced instance in
FPT time simply by branching.

Theorem 8. The d-Quasi-Forest Deletion problem can be solved in
time O∗(2k7d63k

3d2

).

Proof. We solve the Disjoint d-Quasi-Forest Deletion problem as a
subroutine. It takes O∗(2z1) steps to make G−Z acyclic. It takes 2|B| steps
to get an instance, in which every tree contains at most one neighbor of each
non-forced vertex in Z. It takes at most 2|W | steps to get an instance in
which every tree contains neighbors of at most one connected component of
H. It takes O∗(3z1) steps to apply Reduction Rule I. According to Lemma
29, we arrive at an instance, in which G− Z contains at most kz21((k + d+

1)
(
k3d2

d+2

)
+ (k + d+ 2)3k

3d2)) vertices.
Therefore, the running time of our algorithm for Disjoint d-Quasi-

Forest Deletion is at most

O∗(2z12|N2||Bu|2kz
2
1 [(k+d+1)((k

3d2

d+2 )+(k+d+2)3k
3d2 )])

= O∗(2kz
2
1(k+d+1)((k

3d2

d+2 )+(k+d+2)3k
3d2 ))

= O∗(2k
7d63k

3d2

).

(1)

To solve d-Quasi-Forest Deletion, it suffices to solve 2k+1 copies of
Disjoint d-Quasi-Forest deletion, thus we may solve d-Quasi-Forest

Deletion in time O∗(2k7d63k
3d2

).
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6 Conclusion

In this paper, we provide FPT results for two problems that generalize the
feedback vertex set problem. It would be interesting to design a single ex-
ponential time algorithm for d-Quasi-Forest Deletion. The barrier to a
single exponential running time in our algorithm is the exponential number of
trees in G−Z. Whether d-Quasi-Forest Deletion admits a polynomial
kernel is a natural question that deserves further investigation.
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